National Library of Energy BETA

Sample records for high concentration pv

  1. DOE High Performance Concentrator PV Project

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  2. Low Cost High Concentration PV Systems for Utility Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Cost High Concentration PV Systems for Utility Power Generation An overview of the Low Cost High Concentration PV Systems for Utility Power Generation project to transition Amonix's concentrating photovoltaic (PV) systems from low-volume to high-volume production. Low Cost High Concentration PV Systems for Utility Power Generation (972.55 KB) More Documents & Publications Solar America Initiative Low Cost High Concentration PV Systems for Utility Power

  3. Low Cost High Concentration PV Systems for Utility Power Generation Amonix,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. | Department of Energy Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain

  4. Low Cost High Concentration PV Systems for Utility Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity ... for Residential and Commercial Photovoltaic Energy Generation,A Value Chain ...

  5. National solar technology roadmap: Concentrator PV

    SciTech Connect (OSTI)

    Friedman, Dan

    2007-06-01

    This roadmap addresses high-concentration (>10x) photovoltaic (PV) systems, incorporating high-efficiency III-V or silicon cells, trackers, and reflective or refractive optics.

  6. Bottom-Up Cost Analysis of a High Concentration PV Module; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Horowitz, K.; Woodhouse, M.; Lee, H.; Smestad, G.

    2015-04-13

    We present a bottom-up model of III-V multi-junction cells, as well as a high concentration PV (HCPV) module. We calculate $0.65/Wp(DC) manufacturing costs for our model HCPV module design with today’s capabilities, and find that reducing cell costs and increasing module efficiency offer the promising pathways for future cost reductions. Cell costs could be significantly reduced via an increase in manufacturing scale, substrate reuse, and improved manufacturing yields. We also identify several other significant drivers of HCPV module costs, including the Fresnel lens primary optic, module housing, thermal management, and the receiver board. These costs could potentially be lowered by employing innovative module designs.

  7. Identifying Critical Pathways to High-Performance PV: Preprint

    SciTech Connect (OSTI)

    Symko-Davies, M.; Noufi, R.; Kurtz, S.

    2002-05-01

    This conference paper describes the High-Performance Photovoltaic (HiPerf PV)Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment in the 21st century. To accomplish this, the NCPV directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. Details of the subcontractor and in-house progress will be described toward identifying critical pathways of 25% polycrystalline thin-film tandem cells and developing multijunction concentrator modules to 33%.

  8. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  9. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: ... This study looks at the technical feasibility of generating power with PV arrays. PDF icon ...

  10. Concentrating Photovoltaics: Collaborative Opportunities within DOEs CSP and PV Programs; Preprint

    SciTech Connect (OSTI)

    Mehos, M.; Lewandowski, A.; Symko-Davies, M.; Kurtz, S.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: DOEs Concentrating Solar Power program is investigating the viability of concentrating PV converters as an alternative to thermal conversion devices.

  11. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect (OSTI)

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  12. Final Report- High Penetration Solar PV Deployment Sunshine State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation. High Penetration Solar PV Deployment ...

  13. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  14. NREL: Photovoltaics Research - NREL Releases High-Penetration PV Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  15. NREL Releases High-Penetration PV Handbook for Distribution Engineers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Integration | NREL Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable

  16. NREL Releases High-Penetration PV Handbook for Distribution Engineers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Modernization | NREL Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  17. PV Solar Site Assessment (Milwaukee High School)

    Broader source: Energy.gov [DOE]

    The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

  18. Integrating High Penetrations of PV into Southern California

    SciTech Connect (OSTI)

    Kroposki, B.; Mather, B.; Hasper-Tuttle, J.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-01-01

    California regulators recently approved a plan proposed by Southern California Edison (SCE) to install 500 MW of distributed photovoltaic (PV) energy in its utility service territory over the next 5 years. The installations will include 250 MW of utility-owned solar and 250 MW of independently owned solar. SCE expects that the majority of these systems will be commercial-scale rooftop PV systems connected at various points in the distribution system. Each of the SCE rooftop PV systems will typically have a rating of 1-3 MW. To understand the impact of high-penetration PV on the distribution grid, the National Renewable Energy Laboratory (NREL) and SCE brought together a team of experts in resource assessment, distribution modeling, and planning to help analyze the impacts of adding high penetration of PV into the distribution system. Through modeling and simulation, laboratory testing, and field demonstrations, the team will address the issues identified in the analysis by fully examining the challenges, developing solutions, and transitioning those solutions to the field for large-scale deployment. This paper gives an update on the project and discusses technical results of integrating a large number of distributed PV systems into the grid.

  19. Progress in High-Performance PV: Polycrystalline Thin-Film Tandem Cells

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2004-08-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of PV for cost-competitive applications. The goal is that PV will contribute significantly to the U.S. and world energy supply and environmental enhancement in the 21st century. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course, to accelerate and enhance their impact in the marketplace. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. This paper will describe progress of the subcontractor and in-house R&D on critical pathways for a PV technology having a high potential to reach cost-competitiveness goals: 25%-efficient, low-cost polycrystalline thin-film tandems for large-area, flat-plate modules.

  20. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  1. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  2. Modeling and Analysis of High-Penetration PV in California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling and Analysis of High-Penetration PV in California Modeling and Analysis of High-Penetration PV in California NREL logo.jpg The NREL project team will utilize field verification to improve the ability to model and understand the impacts of high-penetration PV on electric utility systems and develop solutions to ease high-penetration PV deployments. The team will develop and verify advanced modeling and simulation methods for distribution system planning and operations; define

  3. High-Penetration PV Integration Handbook for Distribution Engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 High-Penetration PV Integration Handbook for Distribution Engineers Rich Seguin, Jeremy Woyak, David Costyk, and Josh Hambrick Electrical Distribution Design Barry Mather National

  4. High-Penetration PV Integration Handbook for Distribution Engineers

    SciTech Connect (OSTI)

    Seguin, Rich; Woyak, Jeremy; Costyk, David; Hambrick, Josh; Mather, Barry

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’s service territory through a program approved by the California Public Utility Commission (CPUC).

  5. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect (OSTI)

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a

  6. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    SciTech Connect (OSTI)

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  7. High Penetration PV: How High Can We Go?

    SciTech Connect (OSTI)

    2016-01-01

    Brochure highlighting NREL's partnership with SolarCity and Hawaiian Electric (HECO) to increase the penetration of solar photovoltaics on the electricity grid. To better understand the potential impact of transient overvoltages due to load rejection, NREL collaborated with SolarCity and HECO to run a series of tests measuring the magnitude and duration of load rejection overvoltage events and demonstrating the ability of advanced PV inverters to mitigate their impacts.

  8. Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona aps-logo.gif --This project is inactive -- The project team, led by Arizona Public Service, will evaluate the impacts of high penetrations of distributed PV and energy storage on a dedicated feeder to identify the technical and operational modifications that could be deployed in future feeder designs. APPROACH Models

  9. Modeling and Analysis of High-Penetration PV in Florida | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling and Analysis of High-Penetration PV in Florida Modeling and Analysis of High-Penetration PV in Florida caps-fsu-logo.jpg This project aims to leverage simulation-assisted research and development based on a wide variety of Florida feeders that already incorporate high levels of PV power. Working with utilities, the team at Florida State University's Center for Advanced Power Systems (FSU CAPS) will evaluate and model impacts of the effects of high-penetration PV on

  10. NREL: Solar Research - NREL Releases High-Penetration PV Handbook for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  11. Field Demonstration of Using Advanced PV Inverter Functionality to Mitigate the Impacts of High-Penetration PV Grid Integration on the Distribution System

    SciTech Connect (OSTI)

    Mather, Barry; Gebeyehu, Araya

    2015-06-14

    This paper describes a field demonstration that was completed to show the ability of currently installed PV inverters to implement advanced PV inverter functionality and that such functionality was effective at reducing the voltage-related PV impacts of high-penetration PV integration. A distribution circuit was instrumented and then tested for a two week period using off-unity power factor operation. Specifically, an inductive power factor of -0.95 was demonstrated. The results show that the PV inverters were capable of such operation and that the use of off-unity power factor operation was highly effective at reducing the voltage-related impacts of the PV systems interconnected to the circuits used in the demonstration. The impacts of using off-unity power factor operation - resulting in additional reactive current flow on the distribution circuit - are also presented and analyzed.

