Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High Capacity Immobilized Amine Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

2

High capacity immobilized amine sorbents  

DOE Patents (OSTI)

A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

2007-10-30T23:59:59.000Z

3

New, high-capacity, calcium-based sorbents: Calcium silicate sorbents. Final report  

SciTech Connect

A search is being carried out for new calcium-based SO{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The objectives of the past year were to study the sorption of SO{sub 2} by representative calcium silicates, to study the composition of the Ca(OH){sub 2}-fly ash sorbent, and to install a humidity sensor in the sorption system.

Kenney, M.E.; Chiang, Ray-Kuang

1993-09-30T23:59:59.000Z

4

New high-capacity, calcium-based sorbents, calcium silicate sorbents. Final report  

SciTech Connect

A search is being carried out for new calcium-based SO{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The current year objectives include the study of sorbents made by hydrating ordinary or Type I portland cement or portland cement clinker (a cement intermediate) under carefully selected conditions. Results of this study show that an excellent portland cement sorbent can be prepared by milling cement at 120{degrees}C at 600 rpm for 15 minutes with MgO-stabilized ZrO{sub 2} beads. They also show that clinker, which is cheaper than cement can be used interchangeably with cement as a starting material. Further, it is clear that while a high surface area may be a desirable property of a good sorbent, it is not a requisite property. Among the hydration reaction variables, milling time is highly important, reaction temperature is important and stirring rate and silicate-to-H{sub 2}O ratio are moderately important. The components of hydrated cement sorbent are various combinations of C-S-H, calcium silicate hydrate:Ca(OH){sub 2};AFm. a phase in hydrated cement.

Kenney, M.E.

1996-02-28T23:59:59.000Z

5

NETL: A Low-Cost, High-Capacity Regenerable Sorbent for CO2 Capture From  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants Project No.: DE-FE0007580 TDA Research, Inc is developing a low cost, high capacity CO2 adsorbent and demonstrating its technical and economic viability for post-combustion CO2 capture for existing pulverized coal-fired power plants. TDA is using an advanced physical adsorbent to selectively remove CO2 from flue gas. The sorbent exhibits a much higher affinity to adsorb CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. The sorbent binds CO2 more strongly than common adsorbents, providing the chemical potential needed to remove the CO2, however, because CO2 does not form a true covalent bond with the surface sites, regeneration can be carried out with only a small energy input. The heat input to regenerate the sorbent is only 4.9 kcal per mol of CO2, which is much lower than that for chemical absorbents or amine based solvents.

6

New high-capacity, calcium-based sorbents, calcium silicate sorbents. Final report, 1993--August 31, 1994  

SciTech Connect

A search is being carried out for new calcium-based S0{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The objectives for the current year include the study of sorbents made from Ca(OH){sub 2}, from mixtures of Ca(OH){sub 2} and SiO{sub 2}, and from portland cement. They also include the study of sorbents made from model compounds. During this year, sorbents prepared from Ca(OH){sub 2} and from mixtures of Ca(OH){sub 2} and fumed SiO{sub 2} were investigated. The results show that very good SiO{sub 2}-modified Ca(OH){sub 2} sorbents in which the Si-to-Ca reactant ratio is low can be prepared from Ca(OH){sub 2} and fumed SiO{sub 2}. Sorbents prepared from Ca(OH){sub 2} and natural SiO{sub 2} or natural SiO{sub 2} sources were also studied. The results obtained show that very good SiO{sub 2}-modified Ca(OH){sub 2} sorbents and calcium silicate hydrate sorbents, C-S-H sorbents, can be prepared from Ca(OH){sub 2} and diatomite, pumice or perlite, minerals that are readily available. In addition. sorbents prepared from Ca{sub 3}SiO{sub 5} and {beta}-Ca{sub 2}SiO{sub 4} and from mixtures of these compounds and SiO{sub 2} were studied. The results secured demonstrate that very good C-S-H rich sorbents can be prepared from these compounds and from mixtures of them with SiO{sub 2}. They also provide information useful for interpreting the cement sorbent results. Sorbents prepared from cement and from mixtures of cement and natural SiO{sub 2} or SiO{sub 2} sources were investigated as well. The results secured show that cement and mixtures of it with diatomite, pumice or perlite rapidly yield excellent sorbents with the proper reaction conditions.

Kenney, M.C.; Chiang, R.K.; Fillgrove, K.L. [Case Western Reserve Univ., Cleveland, OH (United States)

1995-02-01T23:59:59.000Z

7

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture  

SciTech Connect

The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

Alptekin, Gokhan

2012-09-30T23:59:59.000Z

8

Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode  

SciTech Connect

Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

2012-07-01T23:59:59.000Z

9

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

1984-01-01T23:59:59.000Z

10

High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1982-07-07T23:59:59.000Z

11

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1984-06-19T23:59:59.000Z

12

Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Chloride and Hydrogen Sulfide Hydrogen Chloride and Hydrogen Sulfide Removal Sorbents for High Temperature Gas Streams Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,767,000 entitled "Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams." Disclosed in this patent is the invention of a unique regenerable sorbent process that can remove contaminants from gas produced by the gasification of fossil fuels. Specifically, the process removes hydrogen chloride by using the regenerable sorbent and simultaneously extracts hydrogen chloride compounds and hydrogen

13

Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique  

SciTech Connect

Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermic nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.

Ryu, C.K.; Lee, J.B.; Ahn, D.H.; Kim, J.J.; Yi, C.K.

2002-09-19T23:59:59.000Z

14

Novel Sorbent-Based Process for High Temperature Trace Metal Removal  

SciTech Connect

The objective of this project was to demonstrate the efficacy of a novel sorbent can effectively remove trace metal contaminants (Hg, As, Se and Cd) from actual coal-derived synthesis gas streams at high temperature (above the dew point of the gas). The performance of TDA's sorbent has been evaluated in several field demonstrations using synthesis gas generated by laboratory and pilot-scale coal gasifiers in a state-of-the-art test skid that houses the absorbent and all auxiliary equipment for monitoring and data logging of critical operating parameters. The test skid was originally designed to treat 10,000 SCFH gas at 250 psig and 350 C, however, because of the limited gas handling capabilities of the test sites, the capacity was downsized to 500 SCFH gas flow. As part of the test program, we carried out four demonstrations at two different sites using the synthesis gas generated by the gasification of various lignites and a bituminous coal. Two of these tests were conducted at the Power Systems Demonstration Facility (PSDF) in Wilsonville, Alabama; a Falkirk (North Dakota) lignite and a high sodium lignite (the PSDF operator Southern Company did not disclose the source of this lignite) were used as the feedstock. We also carried out two other demonstrations in collaboration with the University of North Dakota Energy Environmental Research Center (UNDEERC) using synthesis gas slipstreams generated by the gasification of Sufco (Utah) bituminous coal and Oak Hills (Texas) lignite. In the PSDF tests, we showed successful operation of the test system at the conditions of interest and showed the efficacy of sorbent in removing the mercury from synthesis gas. In Test Campaign No.1, TDA sorbent reduced Hg concentration of the synthesis gas to less than 5 {micro}g/m{sup 3} and achieved over 99% Hg removal efficiency for the entire test duration. Unfortunately, due to the relatively low concentration of the trace metals in the lignite feed and as a result of the intermittent operation of the PSDF gasifier (due to the difficulties in the handling of the low quality lignite), only a small fraction of the sorbent capacity was utilized (we measured a mercury capacity of 3.27 mg/kg, which is only a fraction of the 680 mg/kg Hg capacity measured for the same sorbent used at our bench-scale evaluations at TDA). Post reaction examination of the sorbent by chemical analysis also indicated some removal As and Se (we did not detect any significant amounts of Cd in the synthesis gas or over the sorbent). The tests at UNDEERC was more successful and showed clearly that the TDA sorbent can effectively remove Hg and other trace metals (As and Se) at high temperature. The on-line gas measurements carried out by TDA and UNDEERC separately showed that TDA sorbent can achieve greater than 95% Hg removal efficiency at 260 C ({approx}200g sorbent treated more than 15,000 SCF synthesis gas). Chemical analysis conducted following the tests also showed modest amounts of As and Se accumulation in the sorbent bed (the test durations were still short to show higher capacities to these contaminants). We also evaluated the stability of the sorbent and the fate of mercury (the most volatile and unstable of the trace metal compounds). The Synthetic Ground Water Leaching Procedure Test carried out by an independent environmental laboratory showed that the mercury will remain on the sorbent once the sorbent is disposed. Based on a preliminary engineering and cost analysis, TDA estimated the cost of mercury removal from coal-derived synthesis gas as $2,995/lb (this analysis assumes that this cost also includes the cost of removal of all other trace metal contaminants). The projected cost will result in a small increase (less than 1%) in the cost of energy.

Gokhan Alptekin

2008-09-30T23:59:59.000Z

15

Regenerable MgO-based sorbent for high temperature CO2 removal from syngas: 3. CO2 capture and sorbent enhanced water gas shift reaction  

Science Journals Connector (OSTI)

Abstract Regenerable MgO-based sorbent, which was prepared and evaluated in the thermogravimetric analyzer (TGA) in part 1, was also evaluated in high-pressure packed-bed unit in CO2/N2/H2O mixture and simulated pre-combustion syngas environment. In CO2/N2/H2O environment, the CO2 absorption capacity of the sorbent increases with increasing temperatures from 6.7% at 350 °C to 9.5% 450 °C. The sorbent is capable of achieving over 95% CO2 capture and 40% conversion in the water gas shift (WGS) reaction, which should be attributed to positive effect of WGS reaction in producing CO2 during the process. The sorbent reactivity and absorption capacity toward CO2, as well as its WGS catalytic activity decreases with increasing temperature. The maximum pre-breakthrough WGS conversion occurs at 350 °C, which diminishes as the sorbent is carbonated. The variable diffusivity shrinking core reaction model coupled with the two-fluid computational fluid dynamics (CFD) model was shown to accurately predict the break-through gas compositions at different operating conditions.

Emadoddin Abbasi; Armin Hassanzadeh; Shahin Zarghami; Hamid Arastoopour; Javad Abbasian

2014-01-01T23:59:59.000Z

16

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2008-10-14T23:59:59.000Z

17

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

2014-09-02T23:59:59.000Z

18

Sulfur tolerant highly durable CO.sub.2 sorbents  

SciTech Connect

A sorbent for the capture of carbon dioxide from a gas stream is provided, the sorbent containing calcium oxide (CaO) and at least one refractory dopant having a Tammann temperature greater than about 530.degree. C., wherein the refractory dopant enhances resistance to sintering, thereby conserving performance of the sorbent at temperatures of at least about 530.degree. C. Also provided are doped CaO sorbents for the capture of carbon dioxide in the presence of SO.sub.2.

Smirniotis, Panagiotis G. (Cincinnati, OH); Lu, Hong (Urbana, IL)

2012-02-14T23:59:59.000Z

19

High-Performance Sorbents for Carbon Dioxide Capture from Air  

SciTech Connect

This project has focused on capture of CO{sub 2} from ambient air (“air capture”). If this process is technically and economically feasible, it could potentially contribute to net reduction of CO{sub 2} emissions in ways that are complementary to better developed techniques for CO{sub 2} from concentrated point sources. We focused on cyclic adsorption processes for CO{sub 2} capture from air in which the entire cycle is performed at moderate temperatures. The project involved both experimental studies of sorbent materials and process level modeling of cyclic air capture processes. In our experimental work, a series of amine-functionalized silica adsorbents were prepared and characterized to determine the impact of molecular architecture on CO{sub 2} capture. Some key findings were: • Amine functionalized silicas can be prepared with high enough CO{sub 2} capacities under ambient conditions to merit consideration for use in air capture processes. • Primary amines are better candidates for CO{sub 2} capture than secondary or tertiary amines, both in terms of amine efficiency for CO{sub 2} adsorption and enhanced water affinity. • Mechanistic understanding of degradation of these materials can enable control of molecular architecture to significantly improve material stability. Our process modeling work provided the first publically available cost and energy estimates for cyclic adsorption processes for air capture of CO{sub 2}. Some key findings were: • Cycles based on diurnal ambient heating and cooling cannot yield useful purities or amounts of captured CO{sub 2}. • Cycles based on steam desorption at 110 oC can yield CO{sub 2} purities of ~88%. • The energy requirements for cycles using steam desorption are dominated by needs for thermal input, which results in lower costs than energy input in the form of electricity. Cyclic processes with operational costs of less than $100 tCO{sub 2}-net were described, and these results point to process and material improvements that could substantially reduce these costs. The most critical conclusions from our work are that (i) CO{sub 2} capture from ambient air using moderate temperature cyclic adsorption processes is technically feasible and (ii) the operational costs of realistic versions of these processes are moderate enough to encourage future development of this technology. Because of the very modest net investment that has been made in R&D associated with this approach from all sources worldwide (relative to the massive public and private investment that has been made in technologies for CO{sub 2} from concentrated point sources), our results strongly suggest that continued development of air capture is justified.

Sholl, David; Jones, Christopher

2013-03-13T23:59:59.000Z

20

Effects of O{sub 2} and SO{sub 2} on the Capture Capacity of a Primary-Amine Based Polymeric CO{sub 2} Sorbent  

SciTech Connect

Post combustion CO{sub 2} capture is most commonly carried out using an amine solution that results in a high parasitic energy cost in the stripper unit due to the need to heat the water which comprises a majority of the amine solution. It is also well known that amine solvents suffer from stability issues due to amine leaching and poisoning by flue gas impurities. Solid sorbents provide an alternative to solvent systems that would potentially reduce the energy penalty of carbon capture. However, the cost of using a particular sorbent is greatly affected by the usable lifetime of the sorbent. This work investigated the stability of a primary amine-functionalized ion exchange resin in the presence of O{sub 2} and SO{sub 2}, both of which are constituents of flue gas that have been shown to cause degradation of various amines in solvent processes. The CO{sub 2} capture capacity was measured over multiple capture cycles under continuous exposure to two simulated flue gas streams, one containing 12 vol% CO{sub 2}, 4% O{sub 2}, 84% N{sub 2}, and the other containing 12.5 vol% CO{sub 2}, 4% O{sub 2}, 431 ppm SO{sub 2}, balance N{sub 2} using a custom-built packed bed reactor. The resin maintained its CO{sub 2} capture capacity of 1.31 mol/kg over 17 capture cycles in the presence of O{sub 2} without SO{sub 2}. However, the CO{sub 2} capture capacity of the resin decreased rapidly under exposure to SO{sub 2} by an amount of 1.3 mol/kg over 9 capture cycles. Elemental analysis revealed the resin adsorbed 1.0 mol/kg of SO{sub 2}. Thermal regeneration was determined to not be possible. The poisoned resin was, however, partially regenerated with exposure to 1.5M NaOH for 3 days resulting in a 43% removal of sulfur, determined through elemental analysis, and a 35% recovery of CO{sub 2} capture capacity. Evidence was also found for amine loss upon prolonged (7 days) continuous exposure to high temperatures (120 #14;C) in air. It is concluded that desulfurization of the flue gas stream prior to CO{sub 2} capture will greatly improve the economic viability of using this solid sorbent in a post-combustion CO{sub 2} capture process.

Hallenbeck, Alexander P.; Kitchin, John R.

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power- Fact Sheet, 2011  

Energy.gov (U.S. Department of Energy (DOE))

Factsheet describing project objective to develop a new, high-capacity, expendable sorbent to remove sulfur species from anaerobic digester gas

22

Manganese-based sorbents for coal gas desulfurization  

SciTech Connect

The intent of this study is to perform a preliminary screening on a particular Mn-based sorbent, CST-939 (from Chemetals), for hot gas desulfurization. The purpose of the preliminary screening is to determine which temperature and type of coal gas this sorbent demonstrates the greatest capacity and efficiency for sulfur removal. The following conclusions were made from the data collected on the CST-939 sorbent: The sorbent efficiency and capacity are much greater at 343{degrees}C (650{degrees}F) than at 871{degrees}C (1,600{degrees}F). The sorbent efficiency and capacity are much greater in the presence of the more highly-reducing Shell gas than with the less-reducing KRW gas. The sorbent showed tremendous capacity for sulfur pickup, with actual loadings as high as 21 weight percent. Oxidative regeneration at 871{degrees}C (1,600{degrees}F) appeared to decompose sulfate; however, unusually high SO{sub 2} release during the second sulfidations and/or reductive regenerations indicated incomplete regeneration. The average crush strength of the reacted sorbent did not indicate any loss of strength as compared to the fresh sorbent. Superior sorbent performance was obtained in the presence of simulated Shell gas at 538{degrees}C (1,000{degrees}F).

Gasper-Galvin, L.D.; Fisher, E.P. [USDOE Morgantown Energy Technology Center, WV (United States); Goyette, W.J. [Chemetals, Inc., Baltimore, MD (United States)

1996-12-31T23:59:59.000Z

23

NETL: Pilot Testing of a Highly Effective Pre-Combustion Sorbent-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

Pilot Testing of a Highly Effective Pre-Combustion Sorbent-Based Carbon Capture System Pilot Testing of a Highly Effective Pre-Combustion Sorbent-Based Carbon Capture System Project No.: DE-FE0013105 TDA is developing a new sorbent-based pre-combustion carbon capture technology for integrated gasification combined cycle (IGCC) power plants. The process, which was evaluated at bench-scale under a previous effort, uses an advanced physical adsorbent that selectively removes CO2 from coal derived synthesis gas (syngas) above the dew point of the gas. The sorbent consists of a mesoporous carbon grafted with surface functional groups that remove CO2 via an acid-base interaction. The reactor design will be optimized by using computational fluid dynamics and adsorption modeling to improve the pressure swing adsorption cycle sequence. The research will include: two 0.1 MWe tests with a fully-equipped prototype unit using actual synthesis gas to prove the viability of the new technology; long-term sorbent life evaluation in a bench-scale setup of 20,000 cycles; the fabrication of a pilot-scale testing unit that will contain eight sorbent reactors; and the design of a CO2 purification sub-system. The CO2 removal technology will significantly improve (3 to 4 percent) the IGCC process efficiency needed for economically viable production of power from coal.

24

Adsorption and Ultrasound-Assisted Sorbent Regeneration  

SciTech Connect

This work was conducted for the department of Energy. In this work, we developed a class of new sorbents that were highly sulfur selective and had high sulfur capacities. The study consisted of two sections. Development of the new sorbents is described in Section 1, and Section was a fundamental study, conducted for a better understanding for desulfurization of jet fuels. More details of the results are given blow separately for the two sections.

Yuhe Wang; Liping Ma; Ralph T. Yang

2006-09-30T23:59:59.000Z

25

Method for Regeneration of Immobilized Amine Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Regeneration of Immobilized Amine Sorbents Regeneration of Immobilized Amine Sorbents for Use in CO 2 Capture Opportunity Research is currently active on the patent-pending technology "Regenerable Sorbent Technique for Capturing CO 2 Using Immobilized Amine Sorbents." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Carbon sequestration entails a multi-step process in which anthropogenic CO 2 emissions are captured from CO 2 -laden process gas streams and perma- nently stored. Carbon capture is a critical step in the process and accounts for a considerable portion of the overall cost. Newly developed, high-capacity amine-based sorbents offer many advantages over existing technology

26

Using high temperature baghouses to enhance desulfurization following economizer sorbent injection  

SciTech Connect

In order to explore the potential of using high temperature baghouses to enhance SO{sub 2} removal following upstream sorbent injection, an integrated two-stage reactor system has been built. It consists of an injection stage and a filtration stage. Distinct from one-stage fixed-bed reactors, sorbent particles in this system are initially converted under controlled injection conditions before entering the filtration reactor chamber. By the aid of the system, several unique features regarding the gas-solid reactions in the baghouse after economizer zone sorbent injection have been revealed. Results have shown that the appropriate usage of a high temperature baghouse may substantially enhance the performance of the process. The further SO{sub 2} removal in the baghouse is comprehensively affected by both the conditions in the injection zone and those in the baghouse.

Li, G.; Keener, T.C. [Univ. of Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering

1995-12-31T23:59:59.000Z

27

Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Option 2 Program: Development and testing of zinc titanate sorbents  

SciTech Connect

One of the most advantageous configurations of the integrated gasification combined cycle (IGCC) power system is coupling it with a hot gas cleanup for the more efficient production of electric power in an environmentally acceptable manner. In conventional gasification cleanup systems, closely heat exchangers are necessary to cool down the fuel gases for cleaning, sometimes as low as 200--300{degree}F, and to reheat the gases prior to injection into the turbine. The result is significant losses in efficiency for the overall power cycle. High-temperature coal gas cleanup in the IGCC system can be operated near 1000{degree}F or higher, i.e., at conditions compatible with the gasifier and turbine components, resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for IGCC power systems in which mixed-metal oxides are currently being used as desulfurization sorbents. The objective of this contract is to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical durability of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Zinc ferrite was studied under the base program of this contract. In the next phase of this program novel sorbents, particularly zinc titanate-based sorbents, are being studied under the remaining optional programs. This topical report summarizes only the work performed under the Option 2 program. In the course of carrying out the program, more than 25 zinc titanate formulations have been prepared and characterized to identify formulations exhibiting enhanced properties over the baseline zinc titanate formulation selected by the US Department of Energy.

Ayala, R.E.

1993-04-01T23:59:59.000Z

28

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

develop a low-cost, high-capacity expendable sorbent to remove both sulfur species in biogas to ppb levels, making its use possible in a fuel cell CHP unit The high...

29

Low Temperature Sorbents for removal of Sulfur Compounds from fluid feed Streams  

SciTech Connect

A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

Siriwardane, Ranjan

1999-09-30T23:59:59.000Z

30

Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams  

DOE Patents (OSTI)

A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

Siriwardane, Ranjani

2004-06-01T23:59:59.000Z

31

Desulfurization sorbent regeneration  

DOE Patents (OSTI)

A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

Jalan, V.M.; Frost, D.G.

1982-07-07T23:59:59.000Z

32

Design and Evaluation of Novel High Capacity Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials...

33

Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gokhan O. Alptekin, PhD Robert Copeland, PhD Gokhan O. Alptekin, PhD Robert Copeland, PhD (Primary Contact) TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: copeland@tda.com Email: galptekin@tda.com Tel: (303) 940-2323 Tel: (303) 940-2349 Fax: (303) 422-7763 Fax: (303) 422-7763 Margarita Dubovik Yevgenia Gershanovich TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: dubovik@tda.com Email: ygershan@tda.com Tel: (303) 940-2316 Tel: (303) 940-2346 Fax: (303) 422-7763 Fax: (303) 422-7763 Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas

34

Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Immobilized Aminosilane Sorbents Immobilized Aminosilane Sorbents for Carbon Dioxide Capture Opportunity Research is currently active on the patent-pending technology titled "Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Carbon sequestration entails a multi-step process in which CO 2 is first separated / captured from gas streams followed by permanent storage. Carbon capture represents a critical step in the process and accounts for a considerable portion of the overall cost. Newly developed, high capacity amine-based sorbents offer many advantages over existing technology including increased CO

35

Enhanced durability of desulfurization sorbents for fluidized-bed applications  

SciTech Connect

To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

Gupta, R.P.; Gangwal, S.K.

1992-11-01T23:59:59.000Z

36

Enhanced durability of desulfurization sorbents for fluidized-bed applications  

SciTech Connect

To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

Gupta, R.P.; Gangwal, S.K.

1992-11-01T23:59:59.000Z

37

Development of High-Capacity Cathode Materials with Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures 2013 DOE Hydrogen and Fuel Cells...

38

Design and Evaluation of Novel High Capacity Cathode Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2009 DOE Hydrogen Program and Vehicle Technologies...

39

Development of high-capacity cathode materials with integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of high-capacity cathode materials with integrated structures Development of high-capacity cathode materials with integrated structures 2009 DOE Hydrogen Program and...

40

Design and Evaluation of Novel High Capacity Cathode Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Regenerable sorbents for CO.sub.2 capture from moderate and high temperature gas streams  

DOE Patents (OSTI)

A process for making a granular sorbent to capture carbon dioxide from gas streams comprising homogeneously mixing an alkali metal oxide, alkali metal hydroxide, alkaline earth metal oxide, alkaline earth metal hydroxide, alkali titanate, alkali zirconate, alkali silicate and combinations thereof with a binder selected from the group consisting of sodium ortho silicate, calcium sulfate dihydrate (CaSO.sub.4.2H.sub.2O), alkali silicates, calcium aluminate, bentonite, inorganic clays and organic clays and combinations thereof and water; drying the mixture and placing the sorbent in a container permeable to a gas stream.

Siriwardane, Ranjani V. (Morgantown, WV)

2008-01-01T23:59:59.000Z

42

ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

2000-03-31T23:59:59.000Z

43

ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 °C (700 °F) to 538 °C (1000 °F) and regeneration tempera-tures up to 760 °C (1400 °F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E. AYALA; V.S. VENKATARAMANI

1998-09-30T23:59:59.000Z

44

High-capacity hydrogen storage in lithium and sodium amidoboranes...  

NLE Websites -- All DOE Office Websites (Extended Search)

capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

45

Sorption of petroleum products by carbon sorbents  

SciTech Connect

A comparative study of the adsorption of petroleum products by micro- and macroporous carbon sorbents was performed. For this purpose, four carbon sorbent samples prepared from various raw materials by various processing techniques were used. The following raw materials were used: (1) fuel mill from the Mezinoskoe deposit; (2) wood waste, shaving and sawdust in ratio (%) of 50:50; and (3) low-caking gas coal of the 2G group from the mine im.Kirova in the Kuznetsk Basin. The pore structures and adsorption capacities of these sorbents for petroleum products were studied. It was found that the adsorption of petroleum products on porous and nonporous carbon sorbents occurred in different manners. In this case, macroporous sorbents with a weakly developed structure of sorbing micro- and mesopores exhibited a maximum capacity for petroleum products.

M.A. Perederii; Y.I. Kurakov; I.N. Malikov; S.V. Molchanov [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-07-01T23:59:59.000Z

46

Nanoclay-Based Solid Sorbents for CO2 Capture  

Science Journals Connector (OSTI)

Nanoclay-Based Solid Sorbents for CO2 Capture ... As seen from the figure, the untreated nanoclay shows very little CO2 capture, while amine-treated nanoclays show considerably higher CO2 capture capacities, demonstrating the effectiveness of the amine treatment. ... The CO2 sorption capacity increases as the temperature is increased from 50 to 85 °C, and it reaches as high as 7.5% at 85 °C for the nanoclay treated with both APTMS and PEI, although the nanoclays treated with either APTMS or PEI show about 6% CO2 capture capacity. ...

Elliot A. Roth; Sushant Agarwal; Rakesh K. Gupta

2013-03-19T23:59:59.000Z

47

The NASA CSTI High Capacity Power Program  

SciTech Connect

The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

Winter, J.M.

1994-09-01T23:59:59.000Z

48

Effect of High-Pressure Impregnation on Structure Variation and Desulfurization Property of a Zn-Based Sorbent Prepared Using Lignite as a Support  

Science Journals Connector (OSTI)

Effect of High-Pressure Impregnation on Structure Variation and Desulfurization Property of a Zn-Based Sorbent Prepared Using Lignite as a Support ... Lignite reserves are relatively abundant in China; however, its utilization is significantly limited because of its high water content and low calorific value. ...

Xiurong Ren; Qiang He; Yurong Dong; Meijun Wang; Liping Chang; Weiren Bao

2014-06-10T23:59:59.000Z

49

Sorbent characterization for FBC application  

SciTech Connect

Fluidized-bed boilers operating at both atmospheric and elevated pressures have received considerable attention from utilities and independent power producers because of their ability to remove SO{sub 2} from the flue gas during combustion and to minimize NO{sub x} production. The technology has advanced rapidly in the 1980s because of its adaptability to a range of fuel types, boiler capacities, and operating conditions without seriously compromising efficiency or performance. A sorbent, typically limestone or dolostone, is used in the fluidized-bed boiler to capture the combustion-generated SO{sub 2}. Many CFBC boiler operators are now realizing that optimizing sorbent usage is important for economical and environmentally acceptable operation of their plants. It is reported (mostly based on studies using a few sorbents) that particle size, porosity and pore size distribution, extent of sulfation, combustor temperature, pressure and CaCO{sub 3} content affect extent of sulfation.

Pisupati, S.V.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

1994-12-31T23:59:59.000Z

50

Novel regenerable magnesium hydroxide sorbents for CO2 capture at warm gas temperatures  

SciTech Connect

A novel sorbent consisting of Mg(OH)2 was developed for carbon dioxide (CO2) capture at 200-315 °C suitable for CO2 capture applications such as coal gasification systems. Thermodynamic analysis conducted with the FactSage software package indicated that the Mg(OH)2 sorbent system is highly favorable for CO2 capture up to 400 °C at 30 atm. MgCO3 formed during sorption decomposes to release CO2 at temperatures as low as 375 °C up to 20 atm. MgO rehydroxylation to form Mg(OH)2 is possible at temperatures up to 300 °C at 20 atm. The experimental data show that the sorbent is regenerable at 375 °C at high pressure and that steam does not affect the sorbent performance. A multicycle test conducted in a high-pressure fixed-bed flow reactor at 200 °C with 28% CO2 showed stable reactivity during the cyclic tests. The capture capacity also increased with increasing pressure. The sorbent is unique because it exhibits a high CO2 capture capacity of more than 3 mol/kg at 200 °C and also is regenerable at a low temperature of 375 °C and high pressure. High-pressure regeneration is advantageous because the CO2 compression costs required for sequestration can be reduced.

