National Library of Energy BETA

Sample records for hierarchical structure designed

  1. Molecular design for growth of supramolecular membranes with hierarchical

    Office of Scientific and Technical Information (OSTI)

    structure (Journal Article) | SciTech Connect Molecular design for growth of supramolecular membranes with hierarchical structure Citation Details In-Document Search Title: Molecular design for growth of supramolecular membranes with hierarchical structure Authors: Zha, R. Helen ; Velichko, Yuri S. ; Bitton, Ronit ; Stupp, Samuel I. [1] + Show Author Affiliations (NWU) Publication Date: 2016-02-10 OSTI Identifier: 1237763 Resource Type: Journal Article Resource Relation: Journal Name: Soft

  2. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  3. Synthesis of BiOI flowerlike hierarchical structures toward photocatalytic

    Office of Scientific and Technical Information (OSTI)

    reduction of CO{sub 2} to CH{sub 4} (Journal Article) | SciTech Connect Synthesis of BiOI flowerlike hierarchical structures toward photocatalytic reduction of CO{sub 2} to CH{sub 4} Citation Details In-Document Search Title: Synthesis of BiOI flowerlike hierarchical structures toward photocatalytic reduction of CO{sub 2} to CH{sub 4} BiOI can be used for photocatalytic reduction of CO{sub 2} into hydrocarbon fuels under sunlight. - Highlights: * Room temperature synthesis of BiOI flowerlike

  4. Nitrocellulose Templated Hierarchical Pore Structure in Mesoporous Thin Films

    SciTech Connect (OSTI)

    Li, Xiaohong S.; Fryxell, Glen E.; Wang, Chong M.; Young, James S.

    2006-01-01

    Over the last decade, a great deal of effort has been expended on the templated synthesis of nanoporous materials. Many different templates have been used to create this nanostructure (surfactants, polymers, latex spheres, etc.), but by far the most widely used has been micelles composed of surfactants. This is a versatile, and highly useful, synthetic method, capable of producing a wide variety of materials and structures. More recently, the synthesis of hierarchical pore structures (i.e. small pores leading to large pores) has been of great interest as a means of enhancing mass transport within these materials.[1] Such hierarchical pore structures have been made by combining surfactant templating methods with latex beads [2], by assembling as-synthesized MCM-41 particles around block co-polymer micelles, followed by crosslinking and calcination [3], by spray drying MCM-41 and MCM-48 agglomerates [4], and by using ''evaporation induced self-assembly'' [5-9].

  5. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    SciTech Connect (OSTI)

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo

    2011-11-15

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.

  6. Ray tracing a three-dimensional scene using a hierarchical data structure

    DOE Patents [OSTI]

    Wald, Ingo; Boulos, Solomon; Shirley, Peter

    2012-09-04

    Ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. One example embodiment is a method for ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. In this example embodiment, the hierarchical data structure includes at least a parent node and a corresponding plurality of child nodes. The method includes a first act of determining that a first active ray in the packet hits the parent node and a second act of descending to each of the plurality of child nodes.

  7. Hierarchical ZnO Structures Templated with Amino Acid Based Surfactant...

    Office of Scientific and Technical Information (OSTI)

    Title: Hierarchical ZnO Structures Templated with Amino Acid Based Surfactants Authors: Kim, S H ; Satcher, J H ; Han, T Y Publication Date: 2011-05-27 OSTI Identifier: 1184130...

  8. Hierarchical ZnO Structures Templated with Amino Acid Based Surfactants

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Hierarchical ZnO Structures Templated with Amino Acid Based Surfactants Citation Details In-Document Search Title: Hierarchical ZnO Structures Templated with Amino Acid Based Surfactants Authors: Kim, S H ; Satcher, J H ; Han, T Y Publication Date: 2011-05-27 OSTI Identifier: 1184130 Report Number(s): LLNL-JRNL-485258 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article Resource Relation: Journal Name: Microporous and Mesoporous Materials,

  9. Synthesis of multi-hierarchical structured yttria-stabilized zirconia powders and their enhanced thermophysical properties

    SciTech Connect (OSTI)

    Cao, Fengmei; Gao, Yanfeng; Chen, Hongfei; Liu, Xinling; Tang, Xiaoping; Luo, Hongjie

    2013-06-01

    Multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders were successfully synthesized by a hydrothermal-calcination process. The morphology, crystallinity, and microstructure of the products were characterized by SEM, XRD, TEM, and BET. A possible formation mechanism of the unique structure formed during hydrothermal processing was also investigated. The measured thermophysical results indicated that the prepared YSZ powders had a low thermal conductivity (0.631.27 W m? K?), good short-term high-temperature stability up to 1300 C. The influence of the morphology and microstructure on their thermophysical properties was briefly discussed. The unique multi-hierarchical structure makes the prepared YSZ powders candidates for use in enhanced applications involving thermal barrier coatings. - Graphical abstract: There are many tiny pores and grain boundaries in the multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders,which greatly decrease the thermal conductivities of the YSZ powders. - Highlights: Multi-hierarchical structured YSZ powders were successfully prepared. The prepared YSZ powders had a low thermal conductivity (0.631.27 W m? K?). Improved high-temperature stability had been achieved for the prepared YSZ powders. The influence of the morphology on their thermophysical properties was explored.

  10. HIERARCHICAL STRUCTURE OF MAGNETOHYDRODYNAMIC TURBULENCE IN POSITION-POSITION-VELOCITY SPACE

    SciTech Connect (OSTI)

    Burkhart, Blakesley; Lazarian, A.; Goodman, Alyssa; Rosolowsky, Erik

    2013-06-20

    Magnetohydrodynamic turbulence is able to create hierarchical structures in the interstellar medium (ISM) that are correlated on a wide range of scales via the energy cascade. We use hierarchical tree diagrams known as dendrograms to characterize structures in synthetic position-position-velocity (PPV) emission cubes of isothermal magnetohydrodynamic turbulence. We show that the structures and degree of hierarchy observed in PPV space are related to the presence of self-gravity and the global sonic and Alfvenic Mach numbers. Simulations with higher Alfvenic Mach number, self-gravity and supersonic flows display enhanced hierarchical structure. We observe a strong dependency on the sonic and Alfvenic Mach numbers and self-gravity when we apply the statistical moments (i.e., mean, variance, skewness, kurtosis) to the leaf and node distribution of the dendrogram. Simulations with self-gravity, larger magnetic field and higher sonic Mach number have dendrogram distributions with higher statistical moments. Application of the dendrogram to three-dimensional density cubes, also known as position-position-position (PPP) cubes, reveals that the dominant emission contours in PPP and PPV are related for supersonic gas but not for subsonic. We also explore the effects of smoothing, thermal broadening, and velocity resolution on the dendrograms in order to make our study more applicable to observational data. These results all point to hierarchical tree diagrams as being a promising additional tool for studying ISM turbulence and star forming regions for obtaining information on the degree of self-gravity, the Mach numbers and the complicated relationship between PPV and PPP data.

  11. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; Li, Yuyi; Quan, Matthew K.; Cheng, Lei; Weng, Tsu -Chien; Liu, Yijin; Doeff, Marca M.

    2016-01-11

    Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi0.4Mn0.4Co0.2O2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. The subject powders show superiormore » resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.« less

  12. Hierarchical diffusion

    SciTech Connect (OSTI)

    Bachas, C.P.

    1988-02-01

    We review the solution and properties of the diffusion equation in a hierarchical or ultrametric space. 11 refs.

  13. Low-Energy Parking Structure Design (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This guide provides design teams with best practices for parking structure energy efficiency in the form of goals for each design aspect that affects energy use.

  14. A novel 3D structure composed of strings of hierarchical TiO{sub 2} spheres formed on TiO{sub 2} nanobelts with high photocatalytic properties

    SciTech Connect (OSTI)

    Jiang, Yongjian; Li, Meicheng; Song, Dandan; Li, Xiaodan; Yu, Yue

    2014-03-15

    A novel hierarchical titanium dioxide (TiO{sub 2}) composite nanostructure with strings of anatase TiO{sub 2} hierarchical micro-spheres and rutile nanobelts framework (TiO{sub 2} HSN) is successfully synthesized via a one-step hydrothermal method. Particularly, the strings of hierarchical spheres are assembled by very thin TiO{sub 2} nanosheets, which are composed of highly crystallized anatase nanocrystals. Meanwhile, the HSN has a large surface area of 191 m{sup 2}/g, which is about 3 times larger than Degussa P25. More importantly, the photocatalytic activity of HSN and P25 were evaluated by the photocatalytic oxidation decomposition of methyl orange (MO) under UV light illumination, and the TiO{sub 2} HSN shows enhanced photocatalytic activity compared with Degussa P25, as result of its continuous hierarchical structures, special conductive channel and large specific surface area. With these features, the hierarchical TiO{sub 2} may have more potential applications in the fields of dye-sensitized solar cells and lithium ion batteries. -- Graphical abstract: Novel TiO{sub 2} with anatase micro-spheres and rutile nanobelts is synthesized. Enhanced photocatalysis is attributed to hierarchical structures (3D spheres), conductive channel (1D nanobelts) and large specific surface area (2D nanosheet). Highlights: • The novel TiO{sub 2} nanostructure (HSN) is fabricated for the first time. • HSN is composed of strings of anatase hierarchical spheres and rutile nanobelt. • HSN presents a larger S{sub BET} of 191 m{sup 2}/g, 3 times larger than the Degussa P25 (59 m{sup 2}/g). • HSN owns three kinds of dimensional TiO{sub 2} (1D, 2D and 3D) simultaneously. • HSN exhibits better photocatalytic performance compared with Degussa P25.

  15. Microparticles with hierarchical porosity

    DOE Patents [OSTI]

    Petsev, Dimiter N; Atanassov, Plamen; Pylypenko, Svitlana; Carroll, Nick; Olson, Tim

    2012-12-18

    The present disclosure provides oxide microparticles with engineered hierarchical porosity and methods of manufacturing the same. Also described are structures that are formed by templating, impregnating, and/or precipitating the oxide microparticles and method for forming the same. Suitable applications include catalysts, electrocatalysts, electrocatalysts support materials, capacitors, drug delivery systems, sensors and chromatography.

  16. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    SciTech Connect (OSTI)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-scales, loss of plasticity from suppressed fibrillar sliding at sub-micron scales, and the loss and damage of collagen at the nano-scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  17. Synthesis of BiOI flowerlike hierarchical structures toward photocatalytic reduction of CO{sub 2} to CH{sub 4}

    SciTech Connect (OSTI)

    Zhang, Guojie Su, Aiting; Qu, Jiangwen; Xu, Ying

    2014-07-01

    BiOI can be used for photocatalytic reduction of CO{sub 2} into hydrocarbon fuels under sunlight. - Highlights: Room temperature synthesis of BiOI flowerlike hierarchical structures. BiOI can be used for photocatalytic reduction of CO{sub 2} into hydrocarbon fuels under sunlight. The photocatalytic activity of BiOI is higher than that of P25 TiO{sub 2}. - Abstract: BiOI flowerlike hierarchical structure was synthesized by the direct hydrolysis method hydrolysis at room temperature in the presence of polyvinyl pyrrolidone. As-synthesized BiOI was characterized by powder X-ray diffraction, UVvis diffuse reflectance spectra, X-ray photoelectron spectroscopy spectra, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. It is a facile way to obtain BiOI flowerlike hierarchical structure photocatalyst for photocatalytic reduction of CO{sub 2} into hydrocarbon fuels under simulated sunlight irradiation without cocatalyst. And the photocatalytic activity of as-synthesized BiOI is higher than that of P25 TiO{sub 2} and bulk BiOI.

  18. Robust carbon monolith having hierarchical porosity

    DOE Patents [OSTI]

    Dai, Sheng; Guiohon, Georges A; Liang, Chengdu

    2013-02-05

    A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.

  19. Robust carbon monolith having hierarchical porosity

    DOE Patents [OSTI]

    Dai, Sheng; Guiochon, Georges A; Liang, Chengdu

    2014-01-14

    A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.

  20. Design Optimization of Structural Health Monitoring Systems

    SciTech Connect (OSTI)

    Flynn, Eric B.

    2014-03-06

    Sensor networks drive decisions. Approach: Design networks to minimize the expected total cost (in a statistical sense, i.e. Bayes Risk) associated with making wrong decisions and with installing maintaining and running the sensor network itself. Search for optimal solutions using Monte-Carlo-Sampling-Adapted Genetic Algorithm. Applications include structural health monitoring and surveillance.

  1. AHTR Mechanical, Structural, and Neutronic Preconceptual Design

    SciTech Connect (OSTI)

    Varma, V.K.; Holcomb, D.E.; Peretz, F.J.; Bradley, E.C.; Ilas, D.; Qualls, A.L.; Zaharia, N.M.

    2012-09-15

    This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming an option for commercial reactor deployment. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The reactor concept development remains at a preconceptual level of maturity. While the overall appearance of an AHTR design is anticipated to be similar to the current concept, optimized dimensions will differ from those presented here. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month two-batch cycle with 9 wt. % enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The report includes a preconceptual design of the manipulators, the fuel transfer system, and the used fuel storage system. The present design intent is for used fuel to be stored inside of containment for at least six months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design concept incorporates fully passive responses to all identified design basis or non-very-low frequency beyond design basis accidents as well as multiple levels of radioactive material containment. Key building design elements include (1) below grade siting to minimize vulnerability to aircraft impact, (2) multiple natural circulation decay heat rejection chimneys, (3) seismic base isolation, and (4) decay heat powered back-up electricity generation.

  2. Structural Design Challenges in Design Certification Applications for New Reactors

    SciTech Connect (OSTI)

    Miranda, M.; Braverman, J.; Wei, X.; Hofmayer, C.; Xu, J.

    2011-07-17

    The licensing framework established by the U.S. Nuclear Regulatory Commission under Title 10 of the Code of Federal Regulations (10 CFR) Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” provides requirements for standard design certifications (DCs) and combined license (COL) applications. The intent of this process is the early reso- lution of safety issues at the DC application stage. Subsequent COL applications may incorporate a DC by reference. Thus, the COL review will not reconsider safety issues resolved during the DC process. However, a COL application that incorporates a DC by reference must demonstrate that relevant site-specific de- sign parameters are confined within the bounds postulated by the DC, and any departures from the DC need to be justified. This paper provides an overview of structural design chal- lenges encountered in recent DC applications under the 10 CFR Part 52 process, in which the authors have participated as part of the safety review effort.

  3. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    SciTech Connect (OSTI)

    Nash, Stephen G.

    2013-11-11

    The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for solving discretized optimization models. Our optimization models are multi-level models, however. They are more general, involving different governing equations at each level. A major aspect of this project was the development of flexible software that can be used to solve a variety of hierarchical optimization problems.

  4. Guide to FEMP-Designated Parking Structure Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory's parking structure utilizes many measures to achieve a parking structure that uses 90% less energy than the baseline energy code. TABLE OF CONTENTS 1 INTRODUCTION * FEMP-DESIGNATED PRODUCTS * ENERGY EFFICIENCY METRICS 3 DESIGN PROCESS * STEP-BY-STEP OVERVIEW 6 COMPONENTS OF THE DESIGN * BUILDING DESIGN CONSIDERATIONS * MATERIAL SELECTION * LIGHTING DESIGN CONSIDERATIONS * LUMINAIRE DISTRIBUTION * COLOR QUALITIES * LUMINAIRE LAYOUT 13 PARKING STRUCTURE

  5. Hierarchical Heterogeneity at the CeO x –TiO 2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Si; Nguyen-Phan, Thuy-Duong; Johnston-Peck, Aaron C.; Barrio, Laura; Sallis, Shawn; Arena, Dario A.; Kundu, Shankhamala; Xu, Wenqian; Piper, Louis F. J.; Stach, Eric A.; et al

    2015-01-13

    Mixed oxide interfaces are critical for delivering active components of demanding catalytic processes such as the photo-catalytic splitting of water. We have studied CeOxTiO₂ catalysts with low ceria loadings of 1 wt%, 3 wt% and 6 wt% that were prepared with wet impregnation methods to favor a strong interaction between CeOx and TiO₂. In these materials the interfaces between CeOx-TiO₂ have been sequentially loaded (1%, 3% and 6%), with and without Pt (0.5 wt%). The structure and properties of the catalysts were characterized using several X-ray and electron based techniques including XRD, XPS, UPS, NEXAFS, UV-Vis and HR-STEM/STEM-EELS, to unravelmore » the local morphology, bulk structure, surface states and electronic structure. The combination of all these techniques allow us to analyze in a systematic way the complete structural and electronic properties that prevail at the CeOx-TiO₂ interface. Fluorite structured nano crystallites of ceria on anatase-structured titania were identified by both XRD and NEXAFS. A sequential increasing of the CeOx loading led to the formation of clusters, then plates and finally nano particles in a hierarchical manner on the TiO₂ support. The electronic structures of these catalysts indicate that the interaction between TiO₂ and CeO₂ is closely related to the local morphology of nanostructured CeO₂. Ce³⁺ cations were detected at the surface of CeO₂ and at the interface of the two oxides. In addition, the titania is perturbed by the interaction with ceria and also with Pt. The photocatalytic activity for the splitting of H₂O using UV light was measured for these materials and correlated with our understanding of the electronic and structural properties. Optimal catalytic performance and photo response results were found for the 1 wt% CeOx-TiO₂ catalyst where low dimensional geometry of the ceria provided ideal electronic and geometrical properties. The structural and electronic properties of the interface were critical for the photocatalytic performance of this mixed-oxide nanocatalyst system.« less

  6. Hierarchical heterogeneity at the CeOx-TiO? interface: Electronic and geometric structural influence on the photocatalytic activity of oxide on oxide nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    None

    2015-01-13

    Mixed oxide interfaces are critical for delivering active components of demanding catalytic processes such as the photo-catalytic splitting of water. We have studied CeOxTiO? catalysts with low ceria loadings of 1 wt%, 3 wt% and 6 wt% that were prepared with wet impregnation methods to favor a strong interaction between CeOx and TiO?. In these materials the interfaces between CeOx-TiO? have been sequentially loaded (1%, 3% and 6%), with and without Pt (0.5 wt%). The structure and properties of the catalysts were characterized using several X-ray and electron based techniques including XRD, XPS, UPS, NEXAFS, UV-Vis and HR-STEM/STEM-EELS, to unravelmorethe local morphology, bulk structure, surface states and electronic structure. The combination of all these techniques allow us to analyze in a systematic way the complete structural and electronic properties that prevail at the CeOx-TiO? interface. Fluorite structured nano crystallites of ceria on anatase-structured titania were identified by both XRD and NEXAFS. A sequential increasing of the CeOx loading led to the formation of clusters, then plates and finally nano particles in a hierarchical manner on the TiO? support. The electronic structures of these catalysts indicate that the interaction between TiO? and CeO? is closely related to the local morphology of nanostructured CeO?. Ce? cations were detected at the surface of CeO? and at the interface of the two oxides. In addition, the titania is perturbed by the interaction with ceria and also with Pt. The photocatalytic activity for the splitting of H?O using UV light was measured for these materials and correlated with our understanding of the electronic and structural properties. Optimal catalytic performance and photo response results were found for the 1 wt% CeOx-TiO? catalyst where low dimensional geometry of the ceria provided ideal electronic and geometrical properties. The structural and electronic properties of the interface were critical for the photocatalytic performance of this mixed-oxide nanocatalyst system.less

  7. Hierarchical Nanoceramics for Industrial Process Sensors

    SciTech Connect (OSTI)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  8. Structure of a designed tetrahedral protein assembly variant...

    Office of Scientific and Technical Information (OSTI)

    protein assembly variant engineered to have improved soluble expression Citation Details In-Document Search Title: Structure of a designed tetrahedral protein assembly ...

  9. Design of Spintronic Materials with Simple Structures

    SciTech Connect (OSTI)

    Fong, C Y; Qian, M C; Liu, K; Yang, L H; Pask, J E

    2007-05-03

    A brief comparison of conventional electronics and spintronics is given. The key features of half metallic binary compounds with the zincblende structure are presented, using MnAs as an example. We discuss the interactions responsible for the half metallic properties. Special properties of superlattices and a digital ferromagnetic heterostructure incorporating zincblende half metals are also discussed.

  10. Design of Spintronic Materials with Simple Structures (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Design of Spintronic Materials with Simple Structures Citation Details In-Document Search Title: Design of Spintronic Materials with Simple Structures A brief comparison of conventional electronics and spintronics is given. The key features of half metallic binary compounds with the zincblende structure are presented, using MnAs as an example. We discuss the interactions responsible for the half metallic properties. Special properties of superlattices and a digital

  11. Thermoelectric Materials by Design, Computational Theory and Structure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy by Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pm_11_singh.pdf More Documents & Publications Thermoelectrics Theory and Structure Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report Recent Theoretical Results

  12. Design and Analysis of Muon Beam Stop Support Structures

    SciTech Connect (OSTI)

    Okafor, Udenna

    2015-01-01

    The primary objective of this thesis is to design and analyze support structures to be used in the installation, test and final positioning of the MBS throughout the life of the Mu2e experiment. There several requirements for the MBS imposed by both the scope of the experiment and, other components within the DS bore. The functions of the MBS are: 1. To limit the induced rates in the Tracker, the Calorimeter and the Cosmic Ray Veto due to backsplash-and-secondary interactions, and 2. To reduce radiation levels external to the Detector solenoid. The structures used in supporting the MBS will also adhere to requirements imposed by its functions. These requirements are critical to the support structures and affect design decisions. Other requirements critical to the design are imposed by the weight, positional tolerance and assembly procedure of the MBS, and also, the magnetic field and vacuum dose rate of the DS bore. A detailed breakdown of how each requirement affects the structural design can be found in chapter 2. Chapter 3 describes the design of each support structure and its attachment to the MBS while chapter 4 describes the results from structural analysis of the support structures. Chapter 5 describes evaluation for the design through testing and calculations while the conclusion in chapter 6 reports the current status at the time of this thesis submission with a plan for future work to be completed until final design and installation.

  13. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

    SciTech Connect (OSTI)

    Ennis, Brandon Lee; Paquette, Joshua A.

    2015-10-01

    This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

  14. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    SciTech Connect (OSTI)

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; Xiao, Xingcheng; Liu, Gao; Zhao, Peng; Zhang, Sulin; Wang, Chong M.; Lu, Yunfeng; Cai, Mei

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-level outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. The low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.

  15. Structural Testing at the NWTC Helps Improve Blade Design and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Testing at the NWTC Helps Improve Blade Design and Increase System Reliability Biaxial fatigue test of an MHI Wind Power Americas, Inc. turbine blade at the NWTC. Photo...

  16. Structure of a designed tetrahedral protein assembly variant engineered to

    Office of Scientific and Technical Information (OSTI)

    have improved soluble expression (Journal Article) | SciTech Connect Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression Citation Details In-Document Search Title: Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression Authors: Bale, Jacob B. ; Park, Rachel U. ; Liu, Yuxi ; Gonen, Shane ; Gonen, Tamir ; Cascio, Duilio ; King, Neil P. ; Yeates, Todd O. ; Baker, David [1] ; UCLA) [2] ;

  17. New flow-through mudmat design for Heidrun subsea structure

    SciTech Connect (OSTI)

    Lieng, J.T.; Bjoergen, H.P.

    1995-12-01

    Permanent or temporary subsea structures that require some initial or frequent on-bottom relocation need an effective mudmat release system. This is necessary in order to avoid problems that may arise due to pressure differences at the mudmat/soil interface. Through detail engineering work performed for the development of subsea installations at the Heidrun Field off the Norwegian coast, a novel mudmat design has been conceived that enables water to flow freely through the mudmat top without sacrificing overall stability or structural integrity. This was accomplished by integrating geotextiles and expanded steel mesh for support into the design. The design permits structure installation and removal keeping hydrodynamic forces, soil resistance and disturbance of the seabed sediments to a minimum. Hence, subsea dynamic behavior is more favorable reducing structural stresses, relocation time and the necessary lifting capacity of the surface vessel as compared to earlier solutions.

  18. Improved structural systems for earth sheltered housing. Structural supplement to the design program

    SciTech Connect (OSTI)

    Behr, R.

    1981-10-01

    Additional engineering information is provided with regard to the structural analysis and design of thin shell concrete structures. The design program has tentatively demonstrated the overall architectural and marketing feasibility of curved, thin shell structural systems for earth sheltered housing. This supplement will address the structural feasibility question by presenting a complete manual analysis and structural design of an earth sheltered dome/tension ring/wall structural system, and also by presenting the results of a parametric sensitivity study of the dome/ring/wall configuration with respect to variations in span and rise for a three foot soil loading condition. Double curvature dome configurations are emphasized in this structural supplement because their analysis is not extensively addressed in earth sheltered housing literature.

  19. Giant structures called plasmoids could simplify the design of future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tokamaks | Princeton Plasma Physics Lab Giant structures called plasmoids could simplify the design of future tokamaks By Raphael Rosen June 2, 2015 Tweet Widget Google Plus One Share on Facebook Left: Plasmoid formation in simulation of NSTX plasma during CHI / Right: Fast-camera image of NSTX plasma shows two discrete plasmoid-like bubble structures. (Photo by Left: Fatima Ebrahimi, PPPL / Right: Nishino-san, Hiroshima University) Left: Plasmoid formation in simulation of NSTX plasma

  20. Giant structures called plasmoids could simplify the design of future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tokamaks | Princeton Plasma Physics Lab Giant structures called plasmoids could simplify the design of future tokamaks By Raphael Rosen June 2, 2015 Tweet Widget Google Plus One Share on Facebook Left: Plasmoid formation in simulation of NSTX plasma during CHI / Right: Fast-camera image of NSTX plasma shows two discrete plasmoid-like bubble structures. (Photo by Left: Credit Fatima Ebrahimi, PPPL / Right: Credit Nishino-san, Hiroshima University) Left: Plasmoid formation in simulation of

  1. Structural Design Feasibility Study for the Global Climate Experiment

    SciTech Connect (OSTI)

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal of this report is to provide a cost and technological basis for selection of the appropriate GCE Facility design.

  2. Design-Load Basis for LANL Structures, Systems, and Components

    SciTech Connect (OSTI)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loads not related to natural phenomena hazards, and (3) the design loads on structures during construction.

  3. Design and Structural Analysis of Mars Rover RTG

    SciTech Connect (OSTI)

    Schock, Alfred; Hamrick, T.; Sankarankandath, V.; Shirbacheh, M.

    1989-09-29

    The paper describes the design and the structural and mass analysis of a Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR project.; The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It identifies the key RTG design problem, i.e. venting the helium generated by the fuel's alpha decay without intrusion of the Martian atmosphere into the RTG, and proposes a design approach for solving that problem.; Using that approach, it describes a very conservative baseline RTG design. The design is based on the proven and safety-qualified General Purpose Heat Source module, and employs standard thermoelectric unicouples whose reliability and performance stability has been extensively demonstrated on previous space missions. The heat source of the 250-watt RTG consists of a stack of 18 separate modules that is supported at its ends but not along its length. The paper describes and analyzes the structure that holds the stack together during Earth launch and Mars operations but allows it to come apart in case of an inadvertent reentry.; A companion paper presented at this conference describes the RTG's thermal and electrical analysis, and compares its performance with that of several lighter but less conservative design options.; There is a duplicate copy in the ESD files. This document is not relevent to OSTI Library. Do not send.

  4. Designing a TAC thermometer from a VHTR graphite structure

    SciTech Connect (OSTI)

    Smith, James A. Kotter, Dale; Garrett, Steven L.; Ali, Randall A.

    2015-03-31

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. Very High Temperature Reactors are pushing the in core temperatures even higher. A unique sensing approach will be discussed to address the necessary high temperature measurements. Thermoacoustic thermometry exploits high temperatures and uses materials that are immune to the effects of ionizing radiation to create a temperature sensor that is self-powered and wireless. In addition, the form-factor for the Thermoacoustic Thermometer (TACT) can be designed to be integrated within common in-pile structures. There are no physical moving parts required for TACT and the sensor is self-powered, as it uses the nuclear fuel for its heat source. TACT data will be presented from a laboratory prototype mimicking the design necessary for a VHTR graphite structure.

  5. Design of Superconducting Parallel Bar Deflecting and Crabbing rf Structures

    SciTech Connect (OSTI)

    Jean Delayen, Haipeng Wang

    2009-05-01

    A new concept for a deflecting and crabbing rf structure based on half-wave resonant lines was introduced recently*. It offers significant advantages to existing designs and, because of it compactness, allows low frequency operation. This concept has been further refined and optimized for superconducting implementation. Results of this optimization and application to a 400 MHz crabbing cavity and a 499 MHz deflecting cavity are presented.

  6. Durability-based design criteria for an automotive structural composite

    SciTech Connect (OSTI)

    Corum, J.M.; Battiste, R.L.; Brinkman, C.R.; Ren, W.; Ruggles, M.B.; Yahr, G.T.

    1998-11-01

    Before composite structures can be widely used in automotive applications, their long-term durability must be assured. The Durability of Lightweight Composite Structures Project at Oak Ridge National Laboratory was established by the US Department of Energy to help provide that assurance. The project is closely coordinated with the Automotive Composites Consortium. The experimentally-based, durability-driven design criteria described in this paper are the result of the initial project thrust. The criteria address a single reference composite, which is an SRIM (Structural Reaction Injection Molded) polyurethane, reinforced with continuous strand, swirl-mat E-glass fibers. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and roadway kickups) on strength, stiffness, and deformation. The criteria provide design analysis guidance, a multiaxial strength criterion, time-independent and time-dependent allowable stresses, rules for cyclic loading, and damage tolerance design guidance. Environmental degradation factors and the degrading effects of prior loadings are included. Efforts are currently underway to validate the criteria by application to a second random-glass-fiber composite. Carbon-fiber composites are also being addressed.

  7. Hierarchical Three-Dimensional Microbattery Electrodes Combining...

    Office of Scientific and Technical Information (OSTI)

    Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up Self-Assembly and Top-Down Micromachining Citation Details In-Document Search Title: Hierarchical ...

  8. Building-Integrated Photovoltaic Designs for Commercial and Institutional Structures: A Sourcebook for Architects

    SciTech Connect (OSTI)

    2009-01-18

    Sourcebook for architects on building-integrated photovoltaic designs covering commercial and institutional structures.

  9. MHTool User's Guide - Software for Manufactured Housing Structural Design

    SciTech Connect (OSTI)

    W. D. Richins

    2005-07-01

    Since the late 1990s, the Department of Energy's Idaho National Laboratory (INL) has worked with the US Department of Housing and Urban Development (HUD), the Manufactured Housing Institute (MHI), the National Institute of Standards and Technology (NIST), the National Science Foundation (NSF), and an industry committee to measure the response of manufactured housing to both artificial and natural wind loads and to develop a computational desktop tool to optimize the structural performance of manufactured housing to HUD Code loads. MHTool is the result of an 8-year intensive testing and verification effort using single and double section homes. MHTool is the first fully integrated structural analysis software package specifically designed for manufactured housing. To use MHTool, industry design engineers will enter information (geometries, materials, connection types, etc.) describing the structure of a manufactured home, creating a base model. Windows, doors, and interior walls can be added to the initial design. Engineers will input the loads required by the HUD Code (wind, snow loads, interior live loads, etc.) and run an embedded finite element solver to find walls or connections where stresses are either excessive or very low. The designer could, for example, substitute a less expensive and easier to install connection in areas with very low stress, then re-run the analysis for verification. If forces and stresses are still within HUD Code requirements, construction costs would be saved without sacrificing quality. Manufacturers can easily change geometries or component properties to optimize designs of various floor plans then submit MHTool input and output in place of calculations for DAPIA review. No change in the regulatory process is anticipated. MHTool, while not yet complete, is now ready for demonstration. The pre-BETA version (Build-16) was displayed at the 2005 National Congress & Expo for Manufactured & Modular Housing. Additional base models and an extensive material library need to be developed. Output displays and listings will need to be expanded and model checking capability added. When completed, MHTool will ultimately lead to new manufactured housing designs that meet or exceed the HUD Code for quality, durability, and safety while reducing labor and materials. This will reduce cost and increase home ownership for the traditional manufactured housing market of first time or low-income buyers. MHTool uses the freeware solver Felt modified specifically for manufactured housing by researchers at Washington State University and INL. Input data, material properties, and results verification are based on full scale testing conducted by INL and others. See Section 7 for a collection of references.