  12. Water Impacts of High Solar PV Electricity Penetration

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  13. Highly Efficient 32.3% Monolithic GaInP/GaAs/Ge Triple Junction Concentrator Solar Cells

    SciTech Connect (OSTI)

    Cotal, H. L.; Lillington, D. R.; Ermer, J. H.; King, R. R.; Karam, N. H.; Kurtz, S. R.; Friedman, D. J.; Olson, J. M.; Ward, S.; Duda, A.; Emery, K. A.; Moriarty, T.

    2000-01-01

    Based on recent cell improvements for space applications, multijunction cells apear to be ideal candidates for high efficiency, cost effective, PV concentrator systems.

  14. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  15. PROJECT PROFILE: Overcoming Bottlenecks to Low-Cost, High-Efficiency Si PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Industrially Relevant, Ion Implanted, Interdigitated Back Passivated Contact Cell Development | Department of Energy Overcoming Bottlenecks to Low-Cost, High-Efficiency Si PV and Industrially Relevant, Ion Implanted, Interdigitated Back Passivated Contact Cell Development PROJECT PROFILE: Overcoming Bottlenecks to Low-Cost, High-Efficiency Si PV and Industrially Relevant, Ion Implanted, Interdigitated Back Passivated Contact Cell Development Funding Opportunity: SuNLaMP SunShot

  16. PROJECT PROFILE: Combined PV/Battery Grid Integration with High Frequency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnetics Enabled Power Electronics (SuNLaMP) | Department of Energy PROJECT PROFILE: Combined PV/Battery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP) PROJECT PROFILE: Combined PV/Battery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: National Energy Technology Laboratory, Pittsburgh, PA SunShot Award Amount: $4,238,040 Awardee Cost Share:

  17. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  18. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect (OSTI)

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  19. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect (OSTI)

    Hambrick, J.; Narang, D.

    2012-06-01

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  20. Analysis of the Impacts of Distribution-Connected PV Using High-Speed Data Sets: Preprint

    SciTech Connect (OSTI)

    Bank, J.; Mather, B.

    2013-03-01

    This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability in system load and the variability of distributed PV generation are made.

  1. High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

  2. High-Efficiency Solar Cogeneration with T-PV and Fiber Optic Daylighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DiMasi joseph@CreativeLightSource.com Creative Light Source, inc. High-Efficiency Solar Cogeneration with T-PV and Fiber Optic Daylighting 2015 Building Technologies Office Peer Review ‹#› Project Summary Timeline: Start date: August, 2014 Planned end date: July, 2016 Key Milestones: 1. Y1 prototype test-bed functional; 7/15 2. Full IR-PV cogeneration system; 3/16 3. Building Trials at customer facility; 6/16 Budget: Total DOE $ to date: $975,000 (P1 + P2, Y1) Total future DOE $: $750,000

  3. Final Report- High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative

    Broader source: Energy.gov [DOE]

    Florida State University’s Center for Advanced Power Systems and partners in the Sunshine State Solar Grid Initiative (SUNGRIN) have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation.

  4. Equipment Loan for Concentrated PV Cavity Converter (PVCC) Research: Cooperative Research and Development Final Report, CRADA Number CRD-08-285

    SciTech Connect (OSTI)

    Netter, Judy

    2015-07-28

    Interest in High Concentration Photovoltaics (HCPV) for terrestrial applications has significantly grown in recent years. A major driver behind this growth trend is the availability of high efficiency multi-junction (MJ) cells that promise reliable operation under high concentrations (500 to 1000 suns). The primary impact of HCPV on the solar electricity cost is the dramatic reduction in cell cost. For terrestrial HCPV systems, operating at concentrations ≥ 500 suns, the expensive MJ cells are marginally affordable. Most recently, triple-junction test cells have achieved a conversion efficiency of over 40% under concentrated sunlight. Photovoltaic Cavity Converter (PVCC) is a multi-bandgap, high concentration PV device developed by United Innovations, Inc., under subcontract to NREL. The lateral- (2- dimensional) structure of PVCC, as opposed to vertical multi-junction (MJ) structure, helps to circumvent most of the developmental challenges MJ technology has yet to overcome. This CRADA will allow the continued development of this technology by United Innovations. This project was funded by the California Energy Commission and is the second phase of a twopart demonstration program. The key advantage of the design was the use of a PVCC as the receiver. PVCCs efficiently process highly concentrated solar radiation into electricity by recycling photons that are reflected from the surface of the cells. Conventional flat, twodimensional receivers cannot recycle photons and the reflected photons are lost to the conversion process.

  5. PROJECT PROFILE: Combined PV/Battery Grid Integration with High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Combined PVBattery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP) PROJECT PROFILE: Combined PVBattery Grid Integration with ...

  6. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/SCE High Penetration PV Integration Project: FY13 Annual Report Barry A. Mather National Renewable Energy Laboratory Sunil Shah Southern California Edison Benjamin L. Norris and John H. Dise Clean Power Research Li Yu, Dominic Paradis, and Farid Katiraei Quanta Technology Richard Seguin, David Costyk, Jeremy Woyak, Jaesung Jung, Kevin Russell, and Robert Broadwater Electrical Distribution Design, Inc. Technical Report NREL/TP-5D00-61269 June 2014 NREL is a national laboratory of the U.S.

  7. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    SciTech Connect (OSTI)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  8. High efficiency and high concentration in photovoltaics

    SciTech Connect (OSTI)

    Yamaguchi, Masafumi; Luque, A.

    1999-10-01

    In this paper, the authors present the state-of-the-art of multijunction solar cells and the future prospects of this technology. Their use in terrestrial applications will likely be for concentrators operating at very high concentrations. Some trends are also discussed and the authors present a cost calculation showing that highly efficient cells under very high concentration would be able to produce electricity at costs competitive with electricity generation costs for some utilities.

  9. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect (OSTI)

    Mohammed S. Agamy; Song Chi; Ahmed Elasser; Maja Harfman-Todorovic; Yan Jiang; Frank Mueller; Fengfeng Tao

    2012-06-01

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  10. Multijunction Photovoltaic Technologies for High-Performance Concentrators

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-01-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  11. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  12. Modelling acceptance of sunlight in high and low photovoltaic concentration

    SciTech Connect (OSTI)

    Leutz, Ralf

    2014-09-26

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  13. Tools for Enhanced Grid Operation and Optimized PV Penetration Utilizing Highly Distributed Sensor Data.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Peppanen, Jouni; Seuss, John; Lave, Matthew Samuel; Broderick, Robert Joseph; Grijalva, Santiago

    2015-11-01

    Increasing number s of PV on distribution systems are creating more grid impacts , but it also provides more opportunities for measurement, sensing, and control of the grid in a distributed fashion. This report demonstrates three software tools for characterizing and controlling distribution feeders by utilizing large numbers of highly distributed current, voltage , and irradiance sensors. Instructions and a user manual is presented for each tool. First, the tool for distribution system secondary circuit parameter estimation is presented. This tool allows studying distribution system parameter estimation accuracy with user-selected active power, reactive power, and voltage measurements and measurement error levels. Second, the tool for multi-objective inverter control is shown. Various PV inverter control strategies can be selected to objectively compare their impact on the feeder. Third, the tool for energy storage for PV ramp rate smoothing is presented. The tool allows the user to select different storage characteristics (power and energy ratings) and control types (local vs. centralized) to study the tradeoffs between state-of-charge (SOC) management and the amount of ramp rate smoothing.

  14. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance

    SciTech Connect (OSTI)

    Schwinkendorf, W.E.

    1984-09-01

    This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  15. Design and optimization of a holographic concentrator for two-color PV-operation

    SciTech Connect (OSTI)

    Wagemann, E.U.; Froehlich, K.; Schulat, J.; Schuette, H.; Stojanoff, C.G.

    1993-12-31

    The subject matter of this research project is to develop, manufacture and field test a spectrally dispersing solar collector system using a holographic solar concentrator in conjunction with spectrally matched advanced solar cells for photovoltaic power generation. The advantage of a holographic solar concentrator as compared to a conventional one is seen in the overall reduction of investment cost and in the possibility to generate inexpensive solar electric power. In this paper the authors present the techniques specifically developed for the design and manufacturing of efficient holographic optical elements and holographic lens stacks that are used in the fabrication of bandwidth matched solar concentrators for VIS and NIR photovoltaic operation. The lens stack separates the white light radiation into several spectral ranges that are focused onto photocells possessing corresponding spectral characteristics. Contrary to previously published arrangements, the authors present here the concept and the design characteristics of a holographic concentrator that allows positioning of the cells in a plane parallel to the lens aperture. The initial idea of using two lenses recorded in the same aperture or same holographic layer focusing onto two off-axis foci proved to be of limited value due to the off-axis focusing that introduces strong reflection and aberration. Here the authors present a new concept in which the two lenses are shifted in the plane of the aperture so that each lens-cell configuration exhibits axial geometry. Stack layouts for AlGaAs/GaAs and GaAs/Si combinations are discussed. Cross-coupling effects and aberrations involving the IR lens are minimized. Experimental diffraction efficiencies are fitted with non-cosinusoidal refractive index modulation showing best performance for 100 by 100 mm{sup 2} aperture. The theoretical predictions are compared with the first experimental results.