Siriwardane, R.; Stevens, R.

2009-01-01T23:59:59.000Z

51

Design and Evaluation of Novel High Capacity Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design and Evaluation of Novel High Capacity Cathode Materials Christopher Johnson and Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE...

52

Design and Evaluation of Novel High Capacity Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

17johnson2011p.pdf More Documents & Publications Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High Performance Li-ion Cells Lithium Source...

53

Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents  

SciTech Connect

This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

2006-09-30T23:59:59.000Z

54

Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas  

SciTech Connect

Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

Baltrus, J.P.; Granite, E.J.; Pennline, H.W.; Stanko, D.; Hamilton, H.; Rowsell, L.; Poulston, S.; Smith, A.; Chu, W.

2010-01-01T23:59:59.000Z

55

Developing High Capacity, Long Life Anodes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

long life and improved Safety for PHEV and EV applications. Objectives Develop a low cost synthesis methods to prepare high energy anodes Full structural and...

56

Design and Evaluation of Novel High Capacity Cathode Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the reaction is, in turn, intercalated into the negative electrode (i.e. graphite, graphene composites, intermetallics, Si-C composites, high-capacity TiO 2 (B bronze), TiO 2...

57

High capacity stabilized complex hydrides for hydrogen storage  

DOE Patents (OSTI)

Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

2014-11-11T23:59:59.000Z

58

Sorbents and Carbon-Based Materials for Hydrogen Storage Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for storing hydrogen in high-surface-area sorbents such as hybrid carbon nanotubes, aerogels, and nanofibers, as well as metal-organic frameworks and conducting polymers. A...

59

HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

Presentation for the high temperature combinatorial screening for high capacity hydrogen storage meeting

60

Polymers with Tailored Electronic Structure for High Capacity Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymers with Tailored Electronic Structure for High Capacity Lithium Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes Title Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes Publication Type Journal Article Year of Publication 2011 Authors Liu, Gao, Shidi Xun, Nenad Vukmirovic, Xiangyun Song, Paul Olalde-Velasco, Honghe Zheng, Vince S. Battaglia, Linwang Wang, and Wanli Yang Journal Advanced Materials Volume 23 Start Page 4679 Issue 40 Pagination 4679 - 4683 Date Published 10/2011 Keywords binders, conducting polymers, density funcational theory, lithium batteries, X-ray spectroscopy Abstract A conductive polymer is developed for solving the long-standing volume change issue in lithium battery electrodes. A combination of synthesis, spectroscopy and simulation techniques tailors the electronic structure of the polymer to enable in situ lithium doping. Composite anodes based on this polymer and commercial Si particles exhibit 2100 mAh g-1 in Si after 650 cycles without any conductive additive.

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nano-scale Composite Hetero-structures: Novel High Capacity Reversible...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for Lithium-ion Batteries Nano-scale Composite Hetero-structures: Novel High Capacity Reversible...

62

Sorbents and Carbon-Based Materials for Hydrogen Storage Research and Development  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy's research and development on sorbents and carbon-based materials for hydrogen storage targets breakthrough concepts for storing hydrogen in high-surface-area sorbents...

63

Functionalized sorbent for chemical separations and sequential forming process  

DOE Patents (OSTI)

A highly functionalized sorbent and sequential process for making are disclosed. The sorbent includes organic short-length amino silanes and organic oligomeric polyfunctional amino silanes that are dispersed within pores of a porous support that form a 3-dimensional structure containing highly functionalized active binding sites for sorption of analytes.

Fryxell, Glen E. (Kennewick, WA); Zemanian, Thomas S. (Richland, WA)

2012-03-20T23:59:59.000Z

64

NETL: SO2-Resistent Immobilized Amine Sorbents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Post-Combustion CO2 Emissions Control Post-Combustion CO2 Emissions Control SO2-Resistent Immobilized Amine Sorbents for CO2 Capture Project No.: DE-FE0001780 DOE is partnering with the University of Akron (Akron) to conduct research and training to develop an effective solid amine sorbent for large scale post-combustion CO2 capture from power plant flue gas. Sorbent materials developed by Akron consist of immobilized carbon and hydrogen structures (paraffin) distributed inside of the amine pores and aromatic amines located on the external surface and the pore mouth of the sorbent. The immobilized paraffinic amines have been shown to display excellent CO2 capture capacity by adsorbing CO2 at temperatures below 55 °C and releasing it at temperatures between 80-120 °C. This effort will focus on increasing scientific understanding of the chemical and physical principles affecting amines deposited on a series of porous solids that generally have large pore space, high surface area, and/or high thermal conductivity.

65

Advanced Utility Mercury-Sorbent Field-Testing Program  

SciTech Connect

This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was purchased used and all of the equipment has nearly reached the end of its useful service.

Ronald Landreth

2007-12-31T23:59:59.000Z

66

High-Capacity High-Energy Ball Mill for Nanophase Materials  

Science Journals Connector (OSTI)

A high-energy high-capacity ball mill, which can be easily ... scaled-up, for the synthesis of nanophase materials is described. The synthesis of nanophase iron...

Diego Basset; Paolo Matteazzi; Fabio Miani

1994-01-01T23:59:59.000Z

67

Development of high-capacity cathode materials with integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to improve rate performance * Optimize composition (Li- and Mn composition) and synthesis conditions * Evaluation of electrochemical properties (capacity, cycling performance...

68

Modified clay sorbents  

DOE Patents (OSTI)

A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

Fogler, H. Scott (Ann Arbor, MI); Srinivasan, Keeran R. (Livonia, MI)

1990-01-01T23:59:59.000Z

69

Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications  

DOE Patents (OSTI)

A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

Gay, McMahan; Choi, Sunho; Jones, Christopher W

2014-09-16T23:59:59.000Z

70

Nano-scale Composite Hetero-structures: Novel High Capacity Reversible...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

year (Phase 2) * Synthesis of high specific capacity anode - Novel Materials Synthesis * bulk crystalline Si, Nanocrystalline Si, Amorphous Si with carbon as a matrix * Nanorods,...

71

DEVELOPMENT OF A HYDROGEN MORDENITE SORBENT FOR THE CAPTURE OF KRYPTON FROM USED NUCLEAR FUEL REPROCESSING OFF-GAS STREAMS  

SciTech Connect

A novel new sorbent for the separation of krypton from off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A hydrogen mordenite powder was successfully incorporated into a macroporous polymer binder and formed into spherical beads. The engineered form sorbent retained the characteristic surface area and microporosity indicative of mordenite powder. The sorbent was evaluated for krypton adsorption capacities utilizing thermal swing operations achieving capacities of 100 mmol of krypton per kilogram of sorbent at a temperature of 191 K. A krypton adsorption isotherm was also obtained at 191 K with varying krypton feed gas concentrations. Adsorption/desorption cycling effects were also evaluated with results indicating that the sorbent experienced no decrease in krypton capacity throughout testing.

Mitchell Greenhalgh; Troy G. Garn; Jack D. Law

2014-04-01T23:59:59.000Z

72

Desulfurization behavior of iron-based sorbent with MgO and TiO{sub 2} additive in hot coal gas  

SciTech Connect

The sulfidation behaviors of iron-based sorbent with MgO and MgO-TiO{sub 2} are studied under different isothermal conditions from 623 to 873 K in a fixed bed reactor. The results of sorbents sulfidation experiments indicate that the sorbents with MgO and TiO{sub 2} additives are more attractive than those without additives for desulfurization of hot coal gas. The sulfur capacity (16.17, 18.45, and 19.68 g S/100 g sorbent) of M1F, M3F, and M5F sorbent containing 1, 3, and 5% MgO, respectively, is obviously bigger than that (15.02 g S/100 g sorbent) of M0F without additive. The feasible sulfidation temperature range for M3F sorbent is 773-873 K. The M3F sorbent is optimally regenerated at the temperature of 873 K, under the gas containing 2% oxygen, 15% steam and N{sub 2}, in the space velocity of 2500 h{sup -1}. The sorbent regenerated is also well performed in the second sulfidation (the effective sulfur capacities of 17.98 g S/100 g sorbents and the efficiency of removal sulfur of 99%). The capacity to remove sulfur decreases with steam content increasing in feeding gas from 0 to 10%, but it can restrain the formation of carbon and iron carbide. The addition of TiO{sub 2} in sorbent can shift the optimal sulfidation temperature lower. The iron-based sorbent with 3% MgO and 10% TiO{sub 2} (MFT) is active to the deep removal of H{sub 2}S and COS, especially in the temperature range of 673-723 K. The sulfur removal capacity of MFT sorbent is 21.60 g S/100 g sorbent. 16 refs., 12 figs., 8 tabs.

Weiren Bao; Zong-you Zhang; Xiu-rong Ren; Fan Li; Li-ping Chang [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

2009-07-15T23:59:59.000Z

73

High Rate and High Capacity Li-Ion Electrodes for Vehicular Applications  

SciTech Connect

Significant advances in both energy density and rate capability for Li-ion batteries are necessary for implementation in electric vehicles. We have employed two different methods to improve the rate capability of high capacity electrodes. For example, we previously demonstrated that thin film high volume expansion MoO{sub 3} nanoparticle electrodes ({approx}2 {micro}m thick) have a stable capacity of {approx}630 mAh/g, at C/2 (charge/dicharge in 2 hours). By fabricating thicker conventional electrodes, an improved reversible capacity of {approx}1000 mAh/g is achieved, but the rate capability decreases. To achieve high-rate capability, we applied a thin Al{sub 2}O{sub 3} atomic layer deposition coating to enable the high volume expansion and prevent mechanical degradation. Also, we recently reported that a thin ALD Al{sub 2}O{sub 3} coating can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 C. Additionally, Al{sub 2}O{sub 3} ALD films with a thickness of 2 to 4 {angstrom} have been shown to allow LiCoO{sub 2} to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs. Li/Li{sup +}. Capacity fade at this high voltage is generally caused by oxidative decomposition of the electrolyte or cobalt dissolution. We have recently fabricated full cells of NG and LiCoO{sub 2} and coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. In a different approach we have employed carbon single-wall nanotubes (SWNTs) to synthesize binder-free, high-rate capability electrodes, with 95 wt.% active materials. In one case, Fe{sub 3}O{sub 4} nanorods are employed as the active storage anode material. Recently, we have also employed this method to demonstrate improved conductivity and highly improved rate capability for a LiNi{sub 0.4}Mn{sub 0.4}Co{sub 0.2}O{sub 2} cathode material. Raman spectroscopy was employed to understand how the SWNTs function as a highly flexible conductive additive.

Dillon, A. C.

2012-01-01T23:59:59.000Z

74

High Capacity Pouch-Type Li-air Batteries  

SciTech Connect

The pouch-type Li-air batteries operated in ambient condition are reported in this work. The battery used a heat sealable plastic membrane as package material, O2Ź diffusion membrane and moisture barrier. The large variation in internal resistance of the batteries is minimized by a modified separator which can bind the cell stack together. The cells using the modified separators show improved and repeatable discharge performances. It is also found that addition of about 20% of 1,2-dimethoxyethane (DME) in PC:EC (1:1) based electrolyte solvent improves can improve the wetability of carbon electrode and the discharge capacities of Li-air batteries, but further increase in DME amount lead to a decreased capacity due to increase electrolyte loss during discharge process. The pouch-type Li-air batteries with the modified separator and optimized electrolyte has demonstrated a specific capacity of 2711 mAh g-1 based on carbon and a specific energy of 344 Wh kg-1 based on the complete batteries including package.

Wang, Deyu; Xiao, Jie; Xu, Wu; Zhang, Jiguang

2010-05-05T23:59:59.000Z

75

Supported-sorbent injection. Final report  

SciTech Connect

A new retrofitable, wastefree acid-rain control concept was pilot-tested at Ohio Edison`s high-sulfur coal-fired R.E. Burger generating station at the 2-MWe level. During the project, moistened {open_quotes}supported{close_quotes} sorbents, made from a combination of lime and vermiculite or perlite, were injected into a humidified 6,500-acfm flue-gas slipstream. After the sorbents reacted with the sulfur dioxide in the flue gas, they were removed from ductwork with a cyclone and baghouse. The $1.0 million project was co-funded by Sorbent Technologies Corporation, the Ohio Edison Company, and the Ohio Coal Development Office. The project included a preliminary bench-scale testing phase, construction of the pilot plant, parametric studies, numerous series of recycle tests, and a long-term run. The project proceeded as anticipated and achieved its expected results. This duct injection technology successfully demonstrated SO{sub 2}-removal rates of 80 to 90% using reasonable stoichiometric injection ratios (2:1 Ca:S) and approach temperatures (20-25F). Under similar conditions, dry injection of hydrated lime alone typically only achieves 40 to 50% SO{sub 2} removal. During the testing, no difficulties were encountered with deposits in the ductwork or with particulate control, which have been problems in tests of other duct-injection schemes.

Nelson, S. Jr.

1997-07-01T23:59:59.000Z

76

Novel sorbents for removal of gadolinium-based contrast agents in sorbent dialysis and hemoperfusion: preventive approaches to nephrogenic systemic fibrosis  

SciTech Connect

Gd based contrast agents in many forms of organocomplex have recently been linked to a debilitating and a potentially fatal skin disease called Nephrogenic Systemic Fibrosis (NSF) in patients with renal failures. Free Gd released from the complexes by transmetallation is believed to be the most important trigger for NSF. Removal of Gd complex from the patients immediately after the contrast study would prevent the dissociation of Gd and should eliminate NSF as a complication. Although removal of Gd based contrast agents may be accomplished with conventional hemodialysis, it requires three hemodialysis sessions at 3 hours each to remove 98% of the contrast agents. In this work, mesoporous silica material that are functionalized with 1-hydroxy-2-pyridinone (1,2-HOPO-SAMMSŽ) has been evaluated for effective removal of both free and chelated Gd (Magnevist, a brand of gadopentetate dimeglumine) from the dialysate and sodium chloride solution. The material has high affinity, rapid removal rate, and large sorption capacity for both free and chelated Gd, the properties that are far superior to those of activated carbon and zirconium phosphate currently used in the state-of-the-art sorbent dialysis systems. 99% of both free and chelated Gd would be removed in a single pass thru the sorbent bed of 1,2-HOPO-SAMMSŽ. The sorbent provides an effective and predicable strategy for removing Gd from patients with impaired renal function, thus it would allow for the continued use of contrast MRI while removing the risk of NSF and would represent a safe alternative to traditional contrast studies in the patient population.

Yantasee, Wassana; Fryxell, Glen E.; Porter, George A.; Pattamakomsan, Kanda; Sukwarotwat, Vichaya; Chouyyok, Wilaiwan; Koonsiripaiboon, View; Xu, Jide; Raymond, Kenneth N.

2010-02-01T23:59:59.000Z

77

sorbent-rti | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Solid Sorbents for Post-Combustion CO2 Capture Project No.: DE-FE0007707 RTI International is developing and demonstrating an advanced, solid sorbent-based CO2 capture...

78

Design and Evaluation of Novel High Capacity Cathode Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

surface and bulk stability of electrodes at high electrochemical potentials Use atomic-scale modeling as a guide to identify, design and understand the structural...

79

Development of Novel Sorbents for Uranium Extraction from Seawater  

SciTech Connect

As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

Lin, Wenbin; Taylor-Pashow, Kathryn

2014-01-08T23:59:59.000Z

80

Design and Evaluation of Novel High Capacity Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. es017johnson2010o.pdf More Documents & Publications Lithium Source For High Performance Li-ion...

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. es009jang2010o.pdf More Documents & Publications Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries 2010 DOE EERE Vehicle...

82

Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

es009jang2011o.pdf More Documents & Publications Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Progress of DOE...

83

Development of High Capacity Anode for Li-ion Batteries | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Anode Structures: Overview of New DOE BATT Anode Projects Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Hybrid Nano Carbon...

84

High-Capacity Hybrid Active Power Filter for the Power Substation  

Science Journals Connector (OSTI)

Non-linear loads, such as diode, thyristor converters and arc furnaces are typical sources of harmonic currents. A capacitor clamped voltage source inverter for high-capacity hybrid active power filter (HHAPF)...

Fen Gong; Xiangyang Xia; Shiwu Luo…

2012-01-01T23:59:59.000Z

85

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

SciTech Connect

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

86

High Capacity Lossless Semi-fragile Audio Watermarking in the Time Domain  

Science Journals Connector (OSTI)

A blind high capacity lossless semi-fragile audio watermarking algorithm based on the statistical quantity related to the correlation among the audio sample values is proposed. Time domain embedding is used to...

Sunita V. Dhavale; R. S. Deodhar…

2012-01-01T23:59:59.000Z

87

Development of High-Capacity Desalination Plant Driven by Offshore Wind Turbine  

Science Journals Connector (OSTI)

This paper presents a development of the desalination plant based on the concept of the Wind Energy Marine Unit (WEMU) which is the high-capacity offshore wind turbine with the floating rotor. The great potential...

Valery V. Cheboxarov; Victor V. Cheboxarov

2009-01-01T23:59:59.000Z

88

Design and Synthesis of Novel Porous Metal-Organic Frameworks (MOFs) Toward High Hydrogen Storage Capacity  

SciTech Connect

Statement of Objectives: 1. Synthesize viable porous MOFs for high H2 storage at ambient conditions to be assessed by measuring H2 uptake. 2. Develop a better understanding of the operative interactions of the sorbed H2 with the organic and inorganic constituents of the sorbent MOF by means of inelastic neutron scattering (INS, to characterize the H2-MOF interactions) and computational studies (to interpret the data and predict novel materials suitable for high H2 uptake at moderate temperatures and relatively low pressures). 3. Synergistically combine the outcomes of objectives 1 and 2 to construct a made-to-order inexpensive MOF that is suitable for super H2 storage and meets the DOE targets - 6% H2 per weight (2kWh/kg) by 2010 and 9% H2 per weight (3kWh/kg) by 2015. The ongoing research is a collaborative experimental and computational effort focused on assessing H2 storage and interactions with pre-selected metal-organic frameworks (MOFs) and zeolite-like MOFs (ZMOFs), with the eventual goal of synthesizing made-to-order high H2 storage materials to achieve the DOE targets for mobile applications. We proposed in this funded research to increase the amount of H2 uptake, as well as tune the interactions (i.e. isosteric heats of adsorption), by targeting readily tunable MOFs:

Mohamed, Eddaoudi [USF; Zaworotko, Michael [USF; Space, Brian [USF; Eckert, Juergen [USF

2013-05-08T23:59:59.000Z

89

For Immediate Release AUB to develop its high performance computing capacities in the  

E-Print Network (OSTI)

For Immediate Release AUB to develop its high performance computing capacities in the service steps to become a high performance computing center that will be able to process massive amounts thousands of servers. According to Wikipedia, supercomputers, or high performance computing, play

Shihadeh, Alan

90

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

1996-06-11T23:59:59.000Z

91

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

1996-01-01T23:59:59.000Z

92

Direct sulfur recovery during sorbent regeneration. Final report  

SciTech Connect

The objective of this research project was to improve the direct elemental sulfur yields that occur during the regeneration of SO{sub 2}-saturated MgO-vermiculite sorbents (MagSorbents) by examining three approaches or strategies. The three approaches were regeneration-gas recycle, high-pressure regeneration, and catalytic reduction of the SO{sub 2} gas using a new catalyst developed by Research Triangle Institute (RTI). Prior to the project, Sorbent Technologies Corporation (Sorbtech) had developed a sorbent-regeneration process that yielded directly a pure elemental sulfur product. In the process, typically about 25 to 35 percent of the liberated S0{sub 2} was converted directly to elemental sulfur. The goal of this project was to achieve a conversion rate of over 90 percent. Good success was attained in the project. About 90 percent or more conversion was achieved with two of the approaches that were examined, regeneration-gas recycle and use of the RTI catalyst. Of these approaches, regeneration-gas recycle gave the best results (essentially 100 percent conversion in some cases). In the regeneration-gas recycle approach, saturated sorbent is simply heated to about 750{degree}C in a reducing gas (methane) atmosphere. During heating, a gas containing elemental sulfur, water vapor, H{sub 2}S, S0{sub 2}, and C0{sub 2} is evolved. The elemental sulfur and water vapor in the gas stream are condensed and removed, and the remaining gas is recycled back through the sorbent bed. After several recycles, the S0{sub 2} and H{sub 2}S completely disappear from the gas stream, and the stream contains only elemental sulfur, water vapor and C0{sub 2}.

Nelson, S.G.; Little, R.C. [Sorbent Technologies Corp., Twinsburg, OH (United States)

1993-08-01T23:59:59.000Z

93

High-Capacity Hydrogen Storage in Metal-Free Organic Molecular Crystals  

E-Print Network (OSTI)

High-Capacity Hydrogen Storage in Metal-Free Organic Molecular Crystals Mina Yoon1, 2 and Matthias donor and acceptor molecules as a promising new class of hydrogen storage materials. Using quantum(Tetrathiafulvalene)/TCNQ(7,7,8,8-tetracyanoquinodimethane) become very efficient hydrogen storage media of high gravimetric

94

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 Fellow  

E-Print Network (OSTI)

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 energy storage devices continues to grow. Lithium-ion (Li-ion) secondary, or renewable, batteries are of interest due to their high energy and power characteristics. Performance enhancements of Li- ion batteries

Li, Mo

95

NETL: IEP - Post-Combustion CO2 Emissions Control - Novel High Capacity  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel High Capacity Oligomers for Low Cost CO2 Capture Novel High Capacity Oligomers for Low Cost CO2 Capture Project No.: DE-NT0005310 GE Global Research is using both computational and laboratory methods to identify and produce novel oligomeric solvents for the post-combustion capture of carbon dioxide (CO2). An oligomer is a polymer with relatively few structural units. Molecular and system modeling, advanced synthetic methods, and laboratory testing will be used to identify oligomeric solvents that have the potential for high CO2 capture capacity with corresponding low regeneration energy requirements. GE Global Test Equipment GE Global Test Equipment Related Papers and Publications: Aminosilicone Solvents for Low Cost CO2 Capture [PDF-2.0MB] (Sept 2010) Presentation given at the 2010 NETL CO2 Capture Technology Meeting

96

Photopatternable sorbent and functionalized films  

DOE Patents (OSTI)

A composition containing a polymer, a crosslinker and a photo-activatable catalyst is placed on a substrate. The composition is exposed to a predetermined pattern of light, leaving an unexposed region. The light causes the polymer to become crosslinked by hydrosilylation. A solvent is used to remove the unexposed composition from the substrate, leaving the exposed pattern to become a sorbent polymer film that will absorb a predetermined chemical species when exposed to such chemical species.

Grate, Jay W. (West Richland, WA); Nelson, David A. (Richland, WA)

2006-01-31T23:59:59.000Z

97

Investigation of combined SO{sub 2}/NO{sub x} removal by ceria sorbents. Quarterly technical progress report, [April--June 1995  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. Recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. The present study aims to determine the effects of ammonia on the sulfation of the sorbent and to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents. In this quarter runs for methane regeneration were completed. The data obtained were evaluated and interpreted. When the sulfated sorbent was regenerated with methane coke formation on the sorbent was observed. Treatment of fresh sorbent with methane also resulted in coking. Coke formed on the sorbent disappeared very rapidly after the methane flow was replaced with nitrogen. The order of the regeneration reaction with respect to methane was estimated as 0:76 and the activation energy of the reaction was estimated as 130 kJ/mol. During repeated sulfation-regeneration cycles the decrease in the sulfur capacity after the first cycle was slightly more when regeneration was done with methane compared to that observed with hydrogen regeneration. In the subsequent 4 cycles, the ceria sorbent preserved its sulfur capacity. The regenerated sorbent was able to capture 1.5 sulfur atoms per cerium atom in less than an hour of sulfation, compared to S/Ce of 2.5 for fresh sorbents and 2 for sorbents regenerated with hydrogen.

Akyurtlu, A.; Akyurtlu, J.F.

1995-07-01T23:59:59.000Z

98

HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

FLORIDA SOLAR ENERGY CENTER FLORIDA SOLAR ENERGY CENTER Creating Energy Independence Since 1975 A Research Institute of the University of Central Florida HT Combinatorial Screening of HT Combinatorial Screening of Novel Materials for High Capacity Novel Materials for High Capacity Hydrogen Storage Hydrogen Storage Ali T Ali T - - Raissi Raissi Director, Hydrogen & Fuel Cell R&D Director, Hydrogen & Fuel Cell R&D Division Division High Throughput/Combinatorial Analysis of Hydrogen Storage High Throughput/Combinatorial Analysis of Hydrogen Storage Materials Workshop, Bethesda, MD Materials Workshop, Bethesda, MD 26 June 2007 26 June 2007 This presentation does not contain any proprietary or confidential information 2 Objectives Objectives Develop (i.e. design, build, test and verify) a high

99

Theoretical Estimates of HVAC Duct Channel Capacity for High-Speed Internet Access  

E-Print Network (OSTI)

Theoretical Estimates of HVAC Duct Channel Capacity for High-Speed Internet Access Ariton E. Xhafa-conditioning (HVAC) ducts based on multi-carrier transmission that uses M-QAM mod- ulation and measured channel- flections in HVAC ducts). Our work also shows that data rates in excess of 300 Mbps are possible over

Stancil, Daniel D.

100

Short communication Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries  

E-Print Network (OSTI)

Short communication Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries N a Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, FL 32611-6400, USA b Department of Electronic Materials Engineering, Research School of Physics

Volinsky, Alex A.

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mathematical model and simulation of gas ow through a porous medium in high breaking capacity  

E-Print Network (OSTI)

Mathematical model and simulation of gas #29;ow through a porous medium in high breaking capacity, France. Abstract. A one-dimensional model is introduced to describe the gas #29;ow and the heat transfer model coupled with a porous medium model taking into account the mechanical interaction gas-silica sand

Sart, Remi

102

A Low Complexity High Capacity ECG Signal Watermark for Wearable Sensor-net Health Monitoring System  

E-Print Network (OSTI)

A Low Complexity High Capacity ECG Signal Watermark for Wearable Sensor-net Health Monitoring, RMIT University, Melbourne, Australia Abstract In Wireless telecardiology applications, an ECG signal signal collision attacks). ECG data transmission can be more robustly tied to either patient identity

van Schyndel, Ron

103

Method for Regeneration of Immobilized Amine Sorbents for Use...  

NLE Websites -- All DOE Office Websites (Extended Search)

Method for Regeneration of Immobilized Amine Sorbents for Use in CO 2 Capture Opportunity Research is currently active on the patent-pending technology "Regenerable Sorbent...

104

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability  

Science Journals Connector (OSTI)

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability ... The resulting graphene–sulfur composite showed high and stable specific capacities up to ?600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density. ...

Hailiang Wang; Yuan Yang; Yongye Liang; Joshua Tucker Robinson; Yanguang Li; Ariel Jackson; Yi Cui; Hongjie Dai

2011-06-24T23:59:59.000Z

105

High-capacity trays debottleneck Texas C{sub 3} splitter  

SciTech Connect

In 1992, Chevron Chemical Company placed 325 of UOP`s Enhanced Capacity Multiple Downcomer (ECMD) trays in its large C{sub 3} splitter at Port Arthur, Tex. The capacity of the splitter was increased by 40% /to about 124,000 lb/hr. Many times, engineers are faced with debottlenecking their fractionation trains. High-pressure and heavily liquid-loaded service is of particular interest because of the high capital cost to replace a vessel. This recently patented high-capacity tray enabled Chevron to revamp its fractionation tower, thus avoiding costly tower replacement. At Chevron`s Port Arthur, Tex., plant, the propylene/propane stream first flows through a multiple-bed treatment system to ensure high-purity product. The steam then proceeds to a large propylene/propane fractionation unit that produces hundreds of millions of pounds per year of polymer-grade propylene while utilizing mostly waste heat to keep operating costs low. The paper describes the ECMD trays, their development, commercialization, an design, the Chevron revamp start-up, and operation.

Summers, D.R. [Stone and Webster Engineering Corp., Houston, TX (United States); McGuire, P.J.; Resetarits, M.R. [UOP, Tonawanda, NY (United States); Graves, C.E. [Chevron Chemical Co., Baytown, TX (United States); Harper, S.E. [Chevron Chemical Co., Kingwood, TX (United States); Angelino, S.J. [Angelino (Salvatore J.), Tonawanda, NY (United States)

1995-11-06T23:59:59.000Z

106

Sorbent selection and design considerations for uranium trapping. [H-151 alumina, XF-100 alumina, F-1 alumina, sodium fluoride  

SciTech Connect

The efficient removal of UF/sub 6/ from effluent streams can be accomplished through the selection of the best solid sorbent and the implementation of good design principles. Pressure losses, sorbent capacity, reaction kinetics, sorbent regeneration/uranium recovery requirements and the effects of other system components are the performance factors which are summarized. The commonly used uranium trapping materials highlighted are sodium fluoride, H-151 alumina, XF-100 alumina, and F-1 alumina. Sorbent selection and trap design have to be made on a case-by-case basis but the theoretical modeling studies and the evaluation of the performance factors presented can be used as a guide for other chemical trap applications.

Schultz, R.M.; Hobbs, W.E.; Norton, J.L.; Stephenson, M.J.