  10. Direct hierarchical assembly of nanoparticles

    DOE Patents [OSTI]

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  11. Demonstrating Structural Adequacy of Nuclear Power Plant Containment Structures for Beyond Design-Basis Pressure Loadings

    SciTech Connect (OSTI)

    Braverman, J.I.; Morante, R.

    2010-07-18

    ABSTRACT Demonstrating the structural integrity of U.S. nuclear power plant (NPP) containment structures, for beyond design-basis internal pressure loadings, is necessary to satisfy Nuclear Regulatory Commission (NRC) requirements and performance goals. This paper discusses methods for demonstrating the structural adequacy of the containment for beyond design-basis pressure loadings. Three distinct evaluations are addressed: (1) estimating the ultimate pressure capacity of the containment structure (10 CFR 50 and US NRC Standard Review Plan, Section 3.8) ; (2) demonstrating the structural adequacy of the containment subjected to pressure loadings associated with combustible gas generation (10 CFR 52 and 10 CFR 50); and (3) demonstrating the containment structural integrity for severe accidents (10 CFR 52 as well as SECY 90-016, SECY 93-087, and related NRC staff requirements memoranda (SRMs)). The paper describes the technical basis for specific aspects of the methods presented. It also presents examples of past issues identified in licensing activities related to these evaluations.

  12. Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Zhang, He; Sun, Junming; Wang, Yong

    2014-12-15

    This study reports synthesis, characterization, and catalytic activity of the nano-size hierarchical HZSM-5 zeolite with high mesoporosity produced via a solvent evaporation procedure. Further, this study compares hierarchical zeolites with conventional HZSM-5 zeolite with similar Si/Al ratios for the ethanol-to-hydrocarbon conversion process. The catalytic performance of the hierarchical and conventional zeolites was evaluated using a fixed-bed reactor at 360 C, 300 psig, and a weight hourly space velocity of 7.9 h-1. For the low Si/Al ratio zeolite (~40), the catalytic life-time for the hierarchical HZSM-5 was approximately 2 times greater than the conventional HZSM-5 despite its coking amount deposited 1.6 times higher than conventional HZSM-5. For the high Si/Al ratio zeolite (~140), the catalytic life-time for the hierarchical zeolite was approximately 5 times greater than the conventional zeolite and the amount of coking deposited was 2.1 times higher. Correlation was observed between catalyst life time, porosity, and the crystal size of the zeolite. The nano-size hierarchical HZSM-5 zeolites containing mesoporosity demonstrated improved catalyst life-time compared to the conventional catalyst due to faster removal of products, shorter diffusion path length, and the migration of the coke deposits to the external surface from the pore structure.

  13. Structure and Design a Finance Program with Loan Loss Reserve Funds

    Broader source: Energy.gov [DOE]

    The process for structuring and designing a finance program with a loan loss reserve (LLR) fund typically includes research and preparing a finance program design document.

  14. Software design implementation document for TRAC-M data structures

    SciTech Connect (OSTI)

    Jolly-Woodruff, S. [Ogden Environmental and Energy Services (United States); Mahaffy, J. [Pennsylvania State Univ., University Park, PA (United States); Giguere, P.; Dearing, J.; Boyack, B. [Los Alamos National Lab., NM (United States)

    1997-07-01

    The Transient Reactor Analysis Code (TRAC)-M system-wide and component data structures are to be reimplemented by using the new features of Fortran 90 (F90). There will be no changes to the conceptual design, data flow, or computational flow with respect to the current TRAC-P, except that readability, maintainability, and extensibility will be improved. However, the task described here is a basic step that does not meet all future needs of the code, especially regarding extensibility. TRAC-M will be fully functional and will produce null computational changes with respect to TRAC-P, Version 5.4.25; computational efficiency will not be degraded significantly. The existing component and functional modularity and possibilities for coarse-grained parallelism will be retained.

  15. Hierarchical Heterogeneity at the CeO x TiO 2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures

    SciTech Connect (OSTI)

    Luo, Si; Nguyen-Phan, Thuy-Duong; Johnston-Peck, Aaron C.; Barrio, Laura; Sallis, Shawn; Arena, Dario A.; Kundu, Shankhamala; Xu, Wenqian; Piper, Louis F. J.; Stach, Eric A.; Polyanskiy, Dmitry E.; Fujita, Etsuko; Rodriguez, Jos A.; Senanayake, Sanjaya D.

    2015-01-13

    Mixed oxide interfaces are critical for delivering active components of demanding catalytic processes such as the photo-catalytic splitting of water. We have studied CeOxTiO? catalysts with low ceria loadings of 1 wt%, 3 wt% and 6 wt% that were prepared with wet impregnation methods to favor a strong interaction between CeOx and TiO?. In these materials the interfaces between CeOx-TiO? have been sequentially loaded (1%, 3% and 6%), with and without Pt (0.5 wt%). The structure and properties of the catalysts were characterized using several X-ray and electron based techniques including XRD, XPS, UPS, NEXAFS, UV-Vis and HR-STEM/STEM-EELS, to unravel the local morphology, bulk structure, surface states and electronic structure. The combination of all these techniques allow us to analyze in a systematic way the complete structural and electronic properties that prevail at the CeOx-TiO? interface. Fluorite structured nano crystallites of ceria on anatase-structured titania were identified by both XRD and NEXAFS. A sequential increasing of the CeOx loading led to the formation of clusters, then plates and finally nano particles in a hierarchical manner on the TiO? support. The electronic structures of these catalysts indicate that the interaction between TiO? and CeO? is closely related to the local morphology of nanostructured CeO?. Ce? cations were detected at the surface of CeO? and at the interface of the two oxides. In addition, the titania is perturbed by the interaction with ceria and also with Pt. The photocatalytic activity for the splitting of H?O using UV light was measured for these materials and correlated with our understanding of the electronic and structural properties. Optimal catalytic performance and photo response results were found for the 1 wt% CeOx-TiO? catalyst where low dimensional geometry of the ceria provided ideal electronic and geometrical properties. The structural and electronic properties of the interface were critical for the photocatalytic performance of this mixed-oxide nanocatalyst system.

  16. Anti-hierarchical evolution of the active galactic nucleus space density in a hierarchical universe

    SciTech Connect (OSTI)

    Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Nagashima, Masahiro

    2014-10-10

    Recent observations show that the space density of luminous active galactic nuclei (AGNs) peaks at higher redshifts than that of faint AGNs. This downsizing trend in the AGN evolution seems to be contradictory to the hierarchical structure formation scenario. In this study, we present the AGN space density evolution predicted by a semi-analytic model of galaxy and AGN formation based on the hierarchical structure formation scenario. We demonstrate that our model can reproduce the downsizing trend of the AGN space density evolution. The reason for the downsizing trend in our model is a combination of the cold gas depletion as a consequence of star formation, the gas cooling suppression in massive halos, and the AGN lifetime scaling with the dynamical timescale. We assume that a major merger of galaxies causes a starburst, spheroid formation, and cold gas accretion onto a supermassive black hole (SMBH). We also assume that this cold gas accretion triggers AGN activity. Since the cold gas is mainly depleted by star formation and gas cooling is suppressed in massive dark halos, the amount of cold gas accreted onto SMBHs decreases with cosmic time. Moreover, AGN lifetime increases with cosmic time. Thus, at low redshifts, major mergers do not always lead to luminous AGNs. Because the luminosity of AGNs is correlated with the mass of accreted gas onto SMBHs, the space density of luminous AGNs decreases more quickly than that of faint AGNs. We conclude that the anti-hierarchical evolution of the AGN space density is not contradictory to the hierarchical structure formation scenario.

  17. A Bayesian experimental design approach to structural health monitoring

    SciTech Connect (OSTI)

    Farrar, Charles [Los Alamos National Laboratory; Flynn, Eric [UCSD; Todd, Michael [UCSD

    2010-01-01

    Optimal system design for SHM involves two primarily challenges. The first is the derivation of a proper performance function for a given system design. The second is the development of an efficient optimization algorithm for choosing a design that maximizes, or nearly maximizes the performance function. In this paper we will outline how an SHM practitioner can construct the proper performance function by casting the entire design problem into a framework of Bayesian experimental design. The approach demonstrates how the design problem necessarily ties together all steps of the SHM process.

  18. Microsoft Word - Increased Strength in Wind Turh Innovative Structural Design 1.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increased Strength in Wind Turbine Blades through Innovative Structural Design * J. A. Paquette † P. S. Veers † Sandia National Laboratories ‡ Sandia National Laboratories ‡ japaque@sandia.gov psveers@sandia.gov Abstract: When a system design approach is applied to wind turbine blades, manufacturing and structural requirements are included along with aerodynamic considerations in the design optimization. The resulting system-driven design includes several innovative structural features

  19. Understanding Thin Film Structure for the Rational Design of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transistors (OTFT) can be achieved through molecular design by selective placement of electron-rich, electron-withdrawing, and aromatic groups in different parts of the molecule. ...

  20. Hierarchically Structured Materials for Lithium Batteries (Journal...

    Office of Scientific and Technical Information (OSTI)

    With the increasing demand on devices of high energy densities (>500 Whkg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond ...

  1. Center for Inverse Design: Modality 1 - Inverse Band Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Inverse Band Structure Modality 1 applies to cases where we have a single material system, but an astronomical number of configurations, and where the target properties can be calculated on the fly. The approach is also called Inverse Band Structure (IBS). The IBS approach began a dozen years ago within the Solid-State Theory group at the National Renewable Energy Laboratory (NREL), under support from the U.S. Department of Energy's Office of Basic Energy Sciences. Imagine that you have a

  2. Lattice-structures and constructs with designed thermal expansion coefficients

    DOE Patents [OSTI]

    Spadaccini, Christopher; Hopkins, Jonathan

    2014-10-28

    A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.

  3. Dynamic Non-Hierarchical File Systems for Exascale Storage

    SciTech Connect (OSTI)

    Long, Darrell E.; Miller, Ethan L

    2015-02-24

    This constitutes the final report for Dynamic Non-Hierarchical File Systems for Exascale Storage. The ultimate goal of this project was to improve data management in scientific computing and high-end computing (HEC) applications, and to achieve this goal we proposed: to develop the first, HEC-targeted, file system featuring rich metadata and provenance collection, extreme scalability, and future storage hardware integration as core design goals, and to evaluate and develop a flexible non-hierarchical file system interface suitable for providing more powerful and intuitive data management interfaces to HEC and scientific computing users. Data management is swiftly becoming a serious problem in the scientific community while copious amounts of data are good for obtaining results, finding the right data is often daunting and sometimes impossible. Scientists participating in a Department of Energy workshop noted that most of their time was spent ...finding, processing, organizing, and moving data and its going to get much worse. Scientists should not be forced to become data mining experts in order to retrieve the data they want, nor should they be expected to remember the naming convention they used several years ago for a set of experiments they now wish to revisit. Ideally, locating the data you need would be as easy as browsing the web. Unfortunately, existing data management approaches are usually based on hierarchical naming, a 40 year-old technology designed to manage thousands of files, not exabytes of data. Todays systems do not take advantage of the rich array of metadata that current high-end computing (HEC) file systems can gather, including content-based metadata and provenance1 information. As a result, current metadata search approaches are typically ad hoc and often work by providing a parallel management system to the main file system, as is done in Linux (the locate utility), personal computers, and enterprise search appliances. These search applications are often optimized for a single file system, making it difficult to move files and their metadata between file systems. Users have tried to solve this problem in several ways, including the use of separate databases to index file properties, the encoding of file properties into file names, and separately gathering and managing provenance data, but none of these approaches has worked well, either due to limited usefulness or scalability, or both. Our research addressed several key issues: High-performance, real-time metadata harvesting: extracting important attributes from files dynami- cally and immediately updating indexes used to improve search. Transparent, automatic, and secure provenance capture: recording the data inputs and processing steps used in the production of each file in the system. Scalable indexing: indexes that are optimized for integration with the file system. Dynamic file system structure: our approach provides dynamic directories similar to those in semantic file systems, but these are the native organization rather than a feature grafted onto a conventional system. In addition to these goals, our research effort will include evaluating the impact of new storage technolo- gies on the file system design and performance. In particular, the indexing and metadata harvesting functions can potentially benefit from the performance improvements promised by new storage class memories.

  4. Procedure for developing biological input for the design, location, or modification of water-intake structures

    SciTech Connect (OSTI)

    Neitzel, D.A.; McKenzie, D.H.

    1981-12-01

    To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact and review biological information needed for intake design.

  5. The structural design of air and gas ducts for power stations and industrial boiler applications

    SciTech Connect (OSTI)

    Schneider, R.L.

    1996-10-01

    The purpose of this paper is to discuss the new American Society of Civil Engineers (ASCE) book entitled, The Structural Design of Air and Gas Ducts for Power Stations and Industrial Boiler Applications. This 312 page book was published by the ASCE in August of 1995. This ASCE publication was created to assist structural engineers in performing the structural analysis and design of air and flue-gas ducts. The structural behavior of steel ductwork can be difficult to understand for structural engineers inexperienced in ductwork analysis and design. Because of this needed expertise, the ASCE committee that created this document highly recommends that the structural analysis and design of ducts be performed by qualified structural engineers, not be technicians, designers or drafters. There is a history within the power industry of failures and major degradation of flue-gas ductwork. There are many reasons for these failures or degradation, but in many cases, the problems may have been voided by a better initial design. This book attempts to help the structural engineer with this task. This book is not intended to be used to size or configure ductwork for flow and pressure drop considerations. But it does recommend that the ductwork system arrangement consider the structural supports and the structural behavior of the duct system.

  6. Guide to FEMP-Designated Parking Structure Lighting | Department of Energy

    Office of Environmental Management (EM)

    Structure Lighting Guide to FEMP-Designated Parking Structure Lighting Document provides acquisition guidance and federal efficiency requirements across a variety of product cate-gories, including parking garage luminaires, which are a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. PDF icon parking_structure_lighting_guide.pdf More

  7. Structure and design of the electron lens for RHIC

    SciTech Connect (OSTI)

    Pikin, A.; Fischer, W.; Alessi, J.; Anerella, M.; Beebe, E. Gassner, D.; Gu, X.; Gupta, R.; Hock, J.; Jain, A.; Lambiase, R.; Luo, Y.; Montag, C.; Okamura, M.; Tan, Y.; Tuozzolo, J.; Thieberger, P.; Zhang, W.

    2011-03-28

    Two electron lenses for a head-on beam-beam compensation are being planned for RHIC; one for each circulating proton beam. The transverse profile of the electron beam will be Gaussian up to a maximum radius of r{sub e} = 3{sigma}. Simulations and design of the electron gun with Gaussian radial emission current density profile and of the electron collector are presented. Ions of the residual gas generated in the interaction region by electron and proton beams will be removed by an axial gradient of the electric field towards the electron collector. A method for the optical observation of the transverse profile of the electron beam is described.

  8. Hierarchical analysis of molecular spectra

    SciTech Connect (OSTI)

    Davis, M.J.

    1996-03-01

    A novel representation of molecular spectra in terms of hierarchical trees has proven to be an important aid for the study of many significant problems in gas-phase chemical dynamics. Trees are generated from molecular spectra by monitoring the changes that occur in a spectrum as resolution is changed in a continuous manner. A tree defines a genealogy among all lines of a spectrum. This allows for a detailed understanding of the assignment of features of a spectrum that may be difficult to obtain any other way as well as an understanding of intramolecular energy transfer time scales, mechanisms, and pathways. The methodology has been applied to several problems: transition state spectroscopy, intramolecular energy transfer in highly excited molecules, high-resolution overtone spectroscopy, and the nature of the classical-quantum correspondence when there is classical chaos (``quantum chaos``).

  9. Design, construction, and use of a coiled tubing drilling structure for onshore and offshore operations

    SciTech Connect (OSTI)

    Frishmuth, R.E.; Pursell, J.C.; Middleton, R.J.; Parker, C.O.

    1996-12-31

    This paper discusses the design, construction, and initial application of a structure for supporting a coiled tubing injector head, bottom hole drilling assembly and pressurized lubricator. The paper includes a discussion of the features desired for the structure and how these were addressed during the design. The manufacturing of the support tower and its support platform are then discussed. On site assembly procedures for the movable structure are presented along with photographs of the deployed rig in service. The versatility and usefulness of the structure are discussed from the end users point of view.

  10. Highly Ordered Tailored Three-Dimensional Hierarchical Porous...

    Office of Scientific and Technical Information (OSTI)

    Hierarchical Porous Gold Architectures. Citation Details In-Document Search Title: Highly Ordered Tailored Three-Dimensional Hierarchical Porous Gold Architectures. ...

  11. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite

    SciTech Connect (OSTI)

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-11-01

    This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications.

  12. A prototype functional language implementation for hierarchical-memory architectures

    SciTech Connect (OSTI)

    Wolski, R.; Feo, J.; Cann, D.

    1991-06-05

    The first implementation of Sisal was designed for general shared-memory architectures. Since then, we have optimized the system for vector and coherent-cache multiprocessors. Coherent-cache systems can be thought of as simple, two-level hierarchical memory systems, where the memory hierarchy is managed by the hardware. The compiler and run-time system for such an architecture needs to maintain data locality so that the processor caches are used as much as possible. In this paper, we extend the coherent-cache implementation to include explicit compiler and run-time control for medium-grain and coarse-grain hierarchical-memory architectures. We implemented the extended system on the BBN Butterfly using interleaved shared memory exclusively for the purposes of data sharing and exploiting the per-processor local memories. We give preliminary performance results for this extended system. 10 refs., 7 figs.

  13. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect (OSTI)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  14. EXTRAGALACTIC BACKGROUND LIGHT FROM HIERARCHICAL GALAXY FORMATION:

    Office of Scientific and Technical Information (OSTI)

    GAMMA-RAY ATTENUATION UP TO THE EPOCH OF COSMIC REIONIZATION AND THE FIRST STARS (Journal Article) | SciTech Connect EXTRAGALACTIC BACKGROUND LIGHT FROM HIERARCHICAL GALAXY FORMATION: GAMMA-RAY ATTENUATION UP TO THE EPOCH OF COSMIC REIONIZATION AND THE FIRST STARS Citation Details In-Document Search Title: EXTRAGALACTIC BACKGROUND LIGHT FROM HIERARCHICAL GALAXY FORMATION: GAMMA-RAY ATTENUATION UP TO THE EPOCH OF COSMIC REIONIZATION AND THE FIRST STARS We present a new model of the

  15. Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Hetero-Nanosheets in Hierarchical Architectures

    SciTech Connect (OSTI)

    Mahmood, Qasim; Bak, Seong-Min; Kim, Min G.; Yun, Sol; Yang, Xiao-Qing; Shin, Hyeon S.; Kim, Woo S.; Braun, Paul V.; Park, Ho S.

    2015-03-03

    Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to the interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane WS lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of WW bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.

  16. Design structure for in-system redundant array repair in integrated circuits

    DOE Patents [OSTI]

    Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.

    2008-11-25

    A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  17. Preliminary structural design conceptualization for composite rotor for verdant power water current turbine

    SciTech Connect (OSTI)

    Paquette, J. A.

    2012-03-01

    Sandia National Laboratories (SNL) and Verdant Power Inc. (VPI) have partnered under a Cooperative Research and Development Agreement (CRADA) to develop a new kinetic hydropower rotor. The rotor features an improved hydrodynamic and structural design which features state-of-the-art technology developed for the wind industry. The new rotor will have higher energy capture, increased system reliability, and reduction of overall cost of energy. This project was divided into six tasks: (1) Composite Rotor Project Planning and Design Specification; (2) Baseline Fatigue Testing and Failure analysis; (3) Develop Blade/Rotor Performance Model; (4) Hydrofoil Survey and Selection; (5) FEM Structural Design; and (6) Develop Candidate Rotor Designs and Prepare Final Report.

  18. Structure-based design of inhibitors of coagulation factor XIa with novel

    Office of Scientific and Technical Information (OSTI)

    P1 moieties (Journal Article) | SciTech Connect Structure-based design of inhibitors of coagulation factor XIa with novel P1 moieties Citation Details In-Document Search Title: Structure-based design of inhibitors of coagulation factor XIa with novel P1 moieties Authors: Pinto, Donald J.P. ; Smallheer, Joanne M. ; Corte, James R. ; Austin, Erin J.D. ; Wang, Cailan ; Fang, Tianan ; Smith, II, Leon M. ; Rossi, Karen A. ; Rendina, Alan R. ; Bozarth, Jeffrey M. ; Zhang, Ge ; Wei, Anzhi ;

  19. Structural performance of the first SSC (Superconducting Super Collider) Design B dipole magnet

    SciTech Connect (OSTI)

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs.

  20. Design of the support structure, drive pedestal, and controls for a solar concentrator

    SciTech Connect (OSTI)

    Goldberg, V.R.; Ford, J.L.; Anderson, A.E. )

    1991-08-01

    The glass/metal McDonnell-Douglas dish is the state-of-the-art of parabolic dish concentrators. Because of the perceived high production cost of this concentrator, the Department of Energy's Solar Thermal Program is developing stretch-membrane technology for large (75 kWt) solar concentrators for integration with receivers and engines in 25 kWe dish-Stirling systems. The objective of this development effort is to reduce the cost of the concentrator while maintaining the high levels of performance characteristic of glass-metal dishes. Under contract to Sandia National Laboratories, Science Applications International Corporation, Solar Kinetics Inc. and WG Associates are developing a faceted stretched-membrane heliostat technology. This design will result in a low-risk, near-term concentrator for dish-Stirling systems. WG Associates has designed the support structure, drives and tracking controls for this dish. The structure is configured to support 12 stretched-membrane, 3.5-meter diameter facets in a shaped dish configuration. The dish design is sized to power a dish-Stirling system capable of producing 25 kW (electric). In the design of the structure, trade-off studies were conducted to determine the best'' facet arrangement, dish contour, dish focal length, tracking control and walk-off protection. As part of the design, in-depth analyses were performed to evaluate pointing accuracy, compliance with AISC steel design codes, and the economics of fabrication and installation. Detailed fabrication and installation drawings were produced, and initial production cost estimates for the dish were developed. These issues, and the final dish design, are presented in this report. 7 refs., 33 figs., 18 tabs.

  1. Evaluation of proposed designs for streamflow monitoring structures at waste disposal sites

    SciTech Connect (OSTI)

    Clapp, R.B.; Borders, D.M.; Tardiff, M.F.; Huff, D.D.

    1991-01-01

    Design of small surface water monitoring stations associated with waste sites requires an approach that balances several problems. The monitoring site must have a capacity for a wide range of flows, allow accurate measurements over the full performance range, minimize effects from accumulation of contaminated sediments, and minimize costs of construction and operation. Selecting a station design that takes these factors into consideration can be done systematically through use of formal decision analysis. The paper discusses the effectiveness of various hydraulic structures as flumes and weirs to monitor stream flow and drainage. The process has produced the most viable alternative designs and yielded fully documented guidelines for designing new stations as they are needed. 7 refs., 6 figs., 3 tabs.

  2. Hierarchical resilience with lightweight threads.

    SciTech Connect (OSTI)

    Wheeler, Kyle Bruce

    2011-10-01

    This paper proposes methodology for providing robustness and resilience for a highly threaded distributed- and shared-memory environment based on well-defined inputs and outputs to lightweight tasks. These inputs and outputs form a failure 'barrier', allowing tasks to be restarted or duplicated as necessary. These barriers must be expanded based on task behavior, such as communication between tasks, but do not prohibit any given behavior. One of the trends in high-performance computing codes seems to be a trend toward self-contained functions that mimic functional programming. Software designers are trending toward a model of software design where their core functions are specified in side-effect free or low-side-effect ways, wherein the inputs and outputs of the functions are well-defined. This provides the ability to copy the inputs to wherever they need to be - whether that's the other side of the PCI bus or the other side of the network - do work on that input using local memory, and then copy the outputs back (as needed). This design pattern is popular among new distributed threading environment designs. Such designs include the Barcelona STARS system, distributed OpenMP systems, the Habanero-C and Habanero-Java systems from Vivek Sarkar at Rice University, the HPX/ParalleX model from LSU, as well as our own Scalable Parallel Runtime effort (SPR) and the Trilinos stateless kernels. This design pattern is also shared by CUDA and several OpenMP extensions for GPU-type accelerators (e.g. the PGI OpenMP extensions).

  3. Structural Aspects of Hydrogen Bonding with Nitrate and Sulfate: Design Criteria for Polyalcohol Hosts

    SciTech Connect (OSTI)

    Hay, Benjamin P.; Dixon, David A.; Lumetta, Gregg J.; Vargas, Rubicelia; Garza, Jorge

    2004-01-01

    Organic hosts for oxyanion complexation can be constructed by combining two or more hydrogen bonding sites. The deliberate design of architectures for such hosts requires knowledge of the optimal geometry for the hydrogen bonds formed between the host and the guest. Important structural parameters include the O--H distance, the O--H-D angle, the X-O--H angle, and the X-O--H-D dihedral angle (H-D=hydrogen bond donor, X=any atom). This information can be obtained through the analysis of hydrogen bonding observed in crystal structures and electronic structure calculations on simple gas-phase complexes. In this chapter, we present an analysis of hydrogen bonding structural parameters for alcohol hydrogen donors and the oxygen atom acceptors in nitrate and sulfate.

  4. Structural Testing at the NWTC Helps Improve Blade Design and Increase System Reliability; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-08-01

    Since 1990, the National Renewable Energy Laboratory’s (NREL's) National Wind Technology Center (NWTC) has tested more than 150 wind turbine blades. NWTC researchers can test full-scale and subcomponent articles, conduct data analyses, and provide engineering expertise on best design practices. Structural testing of wind turbine blades enables designers, manufacturers, and owners to validate designs and assess structural performance to specific load conditions. Rigorous structural testing can reveal design and manufacturing problems at an early stage of development that can lead to overall improvements in design and increase system reliability.

  5. Design, Construction and Test of Cryogen-Free HTS Coil Structure

    SciTech Connect (OSTI)

    Hocker, H.; Anerella, M.; Gupta, R.; Plate, S.; Sampson, W.; Schmalzle, J.; Shiroyanagi, Y.

    2011-03-28

    This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconducting magnets.

  6. Metal oxide nanostructures with hierarchical morphology

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Lao, Jing Yu (Saline, MI); Banerjee, Debasish (Ann Arbor, MI)

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  7. Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET...

    Office of Scientific and Technical Information (OSTI)

    Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY ... FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH ...

  8. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    SciTech Connect (OSTI)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-14

    In{sub x}Ga{sub 1?x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18?}cm{sup ?3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  9. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    SciTech Connect (OSTI)

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  10. Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Hetero-Nanosheets in Hierarchical Architectures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahmood, Qasim; Bak, Seong-Min; Kim, Min G.; Yun, Sol; Yang, Xiao-Qing; Shin, Hyeon S.; Kim, Woo S.; Braun, Paul V.; Park, Ho S.

    2015-03-03

    Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to themore » interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane W–S lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of W–W bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.« less

  11. Microsoft Word - Increased Strength in Wind Turbine Blades through Innovative Structural Design.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This paper is declared work of the U.S. Government and is not subject to copyright protection in the United States. † Sandia National Laboratories Wind Energy Technology Department, MS 1124 ‡ Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy under contract DE-AC04-94AL85000 Increased Strength in Wind Turbine Blades through Innovative Structural Design * J. A. Paquette † P. S. Veers † Sandia National

  12. Spatially addressable design of gradient index structures through spatial light modulator based holographic lithography

    SciTech Connect (OSTI)

    Ohlinger, Kris; Lutkenhaus, Jeff [Department of Physics, University of North Texas, Denton, Texas 76203 (United States); Arigong, Bayaner; Zhang, Hualiang [Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States); Lin, Yuankun, E-mail: yuankun.lin@unt.edu [Department of Physics, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2013-12-07

    In this paper, we present an achievable gradient refractive index in bi-continuous holographic structures that are formed through five-beam interference. We further present a theoretic approach for the realization of gradient index devices by engineering the phases of the interfering beams with a pixelated spatial light modulator. As an example, the design concept of a gradient index Luneburg lens is verified through full-wave electromagnetic simulations. These five beams with desired phases can be generated through programming gray level super-cells in a diffractive spatial light modulator. As a proof-of-concept, gradient index structures are demonstrated using synthesized and gradient phase patterns displayed in the spatial light modulator.

  13. STRUCTURAL DESIGN CRITERIA FOR TARGET/BLANKET SYSTEM COMPONENT MATERIALS FOR THE ACCELERATOR PRODUCTION OF TRITIUM PROJECT

    SciTech Connect (OSTI)

    W. JOHNSON; R. RYDER; P. RITTENHOUSE

    2001-01-01

    The design of target/blanket system components for the Accelerator Production of Tritium (APT) plant is dependent on the development of materials properties data specified by the designer. These data are needed to verify that component designs are adequate. The adequacy of the data will be related to safety, performance, and economic considerations, and to other requirements that may be deemed necessary by customers and regulatory bodies. The data required may already be in existence, as in the open technical literature, or may need to be generated, as is often the case for the design of new systems operating under relatively unique conditions. The designers' starting point for design data needs is generally some form of design criteria used in conjunction with a specified set of loading conditions and associated performance requirements. Most criteria are aimed at verifying the structural adequacy of the component, and often take the form of national or international standards such as the ASME Boiler and Pressure Vessel Code (ASME B and PV Code) or the French Nuclear Structural Requirements (RCC-MR). Whether or not there are specific design data needs associated with the use of these design criteria will largely depend on the uniqueness of the conditions of operation of the component. A component designed in accordance with the ASME B and PV Code, where no unusual environmental conditions exist, will utilize well-documented, statistically-evaluated developed in conjunction with the Code, and will not be likely to have any design data needs. On the other hand, a component to be designed to operate under unique APT conditions, is likely to have significant design data needs. Such a component is also likely to require special design criteria for verification of its structural adequacy, specifically accounting for changes in materials properties which may occur during exposure in the service environment. In such a situation it is common for the design criteria and design data needs to evolve as the design progresses, operating conditions are refined, and materials characteristics in the unique environment are established. This paper develops the relationship between the designers' data needs and the structural design criteria recently adopted for the Target Blanket System of the APT. The latter, the newly-developed APT Supplemental Structural Design Requirements (APT SSDR), was patterned after the design criteria developed for the International Thermonuclear Experimental (Fusion) Reactor (ITER). A summary description of the design rules based on the APT SSDR is presented, and the impact of these rules of changes in materials properties resulting from exposure in the APT proton/neutron irradiation environment are discussed.

  14. Design of a superconducting 28 GHz ion source magnet for FRIB using a shell-based support structure

    SciTech Connect (OSTI)

    Felice, H. [Lawrence Berkeley National Lab., CA (United States); Rochepault, E. [Lawrence Berkeley National Lab., CA (United States); Hafalia, R. [Lawrence Berkeley National Lab., CA (United States); Caspi, S. [Lawrence Berkeley National Lab., CA (United States); Dietderich, D. R. [Lawrence Berkeley National Lab., CA (United States); Prestemon, S. O. [Lawrence Berkeley National Lab., CA (United States); Machicoane, G. [Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams.; Pozdeyev, E. [Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams.; Bultman, N. [Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams.; Rao, X. [Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams.

    2014-12-05

    The Superconducting Magnet Program at the Lawrence Berkeley National Laboratory (LBNL) is completing the design of a 28 GHz NbTi ion source magnet for the Facility for Rare Isotope Beams (FRIB). The design parameters are based on the parameters of the ECR ion source VENUS in operation at LBNL since 2002 featuring a sextupole-in-solenoids configuration. Whereas most of the magnet components (such as conductor, magnetic design, protection scheme) remain very similar to the VENUS magnet components, the support structure of the FRIB ion source uses a different concept. A shell-based support structure using bladders and keys is implemented in the design allowing fine tuning of the sextupole preload and reversibility of the magnet assembly process. As part of the design work, conductor insulation scheme, coil fabrication processes and assembly procedures are also explored to optimize performance. We present the main features of the design emphasizing the integrated design approach used at LBNL to achieve this result.