  16. PV Research & Development Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... for investors, which translates into a high cost of capital for PV project investments. ...

  17. High Penetration PV: How High Can We Go? (Brochure), Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Penetration PV: How High Can We Go? ENERGY SYSTEMS INTEGRATION ESI optimizes the design and performance of electrical, thermal, fuel, and water pathways at all scales. "We know how important the option of solar is for our customers. Solving these issues requires that everyone-utilities, the solar industry, and other leading technical experts like NREL-work together. That's what this work is all about. With the highest amount of solar in the nation, our utilities are facing potential

  18. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    SciTech Connect (OSTI)

    Baggu, Murali; Giraldez, Julieta; Harris, Tom; Brunhart-Lupo, Nicholas; Lisell, Lars; Narang, David

    2015-06-14

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.

  19. Transforming PV Installations toward Dispatchable, Schedulable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of a PV plant under transient cloud conditions, without requiring irradiance forecasting. ... reduces high penetration PV integration costs, and will reduce certification costs for ...

  20. Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint

    SciTech Connect (OSTI)

    Goodrich, A.; Woodhouse, M.; Hacke, P.

    2012-06-01

    Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

  1. Non-tracking solar concentrator with a high concentration ratio

    DOE Patents [OSTI]

    Hinterberger, Henry

    1977-01-01

    A nontracking solar concentrator with a high concentration ratio is provided. The concentrator includes a plurality of energy absorbers which communicate with a main header by which absorbed heat is removed. Undesired heat flow of those absorbers not being heated by radiant energy at a particular instant is impeded, improving the efficiency of the concentrator.

  2. Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Johnson, Lars; Ellis, Abraham; Kuszmaul, Scott S.

    2012-01-01

    Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery operated data acquisition system. The Lanai High-Density Irradiance Sensor Network is comprised of 24 LI-COR{reg_sign} irradiance sensors (silicon pyranometers) polled by 19 RF Radios. The system was implemented with commercially available hardware and custom developed LabVIEW applications. The network of solar irradiance sensors was installed in January 2010 around the periphery and within the 1.2 MW ac La Ola PV plant on the island of Lanai, Hawaii. Data acquired at 1 second intervals is transmitted over wireless links to be time-stamped and recorded on SunPower data servers at the site for later analysis. The intent is to study power and solar resource data sets to correlate the movement of cloud shadows across the PV array and its effect on power output of the PV plant. The irradiance data sets recorded will be used to study the shape, size and velocity of cloud shadows. This data, along with time-correlated PV array output data, will support the development and validation of a PV performance model that can predict the short-term output characteristics (ramp rates) of PV systems of different sizes and designs. This analysis could also be used by the La Ola system operator to predict power ramp events and support the function of the future battery system. This experience could be used to validate short-term output forecasting methodologies.

  3. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007

    SciTech Connect (OSTI)

    Tucker, R.

    2008-04-01

    Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

  4. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    SciTech Connect (OSTI)

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  5. Terrestrial Concentrator PV Modules Based on GaInP/GaAs/Ge TJ Cells and Minilens Panels

    SciTech Connect (OSTI)

    Rumyantsev, V. D.; Sadchikov, N. A.; Chalov, A. E.; Ionova, E. A.; Friedman, D. J.; Glenn, G.

    2006-01-01

    This paper is a description of research activity in the field of cost-effective modules realizing the concept of very high solar concentration with small-aperture area Fresnel lenses and multijunction III-V cells. Structural simplicity and 'all-glass' design are the guiding principles of the corresponding development. The advanced concentrator modules are made with silicone Fresnel lens panels (from 8 up to 144 lenses, each lens is 4 times 4 cm{sup 2} in aperture area) with composite structure. GaInP/GaAs/Ge triple-junction cells with average efficiencies of 31.1 and 34.7% at 1000 suns were used for the modules. Conversion efficiency as high as 26.3% has been measured indoors in a test module using a newly developed large-area solar simulator.

  6. Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules

    SciTech Connect (OSTI)

    Stuart Hellring; Jiping Shao; James Poole

    2011-12-05

    The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in a

  7. LANAI HIGH-DENSITY IRRADIANCE SENSOR NETWORK FOR CHARACTERIZING SOLAR RESOURCE VARIABILITY OF MW-SCALE PV SYSTEM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANAI HIGH-DENSITY IRRADIANCE SENSOR NETWORK FOR CHARACTERIZING SOLAR RESOURCE VARIABILITY OF MW-SCALE PV SYSTEM Scott Kuszamaul 1 , Abraham Ellis 1 , Joshua Stein 1 , and Lars Johnson 2 1 Sandia National Laboratories, Albuquerque, NM, USA 2 SunPower Corporation, Richmond, CA, USA ABSTRACT Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery

  8. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect (OSTI)

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  9. PROJECT PROFILE: Enabling High Concentration Photovoltaics with...

    Energy Savers [EERE]

    The efficiency and concentration of III-V multi-junction solar cells are essential to reduce the cost of high concentration photovoltaic systems (HCPV). This project will push the ...

  10. PV Controls Utility-Scale Demonstration Project

    SciTech Connect (OSTI)

    O'Neill, Barbara; Gevorgian, Vahan

    2015-10-14

    This presentation provides a high-level overview of the utility-scale PV controls demonstration project.

  11. Highly concentrated foam formulation for blast mitigation

    DOE Patents [OSTI]

    Tucker, Mark D.; Gao, Huizhen

    2010-12-14

    A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

  12. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    SciTech Connect (OSTI)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The projects research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The projects literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a heat mirror that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nations future electricity and transportation needs that is entirely home grown and carbon free. As CPV enter the nations utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this projects findings.

  13. Sandia Energy - PV Value

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Value Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation PV Value PV ValueTara Camacho-Lopez2015-06-12T20:36:38+00:0...

  14. PV Value®

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV system is done using an income ...

  15. Supported PV module assembly

    DOE Patents [OSTI]

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  16. SunShot Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV SunShot Solar PV

  17. Development of Large High-Voltage PV Modules with Improved Reliability and Lower Cost: Final Subcontract Report, 1 April 2006--31 August 2007

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2009-05-01

    The overall objective was to provide NREL with technical results that enhance its capability to improve PV manufacturing technology by developing a PV module with specified characteristics.

  18. Sunergie PV | Open Energy Information

    Open Energy Info (EERE)

    Sunergie PV Jump to: navigation, search Name: Sunergie PV Place: Perpignan, France Zip: 66000 Product: Perpignan-based project developer. References: Sunergie PV1 This article is...

  19. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect (OSTI)

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  20. NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken June 28, 2011 - 11:44am Addthis NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | NREL

  1. Energy 101: Solar PV

    SciTech Connect (OSTI)

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  2. Energy 101: Solar PV

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power...

  3. Sandia Energy - PV Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Publications PV PublicationsTara Camacho-Lopez2016-01-05T23:50:37+00:00 Recent...

  4. Energy 101: Solar PV

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  5. High concentration of deuterium in palladium

    SciTech Connect (OSTI)

    Uhm, H.S.; Lee, W.M. )

    1992-01-01

    In this paper, based on theoretical calculations, new schemes to increase the deuterium density in palladium over its initial value are presented. A high deuterium concentration in palladium is needed for application to solid-state fusion. The first deuterium enrichment scheme makes use of plasma ion implantation, which consists of a cylindrical palladium rod (target) preloaded with deuterium atoms, coated with diffusion barrier material, and immersed in a deuterium plasma. The palladium rod is connected to a high-power modulator, which provides a series of negative voltage pulses. During these negative pulses, deuterium ions fall on the target, penetrate the diffusion barrier, and are implanted inside the palladium. For reasonable system parameters allowed by current technology, theoretical calculations indicate that the saturation deuterium density after prolonged ion implantation can be several times the palladium atomic number density. The second deuterium enrichment scheme makes use of temperature gradient effects on the deuterium solubility in palladium. A heat source at temperature T{sub 2} and a heat sink at temperature T{sub 1} (where T{sub 2} {gt} T{sub 1}) are in contact with two different parts of a palladium sample, which has been presoaked with deuterium atoms and has been coated with diffusion barrier material or has been securely locked in a metal case. The temperature gradient created in the sample from such an arrangement forces the deuterium atoms in the hot region to migrate into the cold region, resulting in higher deuterium density in the cold region.