1981-07-01T23:59:59.000Z

107

PEDOT: Cathode active material with high specific capacity in novel electrolyte system  

Science Journals Connector (OSTI)

Poly(3,4-ethylenedioxythiophene) (PEDOT) was chemically synthesized and characterized by FT-IR, XRD, XPS, TGA and organic elemental analysis (EA). The polymer was tested as cathode active material for rechargeable lithium batteries. The cyclic voltammetry (CV) and charge–discharge tests of PEDOT as the cathode active material was investigated in an electrolyte system of LiN(CF3SO2)2/1,2-dimethoxyethane/1,3-dioxopentane (1:2 by weight). The peak discharge capacity of up to 691 mAh/g was obtained during the 1st cycle, and remained above 330 mAh/g after 44 cycles. These results indicate that PEDOT can afford a high specific capacity as a cathode active material. A redox mechanism is tentatively proposed.

Lizhi Zhan; Zhiping Song; Jingyu Zhang; Jing Tang; Hui Zhan; Yunhong Zhou; Caimao Zhan

2008-01-01T23:59:59.000Z

108

CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents  

SciTech Connect

The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan

2012-08-31T23:59:59.000Z

109

Carbon Dioxide Capture Process with Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Dioxide Capture Process with Regenerable Sorbents Dioxide Capture Process with Regenerable Sorbents sorbent material. Additionally, the design of the system incorporates a cross- flow moving-bed reactor where the gas flows horizontally through a "panel" of solid sorbent that is slowly moving down-wards under gravity flow. With the expanded use of fossil fuels expected throughout the world, the increase in CO 2 emissions may prove to contribute even more significantly to global climate change. To address this problem, carbon sequestration scientists and engineers have proposed a number of methods to remove CO 2 from gas streams, such as chemical absorption with a solvent, membrane separation, and cryogenic fractionation. However, all of these methods are expensive and possibly cost-prohibitive for a specific application.

110

Ultra-high hydrogen storage capacity of Li-decorated graphyne: A first-principles prediction  

SciTech Connect

Graphyne, consisting of sp- and sp{sup 2}-hybridized carbon atoms, is a new member of carbon allotropes which has a natural porous structure. Here, we report our first-principles calculations on the possibility of Li-decorated graphyne as a hydrogen storage medium. We predict that Li-doping significantly enhances the hydrogen storage ability of graphyne compared to that of pristine graphyne, which can be attributed to the polarization of H{sub 2} molecules induced by the charge transfer from Li atoms to graphyne. The favorite H{sub 2} molecules adsorption configurations on a single side and on both sides of a Li-decorated graphyne layer are determined. When Li atoms are adsorbed on one side of graphyne, each Li can bind four H{sub 2} molecules, corresponding to a hydrogen storage capacity of 9.26 wt. %. The hydrogen storage capacity can be further improved to 15.15 wt. % as graphyne is decorated by Li atoms on both sides, with an optimal average binding energy of 0.226 eV/H{sub 2}. The results show that the Li-decorated graphyne can serve as a high capacity hydrogen storage medium.

Zhang Hongyu; Zhang Meng; Zhao Lixia; Luo Youhua [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China); Zhao Mingwen; Bu Hongxia; He Xiujie [School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 Shandong (China)

2012-10-15T23:59:59.000Z

111

Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine  

SciTech Connect

This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

Reilly, Raymond W.

2012-07-30T23:59:59.000Z

112

INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

Ates Akyurtlu; Jale F. Akyurtlu

2000-04-10T23:59:59.000Z

113

INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded research of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures.

Ates Akyurtlu; Jale F. Akyurtlu

1999-11-30T23:59:59.000Z

114

Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

Akyurtlu, A.; Akyurtlu, J.F.

1999-03-31T23:59:59.000Z

115

Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability  

SciTech Connect

Highlights: ? Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ? Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ? Q{sub 0} of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ? Q{sub 0} of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ? AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q{sub 0}) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

Mahmoodi, Niyaz Mohammad, E-mail: nm_mahmoodi@yahoo.com [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of)] [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of)

2012-07-15T23:59:59.000Z

116

Laboratory Development of A High Capacity Gas-Fired paper Dryer  

SciTech Connect

Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?ÂşF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?ÂşF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

2005-09-30T23:59:59.000Z

117

Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer  

SciTech Connect

Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

2005-09-30T23:59:59.000Z

118

Sorbent utilization prediction methodology: sulfur control in fluidized-bed combustors  

SciTech Connect

The United States Government has embarked on an ambitious program to develop and commercialize technologies to efficiently extract energy from coal in an environmentally acceptable manner. One of the more promising new technologies for steam and power generation is the fluidized-bed combustion of coal. In this process, coal is burned in a fluidized bed composed mainly of calcined limestone sorbent. The calcium oxide reacts chemically to capture the sulfur dioxide formed during the combustion and to maintain the stack gas sulfur emissions at acceptable levels. The spent sulfur sorbent, containing calcium sulfate, is a dry solid that can be disposed of along with coal ash or potentially used. Other major advantages of fluidized-bed combustion are the reduction in nitrogen oxide emissions because of the relatively low combustion temperatures, the capability of burning wide varieties of fuel, the high carbon combustion efficiencies, and the high heat-transfer coefficients. A key to the widespread commercialization of fluidized-bed technology is the ability to accurately predict the amount of sulfur that will be captured by a given sorbent. This handbook meets this need by providing a simple, yet reliable, user-oriented methodology (the ANL method) that allows performance of a sorbent to be predicted. The methodology is based on only three essential sorbent parameters, each of which can be readily obtained from standardized laboratory tests. These standard tests and the subsequent method of data reduction are described in detail.

Fee, D.C.; Wilson, W.I.; Shearer, J.A.; Smith, G.W.; Lenc, J.F.; Fan, L.S.; Myles, K.M.; Johnson, I.

1980-09-01T23:59:59.000Z

119

Topical Report 5: Sorbent Performance Report  

SciTech Connect

ADA-ES has completed an extensive sorbent screening program funded primarily through DOE NETL cooperative agreement DE-NT0005649 with support from EPRI and industry cost-share participants. Tests were completed on simulated and actual flue gas. The overall project objective is to address the viability and accelerate development of a solid-based postcombustion CO2 capture technology that can be retrofit to the existing fleet of coal-fired power plants. An important component of the viability assessment was to evaluate the state of development of sorbents and measure key performance characteristics under realistic operating conditions.

Krutka, Holly; Sjostrom, Sharon

2011-05-31T23:59:59.000Z

120

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

122

Sorption kinetics for phenol and nitro-substituted toxic phenols from aqueous solution using clay as sorbent material  

Science Journals Connector (OSTI)

This study examined the effectiveness of less-expensive sorbent clay in removing phenols from wastewater by sorption. Batch kinetic experiment showed that phenol and nitro-substituted phenols (o-, m- and p-) sorption on clay was rapid and equilibrium was achieved within 2 h. The kinetics of sorption was found to be of pseudo-second order reaction. The influences of various factors, such as particle size, pH, concentration and temperature on the sorption capacity have been studied. This study showed that clay could be used as an efficient sorbent material for the sorption of phenols from aqueous solution.

Preeti Sagar Nayak; B.K. Singh

2010-01-01T23:59:59.000Z

123

Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification  

SciTech Connect

Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

2012-06-20T23:59:59.000Z

124

Stabilization of spent sorbents from coal gasification. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect

The objective of this investigation was to determine the rates of reactions involving partially sulfided dolomite and oxygen, which is needed for the design of the reactor system for the stabilization of sulfide-containing solid wastes from gasification of high sulfur coals. To achieve this objective, samples of partially sulfided dolomite were reacted with oxygen at a variety of operating conditions in a fluidized-bed reactor. The effect of external diffusion was eliminated by using small quantities of the sorbent and maintaining a high flow rate of the reactant gas. The reacted sorbents were analyzed to determine the extent of conversion as a function of operating variables including sorbent particle size, reaction temperature and pressure, and oxygen concentration. The results of sulfation tests indicate that the rate of reaction increases with increasing temperature, increasing oxygen partial pressure, and decreasing sorbent particle size. The rate of the sulfation reaction can be described by a diffuse interface model where both chemical reaction and intraparticle diffusion control the reaction rate. The kinetic model of the sulfation reaction was used to determine the requirements for the reactor system, i.e., reactor size and operating conditions, for successful stabilization of sulfide-containing solid wastes from gasification of high sulfur coals (with in-bed desulfurization using calcium based sorbents). The results indicate that the rate of reaction is fast enough to allow essentially complete sulfation in reactors with acceptable dimensions. The optimum sulfation temperature appears to be around 800{degrees}C for high pressure as well as atmospheric stabilization of the spent sorbents.

Abbasian, J.; Hill, A.H.; Rue, D.M.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States)

1993-12-31T23:59:59.000Z

125

Capture of carbon dioxide by solid amine sorbents  

Science Journals Connector (OSTI)

The reaction of tetraethylorthrosilcate (TEOS) with y-aminopropyltriethoxysilane (APTS) has produced stable solid amine sorbents for the capture of carbon dioxide. The resulting amine-enriched silicon sorbent (SBA-15) has been proven to be competitive with existing environmental CO2 controlled life sorbents based on the immobilised amine technology. XPS analysis has indicated that the amine groups (N1s Peak) were incorporated onto the surfaces of this amine-based sorbent in the range of 7%. The performance of the SBA-15 was comparable to the commercially available immobilised amine sorbent (IAS).

M.L. Gray; Y. Soong; K.J. Champagne; H.W. Pennline; J. Baltrus; R.W. Stevens Jr.; R. Khatri; S.S.C. Chuang

2004-01-01T23:59:59.000Z

126

Binder-free Ge-three dimensional graphene electrodes for high-rate capacity Li-ion batteries  

SciTech Connect

A binder-free, high-rate Ge-three dimensional (3D) graphene composite was synthesized by directly depositing Ge film atop 3D graphene grown by microwave plasma chemical vapor deposition on Ni substrate. The Ge-3D graphene structure demonstrates excellent electrochemical performance as a lithium ion battery (LIB) anode with a reversible capacity of 1140 mAh g{sup ?1} at 1/3C over 100 cycles and 835 mAh g{sup ?1} at 8C after 60 cycles, and significantly a discharge capacity of 186 mAh g{sup ?1} was still achieved at 32C. The high capacity and outstanding stability of the Ge-3D graphene composite propose it as a promising electrode in high-performance thin film LIBs.

Wang, C. D.; Chui, Y. S.; Chen, X. F., E-mail: xianfeng.chen@cityu.edu.hk, E-mail: apwjzh@cityu.edu.hk; Zhang, W. J., E-mail: xianfeng.chen@cityu.edu.hk, E-mail: apwjzh@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Li, Y. [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China) [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Department of Polymer Science and Engineering, Soochow University, Suzhou 215123 (China)

2013-12-16T23:59:59.000Z

127

Binder-free Ge-three dimensional graphene electrodes for high-rate capacity Li-ion batteries  

Science Journals Connector (OSTI)

A binder-free high-rate Ge-three dimensional (3D) graphene composite was synthesized by directly depositing Ge film atop 3D graphene grown by microwave plasma chemical vapor deposition on Ni substrate. The Ge-3D graphene structure demonstrates excellent electrochemical performance as a lithium ion battery (LIB) anode with a reversible capacity of 1140 mAh g?1 at 1/3C over 100 cycles and 835 mAh g?1 at 8C after 60 cycles and significantly a discharge capacity of 186 mAh g?1 was still achieved at 32C. The high capacity and outstanding stability of the Ge-3D graphene composite propose it as a promising electrode in high-performance thin film LIBs.

C. D. Wang; Y. S. Chui; Y. Li; X. F. Chen; W. J. Zhang

2013-01-01T23:59:59.000Z

128

Carbon dioxide capture process with regenerable sorbents  

DOE Patents (OSTI)

A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

2002-05-14T23:59:59.000Z

129

Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)  

SciTech Connect

The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume.

Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B. [Oak Ridge National Lab., TN (United States); Griess, J.C. [Griess (J.C.), Knoxville, TN (United States)

1994-12-31T23:59:59.000Z

130

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Hailiang Wang,,  

E-Print Network (OSTI)

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries Hailiang Wang hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery-cost, and environ- mentally friendly anode for lithium ion batteries. Our growth-on- graphene approach should offer

Cui, Yi

131

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

SciTech Connect

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. In this report, the reactivity of AHI-5 was examined. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 70 {micro}m particles are reacted with 9000-18000 ppm hydrogen sulfide at 350-500 C. The range of space time of reaction gas mixtures is 0.071-0.088 s. The range of reaction duration is 4-10800 s.

K.C. Kwon

2001-01-01T23:59:59.000Z

132

Hierarchical functional layers on high-capacity lithium-excess cathodes for superior lithium ion batteries  

Science Journals Connector (OSTI)

Abstract Li-excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 (LMNCO) nanoparticles are facilely synthesized using a surfactant-assisted dispersion method. Ultrathin and conformal oxide coatings are deposited on the surface of individual LMNCO nanoparticle via atomic layer deposition (ALD). The effect of oxide ALD coatings on improving electrochemical performance of LMNCO electrodes is evaluated and optimized via tuning the coating thickness and composition. In addition, we synthesize a novel core–shell structure cathode consisting of Li-excess LMNCO as core and Li-stoichiometric material as shell, and its electrochemical property is optimized by tailoring weight content and composition of shell materials. Finally, electrochemical performance of Li-excess cathode material can be maximized by surface modification with hierarch functional layers composed of 10 wt.% LiCoO2 shell (?10 nm thick) and 6ZrO2 ALD layers (?1 nm thick), which delivers very high initial discharge capacities of 296.4, 259.8, 156.6 and 104.2 mAh g?1 at 0.1C, 1C, 5C and 10C, and can retain 184.0 mAh g?1 at 1C after 100 electrochemical cycles. Such remarkably improved cycleabilitiy and rate capability of nanoarchitected Li-excess layered cathode material can be attributed to the synergic effect from hierarchical functional coatings to reduce electrochemical polarization, structural degradation and side reactions during electrochemical cycling.

Jianqing Zhao; Saad Aziz; Ying Wang

2014-01-01T23:59:59.000Z

133

Highly Efficient Dye-Sensitized Solar Cells by Using a Mesostructured Anatase TiO2 Electrode with High Dye Loading Capacity  

Science Journals Connector (OSTI)

Highly Efficient Dye-Sensitized Solar Cells by Using a Mesostructured Anatase TiO2 Electrode with High Dye Loading Capacity ... The growth and assembly of TiO2 nanostructures with enhanced charge transfer and light harvesting have attracted much attention for fabricating highly efficient dye-sensitized solar cells. ... The photovoltaic measurements indicate that the mesoporous TiO2 layer enhances the dye loading capacity, the electron transfer efficiency, and the photocurrent of the cell, contributing to the significant improvement of the energy conversion efficiency of the dye-sensitized solar cells. ...

Wei Shao; Feng Gu; Chunzhong Li; Mengkai Lu

2010-09-03T23:59:59.000Z

134

Layered solid sorbents for carbon dioxide capture  

DOE Patents (OSTI)

A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

2014-11-18T23:59:59.000Z

135

Calcium Compartmentation in Arabidopsis Mesophyll Cells, A Mechanism to Regulate Apoplastic Calcium, Photosynthetic Rates and Growth, Involves Low-affinity, High-capacity Ca2+/H+ Antiporters  

E-Print Network (OSTI)

Low- affinity, High-capacity Ca 2+ /H + Antiporters SimonRoger Leigh The way calcium (Ca) is stored in plants impactsaccumulation patterns for Ca across different plant

Conn, Simon J; Gilliham, Matthew; Tyerman, Stephen; Kaiser, Brent; Leigh, Roger

2009-01-01T23:59:59.000Z

136

High-Throughput Methods To Assess Lipophilic and Hydrophilic Antioxidant Capacity of Food Extracts in Vitro  

Science Journals Connector (OSTI)

Assays comprising three probes for different mechanisms of antioxidant activity in food products have been modified to allow better comparison of the contributions of the different mechanisms to antioxidant capacity (AOC). ... The mixture was incubated at 50 °C for 15 min, and the absorbance was measured at 760 nm (UV?vis spectrophotometer Lambda 12, Perkin-Elmer AG). ...

D. Jimenez-Alvarez; F. Giuffrida; F. Vanrobaeys; P. A. Golay; C. Cotting; A. Lardeau; Brendan J. Keely

2008-04-24T23:59:59.000Z

137

Preparation of sorbents containing ettringite phase from concrete sludge and their performance in removing borate and fluoride ions from waste water  

Science Journals Connector (OSTI)

Concrete sludge is an industrial waste slurry containing hydrated cement, aggregates and water. Solid sorbents containing ettringite, Ca6Al2(SO4)3(OH)12ˇ26H2O, were prepared from concrete sludge by adding various amounts of aluminum sulfate to enhance ettringite formation. Anion exchange performance of the sorbents was examined using model waste waters containing boron or fluoride ions. The removal behavior depended on the calcium/aluminum ratio and the heat treatment temperature after drying. For the same Ca/Al ratio, improved removal performance was observed for sorbents treated at higher temperatures. The highest removal capacity was found when the sorbent was prepared with a molar ratio of Ca/Al of 3.2 and heat treatment at 175 °C. The final concentrations of boron and fluoride were 6.3 mg-B/L, and less than 4 mg-F/L for initial concentrations of 100 mg-B/L and 300 mg-F/L. Treatment of the sorbents at higher temperature dehydrated the ettringite phase to form metaettringite phase. The sorbents prepared in the present study can be used in a boron and fluoride removal process that meets the effluent standard in Japan.

Yusuke Tsunashima; Atsushi Iizuka; Junichiro Akimoto; Teruhisa Hongo; Akihiro Yamasaki

2012-01-01T23:59:59.000Z

138

Investigation of combined SO{sub 2}/NO{sub x} removal by ceria sorbents. Quarterly technical progress report, April 1, 1994--June 30, 1994  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. This process will allow simple and reliable cleanup of large volumes of stack gases at a competitive cost; produce a concentrated stream of SO{sub 2} which can easily be converted into valuable by-products; be compatible with existing power generation plants; and essentially eliminate the waste materials generated in some other sulfur removal processes. Department of Energy`s Pittsburgh Energy Technology Center (PETC) and UOP/Shell have developed processes which both employ copper oxide-based sorbents in different reactor configurations. More recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. Ceria improves the resistance of the alumina support to thermal sintering and produces a regeneration off-gas stream that can be easily converted to elemental sulfur. It has a potentially higher sulfur capture capacity than copper. It is readily available at a moderate cost. Although it is more expensive than copper oxide, since the cost of metal oxide is a small fraction of the total sorbent cost this may not be a significant factor. The objective of this research is to determine the effects of ammonia on the sulfation of the sorbent; to determine the effects of fly ash on the sulfation and regeneration of the sorbent; to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents; to model reactor configurations for a commercial scale combined CeO{sub 2}/Al{sub 2}O{sub 3} sorbent; and to study alternative designs, effects of design variables on the performance of the facility, and the economics of the process using the developed model.

Akyurtlu, A.

1994-07-01T23:59:59.000Z

139

Yttrium-dispersed C{sub 60} fullerenes as high-capacity hydrogen storage medium  

SciTech Connect

Interaction between hydrogen molecules and functionalized C{sub 60} is investigated using density functional theory method. Unlike transition metal atoms that tend to cluster on the surface, C{sub 60} decorated with 12 Yttrium atoms on each of its 12 pentagons is extremely stable and remarkably enhances the hydrogen adsorption capacity. Four H{sub 2} molecules can be chemisorbed on a single Y atom through well-known Dewar-Chatt-Duncanson interaction. The nature of bonding is a weak physisorption for the fifth adsorbed H{sub 2} molecule. Consequently, the C{sub 60}Y{sub 12} complex with 60 hydrogen molecules has been demonstrated to lead to a hydrogen storage capacity of ?6.30 wt. %.

Tian, Zi-Ya; Dong, Shun-Le, E-mail: dongshunle2013@hotmail.com [Department of Physics, Ocean University of China, Qingdao 266100 (China)] [Department of Physics, Ocean University of China, Qingdao 266100 (China)

2014-02-28T23:59:59.000Z

140

Poly[3,4-(ethylenedithio)thiophene]: High specific capacity cathode active material for lithium rechargeable batteries  

Science Journals Connector (OSTI)

Poly[3,4-(ethylenedithio)thiophene] (PEDTT) has been synthesized by oxidative-coupling polymerization of 3,4-(ethylenedithio)thiophene (EDTT) in the absence of solvent at ambient conditions. The resulting polymer has been characterized by FT-IR, XRD, TGA, UV–vis and solution NMR analyses. In addition, PEDTT has been evaluated as the cathode active material for rechargeable lithium batteries. The charge–discharge tests are carried out at room temperature. PEDTT shows discharge specific capacity above 425 mAh g?1. It is tentatively proposed that electrode reaction involves the formation of thioether cation, which imparts multi-electron redox reaction, high discharge specific capacity, high charge voltage and low discharge voltage.

Jing Tang; Zhi-Ping Song; Ning Shan; Li-Zhi Zhan; Jing-Yu Zhang; Hui Zhan; Yun-Hong Zhou; Cai-Mao Zhan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High-capacity nanostructured germanium-containing materials and lithium alloys thereof  

DOE Patents (OSTI)

Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0capacities, cycle lives, and/or cycling rates compared with similar electrodes made from graphite. These electrodes are useful as anodes for secondary electrochemical cells, for example, batteries and electrochemical supercapacitors.

Graetz, Jason A. (Upton, NY); Fultz, Brent T. (Pasadena, CA); Ahn, Channing (Pasadena, CA); Yazami, Rachid (Los Angeles, CA)

2010-08-24T23:59:59.000Z

142

NETL: Mercury Emissions Control Technologies - Advanced Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Mercury Sorbents with Low Impact on Power Plant Operations Advanced Mercury Sorbents with Low Impact on Power Plant Operations Apogee Scientific, Inc. (Apogee) will lead a Team comprised of Southern Company Services, TXU, Tennessee Valley Authority, EPRI, URS Group, University of Illinois-Illinois State Geological Survey (ISGS), Southern Research Institute (SRI), Calgon Carbon, and TDA Research, Inc., to evaluate a number of advanced sorbents for removing vapor-phase mercury from coal-fired flue gas that have minimal impact on by-product utilization and/or on existing particulate collection devices (PCD). The main objective of this program is to evaluate several advanced sorbents for removing mercury from coal-fired flue gas while posing minimal impact on plant operations through three advanced sorbent concepts: 1) Sorbents which minimize impact on concrete production through selective chemical passivation of activated carbon and use of non-carbon material, 2) sorbents that minimize baghouse pressure drop and ESP emissions, and 3) sorbents that can be recovered and reused.

143

A new class of non-zeolitic sorbents for air separations: Lithium ion exchanged pillared clays  

SciTech Connect

Zeolites are the only known sorbents that adsorb N{sub 2} selectively over O{sub 2}, and are used for industrial air separation. Pillared clays (PILCs) have a high Broensted acidity (k.e., high proton density). It is found in this study that when the protons are exchanged by alkali metal ions, in particular Li{sup +}, the ion exchanged pillared clays can exhibit a high N{sub 2}/O{sub 2} adsorption selectivity that rivals that of the zeolites. The first result shows a pure-component adsorption ratio of N{sub 2}/O{sub 2} = 3.2 (at 25 C and 1 atm) for Li{sup +}-exchanged PILC. The N{sub 2} capacity, however, is only 20% that of the zeolite, and remains to be improved. A systematic investigation is conducted on the effects of three factors on the N{sub 2}/O{sub 2} selectivity: (1) starting clays (tetrahedral vs octahedral isomorphous substitution and clays with different charge densities), (2) different metal oxides as pillars, and (3) different ion exchange alkali metal cations (Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, and Cs{sup +}). The highest N{sub 2}/O{sub 2} selectivities are achieved by using clays with the highest charge densities, metal oxides forming pillars with the narrowest gallery spaces, and ion exchange cations with the smallest ionic radii. Effects by all three factors are qualitatively understood. The high N{sub 2}/O{sub 2} selectivity on the Li{sup +} exchanged PILC is the result of the small ionic radius (and hence high polarizing power) of Li{sup +} and the strong quadrupole moment of the N{sub 2} molecule. Moreover, a technique is developed with which the amount of the exchanged cations can exceed that allowed by the original cation exchange capacity of the clay by using a high pH value in the ion exchange solution.

Cheng, L.S.; Yang, R.T. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemical Engineering

1995-06-01T23:59:59.000Z

144

Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass  

SciTech Connect

Low-temperature (2 K{<=}T{<=}350 K) heat capacity and room-temperature shear modulus measurements ({nu}=1.4 MHz) have been performed on bulk Pd{sub 41.25}Cu{sub 41.25}P{sub 17.5} in the initial glassy, relaxed glassy, and crystallized states. It has been found that the height of the low-temperature Boson heat capacity peak strongly correlates with the changes in the shear modulus upon high-temperature annealing. It is this behavior that was earlier predicted by the interstitialcy theory, according to which dumbbell interstitialcy defects are responsible for a number of thermodynamic and kinetic properties of crystalline, (supercooled) liquid, and solid glassy states.

Vasiliev, A. N.; Voloshok, T. N. [Department of Low Temperature Physics and Superconductivity, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Granato, A. V.; Joncich, D. M. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Greet Street, Urbana, Illinois 61801 (United States); Mitrofanov, Yu. P. [Department of General Physics, Voronezh State Pedagogical University, 86 Lenin Street, Voronezh 394043 (Russian Federation); Khonik, V. A. [Department of General Physics, Voronezh State Pedagogical University, 86 Lenin Street, Voronezh 394043 (Russian Federation); Research Center, Voronezh State University, Universitetskaya Sq. 1, 394006 Voronezh (Russian Federation)

2009-11-01T23:59:59.000Z

145

Audio watermarking with high embedding capacity based on multiple access techniques  

Science Journals Connector (OSTI)

Abstract This paper deals with a new digital audio watermarking scheme based on multiple access techniques. In digital communication, multiple access techniques allow several users transmissions by taking the same communication channel. The present work proposes to embed multiple sub-watermarks in the same channel that is the audio signal. Our main objective is to investigate embedding capacity (the amount of information that can be hidden) limitations of our proposed audio watermarking system. Three multiple access techniques have been employed in the new multi-watermarking system: DS-CDMA (Direct-Sequence Code Division Multiple Access), FHMA (Frequency Hopped Multiple Access) and FDMA (Frequency Division Multiple Access). Experimental results allow us to make the choice on the best multiple access technique, in the multi-watermarking system, which significantly permits the highest embedding capacity (a data embedding rate up to 6 kb/s) with almost no loss of data imperceptibility and with acceptable extraction fidelity ( BER ? 10 ? 2 ) even in presence of disturbances.

Mohammed Khalil; Abdellah Adib

2014-01-01T23:59:59.000Z

146

High sensitive and selective ethylene measurement by using a large-capacity-on-chip preconcentrator device  

Science Journals Connector (OSTI)

Abstract Using a large-capacity-on-chip preconcentrator device for selective ethylene measurement leads to some challenges. The dramatic increase of the water influence and the gas chromatography effect of the preconcentrator must be known and compensated before a good measurement with this new device can be performed. Nevertheless, after facing these challenges the small gas chromatograph presented in this paper was for the first time able to detect an ethylene concentration of 170 ppbv. Deduced from this measurement a detection limit below 50 ppbv can be reached, which is absolutely mandatory for shelf life prediction of climacteric fruits. New stationary phases were tested. The used packed gas chromatography column is now capable of separating vaporized water and ethylene gas from each other, which was a breakthrough in the analysis of ethylene concentrations in ambient air. It can be predicted that the system will be available at a price under 1000 €.

S. Janssen; T. Tessmann; W. Lang

2014-01-01T23:59:59.000Z

147

Strain induced lithium functionalized graphane as a high capacity hydrogen storage material  

E-Print Network (OSTI)

Strain effects on the stability, electronic structure, and hydrogen storage capacity of lithium-doped graphane (CHLi) have been investigated by stateof-the art first principle density functional theory (DFT). Molecular dynamics MD) simulations have confirmed the stability of Li on graphane sheet when it is subject to 10% of tensile strain. Under biaxial asymmetric strain, the binding energy of Li of graphane (CH) sheet increases by 52% with respect to its bulk's cohesive energy. With 25% doping concentration of Li on CH sheet,the gravimetric density of hydrogen storage is found to reach up to 12.12wt%. The adsorption energies of H2 are found to be within the range of practical H2 storage applications.

Hussain, Tanveer; Ahuja, Rajeev

2012-01-01T23:59:59.000Z

148

Solvent-free, oxidatively prepared polythiophene: High specific capacity as a cathode active material for lithium batteries  

Science Journals Connector (OSTI)

Polythiophene (PTH) was prepared by the chemical polymerization of thiophene under ambient, solvent-free conditions in the presence of FeCl3. This PTH was characterized by FTIR, UV–vis, NMR, and XRD. The NMR spectrum showed a PTH oligomer consisting of both aromatic thiophene and hydrogen-saturated tetrahydrothiophene moieties. The insoluble PTH was studied as a cathode active material for rechargeable lithium batteries with LiN(CF3SO2)2 (LiTFSI), 1,2-dimethoxyethane (DME), and 1,3-dioxolane (DOL) as electrolytes. Charge–discharge tests were conducted at room temperature. The discharge specific capacity, for levels above 400 mA h g?1, was obtained. The detected stable specific capacity and isolated, conjugated structure indicate that the charge–discharge mechanism was different from a classical ‘doping–dedoping’ process. We tentatively propose that the high specific capacity of PTH results from multi-electron electrode reactions on S atoms.