  15. Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs

    SciTech Connect (OSTI)

    Matioli, Elison; Weisbuch, Claude

    2010-08-19

    The enhancement of the extraction efficiency in light emitting diodes (LEDs) through the use of photonic crystals (PhCs) requires a structure design that optimizes the interaction of the guided modes with the PhCs. The main optimization parameters are related to the vertical structure of the LED, such as the thickness of layers, depth of the PhCs, position of the quantum wells as well as the PhC period and fill factor. We review the impact of the vertical design of different approaches of PhC LEDs through a theoretical and experimental standpoint, assessing quantitatively the competing mechanisms that act over each guided mode. Three approaches are described to overcome the main limitation of LEDs with surface PhCs, i.e. the insufficient interaction of low order guided modes with the PhCs. The introduction of an AlGaN confining layer in such structure is shown to be effective in extracting a fraction of the optical energy of low order modes; however, this approach is limited by the growth of the lattice mismatched AlGaN layer on GaN. The second approach, based on thin-film LEDs with PhCs, is limited by the presence of an absorbing reflective metal layer close to the guided modes that plays a major role in the competition between PhC extraction and metal dissipation. Finally, we demonstrate both experimentally and theoretically the superior extraction of the guided light in embedded PhC LEDs due to the higher interaction between all optical modes and the PhCs, which resulted in a close to unity extraction efficiency for this device. The use of high-resolution angle-resolved measurements to experimentally determine the PhC extraction parameters was an essential tool for corroborating the theoretical models and quantifying the competing absorption and extraction mechanisms in LEDs.

  16. Technique for fast and efficient hierarchical clustering

    DOE Patents [OSTI]

    Stork, Christopher

    2013-10-08

    A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.

  17. A reconstructed discontinuous Galerkin method based on a Hierarchical...

    Office of Scientific and Technical Information (OSTI)

    reconstructed discontinuous Galerkin method based on a Hierarchical WENO reconstruction for compressible flows on tetrahedral grids Citation Details In-Document Search Title: A...

  18. Uniform hierarchical SnS microspheres: Solvothermal synthesis and lithium ion storage performance

    SciTech Connect (OSTI)

    Fang, Zhen Wang, Qin; Wang, Xiaoqing; Fan, Fan; Wang, Chenyan; Zhang, Xiaojun

    2013-11-15

    Graphical abstract: - Highlights: Uniform hierarchical SnS microspheres via solvothermal reaction. The formation process was investigated in detail. The obtained hierarchical SnS microspheres exhibit superior capacity (1650 mAh g{sup ?1}) when used as lithium battery for the hierarchical microsphere structure. - Abstract: Hierarchical SnS microspheres have been successfully synthesized by a mild solvothermal process using poly(vinylpyrrolidone) as surfactant in this work. The morphology and composition of the microspheres were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of reaction parameters, such as sulfur sources, reaction temperature and the concentration of PVP, on the final morphology of the products are investigated. On the basis of time-dependent experiments, the growth mechanism has also been proposed. The specific surface area of the 3D hierarchitectured SnS microspheres were investigated by using nitrogen adsorption and desorption isotherms. Lithium ion storage performances of the synthesized materials as anodes for Lithium-ion battery were investigated in detail and it exhibits excellent electrochemical properties.

  19. Support structure design of the Nb?Sn quadrupole for the high luminosity LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Juchno, M.; Anerella, M.; Ambrosio, G.; Cheng, D.; Felice, H.; Ferracin, P.; Perez, J. C.; Prin, H.; Schmalzle, J.

    2014-10-31

    New low-? quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb?Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of themoredetailed 3D numerical analysis performed in preparation for the first short model test.less

  20. Hierarchical electrode architectures for electrical energy storage & conversion.

    SciTech Connect (OSTI)

    Zavadil, Kevin Robert; Missert, Nancy A.; Shelnutt, John Allen; van Swol, Frank B.

    2012-01-01

    The integration and stability of electrocatalytic nanostructures, which represent one level of porosity in a hierarchical structural scheme when combined with a three-dimensional support scaffold, has been studied using a combination of synthetic processes, characterization techniques, and computational methods. Dendritic platinum nanostructures have been covalently linked to common electrode surfaces using a newly developed chemical route; a chemical route equally applicable to a range of metals, oxides, and semiconductive materials. Characterization of the resulting bound nanostructure system confirms successful binding, while electrochemistry and microscopy demonstrate the viability of these electroactive particles. Scanning tunneling microscopy has been used to image and validate the short-term stability of several electrode-bound platinum dendritic sheet structures toward Oswald ripening. Kinetic Monte Carlo methods have been applied to develop an understanding of the stability of the basic nano-scale porous platinum sheets as they transform from an initial dendrite to hole containing sheets. Alternate synthetic strategies were pursued to grow dendritic platinum structures directly onto subunits (graphitic particles) of the electrode scaffold. A two-step photocatalytic seeding process proved successful at generating desirable nano-scale porous structures. Growth in-place is an alternate strategy to the covalent linking of the electrocatalytic nanostructures.

  1. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    SciTech Connect (OSTI)

    Green, Michael A.; Pan, Heng; Liu, X. K.; Wang, Li; Wu, Hong; Chen, A. B.; Guo, X.L.

    2009-07-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

  2. Oracle Database DBFS Hierarchical Storage Overview

    SciTech Connect (OSTI)

    Rivenes, A

    2011-07-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory creates large numbers of images during each shot cycle for the analysis of optics, target inspection and target diagnostics. These images must be readily accessible once they are created and available for the 30 year lifetime of the facility. The Livermore Computing Center (LC) runs a High Performance Storage System (HPSS) that is capable of storing NIF's estimated 1 petabyte of diagnostic images at a fraction of what it would cost NIF to operate its own automated tape library. With Oracle 11g Release 2 database, it is now possible to create an application transparent, hierarchical storage system using the LC's HPSS. Using the Oracle DBMS-LOB and DBMS-DBFS-HS packages a SecureFile LOB can now be archived to storage outside of the database and accessed seamlessly through a DBFS 'link'. NIF has chosen to use this technology to implement a hierarchical store for its image based SecureFile LOBs. Using a modified external store and DBFS links, files are written to and read from a disk 'staging area' using Oracle's backup utility. Database external procedure calls invoke OS based scripts to manage a staging area and the transfer of the backup files between the staging area and the Lab's HPSS.

  3. Crystal Structures of Aureochrome1 LOV Suggest New Design Strategies for Optogenetics

    SciTech Connect (OSTI)

    Mitra, Devrani; Yang, Xiaojing; Moffat, Keith

    2014-10-02

    Aureochrome1, a signaling photoreceptor from a eukaryotic photosynthetic stramenopile, confers blue-light-regulated DNA binding on the organism. Its topology, in which a C-terminal LOV sensor domain is linked to an N-terminal DNA-binding bZIP effector domain, contrasts with the reverse sensor-effector topology in most other known LOV-photoreceptors. How, then, is signal transmitted in Aureochrome1? The dark- and light-state crystal structures of Aureochrome1 LOV domain (AuLOV) show that its helical N- and C-terminal flanking regions are packed against the external surface of the core {beta} sheet, opposite to the FMN chromophore on the internal surface. Light-induced conformational changes occur in the quaternary structure of the AuLOV dimer and in Phe298 of the H{beta} strand in the core. The properties of AuLOV extend the applicability of LOV domains as versatile design modules that permit fusion to effector domains via either the N- or C-termini to confer blue-light sensitivity.

  4. Composite structures 4; Proceedings of the Fourth International Conference, Paisley College of Technology, Scotland, July 27-29, 1987. Volume 1 - Analysis and design studies

    SciTech Connect (OSTI)

    Marshall, I.H.

    1987-01-01

    Various papers on analysis and design studies in composite structures are presented. The general topics addressed include: space studies, mechanical fasteners, buckling and postbuckling of platework structures, aerospace structures, wind turbine design, pipes and pressure vessels, analysis and buckling of shell-type structures. Also considered are: structural sections and optimization, thermal loading, vibration of platework structures and shell-type structures, dynamic loading, and finite element analysis.

  5. Prospects for the pulsed electrodeposition of zinc-oxide hierarchical nanostructures

    SciTech Connect (OSTI)

    Klochko, N. P.; Myagchenko, Y. O.; Melnychuk, E. E.; Kopach, V. R.; Klepikova, E. S.; Lyubov, V. N.; Khrypunov, G. S.; Kopach, A. V.

    2013-08-15

    Studies into the effect of the conditions of pulsed electrodeposition upon the structural and sub-structural parameters, morphology, and optical properties of ZnO-crystallite arrays make it possible to establish those parameters optimal for the formation of ZnO nanorods oriented normally to the substrate surface. These parameters are as follows: an electrolyte temperature of 70-85 Degree-Sign C, duty cycle of 40%, and a pulse-repetition frequency of 2 Hz. The nanorod dimensions can be varied by heating or cooling the electrolyte within the above-indicated limits; as a result, small-sized nanorods can be electrically deposited on the surface of larger nanorods to form hierarchical nanostructures. By varying the duty cycle, it is possible to modify the surface morphology of the arrays up to the formation of mesoporous ZnO networks. In combination with ZnO nanorods, such networks are capable of forming hierarchical nanostructures with large specific areas.

  6. Hierarchical clustering using correlation metric and spatial continuity constraint

    DOE Patents [OSTI]

    Stork, Christopher L.; Brewer, Luke N.

    2012-10-02

    Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.

  7. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    SciTech Connect (OSTI)

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  8. Synthesis of BiOI flowerlike hierarchical structures toward photocatal...

    Office of Scientific and Technical Information (OSTI)

    As-synthesized BiOI was characterized by powder X-ray diffraction, UV-vis diffuse reflectance spectra, X-ray photoelectron spectroscopy spectra, scanning electron microscopy, ...

  9. Geopolymer with hierarchically meso-/macroporous structures from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emulsion which was then cured at 60C to give a hard monolithic material. During the process, the oil in the alkaline emulsion undergoes a saponification reaction to be...

  10. Structural Design Criteria for Anion Hosts: Strategies for Achieving Anion Shape Recognition through the Complementary Placement of Urea Donor Groups

    SciTech Connect (OSTI)

    Hay, Benjamin P.; Firman, Timothy K.; Moyer, Bruce A.

    2005-02-16

    The arrangement of urea ligands about different shaped anions has been evaluated with electronic structure calculations. Geometries and binding energies are reported for urea complexes with Cl{sup -}, NO{sub 3}{sup -}, and ClO{sub 4}{sup -}. The results yield new insight into the nature of urea-anion interactions and provide structural criteria for the deliberate design of anion selective receptors containing two or more urea donor groups.

  11. A Multi-layer, Hierarchical Information Management System for the Smart Grid

    SciTech Connect (OSTI)

    Lu, Ning; Du, Pengwei; Paulson, Patrick R.; Greitzer, Frank L.; Guo, Xinxin; Hadley, Mark D.

    2011-10-10

    This paper presents the modeling approach, methodologies, and initial results of setting up a multi-layer, hierarchical information management system (IMS) for the smart grid. The IMS allows its users to analyze the data collected by multiple control and communication networks to characterize the states of the smart grid. Abnormal, corrupted, or erroneous measurement data and outliers are detected and analyzed to identify whether they are caused by random equipment failures, unintentional human errors, or deliberate tempering attempts. Data collected from different information networks are crosschecked for data integrity based on redundancy, dependency, correlation, or cross-correlations, which reveal the interdependency between data sets. A hierarchically structured reasoning mechanism is used to rank possible causes of an event to aid the system operators to proactively respond or provide mitigation recommendations to remove or neutralize the threats. The model provides satisfactory performance on identifying the cause of an event and significantly reduces the need of processing myriads of data collected.

  12. Design of a superconducting 28 GHz ion source magnet for FRIB using a shell-based support structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Felice, H.; Rochepault, E.; Hafalia, R.; Caspi, S.; Dietderich, D. R.; Prestemon, S. O.; Machicoane, G.; Pozdeyev, E.; Bultman, N.; Rao, X.

    2014-12-05

    The Superconducting Magnet Program at the Lawrence Berkeley National Laboratory (LBNL) is completing the design of a 28 GHz NbTi ion source magnet for the Facility for Rare Isotope Beams (FRIB). The design parameters are based on the parameters of the ECR ion source VENUS in operation at LBNL since 2002 featuring a sextupole-in-solenoids configuration. Whereas most of the magnet components (such as conductor, magnetic design, protection scheme) remain very similar to the VENUS magnet components, the support structure of the FRIB ion source uses a different concept. A shell-based support structure using bladders and keys is implemented in themore » design allowing fine tuning of the sextupole preload and reversibility of the magnet assembly process. As part of the design work, conductor insulation scheme, coil fabrication processes and assembly procedures are also explored to optimize performance. We present the main features of the design emphasizing the integrated design approach used at LBNL to achieve this result.« less

  13. Model Based Structural Evaluation & Design of Overpack Container for Bag-Buster Processing of TRU Waste Drums

    SciTech Connect (OSTI)

    D. T. Clark; A. S. Siahpush; G. L. Anderson

    2004-07-01

    This paper describes a materials and computational model based analysis utilized to design an engineered overpack container capable of maintaining structural integrity for confinement of transuranic wastes undergoing the cryo-vacuum stress based Bag-Buster process and satisfying DOT 7A waste package requirements. The engineered overpack is a key component of the Ultra-BagBuster process/system being commercially developed by UltraTech International for potential DOE applications to non-intrusively breach inner confinement layers (poly bags/packaging) within transuranic (TRU) waste drums. This system provides a lower cost/risk approach to mitigate hydrogen gas concentration buildup limitations on transport of high alpha activity organic transuranic wastes. Four evolving overpack design configurations and two materials (low carbon steel and 300 series stainless) were considered and evaluated using non-linear finite element model analyses of structural response. Properties comparisons show that 300-series stainless is required to provide assurance of ductility and structural integrity at both room and cryogenic temperatures. The overpack designs were analyzed for five accidental drop impact orientations onto an unyielding surface (dropped flat on bottom, bottom corner, side, top corner, and top). The first three design configurations failed the bottom and top corner drop orientations (flat bottom, top, and side plates breached or underwent material failure). The fourth design utilized a protruding rim-ring (skirt) below the overpacks bottom plate and above the overpacks lid plate to absorb much of the impact energy and maintained structural integrity under all accidental drop loads at both room and cryogenic temperature conditions. Selected drop testing of the final design will be required to confirm design performance.

  14. Seismic design technology for breeder reactor structures. Volume 2. Special topics in soil/structure interaction analyses

    SciTech Connect (OSTI)

    Reddy, D.P.

    1983-04-01

    This volume is divided into six chapters: definition of seismic input ground motion, review of state-of-the-art procedures, analysis guidelines, rock/structure interaction analysis example, comparison of two- and three-dimensional analyses, and comparison of analyses using FLUSH and TRI/SAC Codes. (DLC)

  15. Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up

    Office of Scientific and Technical Information (OSTI)

    Self-Assembly and Top-Down Micromachining (Journal Article) | SciTech Connect Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up Self-Assembly and Top-Down Micromachining Citation Details In-Document Search Title: Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up Self-Assembly and Top-Down Micromachining Authors: Gerasopoulos, K ; Pomerantseva, Ekaterina ; McCarthy, M ; Brown, A ; Wang, Chunsheng ; Culver, J N ; Ghodssi, Reza Publication Date:

  16. Hierarchical calibration of computer models (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Hierarchical calibration of computer models Citation Details In-Document Search Title: Hierarchical calibration of computer models × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public

  17. Highly Ordered Tailored Three-Dimensional Hierarchical Porous Gold

    Office of Scientific and Technical Information (OSTI)

    Architectures. (Journal Article) | SciTech Connect Journal Article: Highly Ordered Tailored Three-Dimensional Hierarchical Porous Gold Architectures. Citation Details In-Document Search Title: Highly Ordered Tailored Three-Dimensional Hierarchical Porous Gold Architectures. Abstract not provided. Authors: Polsky, Ronen ; Brozik, Susan Marie ; Washburn, Cody M. ; Wheeler, David Roger ; Burckel, David Bruce ; sattayasamtsathit, sirilak ; OMahony, Aoife ; Gao, Wei ; Minteer, Shelley ; Cha,

  18. Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET

    Office of Scientific and Technical Information (OSTI)

    CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION (Journal Article) | SciTech Connect Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION Citation Details In-Document Search Title: Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION We present theoretical predictions of the UV continuum luminosity function (UV LF) and

  19. A Hierarchical Evaluation of Regional Climate Simulations (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Journal Article: A Hierarchical Evaluation of Regional Climate Simulations Citation Details In-Document Search Title: A Hierarchical Evaluation of Regional Climate Simulations Authors: Leung, Ruby [1] ; Ringler, Todd [2] ; Collins, William D [3] ; Taylor, Mark [4] ; Ashfaq, Moetasim [5] + Show Author Affiliations Pacific Northwest National Laboratory (PNNL) Los Alamos National Laboratory (LANL) Lawrence Berkeley National Laboratory (LBNL) Sandia National Laboratories (SNL)

  20. A reconstructed discontinuous Galerkin method based on a Hierarchical WENO

    Office of Scientific and Technical Information (OSTI)

    reconstruction for compressible flows on tetrahedral grids (Journal Article) | SciTech Connect reconstructed discontinuous Galerkin method based on a Hierarchical WENO reconstruction for compressible flows on tetrahedral grids Citation Details In-Document Search Title: A reconstructed discontinuous Galerkin method based on a Hierarchical WENO reconstruction for compressible flows on tetrahedral grids Authors: Hong Luo ; Yidong Xia ; Seth Spiegel ; Robert Nourgaliev ; Zonglin Jiang

  1. Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications

    SciTech Connect (OSTI)

    Krishnamoorthy, Karthikeyan; Kim, Sang-Jae

    2013-09-01

    Graphical abstract: - Highlights: Hierarchical CuO nanostructures were grown on Cu foil. Monoclinic phase of CuO was grown. XPS analysis revealed the presence of Cu(2p{sub 3/2}) and Cu(2p{sub 1/2}) on the surfaces. Specific capacitance of 94 F/g was achieved for the CuO using cyclic voltammetry. Impedance spectra show their pseudo capacitor applications. - Abstract: In this paper, we have investigated the electrochemical properties of hierarchical CuO nanostructures for pseudo-supercapacitor device applications. Moreover, the CuO nanostructures were formed on Cu substrate by in situ crystallization process. The as-grown CuO nanostructures were characterized using X-ray diffraction (XRD), Fourier transform-infra red spectroscopy (FT-IR), X-ray photoelectron spectroscopy and field emission-scanning electron microscope (FE-SEM) analysis. The XRD and FT-IR analysis confirm the formation of monoclinic CuO nanostructures. FE-SEM analysis shows the formation of leave like hierarchical structures of CuO with high uniformity and controlled density. The electrochemical analysis such as cyclic voltammetry and electrochemical impedance spectroscopy studies confirms the pseudo-capacitive behavior of the CuO nanostructures. Our experimental results suggest that CuO nanostructures will create promising applications of CuO toward pseudo-supercapacitors.

  2. Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 Degrees C: Preprint

    SciTech Connect (OSTI)

    Neises, T. W.; Wagner, M. J.; Gray, A. K.

    2014-04-01

    Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditional boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.

  3. Design of RF Feed System for Standing-Wave Accelerator Structures

    SciTech Connect (OSTI)

    Neilson, J.; Tantawi, S.; Dolgashev, V.; /SLAC

    2012-05-25

    We are investigating a standing wave accelerator structure that uses a rf feed to each individual cell. This approach minimizes rf power flow and electromagnetic energy absorbed by an rf breakdown. The objective of this work is a robust high-gradient (above 100 MV/m) X-band accelerator structure.

  4. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    SciTech Connect (OSTI)

    Mendelsohn, M.; Kreycik, C.

    2012-04-01

    Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

  5. CONCEPTUAL DESIGN REPORT

    SciTech Connect (OSTI)

    ROBINSON,K.

    2006-12-31

    Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron radiation. This facility, called the ''National Synchrotron Light Source II'' (NSLS-II), will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopy on a single atom. The overall objective of the NSLS-II project is to deliver a research facility to advance fundamental science and have the capability to characterize and understand physical properties at the nanoscale, the processes by which nanomaterials can be manipulated and assembled into more complex hierarchical structures, and the new phenomena resulting from such assemblages. It will also be a user facility made available to researchers engaged in a broad spectrum of disciplines from universities, industries, and other laboratories.

  6. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    SciTech Connect (OSTI)

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.; Katz, Alexander

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematicallyincluding the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal sitethereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify ligands on the metals and their reactions; EXAFS spectroscopy and high-resolution STEM to determine cluster framework structures and changes resulting from reactant treatment and locations of metal atoms on support surfaces; X-ray diffraction crystallography to determine full structures of cluster-ligand combinations in the absence of a support, and TEM with tomographic methods to observe individual metal atoms and determine three-dimensional structures of catalysts. Electronic structure calculations were used to verify and interpret spectra and extend the understanding of reactivity beyond what is measurable experimentally.

  7. Protein folding and non-conventional drug design: a primer for nuclear structure physicists

    SciTech Connect (OSTI)

    Broglia, R.A. [Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan (Italy); Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Tiana, G.; Provasi, D. [Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan (Italy)

    2004-02-27

    Some of the paradigms emerging from the study of the phenomena of phase transitions in finite many-body systems, like e.g. the atomic nucleus can be used at profit to solve the protein folding problem within the framework of simple (although not oversimplified) models. From this solution a paradigm emerges for the design of non-conventional drugs, which inhibit enzymatic action without inducing resistance (mutations). The application of these concepts to the design of an inhibitor to the HIV-protease central in the life cycle of the HIV virus is discussed.

  8. Validation of Methods for Computational Catalyst Design: Geometries, Structures, and Energies of Neutral and Charged Silver Clusters

    SciTech Connect (OSTI)

    Duanmu, Kaining; Truhlar, Donald G.

    2015-04-30

    We report a systematic study of small silver clusters, Agn, Agn+, and Agn–, n = 1–7. We studied all possible isomers of clusters with n = 5–7. We tested 42 exchange–correlation functionals, and we assess these functionals for their accuracy in three respects: geometries (quantitative prediction of internuclear distances), structures (the nature of the lowest-energy structure, for example, whether it is planar or nonplanar), and energies. We find that the ingredients of exchange–correlation functionals are indicators of their success in predicting geometries and structures: local exchange–correlation functionals are generally better than hybrid functionals for geometries; functionals depending on kinetic energy density are the best for predicting the lowest-energy isomer correctly, especially for predicting two-dimensional to three-dimenstional transitions correctly. The accuracy for energies is less sensitive to the ingredient list. Our findings could be useful for guiding the selection of methods for computational catalyst design.

  9. Structural design, analysis, and code evaluation of an odd-shaped pressure vessel

    SciTech Connect (OSTI)

    Rezvani, M.A.; Ziada, H.H.

    1992-12-01

    This paper is the result of an effort to design, analyze and evaluate a rectangular pressure vessel. Normally pressure vessels are designed in circular or spherical shapes to prevent stress concentrations. In this case, because of operational limitations, the choice of vessels was limited to a rectangular pressure box with a removable cover plate. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code is used as a guideline for pressure containments whose width or depth exceeds 15.24 cm (6.0 in.) and where pressures will exceed 103.4 KPa (15.0 lbf/in[sup 2]). This evaluation used Section VIII of this Code, hereafter referred to as the Code. The dimensions and working pressure of the subject vessel fall within the pressure vessel category of the Code. The Code design guidelines and rules do not directly apply to this vessel. Therefore, finite-element methodology was used to analyze the pressure vessel, and the Code then was used in qualifying the vessel to be stamped to the Code. Section VIII, Division 1 of the Code was used for evaluation. This action was justified by selecting a material for which fatigue damage would not be a concern. The stress analysis results were then chocked against the Code, and the thicknesses adjusted to satisfy Code requirements. Although not directly applicable, the Code design formulas for rectangular vessels were also considered and presented in this study.

  10. Structural design, analysis, and code evaluation of an odd-shaped pressure vessel

    SciTech Connect (OSTI)

    Rezvani, M.A.; Ziada, H.H.

    1992-12-01

    This paper is the result of an effort to design, analyze and evaluate a rectangular pressure vessel. Normally pressure vessels are designed in circular or spherical shapes to prevent stress concentrations. In this case, because of operational limitations, the choice of vessels was limited to a rectangular pressure box with a removable cover plate. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code is used as a guideline for pressure containments whose width or depth exceeds 15.24 cm (6.0 in.) and where pressures will exceed 103.4 KPa (15.0 lbf/in{sup 2}). This evaluation used Section VIII of this Code, hereafter referred to as the Code. The dimensions and working pressure of the subject vessel fall within the pressure vessel category of the Code. The Code design guidelines and rules do not directly apply to this vessel. Therefore, finite-element methodology was used to analyze the pressure vessel, and the Code then was used in qualifying the vessel to be stamped to the Code. Section VIII, Division 1 of the Code was used for evaluation. This action was justified by selecting a material for which fatigue damage would not be a concern. The stress analysis results were then chocked against the Code, and the thicknesses adjusted to satisfy Code requirements. Although not directly applicable, the Code design formulas for rectangular vessels were also considered and presented in this study.

  11. Designing π-stacked molecular structures to control heat transport through molecular junctions

    SciTech Connect (OSTI)

    Kiršanskas, Gediminas; Li, Qian; Solomon, Gemma C.; Flensberg, Karsten; Leijnse, Martin

    2014-12-08

    We propose and analyze a way of using π stacking to design molecular junctions that either enhance or suppress a phononic heat current, but at the same time remain conductors for an electric current. Such functionality is highly desirable in thermoelectric energy converters, as well as in other electronic components where heat dissipation should be minimized or maximized. We suggest a molecular design consisting of two masses coupled to each other with one mass coupled to each lead. By having a small coupling (spring constant) between the masses, it is possible to either reduce or perhaps more surprisingly enhance the phonon conductance. We investigate a simple model system to identify optimal parameter regimes and then use first principle calculations to extract model parameters for a number of specific molecular realizations, confirming that our proposal can indeed be realized using standard molecular building blocks.

  12. Carbon composition with hierarchical porosity, and methods of preparation

    DOE Patents [OSTI]

    Mayes, Richard T; Dai, Sheng

    2014-10-21

    A method for fabricating a porous carbon material possessing a hierarchical porosity, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic component, (iii) a dione component in which carbonyl groups are adjacent, and (iv) an acidic component, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material possessing a hierarchical porosity comprised of mesopores and macropores. Also described are the resulting hierarchical porous carbon material, a capacitive deionization device in which the porous carbon material is incorporated, as well as methods for desalinating water by use of said capacitive deionization device.

  13. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME ONE: PRELIMINARY DESIGN REPORT

    SciTech Connect (OSTI)

    Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.; Chow, Ray; Nordenholz, Thomas R.; Wamble, John Lee

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  14. Design and operating characteristics of cathodic protection systems associated with large seawater intake reinforced concrete structures in the Arabian Gulf

    SciTech Connect (OSTI)

    Ali, M.; Chaudhary, Z.; Al-Muhid, T.M.M.

    1999-07-01

    The large reinforced concrete seawater intake structures, which are part of a cooling system in several petrochemical plants located in the Arabian Gulf, have been catholically protected to arrest chloride-induced corrosion of the steel reinforcement. The cathodic protection systems have an operating history of 1--5 years. The design and operating features of the cathodic protection systems are described and discussed. Monitoring data of each system collected over the years since commissioning of the systems are described and discussed to evaluate performance of each system.

  15. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Michael Mendelsohn and Claire Kreycik Technical Report NREL/TP-6A20-48685 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov

  16. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Michael Mendelsohn and Claire Kreycik Technical Report NREL/TP-6A20-48685 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov

  17. Recent advances in alloy design of Ni{sub 3}Al alloys for structural use

    SciTech Connect (OSTI)

    Liu, C.T.; George, E.P.

    1996-12-31

    This is a comprehensive review of recent advances in R&D of Ni{sub 3}Al-based alloys for structural use at elevated temperatures in hostile environments. Recent studies indicate that polycrystalline Ni{sub 3}Al is intrinsically quite ductile at ambient temperatures, and its poor tensile ductility and brittle grain-boundary fracture are caused mainly by moisture-induced hydrogen embrittlement when the aluminide is tested in moisture- or hydrogen-containing environments. Tensile ductility is improved by alloying with substitutional and interstitial elements. Among these additives, B is most effective in suppressing environmental embrittlement and enhancing grain-boundary cohesion, resulting in a dramatic increase of tensile ductility at room temperature. Both B-doped and B-free Ni{sub 3}Al alloys exhibit brittle intergranular fracture and low ductility at intermediate temperatures (300-850 C) because of oxygen-induced embrittlement in oxidizing environments. Cr is found to be most effective in alleviating elevated-temperature embrittlement. Parallel efforts on alloy development using physical metallurgy principles have led to development of several Ni{sub 3}Al alloys for industrial use. The unique properties of these alloys are briefly discussed. 56 refs, 15 figs, 3 tabs.

  18. Scalable Computer Performance and Analysis (Hierarchical INTegration)

    Energy Science and Technology Software Center (OSTI)

    1999-09-02

    HINT is a program to measure a wide variety of scalable computer systems. It is capable of demonstrating the benefits of using more memory or processing power, and of improving communications within the system. HINT can be used for measurement of an existing system, while the associated program ANALYTIC HINT can be used to explain the measurements or as a design tool for proposed systems.

  19. Structural Criteria for the Rational Design of Selective Ligands: Convergent Hydrogen Bonding Sites for the Nitrate Anion

    SciTech Connect (OSTI)

    Hay, Benjamin P.; Gutowski, Maciej S.; Dixon, David A.; Garza , Jorge; Vargas, Rubicelia; Moyer, Bruce A.

    2004-06-30

    Molecular hosts for anion complexation are often constructed by combining two or more hydrogen bonding functional groups, DH. The deliberate design of complementary host architectures requires knowledge of the optimal geometry for the hydrogen bonds formed between the host and the guest. Herein, we present a detailed study of the structural aspects of hydrogen bonding interactions with the NO3 anion. A large number of crystal structures are analyzed to determine the number of hydrogen bond contacts per anion and to further characterize the structural aspects of these interactions. Electronic structure calculations are used to determine stable geometries and interaction energies for NO3 complexes with several simple molecules possessing DH groups, including water, methanol, N-methylformamide, and methane. Theoretical results are reported at several levels of density functional theory, including BP86/DN**, B3LYP/TZVP, and B3LYP/TZVP+, and at MP2/aug-cc-pVDZ. In addition, MP2 binding energies for these complexes were obtained at the complete basis set limit by extrapolating from single point energies obtained with larger correlation-consistent basis sets. The results establish that NO3 has an intrinsic hydrogen bonding topography in which there are six optimal sites for proton location. The structural features observed in crystal structures and in the optimized geometries of complexes are explained by a preference to locate the DH protons in these positions. For the strongest hydrogen bonding interactions, the NOH angle is bent at an angle of 115 10, and the hydrogen atom lies in the NO3 plane giving ONOH dihedral angles of 0 and 180. In addition, the D-H vector points towards the oxygen atom, giving DHO angles that are near linear, 170 10. Due to steric hindrance, simple alcohol OH and amide NH donors form 3:1 complexes with NO3, with HO distances of 1.85 0.5 . Thus, the optimal cavity radius for a tridentate host, defined as the distance from the center to the DH hydrogen atoms, is 2.65 0.15 .

  20. Structure-Based Design of Potent and Selective 3-Phosphoinositide-Dependent Kinase-1 (PDK1) Inhibitors

    SciTech Connect (OSTI)

    Medina, Jesus R.; Becker, Christopher J.; Blackledge, Charles W.; Duquenne, Celine; Feng, Yanhong; Grant, Seth W.; Heerding, Dirk; Li, William H.; Miller, William H.; Romeril, Stuart P.; Scherzer, Daryl; Shu, Arthur; Bobko, Mark A.; Chadderton, Antony R.; Dumble, Melissa; Gardiner, Christine M.; Gilbert, Seth; Liu, Qi; Rabindran, Sridhar K.; Sudakin, Valery; Xiang, Hong; Brady, Pat G.; Campobasso, Nino; Ward, Paris; Axten, Jeffrey M.