  6. Conergy PV | Open Energy Information

    Open Energy Info (EERE)

    Conergy PV Jump to: navigation, search Name: Conergy PV Place: Germany Product: A holding company that was formed to group all Conergy AG's PV activities. References: Conergy PV1...

  7. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Value PV Value PV Value is a web-based tool that calculates the energy production value for a residential or commercial photovoltaic (PV) system. The tool is Uniform Standards ...

  8. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  9. Concentrator Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the ...

  10. Stabilized PV system

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2002-12-17

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  11. Biological denitrification of high concentration nitrate waste

    DOE Patents [OSTI]

    Francis, Chester W.; Brinkley, Frank S.

    1977-01-01

    Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

  12. Fire resistant PV shingle assembly

    DOE Patents [OSTI]

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  13. Using CAD software to simulate PV energy yield - The case of product integrated photovoltaic operated under indoor solar irradiation

    SciTech Connect (OSTI)

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.; Sinke, W.C.

    2010-08-15

    In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovative concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)

  14. Illinois: High-Energy, Concentration-Gradient Cathode Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size Illinois: High-Energy,...

  15. Sandia Energy - Tutorial on PV System Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tutorial on PV System Modeling Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis Tutorial on PV System Modeling Tutorial on PV...

  16. Distributed PV Adoption in Maine Through 2021

    SciTech Connect (OSTI)

    Gagnon, Pieter; Sigrin, Ben

    2015-11-06

    NREL has used its dSolar (distributed solar) model to generate low-medium-high estimates of distributed PV adoption in Maine through 2021. This presentation gives a high-level overview of the model and modeling results.

  17. PV Value®

    Broader source: Energy.gov [DOE]

    PV Value® is a free solar PV Valuation tool that answers the question of "How much is solar PV worth" and is compliant with the Uniform Standards of Professional Appraisal Practice. It is available for and being used by real estate appraisers, realtors, homeowners, commercial building owners, home builders, solar installers, green raters, insurance companies, and mortgage lenders in all 50 states along with D.C. and Puerto Rico. PV Value® allows for the calculation of both the cost and income approach to value and was endorsed by the largest appraiser trade organization, the "Appraisal Institute," as an innovative approach to valuing solar assets.

  18. Solar PV Incentive Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Program (greater than 50 kW) * LIPA Solar Pioneer (homeowner) & Solar Entrepreneur (business - up to 50 kW) Research & Development collaborations on BOS cost ...

  19. PV Reliability & Performance Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability & Performance Model - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo GovDelivery SlideShare PV Reliability & Performance Model Home...

  20. PROJECT PROFILE: Enabling High Concentration Photovoltaics with 50%

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Solar Cells | Department of Energy Enabling High Concentration Photovoltaics with 50% Efficient Solar Cells PROJECT PROFILE: Enabling High Concentration Photovoltaics with 50% Efficient Solar Cells Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $8,000,000 The efficiency and concentration of III-V multi-junction solar cells are essential to reduce the cost of high concentration photovoltaic

  1. Sandian Presents on PV Failure Analysis at European PV Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator ...

  2. Sunshine PV | Open Energy Information

    Open Energy Info (EERE)

    PV Place: Taiwan Sector: Solar Product: Taiwan-based subsidiary of Solartech Energy and thin-film PV module supplier. References: Sunshine PV1 This article is a stub. You can...

  3. Sandia Energy - PV Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Modeling & Analysis Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis PV Modeling & AnalysisTara Camacho-Lopez2015-05-11T20:03...

  4. PV Systems | Open Energy Information

    Open Energy Info (EERE)

    PV Systems Place: Wales, United Kingdom Zip: CF15 7JD Product: Welsh building integrated PV (BIPV) company References: PV Systems1 This article is a stub. You can help OpenEI by...

  5. PV_LIB Toolbox

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    While an organized source of reference information on PV performance modeling is certainly valuable, there is nothing to match the availability of actual examples of modeling algorithms being used in practice. To meet this need, Sandia has developed a PV performance modeling toolbox (PV_LIB) for Matlab. It contains a set of well-documented, open source functions and example scripts showing the functions being used in practical examples. This toolbox is meant to help make the multi-stepmore » process of modeling a PV system more transparent and provide the means for model users to validate and understand the models they use and or develop. It is fully integrated into Matlab’s help and documentation utilities. The PV_LIB Toolbox provides more than 30 functions that are sorted into four categories« less

  6. Ambiental PV | Open Energy Information

    Open Energy Info (EERE)

    Ambiental PV Jump to: navigation, search Name: Ambiental PV Place: Bahia, Brazil Zip: 40140-380 Sector: Carbon Product: Bahia-based carbon consultancy firm. References: Ambiental...

  7. Potential Role of Concentrating Solar Power in Enabling High...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States Paul Denholm, Maureen Hand, Trieu Mai, Robert Margolis, Greg Brinkman, Easan ...

  8. GridPV Toolbox

    Energy Science and Technology Software Center (OSTI)

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  9. GridPV Toolbox

    SciTech Connect (OSTI)

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  10. Grid integrated distributed PV (GridPV).

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  11. Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy...

    Open Energy Info (EERE)

    Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name: Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place: Xinyu, Jiangxi Province, China Zip:...

  12. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6733 Unlimited Release Printed August 2013 Grid Integrated Distributed PV (GridPV) Matthew J. Reno, Kyle Coogan Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE -AC04-94AL85000. Approved for

  13. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    141 Unlimited Release Printed November 2014 Grid Integrated Distributed PV (GridPV) Version 2 Matthew J. Reno, Kyle Coogan Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Value PV Value PV Value Sandia National Laboratories has developed a prospective model of determining the value of PV. Sandia uses an income capitalization approach, which considers the present value of future energy production to determine the remaining value of a PV system. An online tool developed by Energy Sense Finance, has been released to the public. https://www.pvvalue.com/ PV Value (332.15 KB) More Documents & Publications PV Value® Reduce Risk, Increase Clean Energy: How States

  15. EERE Success Story-Raising the Bar for Quality PV Modules | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Raising the Bar for Quality PV Modules EERE Success Story-Raising the Bar for Quality PV Modules October 30, 2014 - 4:58pm Addthis As photovoltaics (PV) markets expand across the United States the manufacture of safe, reliable, and high-quality PV modules is critical to achieve cost competitive solar energy. Since the development and codification of testing standards for PV modules requires a lengthy multiyear process, Department of Energy's SunShot Initiative and National Renewable

  16. Developing new high energy gradient concentration cathode material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp10amine.pdf More Documents & Publications New High Energy Gradient Concentration ...

  17. Illinois: High-Energy, Concentration-Gradient Cathode Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a high-energy, concentration-gradient cathode material for plug-in hybrid and all-electric vehicles. ... market growth, leading to reductions in carbon pollution and imported oil. ...

  18. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    The Open PV Project (Redirected from Open PV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project AgencyCompany Organization: National Renewable Energy...

  19. Hunan Huayuan PV | Open Energy Information

    Open Energy Info (EERE)

    Huayuan PV Jump to: navigation, search Name: Hunan Huayuan PV Place: Hunan Province, China Product: State-owned PV wafer maker based in China's Hunan Province. References: Hunan...

  20. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  1. Jinzhou Boyang PV Technology | Open Energy Information

    Open Energy Info (EERE)

    Boyang PV Technology Place: Jinzhou, Liaoning Province, China Product: China-based PV product manufacturer. It is also engaged in the design and installation of PV power...