Jing Tang; Lingbo Kong; Jingyu Zhang; Lizhi Zhan; Hui Zhan; Yunhong Zhou; Caimao Zhan

2008-01-01T23:59:59.000Z

149

Investigation of combined SO{sub 2}/NO{sub x} removal by Ceria Sorbents. Quarterly technical progress report, January 1, 1994--March 31, 1994  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. This process will allow simple and reliable cleanup of large volumes of stack gases at a competitive cost; produce a concentrated stream of SO{sub 2} which an easily be converted into valuable by-products; be compatible with existing power generation plants; and essentially eliminate the waste materials generated in some other sulfur removal processes. Department of Energy`s Pittsburgh Energy Technology Center (PETC) and UOP/Shell have developed processes which both employ copper oxide-based sorbents in different reactor configurations, namely, former uses a regenerative fluidized bed while the latter employs a cyclic fixed bed contactor. More recent studies at PETC considered cerium oxide as an alternate sorbent to CuO{sup (1,2)}. Ceria improves the resistance of the alumina support to thermal sintering and produces a regeneration off-gas stream that can be easily converted to elemental sulfur. It has potentially higher sulfur capture capacity than copper. The objective of this research is to determine the effects of ammonia on the sulfation of the sorbent; to determine the effects of fly ash on the sulfation and regeneration of the sorbent; to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents; to model reactor configurations for a commercial scale combined CeO{sub 2}/Al{sub 2}O{sub 3} sorbent; and to study alternative designs, effects of design variables on the performance of the facility, and the economics of the process using the developed model.

Akyurtlu, A.; Akyurtlu, J.F.

1994-07-01T23:59:59.000Z

150

Investigation of combined SO{sub 2}/NO{sub x} removal by ceria sorbents. Quarterly technical progress report, January 1993--March 1993  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. This process will allow simple and reliable cleanup of large volumes of stack gases at a competitive cost; produce a concentrated stream of SO{sub 2} which an easily be converted into valuable by-products; be compatible with existing power generation plants; and essentially eliminate the waste materials generated in some other sulfur removal processes. Department of Energy`s Pittsburgh Energy Technology Center (PETC) and UOP/Shell have developed processes which both employ copper oxide-based sorbents in different reactor configurations, namely, former uses a regenerative fluidized bed while the latter employs a cyclic fixed bed contactor. More recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. Ceria improves the resistance of the alumina support to thermal sintering and produces a regeneration off-gas stream that can be easily converted to elemental sulfur. It has a potentially higher sulfur capture capacity than copper. The objective of this research is to determine the effects of ammonia on the sulfation of the sorbent; to determine the effects of fly ash on the sulfation and regeneration of the sorbent; to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents; to model reactor configurations for a commercial scale combined CeO{sub 2}/Al{sub 2}O{sub 3} sorbent; and to study alternative designs, effects of design variables on the performance of the facility, and the economics of the process using the developed model.

Akyurtlu, A.; Akyurtlu, J.F.

1994-06-01T23:59:59.000Z

151

Investigation of combined SO{sub 2}/NO{sub x} removal by Ceria sorbents. Quarterly technical progress report, July 1994--September 1994  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x}removal operations. This process will allow simple and reliable cleanup of large volumes of stack gases at a competitive cost; produce a concentrated stream of SO{sub 2} which an easily be converted into valuable by-products; be compatible with existing power generation plants; and essentially eliminate the waste materials generated in some other sulfur removal processes. Recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. Ceria improves the resistance of the alumina support to thermal sintering and produces a regeneration off-gas stream that can be easily converted to elemental sulfur. It has a potentially higher sulfur capture capacity than copper. It is readily available at a moderate cost. Although it is more expensive than copper oxide, since the cost of metal oxide is a small fraction of the total sorbent cost this may not be a significant factor. The objective of this research is to determine the effects of ammonia on the sulfation of the sorbent; to determine the effects of fly ash on the sulfation and regeneration of the sorbent; to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents; to model reactor configurations for a commercial scale combined CeO{sub 2}/Al{sub 2}O{sub 3} sorbent; and to study alternative designs, effects of design variables on the performance of the facility, and the economics of the process using the developed model.

Akyurtlu, A.

1994-10-01T23:59:59.000Z

152

Investigation of combined SO{sub 2}/NO{sub x} removal by ceria sorbents. Quarterly technical progress report, October 1993--December 1993  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. This process will allow simple and reliable cleanup of large volumes of stack gases as a competitive cost; produce a concentrated stream of SO{sub 2} which can easily be converted into valuable by-products; be compatible with existing power generation plants; and essentially eliminate the waste materials generated in some other sulfur removal processes. Department of Energy`s Pittsburgh Energy Technology Center (PETC) and UOP/Shell have developed processes which both employ copper oxide-based sorbents in different reactor configurations, namely, former uses a regenerative fluidized bed while the latter employs a cyclic fixed bed contactor. More recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. Ceria improves the resistance of the alumina support to thermal sintering and produces a regeneration off-gas stream that can be easily converted to elemental sulfur. It has a potentially higher sulfur capture capacity than copper. The objective of this research is to determine the effects of ammonia on the sulfation of the sorbent; to determine the effects of fly ash on the sulfation and regeneration of the sorbent; to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents; to model reactor configurations for a commercial scale combined CeO{sub 2}/Al{sub 2}O{sub 3} sorbent; and to study alternative designs, effects of design variables on the performance of the facility, and the economics of the process using the developed model.

Akyurtlu, A.

1994-06-01T23:59:59.000Z

153

Investigation of combined SO{sub 2}/NO{sub x} removal by ceria sorbents. Quarterly technical progress report, April 1, 1993--June 30, 1993  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. This process will allow simple and reliable cleanup of large volumes of stack gases at a competitive cost; produce a concentrated stream of SO{sub 2} which can easily be converted into valuable by-products; be compatible with existing power generation plants; and essentially eliminate the waste materials generated in some other sulfur removal processes. Recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. Ceria improves the resistance of the alumina support to thermal sintering and produces a regeneration off-gas stream that can be easily converted to elemental sulfur. It has a potentially higher sulfur capture capacity than copper. It is readily available at a moderate cost. Although it is more expensive than copper oxide, since the cost of metal oxide is a small fraction of the total sorbent cost this may not be a significant factor. The objective of this research is to determine the effects of ammonia on the sulfation of the sorbent; to determine the effects of fly ash on the sulfation and regeneration of the sorbent; to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents; to model reactor configurations for a commercial scale combined CeO{sub 2}/Al{sub 2}O{sub 3} sorbent; and to study alternative designs, effects of design variables on the performance of the facility, and the economics of the process using the developed model.

Akyurtlu, A.

1993-06-01T23:59:59.000Z

154

SOx/NOx sorbent and process of use  

DOE Patents (OSTI)

An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

1993-01-19T23:59:59.000Z

155

Octahedral molecular sieve sorbents and catalysts  

DOE Patents (OSTI)

Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

Li, Liyu [Richland, WA; King, David L [Richland, WA

2010-04-20T23:59:59.000Z

156

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

157

Vehicle Technologies Office Merit Review 2014: Metal-Based High Capacity Li-Ion Anodes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Binghamton University-SUNY at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about metal-based high...

158

Vehicle Technologies Office Merit Review 2014: High-Capacity Polyanion Cathodes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by The University of Texas at Austin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

159

Nanosheet-structured LiV3O8 with high capacity and excellent...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly stable LiV3O8 with a nanosheet-structure was successfully prepared using polyethylene glycol (PEG) polymer in the precursor solution as the structure modifying agent,...

160

NETL: Mercury Emissions Control Technologies - Evaluation of Sorbent  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Sorbent Injection for Mercury Control Evaluation of Sorbent Injection for Mercury Control ADA Environmental Solutions will evaluate injection of activated carbon and other sorbents to remove mercury for a variety of coal and air pollution control equipment configurations. The scope of work is for 36 months and intended to gather operating data that will document actual performance levels and accurate cost information to assess the costs of controlling mercury from coal fired utilities. Testing will be conducted at four different host sites that represent a significant percentage of unit configurations. The subsequent cost analyses will include capital costs, by-product utilization issues, sorbent usage, any necessary enhancements, such as SO3 control or flue gas conditioning, balance of plant, manpower requirements and waste issues. The host sites are Sunflower Electric's Holcomb Station, Ontario Power Generation's Nanticoke Station, AmerenUE's Meramec Station and American Electric Power's (AEP) Conesville Station.

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

sorbent-univerisity-north-dakota | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

of North Dakota (UND) is scaling up and demonstrating a solid sorbent technology for carbon dioxide (CO2) capture and separation from coal combustion-derived flue gas. The...

162

eval-solid-sorbent | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture Project No.: DE-FE0004343 3-D model and Photograph of 1 kW System 3-D model and Photograph of 1 kW System...

163

Process for preparing zinc oxide-based sorbents  

DOE Patents (OSTI)

The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

Gangwal, Santosh Kumar (Cary, NC); Turk, Brian Scott (Durham, NC); Gupta, Raghubir Prasad (Durham, NC)

2011-06-07T23:59:59.000Z

164

Modeling and Analysis of Ultra High Capacity Optical Networks Arnold Bragg  

E-Print Network (OSTI)

provisioning. E.g., the high energy physics community uses "lambda grids" for Terabyte file transfers; others using today's methods and tools. Discrete event and hybrid simulators, and (near) real time network network behaviors; a fast hybrid simulator to inject traffic and network impairments; and a supervisory

Perros, Harry

165

Multiple-part-type systems in high volume manufacturing : long-term capacity planning & time-based production control  

E-Print Network (OSTI)

This project examines a production station that faces fluctuating demand with seasonal pattern. The cumulative capacity exceeds the cumulative demand in a one year period; however, its weekly capacity is not able to meet ...

Hua, Xia, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

166

Pilot-scale testing of a new sorbent for combined SO{sub 2}/NO{sub x} removal. Final report  

SciTech Connect

A new regenerable sorbent concept for SO{sub 2} and NOx removal was pilot-tested at Ohio Edison`s Edgewater generating station at a 1.5 to 2-MW(e) level. A radial panel-bed filter of a new dry, granular sorbent was exposed to flue gas and regenerated in an experimental proof-of-concept program. The project was successful in demonstrating the new sorbent`s ability to achieve 90% SO{sub 2} removal, 30% NOx removal, and over 80% removal of residual particulates with realistic approach temperatures and low pressure drops. Based on the results of this project, the retrofit cost of this technology is expected to be on the order of $400 per ton of SO{sub 2} and $900 per ton of NOx removed. This assumes that gas distribution is even and methane regeneration is used for a 30% average utilization. For a 2.5%-sulfur Ohio coal, this translates to a cost of approximately $17 per ton of coal. Two by-product streams were generated in the process that was tested: a solid, spent-sorbent stream and a highly-concentrated SO{sub 2} or elemental-sulfur stream. While not within the scope of the project, it was found possible to process these streams into useful products. The spent sorbent materials were shown to be excellent substrates for soil amendments; the elemental sulfur produced is innocuous and eminently marketable.

Nelson, S. Jr. [Sorbent Technologies Corp., Twinsburg, OH (United States)

1994-06-01T23:59:59.000Z

167

Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level  

Science Journals Connector (OSTI)

Abstract High wind power penetration in power system leads to a significant challenge in balancing power production and consumption due to the intermittence of wind. Introducing energy storage system in wind energy system can help offset the negative effects, and make the wind power controllable. However, the power spectrum density of wind power outputs shows that the fluctuations of wind energy include various components with different frequencies and amplitudes. This implies that the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. In this paper, we proposed a preliminary scheme for capacity allocation of hybrid energy storage system for power system peak shaving by using spectral analysis method. The unbalance power generated from load dispatch plan and wind power outputs is decomposed into four components, which are outer-day, intra-day, short-term and very short-term components, by using Discrete Fourier Transform (DFT) and spectral decomposition method. The capacity allocation can be quantified according to the information in these components. The simulation results show that the power rating and energy rating of hybrid energy storage system in partial smoothing mode decrease significantly in comparison with those in fully smoothing mode.

Pan Zhao; Jiangfeng Wang; Yiping Dai

2015-01-01T23:59:59.000Z

168

NETL: Mercury Emissions Control Technologies - Sorbent Injection for Small  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas URS Group and their test team will evaluate sorbent injection for mercury control on sites with low-SCA ESPs, burning low sulfur Eastern bituminous coals. Full-scale tests will be performed at Plant Yates Units 1 and 2 to evaluate sorbent injection performance across a cold-side ESP/wet FGD and a cold-side ESP with a dual NH3/SO3 flue gas conditioning system, respectively. Short-term parametric tests on Units 1 and 2 will provide data on the effect of sorbent injection rate on mercury removal and ash/FGD byproduct composition. Tests on Unit 2 will also evaluate the effect of dual-flue gas conditioning on sorbent injection performance. Results from a one-month injection test on Unit 1 will provide insight to the long-term performance and variability of this process as well as any effects on plant operations. The goals of the long-term testing are to obtain sufficient operational data on removal efficiency over time, effects on the ESP and balance of plant equipment, and on injection equipment operation to prove process viability.

169

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants  

SciTech Connect

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

2003-12-31T23:59:59.000Z

170

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

171

Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries  

Science Journals Connector (OSTI)

Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries ... Three types of FeF3 nanocrystals were synthesized by different chemical routes and investigated as a cathode-active material for rechargeable lithium batteries. ... (1-3) Though many types of metal oxides and phosphates have been tested as alternative cathode materials,(4, 5) no real breakthrough has been achieved in capacity, especially for intercalation cathodes, the capacity-determining electrode in the present LIBs systems. ...

Ting Li; Lei Li; Yu L. Cao; Xin P. Ai; Han X. Yang

2010-01-28T23:59:59.000Z

172

Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis  

SciTech Connect

The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

Lu, Jinlian; Xiao, Hong [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)

2012-12-15T23:59:59.000Z

173

Polyacrylamide/Ni0.02Zn0.98O Nanocomposite with High Solar Light Photocatalytic Activity and Efficient Adsorption Capacity for Toxic Dye Removal  

Science Journals Connector (OSTI)

Polyacrylamide/Ni0.02Zn0.98O Nanocomposite with High Solar Light Photocatalytic Activity and Efficient Adsorption Capacity for Toxic Dye Removal ... The effect of adsorption capacity of cross-linked polyacrylamide on photocatalytic activity of Ni0.02Zn0.98O was also studied. ... A significant removal efficiency of 99.17% for RB and 96.55% for MG was achieved in 2 h of solar illumination in the presence of the nanocomposite. ...

Amit Kumar; Gaurav Sharma; Mu Naushad; Pardeep Singh; Susheel Kalia

2014-09-13T23:59:59.000Z

174

Monodisperse porous polymer particles containing macrocyclic ether as a new class of sorbent for SR(II) separation  

SciTech Connect

Strontium{sup 90} is one of the typical fission products that may be found in high level liquid waste (HLLW). Separation of Sr{sup 90} prior to the vitrification is beneficial to the final treatment of solid radioactive waste. In this study, a new class of sorbent for Sr(II) was developed by loading the macrocyclic ether DtBuCH18C6 into the monodisperse porous polymer particles (MPPPs). The MPPPs are well-known as a promising chromatographic material due to the uniform particle size, porous morphology, good compatibility with organic extractants, and rigid matrix. The structure and micro-morphology of the sorbent particles were characterized. The adsorption behavior towards Sr(II) in HNO{sub 3} media was investigated by both batch and column experiments. High adsorption efficiency and selective separation of Sr(II) was obtained. The sorbent particles can be recycled for at least several times before obvious lose of the adsorption ability. This kind of sorbent possesses the potential to be used for strontium separation in radioactive liquid waste.

Leng, Yuxiao; Bai, Feifei [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Faculty of Chemical Science and Engineering, China University of Petroleum, Beijing 100084 (China); Ye, Gang; Wei, Jichao; Wang, Jianchen; Chen, Jing [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

2013-07-01T23:59:59.000Z

175

Polyacrylonitrile-Chalcogel Hybrid Sorbents for Radioiodine Capture  

SciTech Connect

Powders of a Sn2S3 chalcogen-based aerogel (chalcogel) were combined with powdered polyacrylonitrile (PAN) in different mass ratios (SnS33, SnS50, and SnS70 in mass% of chalcogel), dissolved into dimethyl sulfoxide, and dropped into deionized water to form pellets of a porous PAN-chalcogel hybrid material. Pellets of these hybrid sorbents, along with pure powdered (SnSp) and granular (SnSg) forms of the chalcogel, were then used to adsorb iodine gas under both concentrated and dilute conditions. Both the SnSp and SnSg chalcogels showed very high maximum iodine loadings at 67.2 and 68.3 mass%. The maximum iodine loadings in the SnS33 and SnS50 were high at 32.8 and 53.5 mass%. In all cases, X-ray diffraction results showed the formation of Sn-I phases of SnI4 and SnI4(S8)2 revealing that the iodine binding in these materials is mainly due to a chemisorption process although some evidence also exists that supports a physisorption process.

Riley, Brian J.; Pierce, David A.; Chun, Jaehun; Matyas, Josef; Lepry, William C.; Garn, Troy; Law, Jack; Kanatzidis, Mercouri G.

2014-04-16T23:59:59.000Z

176

Polyacrylonitrile-Chalcogel Hybrid Sorbents for Radioiodine Capture  

SciTech Connect

Powders of a Sn2S3 chalcogen-based aerogel (chalcogel) were combined with powdered polyacrylonitrile (PAN) in different mass ratios (SnS33, SnS50, and SnS70; # = mass% of chalcogel), dissolved in dimethyl sulfoxide, and added dropwise to deionized water to form pellets of a porous PAN-chalcogel hybrid material. These pellets, along with pure powdered (SnSp) and granular (SnSg) forms of the chalcogel, were then used to capture iodine gas under both dynamic (dilute) and static (concentrated) conditions. Both SnSp and SnSg chalcogels showed very high iodine loadings at 67.2 and 68.3 mass%, respectively. The SnS50 hybrid sorbent demonstrated a high, although slightly reduced, maximum iodine loading (53.5 mass%) with greatly improved mechanical rigidity. In all cases, X-ray diffraction results showed the formation of crystalline SnI4 and SnI4(S8)2, revealing that the iodine binding in these materials is mainly due to a chemisorption process, although a small amount of physisorption was observed.

Brian J. Riley; David A. Pierce; Jaehun Chun; Josef Matyas; William C. Lepry; Troy G. Garn; Jack D. Law; Mercouri G. Kanatzidis

2014-04-01T23:59:59.000Z

177

Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries  

E-Print Network (OSTI)

). More envi- ronmentally benign and sustainable energy-storage systems are desired for future power for high-energy lithium battery applications. 1. Introduction Energy storage and conversion have sources.1­6 Lithium-ion batteries are considered to be the most promising energy-storage systems

Cao, Guozhong

178

LIFAC sorbent injection desulfurization demonstration project  

SciTech Connect

In December 1990, the US Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round 3). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled LIFAC Sorbent Injection Desulfurization Demonstration Project.'' The host site for this $17 million, three-phase project is Richmond Power and Light's Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--80% of the sulfur dioxide (SO{sub 2}) in the flue gas. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the US DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the first Technical Progress Report covering the period from project execution through the end of December 1990. Due to the power plant's planned outage schedule, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.

Not Available

1991-01-01T23:59:59.000Z

179

Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides. Semiannual report, Apr 1, 1998--Oct 31, 1998  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823--900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures. The sorbents consisting of cerium oxide and copper oxide impregnated on alumina have been prepared and characterized. Their sulfation performance has been investigated in a TGA setup, studying mainly the effects of temperature and sorbent composition. The results of the sulfation experiments have been evaluated and presented in this report. A study to model the sulfation selectivity of the two constituents of the sorbents is also underway.

Dr. Ates Akyurtlu; Dr. Jale F. Akyurtlu

1998-10-31T23:59:59.000Z

180

Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control  

SciTech Connect

Public Service Company of Colorado and ADA Technologies, Inc. have performed a study of the injection of activated carbon for the removal of vapor-phase mercury from coal-fired flue gas streams. The project was completed under contract to the US Department of Energy's National Energy Technology Laboratory, with contributions from EPRI and Public Service Company. The prime contractor for the project was Public Service Company, with ADA Technologies as the major subcontractor providing technical support to all aspects of the project. The research and development effort was conducted in two phases. In Phase I a pilot facility was fabricated and tests were performed using dry carbon-based sorbent injection for mercury control on a coal-fired flue gas slipstream extracted from an operating power plant. Phase II was designed to move carbon injection technology towards commercial application on coal-fired power plants by addressing key reliability and operability concerns. Phase II field work included further development work with the Phase I pilot and mercury measurements on several of PSCo's coal-fired generating units. In addition, tests were run on collected sorbent plus fly ash to evaluate the impact of the activated carbon sorbent on the disposal of fly ash. An economic analysis was performed where pilot plant test data was used to develop a model to predict estimated costs of mercury removal from plants burning western coals. Testing in the pilot plant was undertaken to quantify the effects of plant configuration, flue gas temperature, and activated carbon injection rate on mercury removal. All three variables were found to significantly impact the mercury removal efficiency in the pilot. The trends were clear: mercury removal rates increased with decreasing flue gas temperature and with increasing carbon injection rates. Mercury removal was much more efficient with reverse-gas and pulse-jet baghouse configurations than with an ESP as the particulate control device. The native fly ash of the host unit provided significant mercury removal capacity, so that the activated carbon sorbent served as an incremental mercury removal mechanism. Tests run to characterize the waste product, a combination of fly ash and activated carbon on which mercury was present, showed that mercury and other RCRA metals of interest were all below Toxic Characteristic Leaching Procedure (TCLP) regulatory limits in the leachate. The presence of activated carbon in the fly ash was shown to have an effect on the use of fly ash as an additive in the manufacture of concrete, which could limit the salability of fly ash from a plant where activated carbon was used for mercury control.

Jim Butz; Terry Hunt

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Preparation and selection of Fe-Cu sorbent for COS removal in syngas  

Science Journals Connector (OSTI)

A series of iron-based sorbents prepared with iron trioxide hydrate, cupric oxide by a novel method was studied in a fixed-bed reactor for COS removal from syngas at moderate temperature. In addition, the sorbent...

Bowu Cheng; Zhaofei Cao; Yong Bai…

2010-12-01T23:59:59.000Z

182

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 TDA...

183

R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen...

184

Fundamentals of Capacity Control  

Science Journals Connector (OSTI)

Whereas capacity planning determines in advance the capacities required to implement a production program, capacity control determines the actual capacities implemented shortly beforehand. The capacity control...

Prof. Dr.-Ing. habil. Hermann Lödding

2013-01-01T23:59:59.000Z

185

A Reusable Calcium-Based Sorbent for Desulfurizing Hot Coal Gas  

SciTech Connect

The overall objective of this project has been to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas. The sorbent should be strong, durable, inexpensive to manufacture, and capable of being reused many times. To achieve these objectives the project has focused on the development of the very promising core-in-shell sorbent.

Wheelock, T.D.; Hasler, D.J.L.

2002-09-19T23:59:59.000Z

186

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Golden, CO A Novel Biogas Desulfurization Sorbent Technology for Molten Carbonate Fuel Cell- Based Combined Heat and Power Systems Develop an expendable, high capacity sorbent to...

187

NETL: IEP - Post-Combustion CO2 Emissions Control - Low Cost Sorbent for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Project No.: DE-NT0005497 TDA sorbent test equipment TDA sorbent test equipment. TDA Research Inc. will produce and evaluate a low-cost solid sorbent developed in prior laboratory testing. The process uses an alkalized alumina adsorbent to capture carbon dioxide (CO2) at intermediate temperature and near ambient pressure. The physical adsorbent is regenerated with low-pressure steam. Although the regeneration is primarily by concentration swing, the adsorption of steam on the sorbent during regeneration also provides approximately 8°C to 10°C of temperature swing, further enhancing the regeneration rate. The sorbent is transferred between two moving bed reactors. Cycling results in gas

188

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbents for Removal of Carbon Dioxide from Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,908,497 entitled "Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures." Disclosed in this patent is a new low-cost carbon dioxide (CO 2 ) sorbent that can be used in large-scale gas-solid processes. Researchers have developed a new method to prepare these sorbents by treating substrates with an amine and/or an ether in a way that either one comprises at least 50 weight percent of the sorbent. The sorbent captures compounds contained in gaseous fluids through chemisorptions and/or

189

NETL: Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture Project No.: DE-FE0000465 Scanning Electron Microsopy (SEM) and Transmission Electron Miscroscopy (TEM) images of a multi-functional sorbent synthesized by a novel method. Scanning Electron Microsopy (SEM) and Transmission Electron Miscroscopy (TEM) images of a multi-functional sorbent synthesized by a novel method. URS and the University of Illinois at Urbana-Champaign are investigating a dry sorbent process configured to combine the water-gas-shift (WGS) reaction with carbon dioxide (CO2) removal for coal gasification systems. A combination of process simulation modeling and sorbent molecular and thermodynamic analyses will be performed to predict optimal sorbent properties and identify optimal operating temperature and pressure ranges

190

Molten iron oxysulfide as a superior sulfur sorbent. Final report, [September 1989--1993  

SciTech Connect

The studies had as original objective the analysis of conditions for using liquid iron oxysulfide as a desulfuring agent during coal gasification. Ancillary was a comparison of iron oxysulfide with lime as sorbents under conditions where lime reacts with S-bearing gases to form Ca sulfate or sulfide. Primary thrust is to determine the thermodynamic requirements for desulfurization by iron additions (e.g., taconite concentrate) during combustion in gasifiers operating at high equivalence ratios. Thermodynamic analysis of lime-oxygen-sulfur system shows why lime is injected into burners under oxidizing conditions; reducing conditions forms CaS, requiring its removal, otherwise oxidation and release of S would occur. Iron as the oxysulfide liquid has a range of stability and can be used as a desulfurizing agent, if the burner/gasifier operates in a sufficiently reducing regime (high equivalence ratio); this operating range is given and is calculable for a coal composition, temperature, stoichiometry. High moisture or hydrogen contents of the coal yield a poorer degree of desulfurization. Kinetic tests on individual iron oxide particles on substrates or Pt cups with a TGA apparatus fail to predict reaction rates within a burner. Preliminary tests on the Dynamic Containment Burner with acetylene give some promise that this system can produce the proper conditions of coal gasification for use of added iron as a sulfur sorbent.

Hepworth, M.T.

1993-03-31T23:59:59.000Z

191

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

SciTech Connect

Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

2007-06-30T23:59:59.000Z

192

Nanostructured ion beam-modified Ge films for high capacity Li ion battery N. G. Rudawski, B. L. Darby, B. R. Yates, K. S. Jones, R. G. Elliman et al.  

E-Print Network (OSTI)

Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes N. G. Rudawski, B718 (2012) Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications://apl.aip.org/authors #12;Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes N. G. Rudawski,1

Florida, University of

193

Development of Novel Carbon Sorbents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sorbents Carbon Sorbents for CO 2 Capture Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal re- serves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio of post- and oxy-combustion carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for the existing fleet of coal-fired power plants in the event of carbon constraints. Pulverized coal (PC)-fired power plants are large, stationary sources of CO

194

Adsorption and Desorption of CO2 on Solid Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS 2 Ranjani Siriwardane (rsiiw@netl.doe.gov; 304-285-4513) Ming Shen (mshen@netl.doe.gov; 304-285-4112) Edward Fisher (efishe@netl.doe.gov; 304-285-4011) James Poston (jposto@netl.doe.gov; 304-285-4635) Abolghasem Shamsi (ashams@netl.doe.gov; 304-285-4360) U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P.O.Box 880, Morgantown, WV 26507-0880 INTRODUCTION Fossil fuels supply more than 98% of the world's energy needs. However, the combustion of fossil fuels is one of the major sources of the green house gas CO . It is necessary to develop 2 technologies that will allow us to utilize the fossil fuels while reducing the emissions of green house gases. Commercial CO capture technology that exists today is very expensive and energy

195

Method for removing metal ions from solution with titanate sorbents  

DOE Patents (OSTI)

A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

Lundquist, Susan H. (White Bear Township, MN); White, Lloyd R. (Minneapolis, MN)

1999-01-01T23:59:59.000Z

196

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

197

NETL Patented CO2-Removal Sorbents Promise Power and Cost Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patented CO2-Removal Sorbents Promise Power and Cost Savings Patented CO2-Removal Sorbents Promise Power and Cost Savings NETL Patented CO2-Removal Sorbents Promise Power and Cost Savings May 30, 2012 - 1:00pm Addthis Washington, DC - Carbon dioxide removal sorbents developed by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) could result in power and cost savings for users of some heating, ventilation and air conditioning (HVAC) systems under a recently signed license agreement. NETL, the research and development laboratory for DOE's Office of Fossil Energy, entered into a patent license agreement with Boston-based Enverid Systems Inc. for NETL-developed solid sorbents that remove CO2 from gas streams. NETL's sorbents will be incorporated into an Enverid product called EnClaire™, which adds on to HVAC systems to reduce power

198

Development of Al-stabilized CaO–nickel hybrid sorbent–catalyst for sorption-enhanced steam methane reforming  

Science Journals Connector (OSTI)

Abstract In this work, Al-stabilized CaO–Ni hybrid sorbent–catalysts integrated in a single particle with various nickel loadings (12, 18 and 25 wt% NiO) were developed and tested in cyclic hydrogen production by sorption-enhanced steam methane reforming (SESMR) process. A simple wet-mixing technique based on limestone acidification and two-step calcination was employed to produce hybrid materials with different nickel loadings. All developed materials were characterized by BET, XRD, SEM and TEM and studied during 25 CO2 sorption/regeneration cycles as well as for 10 SESMR cycles. Based on both CO2 sorption and SESMR results, it was concluded that the proposed hybrid sorbent–catalyst with NiO loading of 25 wt% led to the best performances: (i) CaO molar conversion is 41.2% at the end of the 25th sorption cycle and (ii) average CH4 conversion and H2 production efficiency during 10 SESMR cycles are remarkable (99.1% and 96.1%, respectively). For the most efficient hybrid sorbent–catalyst (25 wt% NiO), the influence of CH4 flow rate and steam to carbon ratio (S/C) was also investigated, as well as its behavior during long-term cyclic operation of SESMR (30 cycles), where the H2 production time was just limited to pre-breakthrough period. The very efficient performance (average of H2 yield 97.3%) of the proposed hybrid sorbent–catalyst material in long-term operation confirmed its high potential for use in SESMR process.