    2014-10-02

    Phosphoinositide-dependent protein kinase-1(PDK1) is a master regulator of the AGC family of kinases and an integral component of the PI3K/AKT/mTOR pathway. As this pathway is among the most commonly deregulated across all cancers, a selective inhibitor of PDK1 might have utility as an anticancer agent. Herein we describe our lead optimization of compound 1 toward highly potent and selective PDK1 inhibitors via a structure-based design strategy. The most potent and selective inhibitors demonstrated submicromolar activity as measured by inhibition of phosphorylation of PDK1 substrates as well as antiproliferative activity against a subset of AML cell lines. In addition, reduction of phosphorylation of PDK1 substrates was demonstrated in vivo in mice bearing OCl-AML2 xenografts. These observations demonstrate the utility of these molecules as tools to further delineate the biology of PDK1 and the potential pharmacological uses of a PDK1 inhibitor.

  1. Support Structure Design of the $$\\hbox{Nb}_{3}\\hbox{Sn}$$ Quadrupole for the High Luminosity LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Juchno, M.; Ambrosio, G.; Anerella, M.; Cheng, D.; Felice, H.; Ferracin, P.; Perez, J. C.; Prin, H.; Schmalzle, J.

    2014-10-31

    New low-β quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb₃Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of themore » detailed 3D numerical analysis performed in preparation for the first short model test.« less

  2. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    SciTech Connect (OSTI)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J.

    2014-09-14

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  3. Compiler-Directed File Layout Optimization for Hierarchical Storage Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ding, Wei; Zhang, Yuanrui; Kandemir, Mahmut; Son, Seung Woo

    2013-01-01

    File layout of array data is a critical factor that effects the behavior of storage caches, and has so far taken not much attention in the context of hierarchical storage systems. The main contribution of this paper is a compiler-driven file layout optimization scheme for hierarchical storage caches. This approach, fully automated within an optimizing compiler, analyzes a multi-threaded application code and determines a file layout for each disk-resident array referenced by the code, such that the performance of the target storage cache hierarchy is maximized. We tested our approach using 16 I/O intensive application programs and compared its performancemore » against two previously proposed approaches under different cache space management schemes. Our experimental results show that the proposed approach improves the execution time of these parallel applications by 23.7% on average.« less

  4. Structure-Based Design of Robust Glucose Biosensors using a Thermotoga maritima Periplasmic Glucose-Binding Protein

    SciTech Connect (OSTI)

    Tian,Y.; Cunco, M.; Changela, A.; Hocker, B.; Beese, L.; Hellinga, H.

    2007-01-01

    We report the design and engineering of a robust, reagentless fluorescent glucose biosensor based on the periplasmic glucose-binding protein obtained from Thermotoga maritima (tmGBP). The gene for this protein was cloned from genomic DNA and overexpressed in Escherichia coli, the identity of its cognate sugar was confirmed, ligand binding was studied, and the structure of its glucose complex was solved to 1.7 Angstroms resolution by X-ray crystallography. TmGBP is specific for glucose and exhibits high thermostability (midpoint of thermal denaturation is 119 {+-} 1 C and 144 {+-} 2 C in the absence and presence of 1 mM glucose, respectively). A series of fluorescent conjugates was constructed by coupling single, environmentally sensitive fluorophores to unique cysteines introduced by site-specific mutagenesis at positions predicted to be responsive to ligand-induced conformational changes based on the structure. These conjugates were screened to identify engineered tmGBPs that function as reagentless fluorescent glucose biosensors. The Y13C Cy5 conjugate is bright, gives a large response to glucose over concentration ranges appropriate for in vivo monitoring of blood glucose levels (1-30 mM), and can be immobilized in an orientation-specific manner in microtiter plates to give a reversible response to glucose. The immobilized protein retains its response after long-term storage at room temperature.

  5. Sandia National Labs: PCNSC: Research: Collective Hierarchical Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collective Hierarchical Systems: Developing life-emulating technologies by exploiting the physics of far-from-equilibrium, self-assembling systems What is it? We want to establish the Physical, Chemical and Nano Sciences Center and Sandia National Laboratories as major players in developing the interdisciplinary science of complex, far-from-equilibrium, self-assembling systems. These are systems that self-assemble highly organized states dynamically, across multiple length scales, through the

  6. Hierarchical Diagnosis M. Allmen and W. P. Kegelmeyer, Jr.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Allmen and W. P. Kegelmeyer, Jr. Sandia National laboratories Livermore, CA 94551 Three-dimensional (3-D) cloud characterization permits the derivation of important cloud geometry properties such as fractional cloudiness, mean cloud and clear length, aspect ratio, and the morphology of cloud cover. These properties are needed as input to the hierarchical diagnosis (HD) and instantaneous radiative transfer (IRF) models, to validate sub-models for cloud occurrence and formation, and to Central

  7. Hierarchically Ordered Porous Carbon Films for Commercial Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Desalination - Energy Innovation Portal Industrial Technologies Industrial Technologies Hydropower, Wave and Tidal Hydropower, Wave and Tidal Advanced Materials Advanced Materials Find More Like This Return to Search Hierarchically Ordered Porous Carbon Films for Commercial Water Desalination Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00230_ID2431 (2).pdf (777 KB) Technology Marketing SummaryPorous carbon films that can be

  8. Constructing hierarchical interfaces: TiO2-supported PtFe-FeOx nanowires for room temperature CO oxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Huiyuan; Wu, Zili; Dong, Su; Veith, Gabriel M.; Lu, Hanfeng; Zhang, Pengfei; Chai, Song -Hai; Dai, Sheng

    2015-08-05

    This is a report of a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO2-supported PtFe–FeOx nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeOx within each NW and the interactions between NWs and support (TiO2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeOx and TiO2 participate in the initial CO oxidation, facilitating the reaction through a redox pathway. Moreover, themore » intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe–FeOx/TiO2 catalyst exhibits no activity decay. These results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.« less

  9. Distributed Hierarchical Control Architecture for Transient Dynamics Improvement in Power Systems

    SciTech Connect (OSTI)

    Marinovici, Laurentiu D.; Lian, Jianming; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

    2013-08-24

    In this paper, a novel distributed hierarchical coordinated control architecture is proposed for large scale power systems. The newly considered architecture facilitates frequency restoration and power balancing functions to be decoupled and implemented at different levels. At the local level, decentralized robust generator controllers are designed to quickly restore frequency after large faults and disturbances in the system. The controllers presented herein are shown to improve transient stability performance, as compared to conventional governor and excitation control. At the area level, Automatic Generation Control (AGC) is modified and coordinates with the decentralized robust controllers to reach the interchange schedule in the tie lines. The interaction of local and zonal controllers is validated through detailed simulations.

  10. HIERARCHICAL METHODOLOGY FOR MODELING HYDROGEN STORAGE SYSTEMS PART II: DETAILED MODELS

    SciTech Connect (OSTI)

    Hardy, B; Donald L. Anton, D

    2008-12-22

    There is significant interest in hydrogen storage systems that employ a media which either adsorbs, absorbs or reacts with hydrogen in a nearly reversible manner. In any media based storage system the rate of hydrogen uptake and the system capacity is governed by a number of complex, coupled physical processes. To design and evaluate such storage systems, a comprehensive methodology was developed, consisting of a hierarchical sequence of models that range from scoping calculations to numerical models that couple reaction kinetics with heat and mass transfer for both the hydrogen charging and discharging phases. The scoping models were presented in Part I [1] of this two part series of papers. This paper describes a detailed numerical model that integrates the phenomena occurring when hydrogen is charged and discharged. A specific application of the methodology is made to a system using NaAlH{sub 4} as the storage media.

  11. A prototype functional language implementation for hierarchical- memory architectures

    SciTech Connect (OSTI)

    Wolski, R.; Feo, J.; Cann, D.

    1992-01-14

    Programming languages are the most important tool at a programmers' disposal. All other tools correct, visualize, or evaluate the product crafted by this tool. The advent of multiprocessor computer systems has greatly complicated the programmer's task an increased his need for high-level languages capable of automatically taming these architectures. In this paper, we describe a prototype implementation of Sisal for multiprocessor, hierarchical-memory systems. The implementation includes explicit compiler and runtime control that effectively exploits the different levels of memory and manages interprocess communications (IPC). We give preliminary performance results for this system on the BBN TC2000.

  12. A Hierarchical Security Architecture for Cyber-Physical Systems

    SciTech Connect (OSTI)

    Quanyan Zhu; Tamer Basar

    2011-08-01

    Security of control systems is becoming a pivotal concern in critical national infrastructures such as the power grid and nuclear plants. In this paper, we adopt a hierarchical viewpoint to these security issues, addressing security concerns at each level and emphasizing a holistic cross-layer philosophy for developing security solutions. We propose a bottom-up framework that establishes a model from the physical and control levels to the supervisory level, incorporating concerns from network and communication levels. We show that the game-theoretical approach can yield cross-layer security strategy solutions to the cyber-physical systems.

  13. Time Synchronization in Hierarchical TESLA Wireless Sensor Networks

    SciTech Connect (OSTI)

    Jason L. Wright; Milos Manic

    2009-08-01

    Time synchronization and event time correlation are important in wireless sensor networks. In particular, time is used to create a sequence events or time line to answer questions of cause and effect. Time is also used as a basis for determining the freshness of received packets and the validity of cryptographic certificates. This paper presents secure method of time synchronization and event time correlation for TESLA-based hierarchical wireless sensor networks. The method demonstrates that events in a TESLA network can be accurately timestamped by adding only a few pieces of data to the existing protocol.

  14. Bayesian hierarchical models for soil CO{sub 2} flux and leak...

    Office of Scientific and Technical Information (OSTI)

    hierarchical method to obtain both global and site-specific parameter estimates. ... Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES; 58 ...

  15. Vehicle Technologies Office Merit Review 2014: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and Electrochemical Processes

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupled hierarchical models...

  16. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    ScienceCinema (OSTI)

    Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States

    2010-01-08

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  17. Three-dimensional structures of Plasmodium falciparum spermidine synthase with bound inhibitors suggest new strategies for drug design

    SciTech Connect (OSTI)

    Sprenger, Janina; Svensson, Bo; Hlander, Jenny; Carey, Jannette; Persson, Lo; Al-Karadaghi, Salam

    2015-03-01

    In this work, X-ray crystallography was used to examine ligand complexes of spermidine synthase from the malaria parasite Plasmodium falciparum (PfSpdS). The enzymes of the polyamine-biosynthesis pathway have been proposed to be promising drug targets in the treatment of malaria. Spermidine synthase (SpdS; putrescine aminopropyltransferase) catalyzes the transfer of the aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine, leading to the formation of spermidine and 5?-methylthioadenosine (MTA). In this work, X-ray crystallography was used to examine ligand complexes of SpdS from the malaria parasite Plasmodium falciparum (PfSpdS). Five crystal structures were determined of PfSpdS in complex with MTA and the substrate putrescine, with MTA and spermidine, which was obtained as a result of the enzymatic reaction taking place within the crystals, with dcAdoMet and the inhibitor 4-methylaniline, with MTA and 4-aminomethylaniline, and with a compound predicted in earlier in silico screening to bind to the active site of the enzyme, benzimidazol-(2-yl)pentan-1-amine (BIPA). In contrast to the other inhibitors tested, the complex with BIPA was obtained without any ligand bound to the dcAdoMet-binding site of the enzyme. The complexes with the aniline compounds and BIPA revealed a new mode of ligand binding to PfSpdS. The observed binding mode of the ligands, and the interplay between the two substrate-binding sites and the flexible gatekeeper loop, can be used in the design of new approaches in the search for new inhibitors of SpdS.

  18. Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Liping; Bai, Jianming; Gao, Peng; Wang, Xiaoya; Looney, J. Patrick; Wang, Feng

    2015-07-30

    In this study, preparing new electrode materials with synthetic control of phases and electrochemical properties is desirable for battery applications but hardly achievable without knowing how the synthesis reaction proceeds. Herein, we report on structure tracking-aided design and synthesis of single-crystalline Li3V2(PO4)3 (LVP) nanoparticles with extremely high rate capability. A comprehensive investigation was made to the local structural orderings of the involved phases and their evolution toward forming LVP phase using in situ/ex situ synchrotron X-ray and electron-beam diffraction, spectroscopy, and imaging techniques. The results shed light on the thermodynamics and kinetics of synthesis reactions and enabled the design ofmore » a cost-efficient synthesis protocol to make nanocrystalline LVP, wherein solvothermal treatment is a crucial step leading to an amorphous intermediate with local structural ordering resembling that of LVP, which, upon calcination at moderate temperatures, rapidly transforms into the desired LVP phase. The obtained LVP particles are about 50 nm, coated with a thin layer of amorphous carbon and featured with excellent cycling stability and rate capability – 95% capacity retention after 200 cycles and 66% theoretical capacity even at a current rate of 10 C. The structure tracking based method we developed in this work offers a new way of designing battery electrodes with synthetic control of material phases and properties.« less

  19. Compiling software for a hierarchical distributed processing system

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-12-31

    Compiling software for a hierarchical distributed processing system including providing to one or more compiling nodes software to be compiled, wherein at least a portion of the software to be compiled is to be executed by one or more nodes; compiling, by the compiling node, the software; maintaining, by the compiling node, any compiled software to be executed on the compiling node; selecting, by the compiling node, one or more nodes in a next tier of the hierarchy of the distributed processing system in dependence upon whether any compiled software is for the selected node or the selected node's descendents; sending to the selected node only the compiled software to be executed by the selected node or selected node's descendent.

  20. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    SciTech Connect (OSTI)

    Sanders, N. E.; Soderberg, A. M.; Betancourt, M.

    2015-02-10

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.

  1. Real-time and imaginary-time quantum hierarchal Fokker-Planck equations

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Real-time and imaginary-time quantum hierarchal Fokker-Planck equations Citation Details In-Document Search Title: Real-time and imaginary-time quantum hierarchal Fokker-Planck equations We consider a quantum mechanical system represented in phase space (referred to hereafter as "Wigner space"), coupled to a harmonic oscillator bath. We derive quantum hierarchal Fokker-Planck (QHFP) equations not only in real time but also in imaginary time,

  2. Towards intelligent microstructural design of Nanocomposite Materials. Lightweight, high strength structural/armor materials for service in extreme environments

    SciTech Connect (OSTI)

    Mara, Nathan Allan; Bronkhorst, Curt Allan; Beyerlein, Irene Jane

    2015-12-21

    The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.

  3. THE EVOLUTION OF BRIGHTEST CLUSTER GALAXIES IN A HIERARCHICAL UNIVERSE

    SciTech Connect (OSTI)

    Tonini, Chiara; Bernyk, Maksym; Croton, Darren [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, VIC 3122 (Australia); Maraston, Claudia; Thomas, Daniel [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)

    2012-11-01

    We investigate the evolution of brightest cluster galaxies (BCGs) from redshift z {approx} 1.6 to z = 0. We upgrade the hierarchical semi-analytic model of Croton et al. with a new spectro-photometric model that produces realistic galaxy spectra, making use of the Maraston stellar populations and a new recipe for the dust extinction. We compare the model predictions of the K-band luminosity evolution and the J - K, V - I, and I - K color evolution with a series of data sets, including those of Collins et al. who argued that semi-analytic models based on the Millennium simulation cannot reproduce the red colors and high luminosity of BCGs at z > 1. We show instead that the model is well in range of the observed luminosity and correctly reproduces the color evolution of BCGs in the whole redshift range up to z {approx} 1.6. We argue that the success of the semi-analytic model is in large part due to the implementation of a more sophisticated spectro-photometric model. An analysis of the model BCGs shows an increase in mass by a factor of 2-3 since z {approx} 1, and star formation activity down to low redshifts. While the consensus regarding BCGs is that they are passively evolving, we argue that this conclusion is affected by the degeneracy between star formation history and stellar population models used in spectral energy distribution fitting, and by the inefficacy of toy models of passive evolution to capture the complexity of real galaxies, especially those with rich merger histories like BCGs. Following this argument, we also show that in the semi-analytic model the BCGs show a realistic mix of stellar populations, and that these stellar populations are mostly old. In addition, the age-redshift relation of the model BCGs follows that of the universe, meaning that given their merger history and star formation history, the ageing of BCGs is always dominated by the ageing of their stellar populations. In a {Lambda}CDM universe, we define such evolution as 'passive in the hierarchical sense'.

  4. A Hierarchical Framework for Demand-Side Frequency Control

    SciTech Connect (OSTI)

    Moya, Christian; Zhang, Wei; Lian, Jianming; Kalsi, Karanjit

    2014-06-02

    With large-scale plans to integrate renewable generation, more resources will be needed to compensate for the uncertainty associated with intermittent generation resources. Under such conditions, performing frequency control using only supply-side resources become not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in frequency control to maintain the stability of the system at an acceptable cost. In this paper, a novel hierarchical decentralized framework for frequency based load control is proposed. The framework involves two decision layers. The top decision layer determines the optimal droop gain required from the aggregated load response on each bus using a robust decentralized control approach. The second layer consists of a large number of devices, which switch probabilistically during contingencies so that the aggregated power change matches the desired droop amount according to the updated gains. The proposed framework is based on the classical nonlinear multi-machine power system model, and can deal with timevarying system operating conditions while respecting the physical constraints of individual devices. Realistic simulation results based on a 68-bus system are provided to demonstrate the effectiveness of the proposed strategy.

  5. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    SciTech Connect (OSTI)

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-10-20

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ?10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ?} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  6. Simultaneous hierarchical segmentation and vectorization of satellite images through combined data sampling and anisotropic triangulation

    SciTech Connect (OSTI)

    Grazzini, Jacopo; Prasad, Lakshman; Dillard, Scott

    2010-10-21

    The automatic detection, recognition , and segmentation of object classes in remote sensed images is of crucial importance for scene interpretation and understanding. However, it is a difficult task because of the high variability of satellite data. Indeed, the observed scenes usually exhibit a high degree of complexity, where complexity refers to the large variety of pictorial representations of objects with the same semantic meaning and also to the extensive amount of available det.ails. Therefore, there is still a strong demand for robust techniques for automatic information extraction and interpretation of satellite images. In parallel, there is a growing interest in techniques that can extract vector features directly from such imagery. In this paper, we investigate the problem of automatic hierarchical segmentation and vectorization of multispectral satellite images. We propose a new algorithm composed of the following steps: (i) a non-uniform sampling scheme extracting most salient pixels in the image, (ii) an anisotropic triangulation constrained by the sampled pixels taking into account both strength and directionality of local structures present in the image, (iii) a polygonal grouping scheme merging, through techniques based on perceptual information , the obtained segments to a smaller quantity of superior vectorial objects. Besides its computational efficiency, this approach provides a meaningful polygonal representation for subsequent image analysis and/or interpretation.

  7. How much of the world's land has been urbanized, really? A hierarchical

    Office of Scientific and Technical Information (OSTI)

    framework for evading confusion (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: How much of the world's land has been urbanized, really? A hierarchical framework for evading confusion Citation Details In-Document Search Title: How much of the world's land has been urbanized, really? A hierarchical framework for evading confusion Urbanization has transformed the world's landscapes, resulting in a series of ecological and environmental problems. To assess

  8. Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at

    Office of Scientific and Technical Information (OSTI)

    geologic sequestration sites (Journal Article) | SciTech Connect Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at geologic sequestration sites Citation Details In-Document Search Title: Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at geologic sequestration sites Proper characterizations of background soil CO{sub 2} respiration rates are critical for interpreting CO{sub 2} leakage monitoring results at geologic sequestration sites. In this

  9. An Information Services Algorithm to Heuristically Summarize IP Addresses for a Distributed, Hierarchical Directory Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information services algorithm to heuristically summarize IP addresses for a distributed, hierarchical directory service Marcos Portnoi, Martin Swany Department of Computer and Information Sciences University of Delaware Newark, DE 19716, U.S.A. {portnoi, swany}@cis.udel.edu Jason Zurawski Internet2 Washington, DC 20036, U.S.A. zurawski@internet2.edu Abstract- A distributed, hierarchical information service for computer networks might use several service instances, located in different layers. A

  10. Regulatory Safety Issues in the Structural Design Criteria of ASME Section III Subsection NH and for Very High Temperatures for VHTR & GEN IV

    SciTech Connect (OSTI)

    William J. O’Donnell; Donald S. Griffin

    2007-05-07

    The objective of this task is to identify issues relevant to ASME Section III, Subsection NH [1], and related Code Cases that must be resolved for licensing purposes for VHTGRs (Very High Temperature Gas Reactor concepts such as those of PBMR, Areva, and GA); and to identify the material models, design criteria, and analysis methods that need to be added to the ASME Code to cover the unresolved safety issues. Subsection NH was originally developed to provide structural design criteria and limits for elevated-temperature design of Liquid Metal Fast Breeder Reactor (LMFBR) systems and some gas-cooled systems. The U.S. Nuclear Regulatory Commission (NRC) and its Advisory Committee for Reactor Safeguards (ACRS) reviewed the design limits and procedures in the process of reviewing the Clinch River Breeder Reactor (CRBR) for a construction permit in the late 1970s and early 1980s, and identified issues that needed resolution. In the years since then, the NRC and various contractors have evaluated the applicability of the ASME Code and Code Cases to high-temperature reactor designs such as the VHTGRs, and identified issues that need to be resolved to provide a regulatory basis for licensing. This Report describes: (1) NRC and ACRS safety concerns raised during the licensing process of CRBR , (2) how some of these issues are addressed by the current Subsection NH of the ASME Code; and (3) the material models, design criteria, and analysis methods that need to be added to the ASME Code and Code Cases to cover unresolved regulatory issues for very high temperature service.

  11. Constructing hierarchical interfaces: TiO2-supported PtFe-FeOx nanowires for room temperature CO oxidation

    SciTech Connect (OSTI)

    Zhu, Huiyuan; Wu, Zili; Dong, Su; Veith, Gabriel M; Lu, Hanfeng; Zhang, Pengfei; Chai, Songhai; Dai, Sheng

    2015-08-05

    This is a report of a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO2-supported PtFeFeOx nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeOx within each NW and the interactions between NWs and support (TiO2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeOx and TiO2 participate in the initial CO oxidation, facilitating the reaction through a redox pathway. Moreover, the intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFeFeOx/TiO2 catalyst exhibits no activity decay. These results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.

  12. Conceptual Design Report Cask Loadout Sys and Cask Drop Redesign for the Immersion Pail Support Structure and Operator Interface Platform at 105 K West

    SciTech Connect (OSTI)

    LANGEVIN, A.S.

    1999-07-12

    This conceptual design report documents the redesign of the IPSS and the OIP in the 105 KW Basin south loadout pit due to a postulated cask drop accident, as part of Project A.5/A.6, Canister Transfer Facility Modifications. Project A.5/A.6 involves facility modifications needed to transfer fuel from the basin into the cask-MCO. The function of the IPSS is to suspend, guide, and position the immersion pail. The immersion pail protects the cask-MCO from contamination by basin water and acts as a lifting device for the cask-MCO. The OIP provides operator access to the south loadout pit. Previous analyses studied the effects of a cask-MCO drop on the south loadout pit concrete structure and on the IPSS. The most recent analysis considered the resulting loads at the pit slab/wall joint (Kanjilal, 1999). This area had not been modeled previously, and the analysis results indicate that the demand capacity exceeds the allowable at the slab/wall joint. The energy induced on the south loadout pit must be limited such that the safety class function of the basin is maintained. The solution presented in this CDR redesigns the IPSS and the OIP to include impact-absorbing features that will reduce the induced energy. The impact absorbing features of the new design include: Impact-absorbing material at the IPSS base and at the upper portion of the IPSS legs. A sleeve which provides a hydraulic means of absorbing energy. Designing the OIP to act as an impact absorber. The existing IPSS structure in 105 KW will be removed. This conceptual design considers only loads resulting from drops directly over the IPSS and south loadout pit area. Drops in other areas of the basin are not considered, and will be covered as part of a future revision to this CDR.

  13. Computer Aided Multi-scale Design of SiC-Si3N4 Nanoceramic Composites for High-Temperature Structural Applications

    SciTech Connect (OSTI)

    Vikas Tomer; John Renaud

    2010-08-31

    It is estimated that by using better and improved high temperature structural materials, the power generation efficiency of the power plants can be increased by 15% resulting in significant cost savings. One such promising material system for future high-temperature structural applications in power plants is Silicon Carbide-Silicon Nitride (SiC-Si{sub 3}N{sub 4}) nanoceramic matrix composites. The described research work focuses on multiscale simulation-based design of these SiC-Si{sub 3}N{sub 4} nanoceramic matrix composites. There were two primary objectives of the research: (1) Development of a multiscale simulation tool and corresponding multiscale analyses of the high-temperature creep and fracture resistance properties of the SiC-Si{sub 3}N{sub 4} nanocomposites at nano-, meso- and continuum length- and timescales; and (2) Development of a simulation-based robust design optimization methodology for application to the multiscale simulations to predict the range of the most suitable phase morphologies for the desired high-temperature properties of the SiC-Si{sub 3}N{sub 4} nanocomposites. The multiscale simulation tool is based on a combination of molecular dynamics (MD), cohesive finite element method (CFEM), and continuum level modeling for characterizing time-dependent material deformation behavior. The material simulation tool is incorporated in a variable fidelity model management based design optimization framework. Material modeling includes development of an experimental verification framework. Using material models based on multiscaling, it was found using molecular simulations that clustering of the SiC particles near Si{sub 3}N{sub 4} grain boundaries leads to significant nanocomposite strengthening and significant rise in fracture resistance. It was found that a control of grain boundary thicknesses by dispersing non-stoichiometric carbide or nitride phases can lead to reduction in strength however significant rise in fracture strength. The temperature dependent strength and microstructural stability was also significantly depended upon the dispersion of new phases at grain boundaries. The material design framework incorporates high temperature creep and mechanical strength data in order to develop a collaborative multiscale framework of morphology optimization. The work also incorporates a computer aided material design dataset development procedure where a systematic dataset on material properties and morphology correlation could be obtained depending upon a material processing scientist's requirements. Two different aspects covered under this requirement are: (1) performing morphology related analyses at the nanoscale and at the microscale to develop a multiscale material design and analyses capability; (2) linking material behavior analyses with the developed design tool to form a set of material design problems that illustrate the range of material design dataset development that could be performed. Overall, a software based methodology to design microstructure of particle based ceramic nanocomposites has been developed. This methodology has been shown to predict changes in phase morphologies required for achieving optimal balance of conflicting properties such as minimal creep strain rate and high fracture strength at high temperatures. The methodology incorporates complex material models including atomistic approaches. The methodology will be useful to design materials for high temperature applications including those of interest to DoE while significantly reducing cost of expensive experiments.

  14. Structural Design and Analysis for a Double-Band Cold Mass Support of the MICE Coupling Magnet

    SciTech Connect (OSTI)

    Green, Michael A; Wu, Hong; Liu, X. K.; Wang, Li; Li, S. Y.; Guo, XingLong; Pan, Heng; Xu, FengYu

    2009-07-01

    The cooling channel of Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils, which are magnetically hooked together. A pair ofcoupling magnets operating at 4 K is applied to produce up to .6 T magnetic field on the magnet centerline to keep muon beam within the RF cavity windows. The peak magnetic force on the coupling magnet from other magnets in the MICE channel is up to 500 kN inlongitudinal direction, and the requirements for magnet center and axis azimuthal angle at 4 K are stringent. A self-centered double-band cold mass support system with intermediatethermal interruption is applied for the coupling magnet. The physical center of the magnet does not change as it is cooled down from 300 K to 4.2 K with this support system. In this paper the design parameters of the support system are discussed. The integral analysis of the support system using FEA method was carried out to etermine the tension forces in bands when various loads are applied. The magnet centre displacement and concentricity deviation form the axis of the warm bore are obtained, and the peak tension in support bands is also determined according to the simulation results.

  15. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Perspectives Nonlinear optical approaches for elucidating interfacial fluid and sorbed species structures and dynamics pdf Structural and Dynamic Properties of Room Temperature Ionic Liquids Confined within Hierarchical Porous Materials pdf Structure and Dynamics of Electrical Double Layer Using Integrated Scanning Probe Microscopy and Molecular Simulations pdf Effects of Nano-Confinement on the Fluid Interfacial Structure, Dynamics and Thermodynamic behavior pdf Molecular Insights into

  16. Molecular and crystal structures of p-heptyloxyphenyl p-hexyloxybenzoate and p-butyloxyphenyl p-heptyloxybenzoate: Mesophase design

    SciTech Connect (OSTI)

    Kuz'mina, L. G. Gunina, M. A.; Churakov, A. V.; Pestov, S. M.

    2013-03-15

    Two aromatic esters with the formulas C{sub 6}H{sub 13}-O-C{sub 6}H{sub 4}-C(O)O-C{sub 6}H{sub 4}-O-C{sub 7}H{sub 15} (1) and C{sub 7}H{sub 15}-O-C{sub 6}H{sub 4}-C(O)O-C{sub 6}H{sub 4}-O-C{sub 4}H{sub 9} (2) belonging to nematic liquid-crystal compounds were studied by X-ray diffraction. Compound 1 crystallizes in two modifications: monoclinic (1-m) and triclinic (1-tr). The crystal packing of 1 and 2 is built from alternating loosely packed aliphatic regions and closely packed aromatic regions. In crystal structures 1-m and 2, the aromatic regions are linked into chains by hydrogen bonds with the participation of the carbonyl oxygen atom of the ester group and the C-H fragment of the benzene ring, but these hydrogen bonds in 1-m are much weaker than in 2. In 1-m there are {pi}-stacking interactions between the molecules, resulting in the formation of centrosymmetric dimers with an interplanar distance of 3.45 A. In 1-tr, the aromatic fragments form a herringbone packing motif favorable for a two-dimensional network of directional C-H...{pi}-system interactions.

  17. Argument structure hierarchy system and method for facilitating analysis and decision-making processes

    DOE Patents [OSTI]

    Janssen, Terry (9840 Faust Dr., Vienna, VA 22182)

    2000-01-01

    A system and method for facilitating decision-making comprising a computer program causing linkage of data representing a plurality of argument structure units into a hierarchical argument structure. Each argument structure unit comprises data corresponding to a hypothesis and its corresponding counter-hypothesis, data corresponding to grounds that provide a basis for inference of the hypothesis or its corresponding counter-hypothesis, data corresponding to a warrant linking the grounds to the hypothesis or its corresponding counter-hypothesis, and data corresponding to backing that certifies the warrant. The hierarchical argument structure comprises a top level argument structure unit and a plurality of subordinate level argument structure units. Each of the plurality of subordinate argument structure units comprises at least a portion of the grounds of the argument structure unit to which it is subordinate. Program code located on each of a plurality of remote computers accepts input from one of a plurality of contributors. Each input comprises data corresponding to an argument structure unit in the hierarchical argument structure and supports the hypothesis or its corresponding counter-hypothesis. A second programming code is adapted to combine the inputs into a single hierarchical argument structure. A third computer program code is responsive to the second computer program code and is adapted to represent a degree of support for the hypothesis and its corresponding counter-hypothesis in the single hierarchical argument structure.

  18. Distributed Hierarchical Control of Multi-Area Power Systems with Improved Primary Frequency Regulation

    SciTech Connect (OSTI)

    Lian, Jianming; Marinovici, Laurentiu D.; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

    2012-12-12

    The conventional distributed hierarchical control architecture for multi-area power systems is revisited. In this paper, a new distributed hierarchical control architecture is proposed. In the proposed architecture, pilot generators are selected in each area to be equipped with decentralized robust control as a supplementary to the conventional droop speed control. With the improved primary frequency control, the system frequency can be restored to the nominal value without the help of secondary frequency control, which reduces the burden of the automatic generation control for frequency restoration. Moreover, the low frequency inter-area electromechanical oscillations can also be effectively damped. The effectiveness of the proposed distributed hierarchical control architecture is validated through detailed simulations.