  2. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect (OSTI)

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  3. Open PV Project: Unlocking PV Installation Data (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

  4. European American Solar Deployment Conference (PV Rollout), 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rd European American Solar Deployment Conference (PV Rollout), 2013 PV Distribution Interconnection Study Analysis Matthew J. Reno, Robert J. Broderick, Jimmy E. Quiroz, Santiago Grijalva 777 Atlantic Dr. NW, Atlanta, GA 30332, USA Phone: 505-620-6560 E-Mail: matthew.reno@gatech.edu Introduction Deployment of distributed PV systems is increasing rapidly. High penetration scenarios, which are becoming increasingly common, have the potential to affect the distribution feeder equipment [1] and the

  5. PVT -- A photovoltaic/thermal concentrator total energy system: Final phase 1 project report. Building opportunities in the U.S. for photovoltaics (PV:BONUS) Two

    SciTech Connect (OSTI)

    1998-12-31

    United Solar completed its Phase 1 report and its proposal for Phase 2 of the PVBONUS Two program at the end of March 1998. At the same time, it also completed and submitted a proposal to the California Energy Commission PIER program for additional funding to cost-share development and testing of a pre-production model of the PVT-14. It was unsuccessful in both of these proposed efforts. While waiting for the proposal decisions, work continued in April and May to analyze the system design and component decisions described below. This document is a final summation report on the Phase 1 effort of the PVBONUS Two program that describes the key technical issues that United Solar and its subcontractor, Industrial Solar Technology Corporation, worked on in preparation of a Phase 2 award. The decisions described were ones that will guide the design and fabrication of a pre-production prototype of a 1500:1 mirrored concentrator with gallium arsenide cells when United solar resumes its development work. The material below is organized by citing the key components that underwent a design review, what the company considered, what was decided, the name of the expected supplier, if not to be produced in-house, and some information about expected costs. The cost figures given are usually budgetary estimates, not the result of firm quotations or extensive analysis.

  6. New High Energy Gradient Concentration Cathode Material | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 6_amine_2011_p.pdf (1.42 MB) More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D Design of Safer High-Energy Density Materials for Lithium-Ion Cells Developing new high energy gradient concentration cathode material

  7. Sandia Energy - PV Systems Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Reliability Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability PV Systems ReliabilityCoryne Tasca2015-05-08T03:40:54+00:00...

  8. Ukiah Utilities- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Through Ukiah Utilities’ PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of...

  9. Sandia Energy - PV Program Disclaimer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Program Disclaimersspope2015-03-23T21:15:29+00:00 PV Program Disclaimer The Photovoltaic Projects at Sandia National Laboratories support the development and deployment of...

  10. PV Trackers | Open Energy Information

    Open Energy Info (EERE)

    Trackers Jump to: navigation, search Name: PV Trackers Product: Designer of dual axis trackers References: PV Trackers1 This article is a stub. You can help OpenEI by expanding...

  11. Kenmos PV | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Kenmos PV Place: Tainan, Taiwan Sector: Solar Product: Solar business unit of Kenmos Technology which was set up in Sep 2007, to produce thin film PV...

  12. Ultra-High-Efficiency Multijunction Cell and Receiver Module, Phase 1B: High Performance PV Exploring and Accelerating Ultimate Pathways; Final Subcontract Report, 13 May 2005 - 10 December 2008

    SciTech Connect (OSTI)

    King, R. R.

    2010-03-01

    Spectrolab's two High Performance Photovoltaics primary objectives: (1) develop ultra-high-efficiency concentrator multijunction cells and (2) develop a robust concentrator cell receiver package.

  13. Delta PV Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Pvt Ltd Jump to: navigation, search Name: Delta PV Pvt Ltd Place: India Product: Focused on PV cells and modules. References: Delta PV Pvt Ltd1 This article is a stub. You can...

  14. Advanced, High-Reliability, System-Integrated 500kW PV Inverter Development: Final Subcontract Report, 29 September 2005 - 31 May 2008

    SciTech Connect (OSTI)

    West, R.

    2008-08-01

    Xantrex Technology accomplished subcontract goals of reducing parts cost, weight, and size of its 500-kW inverter by 25% compared to state-of-the-art PV inverters, while extending reliability by 25%.

  15. Solar PV and Glare Factsheet

    Broader source: Energy.gov [DOE]

    A common misconception about solar photovoltaic (PV) panels is that they inherently cause or create "too much" glare, posing a nuisance to neighbors and a safety risk for pilots. While solar PV systems can produce glare, light absorption - rather than reflection - is central to the function of solar PV panels. This fact sheet describes the basic issues surrounding glare from solar PV panels, the new Federal Aviation Administration guidance, and the implications for local governments.

  16. 2015 PV Module Reliability Workshop

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory hosts an annual Photovoltaic (PV) Module Reliability Workshop so that solar technology experts can share information leading to the improvement of PV module reliability. Improvements to module reliability reduce the cost of solar electricity and promotes investor confidence in the technology—both critical goals for moving PV technologies deeper into the electricity marketplace.

  17. Testing for PV Reliability (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Bansal, S.

    2014-09-01

    The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

  18. PV Hourly Simulation Tool

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes themore » option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  19. 2015 PV Systems Symposium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Systems Symposium - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  20. High concentration low wattage solar arrays and their applications

    SciTech Connect (OSTI)

    Hoffmann, R.; OGallagher, J.; Winston, R.

    1997-02-01

    Midway Labs currently produces a 335x concentrator module that has reached as high as 19{percent} active area efficiency in production. The current production module uses the single crystal silicon back contact SunPower cell. The National Renewable Energy Lab has developed a multi junction cell using GalnP/GaAs technologies. The high efficiency ({gt}30{percent}) and high cell voltage offer an opportunity for Midway Labs to develop a tracking concentrator module that will provide 24 volts in the 140 to 160 watt range. This voltage and wattage range is applicable to a range of small scale water pumping applications that make up the bulk of water pumping solar panel sales. {copyright} {ital 1997 American Institute of Physics.}

  1. Habdank PV Montagesysteme GmbH Co KG Habdank PV Mounting Systems...

    Open Energy Info (EERE)

    Germany Zip: 73037 Product: Germany-based manufacturer of mounting systems for PV installations. References: Habdank PV-Montagesysteme GmbH & Co KG Habdank PV Mounting...

  2. Real time PV manufacturing diagnostic system

    SciTech Connect (OSTI)

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  3. Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2010-09-23

    Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

  4. Jinzhou Prime Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Technology Co Ltd Jump to: navigation, search Name: Jinzhou Prime Solar PV Technology Co Ltd Place: China Product: The company produces pv cell and develops pv project....

  5. Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... ActivitiesBalance of Systems and Soft CostsEvaluating Rooftop Strength for PV ...

  6. PV Validation and Bankability Workshop

    Broader source: Energy.gov [DOE]

    This document summarizes the information given on Aug. 29, 2011, on the survey results of the PV Validation and Bankability Workshop on Aug. 31, 2011.

  7. PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information

    Open Energy Info (EERE)

    PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name: PV Crystalox Solar AG (formerly PV Silicon AG) Place: Abingdon, England, United Kingdom Zip: OX14 4SE...

  8. BeyondPV Co Ltd Bayang Solar PV | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd (Bayang Solar PV) Place: Tainan, Taiwan Zip: 70955 Product: BeyondPV is an a-Si thin-film silicon PV maker based in southern Taiwan. References: BeyondPV Co Ltd (Bayang...

  9. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    SciTech Connect (OSTI)

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  10. Shock initiation studies on high concentration hydrogen peroxide

    SciTech Connect (OSTI)

    Sheffield, Stephen A; Dattelbaum, Dana M; Stahl, David B; Gibson, L. Lee; Bartram, Brian D.

    2009-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. TV cameras are attached to the target so the cell filling can be monitored. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; initiation has been observed in some experiments that shows homogeneous shock initiation behavior. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these measurements, we have determined unreacted Hugoniot information, times (distances) to detonation (Pop-plot points) that indicate low sensitivity, and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions that agree with earlier estimates.

  11. Gansu PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gansu PV Co Ltd Jump to: navigation, search Name: Gansu PV Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730000 Sector: Solar Product: Gansu PV Co Ltd is active in...

  12. All Solar PV | Open Energy Information

    Open Energy Info (EERE)

    Solar PV Jump to: navigation, search Logo: All Solar PV Name: All Solar PV Address: 1407-4-105 Century East,Daliushu Road Place: Beijing, China Sector: Solar Product: Solar Energy...

  13. PV World Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    World Co Ltd Jump to: navigation, search Name: PV World Co Ltd Place: Singapore Product: Singapore-based PV module manufacturer. References: PV World Co Ltd1 This article is a...

  14. PV Nano Cell | Open Energy Information

    Open Energy Info (EERE)

    Cell Jump to: navigation, search Name: PV Nano Cell Place: Israel Product: Israel-based firm focused on PV nano cell technology. References: PV Nano Cell1 This article is a stub....

  15. Generation PV Inc | Open Energy Information

    Open Energy Info (EERE)

    PV Inc Jump to: navigation, search Name: Generation PV Inc. Place: Markham, Ontario, Canada Zip: L6E 1A9 Sector: Wind energy Product: Ontario-based Generation PV distributes and...

  16. Advancing Concentrating Solar Power Technology, Performance, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispatchability | Department of Energy Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to

  17. Design and development of a high-concentration and high-efficiency photovoltaic concentrator using a curved Fresnel lens

    SciTech Connect (OSTI)

    Scharlack, R.S.; Moffat, A.