Hamid R. Radfarnia; Maria C. Iliuta

2014-01-01T23:59:59.000Z

199

Correlation of injury occurrence data with estimated maximal aerobic capacity and body composition in a high frequency manual materials handling task  

E-Print Network (OSTI)

as follows (Nieman, 1986): 1. Low - V 0, ?( 36 ml/min/kg. 2. Medium ? VO, & 36 ml/min/kg and ( 46 ml/min/kg. 3. High - VO, & 46 ml/min/kg. The descriptive statistics of the 222 data points (9 missing data points) for the relative aerobic capacity... shows the trend of decreased injury occurrences with respect to higher step test estimated relative VO, ?(measured in ml/min/kg). The relative VO, appears to have a highly significant correlation to injury occurrence (p=0. 002). More specifically...

Craig, Brian Nichols

2012-06-07T23:59:59.000Z

200

Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Craig M. Jensen (Primary Contact) and Marina Chong University of Hawaii Department of Chemistry Honolulu, HI 96822 Phone: (808) 956-2769 Email: jensen@hawaii.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC36-05GO15063 Project Start Date: April 1, 2005 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives The objective of this project is to develop a new class of reversible materials that have the potential to meet the DOE kinetic and system gravimetric storage capacity targets. During the past year, our investigations have focused on the study of novel, high hydrogen capacity, borohydrides that can

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts  

DOE Patents (OSTI)

A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

Gangwal, S.; Jothimurugesan, K.

1999-07-27T23:59:59.000Z

202

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases This project will develop a new,...

203

Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts  

DOE Patents (OSTI)

A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

Gangwal, Santosh (Cary, NC); Jothimurugesan, Kandaswamy (Hampton, VA)

1999-01-01T23:59:59.000Z

204

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

205

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets”, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions”, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

206

Partially sulfated lime-fly ash sorbents activated by water or steam for SO{sub 2} removal at a medium temperature  

SciTech Connect

Laboratory experiments were conducted to investigate the reactivity of partially sulfated lime-fly ash sorbents activated by water or steam for SO{sub 2} removal. Sulfation tests were performed at 550{sup o}C using a fixed bed reactor under conditions simulating economizer zone injection flue gas desulfurization. Activation experiments were conducted with water or steam using a range of temperatures between 100 and 550{sup o}C. The results showed that the reactivity of the sorbents was closely related to the content of Ca(OH){sub 2} formed in the activation process, which varied with the water or steam temperature. The sulfur dioxide capture capacity of Ca(OH){sub 2} in the sorbent is higher than that of CaO at a medium temperature. Water or steam temperatures in the range of 100-200{sup o}C are favorable to the formation of Ca(OH){sub 2} from CaO. 15 refs., 8 figs., 2 tabs.

Liming Shi; Xuchang Xu [Tsinghua University, Beijing (China). Department of Thermal Engineering

2005-12-01T23:59:59.000Z

207

ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL  

SciTech Connect

The injection of sorbents upstream of a particulate control device is one of the most promising methods for controlling mercury emissions from coal-fired utility boilers with electrostatic precipitators and fabric filters. Studies carried out at the bench-, pilot-, and full-scale have shown that a wide variety of factors may influence sorbent mercury removal effectiveness. These factors include mercury species, flue gas composition, process conditions, existing pollution control equipment design, and sorbent characteristics. The objective of the program is to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. Prior to injection testing, a number of sorbents were tested in a slipstream fixed-bed device both in the laboratory and at two field sites. Based upon the performance of the sorbents in a fixed-bed device and the estimated cost of mercury control using each sorbent, seventeen sorbents were chosen for screening in a slipstream injection system at a site burning a Western bituminous coal/petcoke blend, five were chosen for screening at a site burning a subbituminous Powder River Basin (PRB) coal, and nineteen sorbents were evaluated at a third site burning a PRB coal. Sorbents evaluated during the program were of various materials, including: activated carbons, treated carbons, other non-activated carbons, and non-carbon material. The economics and performance of the novel sorbents evaluated demonstrate that there are alternatives to the commercial standard. Smaller enterprises may have the opportunity to provide lower price mercury sorbents to power generation customers under the right set of circumstances.

Sharon Sjostrom

2004-03-01T23:59:59.000Z

208

Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries  

Science Journals Connector (OSTI)

Abstract The lithium storage performance of silicon (Si) is improved substantially by forming composite of nano-Si particles embedded homogeneously in graphene nanosheets (GNs) using a simple discharge plasma assisted milling (P-milling) method. The synergistic effect of the rapid heating of the plasma and the mechanical ball mill grinding with nano-Si as nanomiller converted the graphite powder to \\{GNs\\} with the integration of nano-Si particles in the in-situ formed GNs. This composite structure inhibits the agglomeration of nano-Si and improves electronic conductivity. The cycling stability and rate capability are enhanced, with a stable reversible capacity of 976 mAhg?1 at 50 mAg?1 for the P-milled 20 h nano-Si/GNs composite. A full cell containing a commercial LiMn2O4 cathode is assembled and demonstrated a satisfying utilization of the P-milled nano-Si/GNs composite anode with stable working potential. This composite shows promise for application in lithium ion batteries.

Wei Sun; Renzong Hu; Hui Liu; Meiqin Zeng; Lichun Yang; Haihui Wang; Min Zhu

2014-01-01T23:59:59.000Z

209

Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report  

SciTech Connect

Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

Not Available

1994-09-01T23:59:59.000Z

210

Field Demonstration of Enhanced Sorbent Injection for Mercury Control  

SciTech Connect

Alstom Power Inc. has conducted a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. DE-FC26-04NT42306) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. Mer-Cure{trademark} utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. Mer-Cure{trademark} is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. This full-scale demonstration program was comprised of three seven-week long test campaigns at three host sites including PacifiCorp's 240-MW{sub e} Dave Johnston Unit No.3 burning a Powder River Basin (PRB) coal, Basin Electric's 220-MW{sub e} Leland Olds Unit No.1 burning a North Dakota lignite, and Reliant Energy's 170-MW{sub e} Portland Unit No.1 burning an Eastern bituminous coal. All three boilers are equipped with electrostatic precipitators. The goals for this Round 2 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the previous target of $60,000/lb mercury removed. The results for all three host sites indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90%. The estimated mercury removal costs were 25-92% lower than the benchmark of $60,000/lb mercury removed. The estimated costs for control, at sorbent cost of $1.25 to $2.00/lb respectively, are as follows: (1) Dave Johnston Unit No.3--$2,650 to $4,328/lb Hg removed (92.8% less than $60k/lb); (2) Leland Olds Unit No.1--$8,680 to $13,860/lb Hg removed (76.7% less than $60k/lb); and (3) Portland Unit No.1--$28,540 to $45,065/lb Hg removed (24.9% less than $60k/lb). In summary, the results from demonstration testing at all three host sites show that the goals established by DOE/NETL were exceeded during this test program. Mercury removal performance4 of greater than 90% reduction was above the 50-70% reduction goal, and mercury removal cost of 25-92% lower than the benchmark was above the 25 to 50% cost reduction goal.

Shin Kang; Robert Schrecengost

2009-01-07T23:59:59.000Z

211

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

212

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

213

Vehicle Technologies Office Merit Review 2014: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about studies on high...

214

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

215

Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases  

DOE Patents (OSTI)

Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

Nelson, Sidney (Hudson, OH)

2011-02-15T23:59:59.000Z

216

Nanocrystalline {001} TiO2/carbon aerogel electrode with high surface area and enhanced photoelectrocatalytic oxidation capacity  

Science Journals Connector (OSTI)

Abstract Aiming at further developing the application of the highly reactive {001} TiO2 in photoelectrocatalytic oxidation, which is limited by the powder form, micron-size and low surface area, a nanocrystalline {001} TiO2/carbon aerogel (CA) photoelectrode was fabricated via a facile hydrothermal method. Nano-sized (50 nm) anatase {001} TiO2 was successfully grown on a CA substrate. The obtained photoelectrode endowed high surface area (537 m2 g?1) and enhanced photoelectrocatalytic oxidation performance. Under UV light illumination, the largest photocurrent density is obtained on 50 nm {001} TiO2 (5.58 mA cm?2), compared to 150 nm (4.17 mA cm?2), 1 ?m (2.83 mA cm?2) {001} TiO2, indicating that an obvious enhancement in photoelectrocatalytic oxidation activity was achieved when crystalline size reached nanometer scale. A high methylene blue removal of 93% was obtained on 50 nm {001} TiO2/CA, and the rate constant reached 8.46 × 10?3 min?1, which was twice as that of P25/CA and around twenty times that of 50 nm{001} TiO2/FTO.

Ya-nan Zhang; Yefei Jin; Xiaofeng Huang; Huijie Shi; Guohua Zhao; Hongying Zhao

2014-01-01T23:59:59.000Z

217

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network (OSTI)

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

218

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

Gary M. Blythe

2001-11-06T23:59:59.000Z

219

Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Organoclay Sorbent for Removal of Carbon Dioxide from Gas Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low Temperatures Contact NETL Technology Transfer Group techtransfer@netl.doe.gov October 2012 Significance * Energy mixing is maximized * Mobilizing of the particulates is complete * No "dead zones" exist * Packing of material is minimized * Eroding effects are significantly reduced Applications * Mixing nuclear waste at Hanford * Any similar industrial process involving heavy solids in a carrier fluid Opportunity Research is currently active on the patent-pending technology "Organoclay Sorbent for Removal of Carbon Dioxide from

220

Original articles: Sorption properties of a fibrous polypropylene-polyacrylic acid sorbent and its analytical application  

SciTech Connect

The advantages of fibrous sorbents and their growing role in the preconcentration of trace elements have repeatedly been noted elsewhere. The sorption properties of a sorbent are known to be determined by the nature of its functional groups. In this communication, the authors shall present the results of a study of the sorption properties of a fibrous sorbent based on polypropylene and polyacrylic acid (PP-PAA) which contains carboxyl groups as functional groups, with respect to bismuth(III), zirconium, and titanium (IV), and they shall describe a procedure for the preconcentration of bismuth from solutions of copper alloys followed by its photometric determination.

Chaprasova, L.V.; Shesterova, I.P.; Vaisova, M.; Turabov, N.; Kurbanov, Sh.A. [Tashkent State Univ. (Russian Federation)

1994-03-20T23:59:59.000Z

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Enhanced high-field current carrying capacities and pinning behavior of NbTi-based superconducting alloys  

SciTech Connect

High-field critical current densities J/sub c/ and pinning behavior are discussed for Nb-63a/oTi, Nb-61.7a/oTi-3a/oHf, and Nb-64.7a/oTi-7.2a/oTa superconducting alloys. J/sub c/ properties for 8--12 T in these alloy superconductors under superfluid helium environments can be even superior to those in Nb/sub 3/Sn at 4.2 K, when they are heavily cold-worked after final heat treatments. A temperature scaling law of the flux pinning force F/sub p/ is found to hold for these alloys in the form of F/sub P/ = K (B/sub c/2(T))/sup n/b/sup p/(1-b)/sup q/, where B/sub c/2 is the upper critical field and bequivalentB/B/sub c/2. The peak reduced field, b/sub m/, in the F/sub p/-b curve depends upon how the alloys have been processed. The origins of n, p, and q are discussed in terms of the processing condition.

Wada, H.; Itoh, K.; Tachikawa, K.; Yamada, Y.; Murase, S.

1985-05-01T23:59:59.000Z

222

Refinery Capacity Report  

Annual Energy Outlook 2012 (EIA)

Report --- Full report in PDF (1 MB) XLS --- Refinery Capacity Data by individual refinery as of January 1, 2006 Tables 1 Number and Capacity of Operable Petroleum...

223

LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

41 41 LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment January 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov Disclaimer 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

224

Advanced in-duct sorbent injection for SO{sub 2} control. Topical report number 3, Subtask 2.3: Sorbent optimization  

SciTech Connect

The objective of this research project is to develop second-generation duct injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Specific process performance goals are to achieve 90% SO{sub 2} removal and 60% sorbent utilization efficiency. Research is focused on the Advanced Coolside process, which has shown the potential of achieving these targets. The objective of Subtask 2.3, Sorbent Optimization, was to explore means of improving performance and economics of the Advanced Coolside process through optimizing the sorbent system. Pilot plant tests of commercial and specially prepared hydrated limes showed that the process is relatively insensitive to sorbent source. This can be an important economic advantage, allowing the use of the lowest cost sorbent available at a site. A pilot plant hydration study conducted in cooperation with Dravo Lime Company further indicated the relative insensitivity of process performance to lime source and to lime physical properties. Pilot plant tests indicated that the use of very small amounts of additives in the Advanced Coolside process can improve performance under some circumstances; however, additives are not necessary to exceed process performance targets.

Rosenhoover, W.A.; Maskew, J.T.; Withum, J.A.; Stouffer, M.R.

1994-11-01T23:59:59.000Z

225

Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer to Commercialization Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer to Commercialization March 23, 2011 - 1:00pm Addthis Washington, DC - Two new patented sorbents used for carbon dioxide (CO2) capture from coal-based power plants have moved closer to commercialization as a result of a licensing agreement between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and ADA Environmental Solutions (ADA-ES). The nonexclusive agreement facilitates negotiations on intellectual property rights, protects proprietary information, and grants non-exclusive licensing of the new technology. Under federal regulations, NETL is authorized to obtain, maintain, and own patent protection for its

226

Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer to Commercialization Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer to Commercialization March 23, 2011 - 1:00pm Addthis Washington, DC - Two new patented sorbents used for carbon dioxide (CO2) capture from coal-based power plants have moved closer to commercialization as a result of a licensing agreement between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and ADA Environmental Solutions (ADA-ES). The nonexclusive agreement facilitates negotiations on intellectual property rights, protects proprietary information, and grants non-exclusive licensing of the new technology. Under federal regulations, NETL is authorized to obtain, maintain, and own patent protection for its

227

Analysis of Hydroxide Sorbents for CO2 Capture from Warm Syngas  

Science Journals Connector (OSTI)

Analysis of Hydroxide Sorbents for CO2 Capture from Warm Syngas ... (1, 2) However, conventional coal combustion releases large amounts of the greenhouse gas CO2 into the atmosphere. ...

David J. Couling; Ujjal Das; William H. Green

2012-09-04T23:59:59.000Z

228

Zinc-oxide-based sorbents and processes for preparing and using same  

DOE Patents (OSTI)

Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

Gangwal, Santosh Kumar (Cary, NC); Turk, Brian Scott (Durham, NC); Gupta, Raghubir Prasael (Durham, NC)

2010-03-23T23:59:59.000Z

229

Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications  

SciTech Connect

We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

2012-05-02T23:59:59.000Z

230

A high capacity microplate rack  

Science Journals Connector (OSTI)

A microplate rack has been designed for use with in vitro biological assays. The microplate rack can hold up to 15, 96-well ... gas diffusion) surrounding microplates arranged in the rack are more uniform than wh...

Glynn T. Faircloth; David Newman; Michael Young

1989-01-01T23:59:59.000Z

231

High Capacity Composite Carbon Anodes  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

232

HIGH-CAPACITY POLYANION CATHODES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nanostructured phosphate and silicate cathodes as well as their nanocomposites with graphene to overcome the limitations of poor ionic and electronic conductivity - To develop a...

233

Development of a Catalyst/Sorbent for Methane Reforming  

SciTech Connect

This project led to the further development of a combined catalyst and sorbent for improving the process technology required for converting CH{sub 4} and/or CO into H{sub 2} while simultaneously separating the CO{sub 2} byproduct all in a single step. The new material is in the form of core-in-shell pellets such that each pellet consists of a CaO core surrounded by an alumina-based shell capable of supporting a Ni catalyst. The Ni is capable of catalyzing the reactions of steam with CH{sub 4} or CO to produce H{sub 2} and CO{sub 2}, whereas the CaO is capable of absorbing the CO{sub 2} as it is produced. The absorption of CO{sub 2} eliminates the reaction inhibiting effects of CO{sub 2} and provides a means for recovering the CO{sub 2} in a useful form. The present work showed that the lifecycle performance of the sorbent can be improved either by incorporating a specific amount of MgO in the material or by calcining CaO derived from limestone at 1100 C for an extended period. It also showed how to prepare a strong shell material with a large surface area required for supporting an active Ni catalyst. The method combines graded particles of {alpha}-alumina with noncrystalline alumina having a large specific surface area together with a strength promoting additive followed by controlled calcination. Two different additives produced good results: 3 {micro}m limestone and lanthanum nitrate which were converted to their respective oxides upon calcination. The oxides partially reacted with the alumina to form aluminates which probably accounted for the strength enhancing properties of the additives. The use of lanthanum made it possible to calcine the shell material at a lower temperature, which was less detrimental to the surface area, but still capable of producing a strong shell. Core-in-shell pellets made with the improved shell materials and impregnated with a Ni catalyst were used for steam reforming CH{sub 4} at different temperatures and pressures. Under all conditions tested, the CH{sub 4} conversion was large (>80%) and nearly equal to the predicted thermodynamic equilibrium level as long as CO{sub 2} was being rapidly absorbed. Similar results were obtained with both shell material additives. Limited lifecycle tests of the pellets also produced similar results that were not affected by the choice of additive. However, during each lifecycle test the period during which CO{sub 2} was rapidly absorbed declined from cycle to cycle which directly affected the corresponding period when CH{sub 4} was reformed rapidly. Therefore, the results showed a continuing need for improving the lifecycle performance of the sorbent. Core-in-shell pellets with the improved shell materials were also utilized for conducting the water gas shift reaction in a single step. Three different catalyst formulations were tested. The best results were achieved with a Ni catalyst, which proved capable of catalyzing the reaction whether CO{sub 2} was being absorbed or not. The calcined alumina shell material by itself also proved to be a very good catalyst for the reaction as long as CO{sub 2} was being fully absorbed by the core material. However, neither the alumina nor a third formulation containing Fe{sub 2}O{sub 3} were good catalysts for the reaction when CO{sub 2} was not absorbed by the core material. Furthermore, the Fe{sub 2}O{sub 3}-containing catalyst was not as good as the other two catalysts when CO{sub 2} was being absorbed.

B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

2008-12-31T23:59:59.000Z

234

Minimizing the Lead-Acid Battery Bank Capacity through a Solar PV - Wind Turbine Hybrid System for a high-altitude village in the Nepal Himalayas  

Science Journals Connector (OSTI)

Abstract Of the estimated 1.6-2 billion people who lacked access to electricity at the end of the last millennium, millions have gained access to basic indoor lighting through off grid solar PV home systems with lead acid battery storage over the last decade. In Nepal, through government subsidy programs and INGO/NGO projects, around 350,000 solar PV home systems have been installed since 2001, mainly in remote, high altitude Himalayan communities. The author's field experience shows that within 6-24 months, 50-70% of the solar PV home systems are either not properly functioning, or not working at all. This is mainly due to substandard equipment, lack of user awareness, inability to maintain their systems, as well as the nonexistence of after sales services. Thus, an estimated 250,000 “dead”, flooded lead-acid batteries are either unsafely disposed of or lying around, posing huge potential hazards for people and the unique yet fragile Himalayan ecosystem. The research conducted demonstrates that by tapping into more than one renewable energy resource, converting the local available solar and wind resources into electricity through a solar PV - wind turbine hybrid RAPS (Remote Area Power Supply) system, the lead-acid battery bank capacity can be minimized by 57%, compared to an equivalent energy generating solar PV RAPS system, without jeopardizing, or reducing the village's load demands. This project shows that wind and solar resources are complimentary to each other over several hours in an average day. Thus, by utilizing both of the local wind and solar resources and converting them into electricity to meet the loads directly or to store into the lead-acid battery bank, it allows an average of 3-4 hours longer electricity generation per day. This enables the design of smaller battery bank capacities for hybrid RAPS systems without limiting the end users’ energy services. Hence, long-term health risks to the people, as well as environmental damage to the delicate and exceptional Himalayan flora and fauna through disposed “dead” lead-acid batteries, is reduced.

Zahnd Alex; Angel Clark; Wendy Cheung; Linda Zou; Jan Kleissl

2014-01-01T23:59:59.000Z

235

Change in stacking-fault energy with Mn content and its influence on the damping capacity of the austenitic phase in Fe-high Mn alloys  

Science Journals Connector (OSTI)

The effect of Mn content on the damping capacity of ? austenitic ... been studied in relation to the stacking-fault energy ( SFE), on the basis of ... austenite decreases with the increase in the Mn content. The ...

Joong-Hwan Jun; Chong-Sool Choi

236

high-performance | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Sorbents for Carbon Dioxide Capture from Air Project No.: DE-FE0002438 NETL has partnered with the Georgia Institute of Technology to perform a combined...

237

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

238

Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994  

SciTech Connect

The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

Hepworth, M.T.; Slimane, R.B.

1994-11-01T23:59:59.000Z

239

Theoretical Screening of Solid Sorbents for CO{sub 2} Capture Applications  

SciTech Connect

The work reported in this presentation was establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank; and to explore the optimal working conditions for the promised CO{sub 2} solid sorbents and provide guidelines to the experimentalists. Our methodology can predict thermodynamic properties of solid materials and their CO{sub 2} capture reactions. Single solid may not satisfy the industrial operating conditions as CO{sub 2} sorbent, however, by mixing two or more solids, the new formed solid may satisfy the industrial needs. By exploring series of lithium silicates with different Li{sub 2}O/SiO{sub 2} ratio, we found that with decreasing Li{sub 2}O/SiO{sub 2} ratio the corresponding silicate has a lower turnover temperature and vice versa. Compared to pure MgO, the Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3} and CaCO{sub 3} promoted MgO sorbent has a higher turnover T. These results provide guidelines to synthesize sorbent materials by mixing different solids with different ratio.

Duan, Y [NETL

2013-08-07T23:59:59.000Z

240

Long-Term Demonstration of Sorbent Enhancement Additive Technology for Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term DemonsTraTion of sorbenT Long-Term DemonsTraTion of sorbenT enhancemenT aDDiTive TechnoLogy for mercury conTroL Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. The combustion of subbituminous coals typically results in higher fractions of elemental mercury emissions than the combustion of bituminous coals. This complicates mercury capture efforts, particularly for technologies using powdered activated carbon (PAC) injection, because elemental mercury is not readily captured by PAC injection alone. In short, unmodified PACs are better suited for bituminous coals than for subbituminous coals. Various proprietary sorbent enhancement additives (SEA) have been developed to increase the mercury reactivity of PACs, and perhaps fly

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Partially Sulfated Lime-Fly Ash Sorbents Activated by Water or Steam for SO2 Removal at a Medium Temperature  

Science Journals Connector (OSTI)

Partially Sulfated Lime-Fly Ash Sorbents Activated by Water or Steam for SO2 Removal at a Medium Temperature ... The low utilization of calcium-based sorbent is caused by the formation of calcium sulfite or sulfate, which have larger molar volumes than CaO or Ca(OH)2. ... ignition?loss ...

Liming Shi; Xuchang Xu

2005-08-23T23:59:59.000Z

242

Enhancing the use of coals by gas reburning-sorbent injection  

SciTech Connect

This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO[sub x] and SO[sub x] emissions: gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions: tangentially and cyclone fired units. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel (corresponding to the total heat release) in the lower furnace. Reduction of NO[sub x] to molecular nitrogen (N[sub 2]) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO[sub x] emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO[sub x]. Dry sorbent injection consists of injecting calcium based sorbents (such as limestone, dolomite, or hydrated lime) into the combustion products. For sulfation of the sorbent to CaSO[sub 4], an injection temperature of about 1230[degrees]C is optimum, but calcium-sulfur reactions can also take place at lower temperatures. Thus, the sorbent may be injected at different locations, such as with the burnout air, at the exit from the superheater, or into the ducting downstream of the air heater with H[sub 2]0 added for humidification. The calcium sulfate or sulfite products are collected together with unreacted sorbent fly ash by the electrostatic precipitator. The specific goal of this project is to demonstrate NO[sub x] and SO[sub x] emission reductions of 60 percent and 50 percent, respectively, on two coal fired utility boilers having the design characteristics mentioned above.

Not Available

1992-11-16T23:59:59.000Z

243

Hybrid Zero-capacity Channels  

E-Print Network (OSTI)

There are only two known kinds of zero-capacity channels. The first kind produces entangled states that have positive partial transpose, and the second one - states that are cloneable. We consider the family of 'hybrid' quantum channels, which lies in the intersection of the above classes of channels and investigate its properties. It gives rise to the first explicit examples of the channels, which create bound entangled states that have the property of being cloneable to the arbitrary finite number of parties. Hybrid channels provide the first example of highly cloneable binding entanglement channels, for which known superactivation protocols must fail - superactivation is the effect where two channels each with zero quantum capacity having positive capacity when used together. We give two methods to construct a hybrid channel from any binding entanglement channel. We also find the low-dimensional counterparts of hybrid states - bipartite qubit states which are extendible and possess two-way key.

Sergii Strelchuk; Jonathan Oppenheim

2012-07-04T23:59:59.000Z

244

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

245

High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor  

SciTech Connect

Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

2011-07-31T23:59:59.000Z

246

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

247

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

248

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

249

Amino Acid-Functionalized Ionic Liquid Solid Sorbents for Post-Combustion Carbon Capture  

Science Journals Connector (OSTI)

Amino Acid-Functionalized Ionic Liquid Solid Sorbents for Post-Combustion Carbon Capture ... Amino acid ionic liquids (AAILs) are potential green substitutes of aqueous amine solutions for carbon dioxide (CO2) capture. ... However, the viscous nature of AAILs greatly hinders their further development in CO2 capture applications. ...

Xianfeng Wang; Novruz G. Akhmedov; Yuhua Duan; David Luebke; David Hopkinson; Bingyun Li

2013-08-08T23:59:59.000Z

250

Screening Evaluation of Alternate Sorbents and Methods for Strontium and Actinide Removal from Alkaline Salt Solution  

SciTech Connect

This report describes results from screening tests evaluating strontium and actinide removal characteristics of three different titanium-containing sorbents, crystalline silicotitanate (CST) manufactured by UPO, SrTreat(R) offered by Fortum Engineering, sodium nonatitanate developed by Clearfield and coworkers at Texas A and M University and offered commercially by Honeywell. We also report results from an alternate removal method, coprecipitation.

Hobbs, D.T.

2001-04-17T23:59:59.000Z

251

A Regenerable Calcium-Based Core-in-Shell Sorbent for Desulfurizing Hot Coal Gas  

Science Journals Connector (OSTI)

Other materials used in the sorbent formulations included reagent-grade calcium carbonate from the Fisher Co. and calcium sulfate hemihydrate obtained as commercial-grade plaster of Paris. ... Once coated, the pellets were allowed to tumble for 2.0 h to consolidate the coating. ...

T. T. Akiti, Jr.; K. P. Constant; L. K. Doraiswamy; T. D. Wheelock

2002-01-12T23:59:59.000Z

252

Microporous Metal Organic Materials: Promising Candidates as Sorbents for Hydrogen Storage  

E-Print Network (OSTI)

Microporous Metal Organic Materials: Promising Candidates as Sorbents for Hydrogen Storage Long Pan coordination structures represent a promising new entry to the field of hydrogen storage materials.2 To fully that effectively store hydrogen are needed for use in fuel cell powered vehicles. Among the various candidate

Li, Jing

253

Enhancing the use of coals by gas reburning-sorbent injection  

SciTech Connect

Clean Coal Technology implies the use of coal in an environmentally acceptable manner. Coal combustion results in the emission of two types of acid rain precursors: oxides of sulfur (sox) and oxides of nitrogen (NO[sub x]). This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO[sub x] and SO[sub x] emissions. Gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel (corresponding to the total heat release) in the lower furnace. Reduction of NO[sub x] to molecular nitrogen (N[sub 2]) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO[sub x] emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO[sub x]. Dry sorbent injection consists of injecting calcium based sorbents (such as limestone, dolomite, or hydrated lime) into the combustion products. For sulfation of the sorbent to CaSO[sub 4], an injection temperature of about 1230[degrees]C is optimum, but calcium-sulfur reactions can also take place at lower temperatures. Thus, the sorbent may be injected at different locations, such as with the burnout air, at the exit from the superheater, or into the ducting downstream of the air heater with H[sub 2]O added for humidification. The specific goal of this project is to demonstrate NO[sub x] and SO[sub x] emission reductions of 60 percent and 50 percent, respectively, on two coal fired utility boilers having the design characteristics mentioned above.