  19. Hierarchical ZnO Structures Templated with Amino Acid Based Surfactant...

    Office of Scientific and Technical Information (OSTI)

    the National Technical Information Service, Springfield, VA at www.ntis.gov. Authors: Kim, S H ; Satcher, J H ; Han, T Y Publication Date: 2011-05-27 OSTI Identifier: 1184130...

  20. Hierarchical, ultrathin single-crystal nanowires of CdS conveniently produced in laser-induced thermal field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Li -Li; Xin, Huolin L.; Kulinich, Sergei A.; Yang, Li -Jun; Du, Xi -Wen

    2015-07-16

    Hierarchical nanowires (HNWs) exhibit unique properties and have wide applications, while often suffering from imperfect structure. We report a facile strategy toward ultrathin CdS HNWs with monocrystal structure, where a continuous-wave (CW) Nd:YAG laser is employed to irradiate an oleic acid (OA) solution containing precursors and a light absorber. The high heating rate and large temperature gradient generated by the CW laser lead to the rapid formation of tiny zinc-blende CdS nanocrystals which then line up into nanowires with the help of OA molecules. Next, the nanowires experience a phase transformation from zinc-blende to wurtzite structure, and the transformation-induced stressmore » creates terraces on their surface, which promotes the growth of side branches and eventually results in monocrystal HNWs with an ultrathin diameter of 24 nm. The one-step synthesis of HNWs is conducted in air and completes in just 40 seconds, thus being very simple and rapid. The prepared CdS HNWs display photocatalytic performance superior to their nanoparticle counterparts, thus showing promise for catalytic applications in the future.« less

  1. Hierarchical, ultrathin single-crystal nanowires of CdS conveniently produced in laser-induced thermal field

    SciTech Connect (OSTI)

    Han, Li -Li; Xin, Huolin L.; Kulinich, Sergei A.; Yang, Li -Jun; Du, Xi -Wen

    2015-07-16

    Hierarchical nanowires (HNWs) exhibit unique properties and have wide applications, while often suffering from imperfect structure. We report a facile strategy toward ultrathin CdS HNWs with monocrystal structure, where a continuous-wave (CW) Nd:YAG laser is employed to irradiate an oleic acid (OA) solution containing precursors and a light absorber. The high heating rate and large temperature gradient generated by the CW laser lead to the rapid formation of tiny zinc-blende CdS nanocrystals which then line up into nanowires with the help of OA molecules. Next, the nanowires experience a phase transformation from zinc-blende to wurtzite structure, and the transformation-induced stress creates terraces on their surface, which promotes the growth of side branches and eventually results in monocrystal HNWs with an ultrathin diameter of 24 nm. The one-step synthesis of HNWs is conducted in air and completes in just 40 seconds, thus being very simple and rapid. The prepared CdS HNWs display photocatalytic performance superior to their nanoparticle counterparts, thus showing promise for catalytic applications in the future.

  2. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    SciTech Connect (OSTI)

    Ono, Junichi; Takada, Shoji; Saito, Shinji

    2015-06-07

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Frster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.

  3. Thermoelectric Materials by Design, Computational Theory and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  4. A one-pot synthetic approach to prepare palladium nanoparticles embedded hierarchically porous TiO{sub 2} hollow spheres for hydrogen peroxide sensing

    SciTech Connect (OSTI)

    Kong Lirong; Lu Xiaofeng; Bian Xiujie; Zhang Wanjin; Wang Ce

    2010-10-15

    A simple one-step method to fabricate hierarchically porous TiO{sub 2}/Pd composite hollow spheres without any template was developed by using solvothermal treatment. Pd nanoparticles (2-5 nm) were well dispersed in the mesopores of the TiO{sub 2} hollow spheres via in-situ reduction. In our experiment, polyvinylpyrrolidone played an important role in the synthetic process as the reducing agent and the connective material between TiO{sub 2} and Pd nanoparticles. HF species generated from solvothermal reaction leaded to the formation of TiO{sub 2} hollow spheres and Ostwald ripening was another main factor that affected the size and structure of the hollow spheres. The as-prepared TiO{sub 2}/Pd composite hollow spheres exhibited high electrocatalytic activity towards the reduction of H{sub 2}O{sub 2}. The sensitivity was about 226.72 {mu}A mM{sup -1} cm{sup -2} with a detection limit of 3.81 {mu}M at a signal-to-noise ratio of 3. These results made the hierarchically porous TiO{sub 2}/Pd composite a promising platform for fabricating new nonenzymic biosensors. - Graphical Abstract: A new one-step solvothermal method was developed to prepare Pd nanoparticles embedded hierarchically porous TiO{sub 2} hollow spheres. Due to its unique nanostructure, the prepared TiO{sub 2}/Pd modified GC electrode exhibit a high sensitivity (226.72 {mu}A mM{sup -1} cm{sup -2}), a relatively low reduction potential (-0.2 V), a fast response time (<3 s) and a relatively low detection limit of 3.81 {mu}M (S/N=3) towards H{sub 2}O{sub 2}.

  5. Mapping a hierarchical control strategy onto a distributed system architecture

    SciTech Connect (OSTI)

    Manges, W.W.; Allgood, G.O.; Thompson, D.H.

    1988-01-01

    This paper describes the implementation of the control architecture for the Thermal Management System (TMS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Oak Ridge Gaseous Diffusion Plant in Oak Ridge, Tennessee. It represents one of the major process control subsystems and is responsible for the overall thermal environment during the operational phases of the facility. The author's involvement included the conceptualization, development, design, and implementation of the overall control strategy along with the specification/configuration of the supporting hardware and software. 7 refs., 6 figs.

  6. The Case for A Hierarchal System Model for Linux Clusters

    SciTech Connect (OSTI)

    Seager, M; Gorda, B

    2009-06-05

    The computer industry today is no longer driven, as it was in the 40s, 50s and 60s, by High-performance computing requirements. Rather, HPC systems, especially Leadership class systems, sit on top of a pyramid investment mode. Figure 1 shows a representative pyramid investment model for systems hardware. At the base of the pyramid is the huge investment (order 10s of Billions of US Dollars per year) in semiconductor fabrication and process technologies. These costs, which are approximately doubling with every generation, are funded from investments multiple markets: enterprise, desktops, games, embedded and specialized devices. Over and above these base technology investments are investments for critical technology elements such as microprocessor, chipsets and memory ASIC components. Investments for these components are spread across the same markets as the base semiconductor processes investments. These second tier investments are approximately half the size of the lower level of the pyramid. The next technology investment layer up, tier 3, is more focused on scalable computing systems such as those needed for HPC and other markets. These tier 3 technology elements include networking (SAN, WAN and LAN), interconnects and large scalable SMP designs. Above these is tier 4 are relatively small investments necessary to build very large, scalable systems high-end or Leadership class systems. Primary among these are the specialized network designs of vertically integrated systems, etc.

  7. ARIA Cell Solenoid Design Considerations

    SciTech Connect (OSTI)

    Schulze, Martin E.

    2015-05-20

    Detailed schematics of the structure of the preliminary ARIA solenoid cell design including overhead and cross section views and dimensions.

  8. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    SciTech Connect (OSTI)

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.

  9. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achievingmore » around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.« less

  10. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    SciTech Connect (OSTI)

    Lv, Yingying; Fang, Yin; Qian, Xufang; Tu, Bo [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Wu, Zhangxiong [Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia); Asiri, Abdullah M. [Chemistry Department and The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Zhao, Dongyuan, E-mail: dyzhao@fudan.edu.cn [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-11-01

    A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ?2200 m{sup 2}/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li{sup +} ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  11. Control of entity interactions in a hierarchical variable resolution simulation

    SciTech Connect (OSTI)

    Powell, D.R.

    1997-08-01

    There has long been interest in variable resolution modeling to support military analysis for a broad range of interest areas. Despite the ever-present desire for models of greater fidelity at the expense of analysis and computation resources, models of moderate to low fidelity are still required at many levels of decision-making. Problems can arise due to the issue of consistency among the family of models used for analysis. To address this and other problems, models of variable resolution have been suggested. However, such variable resolution architectures inherently carry their own set of issues which must be resolved in order to be useful. First, what are the structural requirements for a variable resolution model; and second, how are interactions between entities governed, especially when the entities have different resolutions? This paper addresses these issues and discusses key mechanisms needed to develop a variable resolution combat simulation that meets several core requirements for such models: seamless aggregation/disaggregation, appropriate interactions between entities of differing resolution, and control of the aggregation/disaggregation process.

  12. Control of entity interactions in a hierarchical variable resolution simulation

    SciTech Connect (OSTI)

    Powell, D.R.

    1997-10-01

    There has long been interest in variable resolution modeling to support military analysis for a broad range of interest areas. Despite the ever-present desire for models of greater fidelity at the expense of analysis and computation resources, models of moderate to low fidelity are still required at many levels of decision-making. Problems can arise due to the issue of consistency among the family of models used for analysis. To address this and other problems, models of variable resolution have been suggested. However, such variable resolution architectures inherently carry their own set of issues which must be resolved in order to be useful. First, what are the structural requirements for a variable resolution model; and second, how are interactions between entities governed, especially when the entities have different resolutions? This paper addresses these issues and discusses key mechanisms needed to develop a variable resolution combat simulation that meets several core requirements for such models: seamless aggregation/disaggregation, appropriate interactions between entities of differing resolution, and control of the aggregation/disaggregation process.

  13. Hierarchical Diagnosis R. A. Kropfli, S. Y. Matrosov, T. Uttal, and B. W. Orr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. A. Kropfli, S. Y. Matrosov, T. Uttal, and B. W. Orr National Oceanic and Atmospheric Administration/Environmental Research Laboratories Wave Propagation Laboratory Boulder, CO 80303 I ntrod uction The WPL 8-mm wavelength radar was designed with good sensitivity and resolution to observe the small-scale structure and microphysical properties of clouds. DuringASTEX, for example, it observed, with 37-m resolution, all marine boundary layer (MBL) stratus and stratocumulus clouds within 5 km of

  14. System Design Stage

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21

    This chapter addresses translating the user-oriented functional design specifications into a set of technical, computer-oriented system design specifications; and designing the data structure and processes to the level of detail necessary to plan and execute the Programming and Installation Stages.

  15. Hierarchical Ag/ZnO micro/nanostructure: Green synthesis and enhanced photocatalytic performance

    SciTech Connect (OSTI)

    Gao, Shuyan; Jia, Xiaoxia; Yang, Shuxia; Li, Zhengdao; Jiang, Kai

    2011-04-15

    Ag/ZnO metal-semiconductor nanocomposites with hierarchical micro/nanostructure have been prepared by the hydrothermal synthesis in the presence of bovine serum albumin (BSA). The results suggest that this biomolecule-assisted hydrothermal method is an efficient route for the fabrication of Ag/ZnO nanocomposites by using BSA both a shape controller and a reducing agent of Ag{sup +} ions. Moreover, Ag nanoparticles on the ZnO act as electron sinks, improving the separation of photogenerated electrons and holes, increasing the surface hydroxyl contents of ZnO, facilitating trapping the photoinduced electrons and holes to form more active hydroxyl radicals, and thus, enhancing the photocatalytic efficiency of ZnO. This is a good example for the organic combination of green chemistry and functional materials. -- Graphical Abstract: A green strategy is report to construct Ag/ZnO metal-semiconductor nanocomposites with hierarchical micro/nanostructure and enhanced photocatalytic activity. Display Omitted Research highlights: > Hierarchical micro/nanostructured Ag/ZnO nanocomposites have been prepared via a green route. > Ag nanoparticles improve the separation of photogenerated electrons and holes. > This facilitates trapping the photoinduced electrons and holes to form more hydroxyl radicals. Therefore, it enhances the photocatalytic efficiency of ZnO.

  16. Hierarchical Models for Batteries: Overview with Some Case Studies

    SciTech Connect (OSTI)

    Pannala, Sreekanth; Mukherjee, Partha P; Allu, Srikanth; Nanda, Jagjit; Martha, Surendra K; Dudney, Nancy J; Turner, John A

    2012-01-01

    Batteries are complex multiscale systems and a hierarchy of models has been employed to study different aspects of batteries at different resolutions. For the electrochemistry and charge transport, the models span from electric circuits, single-particle, pseudo 2D, detailed 3D, and microstructure resolved at the continuum scales and various techniques such as molecular dynamics and density functional theory to resolve the atomistic structure. Similar analogies exist for the thermal, mechanical, and electrical aspects of the batteries. We have been recently working on the development of a unified formulation for the continuum scales across the electrode-electrolyte-electrode system - using a rigorous volume averaging approach typical of multiphase formulation. This formulation accounts for any spatio-temporal variation of the different properties such as electrode/void volume fractions and anisotropic conductivities. In this talk the following will be presented: The background and the hierarchy of models that need to be integrated into a battery modeling framework to carry out predictive simulations, Our recent work on the unified 3D formulation addressing the missing links in the multiscale description of the batteries, Our work on microstructure resolved simulations for diffusion processes, Upscaling of quantities of interest to construct closures for the 3D continuum description, Sample results for a standard Carbon/Spinel cell will be presented and compared to experimental data, Finally, the infrastructure we are building to bring together components with different physics operating at different resolution will be presented. The presentation will also include details about how this generalized approach can be applied to other electrochemical storage systems such as supercapacitors, Li-Air batteries, and Lithium batteries with 3D architectures.

  17. Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries

    SciTech Connect (OSTI)

    Wang, Liping; Bai, Jianming; Gao, Peng; Wang, Xiaoya; Looney, J. Patrick; Wang, Feng

    2015-07-30

    In this study, preparing new electrode materials with synthetic control of phases and electrochemical properties is desirable for battery applications but hardly achievable without knowing how the synthesis reaction proceeds. Herein, we report on structure tracking-aided design and synthesis of single-crystalline Li3V2(PO4)3 (LVP) nanoparticles with extremely high rate capability. A comprehensive investigation was made to the local structural orderings of the involved phases and their evolution toward forming LVP phase using in situ/ex situ synchrotron X-ray and electron-beam diffraction, spectroscopy, and imaging techniques. The results shed light on the thermodynamics and kinetics of synthesis reactions and enabled the design of a cost-efficient synthesis protocol to make nanocrystalline LVP, wherein solvothermal treatment is a crucial step leading to an amorphous intermediate with local structural ordering resembling that of LVP, which, upon calcination at moderate temperatures, rapidly transforms into the desired LVP phase. The obtained LVP particles are about 50 nm, coated with a thin layer of amorphous carbon and featured with excellent cycling stability and rate capability 95% capacity retention after 200 cycles and 66% theoretical capacity even at a current rate of 10 C. The structure tracking based method we developed in this work offers a new way of designing battery electrodes with synthetic control of material phases and properties.

  18. Railway vehicle body structures

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finite element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.

  19. Hierarchical Na-doped cubic ZrO{sub 2} synthesis by a simple hydrothermal route and its application in biodiesel production

    SciTech Connect (OSTI)

    Lara-Garca, Hugo A.; Romero-Ibarra, Issis C.; Pfeiffer, Heriberto

    2014-10-15

    Hierarchical growth of cubic ZrO{sub 2} phase was successfully synthesized via a simple hydrothermal process in the presence of different surfactants (cationic, non-ionic and anionic) and sodium hydroxide. The structural and microstructural characterizations of different ZrO{sub 2} powders were performed using various techniques, such as X-ray diffraction, transmission electron microscopy, N{sub 2} adsorptiondesorption, scanning electron microscopy and infrared. Results indicated that sodium addition stabilized the cubic ZrO{sub 2} phase by a Na-doping process, independently of the surfactant used. In contrast, microstructural characteristics varied as a function of the surfactant and sodium presence. In addition, water vapor (H{sub 2}O) and carbon dioxide (CO{sub 2}) sorption properties were evaluated on ZrO{sub 2} samples. Results evidenced that sample surface reactivity changed as a function of the sodium content. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction using the different synthesized samples, obtaining yields of 93%. - Graphical abstract: Hierarchical growth of cubic Na-ZrO{sub 2} phase was synthesized by hydrothermal processes in the presence of surfactants and sodium. Sodium addition stabilized the cubic phase by a Na-doping process, while the microstructural characteristics varied with surfactants. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction. - Highlights: Cubic-ZrO{sub 2} phase was synthesized via a simple hydrothermal process. ZrO{sub 2} structure and microstructures changed as a function of the surfactant. Cubic-ZrO{sub 2} phase was evaluated on the biodiesel transesterification reaction.

  20. Labs21 sustainable design programming checklist version 1.0

    SciTech Connect (OSTI)

    Mathew, Paul; Greenberg, Steve

    2005-01-07

    This checklist of sustainable design objectives and strategies can be used in the programming and conceptual design phases of a laboratory project. It includes the following: (1) Brief descriptions of each objective and strategy. (2) Metrics for each objective. This checklist is primarily to be used by owners, architects and engineers during the programming and conceptual design phase of a project. It is especially appropriate for use in design charrettes. The strategies and metrics can be included as requirements in the programming document or can be identified for further analysis or consideration during the design development phase. This checklist is hierarchically organized into design areas, objectives for each design area, and strategies and metrics for each objective. The design areas generally correspond to the design areas of the LEED(TM) rating system from the U.S. Green Building Council.

  1. Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm

    SciTech Connect (OSTI)

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2011-06-01

    Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

  2. Hierarchical Diagnosis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a Rad iative Cloud Parameterization Scheme of Stratocumulus and Stratus Clouds Which Includes the Impact of Cloud Condensation Nucleus on Cloud Albedo W. R. Cotton, G. L. Stephens, D. Duda, B. Stevens, and R. L. Walko Colorado State University Department of Atmospheric Science Fort Collins, CO G. Feingold Cooperative Institute for Research in Environmental Sciences University of Colorado, Boulder Boulder. CO 80309-0049 A three-dimensional (3-D) model for simulating the effect of

  3. Hierarchical Diagnosis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theoretical Studies of Radiative Properties of Broken Clouds G. A. Titov Institute of Atmospheric Optics Russian Academy of Science T omsk, Russia One of the three major goals of the Atmospheric Radiation Measurement (ARM) Program is to improve the quality of radiation models under clear sky, homogeneous cloud, and broken cloud conditions. This report is concerned with the development of the theory of radiation transfer in the broken clouds. Our approach is based on a stochastic description of

  4. A prototype functional language implementation for hierarchical- memory architectures. Revision 1

    SciTech Connect (OSTI)

    Wolski, R.; Feo, J.; Cann, D.

    1992-01-14

    Programming languages are the most important tool at a programmers` disposal. All other tools correct, visualize, or evaluate the product crafted by this tool. The advent of multiprocessor computer systems has greatly complicated the programmer`s task an increased his need for high-level languages capable of automatically taming these architectures. In this paper, we describe a prototype implementation of Sisal for multiprocessor, hierarchical-memory systems. The implementation includes explicit compiler and runtime control that effectively exploits the different levels of memory and manages interprocess communications (IPC). We give preliminary performance results for this system on the BBN TC2000.

  5. Foundation Design Handbook

    SciTech Connect (OSTI)

    Carmody, John; Mosiman, Garrett; Handeen, Daniel; Huelman, Patrick; Christian, Jeffery

    2013-10-01

    The purpose of this handbook is to provide information that will enable designers, builders, and homeowners to understand foundation design problems and solutions. The foundation of a house is a somewhat invisible and sometimes ignored component of the building. It is increasingly evident, however, that attention to good foundation design and construction has significant benefits to the homeowner and the builder, and can avoid some serious future problems. Good foundation design and construction practice means not only insulating to save energy, but also providing effective structural design as well as moisture, termite, and radon control techniques where appropriate.

  6. Preliminary Structural Design Conceptualization for Composite Rotor for Verdant Power Water Current: Cooperative Research and Development Final Report, CRADA Number CRD-08-296

    SciTech Connect (OSTI)

    Hughes, S.

    2011-02-01

    The primary thrust of the CRADA will be to develop a new rotor design that will allow higher current flows (>4m/s), greater swept area (6-11m), and in the process, will maximize performance and energy capture.

  7. Cable deformation simulation and a hierarchical framework for Nb3Sn Rutherford cables

    SciTech Connect (OSTI)

    Arbelaez, D.; Prestemon, S. O.; Ferracin, P.; Godeke, A.; Dietderich, D. R.; Sabbi, G.

    2009-09-13

    Knowledge of the three-dimensional strain state induced in the superconducting filaments due to loads on Rutherford cables is essential to analyze the performance of Nb{sub 3}Sn magnets. Due to the large range of length scales involved, we develop a hierarchical computational scheme that includes models at both the cable and strand levels. At the Rutherford cable level, where the strands are treated as a homogeneous medium, a three-dimensional computational model is developed to determine the deformed shape of the cable that can subsequently be used to determine the strain state under specified loading conditions, which may be of thermal, magnetic, and mechanical origins. The results can then be transferred to the model at the strand/macro-filament level for rod restack process (RRP) strands, where the geometric details of the strand are included. This hierarchical scheme can be used to estimate the three-dimensional strain state in the conductor as well as to determine the effective properties of the strands and cables from the properties of individual components. Examples of the modeling results obtained for the orthotropic mechanical properties of the Rutherford cables are presented.

  8. The North American Carbon Program Multi-scale synthesis and Terrestrial Model Intercomparison Project Part 1: Overview and experimental design

    SciTech Connect (OSTI)

    Huntzinger, D.N.; Schwalm, C.; Michalak, A.M; Schaefer, K.; King, A.W.; Wei, Y.; Jacobson, A.; Liu, S.; Cook, R.; Post, W.M.; Berthier, G.; Hayes, D.; Huang, M.; Ito, A.; Lei, H.; Lu, C.; Mao, J.; Peng, C.H.; Peng, S.; Poulter, B.; Riccuito, D.; Shi, X.; Tian, H.; Wang, W.; Zeng, N.; Zhao, F.; Zhu, Q.

    2013-01-01

    Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding of land-atmosphere carbon exchange to larger regions. The North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal model intercomparison and evaluation effort focused on improving the diagnosis and attribution of carbon exchange at regional and global scales. MsTMIP builds upon current and past synthesis activities, and has a unique framework designed to isolate, interpret, and inform understanding of how model structural differences impact estimates of carbon uptake and release. Here we provide an overview of the MsTMIP effort and describe how the MsTMIP experimental design enables the assessment and quantification of TBM structural uncertainty. Model structure refers to the types of processes considered (e.g. nutrient cycling, disturbance, lateral transport of carbon), and how these processes are represented (e.g. photosynthetic formulation, temperature sensitivity, respiration) in the models. By prescribing a common experimental protocol with standard spin-up procedures and driver data sets, we isolate any biases and variability in TBM estimates of regional and global carbon budgets resulting from differences in the models themselves (i.e. model structure) and model-specific parameter values. An initial intercomparison of model structural differences is represented using hierarchical cluster diagrams (a.k.a. dendrograms), which highlight similarities and differences in how models account for carbon cycle, vegetation, energy, and nitrogen cycle dynamics. We show that, despite the standardized protocol used to derive initial conditions, models show a high degree of variation for GPP, total living biomass, and total soil carbon, underscoring the influence of differences in model structure and parameterization on model estimates.

  9. A second gradient theoretical framework for hierarchical multiscale modeling of materials

    SciTech Connect (OSTI)

    Luscher, Darby J; Bronkhorst, Curt A; Mc Dowell, David L

    2009-01-01

    A theoretical framework for the hierarchical multiscale modeling of inelastic response of heterogeneous materials has been presented. Within this multiscale framework, the second gradient is used as a non local kinematic link between the response of a material point at the coarse scale and the response of a neighborhood of material points at the fine scale. Kinematic consistency between these scales results in specific requirements for constraints on the fluctuation field. The wryness tensor serves as a second-order measure of strain. The nature of the second-order strain induces anti-symmetry in the first order stress at the coarse scale. The multiscale ISV constitutive theory is couched in the coarse scale intermediate configuration, from which an important new concept in scale transitions emerges, namely scale invariance of dissipation. Finally, a strategy for developing meaningful kinematic ISVs and the proper free energy functions and evolution kinetics is presented.

  10. Performing a scatterv operation on a hierarchical tree network optimized for collective operations

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-10-22

    Performing a scatterv operation on a hierarchical tree network optimized for collective operations including receiving, by the scatterv module installed on the node, from a nearest neighbor parent above the node a chunk of data having at least a portion of data for the node; maintaining, by the scatterv module installed on the node, the portion of the data for the node; determining, by the scatterv module installed on the node, whether any portions of the data are for a particular nearest neighbor child below the node or one or more other nodes below the particular nearest neighbor child; and sending, by the scatterv module installed on the node, those portions of data to the nearest neighbor child if any portions of the data are for a particular nearest neighbor child below the node or one or more other nodes below the particular nearest neighbor child.

  11. Real-time and imaginary-time quantum hierarchal Fokker-Planck equations

    SciTech Connect (OSTI)

    Tanimura, Yoshitaka

    2015-04-14

    We consider a quantum mechanical system represented in phase space (referred to hereafter as “Wigner space”), coupled to a harmonic oscillator bath. We derive quantum hierarchal Fokker-Planck (QHFP) equations not only in real time but also in imaginary time, which represents an inverse temperature. This is an extension of a previous work, in which we studied a spin-boson system, to a Brownian system. It is shown that the QHFP in real time obtained from a correlated thermal equilibrium state of the total system possesses the same form as those obtained from a factorized initial state. A modified terminator for the hierarchal equations of motion is introduced to treat the non-Markovian case more efficiently. Using the imaginary-time QHFP, numerous thermodynamic quantities, including the free energy, entropy, internal energy, heat capacity, and susceptibility, can be evaluated for any potential. These equations allow us to treat non-Markovian, non-perturbative system-bath interactions at finite temperature. Through numerical integration of the real-time QHFP for a harmonic system, we obtain the equilibrium distributions, the auto-correlation function, and the first- and second-order response functions. These results are compared with analytically exact results for the same quantities. This provides a critical test of the formalism for a non-factorized thermal state and elucidates the roles of fluctuation, dissipation, non-Markovian effects, and system-bath coherence. Employing numerical solutions of the imaginary-time QHFP, we demonstrate the capability of this method to obtain thermodynamic quantities for any potential surface. It is shown that both types of QHFP equations can produce numerical results of any desired accuracy. The FORTRAN source codes that we developed, which allow for the treatment of Wigner space dynamics with any potential form (TanimuranFP15 and ImTanimuranFP15), are provided as the supplementary material.

  12. Design, Synthesis, and Crystal Structures of 6-Alkylidene-2 -Substituted Penicillanic Acid Sulfones as Potent Inhibitors of Acinetobacter baumannii OXA-24 Carbapenemase

    SciTech Connect (OSTI)

    Bou, G.; Santillana, E; Sheri, A; Beceiro, A; Sampson, J; Kalp, M; Bethel, C; Distler, A; Drawz, S; et. al.

    2010-01-01

    Class D {beta}-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial {beta}-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel {beta}-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2{prime}-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important {beta}-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 {beta}-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC{sub 50} values against OXA-24 and two OXA-24 {beta}-lactamase variants ranged from 10 {+-} 1 (4 vs WT) to 338 {+-} 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K{sub i} (500 {+-} 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k{sub inact}/K{sub i} = 0.21 {+-} 0.02 {micro}M{sup -1}s{sup -1}). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 {angstrom}) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2{prime}-substituted penicillin sulfones are effective mechanism-based inactivators of class D {beta}-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D {beta}-lactamases is proposed.

  13. Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section A report, existing conditions calculations/supporting information

    SciTech Connect (OSTI)

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. Based upon US Department of Energy (DOE) Albuquerque Operations (DOE/Al) Office and LANL projections, storage space limitations/restrictions will begin to affect LANL`s ability to meet its missions between 1998 and 2002.

  14. Center for Inverse Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverse Design EFRC Director: Alex Zunger Lead Institution: National Renewable Energy Laboratory Mission: Achieve the grand challenge of materials and nanostructures by design: Given the desired, target property, find the structure/configuration that has it, and then make the material. Historically, the development of new materials for technological applications has been based to a large extent on trial-and-error searches or accidental discoveries. This pattern is exemplified not only by the

  15. Support Structure Design of the $\\hbox{Nb}_{3}\\hbox{Sn}$ Quadrupole for the High Luminosity LHC

    SciTech Connect (OSTI)

    Juchno, M.; Ambrosio, G.; Anerella, M.; Cheng, D.; Felice, H.; Ferracin, P.; Perez, J. C.; Prin, H.; Schmalzle, J.

    2014-10-31

    New low-? quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb?Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of the detailed 3D numerical analysis performed in preparation for the first short model test.

  16. Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities

    SciTech Connect (OSTI)

    Tanimura, Yoshitaka

    2014-07-28

    For a system strongly coupled to a heat bath, the quantum coherence of the system and the heat bath plays an important role in the system dynamics. This is particularly true in the case of non-Markovian noise. We rigorously investigate the influence of system-bath coherence by deriving the reduced hierarchal equations of motion (HEOM), not only in real time, but also in imaginary time, which represents an inverse temperature. It is shown that the HEOM in real time obtained when we include the system-bath coherence of the initial thermal equilibrium state possess the same form as those obtained from a factorized initial state. We find that the difference in behavior of systems treated in these two manners results from the difference in initial conditions of the HEOM elements, which are defined in path integral form. We also derive HEOM along the imaginary time path to obtain the thermal equilibrium state of a system strongly coupled to a non-Markovian bath. Then, we show that the steady state hierarchy elements calculated from the real-time HEOM can be expressed in terms of the hierarchy elements calculated from the imaginary-time HEOM. Moreover, we find that the imaginary-time HEOM allow us to evaluate a number of thermodynamic variables, including the free energy, entropy, internal energy, heat capacity, and susceptibility. The expectation values of the system energy and system-bath interaction energy in the thermal equilibrium state are also evaluated.

  17. Eccentricity growth and orbit flip in near-coplanar hierarchical three-body systems

    SciTech Connect (OSTI)

    Li, Gongjie; Naoz, Smadar; Kocsis, Bence; Loeb, Abraham

    2014-04-20

    The secular dynamical evolution of a hierarchical three-body system in which a distant third object orbits around a binary has been studied extensively, demonstrating that the inner orbit can undergo large eccentricity and inclination oscillations. It was shown before that starting with a circular inner orbit, large mutual inclination (40-140) can produce long timescale modulations that drive the eccentricity to extremely large values and can flip the orbit. Here, we demonstrate that starting with an almost coplanar configuration, for eccentric inner and outer orbits, the eccentricity of the inner orbit can still be excited to high values, and the orbit can flip by ?180, rolling over its major axis. The ?180 flip criterion and the flip timescale are described by simple analytic expressions that depend on the initial orbital parameters. With tidal dissipation, this mechanism can produce counter-orbiting exoplanetary systems. In addition, we also show that this mechanism has the potential to enhance the tidal disruption or collision rates for different systems. Furthermore, we explore the entire e {sub 1} and i {sub 0} parameter space that can produce flips.

  18. A Predictive Model of Fragmentation using Adaptive Mesh Refinement and a Hierarchical Material Model

    SciTech Connect (OSTI)

    Koniges, A E; Masters, N D; Fisher, A C; Anderson, R W; Eder, D C; Benson, D; Kaiser, T B; Gunney, B T; Wang, P; Maddox, B R; Hansen, J F; Kalantar, D H; Dixit, P; Jarmakani, H; Meyers, M A

    2009-03-03

    Fragmentation is a fundamental material process that naturally spans spatial scales from microscopic to macroscopic. We developed a mathematical framework using an innovative combination of hierarchical material modeling (HMM) and adaptive mesh refinement (AMR) to connect the continuum to microstructural regimes. This framework has been implemented in a new multi-physics, multi-scale, 3D simulation code, NIF ALE-AMR. New multi-material volume fraction and interface reconstruction algorithms were developed for this new code, which is leading the world effort in hydrodynamic simulations that combine AMR with ALE (Arbitrary Lagrangian-Eulerian) techniques. The interface reconstruction algorithm is also used to produce fragments following material failure. In general, the material strength and failure models have history vector components that must be advected along with other properties of the mesh during remap stage of the ALE hydrodynamics. The fragmentation models are validated against an electromagnetically driven expanding ring experiment and dedicated laser-based fragmentation experiments conducted at the Jupiter Laser Facility. As part of the exit plan, the NIF ALE-AMR code was applied to a number of fragmentation problems of interest to the National Ignition Facility (NIF). One example shows the added benefit of multi-material ALE-AMR that relaxes the requirement that material boundaries must be along mesh boundaries.