    1983-08-01

    Thermo Electron has designed a high concentration photovoltaic module that uses a domed, point-focus Fresnel lens. Their design, design optimization process, and results from lens and receiver tests are described in this report. A complete module has not been fabricated and probably will not be fabricated in the future; however, Thermo Electron's optical design, analysis, and testing of both secondary optical units and domed Fresnel lenses have made a significant contribution to our project. Tooling errors prevented the lens from reaching its potential efficiency by the end of the contract, and resolution of these tooling problems is currently being attempted with a follow-on contract, No. 68-9463.

  18. PV Solar Planet | Open Energy Information

    Open Energy Info (EERE)

    Solar Planet Jump to: navigation, search Logo: PV Solar Planet Name: PV Solar Planet Address: 5856 S. Garland Way Place: Littleton, Colorado Zip: 80123 Region: Rockies Area Sector:...

  19. Sandia Energy - Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Rooftop Strength for PV Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Evaluating Rooftop Strength for PV Evaluating Rooftop Strength for...

  20. Modeling Distribution Connected PV and Interconnection Study...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ramping Events on Distribution Voltage Regulation Equipment Matthew J. Reno 1,2 , Kyle ... PV variability and the system voltage regulation equipment. The impact of PV ...

  1. Tokyo Electron PV | Open Energy Information

    Open Energy Info (EERE)

    PV Jump to: navigation, search Name: Tokyo Electron PV Place: Nirasaki City, Yamanashi, Japan Product: Japanese electronics giants Tokyo Electron and Sharp have announced their...

  2. Zhonghuite PV Technology Co | Open Energy Information

    Open Energy Info (EERE)

    Zhonghuite PV Technology Co Jump to: navigation, search Name: Zhonghuite PV Technology Co Place: Jiangxi Province, China Sector: Solar Product: Jiangxi-based solar project...

  3. High upwind concentrations observed during an upslope tracer event

    SciTech Connect (OSTI)

    Ciolek, J.T. Jr.

    1993-10-01

    In February of 1991 the Rocky Flats Plant conducted twelve tracer experiments to validate an emergency response dispersion model known as the Terrain-Responsive Atmospheric Code (TRAC) (Hodgin 1985). Experimenters released 140 to 260 kilograms of inert tracer gas (sulfur hexafloride) from the plant over an 11 hour period. During each release, one hundred and sixty-five samples, most of which formed concentric rings of 8 and 16 km radius from the plant, recorded cumulative hourly concentrations of the tracer at one meter above ground level (AGL). Figure 1 contains a depiction of the sampler location, the terrain, and the meteorological stations available within the tracer study area. Brown (1991) describes the experimental setup in more detail. The subject of this paper is an event that occurred early in the fifth experiment, on February 9, 1991. In this experiment, tracer material released from 13:00 to 17:00 LST appeared both downwind and upwind of the source, with the highest concentrations upwind. During the fifth experiment, high pressure in Utah produced mostly sunny skis around Rocky Flats. For most of the day, one could find moderate (5 to 10 ms{sup {minus}1}) northerly (from the North) flow within the 700 to 500 mb level of the atmosphere (approximately 3000 to 5500 meters above Mean Sea Level (MSL)). Synoptic scale motions were isolated enough from the surface layer and heating was great enough to produce a 1 km deep upslope flow (flow from the East to the West) by late afternoon. The winds reversed and became downslope at approximately 17:30 LST.

  4. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation

    SciTech Connect (OSTI)

    McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

    2012-03-31

    Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into

  5. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  6. PID-free C-Si PV Module Using Novel Chemically-Tempered Glass | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy PID-free C-Si PV Module Using Novel Chemically-Tempered Glass PID-free C-Si PV Module Using Novel Chemically-Tempered Glass Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps4_aist_kambe.pdf (561.42 KB) More Documents & Publications EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 Final Report - High efficiency heterojunction solar cell on 30μm thin c-Si substrates using novel exfoliation technology Agenda for the PV Module

  7. Wet oxidation of high-concentration reactive dyes

    SciTech Connect (OSTI)

    Chen, G.; Lei, L.; Yue, P.L.

    1999-05-01

    Advanced oxidation methods were used to degrade reactive dyes at high concentrations in aqueous solutions. Wet peroxide oxidation (WPO) was found to be the best method in terms of the removal of color and total organic carbon (TOC). Reactive blue (Basilen Brilliant Blue P-3R) was chosen as a model dye for determining the suitable reaction conditions. The variables studied include reaction temperature, H{sub 2}O{sub 2} dosage, solution pH, dye concentration, and catalyst usage. The removal of TOC and color by wet oxidation is very sensitive to the reaction temperature. At 150 C, the removal of 77% TOC and 90% color was obtained in less than 30 min. The initial TOC removal rate is proportional to the H{sub 2}O{sub 2} dosage. The TOC removal is insignificant even when 50% of the stoichiometric amount of H{sub 2}O{sub 2} is used. No color change is observed until the dosage of H{sub 2}O{sub 2} is 100% of the stoichiometric amount. The color removal is closely related to TOC removal. When the pH of the solution is adjusted to 3.5, the dye degradation rate increases significantly. The rates of TOC and color removal are enhanced by using a Cu{sup 2+} catalyst. Another four reactive dyes, Procion Red PX-4B, Cibacron Yellow P-6GS, Cibacron Brown P-6R, and Procion Black PX-2R, were treated at 150 C using WPO. More than 80% TOC was removed from the solution in less than 15 min. The process can remove the colors of al these dyes except Procion Black PX-2R.

  8. PV | OpenEI Community

    Open Energy Info (EERE)

    this new 550 MW PV Solar Plant in Southern California is the latest feather in DOE's cap. Read more about it on Breaking Energy or checkout the info page from the California...

  9. Rooftop Solar PV & Firefighter Safety

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  10. Turlock Irrigation District- PV Rebate

    Broader source: Energy.gov [DOE]

    Turlock Irrigation District (TID) offers an incentive program to their customers who install solar photovoltaic (PV) systems. In keeping with the terms of the California Solar Initiative, the inc...

  11. NREL: Photovoltaics Research - PV News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. July 22, 2016 NREL's Kurtz, Tegen Honored for Clean Energy Leadership The U.S. Clean Energy Education & Empowerment (C3E) program has honored Sarah Kurtz and Suzanne Tegen of the Energy Department's National Renewable Energy Laboratory (NREL) for their leadership and

  12. Pressure-equalizing PV assembly and method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2004-10-26

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  13. PV module mounting method and mounting assembly

    DOE Patents [OSTI]

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  14. PSCAD Modules Representing PV Generator

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  15. PV Module Intraconnect Thermomechanical Durability Damage Prediction Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Module Intraconnect Thermomechanical Durability Damage Prediction Model PV Module Intraconnect Thermomechanical Durability Damage Prediction Model Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_dow_gaston.pdf (1.26 MB) More Documents & Publications FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and BWR Environments 2014 Propulsion Materials R&D Annual

  16. Connecticut Rooftop Solar PV Permitting Guide

    Broader source: Energy.gov [DOE]

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  17. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  18. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    SciTech Connect (OSTI)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  19. High Performance Photovoltaic Project Overview

    SciTech Connect (OSTI)

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  20. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect (OSTI)

    Bundschuh, Paul

    2013-03-23

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the

  1. Materials from 2014 SunShot Summit Breakout Session: Looking Ahead: PV Manufacturing in 10 Years

    Broader source: Energy.gov [DOE]

    This was a breakout session at the 2014 SunShot Grand Challenge Summit and Peer Review. The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic changes in the supply chain to a significant increase in PV module production by fewer manufacturers. The lessons learned over the last decade will guide the future of this growing industry. This session explored the future of PV manufacturing over the next 5 to 10 years, both domestic and abroad. Expert panelists provided their insights and perspectives across three thematic areas: a vision of PV manufacturing, including the level of integration and the factory of the future; value-adding attributes of PV products; and the geographic concentration of PV manufacturing.

  2. Methods and devices for high-throughput dielectrophoretic concentration

    DOE Patents [OSTI]

    Simmons, Blake A.; Cummings, Eric B.; Fiechtner, Gregory J.; Fintschenko, Yolanda; McGraw, Gregory J.; Salmi, Allen

    2010-02-23

    Disclosed herein are methods and devices for assaying and concentrating analytes in a fluid sample using dielectrophoresis. As disclosed, the methods and devices utilize substrates having a plurality of pores through which analytes can be selectively prevented from passing, or inhibited, on application of an appropriate electric field waveform. The pores of the substrate produce nonuniform electric field having local extrema located near the pores. These nonuniform fields drive dielectrophoresis, which produces the inhibition. Arrangements of electrodes and porous substrates support continuous, bulk, multi-dimensional, and staged selective concentration.