Not Available

1992-07-27T23:59:59.000Z

254

Interactions between trace metals, sodium and sorbents in combustion. Quarterly report No. 3, April 1, 1995--June 30, 1995  

SciTech Connect

The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures, which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined.

Wendt, J.O.L.

1995-09-06T23:59:59.000Z

255

Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

This report describes work performed on a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particle filter, an SO {sub 2} sorbent, and a NO {sub x} reduction catalyst. One critical element of the R D program is the development of mixed metal oxide materials that serve as combined SO {sub 2} sorbents and NO {sub x} reduction catalysts. In this seventh quarterly progress report, we summarize the performance characteristics of three promising sorbent/catalyst materials tested in powder form.

Benedek, K. (Little (Arthur D.), Inc., Cambridge, MA (United States)); Flytzani-Stephanopoulos, M. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

1992-01-01T23:59:59.000Z

256

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture from Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Sorbents as a Solid Sorbents as a Retrofit Technology for CO 2 Capture from Coal-fired Power Plants Background Retrofitting the current fleet of pulverized coal (PC)-fired power plants for the separation and sequestration of carbon dioxide (CO 2 ) is one of the most significant challenges for effective, long-term carbon management. Post-combustion CO 2 capture using solid-sorbent based technologies is a potential resolution to this challenge that could be appropriate for both new and existing PC-fired power plant

257

Amorphous Zn?GeO? Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries  

SciTech Connect

Amorphous and crystalline Zn?GeO? nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn?GeO? nanoparticles, compared to that of crystalline Zn?GeO? nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

Yi, Ran; Feng, Jinkui; Lv, Dongping; Gordin, Mikhail; Chen, Shuru; Choi, Daiwon; Wang, Donghai

2013-07-30T23:59:59.000Z

258

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

259

Panama Canal capacity analysis  

SciTech Connect

Predicting the transit capacities of the various Panama Canal alternatives required analyzing data on present Canal operations, adapting and extending an existing computer simulation model, performing simulation runs for each of the alternatives, and using the simulation model outputs to develop capacity estimates. These activities are summarized in this paper. A more complete account may be found in the project final report (TAMS 1993). Some of the material in this paper also appeared in a previously published paper (Rosselli, Bronzini, and Weekly 1994).

Bronzini, M.S. [Oak Ridge National Lab., Knoxville, TN (United States). Center for Transportation Analysis

1995-04-27T23:59:59.000Z

260

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li-Mg-B-N-H System  

SciTech Connect

Anodes for Li-ion batteries are primarily carbon-based due to their low cost and long cycle life. However, improvements to the Li capacity of carbon anodes, LiC{sub 6} in particular, are necessary to obtain a larger energy density. State-of-the-art light-metal hydrides for hydrogen storage applications often contain Li and involve reactions requiring Li transport, and light-metal ionic hydrides are candidates for novel conversion materials. Given a set of known solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble, as a function of lithium chemical potential. We present computational results for several new conversion reactions with capacities between 2400 and 4000 mAh g{sup -1} that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li{sub 4}BN{sub 3}H{sub 10}. While the predicted reactions involve multiple steps, the maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si.

Mason, T.H.; Graetz, J.; Liu, X.; Hong, J.; Majzoub, E.H.

2011-07-28T23:59:59.000Z

262

A Study of the Zn-based Desulfurization Sorbents for H2S Removal in the IGCC  

Science Journals Connector (OSTI)

Recently, the possibility for the simultaneous removal of H2S and NH3...on the Zn–Ti-based sorbents has been tested by various researchers using several additives like Co, Ni, Fe, Mo and ... W. However, the resea...

Suk Yong Jung; Soo Chool Lee; Hee Kwon Jun; Jae Chang Kim

2013-06-01T23:59:59.000Z

263

Boron nitride nanotubes as novel sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples  

Science Journals Connector (OSTI)

Boron nitride nanotube (BNNT) is a novel material that shows potential ability in capturing organic pollutants. In this study, BNNTs fixed on a stainless steel fiber by a sol–gel technique were used as sorbent fo...

Meizhen Fu; Hanzhu Xing; Xiangfeng Chen…

2014-09-01T23:59:59.000Z

264

Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent  

DOE Patents (OSTI)

Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.

King, C. Judson (Kensington, CA); Husson, Scott M. (Berkeley, CA)

1999-01-01T23:59:59.000Z

265

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

266

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

267

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

268

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

269

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

270

MODELING POWDERED SORBENT INJECTION IN COMBINATION WITHE FABRIC FILTER FOR THE CONTROL OF MERCURY EMISSIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

POWDERED SORBENT INJECTION IN POWDERED SORBENT INJECTION IN COMBINATION WITH FABRIC FILTER FOR THE CONTROL OF MERCURY EMISSIONS Joseph R. V. Flora Department of Civil and Environmental Engineering University of South Carolina, Columbia, SC 29208 Richard A. Hargis, William J. O'Dowd, Henry W. Pennline National Energy Technology Laboratory, U.S. Department of Energy P.O. Box, 10940, Pittsburgh, PA 15236 Radisav D. Vidic * Department of Civil and Environmental Engineering University of Pittsburgh, Pittsburgh, PA 15261 ABSTRACT A two-stage mathematical model for mercury removal using powdered activated carbon injection upstream of a baghouse filter was developed, with the first stage accounting for removal in the ductwork and the second stage accounting for additional removal due to the

271

Assessment of sorbent reactivation by water hydration for fluidized bed combustion application  

SciTech Connect

Disposal of fluidized bed combustion (FBC) solid residues currently represents one of the major issues in FBC design and operation, and contributes significantly to its operating cost. This issue has triggered research activities on the enhancement of sorbent utilization for in situ sulfur removal. The present study addresses the effectiveness of the reactivation by liquid water hydration of FB spent sorbents. Two materials are considered in the study, namely the bottom ash from the operation of a full-scale utility FB boiler and the raw commercial limestone used in the same boiler. Hydration-reactivation tests were carried out at temperatures of 40{sup o}C and 80{sup o}C and for curing times ranging from 15 minutes to 2d, depending on the sample. The influence of hydration conditions on the enhancement of sulfur utilization has been assessed. A combination of methods has been used to characterize the properties of liquid water-hydrated materials

Fabio Montagnaro; Piero Salatino; Fabrizio Scala; Yinghai Wu; Edward J. Anthony; Lufei Jia [Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant'Angelo, Naples (Italy). Dipartimento di Chimica

2006-06-15T23:59:59.000Z

272

CO2 Capture from Flue Gas Using SOlid Molecular Basket Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

from Flue Gas Using Solid from Flue Gas Using Solid Molecular Basket Sorbents Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

273

XAFS Investigation of Mercury Sorption on Carbon-based and Other Sorbent Materials  

Science Journals Connector (OSTI)

The sorption of mercury from simulated coal combustion flue gases on coal-derived chars, activated carbons, and zeolites has been examined using mercury LIII XAFS spectroscopy. The energy difference between the two inflection points (IPD) in the mercury XANES spectra has been shown to be a sensitive indicator of the local structure around the mercury adsorbed on the sorbent. The value of the IPD appears to reflect the form of mercury added to the flue gas and to be sensitive to acidic gaseous species such as HCl and H2SO4 that may be present in the flue gas, whether from addition to the flue gas or from the sulfur and chlorine in the coal. The data suggest that well-defined mercury species are not formed on carbon-based sorbents, but rather the structure and chemistry of the sorbed mercury species reflect the different anionic species present in the flue gas, as well as any activating element on the sorbent itself.

Frank E. Huggins; Nora Yap; Gerald P. Huffman

1999-01-01T23:59:59.000Z

274

Enhancing the use of coals by gas reburning-sorbent injection  

SciTech Connect

The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO[sub x]) and sulfur (SO[sub x]) on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, has been stopped because of funding limitations. The specific objectives are to demonstrate reductions of 60 percent in NO[sub x] and 50 percent in SO[sub x] emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO[sub x] is converted to N[sub 2]. The combustion process is completed by overfire air addition. So[sub x] emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO[sub x] as solid sulfates that are collected in the particulate control device. This project is conducted in three phases at each site: (1) Design and Permitting; (2) Construction and Startup; and, (3) Operation, Data Collection, Reporting and Disposition. Technology transfer to industry is accomplished through the formation of an industry panel.

Not Available

1992-10-15T23:59:59.000Z

275

Capacity of steganographic channels  

Science Journals Connector (OSTI)

An information-theoretic approach is used to determine the amount of information that may be safely transferred over a steganographic channel with a passive adversary. A steganographic channel, or stego-channel is a pair consisting of the channel transition ... Keywords: information spectrum, information theory, steganalysis, steganographic capacity, steganography, stego-channel

Jeremiah J. Harmsen; William A. Pearlman

2005-08-01T23:59:59.000Z

276

Enahancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual  

SciTech Connect

The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit W, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. At each site where the techno!o@es were to be demonstrated, petiormance goals were set to achieve air emission reductions of 60 percent for NO. and 50 percent for SO2. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NOX emissions were reduced by 67.2% and S02 emissions by 52.6%. For the cyclone-fired unit, NOX emissions were reduced by 62.9% and SOZ emissions by 57.9%.

None

1998-09-01T23:59:59.000Z

277

Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual  

SciTech Connect

The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were to be demonstrated, performance goals were set to achieve air emission reductions of 60 percent for NOX and 50 percent for S02. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NO, emissions were reduced by 67.2?40 and SOZ emissions by 52.6Y0. For the cyclone-fired unit, NO, emissions were reduced by 62.9% and SOZ emissions by 57.9Y0.

None

1998-06-01T23:59:59.000Z

278

Capacity Value of Solar Power  

SciTech Connect

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

279

High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides  

SciTech Connect

We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H{sub 2}S, along with H{sub 2}, CO{sub 2}, and water. More complex REO sorbents outperform the simpler CeO{sub 2}/La{sub 2}O{sub 3} mixtures, in some cases significantly. Supporting REOs on Al{sub 2}O{sub 3} (?20 wt % REO) or ZrO{sub 2} actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnO{sub x} or FeO{sub x} is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al{sub 2}O{sub 3}-supported MnO{sub x} or FeO{sub x} alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

2011-01-01T23:59:59.000Z

280

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model  

SciTech Connect

An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-03-01T23:59:59.000Z

282

Theoretical calculating the thermodynamic properties of solid sorbents for CO{sub 2} capture applications  

SciTech Connect

Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method to several different kinds of solid systems, we demonstrate that our methodology can predict the useful information to help developing CO{sub 2} capture Technologies.

Duan, Yuhua

2012-11-02T23:59:59.000Z

283

Theoretical Screening of Mixed Solid Sorbent for Applications to CO{sub 2} Capture Technology  

SciTech Connect

Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO{sub 2} capture Technologies.

Duan, Yuhua

2014-03-30T23:59:59.000Z

284

An attrition-resistant zinc titanate sorbent for sulfur. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect

In the continuing search for good sorbent materials to remove sulfur for hot, coal-derived gases, zinc titanate sorbents have shown great promise. The objective of this project was to extend the work of prior investigators by developing improvements in the compressive strength and, therefore, the cycle life of these sorbents while maintaining good chemical reactivity. Fifteen formulations were prepared and evaluated. The best properties were obtained by blending relatively course (two micron) ZnO and TiO{sub 2} powders to obtain a composition of 50%Zn{sub 2}TiO{sub 4}-50%TiO{sub 2}. When sintered at 1000{degrees}C, it had a compressive strength of 28 MPa or 147 N/mm, which is four times higher than values obtained by prior investigators. It also performed well in thermogravimetric analysis measurements of reactivity, both in screening tests and in simulated coal gas.

Swisher, J.H. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

1993-12-31T23:59:59.000Z

285

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents (OSTI)

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

286

LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL  

SciTech Connect

Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

2011-05-27T23:59:59.000Z

287

Theoretical Screening of Solid Sorbents for CO{sub 2} Capture  

SciTech Connect

By combining thermodynamic database searches with density functional theory and lattice phonon dynamics, a screening methodology was developed to identify promising solid sorbent candidates for CO{sub 2} capture. This methodology has been used to screen hundreds of solid compounds and some of the promising candidates to date have been reported in literature. This screening methodology is particularly relevant for the case of materials for which experimental thermodynamic data is not available. Such areas of interest are represented by the case of solid mixtures and doped materials, where thermodynamic data are generally not available but for which the crystallographic structure is known or can be easily determined.

Duan, Y [NETL; Sorescu, D C [NETL; Luebke, D [NETL; Morreale, B [NETL; Li, B Y; Zhang, B; Johnson, J K; Zhang, K; Li, X S; King, D

2013-04-11T23:59:59.000Z

288

Advanced Sorbents as a Versatile Platform for Gas Separation  

SciTech Connect

The program objective was to develop materials and processes for industrial gas separations to reduce energy use and enable waste reduction. The approach chosen combined novel oxygen selective adsorbents and pressure swing adsorption (PSA) processes. Preliminary materials development and process simulation results indicated that oxygen selective adsorbents could provide a versatile platform for industrial gas separations. If fully successful, this new technology offered the potential for reducing the cost of producing nitrogen/oxygen co-products, high purity nitrogen, argon, and possibly oxygen. The potential energy savings for the gas separations are appreciable, but the end users are the main beneficiaries. Lowering the cost of industrial gases expands their use in applications that can employ them for reducing energy consumption and emissions.

Neil Stephenson

2003-09-30T23:59:59.000Z

289

Development of a Dry Sorbent-Based Post Combustion CO2 Capture Technology for Retrofit in Existing Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Sorbent-Based Dry Sorbent-Based Post Combustion CO 2 Capture Technology for Retrofit in Existing Power Plants Background Currently available commercial processes to remove carbon dioxide (CO 2 ) from flue gas streams are costly and energy intensive. RTI International is heading a research team to continue development and scale-up of an innovative process for CO 2 capture that has significant potential to be less expensive and less energy intensive than conventional technologies. The "Dry Carbonate Process" utilizes a dry,

290

Multi-phase CFD modeling of solid sorbent carbon capture system  

SciTech Connect

Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENTŽ and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENTŽ Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENTŽ Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

Ryan, E. M.; DeCroix, D.; Breault, Ronald W. [U.S. DOE; Xu, W.; Huckaby, E. David [U.S. DOE

2013-01-01T23:59:59.000Z

291

Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System  

SciTech Connect

Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENTŽ and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENTŽ Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENTŽ Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin

2013-07-30T23:59:59.000Z

292

Safety profile, efficacy, and biodistribution of a bicistronic high-capacity adenovirus vector encoding a combined immunostimulation and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma  

SciTech Connect

Adenoviral vectors (Ads) are promising gene delivery vehicles due to their high transduction efficiency; however, their clinical usefulness has been hampered by their immunogenicity and the presence of anti-Ad immunity in humans. We reported the efficacy of a gene therapy approach for glioma consisting of intratumoral injection of Ads encoding conditionally cytotoxic herpes simplex type 1 thymidine kinase (Ad-TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Ad-Flt3L). Herein, we report the biodistribution, efficacy, and neurological and systemic effects of a bicistronic high-capacity Ad, i.e., HC-Ad-TK/TetOn-Flt3L. HC-Ads elicit sustained transgene expression, even in the presence of anti-Ad immunity, and can encode large therapeutic cassettes, including regulatory elements to enable turning gene expression “on” or “off” according to clinical need. The inclusion of two therapeutic transgenes within a single vector enables a reduction of the total vector load without adversely impacting efficacy. Because clinically the vectors will be delivered into the surgical cavity, normal regions of the brain parenchyma are likely to be transduced. Thus, we assessed any potential toxicities elicited by escalating doses of HC-Ad-TK/TetOn-Flt3L (1 × 10{sup 8}, 1 × 10{sup 9}, or 1 × 10{sup 10} viral particles [vp]) delivered into the rat brain parenchyma. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points. The results indicate that doses up to 1 × 10{sup 9} vp of HC-Ad-TK/TetOn-Flt3L can be safely delivered into the normal rat brain and underpin further developments for its implementation in a phase I clinical trial for glioma. - Highlights: ? High capacity Ad vectors elicit sustained therapeutic gene expression in the brain. ? HC-Ad-TK/TetOn-Flt3L encodes two therapeutic genes and a transcriptional switch. ? We performed a dose escalation study at acute and chronic time points. ? Doses up to 1 × 10{sup 9} vp of HC-Ad-TK/TetOn-Flt3L can be safely delivered in the brain. ? Efficacy and safety of HC-Ad-TK/TetOn-Flt3L merits its use in a GBM Phase I trial.

Puntel, Mariana [Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Ghulam, Muhammad A.K.M. [Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Farrokhi, Catherine [Department of Psychiatry and Behavioral Neurosciences, Cedars Sinai Medical Center, Los Angeles, CA 90048 (United States); VanderVeen, Nathan; Paran, Christopher; Appelhans, Ashley [Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Kroeger, Kurt M.; Salem, Alireza [Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Lacayo, Liliana [Department of Psychiatry and Behavioral Neurosciences, Cedars Sinai Medical Center, Los Angeles, CA 90048 (United States); Pechnick, Robert N. [Department of Psychiatry and Behavioral Neurosciences, Cedars Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, CA (United States); Kelson, Kyle R.; Kaur, Sukhpreet; Kennedy, Sean [Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Palmer, Donna; Ng, Philip [Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 (United States); and others

2013-05-01T23:59:59.000Z

293

Developing High Capacity, Long Life Anodes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2000 25000 30000 35000 40000 1578 G Intensity Raman Shift cm -1 1340 D Two Raman scattering peaks at 1578 and 1340 cm -1 are assigned as G and D band, respectively. ...

294

Developing High Capacity, Long Life Anodes  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

295

Developing High Capacity, Long Life Anodes  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

296

Design and Evaluation of High Capacity Cathodes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to prepare advanced electrodes and surfaces with stable architectural designs Use atomic-scale modeling as a guide to identify, design and understand the structural...

297

Design and Evaluation of High Capacity Cathodes  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

298

First mideast capacity planned  

SciTech Connect

Kuwait catalyst Co.`s (KCC) plans to build a hydrodesulfurization (HDS) catalysts plant in Kuwait will mark the startup of the first refining catalysts production in the Persian Gulf region. KCC, owned by a conglomerate of Kuwait companies and governmental agencies, has licensed catalyst manufacturing technology from Japan Energy in a deal estimated at more than 7 billion ($62 million). Plant design will be based on technology from Orient Catalyst, Japan Energy`s catalysts division. Construction is expected to begin in January 1997 for production startup by January 1998. A source close to the deal says the new plant will eventually reach a capacity of 5,000 m.t./year of HDS catalysts to supply most of Kuwait`s estimated 3,500-m.t./year demand, driven primarily by Kuwait National Petroleum refineries. KCC also expects to supply demand from other catalyst consumers in the region. Alumina supply will be acquired on the open market. KCC will take all production from the plant and will be responsible for marketing.

Fattah, H.

1996-11-06T23:59:59.000Z

299

Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants  

SciTech Connect

TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

Elliott, Jeannine

2013-08-31T23:59:59.000Z

300

Evaluation of hybrid polymer containing iron oxides as As(III) and As(V) sorbent for drinking water purification  

Science Journals Connector (OSTI)

Abstract The objective of this paper was to evaluate the possibility of utilization of a novel hybrid polymer containing iron oxides as an arsenate and arsenite sorbent in water treatment. This material was primarily obtained as a by-product in the water de-ironing process by means of N-chlorosulfonamide polymers. The sorption properties of the hybrid polymer, including pH and coexisting ions’ influence on arsenic removal efficiency, were examined using kinetic and equilibrium experiments in a batch regime. In the column process, conducted with As-spiked natural water containing both As(III) and As(V), the breakthrough of the sorbent bed occurred after the solution amounting to about 4800 bed volumes passed through the column. The regeneration and re-use of the sorbent with NaOH and NaCl solution was also studied, indicating the possibility of repeated use of the sorbent with only a slight decrease in its sorptive properties for four cycles.

Daniel Oci?ski; Irena Jacukowicz-Sobala; Jerzy Raczyk; El?bieta Kocio?ek-Balawejder

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

This synopsis describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

Not Available

1990-03-01T23:59:59.000Z

302

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

303

Adaptive capacity and its assessment  

SciTech Connect

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

304

Carbon-Based Materials, High-Surface-Area Sorbents, and New Materials and Concepts  

Energy.gov (U.S. Department of Energy (DOE))

This category of materials-based storage technologies includes a range of carbon-based materials such as carbon nanotubes, aerogels, nanofibers (including metal-doped hybrids), as well as metal...

305

K+ Exchanged Zeolite ZK-4 as a Highly Selective Sorbent for CO2  

Science Journals Connector (OSTI)

Finkelstein, Y.; Saig, A.; Danon, A.; Koresh, J. Entrapment of He and Ne in Amorphous Carbon Molecular Sieves Fibers. ... Finkelstein, Y.; Saig, A.; Danon, A.; Koresh, J. E.Study of Type-A Zeolites. ... Finkelstein, Yacov; Saig, Avraham; Danon, Albert; Koresh, Jacob E. ...

Ocean Cheung; Zoltán Bacsik; Panagiotis Krokidas; Amber Mace; Aatto Laaksonen; Niklas Hedin

2014-07-29T23:59:59.000Z

306

Enhancing the Use of Coals by Gas Reburning-Sorbent Injection  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Enhancing the Use of Coals by Gas Reburning-Sorbent Injection A DOE Assessment January 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial

307

INVESTIGATION AND DEMONSTRATION OF DRY CARBON-BASED SORBENT INJECTION FOR MERCURY CONTROL  

SciTech Connect

This quarterly report describes the activities that have taken place during the first full quarter of the Phase II project ''Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control''. Modifications were completed and sampling began at the 600 acfm pilot-scale particulate control module (PCM) located at the Comanche Station in Pueblo, CO. The PCM was configured as an electrostatic precipitator for these tests. A Perkin-Elmer flue gas mercury analyzer was installed on-site and operated. Initial test results using both manual sampling methodology and the mercury analyzer are presented herein. Preparations were made during this period for full-scale mercury testing of several PSCo units. A site visit was made to Arapahoe and Cherokee Generating Stations to determine sample locations and to develop a test plan.

Terry Hunt; Mark Fox; Lillian Stan; Sheila Haythornthwaite; Justin Smith; Jason Ruhl

1998-10-01T23:59:59.000Z

308

Enhancing the use of coals by gas reburning-sorbent injection  

SciTech Connect

Clean Coal Technology implies the use of coal in an environmentally acceptable manner. Coal combustion results in the emission of two types of acid rain precursors: oxides of sulfur (SO{sub x}) and oxides of nitrogen (NO{sub x}). This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and SO{sub x} emissions: gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions: tangentially and cyclone fired units. Because of cost growth and lack of available funding, no further work has been done after Phase 1 at site B; the wall fired unit.

Not Available

1992-02-07T23:59:59.000Z

309

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

310

Evaluation of Type I cement sorbent slurries in the U.C. pilot spray dryer facility. Final report, November 1, 1994--February 28, 1996  

SciTech Connect

This research was focused on evaluating hydrated cement sorbents in the U. C. pilot spray dryer. The main goal of this work was to determine the hydration conditions resulting in reactive hydrated cement sorbents. Hydration of cement was achieved by stirring or by grinding in a ball mill at either room temperature or elevated temperatures. Also, the effects of several additives were studied. Additives investigated include calcium chloride, natural diatomite, calcined diatomaceous earth, and fumed silica. The performance of these sorbents was compared with conventional slaked lime. Further, the specific surface area and pore volume of the dried SDA sorbents were measured and compared to reactivity. Bench-scale tests were performed to obtain a more detailed picture of the development of the aforementioned physical properties as a function of hydration time.

Keener, T.C.; Khang, S.J.

1996-07-31T23:59:59.000Z

311

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Partnerships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Process Chart: From Agency to Community. . . . . . . . . . . . . . . . . . . 7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

312

Safety and Line Capacity in Railways – An Approach in Timed CSP  

Science Journals Connector (OSTI)

Railways need to be safe and, at the same time, should offer high capacity. While the notion of safety is well understood in the railway domain, the meaning of capacity is understood only on an intuitive and i...

Yoshinao Isobe; Faron Moller; Hoang Nga Nguyen…

2012-01-01T23:59:59.000Z

313

On the Capacity of Hybrid Wireless Networks with Opportunistic Routing  

Science Journals Connector (OSTI)

This paper studies the capacity of hybrid wireless networks with opportunistic routing (OR). ... algorithm to exploit high speed data transmissions in infrastructure network through base stations. We then develop...

Tan Le; Yong Liu

2009-01-01T23:59:59.000Z

314

Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics  

Science Journals Connector (OSTI)

Solid-state reversible hydrogen storage systems hold great promise for onboard applications. ... key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodyn...

William Osborn; Tippawan Markmaitree; Leon L. Shaw; Ruiming Ren; Jianzhi Hu…

2009-04-01T23:59:59.000Z

315

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

316

Development of a Dry Sorbent-based Post-Combustion CO2 Capture Technology for Retrofit in Existing Power Plants  

SciTech Connect

The objective of this research and development (R&D) project was to further the development of a solid sorbent-based CO2 capture process based on sodium carbonate (i.e. the Dry Carbonate Process) that is capable of capturing>90% of the CO2 as a nearly pure stream from coal-fired power plant flue gas with <35% increase in the cost of electrictiy (ICOE).

Nelson, Thomas; Coleman, Luke; Anderson, Matthew; Gupta, Raghubir; Herr, Joshua; Kalluri, Ranjeeth; Pavani, Maruthi

2009-12-31T23:59:59.000Z

317

Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent–catalyst  

Science Journals Connector (OSTI)

Abstract A bifunctional CaO-Zr/Ni (13, 18, and 20.5 wt% NiO) sorbent–catalyst was developed using the wet-mixing/sonication technique and applied for hydrogen production by sorption-enhanced steam methane reforming (SESMR), an intensified process that integrates hydrogen production with CO2 capture. The material was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2 physisorption (BET). CO2 sorption efficiency of the developed materials was evaluated during 25 CO2 sorption/regeneration cycles. The prepared sorbent–catalysts were then applied in the SESMR during 10 reaction cycles. The results showed that the bifunctional sorbent–catalyst with 20.5 wt% NiO loading presented the most suitable activity. The H2 yield of ?91% at the end of the 10th SESMR cycle is considerably higher than equilibrium H2 yield that could be obtained by traditional steam methane reforming.

Hamid R. Radfarnia; Maria C. Iliuta

2014-01-01T23:59:59.000Z

318

Brominated Sorbents for Small Cold-Side ESPs, Hot-Side ESPs and Fly Ash Use in Concrete  

SciTech Connect

This report summarizes the work conducted from September 16, 2005 through December 31, 2008 on the project entitled âÂ?Â?Brominated Sorbents for Small Cold-Side ESPs, Hot-Side ESPs and Fly Ash Use in ConcreteâÂ?. The project covers testing at three host sites: Progress Energy H.F. Lee Station and the Midwest Generation Crawford and Will County Stations. At Progress Energy Lee 1, parametric tests were performed both with and without SO{sub 3} injection in order to determine the impact on the mercury sorbent performance. In addition, tests were performed on the hot-side of the air preheater, before the SO{sub 3} is injected, with H-PACâÂ?¢ sorbents designed for use at elevated temperatures. The BPACâÂ?¢ injection provided the expected mercury removal when the SO{sub 3} injection was off. A mercury removal rate due to sorbent of more than 80% was achieved at an injection rate of 8 lb/MMacf. The operation with SO{sub 3} injection greatly reduced the mercury sorbent performance. An important learning came from the injection of H-PACâÂ?¢ on the hot-side of the air preheater before the SO{sub 3} injection location. The H-PACâÂ?¢ injected in this manner appeared to be independent of the SO{sub 3} injection and provided better mercury removal than with injecting on the cold-side with SO{sub 3} injection. Consequently, one solution for plants like Lee, with SO{sub 3} injection, or plants with SO{sub 3} generated by the SCR catalyst, is to inject H-PACâÂ?¢ on the hot-side before the SO{sub 3} is in the flue gas. Even better performance is possible by injecting on the cold-side without the SO{sub 3}, however. During the parametric testing, it was discovered that the injection of B-PACâÂ?¢ (or H-PACâÂ?¢) was having a positive impact upon ESP performance. It was decided to perform a 3-day continuous injection run with B-PACâÂ?¢ in order to determine whether Lee 1 could operate without SO{sub 3} injection. If the test proved positive, the continuous injection would continue as part of the long-term test. The injection of B-PACâÂ?¢ did allow for the operation of Lee 1 without SO{sub 3} injection and the long-term test was conducted from March 8 through April 7, 2006. The total mercury removal for the 30-day long-term test, excluding the first day when SO{sub 3} was injected and the last day when a plain PAC was used, averaged 85%. The achievement of 85% Hg removal over the 30 days longterm test is another milestone in the history of achievement of the Albemarle Environmental f/k/a Sorbent Technologies Corporation B-PACâÂ?¢ sorbent. A clear indication of the impact of B-PACâÂ?¢ on opacity came at the end of the long-term test. It was hoped that Lee 1 could be operated for several days after the end of the long-term test. It took less than a day before the opacity began to increase. The discovery that B-PACâÂ?¢ can improve ESP performance while capturing a large amount of mercury is another milestone for the B-PACâÂ?¢ mercury sorbent. The parametric testing at the Midwest Generation Crawford Station was divided into two phases; the first using C-PACâÂ?¢, the concrete friendly sorbent, and the other using nonconcrete friendly materials. The first phase of the parametric tests was conducted before the long-term test. The second phase of the parametric testing was performed after the long-term test in order to avoid contaminating the fly ash containing the concrete friendly sorbents. The parametric test began with an injection rate of 1 lb/MMacf and, after a period to allow the mercury concentration to stabilize, the rate was increased to 3 lb/MMacf. The Hg removal for this test was about 60% due to sorbent and 69% total at the injection rate of 1 lb/MMacf and 80% due to sorbent and 84% total for the 3 lb/MMacf injection rate. The average total vapor phase mercury removal for the first 21 days of the long-term test was 82% at an injection rate o

Ronald Landreth

2008-06-30T23:59:59.000Z

319

Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 20, July 1--September 30, 1992  

SciTech Connect

The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}) on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, has been stopped because of funding limitations. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. So{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device. This project is conducted in three phases at each site: (1) Design and Permitting; (2) Construction and Startup; and, (3) Operation, Data Collection, Reporting and Disposition. Technology transfer to industry is accomplished through the formation of an industry panel.