  19. Ionic liquid assisted hydrothermal fabrication of hierarchically organized ?-AlOOH hollow sphere

    SciTech Connect (OSTI)

    Tang, Zhe; Liu, Yunqi; Li, Guangci; Hu, Xiaofu; Liu, Chenguang

    2012-11-15

    Highlights: ? The ?-AlOOH hollow spheres were synthesized via an ionic liquid-assisted hydrothermal treatment. ? Ionic liquid plays an important role in the morphology of the product. ? Ionic liquid can be easily removed from the product and reused in next experiment. ? A aggregationsolutionrecrystallization formation mechanism may occur in the system. -- Abstract: Hierarchically organized ?-AlOOH hollow spheres with nanoflake-like porous surface texture have been successfully synthesized via an ionic liquid-assisted hydrothermal synthesis method in citric acid monohydrate (CAMs). It was found that ionic liquid [bmim]{sup +}Cl{sup ?} played an important role in the morphology of the product due to its strong interactions with reaction particles. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). The results show that the product has narrow particle size distribution (500900 nm particle diameter range), high specific surface area (240.5 m{sup 2}/g) and large pore volume (0.61 cm{sup 3}/g). The corresponding ?-Al{sub 2}O{sub 3} hollow spheres can be obtained by calcining it at 550 C for 3 h. The proposed formation mechanism and other influencing factors of the ?-AlOOH hollow sphere material, such as reaction temperature, reaction duration, CAMs and urea, have also been investigated.

  20. From binaries to multiples. II. Hierarchical multiplicity of F and G dwarfs

    SciTech Connect (OSTI)

    Tokovinin, Andrei

    2014-04-01

    Statistics of hierarchical multiplicity among solar-type dwarfs are studied using the distance-limited sample of 4847 targets presented in the accompanying Paper I. Known facts about binaries (multiplicity fraction 0.46, lognormal period distribution with median period 100 yr and logarithmic dispersion 2.4, and nearly uniform mass-ratio distribution independent of the period) are confirmed with a high statistical significance. The fraction of hierarchies with three or more components is 0.13 0.01, and the fractions of targets with n = 1, 2, 3, ... components are 54:33:8:4:1. Subsystems in the secondary components are almost as frequent as in the primary components, but in half of such cases both inner pairs are present. The high frequency of those 2+2 hierarchies (4%) suggests that both inner pairs were formed by a common process. The statistics of hierarchies can be reproduced by simulations, assuming that the field is a mixture coming from binary-rich and binary-poor environments. Periods of the outer and inner binaries are selected recursively from the same lognormal distribution, subject to the stability constraint and accounting for the correlation between inner subsystems. The simulator can be used to evaluate the frequency of multiple systems with specified parameters. However, it does not reproduce the observed excess of inner periods shorter than 10 days, caused by tidal evolution.

  1. The impact of hierarchically constrained dynamics with a finite mean of cluster sizes on relaxation properties

    SciTech Connect (OSTI)

    Weron, Karina; Jurlewicz, Agnieszka; Patyk, Michał; Stanislavsky, Aleksander

    2013-05-15

    In this paper, a stochastic scenario of relaxation underlying the generalization (Kahlau et al., 2010) [15] of the Cole–Davidson (CD) and Kohlrausch–Williams–Watts (KWW) functions is proposed. As it has been shown (Kahlau et al., 2010) [15], the new three-parameter time-domain fitting function provides a very flexible description of the dielectric spectroscopy data for viscous glass-forming liquids. In relation to that result we discuss a hierarchically-constrained model yielding the proposed relaxation fitting function. Within the “exponentially decaying relaxation contributions” framework we show origins of the high-frequency (short-time, respectively) fractional power law, i.e., the characteristic feature of the new, as well as, of both CD and KWW response functions. We also bring into light a reason for which their common behavior in the opposite frequency limit is linear on external field frequency. Finally, we relate the new relaxation pattern (Kahlau et al., 2010) [15] with the Generalized Gamma (GG) survival probability of an imposed, non-equilibrium initial state in a relaxing system. -- Highlights: ► Combine the empirical Kohlrausch–Williams–Watts and Cole–Davidson laws of relaxation. ► Establish a microscopic stochastic scenario explaining the generalized law. ► Derive a frequency-domain relaxation function fitting the dielectric spectroscopy data. ► Find the low- and high-frequency properties for the relaxation pattern.

  2. Posterior propriety for hierarchical models with log-likelihoods that have norm bounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Michalak, Sarah E.; Morris, Carl N.

    2015-07-17

    Statisticians often use improper priors to express ignorance or to provide good frequency properties, requiring that posterior propriety be verified. Our paper addresses generalized linear mixed models, GLMMs, when Level I parameters have Normal distributions, with many commonly-used hyperpriors. It provides easy-to-verify sufficient posterior propriety conditions based on dimensions, matrix ranks, and exponentiated norm bounds, ENBs, for the Level I likelihood. Since many familiar likelihoods have ENBs, which is often verifiable via log-concavity and MLE finiteness, our novel use of ENBs permits unification of posterior propriety results and posterior MGF/moment results for many useful Level I distributions, including those commonlymore » used with multilevel generalized linear models, e.g., GLMMs and hierarchical generalized linear models, HGLMs. Furthermore, those who need to verify existence of posterior distributions or of posterior MGFs/moments for a multilevel generalized linear model given a proper or improper multivariate F prior as in Section 1 should find the required results in Sections 1 and 2 and Theorem 3 (GLMMs), Theorem 4 (HGLMs), or Theorem 5 (posterior MGFs/moments).« less

  3. Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at geologic sequestration sites

    SciTech Connect (OSTI)

    Yang, Ya-Mei; Small, Mitchell J.; Junker, Brian; Bromhal, Grant S.; Strazisar, Brian; Wells, Arthur

    2011-10-01

    Proper characterizations of background soil CO{sub 2} respiration rates are critical for interpreting CO{sub 2} leakage monitoring results at geologic sequestration sites. In this paper, a method is developed for determining temperature-dependent critical values of soil CO{sub 2} flux for preliminary leak detection inference. The method is illustrated using surface CO{sub 2} flux measurements obtained from the AmeriFlux network fit with alternative models for the soil CO{sub 2} flux versus soil temperature relationship. The models are fit first to determine pooled parameter estimates across the sites, then using a Bayesian hierarchical method to obtain both global and site-specific parameter estimates. Model comparisons are made using the deviance information criterion (DIC), which considers both goodness of fit and model complexity. The hierarchical models consistently outperform the corresponding pooled models, demonstrating the need for site-specific data and estimates when determining relationships for background soil respiration. A hierarchical model that relates the square root of the CO{sub 2} flux to a quadratic function of soil temperature is found to provide the best fit for the AmeriFlux sites among the models tested. This model also yields effective prediction intervals, consistent with the upper envelope of the flux data across the modeled sites and temperature ranges. Calculation of upper prediction intervals using the proposed method can provide a basis for setting critical values in CO{sub 2} leak detection monitoring at sequestration sites.

  4. Career Map: Design Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Engineer Career Map: Design Engineer A product designer watches as several engineers work on a wind turbine component. Design Engineer Position Title Design Engineer Alternate Title(s) Materials Engineer, Composite Engineer, Product Designer, Structural Engineer Education & Training Level Bachelor's degree required, graduate degree preferred Education & Training Level Description Design engineers typically hold a bachelor's degree or higher in electrical or mechanical engineering

  5. Mega-Pore Nano-Structured Carbon - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Mega-Pore Nano-Structured Carbon Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryCurrent supercapacitor technologies cannot meet the growing demands for high-power energy storage. Meeting this challenge requires the development of new electrode materials.DescriptionScientists at ORNL have developed robust carbon monolithic having hierarchical

  6. HostDesigner, Version 3

    SciTech Connect (OSTI)

    2015-09-18

    HostDesigner is a computer-aided molecular design code that enables the general application of de novo structure-based methods to problems in chemistry and material science. Its purpose is to identify organic molecules with 3D structures that match user-input specifications. To accomplish this, the code connects chemical fragments to build millions of potential molecules, evaluates the resulting structures based on geometric constraints, and outputs a rank-ordered list of candidates. Example applications include the design of metal ion sequestering agents for use in separations processes, molecules that form self-assembled nanoscale containers, and molecular building blocks for metal-organic frameworks.

  7. The effect of information sources on the structure and content of environmental knowledge

    SciTech Connect (OSTI)

    Austin, D. . School of Natural Resources)

    1993-01-01

    A characteristic of the subject matter of many fields of science, such as physics and geology, is the clear, hierarchical relationship of many of the concepts to one another. One of the trademarks for which environmental topics have been noted, however, is the lack of clear structure. Instead, these topics incorporate, at a minimum, information from several subject areas in both the natural and social sciences. For example, the necessity for environmental decision makers to consider effects to water and soil, to habitats and human health, and to economic and transportation systems is not uncommon. Theories of cognitive mapping have been successfully applied to problems of environmental planning and landscape design. Despite their demonstrated value, however, theories addressing human cognition in the environment have not become widely recognized or applied in environmental policy-making. Incorporating cognitive theories, the author has created and used a modified individual cognitive mapping technique to investigate both the content and structure of individuals' knowledge of a particular environmental issue, the siting of a hazardous waste incineration facility. Participants in the study were chosen because of their involvement in the decision to consider the placement of an incineration facility on Indian land in their region. Due to the complexity of siting a hazardous waste facility on tribal council members, waste company representatives, federal government employees, city officials, and both local and national environmental activists. In additions to the cognitive maps, the author collected information regarding the sources of information and each participant's perception of the reliability of that information.

  8. ON THE DISRUPTION OF STAR CLUSTERS IN A HIERARCHICAL INTERSTELLAR MEDIUM

    SciTech Connect (OSTI)

    Elmegreen, Bruce G.; Hunter, Deidre A. E-mail: dah@lowell.ed

    2010-03-20

    The distribution of the number of clusters as a function of mass M and age T suggests that clusters get eroded or dispersed in a regular way over time, such that the cluster number decreases inversely as an approximate power law with T within each fixed interval of M. This power law is inconsistent with standard dispersal mechanisms such as cluster evaporation and cloud collisions. In the conventional interpretation, it requires the unlikely situation where diverse mechanisms stitch together over time in a way that is independent of environment or M. Here, we consider another model in which the large-scale distribution of gas in each star-forming region plays an important role. We note that star clusters form with positional and temporal correlations in giant cloud complexes, and suggest that these complexes dominate the tidal force and collisional influence on a cluster during its first several hundred million years. Because the cloud complex density decreases regularly with position from the cluster birth site, the harassment and collision rates between the cluster and the cloud pieces decrease regularly with age as the cluster drifts. This decrease is typically a power law of the form required to explain the mass-age distribution. We reproduce this distribution for a variety of cases, including rapid disruption, slow erosion, combinations of these two, cluster-cloud collisions, cluster disruption by hierarchical disassembly, and partial cluster disruption. We also consider apparent cluster mass loss by fading below the surface brightness limit of a survey. In all cases, the observed log M-log T diagram can be reproduced under reasonable assumptions.

  9. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    SciTech Connect (OSTI)

    Mandel, Kaisey S.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Foley, Ryan J., E-mail: kmandel@cfa.harvard.edu [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-12-20

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II ?6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B V and B R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B V and B R color differences between HV and NV groups are 0.06 0.02 and 0.09 0.02 mag, respectively. A linear model finds significant slopes of 0.021 0.006 and 0.030 0.009 mag (10{sup 3} km s{sup 1}){sup 1} for intrinsic B V and B R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as 0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.

  10. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect (OSTI)

    Specht, Eliot D [ORNL; Ma, Jie [ORNL; Delaire, Olivier A [ORNL; Budai, John D [ORNL; May, Andrew F [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL)

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  11. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  12. Interactive visualization of particle beams for accelerator design

    SciTech Connect (OSTI)

    Wilson, Brett; Ma, Kwan-Liu; Qiang, Ji; Ryne, Robert

    2002-01-15

    We describe a hybrid data-representation and rendering technique for visualizing large-scale particle data generated from numerical modeling of beam dynamics. The basis of the technique is mixing volume rendering and point rendering according to particle density distribution, visibility, and the user's instruction. A hierarchical representation of the data is created on a parallel computer, allowing real-time partitioning into high-density areas for volume rendering, and low-density areas for point rendering. This allows the beam to be interactively visualized while preserving the fine structure usually visible only with slow point based rendering techniques.

  13. Computational Structural Mechanics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    load-2 TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Structural Mechanics Overview of CSM Computational structural mechanics is a well-established methodology for the design and analysis of many components and structures found in the transportation field. Modern finite-element models (FEMs) play a major role in these evaluations, and sophisticated software, such as the commercially available LS-DYNA® code, is

  14. Design Considerations

    Office of Environmental Management (EM)

    TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1132-99 April 1999 Reaffirmed 2014 DOE HANDBOOK DESIGN CONSIDERATIONS U.S. Department of Energy AREA EDCN Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1132-99 February 2014 Table of Changes Page Paragraph Changed To Throughout Reference citations. Revised all reference citations throughout the Order to reflect current versions of the documents. Throughout Formatting Made editorial and

  15. Center for Inverse Design: Inverse Design Approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverse Design Approach This page describes the inverse materials design methodology used by the Center for Inverse Design, which integrates and combines the following: (1) theory,...

  16. Generalized Nuclear Data: A New Structure (with Supporting Infrastructure) for Handling Nuclear Data

    SciTech Connect (OSTI)

    Mattoon, C.M.; Beck, B.R.; Patel, N.R.; Summers, N.C.; Hedstrom, G.W.; Brown, D.A.

    2012-12-15

    The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate neutron reaction data to support nuclear engineering applications in power, national security and criticality safety. Over the years, the scope of the format has been extended to handle many other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron scattering. Although ENDF has wide acceptance and support for many data types, its limited support for correlated particle emission, limited numeric precision, and general lack of extensibility mean that the nuclear data community cannot take advantage of many emerging opportunities. More generally, the ENDF format provides an unfriendly environment that makes it difficult for new data evaluators and users to create and access nuclear data. The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Generalized Nuclear Data (or 'GND') structure, meant to replace older formats with a hierarchy that mirrors the underlying physics, and is aligned with modern coding and database practices. In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes) GND structured nuclear data. GND defines the structure needed for storing nuclear data evaluations and the type of data that needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML is a meta-language, meaning that it has a primitive set of definitions for representing hierarchical data/text in a file. Other meta-languages, like HDF5 which stores the data in binary form, can also be used to store GND in a file. In this paper, we will present an overview of the new GND data structures along with associated tools in Fudge.

  17. System 80+{trademark} Standard Design: CESSAR design certification. Volume 2: Amendment I

    SciTech Connect (OSTI)

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These documents describe the Combustion Engineering, Inc. System 80+{sup TM} Standard Design. This report, Volume 2, in conjunction with Volume 3, provides the design of structures, components, equipment and systems.

  18. HostDesigner, Version 3

    Energy Science and Technology Software Center (OSTI)

    2015-09-18

    HostDesigner is a computer-aided molecular design code that enables the general application of de novo structure-based methods to problems in chemistry and material science. Its purpose is to identify organic molecules with 3D structures that match user-input specifications. To accomplish this, the code connects chemical fragments to build millions of potential molecules, evaluates the resulting structures based on geometric constraints, and outputs a rank-ordered list of candidates. Example applications include the design of metal ionmore » sequestering agents for use in separations processes, molecules that form self-assembled nanoscale containers, and molecular building blocks for metal-organic frameworks.« less

  19. The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steffen, J. H.; Quinn, S. N.; Borucki, W. J.; Brugamyer, E.; Bryson, S. T.; Buchhave, L. A.; Cochran, W. D.; Endl, M.; Fabrycky, D C.; Ford, E. B.; et al

    2011-10-01

    We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASA's Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary (0.424±0.017Mcircle-dot) and the orbital parameters ofmore » the binary about the central star.« less

  20. Metal-Organic Framework Derived Hierarchically Porous Nitrogen-Doped Carbon Nanostructures as Novel Electrocatalyst for Oxygen Reduction Reaction

    SciTech Connect (OSTI)

    Fu, Shaofang; Zhu, Chengzhou; Zhou, Yazhou; Yang, Guohai; Jeon, Ju Won; Lemmon, John P.; Du, Dan; Nune, Satish K.; Lin, Yuehe

    2015-10-01

    The hierarchically porous nitrogen-doped carbon materials, derived from nitrogen-containing isoreticular metal-organic framework-3 (IRMOF-3) through direct carbonization, exhibited excellent electrocatalytic activity in alkaline solution for oxygen reduction reaction (ORR). This high activity is attributed to the 10 presence of high percentage of quaternary and pyridinic nitrogen, the high surface area as well as good conductivity. When IRMOF-3 was carbonized at 950 C (CIRMOF-3-950), it showed four-electron reduction pathway for ORR and exhibited better stability (about 78.5% current density was maintained) than platinum/carbon (Pt/C) in the current durability test. In addition, CIRMOF-3-950 presented high selectivity to cathode reactions compared to commercial Pt/C.

  1. Ecological Communities by Design

    SciTech Connect (OSTI)

    Fredrickson, Jim K.

    2015-06-25

    In synthetic ecology, a nascent offshoot of synthetic biology, scientists aim to design and construct microbial communities with desirable properties. Such mixed populations of microorganisms can simultaneously perform otherwise incompatible functions. Compared with individual organisms, they can also better resist losses in function as a result of environmental perturbation or invasion by other species. Synthetic ecology may thus be a promising approach for developing robust, stable biotechnological processes, such as the conversion of cellulosic biomass to biofuels. However, achieving this will require detailed knowledge of the principles that guide the structure and function of microbial communities.

  2. Optimized design for PIGMI

    SciTech Connect (OSTI)

    Hansborough, L.; Hamm, R.; Stovall, J.; Swenson, D.

    1980-01-01

    PIGMI (Pion Generator for Medical Irradiations) is a compact linear proton accelerator design, optimized for pion production and cancer treatment use in a hospital environment. Technology developed during a four-year PIGMI Prototype experimental program allows the design of smaller, less expensive, and more reliable proton linacs. A new type of low-energy accelerating structure, the radio-frequency quadrupole (RFQ) has been tested; it produces an exceptionally good-quality beam and allows the use of a simple 30-kV injector. Average axial electric-field gradients of over 9 MV/m have been demonstrated in a drift-tube linac (DTL) structure. Experimental work is underway to test the disk-and-washer (DAW) structure, another new type of accelerating structure for use in the high-energy coupled-cavity linac (CCL). Sufficient experimental and developmental progress has been made to closely define an actual PIGMI. It will consist of a 30-kV injector, and RFQ linac to a proton energy of 2.5 MeV, a DTL linac to 125 MeV, and a CCL linac to the final energy of 650 MeV. The total length of the accelerator is 133 meters. The RFQ and DTL will be driven by a single 440-MHz klystron; the CCL will be driven by six 1320-MHz klystrons. The peak beam current is 28 mA. The beam pulse length is 60 ..mu..s at a 60-Hz repetition rate, resulting in a 100-..mu..A average beam current. The total cost of the accelerator is estimated to be approx. $10 million.

  3. Supercomputing and nonlinear seismic structural response of freeway structures

    SciTech Connect (OSTI)

    Goudreau, G.L.; Kay, G.; McCallen, D.; Schauer, D.; Logan, R.

    1990-11-01

    The Loma Prieta earthquake stimulated a major reassessment of Bay Area structures to consider much larger earthquakes than originally designed for. The supercomputers of the Lawrence Livermore National Laboratory were used to demonstrate the feasibility of nonlinear structural time history analysis to assess likelihood of failure of critical structures.

  4. Design Code Survey Form | Department of Energy

    Office of Environmental Management (EM)

    Design Code Survey Form Design Code Survey Form Survey of Safety Software Used in Design of Structures, Systems, and Components 1. Introduction The Department's Implementation Plan for Software Quality Assurance (SQA) that was developed in response to Defense Nuclear Facilities Safety Board Recommendation 2002-01, Quality Assurance for Safety-Related Software, includes a commitment (4.2.1.5) to conduct a survey of design codes currently in use to determine if any should be included as part of

  5. Embedding Agile Practices within a Plan-Driven Hierarchical Project Life Cycle

    SciTech Connect (OSTI)

    Millard, W. David; Johnson, Daniel M.; Henderson, John M.; Lombardo, Nicholas J.; Bass, Robert B.; Smith, Jason E.

    2014-07-28

    Organizations use structured, plan-driven approaches to provide continuity, direction, and control to large, multi-year programs. Projects within these programs vary greatly in size, complexity, level of maturity, technical risk, and clarity of the development objectives. Organizations that perform exploratory research, evolutionary development, and other R&D activities can obtain the benefits of Agile practices without losing the benefits of their programs overarching plan-driven structure. This paper describes application of Agile development methods on a large plan-driven sensor integration program. While the client employed plan-driven, requirements flow-down methodologies, tight project schedules and complex interfaces called for frequent end-to-end demonstrations to provide feedback during system development. The development process maintained the many benefits of plan-driven project execution with the rapid prototyping, integration, demonstration, and client feedback possible through Agile development methods. This paper also describes some of the tools and implementing mechanisms used to transition between and take advantage of each methodology, and presents lessons learned from the project management, system engineering, and developers perspectives.

  6. Conceptual Safety Design RM

    Office of Environmental Management (EM)

    Area Identifier Safety Design Strategy SD Hazards Identification & Control Selection HI Conceptual Safety Design Report CR Risks to Project Safety Decisions SR Safety Design...

  7. STRUCtural Simulator

    Energy Science and Technology Software Center (OSTI)

    2004-07-01

    STRUC-ANL is a derivative of the FLUSTR-ANL finite element code. It contains only the structural capabilities of the original fluid-structural FLUSTR code.

  8. Designs for Risk Evaluation and Management

    SciTech Connect (OSTI)

    2015-12-01

    The Designs for Risk Evaluation and Management (DREAM) tool was developed as part of the effort to quantify the risk of geologic storage of carbon dioxide (CO2) under the U.S. Department of Energy?s National Risk Assessment Partnership (NRAP). DREAM is an optimization tool created to identify optimal monitoring schemes that minimize the time to first detection of CO2 leakage from a subsurface storage formation. DREAM acts as a post-processer on user-provided output from subsurface leakage simulations. While DREAM was developed for CO2 leakage scenarios, it is applicable to any subsurface leakage simulation of the same output format. The DREAM tool is comprised of three main components: (1) a Java wizard used to configure and execute the simulations, (2) a visualization tool to view the domain space and optimization results, and (3) a plotting tool used to analyze the results. A secondary Java application is provided to aid users in converting common American Standard Code for Information Interchange (ASCII) output data to the standard DREAM hierarchical data format (HDF5). DREAM employs a simulated annealing approach that searches the solution space by iteratively mutating potential monitoring schemes built of various configurations of monitoring locations and leak detection parameters. This approach has proven to be orders of magnitude faster than an exhaustive search of the entire solution space. The user?s manual illustrates the program graphical user interface (GUI), describes the tool inputs, and includes an example application.

  9. Uniform Cu{sub 2}Cl(OH){sub 3} hierarchical microspheres: A novel adsorbent for methylene blue adsorptive removal from aqueous solution

    SciTech Connect (OSTI)

    Wei, Wei; Gao, Pin; Xie, Jimin Zong, Sekai; Cui, Henglv; Yue, Xuejie

    2013-08-15

    Using the solution phase method without any surfactants or templates, the hierarchical of Cu{sub 2}Cl(OH){sub 3} microspheres were synthesized by freeze drying. The size and surface area of the microspheres are ca. 12 m and 76.61 m{sup 2} g{sup ?1}, respectively. A possible formation mechanism is presented based on the experimental results. Methylene blue was chosen to investigate the adsorption capacity of the as-prepared adsorbent. The effects of various experimental parameters, such as pH, initial dye concentration, and contact time were investigated. The results showed that the dye removal increased with the increasing in the initial concentration of the dye and also increased in the amount of microspheres used and initial pH. Adsorption data fitted well with the Freundlich adsorption isotherm. The thermodynamic analysis presented the exothermic, spontaneous and more ordered arrangement process. The microspheres could be employed effective for removal of dyes from aqueous solution. - Graphical abstract: The single-crystalline hierarchical Cu{sub 2}Cl(OH){sub 3} spheres can be prepared for the first time by using a template-free process through freeze-drying. Meanwhile, the hierarchical spheres exhibited high adsorption capacity to methylene blue. Display Omitted - Highlights: Cu{sub 2}Cl(OH){sub 3} microspheres were successfully synthesized through a freeze drying process. A possible formation mechanism of hierarchical microspheres was presented. The Cu{sub 2}Cl(OH){sub 3} microspheres have high methylene blue adsorption capacity. Methylene blue adsorption is a spontaneous and exothermic process. The adsorption mechanism of microspheres onto dye was proposed in detail.

  10. Hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods: Large-scale synthesis and high photocatalytic activity

    SciTech Connect (OSTI)

    Xu Hua; Zheng Zhi; Zhang Lizhi Zhang Hailu; Deng Feng

    2008-09-15

    In this study, we report the synthesis of hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods photocatalyst on a large scale via a soft interface approach. This catalyst showed much higher photocatalytic activity than the famous commercial titania (Degussa P25) under visible light ({lambda}>420 nm). The resulting sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy, {sup 1}H solid magic-angle spinning nuclear magnetic resonance (MAS-NMR) and photoluminescence spectroscopy. On the basis of characterization results, we found that the doping of chlorine resulted in red shift of absorption and higher surface acidity as well as crystal defects in the photocatalyst, which were the reasons for high photocatalytic activity of chlorine-doped TiO{sub 2} under visible light ({lambda}>420 nm). These hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods are very attractive in the fields of environmental pollutants removal and solar cell because of their easy separation and high activity. - Graphical abstract: Hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods photocatalyst were synthesized on a large scale via a soft interface approach. This catalyst showed much higher photocatalytic activity than the famous commercial titania (Degussa P25) under visible light ({lambda}>420 nm)

  11. PHENIX Conceptual Design Report

    SciTech Connect (OSTI)

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e[mu] coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study [pi][sup 0] and [eta] production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the [phi] meson (via K[sup +]K[sup [minus

  12. Validating Computer-Designed Proteins for Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

  13. Validating Computer-Designed Proteins for Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

  14. Validating Computer-Designed Proteins for Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

  15. Validating Computer-Designed Proteins for Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validating Computer-Designed Proteins for Vaccines Print In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent neutralizing antibodies. The results were validated in part using protein structures

  16. Structural health monitoring for ship structures

    SciTech Connect (OSTI)

    Farrar, Charles; Park, Gyuhae; Angel, Marian; Bement, Matthew; Salvino, Liming

    2009-01-01

    Currently the Office of Naval Research is supporting the development of structural health monitoring (SHM) technology for U.S. Navy ship structures. This application is particularly challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with these ships missions, lack of data from known damage conditions, limited sensing that was not designed specifically for SHM, and the management of the vast amounts of data that can be collected during a mission. This paper will first define a statistical pattern recognition paradigm for SHM by describing the four steps of (1) Operational Evaluation, (2) Data Acquisition, (3) Feature Extraction, and (4) Statistical Classification of Features as they apply to ship structures. Note that inherent in the last three steps of this process are additional tasks of data cleansing, compression, normalization and fusion. The presentation will discuss ship structure SHM challenges in the context of applying various SHM approaches to sea trials data measured on an aluminum multi-hull high-speed ship, the HSV-2 Swift. To conclude, the paper will discuss several outstanding issues that need to be addressed before SHM can make the transition from a research topic to actual field applications on ship structures and suggest approaches for addressing these issues.

  17. Validating Computer-Designed Proteins for Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validating Computer-Designed Proteins for Vaccines Validating Computer-Designed Proteins for Vaccines Print Thursday, 21 August 2014 12:05 In the struggle to keep up with microbes whose rapid mutations outpace our ability to produce vaccines, the human race has a powerful ally: computers. Researchers have now figured out a way to use computational protein design to generate small, stable proteins that accurately mimic key viral structures; these can then be used in vaccines to induce potent

  18. Financing Program Design and Implementation Considerations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Program Design and Implementation Considerations Financing Program Design and Implementation Considerations Designing and implementing clean energy financing programs takes more than simply identifying applicable financing structures and implementing them. State and local governments should also take into account partners and stakeholders, staffing needs, and enabling legislation that can affect each program's design and implementation. Learn more about the implementation process

  19. Designing Effective Incentives to Drive Residential Retrofit Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Participation | Department of Energy Incentives to Drive Residential Retrofit Program Participation Designing Effective Incentives to Drive Residential Retrofit Program Participation This webinar covered retrofit program incentive contests, decision points to consider when designing an incentive program, and examples of incentive structures. Transcript PDF icon Presentation More Documents & Publications Designing Effective Renewables Programs How to Design a Community Energy Alliance

  20. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Supersedes DOE 5480.1, dated 1-19-93. Certified 11-18-10.

  1. Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Design Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm McFadden/NREL. Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm

  2. Preliminary Safety Design RM

    Office of Environmental Management (EM)

    Identifier Safety Guidance & Requirements SG Hazards Identification & Control Selection HI Preliminary Safety Design Report PR Risks to Project Safety Decisions SR Safety Design...

  3. Understanding the observed evolution of the galaxy luminosity function from z = 610 in the context of hierarchical structure formation

    SciTech Connect (OSTI)

    Muoz, Joseph A.

    2012-04-01

    Recent observations of the Lyman-break galaxy (LBG) luminosity function (LF) from z ? 610 show a steep decline in abundance with increasing redshift. However, the LF is a convolution of the mass function of dark matter halos (HMF) which also declines sharply over this redshift range and the galaxy-formation physics that maps halo mass to galaxy luminosity. We consider the strong observed evolution in the LF from z ? 610 in this context and determine whether it can be explained solely by the behavior of the HMF. From z ? 68, we find a residual change in the physics of galaxy formation corresponding to a ? 0.5 dex increase in the average luminosity of a halo of fixed mass. On the other hand, our analysis of recent LF measurements at z ? 10 shows that the paucity of detected galaxies is consistent with almost no change in the average luminosity at fixed halo mass from z ? 8. The LF slope also constrains the variation about this mean such that the luminosity of galaxies hosted by halos of the same mass are all within about an order-of-magnitude of each other. We show that these results are well-described by a simple model of galaxy formation in which cold-flow accretion is balanced by star formation and momentum-driven outflows. If galaxy formation proceeds in halos with masses down to 10{sup 8}M{sub s}un, then such a model predicts that LBGs at z ? 10 should be able to maintain an ionized intergalactic medium as long as the ratio of the clumping factor to the ionizing escape fraction is C/f{sub esc}?<10.

  4. Solar Design Workbook

    SciTech Connect (OSTI)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  5. DOE handbook: Design considerations

    SciTech Connect (OSTI)

    1999-04-01

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.

  6. Center for Inverse Design Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Inverse Design. Achieving the grand challenge of materials and nanostructures by design. Graphical element on the left-hand edge is a stylized energy-band diagram in front of a schematic atomic model. The diagram represents a desired property of a material (represented by the atomic model) to be designed through the inverse design approach. Image of a portion of a ball-and-stick three-dimensional molecular model. The model is of the perovskite structure of CaTiO3. The atoms are

  7. Integrating rock mechanics issues with repository design through design process principles and methodology

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1996-04-01

    A good designer needs not only knowledge for designing (technical know-how that is used to generate alternative design solutions) but also must have knowledge about designing (appropriate principles and systematic methodology to follow). Concepts such as {open_quotes}design for manufacture{close_quotes} or {open_quotes}concurrent engineering{close_quotes} are widely used in the industry. In the field of rock engineering, only limited attention has been paid to the design process because design of structures in rock masses presents unique challenges to the designers as a result of the uncertainties inherent in characterization of geologic media. However, a stage has now been reached where we are be able to sufficiently characterize rock masses for engineering purposes and identify the rock mechanics issues involved but are still lacking engineering design principles and methodology to maximize our design performance. This paper discusses the principles and methodology of the engineering design process directed to integrating site characterization activities with design, construction and performance of an underground repository. Using the latest information from the Yucca Mountain Project on geology, rock mechanics and starter tunnel design, the current lack of integration is pointed out and it is shown how rock mechanics issues can be effectively interwoven with repository design through a systematic design process methodology leading to improved repository performance. In essence, the design process is seen as the use of design principles within an integrating design methodology, leading to innovative problem solving. In particular, a new concept of {open_quotes}Design for Constructibility and Performance{close_quotes} is introduced. This is discussed with respect to ten rock mechanics issues identified for repository design and performance.