  3. China and India PV Reliability-NREL Cooperation | Open Energy...

    Open Energy Info (EERE)

    PV Reliability-NREL Cooperation Jump to: navigation, search Logo: China and India PV Reliability under the Asia Pacific Partnership Name China and India PV Reliability under the...

  4. Partial Shading in Monolithic Thin Film PV Modules: Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Presented at the PV Module ...

  5. Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Presented at the PV Module ...

  6. Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV Technology Co Ltd1...

  7. How Can We Make PV Modules Safer?: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S. R.

    2012-06-01

    Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

  8. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30

    this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1???¢????????PV Deployment Analysis for New York City???¢????????we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2???¢????????A Briefing for Policy Makers on Connecting PV to a Network Grid???¢????????presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3???¢????????Technical Review of Concerns and Solutions to PV Interconnection in New Y

  9. Energy 101: Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses. Text Version Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know

  10. Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance

    SciTech Connect (OSTI)

    Dunn, L.; Gostein, M.; Emery, K.

    2012-09-01

    As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

  11. PV Powered Inc | Open Energy Information

    Open Energy Info (EERE)

    PV Powered Inc Place: Bend, Oregon Zip: 97702 Product: Oregon-based manufacturer of inverters for PV systems. Coordinates: 44.05766, -121.315549 Show Map Loading map......

  12. Webinar: Evaluating Roof Structures for Solar PV

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Connecticut's Structural Review Worksheet for Residential Rooftop Solar PV Systems. The webinar explains how the worksheet should be used and common concerns with wind and dead loads for rooftop solar PV.

  13. City of Healdsburg- PV Incentive Program

    Broader source: Energy.gov [DOE]

    Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California...

  14. The Open PV Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Open PV Project The Open PV Project The Open PV Project is a collaborative effort between government, industry, and the public that is compiling a comprehensive database of photovoltaic (PV) installation data for the United States. Data for the project is voluntarily contributed from a variety of sources including utilities, installers, and the general public. The data collected is actively maintained by the contributors and are always changing to provide an evolving, up-to-date snapshot of

  15. Geographic smoothing of solar PV: Results from Gujarat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less

  16. High-quality and high-purity homoepitaxial diamond (100) film growth under high oxygen concentration condition

    SciTech Connect (OSTI)

    Teraji, Tokuyuki

    2015-09-21

    Defect formation during diamond homoepitaxial growth was sufficiently inhibited by adding oxygen simultaneously in the growth ambient with high concentration of 2%. A 30-μm thick diamond films with surface roughness of <2 nm were homoepitaxially deposited on the (100) diamond single crystal substrates with reasonable growth rate of approximately 3 μm h{sup −1} under the conditions of higher methane concentration of 10%, higher substrate temperature of ∼1000 °C, and higher microwave power density condition of >100 W cm{sup −3}. Surface characteristic patterns moved to an identical direction with growth thickness, indicating that lateral growth was dominant growth mode. High chemical purity represented by low nitrogen concentration of less than 1 ppb and the highest {sup 12}C isotopic ratio of 99.998% of the obtained homoepitaxial diamond (100) films suggest that the proposed growth condition has high ability of impurity control.

  17. Study on PID Resistance of HIT PV Modules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study on PID Resistance of HIT PV Modules Study on PID Resistance of HIT PV Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps4_sanyo_ishiguro.pdf (1.42 MB) More Documents & Publications PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents Final Report - High efficiency heterojunction solar cell on 30μm thin c-Si substrates using novel exfoliation technology Agenda for the PV Module Reliability

  18. High-Ti-concentration aerogels for bright x-ray sources (Technical...

    Office of Scientific and Technical Information (OSTI)

    Ti-concentration aerogels for bright x-ray sources Citation Details In-Document Search Title: High-Ti-concentration aerogels for bright x-ray sources Authors: Perez, F ; Patterson,...

  19. High-Ti-concentration aerogels for bright x-ray sources (Technical...

    Office of Scientific and Technical Information (OSTI)

    Ti-concentration aerogels for bright x-ray sources Citation Details In-Document Search Title: High-Ti-concentration aerogels for bright x-ray sources You are accessing a...

  20. Grid Integrated Distributed PV (GridPV) Version 2.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  1. High concentration of deuterium in palladium from plasma ion implantation

    SciTech Connect (OSTI)

    Uhm, H.S.; Lee, W.M. )

    1991-11-01

    Based on a theoretical calculation, a new scheme to increase deuterium density in palladium over its initial value is presented. This deuterium enrichment scheme makes use of plasma ion implantation. A cylindrical palladium rod (target) preloaded with deuterium atoms, coated with a diffusion-barrier material, is immersed in a deuterium plasma. The palladium rod is connected to a high-power modulator which provides a series of negative-voltage pulses. During these negative pulses, deuterium ions fall into the target, penetrate the diffusion barrier, and are implanted inside the palladium. For reasonable system parameters allowed by present technology, it is found from theoretical calculations that the saturation deuterium density after prolonged ion implantation can be several times the palladium atomic number density. Assuming an initial deuterium density, {ital n}{sub 0}=4{times}10{sup 22} cm{sup {minus}3}, it is also found that the deuterium density in palladium can triple its original value within a few days of the ion implantation for a reasonable target size. Because of the small diffusion coefficient in palladium, the incoming ions do not diffuse quickly inward, thereby accumulating near the target surface at the beginning of the implantation.

  2. Micro-optics for high-efficiency optical performance and simplified tracking for concentrated photovoltaics (CPV).

    SciTech Connect (OSTI)

    Sinclair, Michael B.; Filatov, Anton; Lentine, Anthony L.; Sweatt, William C.; Nielson, Gregory N.; Okandan, Murat; Jared, Bradley Howell

    2010-02-01

    Micro-optical 5mm lenses in 50mm sub-arrays illuminate arrays of photovoltaic cells with 49X concentration. Fine tracking over {+-}10{sup o} FOV in sub-array allows coarse tracking by meter-sized solar panels. Plastic prototype demonstrated for 400nm < {lambda} < 1600 nm. We have designed a solar collector that will be composed of 50-mm-diameter sub-arrays, each containing {approx}100 5-mm plastic micro-lenses. Each micro-lens illuminates a stack of about four 0.7mm PV cells that collect sunlight from 400nm to 1600 nm with a theoretical efficiency approaching 50%. Each sub-array has internal solar tracking and alignment over a {+-}10{sup o} field, so a large array of sub-arrays only needs to coarsely track the sun. The refractive lenses in the design are thin so the optical transmission can be >90% and the optics will weigh very little. There are other optical properties incorporated in this design that help the photovoltaic cells to operate very efficiently. We are building a pre-prototype system now, and will describe our progress at the conference.

  3. Heritage Park Facilities PV Project

    SciTech Connect (OSTI)

    Hobaica, Mark

    2013-09-26

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  4. Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Rooftop Strength for PV - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  5. PV Validation and Bankability Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop What if?? * This is a reality: A subsidy-free solar electricity infrastructure with an LCOE of 5-6 c/kWh without subsidies * Jobs and Competitiveness: Innovation that ensures the U.S. leads the way on clean energy, supporting new jobs and opportunities for Americans * National Energy Security: Independence from fossil fuel and increased national security * Healthy Environment: Huge carbon reduction and cleaner air ... Imagine a World... * Introducing

  6. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  7. Final Report- 1366 Project Silicon: Reclaiming US Silicon PV Leadership

    Office of Energy Efficiency and Renewable Energy (EERE)

    1366 Technologies’ Project Silicon addresses two of the major goals of the DOE’s PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity (“LCOE”) for solar to $0.05-$0.07/kWh, enabling wide-scale U.S. market adoption. To achieve these two goals, US companies must commercialize disruptive, high-value technologies that are capable of rapid scaling, defensible from foreign competition, and suited for US manufacturing. These are the aims of 1366 Technologies Direct Wafer ™ process.

  8. Ge doped GaN with controllable high carrier concentration for...

    Office of Scientific and Technical Information (OSTI)

    Ge doped GaN with controllable high carrier concentration for plasmonic applications Citation Details In-Document Search Title: Ge doped GaN with controllable high carrier...