Not Available

1992-10-15T23:59:59.000Z

320

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

322

Economic Dispatch of Electric Generation Capacity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

323

production capacity | OpenEI  

Open Energy Info (EERE)

production capacity production capacity Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (4 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

324

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

325

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities that can accept changes that would support building energy objectives" Presentation Highlights Rulemaking Community and Stakeholder Identification To Support Code Changes Engagement: Building Capacity for Change Pay It Forward RULEMAKING : Plan Development and Research of Laws Relevant to Buildings How is it conducted? 'Landscape' Review Key words or phrases to look for Identify "home rule" jurisdictions Update and review cycle built in 'Landscape' Review:

326

Field evaluation of natural gas and dry sorbent injection for MWC emissions control  

SciTech Connect

The Institute of Gas Technology (IGT), in cooperation with the Olmsted Waste-to-Energy Facility (OWEF) and with subcontracted engineering services from the Energy and Environmental Research Corporation (EER), has completed the detailed engineering and preparation of construction specifications for an Emissions Reduction Testing System (ERTS). The ERTS has been designed for retrofit to one of two 100-ton/day municipal waste combustors at the OWEF, located in Rochester, Minnesota. The purpose of the retrofit is to conduct a field evaluation of a combined natural gas and sorbent injection process (IGT`s METHANE de-TOX{sup SM}, IGT Patent No. 5,105,747) for reducing the emissions of oxides of nitrogen (NO{sub x}), hydrochloric acid (HCI), oxides of sulfur (SO{sub x}), carbon monoxide (CO), total hydrocarbons (THC), and chlorinated hydrocarbons (dioxin/furans). In addition, the design includes modifications for the control of heavy metals (HM). Development of the process should allow the waste-to-energy industry to meet the Federal New Source Performance Standards for these pollutants at significantly lower costs when compared to existing technology of Thermal deNO{sub x} combined with spray dryer scrubber/fabric filters. Additionally, the process should reduce boiler corrosion and increase both the thermal and power production efficiency of the facility.

Wohadlo, S.; Abbasi, H.; Cygan, D. [Institute of Gas Technology, Chicago, IL (United States)] Institute of Gas Technology, Chicago, IL (United States)

1993-10-01T23:59:59.000Z

327

High-Rate, High-Capacity Binder-Free Electrode  

NLE Websites -- All DOE Office Websites (Extended Search)

PCT: 09-41 Binderfree electrode 4 Why it is better than other technologies Carbon Nanotubes Composite Materials C. Ban, Z. Wu, LChen, Y. Yan and A.C. Dillon Adv. Mat., 2010...

328

Developing High Capacity, Long Life, and High Power Anodes  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

329

Capacity Allocation with Competitive Retailers Masabumi Furuhata  

E-Print Network (OSTI)

to uncertainty of market demands, costly capacity construction and time consuming capacity expansion. This makes the market to be unstable and malfunc- tioning. Such a problem is known as the capacity allocation investigate the properties of capacity allocation mechanisms for the markets where a sin- gle supplier

Zhang, Dongmo

330

Subtask 4.27 - Evaluation of the Multielement Sorbent Trap (MEST) Method at an Illinois Coal-Fired Plant  

SciTech Connect

Owners of fossil fuel-fired power plants face the challenge of measuring stack emissions of trace metals and acid gases at much lower levels than in the past as a result of increasingly stringent regulations. In the United States, the current reference methods for trace metals and halogens are wet-chemistry methods, U.S. Environmental Protection Agency (EPA) Methods 29 and 26 or 26A, respectively. As a possible alternative to the EPA methods, the Energy & Environmental Research Center (EERC) has developed a novel multielement sorbent trap (MEST) method to be used to sample for trace elements and/or halogens. Sorbent traps offer a potentially advantageous alternative to the existing sampling methods, as they are simpler to use and do not require expensive, breakable glassware or handling and shipping of hazardous reagents. Field tests comparing two sorbent trap applications (MEST-H for hydrochloric acid and MEST-M for trace metals) with the reference methods were conducted at two power plant units fueled by Illinois Basin bituminous coal. For hydrochloric acid, MEST measured concentrations comparable to EPA Method 26A at two power plant units, one with and one without a wet flue gas desulfurization scrubber. MEST-H provided lower detection limits for hydrochloric acid than the reference method. Results from a dry stack unit had better comparability between methods than results from a wet stack unit. This result was attributed to the very low emissions in the latter unit, as well as the difficulty of sampling in a saturated flue gas. Based on these results, the MEST-H sorbent traps appear to be a good candidate to serve as an alternative to Method 26A (or 26). For metals, the MEST trap gave lower detection limits compared to EPA Method 29 and produced comparable data for antimony, arsenic, beryllium, cobalt, manganese, selenium, and mercury for most test runs. However, the sorbent material produced elevated blanks for cadmium, nickel, lead, and chromium at levels that would interfere with accurate measurement at U.S. hazardous air pollutant emission limits for existing coal-fired power plant units. Longer sampling times employed during this test program did appear to improve comparative results for these metals. Although the sorbent contribution to the sample was reduced through improved trap design, additional research is still needed to explore lower-background materials before the MEST-M application can be considered as a potential alternative method for all of the trace metals. This subtask was funded through the EERC–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Electric Power Research Institute, the Illinois Clean Coal Institute, Southern Illinois Power Company, and the Center for Air Toxic Metals Affiliates Program.

Pavlish, John; Thompson, Jeffrey; Dunham, Grant

2014-09-30T23:59:59.000Z

331

California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries.

332

OpenEI - Electric Capacity  

Open Energy Info (EERE)

New Zealand Energy New Zealand Energy Outlook (2010): Electricity and Generation Capacity http://en.openei.org/datasets/node/357 The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included.

License

333

Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report, January 1--March 31, 1996  

SciTech Connect

The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, has been stopped because of funding limitations. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device. This project is conducted in three phases at each site: (1) Design and Permitting, (2) Construction and Startup, and (3) Operation, Data Collection, Reporting and Disposition. Technology transfer to industry is accomplished through the formation of an industry panel. Phase I of the project commenced on June 5, 1987. Phases I, II and III for the Illinois Power Project have been completed; Phases I and II for the CWLP project have been completed; Phase III is in progress. All site activities have been completed with the exception of restoration at CWLP.

NONE

1996-04-15T23:59:59.000Z

334

Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 33, October 1--December 31, 1995  

SciTech Connect

The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub 2}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, has been stopped because of funding limitations. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device. This project is conducted in three phases at each site: (1) Design and Permitting, (2) Construction and Startup, shed through the formation of an industry, and (3) Operation, Data Collection, Reporting and Disposition. Technology transfer to industry is accomplished through the formation of an industry panel. Phase 1 of the project commenced on June 5, 1987. Phases 1, 2 and 3 for the Illinois Power Project have been completed; Phases 1 and 2 for the CWLP project have been completed; Phase 3 is in progress. All site activities have been completed with the exception of restoration at CWLP.

NONE

1996-01-15T23:59:59.000Z

335

Coping with rivals’ absorptive capacity in innovation activities  

Science Journals Connector (OSTI)

Abstract Two factors jointly determine the likelihood of a firm?s competitors obtaining information on its intangible assets and using it to damage the firm?s innovation performance. Those factors are the absorptive capacity of the rival firm and the appropriability regime of the innovating firm. However, the precise roles of the two factors in affecting performance outcomes are not well documented. Furthermore, we lack knowledge of the interplay between an appropriability regime and absorptive capacity, although they clearly have the capacity to exert positive and negative effects both on each other and on innovativeness. This study presents findings derived from theoretical discussion and an empirical examination of 155 firms that suggest that while competitors’ absorptive capacity does not play a direct negative or positive role on the innovation performance of a firm, an appropriability regime exerts a strong positive influence. Nevertheless, high rival absorptive capacity is not without importance, since the significant interaction effects suggest that a strong appropriability regime has positive effects on innovation performance especially in the context of a rival having high absorptive capacity.

Pia Hurmelinna-Laukkanen; Heidi Olander

2014-01-01T23:59:59.000Z

336

Nitrogen expander cycles for large capacity liquefaction of natural gas  

SciTech Connect

Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Choe, Kun Hyung [Korea Gas Corporation, Incheon, 406-130 (Korea, Republic of)

2014-01-29T23:59:59.000Z

337

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

338

Investigation of combined SO{sub 2}/NO{sub x} removal by ceria sorbents. Quarterly technical progress report, October--December, 1994  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. Recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. The present study aims to determine the effects of ammonia on the sulfation of the sorbent and to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents. The sulfation experiments indicated that 100% conversion of ceria could be attained. Activation energy for the sulfation reaction was found to be 19 kJ/mol. The rate of sulfation reaction is first order with respect to SO{sub 2} and solid reactant concentrations. For regeneration with hydrogen, the activation energy and the reaction order with respect to hydrogen was found to be 114 kJ/mol and 0.56, respectively. The ceria sorbent preserved its activity and structural stability after 6 cycles. The information obtained from these studies will be used to develop models for reactor-regenerator configurations. Subsequently, the SO{sub 2}/NO{sub x} removal facility will be integrated into the power production process using a commercial process simulation software. In this quarter of the project, the main focus was on the performance of the experimental program for the regeneration of the ceria sorbent by hydrogen and evaluation of experimental results.

Akyurtlu, A.; Akyurtlu, J.F.

1995-01-01T23:59:59.000Z

339

Enhancing the use of coals by gas reburning-sorbent injection. Environmental monitoring quarterly report No. 9, July 1--September 30, 1992  

SciTech Connect

This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and SO{sub x} emissions: gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions: tangentially and cyclone fired units. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel (corresponding to the total heat release) in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. Dry sorbent injection consists of injecting calcium based sorbents (such as limestone, dolomite, or hydrated lime) into the combustion products. For sulfation of the sorbent to CaSO{sub 4}, an injection temperature of about 1230{degrees}C is optimum, but calcium-sulfur reactions can also take place at lower temperatures. Thus, the sorbent may be injected at different locations, such as with the burnout air, at the exit from the superheater, or into the ducting downstream of the air heater with H{sub 2}0 added for humidification. The calcium sulfate or sulfite products are collected together with unreacted sorbent fly ash by the electrostatic precipitator. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 60 percent and 50 percent, respectively, on two coal fired utility boilers having the design characteristics mentioned above.

Not Available

1992-11-16T23:59:59.000Z

340

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

SciTech Connect

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

1992 Annual Capacity Report. Revision 1  

SciTech Connect

The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) requires the Department of Energy (DOE) to issue an Annual Capacity Report (ACR) for planning purposes. This report is the fifth in the series published by DOE. In May 1993, DOE published the 1992 Acceptance Priority Ranking (APR) that established the order in which DOE will allocate projected acceptance capacity. As required by the Standard Contract, the acceptance priority ranking is based on the date the spent nuclear fuel (SNF) was permanently discharged, with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. The 1992 ACR applies the projected waste acceptance rates in Table 2.1 to the 1992 APR, resulting in individual allocations for the owners and generators of the SNF. These allocations are listed in detail in the Appendix, and summarized in Table 3.1. The projected waste acceptance rates for SNF presented in Table 2.1 are nominal and assume a site for a Monitored Retrievable Storage (MRS) facility will be obtained; the facility will initiate operations in 1998; and the statutory linkages between the MRS facility and the repository set forth in the Nuclear Waste Policy Act of 1982, as amended (NWPA), will be modified. During the first ten years following projected commencement of Civilian Radioactive Waste Management System (CRWMS) operation, the total quantity of SNF that could be accepted is projected to be 8,200 metric tons of uranium (MTU). This is consistent with the storage capacity licensing conditions imposed on an MRS facility by the NWPA. The annual acceptance rates provide an approximation of the system throughput and are subject to change as the program progresses.

Not Available

1993-05-01T23:59:59.000Z

342

[working paper] Regional Economic Capacity, Economic Shocks,  

E-Print Network (OSTI)

1 [working paper] Regional Economic Capacity, Economic Shocks, and Economic that makes them more likely to resist economic shocks or to recover quickly from of resilience capacity developed by Foster (2012) is related to economic resilience

Sekhon, Jasjeet S.

343

Fair capacity sharing of multiple aperiodic servers  

E-Print Network (OSTI)

For handling multiple aperiodic tasks with different temporal requirements, multiple aperiodic servers are used. Since capacity is partitioned statically among the multiple servers, they suffer from heavy capacity exhaustions. Bernat and Burns...

Melapudi, Vinod Reddy

2002-01-01T23:59:59.000Z

344

Can Science and Technology Capacity be Measured?  

E-Print Network (OSTI)

The ability of a nation to participate in the global knowledge economy depends to some extent on its capacities in science and technology. In an effort to assess the capacity of different countries in science and technology, this article updates a classification scheme developed by RAND to measure science and technology capacity for 150 countries of the world.

Wagner, Caroline S; Dutta, Arindum

2015-01-01T23:59:59.000Z

345

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network (OSTI)

Internal Markets for Supply Chain Capacity Allocation David McAdams and Thomas W. Malone Sloan David McAdams & Thomas Malone #12;Internal Markets for Supply Chain Capacity Allocation David Mc ("internal markets") to help allocate manufacturing capacity and determine the prices, delivery dates

346

DOE Transmission Capacity Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

347

A Model of Transient Thermal Transport Phenomena Applied to the Carbonation and Calcination of a Sorbent Particle for Calcium Oxide Looping CO2 Capture  

E-Print Network (OSTI)

looping is selected as the model cycle because of its suitability for solar-driven carbon dioxide captureA Model of Transient Thermal Transport Phenomena Applied to the Carbonation and Calcination of a Sorbent Particle for Calcium Oxide Looping CO2 Capture Lindsey Yue and Wojciech Lipi´nski, The Australian

348

Cross-flow, filter-sorbent catalyst for particulate, SO{sub 2} and NO{sub x} control. First quarterly technical progress report, 1990  

SciTech Connect

This synopsis describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

Not Available

1990-03-01T23:59:59.000Z

349

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

350

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

351

Investigation of combined SO{sub 2}/NO{sub x} removal by ceria sorbents. Quarterly technical progress report, January 1995--March 1995  

SciTech Connect

Simultaneous removal of SO{sub 2} and NO{sub x}using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. Recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. The present study aims to determine the effects of ammonia on the sulfation of the sorbent and to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents. The sulfation experiments indicated that 100 % conversion of ceria can be attained. Activation energy for the sulfation reaction was found to be 19 kJ/mol. The rate of sulfation reaction is first order with respect to SO{sub 2} and solid reactant concentrations. For regeneration with hydrogen, the activation energy and the reaction order with respect to hydrogen was found to be 114 kJ/mol and 0.56, respectively. The ceria sorbent preserved its activity and structural stability after 6 cycles. In the last quarter regeneration with methane was studied. Since regeneration with methane is more complicated than regeneration with hydrogen, the evaluation of data needs the development of new methods. The information obtained from these studies will be used to develop models for reactor-regenerator configurations. Subsequently, the SO{sub 2}/NO{sub x} removal facility will be integrated into the power production process using a commercial process simulation software.

Akyurtlu, A.; Akyurtlu, J.F.

1995-04-01T23:59:59.000Z

352

Enhancing the use of coals by gas reburning-sorbent injection. Environmental monitoring quarterly report No. 8, April 1--June 30, 1992  

SciTech Connect

Clean Coal Technology implies the use of coal in an environmentally acceptable manner. Coal combustion results in the emission of two types of acid rain precursors: oxides of sulfur (sox) and oxides of nitrogen (NO{sub x}). This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and SO{sub x} emissions. Gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel (corresponding to the total heat release) in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. Dry sorbent injection consists of injecting calcium based sorbents (such as limestone, dolomite, or hydrated lime) into the combustion products. For sulfation of the sorbent to CaSO{sub 4}, an injection temperature of about 1230{degrees}C is optimum, but calcium-sulfur reactions can also take place at lower temperatures. Thus, the sorbent may be injected at different locations, such as with the burnout air, at the exit from the superheater, or into the ducting downstream of the air heater with H{sub 2}O added for humidification. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 60 percent and 50 percent, respectively, on two coal fired utility boilers having the design characteristics mentioned above.

Not Available

1992-07-27T23:59:59.000Z

353

TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATE PHASE II FINAL REPORT  

SciTech Connect

This document provides a final report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger scale by a commercial vendor, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and measurement of filtration characteristics. Key findings and conclusions include the following. Testing evaluated three synthetic methods and eleven process parameters for the optimum synthesis conditions for the preparation on an improved form of MST. We selected the post synthesis method (Method 3) for continued development based on overall sorbate removal performance. We successfully prepared three batches of the modified MST using Method 3 procedure at a 25-gram scale. The laboratory prepared modified MST exhibited increased sorption kinetics with simulated and actual waste solutions and similar filtration characteristics to the baseline MST. Characterization of the modified MST indicated that the post synthesis treatment did not significantly alter the particle size distribution, but did significantly increase the surface area and porosity compared to the original MST. Testing indicated that the modified MST exhibits reduced affinity for uranium compared to the baseline MST, reducing risk of fissile loading. Shelf-life testing indicated no change in strontium and actinide performance removal after storing the modified MST for 12-months at ambient laboratory temperature. The material releases oxygen during the synthesis and continues to offgas after the synthesis at a rapidly diminishing rate until below a measurable rate after 4 months. Optima Chemical Group LLC prepared a 15-kilogram batch of the modified MST using the post synthesis procedure (Method 3). Performance testing with simulated and actual waste solutions indicated that the material performs as well as or better than batches of modified MST prepared at the laboratory-scale. Particle size data of the vendor-prepared modified MST indicates a broader distribution centered at a larger particle size and microscopy shows more irregular particle morphology compared to the baseline MST and laboratory prepared modified MST. Stirred-cell (i.e., dead-end) filter testing revealed similar filtration rates relative to the baseline MST for both the laboratory and vendor-prepared modified MST materials. Crossflow filtration testing indicated that with MST-only slurries, the baseline MST produced between 30-100% higher flux than the vendor-prepared modified MST at lower solids loadings and comparable flux at higher solids loadings. With sludge-MST slurries, the modified MST produced 1.5-2.2 times higher flux than the baseline MST at all solids loadings. Based on these findings we conclude that the modified MST represents a much improved sorbent for the separation of strontium and actinides from alkaline waste solutions and recommend continued development of the material as a replacement for the baseline MST for waste treatment facilities at the Savannah River Site.

Hobbs, D; Thomas Peters, T; Michael Poirier, M; Mark Barnes, M; Major Thompson, M; Samuel Fink, S

2007-06-29T23:59:59.000Z

354

Vehicle Technologies Office Merit Review 2014: Studies on High...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Studies on High Capacity Cathodes for Advanced Lithium-ion Systems Vehicle Technologies Office Merit Review 2014: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems...

355

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation...  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor " "PlantReactor Name","Generator ID","State","Type","2009 Summer Capacity"," 2010 Annual...

356

Dynamic modeling and transient studies of a solid-sorbent adsorber for CO{sub 2} capture  

SciTech Connect

The U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI) is dedicated to accelerating the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. In this multi-lab initiative in partnership with academic and industrial institutions, the National Energy Technology Laboratory (NETL) leads the development of a multi-scale modeling and simulation toolset for rapid evaluation and deployment of carbon capture systems. One element of the CCSI is focused on optimizing the operation and control of carbon capture systems since this can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. Capture processes must be capable of operating over a wide range of transient events, malfunctions, and disturbances, as well as under uncertainties. As part of this work, dynamic simulation and control models, methods, and tools are being developed for CO{sub 2} capture and compression processes and their integration with a baseline commercial-scale supercritical pulverized coal (SCPC) power plant. Solid-sorbent-based post-combustion capture technology was chosen as the first industry challenge problem for CCSI because significant work remains to define and optimize the reactors and processes needed for successful sorbent capture systems. Sorbents offer an advantage because they can reduce the regeneration energy associated with CO{sub 2} capture, thus reducing the parasitic load. In view of this, the current paper focuses on development of a dynamic model of a solid-sorbent CO{sub 2} adsorber-reactor and an analysis of its transient performance with respect to several typical process disturbances. A one-dimensional, non-isothermal, pressure-driven dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor is developed in Aspen Custom Modeler (ACM). The BFB stages are of overflow-type configuration where the solids leave the stage by flowing over the overflow-weir. Each bed is divided into three regions, namely emulsion, bubble, and cloud-wake regions. In all three regions, the model considers mass and energy balances. Along with the models of the BFB stages, models of other associated hardware are developed and integrated in a single flowsheet. A valid pressure-flow network is developed and a lower-level control system is designed so that the overall CO{sub 2} capture can be maintained at a desired level in face of the typical disturbances. The dynamic model is used for studying the transient responses of a number of important process variables as a result of the disturbances that are typical of post-combustion CO{sub 2} capture processes.

Modekurti, Srinivasarao [WVU; Bhattacharyya, Debangsu [WVU; Zitney, Stephen E. [U.S. DOE

2012-01-01T23:59:59.000Z

357

Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report No. 6, October 1--December 31, 1991  

SciTech Connect

Clean Coal Technology implies the use of coal in an environmentally acceptable manner. Coal combustion results in the emission of two types of acid rain precursors: oxides of sulfur (SO{sub x}) and oxides of nitrogen (NO{sub x}). This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and SO{sub x} emissions: gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions: tangentially and cyclone fired units. Because of cost growth and lack of available funding, no further work has been done after Phase 1 at site B; the wall fired unit.

Not Available

1992-02-07T23:59:59.000Z

358

Definition: Deferred Generation Capacity Investments | Open Energy  

Open Energy Info (EERE)

Generation Capacity Investments Generation Capacity Investments Utilities and grid operators ensure that generation capacity can serve the maximum amount of load that planning and operations forecasts indicate. The trouble is, this capacity is only required for very short periods each year, when demand peaks. Reducing peak demand and flattening the load curve should reduce the generation capacity required to service load and lead to cheaper electricity for customers.[1] Related Terms load, electricity generation, peak demand, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Generation_Capacity_Investments&oldid=50257

359

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

360

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

362

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

363

Definition: Nameplate Capacity | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Nameplate Capacity Jump to: navigation, search Dictionary.png Nameplate Capacity The maximum amount of electric energy that a generator can produce under specific conditions, as rated by the manufacturer. Generator nameplate capacity is expressed in some multiple of watts such as megawatts (MW), as indicated on a nameplate that is physically attached to the generator.[1] View on Wikipedia Wikipedia Definition Also Known As Capacity Related Terms electricity generation, power References ↑ http://www.nrc.gov/reading-rm/basic-ref/glossary/generator-nameplate-capacity.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Nameplate_Capacity&oldid=480378"

364

EEI/DOE Transmission Capacity Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRANSMISSION CAPACITY: TRANSMISSION CAPACITY: PRESENT STATUS AND FUTURE PROSPECTS Eric Hirst Consulting in Electric-Industry Restructuring Bellingham, Washington June 2004 Prepared for Energy Delivery Group Edison Electric Institute Washington, DC Russell Tucker, Project Manager and Office of Electric Transmission and Distribution U.S. Department of Energy Washington, DC Larry Mansueti, Project Manager ii iii CONTENTS Page SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. TRANSMISSION CAPACITY: DATA AND PROJECTIONS . . . . . . . . . . . . . . . . . . . 5 HISTORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CURRENT CONDITIONS . . . . . . .

365

Quantum capacity of channel with thermal noise  

E-Print Network (OSTI)

The quantum capacity of thermal noise channel is studied. The extremal input state is obtained at the postulation that the coherent information is convex or concave at its vicinity. When the input energy tends to infinitive, it is verified by perturbation theory that the coherent information reaches its maximum at the product of identical thermal state input. The quantum capacity is obtained for lower noise channel and it is equal the one shot capacity.

Xiao-yu Chen

2006-02-11T23:59:59.000Z

366

Controlling the bullwhip with transport capacity constraints  

Science Journals Connector (OSTI)

The bullwhip effect can be costly to companies in terms of capacity-on costs and stock-out costs. This paper examines the possibilities for controlling the bullwhip effect with transport capacity management in the supply chain. The goal is to examine how inventories and service levels react to transport capacity constraints in a simulated supply chain that is prone to the bullwhip effect. By controlling the transport capacities, the companies may be able to reduce the impacts of demand amplification and inventory variations. Thus, there may be significant practical implications of the findings for logistics managers in today's volatile business environments.

Jouni Juntunen; Jari Juga

2009-01-01T23:59:59.000Z

367

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

368

Increasing the Capacity of Existing Power Lines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

works with Idaho Power engineers to train system operators in the use of weather station data and software tools to generate transmission capacity operat- ing limits. The ability...

369

Generation capacity expansion in restructured energy markets.  

E-Print Network (OSTI)

??With a significant number of states in the U.S. and countries around the world trading electricity in restructured markets, a sizeable proportion of capacity expansion… (more)

Nanduri, Vishnuteja

2009-01-01T23:59:59.000Z

370

Increasing water holding capacity for irrigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

371

Property:USGSMeanCapacity | Open Energy Information  

Open Energy Info (EERE)

Resource Assessment of the United States. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For...

372

Solar Energy and Capacity Value (Fact Sheet)  

SciTech Connect

This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

Not Available

2013-09-01T23:59:59.000Z

373

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

374

WINDExchange: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

The animation shows the progress of installed wind capacity between 1999 and 2013. The Energy Department's annual Wind Technologies Market Report provides information about wind...

375

No Job Name  

NLE Websites -- All DOE Office Websites (Extended Search)

NOTES NOTES Sorbents for Mercury Capture from Fuel Gas with Application to Gasification Systems † Evan J. Granite,* Christina R. Myers, William P. King, Dennis C. Stanko, and Henry W. Pennline National Energy Technology Laboratory (NETL), United States Department of Energy, P.O. Box 10940, M/S 58-106, Pittsburgh, PennsylVania 15236-0940 In regard to gasification for power generation, the removal of mercury by sorbents at elevated temperatures preserves the higher thermal efficiency of the integrated gasification combined cycle system. Unfortunately, most sorbents display poor capacity for elemental mercury at elevated temperatures. Previous experience with sorbents in flue gas has allowed for judicious selection of potential high-temperature candidate sorbents. The capacities of many sorbents for elemental mercury from nitrogen, as well as from four different simulated

376

Polyanthra[1,9,8-b,c,d,e][4,10,5-b,c,d,e]bis-[1,6,6a(6a-S) trithia]pentalene-active material for cathode of lithium secondary battery with unusually high specific capacity  

Science Journals Connector (OSTI)

Polyanthra[1,9,8-b,c,d,e][4,10,5-b,c,d,e]bis-[1,6,6a(6a-S)trithia]pentalene (PABTP) was prepared and investigated as cathode active material for lithium secondary batteries. The organic disulfide polymer was prepared by the direct sulfurization of anthracene and the oxidative coupling polymerization of the sulfide anthracene, characterized by FT-IR, Raman, elemental analysis, XPS and XRD. The polymer was used as cathode active material and the lithium secondary batteries were assembled and tested. The polymer had high specific capacity up to 1500 mAh g?1, which remained the value of 800 mAh g?1 at the 77th cycle, and kept high charge–discharge efficiency of 85% in the whole test.

Z.J. Liu; L.B. Kong; Y.H. Zhou; C.M. Zhan

2006-01-01T23:59:59.000Z

377

Theory of diffusion and sorption of various substances through a biporous sorbent membrane for the case of a constant concentration difference at its boundaries and a linear sorption isotherm. I. Case of an exponential kinetic function for the microporous zones  

Science Journals Connector (OSTI)

An analytical solution has been obtained for the passage of the sorbed substance through a membrane of a biporous sorbent for the case of constant concentration differences of the sorptive on its boundaries and a...