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Local structures of copper-doped ZnO films Ma, Q. ; Buchholz, D.B. ; Chang, R.P.H. February 2015 Molecular design for growth of supramolecular membranes with hierarchical structure ...

  9. Designs for Risk Evaluation and Management

    Energy Science and Technology Software Center (OSTI)

    2015-12-01

    The Designs for Risk Evaluation and Management (DREAM) tool was developed as part of the effort to quantify the risk of geologic storage of carbon dioxide (CO2) under the U.S. Department of Energy’s National Risk Assessment Partnership (NRAP). DREAM is an optimization tool created to identify optimal monitoring schemes that minimize the time to first detection of CO2 leakage from a subsurface storage formation. DREAM acts as a post-processer on user-provided output from subsurface leakagemore » simulations. While DREAM was developed for CO2 leakage scenarios, it is applicable to any subsurface leakage simulation of the same output format. The DREAM tool is comprised of three main components: (1) a Java wizard used to configure and execute the simulations, (2) a visualization tool to view the domain space and optimization results, and (3) a plotting tool used to analyze the results. A secondary Java application is provided to aid users in converting common American Standard Code for Information Interchange (ASCII) output data to the standard DREAM hierarchical data format (HDF5). DREAM employs a simulated annealing approach that searches the solution space by iteratively mutating potential monitoring schemes built of various configurations of monitoring locations and leak detection parameters. This approach has proven to be orders of magnitude faster than an exhaustive search of the entire solution space. The user’s manual illustrates the program graphical user interface (GUI), describes the tool inputs, and includes an example application.« less

  10. Final Design RM

    Office of Environmental Management (EM)

    ... Do adequate calculations exist to support the selected design? (ED-2.3) Are vessels and piping systems designed, sized, and qualified to the ASME Boiler and Pressure Vessel Code ...

  11. Energy design for architects

    SciTech Connect (OSTI)

    Shaw, A.

    1989-01-01

    This book contains techniques for energy efficiency in architectural design. Many aspects are covered including: cost; comfort and health; energy use; the design process; and analytical techniques. 202 figs. (JF)

  12. DesignForward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DesignForward DesignForward The objective of the DesignForward program was to initiate partnerships between DOE centers and vendors to accelerate the research and development of critical technologies needed for exa-scale computing. The principal research areas of interest in the DesignForward program were in the general areas of system integration and interconnect technology. Broadly, the program was looking for proposals in the following areas: System Integration New node technologies, new

  13. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  14. Waste Package Design Methodology Report

    SciTech Connect (OSTI)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  15. Designs of SSRF Insertion Devices

    SciTech Connect (OSTI)

    Zhou, Q. G.; Chen, N.; Zhang, M.; Li, Y.; Su, W. L.

    2007-01-19

    Five IDs will be built for the Shanghai Synchrotron Radiation Facility (SSRF). Two identical mini-gap undulators with the period length 25mm and the minimum gap 6mm will use the in-vacuum technology and can operate in tapered mode. Two wigglers with the period lengths 7.9cm and 14cm and the same minimum gap 14mm will produce the peak fields of 1.2T and 1.94T. A variable polarization undulator of the APPLE-II type with 4.2m long and the period length 10cm can provide linearly, circularly and elliptically polarized radiation in a wide spectral range. This paper describes the magnet designs and the mechanical structure designs of these IDs.

  16. Architecture earth-sheltered buildings. Design manual 1. 4

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    Design guidance is presented for use by experienced engineers and architects. The types of buildings within the scope of this manual include slab-on-grade, partially-buried (bermed) or fully-buried, and large (single-story or multistory) structures. New criteria unique to earth-sheltered design are included for the following disciplines: Planning, Landscape Design, Life-Cycle Analysis, Architectural, Structural, Mechanical (criteria include below-grade heat flux calculation procedures), and Electrical.

  17. Organizational Structure | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizational Structure Organizational Structure

  18. Computational Design of Creep-Resistant Alloys and Experimental Validation in Ferritic Superalloys

    SciTech Connect (OSTI)

    Liaw, Peter

    2014-12-31

    A new class of ferritic superalloys containing B2-type zones inside parent L21-type precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate strengthened ferritic alloy (HPSFA), has been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by the addition of the Ti element into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). In the present research, systematic investigations, including advanced experimental techniques, first-principles calculations, and numerical simulations, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of HPSFAs. The experimental techniques include transmission-electron microscopy, scanningtransmission- electron microscopy, neutron diffraction, and atom-probe tomography, which provide detailed microstructural information of HPSFAs. Systematic tension/compression creep tests revealed that HPSFAs exhibit the superior creep resistance, compared with the FBB8 and conventional ferritic steels (i.e., the creep rates of HPSFAs are about 4 orders of magnitude slower than the FBB8 and conventional ferritic steels.) First-principles calculations include interfacial free energies, anti-phase boundary (APB) free energies, elastic constants, and impurity diffusivities in Fe. Combined with kinetic Monte- Carlo simulations of interdiffusion coefficients, and the integration of computational thermodynamics and kinetics, these calculations provide great understanding of thermodynamic and mechanical properties of HPSFAs. In addition to the systematic experimental approach and first-principles calculations, a series of numerical tools and algorithms, which assist in the optimization of creep properties of ferritic superalloys, are utilized and developed. These numerical simulation results are compared with the available experimental data and previous first-principles calculations, providing deep insight of creep mechanisms of the creep-resistant ferritic superalloys. With the above investigations, the HPSFA has been proved with superior creep resistance, and its microstructure, creep mechanism, and thermal/mechanical properties have been well studied and understood. In the future, HPSFAs with different additions and sizes of precipitates will be investigated and developed to further enhance the creep resistance of the ferritic superalloys and provide promising applications of the fossil-energy power plants.

  19. Bridge Structural Analysis Using CSM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bridge Structural Analysis Using Computational Structural Mechanics Background Bridge failure due to wind has been observed as far back as 1823. The latest concept for an efficient and cost-effective bridge design is the cable-stayed bridge. Bridge stay cables, however, have exhibited large-amplitude vibrations as a result of wind loadings, sometimes in combination with rain. In recent years, attempts have been made to model this problem both in the laboratory and on the computer. Several wind

  20. Conceptual Design RM

    Office of Environmental Management (EM)

    DOE-STD-1189-2008, Integration of Safety into the Design Process, and EM's internal business management practices. The SRP follows the Critical Decision (CD) process and...

  1. Effective Design Strategies

    Broader source: Energy.gov [DOE]

    As described in the Whole Building Design Guide (WBDG), all Federal agencies are required to follow the Guiding Principles for New Construction and Major Renovations, which include considerations...

  2. Rotor Aerodynamic Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Safety Technologies Facilities Battery ... Integrating Wake Effects into the Design Process Models of ... A free-wake, blade element vortex method is being used for ...

  3. The LCLS Design Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R-593 April 2002 UC-414 Linac Coherent Light Source (LCLS) Conceptual Design Report Published April 2002 Prepared for the Department of Energy under contract number...

  4. ERHIC INTERACTION REGION DESIGN.

    SciTech Connect (OSTI)

    MONTAG,C.PARKER,B.PTITSYN,V.TEPIKIAN,S.WANG,D.WANG,F.

    2003-10-13

    This paper presents the current interaction region design status of the ring-ring version of the electron-ion collider eRHIC (release 2.0).

  5. Design and put in place institutional structures and processes...

    Open Energy Info (EERE)

    public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development...

  6. High voltage design structure for high temperature superconducting device

    DOE Patents [OSTI]

    Tekletsadik, Kasegn D.

    2008-05-20

    In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.

  7. Structure-based design of inhibitors of coagulation factor XIa...

    Office of Scientific and Technical Information (OSTI)

    Authors: Pinto, Donald J.P. ; Smallheer, Joanne M. ; Corte, James R. ; Austin, Erin J.D. ; Wang, Cailan ; Fang, Tianan ; Smith, II, Leon M. ; Rossi, Karen A. ; Rendina, Alan R. ; ...

  8. Sensor 17 Thermal Isolation Mounting Structure (TIMS) Design Improvements

    SciTech Connect (OSTI)

    Enstrom, K.

    2015-09-04

    The SENSOR 17 thermographic camera weighs approximately 0.5lbs, has a fundamental mode of 167 Hz, and experiences 0.75W of heat leakage in through the TIMS. The configuration, shown in Figure 1, is comprised of four 300 Series SST washers paired in tandem with P.E.I (Ultem 100) washers. The SENSOR 17 sensor is mounted to a 300 series stainless plate with A-shaped arms. The Plate can be assumed to be at ambient temperatures (?293K) and the I.R. Mount needs to be cooled to 45K. It is attached to the tip of a cryocooler by a cold strap and is assumed to be at the temperature of the cold-strap (?45K). During flights SENSOR 17 experiences excitations at frequencies centered around 10-30Hz, 60Hz, and 120Hz from the aircraft flight environment. The temporal progression described below depicts the 1st Modal shape at the systems resonant frequency. This simulation indicates Modal articulation will cause a pitch rate of the camera with respect to the body axis of the airplane. This articulation shows up as flutter in the camera.

  9. Giant structures called plasmoids could simplify the design of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the space in which the solenoid fits - the hole in the middle of the doughnut-shaped tokamak - is relatively small and limits the size and strength of the solenoid. A clear...

  10. Project Profile: System Design for CSP Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Design for CSP Technologies Project Profile: System Design for CSP Technologies Alcoa logo Alcoa, under the CSP R&D FOA, is seeking to demonstrate that significant life cycle cost savings and subsequent LCOE reductions are achievable through the design optimization of aluminum-intensive collectors. Approach Image of ALCOA's monocoque "wing-box" design collector Alcoa is developing an aluminum-intensive collector, including the supporting structure and reflector, which will

  11. DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for DOE Facilities | Department of Energy 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities Department of Energy (DOE) Standard (STD)-1020-2012, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities, provides criteria and guidance for the analysis and design of facility structures, systems, and components (SSCs) that are necessary to implement the

  12. Nanocrystal structures

    DOE Patents [OSTI]

    Eisler, Hans J. (Stoneham, MA); Sundar, Vikram C. (Stoneham, MA); Walsh, Michael E. (Everett, MA); Klimov, Victor I. (Los Alamos, NM); Bawendi, Moungi G. (Cambridge, MA); Smith, Henry I. (Sudbury, MA)

    2008-12-30

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  13. Nanocrystal structures

    DOE Patents [OSTI]

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group IIVI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  14. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    DOE Patents [OSTI]

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.

    2015-07-28

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.

  15. Design and Simulation of Hybridization Experiments

    Energy Science and Technology Software Center (OSTI)

    1995-11-28

    DB EXP DESIGN is a suite of three UNIX shell-like programs, DWC which computes oligomer composition of DNA texts using directed acyclic word data structures; DWO, which simulates hybridization experiments; and DMI, which calculates the information contenet of individual probes, their mutual information content, and their joint information content through estimation of Markov trees.

  16. Core Design Applications

    Energy Science and Technology Software Center (OSTI)

    1995-07-12

    CORD-2 is intended for core desigh applications of pressurized water reactors. The main objective was to assemble a core design system which could be used for simple calculations (such as frequently required for fuel management) as well as for accurate calculations (for example, core design after refueling).

  17. Lighting Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as part of your whole-house design -- an approach for building an energy-efficient home. Indoor Lighting Design When designing indoor lighting for energy efficiency,...

  18. Race to Zero Design Competition Webinar: Housing Design Best...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Race to Zero Design Competition Webinar: Housing Design Best Practices Race to Zero Design Competition Webinar: Housing Design Best Practices November 18, 2014 1:00PM to 2:30PM EST ...

  19. Superconducting Structure

    DOE Patents [OSTI]

    Kwon, Chuhee (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  20. Superconducting structure

    DOE Patents [OSTI]

    Kwon, Chuhee (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  1. Terminal structure

    DOE Patents [OSTI]

    Schmidt, Frank (Langenhagen, DE); Allais, Arnaud (Hannover, DE); Mirebeau, Pierre (Villebon sur Yvette, FR); Ganhungu, Francois (Vieux-Reng, FR); Lallouet, Nicolas (Saint Martin Boulogne, FR)

    2009-10-20

    A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.

  2. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  3. Proposals and Design Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposals and Design Reports Proposals and Design Reports Proposal (1/2/04) Proposal Addendum (29/3/04) Physics Case and Detector Technology Report (12/04) Technical Design Report (7/06) Reviews DOE CD-4 DOE 2008 DOE CD-3b CD-3b Readiness DOE CD-1/2/3a CD-2/3a Readiness CD-1 Readiness PAC Report (4/05) Approvals FNAL PAC Approval: April 15, 2004 DOE Critical Decision 1,2,3a (Performance Baseline, Construction Start) Approval: March 30, 2007 DOE Critical Decision 4 (Project Completion) Approval:

  4. Policies for green design

    SciTech Connect (OSTI)

    Fullerton, D.; Wu, W.

    1998-09-01

    A simple general equilibrium model is used to analyze disposal-content fees, subsidies for recyclable designs, unit-pricing of household disposal, deposit-refund systems, and manufacturer take-back requirements. Firms use primary and recycled inputs to produce output that has two attributes: packaging per unit output, and recyclability. If households pay the social cost of disposal, then they send the right signals to producers to reduce packaging and to design products that can more easily be recycled. If garbage is collected for free, then socially optimum attributes can still be achieved by a tax on producers` use of packaging and subsidy to recyclable designs.

  5. Novel rocket design flight tested

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel rocket design flight tested Novel rocket design flight tested Scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that...

  6. System Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Design System Design This template is used to define the system design PDF icon System Design More Documents & Publications Transition Plan Training Plan Feasibility Study Report Template

  7. Prelminary Design RM

    Office of Environmental Management (EM)

    ... vessels and piping systems designed, sized, and qualified to the ASME Boiler and Pressure Vessel Code and ASME B31.3 code, including over-pressure protection? (ED-2.4) Are the ...

  8. METALS DESIGN HANDBOOK DISCLAIMER

    Office of Scientific and Technical Information (OSTI)

    Metals Design Handbook Dear Andy : Enclosed f o r your useinformation is DOE-HTGR-88106, ... * 0 I ELECTRiCAL CLASSIFICATION 7 SUE F 0 - INTI NA I NA I NA I APPROVAL PREPARED ...

  9. Subsea HIPPS design procedure

    SciTech Connect (OSTI)

    Aaroe, R.; Lund, B.F.; Onshus, T.

    1995-12-31

    The paper is based on a feasibility study investigating the possibilities of using a HIPPS (High Integrity Pressure Protection System) to protect a subsea pipeline that is not rated for full wellhead shut-in pressure. The study was called the Subsea OPPS Feasibility Study, and was performed by SINTEF, Norway. Here, OPPS is an acronym for Overpressure Pipeline Protection System. A design procedure for a subsea HIPPS is described, based on the experience and knowledge gained through the ``Subsea OPPS Feasibility Study``. Before a subsea HIPPS can be applied, its technical feasibility, reliability and profitability must be demonstrated. The subsea HIPPS design procedure will help to organize and plan the design activities both with respect to development and verification of a subsea HIPPS. The paper also gives examples of how some of the discussed design steps were performed in the Subsea OPPS Feasibility Study. Finally, further work required to apply a subsea HIPPS is discussed.

  10. Seismic Design Expectations Report

    Office of Environmental Management (EM)

    ldg. 3019 60% rned from this r ule. ) Post Ope design review review have be eration w as part een Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review...

  11. Airfoil structure

    DOE Patents [OSTI]

    Frey, Gary A. (Poway, CA); Twardochleb, Christopher Z. (Alpine, CA)

    1998-01-01

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally "C" configuration of the airfoil. The generally "C" configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion.

  12. Airfoil structure

    DOE Patents [OSTI]

    Frey, G.A.; Twardochleb, C.Z.

    1998-01-13

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.

  13. Advanced Energy Design Guides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    way to infuence above-code exemplary energy performance in commercial buildings is to provide architects, engineers, and other design practitioners prescriptive guidance that indicates, measure by measure, how to do it. To this end, the U.S. Department of Energy (DOE) actively supports development of a series of AEDGs- publications designed to provide recommendations for achieving 30 to 50 percent energy savings over the minimum code requirements of ANSI/ASHRAE/ IESNA Standard 90.1-1999. AEDGs

  14. Designated Team Leader

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Designated Team Leader Each user project is coordinated by a Designated Team Leader (DTL) who may also be the Principal Investigator (PI). The DTL must provide details of all equipment, including hazardous and radioactive materials, to be brought onsite during an experiment. The DTL must complete any required Integration Work Sheet (IWS) prior to the experiment. The DTL will provide all necessary guidance and supervision to his/her experimental team. It is the responsibility of the DTL to ensure

  15. Designing a Benchmarking Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing a Benchmarking Plan 1 DRAFT -- February 2013 DESIGNING A BENCHMARKING PLAN Introduction This guide provides a framework for developing an internal benchmarking plan. The outline walks through the various stages of the benchmarking planning process, providing tips and resources to help support organizations at each stage. Not all organizations will choose to implement each stage; however, each section is useful for consideration. 1. Establish the Goal for Benchmarking 2. Secure Buy-in

  16. System Design Description PFP Thermal Stabilization

    SciTech Connect (OSTI)

    RISENMAY, H.R.

    2000-04-25

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures.

  17. Design theoretic analysis of three system modeling frameworks.

    SciTech Connect (OSTI)

    McDonald, Michael James

    2007-05-01

    This paper analyzes three simulation architectures from the context of modeling scalability to address System of System (SoS) and Complex System problems. The paper first provides an overview of the SoS problem domain and reviews past work in analyzing model and general system complexity issues. It then identifies and explores the issues of vertical and horizontal integration as well as coupling and hierarchical decomposition as the system characteristics and metrics against which the tools are evaluated. In addition, it applies Nam Suh's Axiomatic Design theory as a construct for understanding coupling and its relationship to system feasibility. Next it describes the application of MATLAB, Swarm, and Umbra (three modeling and simulation approaches) to modeling swarms of Unmanned Flying Vehicle (UAV) agents in relation to the chosen characteristics and metrics. Finally, it draws general conclusions for analyzing model architectures that go beyond those analyzed. In particular, it identifies decomposition along phenomena of interaction and modular system composition as enabling features for modeling large heterogeneous complex systems.

  18. Exascale Co-design for Modeling Materials in Extreme Environments

    SciTech Connect (OSTI)

    Germann, Timothy C.

    2014-07-08

    Computational materials science has provided great insight into the response of materials under extreme conditions that are difficult to probe experimentally. For example, shock-induced plasticity and phase transformation processes in single-crystal and nanocrystalline metals have been widely studied via large-scale molecular dynamics simulations, and many of these predictions are beginning to be tested at advanced 4th generation light sources such as the Advanced Photon Source (APS) and Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. Such current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach.

  19. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in biological tissues at ultraspatial resolutions.« less

  20. Design documentation: Krypton encapsulation preconceptual design

    SciTech Connect (OSTI)

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.

  1. Electronic Structure Theory | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure Theory An image of multiple, interconnecting red and blue particles Using high-performance computing, NREL applies electronic structure theory to design and discover materials for energy applications. This includes detailed studies of the physical mechanisms that determine the material's behavior on an atomistic level. Learn more about high-performance computing. Key Research Areas Materials by Design NREL leads the U.S. Department of Energy's Center for Next Generation of

  2. STRUCTURE-SOIL-STRUCTURE INTERACTION AT SRS | Department of Energy

    Office of Environmental Management (EM)

    STRUCTURE-SOIL-STRUCTURE INTERACTION AT SRS STRUCTURE-SOIL-STRUCTURE INTERACTION AT SRS Structure-Soil-Structure Interaction at SRS Structural Mechanics - SRS October 25, 2011 PDF...

  3. SMART Wind Turbine Rotor: Design and Field Test

    SciTech Connect (OSTI)

    Berg, Jonathan C.; Resor, Brian R.; Paquette, Joshua A.; White, Jonathan R.

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  4. Advanced solar panel designs

    SciTech Connect (OSTI)

    Ralph, E.L.; Linder, E.

    1995-10-01

    This paper describes solar cell panel designs that utilize new high efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  5. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  6. Advanced strategic interceptor composite structures

    SciTech Connect (OSTI)

    Ennis, D.H.; Patty, C.E. Jr.

    1993-12-31

    Launch mass reduction, stiffness increase, and primary bending mode frequency increase remain the prime focus of the US Army Strategic Defense Command (USASDC) advanced composite material development and testing program. The initial activity was directed toward fabrication of a demonstration structure consistent with the Ground-Based Interceptor (GBI) ERIS flight design. The objectives of this phase of the work were three-fold: selection of the optimum composite materials; concurrent bonding and joining technology development; evaluation of the performance of each test structure relative to its metal counterpart and relative to alternative composites. The effort exceeded model predictions. The resin matrix composite structure mass was 52% lower than the metal design. Modal testing demonstrated a 200% increase in stiffness and a 41% gain in first mode bending frequency. Given the demonstrated level of success, an additional element was added to the task focus: cost-effective, mass quantity fabrication techniques. Single step technology has been successfully applied to a relatively simple thermoset based bridge structure. Two step molding and assembly have been demonstrated for a GBI-X class thermoplastic structure. Preliminary testing has been completed to isolate and resolve problems associated with single step fabrication of the more complex GBI-X class structure. Fabrication of an appropriate test article as preparation for modal survey evaluation of the latter is in progress. Results are presented. Future program directions are summarized.

  7. Armor structures

    DOE Patents [OSTI]

    Chu, Henry Shiu-Hung [Idaho Falls, ID; Lacy, Jeffrey M [Idaho Falls, ID

    2008-04-01

    An armor structure includes first and second layers individually containing a plurality of i-beams. Individual i-beams have a pair of longitudinal flanges interconnected by a longitudinal crosspiece and defining opposing longitudinal channels between the pair of flanges. The i-beams within individual of the first and second layers run parallel. The laterally outermost faces of the flanges of adjacent i-beams face one another. One of the longitudinal channels in each of the first and second layers faces one of the longitudinal channels in the other of the first and second layers. The channels of the first layer run parallel with the channels of the second layer. The flanges of the first and second layers overlap with the crosspieces of the other of the first and second layers, and portions of said flanges are received within the facing channels of the i-beams of the other of the first and second layers.

  8. Designing tomorrow's warheads -- today

    SciTech Connect (OSTI)

    Schneider, D.P.

    1988-03-15

    Until recently, new weapons' warheads were most often an incremental improvement on a previous warhead design. The tools available to the munition designer today, however, allow for a more comprehensive methodology to be employed. The focus of this paper will be a portion of the process of design of an explosively formed projectile (EFP) which uses tantalum as its liner material. Several questions surrounding tantalum's behavior under high strains require answers before such an EFP can be properly designed. The base-technology issues of different material properties will be explored using a three-dimensional finite element code (DYNA3D) and then compared to experiments. State-of-the-art diagnostics are an integral part of this methodology. Predetermined ''flasher block'' contours will provide specific position/time data which will assist in improving and understanding the high explosive equation of state as well as determining the energy imparted to the liner. In turn, this will lead to improved modeling of the liner as it translates along the line of flight. Flash X-ray Radiograph (FXR) will provide clues to axial symmetry, density, and overall time/distance information. This data will also provide answers to the strain rate depencence of the tantalum. Integration of the data from the experiment with the material response models allows post-experiment normalization of the code. This ''normalized'' tool is, finally used in the point design of the warhead.

  9. New 'Design Rule' Paves Way for Nature-Inspired Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Design Rule' Paves Way for Nature-Inspired Nanostructures New 'Design Rule' Paves Way for Nature-Inspired Nanostructures Computer sims and microscopy research at Berkeley Lab yield first atomic-resolution structure of a peptoid nanosheet October 7, 2015 Contact: Dan Krotz, dakrotz@lbl.gov, 510-486-4019 peptoidnanosheets Snakes on a plane: This atomic-resolution simulation of a two-dimensional peptoid nanosheet reveals a snake-like structure never seen before. The nanosheet's layers include a

  10. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    SciTech Connect (OSTI)

    Mertz, G.

    1999-12-16

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  11. Water Cooled Mirror Design

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  12. FATIGUE DESIGN CURVES FOR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FATIGUE DESIGN CURVES FOR 6061-T6 ALUMINUM* G . T . Yahr Engineering Technology Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-8051 ABSTRACT A request has been made to the ASME Boiler and Pressure Vessel Committee that 6061-T6 aluminum be approved for use in the construction of Class 1 welded nuclear vessels so it can be used for the pressure vessel of the Advanced Neutron Source research reactor. Fatigue design curves with and without mean stress effects have been proposed. A

  13. Remote Systems Design & Deployment

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNLs experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNLs work experiences, and the work of others in the national laboratory complex.

  14. Fire protection design criteria

    SciTech Connect (OSTI)

    1997-03-01

    This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, national Fire Protection Association Codes and Standards, and any other applicable DOE construction criteria. This Standard, along with other delineated criteria, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  15. Particle beam and crabbing and deflecting structure

    DOE Patents [OSTI]

    Delayen, Jean (Yorktown, VA)

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  16. Design considerations for sweetening LPG`s with amines

    SciTech Connect (OSTI)

    Bullin, J.A.; Polasek, J.; Rogers, J.

    1995-11-01

    In recent years, there has been increasing interest in sweetening LPG with amines. However, limited data and design information are available in the literature. In the present paper, the design considerations and alternatives including static mixers, jet educator mixers and columns with structured packing, random packing and sieve trays are compared based on plant operating data.

  17. Good, Better, Best: Designing a Designation Program for Solar | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Good, Better, Best: Designing a Designation Program for Solar Good, Better, Best: Designing a Designation Program for Solar December 4, 2012 - 4:00pm Addthis The Energy Department is gathering input on solar designation programs that could one day help consumers recognize the best products and services that the solar industry has to offer. | Photo by Dennis Schroeder/NREL. The Energy Department is gathering input on solar designation programs that could one day help consumers

  18. Web Application Design Using Server-Side JavaScript

    SciTech Connect (OSTI)

    Hampton, J.; Simons, R.

    1999-02-01

    This document describes the application design philosophy for the Comprehensive Nuclear Test Ban Treaty Research & Development Web Site. This design incorporates object-oriented techniques to produce a flexible and maintainable system of applications that support the web site. These techniques will be discussed at length along with the issues they address. The overall structure of the applications and their relationships with one another will also be described. The current problems and future design changes will be discussed as well.

  19. UNDERSTANDING SEISMIC DESIGN CRITERIA FOR JAPANESE NUCLEAR POWER PLANTS

    Office of Scientific and Technical Information (OSTI)

    UNDERSTANDING SEISMIC DESIGN CRITERIA FOR JAPANESE NUCLEAR POWER PLANTS Y.J. Park and C.H. Hofmayer Brookhaven National Laboratory Upton, Long Island, New York 11973 J.F. Costello U.S. Nuclear Regulatory Commission Washington, D.C. 20555 ABSTRACT This paper summarizes the results of recent survey studies on the seismic design practice for nuclear power plants in Japan. The seismic design codes and standards for both nuclear as well as non- nuclear structures have been reviewed and summarized.

  20. Wood energy system design

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This handbook, Wood Energy System Design, was prepared with the support of the Council of Great Lakes Governors and the US Department of Energy. It contains: wood fuel properties; procurement; receiving, handling, and storage; combustion; gasification; emission control; electric power generation and cogeneration; and case studies. (JF)

  1. FHR Generic Design Criteria

    SciTech Connect (OSTI)

    Flanagan, G.F.; Holcomb, D.E.; Cetiner, S.M.

    2012-06-15

    The purpose of this document is to provide an initial, focused reference to the safety characteristics of and a licensing approach for Fluoride-Salt-Cooled High-Temperature Reactors (FHRs). The document does not contain details of particular reactor designs nor does it attempt to identify or classify either design basis or beyond design basis accidents. Further, this document is an initial attempt by a small set of subject matter experts to document the safety and licensing characteristics of FHRs for a larger audience. The document is intended to help in setting the safety and licensing research, development, and demonstration path forward. Input from a wider audience, further technical developments, and additional study will be required to develop a consensus position on the safety and licensing characteristics of FHRs. This document begins with a brief overview of the attributes of FHRs and then a general description of their anticipated safety performance. Following this, an overview of the US nuclear power plant approval process is provided that includes both test and power reactors, as well as the role of safety standards in the approval process. The document next describes a General Design Criteria (GDC)based approach to licensing an FHR and provides an initial draft set of FHR GDCs. The document concludes with a description of a path forward toward developing an FHR safety standard that can support both a test and power reactor licensing process.

  2. Tool and Fixture Design

    SciTech Connect (OSTI)

    Graham, Mark W.

    2015-07-28

    In a manufacturing process, a need is identified and a product is created to fill this need. While design and engineering of the final product is important, the tools and fixtures that aid in the creation of the final product are just as important, if not more so. Power supplies assembled at the TA-55 PF-5 have been designed by an excellent engineering team. The task in PF-5 now is to ensure that all steps of the assembly and manufacturing process can be completed safely, reliably, and in a quality repeatable manner. One of these process steps involves soldering fine wires to an electrical connector. During the process development phase, the method of soldering included placing the power supply in a vice in order to manipulate it into a position conducive to soldering. This method is unacceptable from a reliability, repeatability, and ergonomic standpoint. To combat these issues, a fixture was designed to replace the current method. To do so, a twelve step engineering design process was used to create the fixture that would provide a solution to a multitude of problems, and increase the safety and efficiency of production.

  3. Designing a Benchmarking Plan

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program (WIP) Solution Center document about how state and local governments, Indian tribes, and overseas U.S. territories can design a plan to benchmark the energy consumption in public buildings.

  4. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  5. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  6. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  7. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  8. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  9. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  10. Photovoltaic Cell Structure Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structure Basics Photovoltaic Cell Structure Basics August 19, 2013 - 4:50pm Addthis The actual structural design of a photovoltaic (PV), or solar cell, depends on the limitations of the material used in the PV cell. The four basic device designs are: Homojunction Devices Crystalline silicon is the primary example of this kind of cell. A single material-crystalline silicon-is altered so that one side is p-type, dominated by positive holes, and the other side is n-type, dominated by negative

  11. Automated design synthesis of robotic/human workcells for improved manufacturing system design in hazardous environments

    SciTech Connect (OSTI)

    Williams, Joshua M.

    2012-06-12

    Manufacturing tasks that are deemed too hazardous for workers require the use of automation, robotics, and/or other remote handling tools. The associated hazards may be radiological or nonradiological, and based on the characteristics of the environment and processing, a design may necessitate robotic labor, human labor, or both. There are also other factors such as cost, ergonomics, maintenance, and efficiency that also effect task allocation and other design choices. Handling the tradeoffs of these factors can be complex, and lack of experience can be an issue when trying to determine if and what feasible automation/robotics options exist. To address this problem, we utilize common engineering design approaches adapted more for manufacturing system design in hazardous environments. We limit our scope to the conceptual and embodiment design stages, specifically a computational algorithm for concept generation and early design evaluation. In regard to concept generation, we first develop the functional model or function structure for the process, using the common 'verb-noun' format for describing function. A common language or functional basis for manufacturing was developed and utilized to formalize function descriptions and guide rules for function decomposition. Potential components for embodiment are also grouped in terms of this functional language and are stored in a database. The properties of each component are given as quantitative and qualitative criteria. Operators are also rated for task-relevant criteria which are used to address task compatibility. Through the gathering of process requirements/constraints, construction of the component database, and development of the manufacturing basis and rule set, design knowledge is stored and available for computer use. Thus, once the higher level process functions are defined, the computer can automate the synthesis of new design concepts through alternating steps of embodiment and function structure updates/decomposition. In the process, criteria guide function allocation of components/operators and help ensure compatibility and feasibility. Through multiple function assignment options and varied function structures, multiple design concepts are created. All of the generated designs are then evaluated based on a number of relevant evaluation criteria: cost, dose, ergonomics, hazards, efficiency, etc. These criteria are computed using physical properties/parameters of each system based on the qualities an engineer would use to make evaluations. Nuclear processes such as oxide conversion and electrorefining are utilized to aid algorithm development and provide test cases for the completed program. Through our approach, we capture design knowledge related to manufacturing and other operations in hazardous environments to enable a computational program to automatically generate and evaluate system design concepts.