  9. Transforming PV Installations toward Dispatchable, Schedulable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions | Department of Energy Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Advanced Energy logo.png -- This project is inactive -- Advanced Energy (AE) will address three important needs in the further deployment of photovoltaic (PV) systems: 1) demonstrating and commercializing a new anti-islanding method utilizing Phasor Measurement Units (PMUs), 2) demonstrating a set of

  10. Riverside Public Utilities - Residential PV Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Riverside Public Utilities Website http:www.riversideca.govutilitiesresi-pv-incentive.asp State California Program Type Rebate Program Rebate Amount 0.50 per watt...

  11. Selecting Solar: Insights into Residential Photovoltaic (PV)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation Carolyn Davidson and Robert Margolis National Renewable Energy Laboratory Technical Report NREL...

  12. CPS Energy- Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

  13. Ensuring Quality of PV Modules: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

    2011-07-01

    Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

  14. ASTM PV INSTALLATON COMMISSIONING, OPERATIONS & MAINTENNCE (ICOMP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASTM PV INSTALLATON COMMISSIONING, OPERATIONS & MAINTENNCE (ICOMP) STANDARD PRACTICE ... which maps out the intent of the standard including incorporations of existing ...

  15. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online...

  16. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator,...

  17. Photovoltaic Regional Testing Center (PV RTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Computational Modeling & Simulation, Distribution Grid Integration, Energy, Facilities, Grid ...

  18. PV Validation and Bankability Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop August 31, 2011 Survey Results As of August 29, 2011 List of Questions * What is your market sector? * From product development through product launch, data must be collected at each step. If the Department of Energy can identify funds to provide some type of 3rd party validation/verification effort/study, what would be your priority for that effort? * What scale of module/system data is of interest and of use in making decisions in your market sector? *

  19. pv_mapper_091713.mp3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pv_mapper_091713.mp3 pv_mapper_091713.mp3 pv_mapper_091713.mp3 pv_mapper_091713.mp3 (42.07 MB) More Documents & Publications PVMapper: A Tool for Energy Siting Final Report - Development of an Open Source Utility-Scale Solar Project Siting Tool transcript_pv_mapper.doc

  20. U.S. Aims for Zero-Energy: Support for PV on New Homes

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-05-11

    As a market segment for solar photovoltaic (PV) adoption, new homes have a number of attractive attributes. Homebuyers can easily roll the cost of the PV system into their mortgage and, with rebates or other financial incentives, potentially realize an immediate net positive cash flow from the investment. PV system performance can be optimized by taking roof orientation, shading, and other structural factors into account in the design of new homes. Building-integrated photovoltaics (BIPV), which are subject to fewer aesthetic concerns than traditional, rack-mounted systems, are well-suited to new construction applications. In large new residential developments, costs can be reduced through bulk purchases and scale economies in system design and installation. Finally, the ability to install PV as a standard feature in new developments - like common household appliances - creates an opportunity to circumvent the high transaction costs and other barriers typically confronted when each individual homeowner must make a distinct PV purchase decision.

  1. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  2. Project Profile: High-Concentration, Low-Cost Parabolic Trough System for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baseload CSP | Department of Energy Concentration, Low-Cost Parabolic Trough System for Baseload CSP Project Profile: High-Concentration, Low-Cost Parabolic Trough System for Baseload CSP SkyFuel logo SkyFuel, under the Baseload CSP FOA, developed an advanced, low-cost CSP collector using higher-concentration, higher-temperature, parabolic trough technology to substantially reduce the cost of baseload utility-scale solar power generation. Approach Overhead photo of horizontal metallic

  3. Geographic smoothing of solar PV: Results from Gujarat

    SciTech Connect (OSTI)

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f, ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.

  4. Jiangsu Zongyi PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Name: Jiangsu Zongyi PV Co Ltd Place: Jiangsu Province, China Product: Nantong-based thin-film PV cell producer. References: Jiangsu Zongyi PV Co Ltd1 This article is a...

  5. Nvision.Energy - Pernik Solar PV plant | Open Energy Information

    Open Energy Info (EERE)

    Energy - Pernik Solar PV plant Jump to: navigation, search Name Nvision.Energy - Pernik Solar PV plant Facility Nvision.Solar - Pernik Solar PV Plant Sector Solar Facility Type...

  6. Inner Mongolia Zhonghuan PV Materials Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Materials Co Ltd Jump to: navigation, search Name: Inner Mongolia Zhonghuan PV Materials Co Ltd Place: Inner Mongolia Autonomous Region, China Product: China-based PV ingot and...

  7. Raising the Bar for Quality PV Modules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raising the Bar for Quality PV Modules Raising the Bar for Quality PV Modules October 30, 2014 - 4:58pm Addthis As photovoltaics (PV) markets expand across the United States the...

  8. TekSun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    TekSun PV Manufacturing Inc Jump to: navigation, search Name: TekSun PV Manufacturing Inc Place: Austin, Texas Zip: 78701 Product: US-based installer of PV systems; rportedly...

  9. Solar PV Permitting and Safety Training Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides training on two permitting resources for municipal inspectors; a prescriptive process for building inspectors and a guidance document for permitting for PV for electrical inspectors. The webinar also runs through a number of key code articles in Massachusetts 2014 electrical code and examines a variety of safety hazards commonly found during or after solar PV installations.

  10. Draft Transcript on Municipal PV Systems

    Broader source: Energy.gov [DOE]

    Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

  11. Berkeley Program Offers New Option for Financing Residential PV Systems

    SciTech Connect (OSTI)

    Bolinger, Mark A

    2008-07-06

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more

  12. NREL Study of Fielded PV Systems Demonstrates PV Reliability (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic module quality has remained high even as module prices have declined. Scientists at the National Renew- able Energy Laboratory (NREL) have analyzed the annual performance data from almost 50,000 photo- voltaic (PV) systems that total 1.7 gigawatts of capacity installed in the United States from 2009 to 2012. The overall conclusion is that the vast majority performed as expected. Since 2009, the price of PV modules has fallen dramatically-and with this drop has come concerns about

  13. Potential Induced Degradation (PID) Tests for Commercially Available PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules | Department of Energy Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps4_aist_doi.pdf (971.23 KB) More Documents & Publications EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 PID-free C-Si PV Module Using Novel Chemically-Tempered Glass Agenda for the PV Module

  14. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  15. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  16. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOE Patents [OSTI]

    Mattes, Benjamin R.; Wang, Hsing-Lin

    1999-11-09

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (between 15% and 30% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  17. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOE Patents [OSTI]

    Mattes, Benjamin R.; Wang, Hsing-Lin

    2000-01-01

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  18. BIOHAUS PV Handels GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: BIOHAUS PV Handels GmbH Place: Paderborn, Germany Zip: 33100 Product: Distributor of Isofoton PV products in Germany. Coordinates:...

  19. PV Validation and Bankability Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop PV Validation and Bankability Workshop This presentation summarizes the information given by DOE during the Photovoltaic Validation and...

  20. Suzhou Shenglong PV Tech Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shenglong PV Tech Co Ltd Jump to: navigation, search Name: Suzhou Shenglong PV-Tech Co Ltd Place: Zhangjiagang City, Jiangsu Province, China Zip: 215612 Product: Chinese ingot,...

  1. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement of PV system capabilities, communication systems and open standards, ... Smart-Grid Ready PV Inverter With Utility Communication BRIAN SEAL ELECTRIC POWER ...

  2. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  3. Inner Mongolia Dunan PV power | Open Energy Information

    Open Energy Info (EERE)

    Dunan PV power Jump to: navigation, search Name: Inner Mongolia Dunan PV power Place: Inner Mongolia Autonomous Region, China Sector: Solar Product: Inner Mongolia-based solar...

  4. Linkage to Previous International PV Module QA Task Force Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System Linkage to Previous International PV Module QA Task Force Workshops: Proposal for ...

  5. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA) ...

  6. Training on PV Systems: Design, Construction, Operation and Maintenanc...

    Open Energy Info (EERE)

    on PV Systems: Design, Construction, Operation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Training on PV Systems: Design, Construction, Operation...

  7. Sandia Co-Organizing 6th PV Performance & Monitoring Workshop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ... Hydrogen Production Market Transformation Fuel Cells ... for PV Grid Integration PV Modeling ...

  8. Baseline and Target Values for PV Forecasts: Toward Improved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting ... Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting Jie ...

  9. Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd...

    Open Energy Info (EERE)

    Yinxing Energy PV Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd Place: Yinchuan, Ningxia...

  10. Improving Data Transparency for the Distributed PV Interconnection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transparency for the Distributed PV Page 1 of 21 Interconnection Process Emergent ... The topic for today is: Improving Data Transparency for the Distributed PV Interconnection ...