V. I. Ulin; P. P. Zolotarev; A. I. Pilipenko

1980-08-01T23:59:59.000Z

378

Steam Reactivation and Separation of Limestone Sorbents for High Temperature Post-combustion CO2 Capture from Flue Gas.  

E-Print Network (OSTI)

?? Increasing global population and demand for energy has raised concerns of excessive anthropogenic greenhouse gas emissions from consumption of fossil fuels. Coal, in particular,… (more)

Wang, Alan Yao

2012-01-01T23:59:59.000Z

379

Review of Mid- to High-Temperature Sulfur Sorbents for Desulfurization of Biomass- and Coal-derived Syngas  

Science Journals Connector (OSTI)

Biomass feedstocks contain low percentages of protein-derived sulfur that is converted primarily to H2S, as well as small amounts of carbonyl sulfide (COS) and organosulfur compounds during pyrolysis and gasification. ...

Singfoong Cheah; Daniel L. Carpenter; Kimberly A. Magrini-Bair

2009-10-16T23:59:59.000Z

380

Microextraction by Packed Sorbent–High-Pressure Liquid Chromatographic–Ultra Violet Analysis of Endocrine Disruptor Pesticides in Various Matrices  

Science Journals Connector (OSTI)

......Shomar B.H. , Muller G., Yahya A. Occurrence of pesticides in groundwater and topsoil of Gaza strip. Water, Air, and Soil Pollution (2006) 171:237-251. doi:10.1007/s11270-005-9038-1 . 29 Dujakovic N. , Grujic S., Radisic......

Manpreet Kaur; Susheela Rani; Ashok Kumar Malik; Jatinder Singh Aulakh

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

On the Capacity of Hybrid Wireless Networks Benyuan Liu , Zhen Liu + , Don Towsley  

E-Print Network (OSTI)

infrastructure should be high enough. Keywords: Throughput capacity, hybrid wireless net­ works, ad hoc networks the infrastructure. While in a hybrid network, data may be forwarded in a multi­ hop fashion or throughOn the Capacity of Hybrid Wireless Networks Benyuan Liu #3; , Zhen Liu + , Don Towsley #3; #3

Massachusetts at Amherst, University of

382

Representation of the Solar Capacity Value in the ReEDS Capacity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model Preprint Ben Sigrin, Patrick Sullivan, Eduardo Ibanez, and Robert Margolis Presented at the 40th...

383

On Quantum Capacity and its Bound  

E-Print Network (OSTI)

The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.

Masanori Ohya; Igor V. Volovich

2004-06-29T23:59:59.000Z

384

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

385

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

386

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

387

Definition: Deferred Distribution Capacity Investments | Open Energy  

Open Energy Info (EERE)

Deferred Distribution Capacity Investments Deferred Distribution Capacity Investments Jump to: navigation, search Dictionary.png Deferred Distribution Capacity Investments As with the transmission system, reducing the load and stress on distribution elements increases asset utilization and reduces the potential need for upgrades. Closer monitoring and load management on distribution feeders could potentially extend the time before upgrades or capacity additions are required.[1] Related Terms load, transmission lines, transmission line, sustainability References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Distribution_Capacity_Investments&oldid=502613

388

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

389

Sorbent Testing for the Solidification of Organic Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating various sorbents to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both aqueous and organic waste streams are discharged from REDC. Organic waste is generated from the plutonium/uranium extraction (PUREX), Cleanex, and Pubex processes.1 The PUREX waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. An aqueous waste stream is also produced from these separation processes. MSE has been tasked to test a grouting formula for the aqueous waste stream that includes specially formulated radioactive shielding materials developed by Science and Technology Applications, LLC. This paper will focus on the sorbent testing work. Based on work performed at Savannah River Site (SRS) (Refs. 1, 2), ORNL tested and evaluated three sorbents capable of solidifying the PUREX, Pubex, and Cleanex waste streams and a composite of the three organic waste streams: Imbiber Beads{sup R} IMB230301 (Imbiber Beads), Nochar A610 Petro Bond, and Petroset II Granular{sup TM} (Petroset II-G). Surrogates of the PUREX, Pubex, Cleanex, and a composite organic waste were used for the bench-scale testing. Recommendations resulting from the ORNL testing included follow-on testing by MSE for two of the three sorbents: Nochar Petro Bond and Petroset II-G. MSE recommended that another clay sorbent, Organoclay BM-QT-199, be added to the test sequence. The sorbent/surrogate combinations were tested at bench scale, 19-liter (L) [5-gallon (gal)] bucket scale, and 208-L (55-gal) drum scale. The testing performed by MSE will help ORNL select the right solidification materials and wasteform generation methods for the design of a new treatment facility. The results could also be used to help demonstrate that ORNL could meet the waste acceptance criteria for the ultimate disposal site for the waste-forms. The organics will be solidified as transuranic waste for disposal at the Waste Isolation Pilot Plant, and the aqueous waste stream will be grouted and disposed of at the Nevada Test Site as low-level waste if real waste testing indicates similar results to the surrogate testing. The objective of this work was to identify a sorbent capable of solidifying PUREX, Pubex, and Cleanex organic wastes individually and a composite of the three organic waste streams. The sorbent and surrogate combinations must also be compatible with processing equipment and maintain stability under a variety of conditions that could occur during storage/shipment of the solidified wastes. (authors)

Bickford, J.; Foote, M. [MSE Technology Applications, Inc., Montana (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

2008-07-01T23:59:59.000Z

390

Apparatus for the detection and removal of vapor phase alkali species from coal-derived gases at high temperature and pressure  

Science Journals Connector (OSTI)

A high-pressure high-temperature apparatus has been developed for the analysis of sorbents capable of removing alkali compounds to the concentration levels required by advanced coal-fired power generating systems. The reactor is capable of operating at temperatures up to 1200?° C and pressures up to 2.0 MPa. A laser-based technique—photofragment fluorescence—enables in situ analysis of the sodium content in a gas stream before and after a sorbent bed thereby determining the efficiency of the alkali removal by the various sorbents studied (typically alumino-silicate clays). The design and development of both the reactor and the laser-based analytical technique is described.

P. G. Griffin; R. J. S. Morrison; A. Campisi; B. L. Chadwick

1998-01-01T23:59:59.000Z

391

Bench-scale Development of an Advanced Solid sorbent-based CO2 Capture Process for Coal-fired Power Plalnts  

NLE Websites -- All DOE Office Websites (Extended Search)

scale Development of an scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current

392

Natural gas productive capacity for the lower 48 States, 1980 through 1995  

SciTech Connect

The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970`s the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980`s, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system`s performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply.

Not Available

1994-07-14T23:59:59.000Z

393

Hanford Waste Vitrification Plant capacity increase options  

SciTech Connect

Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package.

Larson, D.E.

1996-04-01T23:59:59.000Z

394

Photovoltaics effective capacity: Interim final report 2  

SciTech Connect

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

395

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint  

SciTech Connect

An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-08-01T23:59:59.000Z

396

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

397

Ethylene capacity tops 77 million mty  

SciTech Connect

World ethylene production capacity is 77.8 million metric tons/year (mty). This total represents an increase of more than 6 million mty, or almost 9%, over last year`s survey. The biggest reason for the large change is more information about plants in the CIS. Also responsible for the increase in capacity is the start-up of several large ethylene plants during the past year. The paper discusses construction of ethylene plants, feedstocks, prices, new capacity, price outlook, and problems in Europe`s ethylene market.

Rhodes, A.K.; Knott, D.

1995-04-17T23:59:59.000Z

398

Examining Repository Loading Options to Expand Yucca Mountain Repository Capacity  

SciTech Connect

Siting a high level nuclear waste repository entails high economic, social, and political costs. Given the difficulty in siting the Yucca Mountain repository and the already identified need for additional capacity, the concept of expanding the capacity of the Yucca Mountain repository is of significant interest to the nuclear industry and the Department of Energy (DOE). As the capacity of the repository is limited by the decay heat inventory of the spent nuclear fuel in relation to the thermal design limits, expanding the capacity requires appropriate schemes for decay heat and spent fuel loading management. The current Yucca Mountain repository is based on a single level, fixed drift spacing design for a fixed area or footprint. Studies performed to date investigating the capacity of Yucca Mountain often assume that the loading of spent fuel is uniform throughout the repository and use the concept of a linear loading or areal power density (APD). However, use of linear loading or APD can be problematic with the various cooling times involved. The temperature within the repository at any point in time is controlled by the integral of the heat deposited in the repository. The integral of the decay heat varies as a function of pre-loading cooling periods even for a fixed linear loading. A meaningful repository capacity analysis requires the use of a computer model that describes the time-dependent temperature distributions of the rock from the dissipation of the heat through the repository system. If variations from the current Yucca Mountain repository design were to be considered, expanding the capacity of the repository would be pursued in several ways including: (1) increase the footprint size; (2) implement multiple-levels in the repository for the given footprint; (3) allow the drift distance to vary within thermal limits; and, (4) allow non-uniform loading of wastes into the drifts within thermal limits. Options (1) and (2) have been investigated by other researchers. This paper investigates options (3) and (4) for possible expansion of the Yucca Mountain repository capacity. To support the work, a thermal analysis model was needed to describe the temperature changes in the rock around the waste packages against the thermal design limits as a function of spent fuel characteristics and composition. Under the high temperature operating mode (HTOM), the relevant thermal design limits are: (1) the rock temperature midway between adjacent drifts must remain below the local boiling point (96 deg. C); and (2) the rock temperature at drift walls must remain below 200 deg. C. As the work involves a large number of calculations, examining the compliance within thermal design limits, the capability to perform efficient mountain-scale heat-transfer analyses was necessary. A related topic of importance in this investigation was also the effect of uncertainty. As the modeling exercise relies on the use of computational models, uncertainties are unavoidable and understanding the uncertainty in the interpretation of the results is important. The concept of variable drift spacing and variable drift thermal loading was investigated with respect to possible capacity expansion of the Yucca Mountain repository. Also, a computer model was developed for efficient repository heat transfer calculations and sensitivity and uncertainty analyses were performed to identify key parameters and to estimate the uncertainty in the results and understand how the repository capacity estimation would be affected by the uncertainty. (authors)

Li, Jun; Nicholson, Mark; Proctor, W. Cyrus; Yim, Man-Sung; McNelis, David [Department of Nuclear Engineering, North Carolina State University (United States)

2007-07-01T23:59:59.000Z

399

renewable energy generating capacity | OpenEI  

Open Energy Info (EERE)

energy generating capacity energy generating capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO generation renewable energy renewable energy generating capacity Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

400

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

2008 2009 2010 2011 2012 2013 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,027 14,659 15,177 15,289 15,373 15,724 1985-2013 Operable Capacity (Calendar...

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Information capacity of a single photon  

Science Journals Connector (OSTI)

Quantum states of light are the obvious choice for communicating quantum information. To date, encoding information into the polarization states of single photons has been widely used as these states form a natural closed two-state qubit. However, photons are able to encode much more—in principle, infinite—information via the continuous spatiotemporal degrees of freedom. Here we consider the information capacity of an optical quantum channel, such as an optical fiber, where a spectrally encoded single photon is the means of communication. We use the Holevo bound to calculate an upper bound on the channel capacity, and relate this to the spectral encoding basis and the spectral properties of the channel. Further, we derive analytic bounds on the capacity of such channels, and, in the case of a symmetric two-state encoding, calculate the exact capacity of the corresponding channel.

Peter P. Rohde; Joseph F. Fitzsimons; Alexei Gilchrist

2013-08-09T23:59:59.000Z

402

Information capacity of holograms in photorefractive crystals  

Science Journals Connector (OSTI)

From a single measurement of the signal-to-noise ratio of the image reconstructed from a hologram it is possible to estimate the information capacity of superimposed holograms and to...

Miridonov, S V; Kamshilin, A A; Khomenko, A V; Tentori, D

1994-01-01T23:59:59.000Z

403

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network (OSTI)

This paper explores the possibility of solving supply chain capacity allocation problems using internal markets among employees of the same company. Unlike earlier forms of transfer pricing, IT now makes it easier for such ...

McAdams, David

2005-07-08T23:59:59.000Z

404

Tripling the capacity of wireless communications using  

E-Print Network (OSTI)

channels of electric-ÂŽeld polarization for wireless communication. In order to make our statements more................................................................. Tripling the capacity of wireless .............................................................................................................................................. Wireless communications are a fundamental part of modern information infrastructure. But wireless bandwidth

405

Heat Capacity as A Witness of Entanglement  

E-Print Network (OSTI)

We demonstrate that the presence of entanglement in macroscopic bodies (e.g. solids) in thermodynamical equilibrium could be revealed by measuring heat-capacity. The idea is that if the system were in a separable state, then for certain Hamiltonians heat capacity would not tend asymptotically to zero as the temperature approaches absolute zero. Since this would contradict the third law of thermodynamics, one concludes that the system must contain entanglement. The separable bounds are obtained by minimization of the heat capacity over separable states and using its universal low-temperature behavior. Our results open up a possibility to use standard experimental techniques of solid state physics -- namely, heat capacity measurements -- to detect entanglement in macroscopic samples.

Marcin Wiesniak; Vlatko Vedral; Caslav Brukner

2005-08-26T23:59:59.000Z

406

Measuring the capacity impacts of demand response  

SciTech Connect

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

407

Capacity factors and solar job creation  

Science Journals Connector (OSTI)

We discuss two main job creation statistics often used by solar advocates to support increased solar deployment. Whilst overall solar technologies have a tendency to be labor-intensive, we find that the jobs per gigawatt hour statistic is relatively mis-leading as it has a tendency to reward technologies that have a low capacity factor. Ultimately the lower the capacity factor the more amplified the solar job creation number.

Matt Croucher

2011-01-01T23:59:59.000Z

408

Sorbent Testing For Solidification of Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) to evaluate sorbents identified by Oak Ridge National Laboratory (ORNL) to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at ORNL. REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both organic and aqueous waste streams are discharged from REDC. The organic waste is generated from the plutonium/uranium extraction (Purex), Cleanex, and Pubex processes. The Purex waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. MSE had also been tasked to test a grouting formula for the aqueous waste stream that includes radioactive shielding material. The aqueous waste is a mixture of the raffinate streams from the various extraction processes plus the caustic solution that is used to dissolve the aluminum cladding from the irradiated targets. (authors)

Bickford, J. [MSE Technology Applications, Inc., MT (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

2007-07-01T23:59:59.000Z

409

de-sc0010209 | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

of North Dakota, will evaluate an Enhanced Process for Capture of CO2 using Hybrid Sorption (E-CACHYS(tm)) that combines a low-cost, high-capacity sorbent and a novel process...

410

Laboratory scale studies of Pd/{gamma}-Al{sub 2}O{sub 3} sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures  

SciTech Connect

The Integrated Gasification Combined Cycle (IGCC) is a promising technology for the use of coal in a clean and efficient manner. In order to maintain the overall efficiency of the IGCC process, it is necessary to clean the fuel gas of contaminants (sulfur, trace compounds) at warm (150–540 °C) to hot (>540 °C) temperatures. Current technologies for trace contaminant (such as mercury) removal, primarily activated carbon based sorbents, begin to lose effectiveness above 100 °C, creating the need to develop sorbents effective at elevated temperatures. As trace elements are of particular environmental concern, previous work by this group has focused on the development of a Pd/?-Al{sub 2}O{sub 3} sorbent for Hg removal. This paper extends the research to Se (as hydrogen selenide, H{sub 2}Se), As (as arsine, AsH{sub 3}), and P (as phosphine, PH{sub 3}) which thermodynamic studies indicate are present as gaseous species under gasification conditions. Experiments performed under ambient conditions in He on 20 wt.% Pd/?-Al{sub 2}O{sub 3} indicate the sorbent can remove the target contaminants. Further work is performed using a 5 wt.% Pd/?-Al{sub 2}O{sub 3} sorbent in a simulated fuel gas (H{sub 2}, CO, CO{sub 2}, N{sub 2} and H{sub 2}S) in both single and multiple contaminant atmospheres to gauge sorbent performance characteristics. The impact of H{sub 2}O, Hg and temperature on sorbent performance is explored.

Rupp, Erik C.; Granite, Evan J. [U.S. DOE; Stanko, Dennis C. [U.S. DOE

2013-01-01T23:59:59.000Z

411

Commercialization of cryptomelane-type manganese oxide (OMS-2) nanowire paper oil sorbent  

E-Print Network (OSTI)

Cryptomelane-type Manganese oxide (OMS-2, a group of Octahedral Molecular Sieves) nanowire paper exhibits interesting properties: reversible wettability, oleophilic while being hydrophobic, and high thermal stability. These ...

Soo, Haw Yun

2007-01-01T23:59:59.000Z

412

DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION  

E-Print Network (OSTI)

1 DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION SULEYMAN KARABUK semiconductor manufacturer: marketing managers reserve capacity from manufacturing based on product demands, while attempting to maximize profit; manufacturing managers allocate capacity to competing marketing

Wu, David

413

Increasing the Capacity of Existing Power Lines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increasing the Capacity of Existing Power Lines Increasing the Capacity of Existing Power Lines The capacity of the grid has been largely unchanged for decades and needs to expand...

414

Development of High-Capacity Cathode Materials with Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

V * Improvement in the 1 st cycle efficiency was achieved by incorporating spinel phase in the layered- layered matrix. (e.g., 90% for Li 1.3 Mn 0.75 Ni 0.25 O y when cycled...

415

Development of High-Capacity Cathode Materials with Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BATT Poster ES049 Voltage decay due to internal phase transitions - migration of transition metal ions into Li layers provides 'spinel-like' character Hypothesis: Phase...

416

Development of High-Capacity Cathode Materials with Integrated Structures  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

417

High Capacity Composite Carbon Anodes Fabricated by Autogenic Reactions  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

418

Development of Si-based High Capacity Anodes  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

419

Development of High Capacity Anode for Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

stability of Si-based anode. 4 Milestones * Synthesize and characterize TiO 2 Graphene and SnO 2 Graphene nano-composite as anode for Li-ion batteries. - on going *...

420

Design and Evaluation of Novel High Capacity Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Development of High-Capacity Cathode Materials with Integrated Structures  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

422

Developing A New High Capacity Anode With Long Cycle Life  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

423

High capacity nanostructured electrode materials for lithium-ion batteries.  

E-Print Network (OSTI)

??The lithium-ion battery is currently the most widely used electrochemical storage system on the market, with applications ranging from portable electronics to electric vehicles, to… (more)

Seng, Kuok H

2013-01-01T23:59:59.000Z

424

Design and Evaluation of Novel High Capacity Cathode Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

processing routes to prepare advanced electrodes with new architectural designs Use atomic-scale modeling as a guide to identify, design and understand the structural...

425

Development of High-Capacity Cathode Materials with Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

structures at the Advanced Photon Source (APS) by X-ray diffraction (XRD), X-ray absorption (XAS) and pair-distribution-function (PDF) analyses - on-going 4 ...

426

Design and Evaluation of Novel High Capacity Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

427

Design and Evaluation of Novel High Capacity Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

428

Design and Evaluation of Novel High Capacity Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

429

Development of High-Capacity Cathode Materials with Integrated Structures  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

430

Development of high-capacity cathode materials with integrated structures  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

431

Developing A New High Capacity Anode With Long Cycle Life  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

can be prepared in 1 shot). Traditional ball mills, adopt stirred mills or vibration mills. Only few grams of material can be made SPEX mill machine SiO-SnCoC composite...

432

Development of Si-based High Capacity Anodes  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

433

Metal-Based, High-Capacity Lithium-Ion Anodes  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

434

Development of High-Capacity Cathode Materials with Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

safety Integrated structure: creation of spinel components in the layered- layered nano-composite structure to improve rate performance * Demonstration of improved...

435

Metal-Based, High-Capacity Lithium-Ion Anodes  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

436

CaO-based sorbents for CO2 capture prepared by ultrasonic spray pyrolysis  

E-Print Network (OSTI)

of additives in the CaO matrix and the relatively high surface area materials obtained via USP explain are currently under investigation for CO2 capture, both for post- combustion (e.g., silica supported amines,2 of metal oxides, even on an industrial scale.18,19 We report here the rst use of ultrasonic spray pyrolysis

Suslick, Kenneth S.

437

Separation of Glucose and Bioethanol in Biomass with Current Methods and Sorbents  

Science Journals Connector (OSTI)

......R., Dawson R. Determination of sugars in unconcentrated seawater and other natural waters by liquid chromatography and amperometric...Miller W.B. Analysis of nonstructural carbohydrates in storage organs of 30 ornamental geophytes by high-performance anion-exchange......

Minglei Tian; Kyung Ho Row

2013-09-01T23:59:59.000Z

438

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2012 (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

439

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic...

440

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

442

Los Alamos Neutron Science Center gets capacity boost  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science Center capacity boost Los Alamos Neutron Science Center gets capacity boost The facility can simulate the effects of hundreds or thousands of years of...

443

Working and Net Available Shell Storage Capacity as of September...  

Gasoline and Diesel Fuel Update (EIA)

capacity and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to...

444

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

445

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

446

Guatemala-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Guatemala-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Guatemala-Enhancing Capacity for Low Emission Development Strategies...

447

Kazakhstan-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Kazakhstan-Enhancing Capacity for Low Emission Development Strategies...

448

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 September 11, 2014 -...

449

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

450

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

451

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

452

,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...  

U.S. Energy Information Administration (EIA) Indexed Site

Other",,,"All Technologies" ,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...

453

NETL: Pilot Test of a Nanoporous, Super-hydrophobic Membrane Contactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Pilot Scale Evaluation of an Advanced Carbon Sorbent-Based Process for Post-combustion CO2 Capture Pilot Scale Evaluation of an Advanced Carbon Sorbent-Based Process for Post-combustion CO2 Capture Project No.: DE-FE00013123 SRI is incorporating an advanced carbon capture sorbent-based process in a 1 MWe slipstream pilot plant that will reduce the parasitic plant load by using a CO2 capture sorbent requiring a reduced amount of steam. The process is based on advanced carbon sorbents having a low heat of adsorption, high CO2 adsorption capacity, and excellent selectivity. Design and performance data will be produced by testing the sorbent using the slipstream from an operating pulverized coal (PC)-fired boiler under realistic conditions and continuous long-term operation. The acquired data will be used for further development and commercialization of the process.

454

Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO  

DOE Patents (OSTI)

A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

Jadhav, Raja A. (Naperville, IL)

2009-07-07T23:59:59.000Z

455

Africa - CCS capacity building | Open Energy Information  

Open Energy Info (EERE)

Africa - CCS capacity building Africa - CCS capacity building Jump to: navigation, search Name Africa - CCS capacity building Agency/Company /Organization Energy Research Centre of the Netherlands Partner EECG Consultants, the University of Maputo, the Desert Research Foundation Namibia and the South Africa New Energy Research Institute Sector Energy Focus Area Conventional Energy Resource Type Training materials Website http://www.ccs-africa.org/ Program Start 2010 Program End 2011 Country Botswana, Mozambique, Namibia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

456

DOE mixed waste treatment capacity analysis  

SciTech Connect

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

457

Enhancing the use of coals by Gas Reburning: Sorbent injection. [Quarterly report], July 28--October 1, 1993  

SciTech Connect

Energy and Environmental Research Corporation (EER) has completed demonstrations of Gas Reburning-Sorbent Injection (GR-SI) at two field sites. The discussions which follow pertain to measurements taken from the demonstration at City Water, Light and Power`s (CWLP) Lakeside Station Unit 7 in Springfield, Illinois. Environmental monitoring was conducted for two purposes, to satisfy the requirements of operating permits granted by the Illinois Environmental Protection Agency (IEPA) and to verify environmental acceptability of the GR-SI process. The GR-SI demonstration program at Lakeside Unit 7 was performed in three phases. Phase I -- Design and Permitting, entailed characterization of the host boiler, then finalization of process and engineering, design of the GR-SI system. Phase I was initiated in June 1987 and completed in March 1989. Phase II -- Construction and Startup, was initiated upon completion of design tasks and was completed in February 1993. Phase III -- Operation, Data Collection, Reporting and Disposition, was conducted from July 1993 to June 1994. In Phase III, the GR-SI system performance was evaluated initially through optimization tests, which are short-term tests in which specific operating parameters are varied to determine their impact on emissions and boiler performance. The optimization testing included GR only tests, SI only tests, and GR-SI tests. Results from these tests, carried out from July 28 to October 1, 1993, are presented in this report. Following Optimization testing, long-term GR-SI operation was initiated to demonstrate the combined technology over an extended period with the unit under dispatch load control. Long-term GR-SI testing was conducted from October 4, 1993 to June 3, 1994. The long-term environmental monitoring data are presented in a separate report.

NONE

1995-02-01T23:59:59.000Z

458

Ethical receptive capacity and teaching business ethics  

Science Journals Connector (OSTI)

In this study, we proposed the ethical receptive capacity (ERC) perspective on teaching business ethics. The ERC perspective was developed on two premises: the separation of personal moral values and professional ethics, and the path dependent nature of professional ethics, such that individuals in the early stage of their profession have higher ERC (i.e., individuals' capacity to receive ethical contents) and thus are more receptive to new ethical contents prescribed to them. The experimental results in this study supported the ERC perspective, suggesting that business ethics education should be introduced to students as early as possible in their business programme.

Chanchai Tangpong; Michael D. Michalisin; Jin Li

2012-01-01T23:59:59.000Z

459

The effect of rain on freeway capacity  

E-Print Network (OSTI)

. The procedure used was basically a process of selection and processing of data from historical records. The facility used as a source of traific information was t' he Gulf Freeway in Houston, Texas, and rs. infall records were obtained from the Weather... to separate acceptable data, and the accepted capacity figures were related to the weather condition of wet or dry which prevs. iled on the relevant occs. sion. The results showed that rain does have a significant effect on freevray capacity which is very...

Jones, Edward Roy

2012-06-07T23:59:59.000Z

460

Definition: Capacity Benefit Margin | Open Energy Information  

Open Energy Info (EERE)

Benefit Margin Benefit Margin Jump to: navigation, search Dictionary.png Capacity Benefit Margin The amount of firm transmission transfer capability preserved by the transmission provider for Load- Serving Entities (LSEs), whose loads are located on that Transmission Service Provider's system, to enable access by the LSEs to generation from interconnected systems to meet generation reliability requirements. Preservation of CBM for an LSE allows that entity to reduce its installed generating capacity below that which may otherwise have been necessary without interconnections to meet its generation reliability requirements. The transmission transfer capability preserved as CBM is intended to be used by the LSE only in times of emergency generation deficiencies.[1] Related Terms

Note: This page contains sample records for the topic "high capacity sorbent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Carbon Filter Process for Flue-Gas Carbon Capture on Carbonaceous Sorbents: Field Tests of Steam-Aided Vacuum Swing Adsorption  

Science Journals Connector (OSTI)

The final 30 cycles are performed at Pawnee Station, owned by Xcel Energy, in Brush, CO. ... This work was funded by Wyoming’s Enhanced Oil Recovery Institute, Supercritical Fluids LLC, the state of Wyoming’s Clean Coal Program administered by the University of Wyoming’s School of Energy Resources, the Electric Power Research Institute, Pacificorp Energy, Xcel Energy, and a discretionary fund of one of the authors (Maciej Radosz). ... The authors also thank Mr. Ryan Taucher, Pacificorp Energy’s Jim Bridger Power Plant, WY, Mr. Barry Andrews, Xcel Energy’s Pawnee Station, CO, and Dr. Xin Hu, who characterized the sorbents. ...

Bryce Dutcher; Kaspars Krutkramelis; Hertanto Adidharma; Maciej Radosz

2012-03-20T23:59:59.000Z

462

In Situ Infrared Study of the Effect of Amine Density on the Nature of Adsorbed CO2 on Amine-Functionalized Solid Sorbents  

Science Journals Connector (OSTI)

Danon et al. observed that the absorbance band formed at 1701 cm–1 during CO2 adsorption on densely loaded APTES/SBA-15 (DAPS) sorbent shifted to higher frequencies (1714 cm–1) after evacuation of CO2, which they assigned to the surface-bound carbamate species instead of carbamic acid. ... Danon, A.; Stair, P. C.; Weitz, E.FTIR Study of CO2 Adsorption on Amine-Grafted SBA-15: Elucidation of Adsorbed Species J. Phys. ... Danon, Alon; Stair, Peter C.; Weitz, Eric ...

Uma Tumuluri; Mathew Isenberg; Chung-Sung Tan; Steven S. C. Chuang

2014-06-04T23:59:59.000Z

463

Power, Capacity, and Efficiency of Pumps  

Science Journals Connector (OSTI)

Power, Capacity, and Efficiency of Pumps ... p. motor through a 40-foot head, friction head included, efficiency of the pump being 50 per cent, join the 40 (column A ) with the 50 per cent (column E ) and locate the intersection with column C . ...

W. F. SCHAPHORST

1940-08-10T23:59:59.000Z

464

Building Environmental Health Capacity in Allegheny County  

E-Print Network (OSTI)

Building Environmental Health Capacity in Allegheny County: Environmental Indicators Outcomes standard Air Quality Computer Systems Days exceeding ozone standard Air Quality Computer Systems Attainment of the annual PM-2.5 standard (Fine particulates) Air Quality Computer Systems Annual PM-2.5 level Air Quality

465

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network (OSTI)

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of