  12. Conceptual design for PSP mounting bracket

    SciTech Connect (OSTI)

    Ransom, G.; Stein, R.

    1991-12-31

    Protective structural packages (PSP`s or overpacks) used to ship 2 1/2-ton UF{sub 6} product cylinders are bolted to truck trailers. All bolts penetrate two longitudinal rows of wooden planks. Removal and replacement is required at various intervals for maintenance and routine testing. A conceptual design is presented for mounting brackets which would securely attach PSP`s to trailer frames, reduce removal and replacement time, and minimize risk of personnel injury.

  13. Hydrogen embrittlement of structural steels.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-06-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines, however it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a key failure mode for steel hydrogen containment structures subjected to pressure cycling. Applying appropriate structural integrity models coupled with measurement of relevant material properties allows quantification of safety margins against fatigue crack growth in hydrogen containment structures. Furthermore, application of these structural integrity models is aided by the development of micromechanics models, which provide important insights such as the hydrogen distribution near defects in steel structures. The principal objective of this project is to enable application of structural integrity models to steel hydrogen pipelines. The new American Society of Mechanical Engineers (ASME) B31.12 design code for hydrogen pipelines includes a fracture mechanics-based design option, which requires material property inputs such as the threshold for rapid cracking and fatigue crack growth rate under cyclic loading. Thus, one focus of this project is to measure the rapid-cracking thresholds and fatigue crack growth rates of line pipe steels in high-pressure hydrogen gas. These properties must be measured for the base materials but more importantly for the welds, which are likely to be most vulnerable to hydrogen embrittlement. The measured properties can be evaluated by predicting the performance of the pipeline using a relevant structural integrity model, such as that in ASME B31.12. A second objective of this project is to enable development of micromechanics models of hydrogen embrittlement in pipeline steels. The focus of this effort is to establish physical models of hydrogen embrittlement in line pipe steels using evidence from analytical techniques such as electron microscopy. These physical models then serve as the framework for developing sophisticated finite-element models, which can provide quantitative insight into the micromechanical state near defects. Understanding the micromechanics of defects can ensure that structural integrity models are applied accurately and conservatively.

  14. Energy-Efficient Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Energy-Efficient Home Design Energy-Efficient Home Design The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems. Recommendations show how to improve the energy efficiency of the home to achieve a higher score and save money. The Home Energy Score is a

  15. Ventuno Design | Open Energy Information

    Open Energy Info (EERE)

    Ventuno Design Jump to: navigation, search Name: Ventuno Design Place: Lower Saxony, Germany Zip: 49767 Sector: Wind energy Product: German-based wind farm developer with...

  16. Residential Retrofit Program Design Guide

    Broader source: Energy.gov [DOE]

    This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

  17. Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring Engineering Institute Structural Health Monitoring Structural Health Monitoring is the process of implementing a damage detection strategy for...

  18. Stormwater Control Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stormwater Control Structures Stormwater Control Structures Stormwater control structures are engineered to control run-on and runoff water from suspected contaminated sites....

  19. Achromatic Interaction Point Design

    SciTech Connect (OSTI)

    Guimei Wang,, Yaroslav Derbenev, S.Alex Bogacz, P. Chevtsov, Andre Afanaciev, Charles Ankenbrandt, Valentin Ivanov, Rolland P. Johnson

    2009-05-01

    Designers of high-luminosity energy-frontier muon colliders must provide strong beam focusing in the interaction regions. However, the construction of a strong, aberration-free beam focus is difficult and space consuming, and long straight sections generate an off-site radiation problem due to muon decay neutrinos that interact as they leave the surface of the earth. Without some way to mitigate the neutrino radiation problem, the maximum c.m. energy of a muon collider will be limited to about 3.5 TeV. A new concept for achromatic low beta design is being developed, in which the interaction region telescope and optical correction elements, are installed in the bending arcs. The concept, formulated analytically, combines space economy, a preventative approach to compensation for aberrations, and a reduction of neutrino flux concentration. An analytical theory for the aberration-free, low beta, spatially compact insertion is being developed.

  20. Thermionic Reactor Design Studies

    SciTech Connect (OSTI)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  1. Rotor Aerodynamic Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerodynamic Design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  2. NRT preliminary design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preliminary design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  3. Slurry reactor design studies

    SciTech Connect (OSTI)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  4. GEM Technical Design Report

    SciTech Connect (OSTI)

    Not Available

    1993-07-31

    The GEM collaboration was formed in June 1991 to develop a major detector for the SSC. The primary physics objectives of GEM are those central to the motivation for the SSC, to study high p{sub T} physics - exemplified by the search for Higgs bosons - and to search for new physics beyond the standard model. The authors present in this Technical Design Report (TDR) a detector with broad capabilities for the discovery and subsequent study of electroweak symmetry breaking, the origin of mass and flavor, and other physics requiring precise measurements of gammas, electrons, and muons - hence the name, GEM. In addition, as a design goal, they have taken care to provide the robustness needed to do the physics that requires high luminosity. Finally, good coverage and hermeticity allow the detection of missing transverse energy, E{sub T}. The GEM design emphasizes clean identification and high resolution measurement of the primary physics signatures for high p{sub T} physics. The approach is to make precise energy measurements that maximize the sensitivity to rare narrow resonances, to detect the elementary interaction products (quarks, leptons, and photons), and to build in the features required to reduce backgrounds.

  5. FEMP Designated Product: Lavatory Faucets

    Broader source: Energy.gov [DOE]

    FEMP suspended its product designation and purchasing specification for commercial faucets until further notice.

  6. The System 80+ Standard Plant design control document. Volume 17

    SciTech Connect (OSTI)

    1997-12-31

    This Design Control Document (DCD) is a repository of information comprising the System 80+{trademark} Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ``Tier 1``] and the Approved Design Material (ADM) [i.e., ``Tier 2``] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains parts 2-7 and appendix 15A for section 15 (Accident Analysis) of the ADM Design and Analysis. Topics covered in these parts are: decrease in heat removal; decrease in RCS flow rate; power distribution anomalies; increase in RCS inventory; decrease in RCS inventory; release of radioactive materials. The appendix covers radiological release models. Also contained here are five technical specifications for section 16 (Technical Specifications) of the ADM Design and Analysis. They are: TS 1.0 Use and Applications; TS 2.0 Safety Limits; TS 3.0 LCO Availability; TS 3.1 Reactivity Control; and TS 3.2 Power Distribution.

  7. Control system design method

    DOE Patents [OSTI]

    Wilson, David G.; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  8. Preliminary PBFA II design

    SciTech Connect (OSTI)

    Johnson, D. L.; VanDevender, J. P.; Martin, T. H.

    1980-01-01

    The upgrade of Sandia National Laboratories particle beam fusion accelerator, PBFA I, to PBFA II presents several interesting and challenging pulsed power design problems. PBFA II requires increasing the PBFA I output parameters from 2 MV, 30 TW, 1 MJ to 4 MV, 100 TW, 3.5 MJ with the constraint of using much of the same PBFA I hardware. The increased PBFA II output will be obtained by doubling the number of modules (from 36 to 72), increasing the primary energy storage (from 4 MJ to 15 MJ), lowering the pulse forming line (PFL) output impedance, and adding a voltage doubling network.

  9. Lighting Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Lighting Design Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of

  10. EXTRAGALACTIC BACKGROUND LIGHT FROM HIERARCHICAL GALAXY FORMATION: GAMMA-RAY ATTENUATION UP TO THE EPOCH OF COSMIC REIONIZATION AND THE FIRST STARS

    SciTech Connect (OSTI)

    Inoue, Yoshiyuki; Inoue, Susumu; Kobayashi, Masakazu A. R.; Makiya, Ryu; Totani, Tomonori; Niino, Yuu

    2013-05-10

    We present a new model of the extragalactic background light (EBL) and corresponding {gamma}{gamma} opacity for intergalactic gamma-ray absorption from z = 0 up to z = 10, based on a semi-analytical model of hierarchical galaxy formation that reproduces key observed properties of galaxies at various redshifts. Including the potential contribution from Population III stars and following the cosmic reionization history in a simplified way, the model is also broadly consistent with available data concerning reionization, particularly the Thomson scattering optical depth constraints from Wilkinson Microwave Anisotropy Probe (WMAP). In comparison with previous EBL studies up to z {approx} 3-5, our predicted {gamma}{gamma} opacity is in general agreement for observed gamma-ray energy below 400/(1 + z) GeV, whereas it is a factor of {approx}2 lower above this energy because of a correspondingly lower cosmic star formation rate, even though the observed ultraviolet (UV) luminosity is well reproduced by virtue of our improved treatment of dust obscuration and direct estimation of star formation rate. The horizon energy at which the gamma-ray opacity is unity does not evolve strongly beyond z {approx} 4 and approaches {approx}20 GeV. The contribution of Population III stars is a minor fraction of the EBL at z = 0, and is also difficult to distinguish through gamma-ray absorption in high-z objects, even at the highest levels allowed by the WMAP constraints. Nevertheless, the attenuation due to Population II stars should be observable in high-z gamma-ray sources by telescopes such as Fermi or the Cherenkov Telescope Array and provide a valuable probe of the evolving EBL in the rest-frame UV. The detailed results of our model are publicly available in numerical form at http://www.slac.stanford.edu/{approx}yinoue/Download.html.

  11. The NOvA Technical Design Report

    SciTech Connect (OSTI)

    Ayres, D.S.; Drake, G.R.; Goodman, M.C.; Grudzinski, J.J.; Guarino, V.J.; Talaga, R.L.; Zhao, A.; Stamoulis, P.; Stiliaris, E.; Tzanakos, G.; Zois, M.; /Athens U. /Caltech /UCLA /Fermilab /College de France /Harvard U. /Indiana U. /Lebedev Inst. /Michigan State U. /Minnesota U., Duluth /Minnesota U.

    2007-10-08

    Technical Design Report (TDR) describes the preliminary design of the NOvA accelerator upgrades, NOvA detectors, detector halls and detector sites. Compared to the March 2006 and November 2006 NOvA Conceptual Design Reports (CDR), critical value engineering studies have been completed and the alternatives still active in the CDR have been narrowed to achieve a preliminary technical design ready for a Critical Decision 2 review. Many aspects of NOvA described this TDR are complete to a level far beyond a preliminary design. In particular, the access road to the NOvA Far Detector site in Minnesota has an advanced technical design at a level appropriate for a Critical Decision 3a review. Several components of the accelerator upgrade and new neutrino detectors also have advanced technical designs appropriate for a Critical Decision 3a review. Chapter 1 is an Executive Summary with a short description of the NOvA project. Chapter 2 describes how the Fermilab NuMI beam will provide a narrow band beam of neutrinos for NOvA. Chapter 3 gives an updated overview of the scientific basis for the NOvA experiment, focusing on the primary goal to extend the search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations and measure the sin{sup 2}(2{theta}{sub 13}) parameter. This parameter has not been measured in any previous experiment and NOvA would extend the search by about an order of magnitude beyond the current limit. A secondary goal is to measure the dominant mode oscillation parameters, sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sub 32}{sup 2} to a more precise level than previous experiments. Additional physics goals for NOvA are also discussed. Chapter 4 describes the Scientific Design Criteria which the Fermilab accelerator complex, NOvA detectors and NOvA detector sites must satisfy to meet the physics goals discussed in Chapter 3. Chapter 5 is an overview of the NOvA project. The changes in the design relative to the NOvA CDR are discussed. Chapter 6 summarizes the NOvA design performance relative to the Design Criteria set out in Chapter 4. Chapter 7 presents the Work Breakdown Structure dictionary at Level 3 and the Milestone dictionary. Chapters 8 through 17 then take each Level 2 WBS element of the NOvA project and present each part of the design in more detail than the overview given in Chapter 5. Specific technical design criteria are delineated for each part of the project in addition to the scientific design criteria outlined in Chapter 4. Changes in the design since the NOvA CDR are discussed in detail. The work remaining to bring each part of this preliminary design to a final design is outlined. Appendix A is a guide to other NOvA Project documentation with links to those documents.

  12. Race to Zero Design Competition Webinar: Housing Design Best Practices |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Race to Zero Design Competition Webinar: Housing Design Best Practices Race to Zero Design Competition Webinar: Housing Design Best Practices November 18, 2014 1:00PM to 2:30PM EST Thinking about joining the 2015 Race to Zero to showcase your university team's skill and commitment to designing market-ready zero energy ready homes? Join Sam Rashkin, chief architect of the DOE Building Technologies Office, as he talks about tried-and-true strategies to design technically

  13. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    SciTech Connect (OSTI)

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-12-12

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned.

  14. SMART Wind Turbine Rotor: Design and Field Test | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers. PDF icon smart_wind_turbine_design_pdf. More Documents & Publications SMART Wind Turbine Rotor: Design and Field Test SMART Wind Turbine Rotor: Data Analysis and Conclusions SMART Wind

  15. Thermionic Reactor Design Studies

    SciTech Connect (OSTI)

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full-core-height diodes. Moreover, placing the fuel on the outside of the diode makes possible reactors with much higher fuel volume fractions, which enable power-flattened fast reactors scalable to very low power levels without the need for life-limiting hydride moderators or the use of efficiency-limiting driver fuel. In addition, with the fuel on the outside its swelling does not increase the emitter diameter or reduce the interelectrode gap. This should permit long lifetimes even with closer spacings, which can significantly improve the system efficiences. This was confirmed by coupled neutronic, thermal, thermionic, and electrical system analyses - some of which are presented in this paper - and by subsequent experiments. A companion paper presented next describes the fabrication and testing of full-scale converter elements, both fueled and unfueled, and summarizes the test results obtained. There is a duplicate copy in the file.

  16. Production Target Design Report

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    2015-07-28

    The Northstar 99Mo production target, a cylindrical length of 100Mo rod, has evolved considerably since its first conception.The cylinder was very early sliced into disks to increase the heat transfer area, first to 1 mm thick disks then to the current 0.5 mm thick.The coolant was changed early in the target development from water to helium to eliminate corrosion and dissolution.The diameter has increased from initially 6 mm to 12 mm, the current diameter of the test target now at ANL, to nominally 28 mm (26-30.6 mm, depending upon optimal beam spot size and shape).The length has also changed to improve the production to cost ratio, so now the target is nominally 41 mm long (excluding coolant gaps between disks), and irradiated on both ends.This report summarizes the current status of the plant target design.

  17. Authorizing Official Designated Representative (AODR) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designated Representative (AODR) Authorizing Official Designated Representative (AODR) student-849822960720.jpg The Authorizing Official Designated Representative (AODR) provides...

  18. Electrochemical cell design

    DOE Patents [OSTI]

    Arntzen, John D.

    1978-01-01

    An electrochemical cell includes two outer electrodes and a central electrode of opposite polarity, all nested within a housing having two symmetrical halves which together form an offset configuration. The outer electrodes are nested within raised portions within the side walls of each housing half while the central electrode sealingly engages the perimetric margins of the side-wall internal surfaces. Suitable interelectrode separators and electrical insulating material electrically isolate the central electrode from the housing and the outer electrodes. The outer electrodes are electrically connected to the internal surfaces of the cell housing to provide current collection. The nested structure minimizes void volume that would otherwise be filled with gas or heavy electrolyte and also provides perimetric edge surfaces for sealing and supporting at the outer margins of frangible interelectrode separator layers.

  19. DOE Designated User Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designated User Facilities DOE Designated User Facilities DOE Designated User Facilities Sept 30 2015 More Documents & Publications Microsoft Word - DesignatedUserFacilitiesApri...

  20. Extreme Scale Computing, Co-design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math Extreme Scale Computing, Co-design Extreme Scale Computing, Co-design Computational co-design may facilitate revolutionary designs ...

  1. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect (OSTI)

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability use molecule structure building software to generate large numbers of candidate ligand architectures for given sets of donor groups screen candidates and identify ligand architectures that will exhibit enhanced metal ion recognition. These new capabilities are being applied to ligand systems identified under other DOEsponsored projects where studies have suggested that modifying existing architectures will lead to dramatic enhancements in metal ion binding affinity and selectivity. With this in mind, we are collaborating with Professors R. T. Paine (University of New Mexico), K. N. Raymond (University of California, Berkeley), and J. E. Hutchison (University of Oregon), and Dr. B. A. Moyer (Oak Ridge National Laboratory) to obtain experimental validation of the predicted new ligand structures. Successful completion of this study will yield molecular-level insight into the role that ligand architecture plays in controlling metal ion complexation and will provide a computational approach to ligand design.

  2. We Want It All - Designers

    Energy Savers [EERE]

    We Want It All - Designers Chip Israel MIES, FIALD, LEED AP, LC cisrael@lightingdesignalliance.com We Don't Want It - Glare LED's Are a Tool It's Still bout the Design. Education...

  3. ORISE: Instructional Design and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instructional Design and Development The Oak Ridge Institute for Science and Education (ORISE) works with government agencies and organizations to create customized training and instructional design programs, from traditional classroom teaching to online education. ORISE uses a multi-step process to define the instructional design and development needs. Our process includes: Defining the target audience and objectives Designing and developing the program and materials Piloting, delivering and

  4. Residential Retrofit Design Guide Overview

    Broader source: Energy.gov [DOE]

    This webinar covered the Residential Retrofit Program Design Guide and its elements, including assess, plan, implement, and evaluate.

  5. t matrix of metallic wire structures

    SciTech Connect (OSTI)

    Zhan, T. R. Chui, S. T.

    2014-04-14

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures.

  6. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect (OSTI)

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  7. AVLIS Production Plant work breakdown structure and Dictionary

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    The work breakdown structure has been prepared for the AVLIS Production Plant to define, organize, and identify the work efforts and is summarized in Fig. 1-1 for the top three project levels. The work breakdown structure itself is intended to be the primary organizational tool of the AVLIS Production Plant and is consistent with the overall AVLIS Program Work Breakdown Structure. It is designed to provide a framework for definition and accounting of all of the elements that are required for the eventual design, procurement, and construction of the AVLIS Production Plant. During the present phase of the AVLIS Project, the conceptual engineering phase, the work breakdown structure is intended to be the master structure and project organizer of documents, designs, and cost estimates. As the master project organizer, the key role of the work breakdown structure is to provide the mechanism for developing completeness in AVLIS cost estimates and design development of all hardware and systems. The work breakdown structure provides the framework for tracking, on a one-to-one basis, the component design criteria, systems requirements, design concepts, design drawings, performance projections, and conceptual cost estimates. It also serves as a vehicle for contract reporting. 12 figures, 2 tables.

  8. NUCLEAR REACTOR CORE DESIGN

    DOE Patents [OSTI]

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  9. ERHIC Conceptual Design

    SciTech Connect (OSTI)

    Ptitsyn,V.; Beebe-Wang,J.; Ben-Zvi,I.; Fedotov, A.; Fischer, W.; Hao, Y.; Kayran, D.; Litvinenko, V.N.; MacKay, W.W.; Montag, C.; Pozdeyev, E.; Roser, T.; Trbojevic, D.; Tsoupas, N.; Tsentalovich, E.

    2008-08-25

    The conceptual design of the high luminosity electron-ion collider, eRHIC, is presented. The goal of eRHIC is to provide collisions of electrons (and possibly positrons) with ions and protons at the center-of-mass energy range from 25 to 140 GeV, and with luminosities exceeding 10{sup 33} cm{sup -2} s{sup -1}. A considerable part of the physics program is based on polarized electrons, protons and He3 ions with high degree of polarization. In eRHIC electron beam will be accelerated in an energy recovery linac. Major R&D items for eRHIC include the development of a high intensity polarized electron source, studies of various aspects of energy recovery technology for high power beams and the development of compact magnets for recirculating passes. In eRHIC scheme the beam-beam interaction has several specific features, which have to be thoroughly studied. In order to maximize the collider luminosity, several upgrades of the existing RHIC accelerator are required. Those upgrades may include the increase of intensity as well as transverse and longitudinal cooling of ion and proton beams.

  10. Advances in geotectural design

    SciTech Connect (OSTI)

    Boyer, L.L. (ed.)

    1986-01-01

    Although the price of oil dropped well below $20 US earlier this year from a previous high above $35 US, the interest and participation shown in this conference does not seem to have been materially affected. Perhaps energy, although not unimportant, is no longer the driving force behind the continuing development and exploration of the earth shelter idiom in architecture. Rather, the thrust of most papers seems to seek an understanding of the adaptation of earth shelter into varied types of settings, especially urban applications, and also the understanding of the physical phenomenon of how an earth shelter works. The paper have been grouped into three basic categories with several subsections in each category. First, vernacular approaches are documented from the viewpoint of habitation, and followed by other types of utilization. Then, recent theoretical developments are reviewed in terms of materials, occupant studies, and heat transfer and air flow analyses. The final section deals with contemporary practice, where design concepts and case studies are presented, followed by building systems and urban planning aspects. All 54 papers have been abstracted separately for inclusion on the Energy Data Base.

  11. Topology Exploration with Hierarchical Landscapes

    Office of Scientific and Technical Information (OSTI)

    ... In Proc. IEEE Visualization'98, 51-58. B l o w , J. 2000. Terrain rendering at higher ... IEEE Trans. Vis. Comput. Graph. 17, 9, 1307-1324. C a r r , H ., a n d S n o e y i n k , ...

  12. Business System Planning Project, Preliminary System Design

    SciTech Connect (OSTI)

    EVOSEVICH, S.

    2000-10-30

    CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time.

  13. Variably porous structures

    DOE Patents [OSTI]

    Braun, Paul V. (Savoy, IL); Yu, Xindi (Urbana, IL)

    2011-01-18

    A method of making a monolithic porous structure, comprises electrodepositing a material on a template; removing the template from the material to form a monolithic porous structure comprising the material; and electropolishing the monolithic porous structure.

  14. Optimal design of reverse osmosis module networks

    SciTech Connect (OSTI)

    Maskan, F.; Wiley, D.E.; Johnston, L.P.M.; Clements, D.J.

    2000-05-01

    The structure of individual reverse osmosis modules, the configuration of the module network, and the operating conditions were optimized for seawater and brackish water desalination. The system model included simple mathematical equations to predict the performance of the reverse osmosis modules. The optimization problem was formulated as a constrained multivariable nonlinear optimization. The objective function was the annual profit for the system, consisting of the profit obtained from the permeate, capital cost for the process units, and operating costs associated with energy consumption and maintenance. Optimization of several dual-stage reverse osmosis systems were investigated and compared. It was found that optimal network designs are the ones that produce the most permeate. It may be possible to achieve economic improvements by refining current membrane module designs and their operating pressures.

  15. Advances in slurry spray header design technology

    SciTech Connect (OSTI)

    Murphy, J.L.; Phillips, P.H.

    1995-06-01

    Due to the structure of the 1990 Clean Air Act Amendments, Absorbers for Phase I Compliance have been designed for larger capacities and absorbers with inlet flue gas volume ratings of 1.4 to 2.0 million acfm have become more typical. As a consequence, larger slurry recirculation pump designs have been developed (30,000 to 50,000 gpm) requiring large diameter spray headers with four (4) to five (5) inch slurry spray nozzles. This, in turn, has led to the development of special couplings to replace flanges for nozzle attachment, resulting in significant process, maintainability and economic advantages. A cost comparison of coupling versus the traditional flanged and screwed connections will be made along with the advantages and disadvantages of each of these choices. Additionally, full scale application experience will be reviewed.

  16. GENII Version 2 Software Design Document

    SciTech Connect (OSTI)

    Napier, Bruce A.; Strenge, Dennis L.; Ramsdell, James V.; Eslinger, Paul W.; Fosmire, Christian J.

    2004-03-08

    This document describes the architectural design for the GENII-V2 software package. This document defines details of the overall structure of the software, the major software components, their data file interfaces, and specific mathematical models to be used. The design represents a translation of the requirements into a description of the software structure, software components, interfaces, and necessary data. The design focuses on the major components and data communication links that are key to the implementation of the software within the operating framework. The purpose of the GENII-V2 software package is to provide the capability to perform dose and risk assessments of environmental releases of radionuclides. The software also has the capability of calculating environmental accumulation and radiation doses from surface water, groundwater, and soil (buried waste) media when an input concentration of radionuclide in these media is provided. This report represents a detailed description of the capabilities of the software product with exact specifications of mathematical models that form the basis for the software implementation and testing efforts. This report also presents a detailed description of the overall structure of the software package, details of main components (implemented in the current phase of work), details of data communication files, and content of basic output reports. The GENII system includes the capabilities for calculating radiation doses following chronic and acute releases. Radionuclide transport via air, water, or biological activity may be considered. Air transport options include both puff and plume models, each allow use of an effective stack height or calculation of plume rise from buoyant or momentum effects (or both). Building wake effects can be included in acute atmospheric release scenarios. The code provides risk estimates for health effects to individuals or populations; these can be obtained using the code by applying appropriate risk factors to the effective dose equivalent or organ dose. In addition, Version 2 uses cancer risk factors from Federal Guidance Report 13 to estimate risk to specific organs or tissues.

  17. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management Organizational Structure, Roles, and Responsibilities: The FIRST Center management structure, outlined in our organizational chart, has been designed to accomplish the scientific goals of the Center, while providing synergy between the thrusts, educational outreach, oversight, operational support, and integration with DOE's core science and technology programs. The Director (David J.Wesolowski) is responsible for the overall scientific direction and management of the Center,

  18. Safeguard By Design Lessons Learned from DOE Experience Integrating Safety into Design

    SciTech Connect (OSTI)

    Hockert, John; Burbank, Roberta L.

    2010-04-13

    This paper identifies the lessons to be learned for the institutionalization of Safeguards by Design (SBD) from the Department of Energy (DOE) experience developing and implementing DOE-STD-1189-2008, Integration of Safety into the Design Process. The experience is valuable because of the similarity of the challenges of integrating safety and safeguards into the design process. The paper reviews the content and development of DOE-STD-1189-2008 from its initial concept in January 2006 to its issuance in March 2008. Lessons learned are identified in the areas of the development and structure of requirements for the SBD process; the target audience for SBD requirements and guidance, the need for a graded approach to SBD, and a possible strategy for development and implementation of SBD within DOE.

  19. Structural Molecular Biology, SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Training Workshops & Summer Schools Summer Students Structural Molecular Biology Illuminating Biological Structures at the Atomic and Molecular Levels Your browser...

  20. Asset Score Webinar Slides: Real Estate and Design Professionals |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Real Estate and Design Professionals Asset Score Webinar Slides: Real Estate and Design Professionals The Asset Score is a free, web-based software tool developed by DOE and the Pacific Northwest National Laboratory (PNNL) that assesses the physical and structural energy efficiency of commercial and multifamily residential buildings. It generates a simple energy efficiency rating that enables comparison among buildings, and identifies custom opportunities to invest in

  1. Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Oxidation Catalyst for Diesel Engine Emission Treatment | Department of Energy Oxidation Catalyst for Diesel Engine Emission Treatment Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission Treatment The overlap among theory, structure, and fully formed catalysts form the foundation of this study PDF icon deer09_narula.pdf More Documents & Publications Catalyst by Design - Theoretical, Nanostructural, and

  2. Conceptual design summary

    SciTech Connect (OSTI)

    Peretz, F.J.

    1992-09-01

    The Advanced Neutron Source (ANS) is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux for these experiments will be at least five times, and in some cases twenty times, more than is available at the world`s best existing facilities. In addition, ANS will provide irradiation capabilities for the production of radioisotopes for medical applications, research, and industry and facilities for materials irradiation testing. The need for a new steady-state neutron research facility in the United States was emphasized by the 1984 National Academy Report and confirmed by the Department of Energy`s (DOE`s) Energy Research Advisory Board in 1985. These studies defined a minimum thermal neutron flux requirement of 5 {times} 10{sup 19} m{sup {minus}2} {center_dot} s{sup {minus}1}. The National Steering Committee for an Advanced Neutron Source, with representation from the major fields of science that will use the facility, was established in 1986 and has continued to define the performance requirements and instrument layouts needed by the user community. To minimize technical risks and safety issues, the project adopted a policy of not relying upon new inventions to meet the minimum performance criteria, and the design presented in this report is built on technologies already used in other facilities and development programs: for example, the involute aluminum-clad fuel plates common to HFIR and ILL and the uranium silicide fuel developed in DOE`s Reduced Enrichment for Research and Test Reactors program and tested in reactors worldwide. At the same time, every state-of-the-art technique has been implemented to optimize neutron beam delivery at the experiments.

  3. Conceptual design summary

    SciTech Connect (OSTI)

    Peretz, F.J.

    1992-09-01

    The Advanced Neutron Source (ANS) is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux for these experiments will be at least five times, and in some cases twenty times, more than is available at the world's best existing facilities. In addition, ANS will provide irradiation capabilities for the production of radioisotopes for medical applications, research, and industry and facilities for materials irradiation testing. The need for a new steady-state neutron research facility in the United States was emphasized by the 1984 National Academy Report and confirmed by the Department of Energy's (DOE's) Energy Research Advisory Board in 1985. These studies defined a minimum thermal neutron flux requirement of 5 {times} 10{sup 19} m{sup {minus}2} {center dot} s{sup {minus}1}. The National Steering Committee for an Advanced Neutron Source, with representation from the major fields of science that will use the facility, was established in 1986 and has continued to define the performance requirements and instrument layouts needed by the user community. To minimize technical risks and safety issues, the project adopted a policy of not relying upon new inventions to meet the minimum performance criteria, and the design presented in this report is built on technologies already used in other facilities and development programs: for example, the involute aluminum-clad fuel plates common to HFIR and ILL and the uranium silicide fuel developed in DOE's Reduced Enrichment for Research and Test Reactors program and tested in reactors worldwide. At the same time, every state-of-the-art technique has been implemented to optimize neutron beam delivery at the experiments.

  4. Rock mechanics design in mining and tunneling

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1984-01-01

    This book introduces the design process as applied to rock mechanics aspects of underground mining and tunneling. Topics covered include a historical perspective, the design process in engineering, empirical methods of design, observational methods of design, and guided design.

  5. Naval Waste Package Design Report

    SciTech Connect (OSTI)

    M.M. Lewis

    2004-03-15

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository.

  6. NSLS-II Preliminary Design Report

    SciTech Connect (OSTI)

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopy on a single atom. In order to meet this need, NSLS-II has been designed to provide world-leading brightness and flux and exceptional beam stability. The brightness is defined as the number of photons emitted per second, per photon energy bandwidth, per solid angle, and per unit source size. Brightness is important because it determines how efficiently an intense flux of photons can be refocused to a small spot size and a small divergence. It scales as the ring current and the number of total periods of the undulator field (both of which contribute linearly to the total flux), as well as eing nversely proportional to the horizontal and vertical emittances (the product of beam size and divergence) of the electron beam. Raising the current in the storage ring to obtain even brighter beams is ultimately limited by beam-driven, collective instabilities in the accelerator. Thus, to maximize the brightness, the horizontal and vertical emittances must be made as small as possible. With the concept of using damping wigglers, low-field bending magnets, and a large number of lattice cells to achieve ultra small emittance, the performance of NSLS-II will be nearly at the ultimate limit of storage ring light sources, set by the intrinsic properties of the synchrotron radiation process. The facility will produce x-rays more than 10,000 times brighter than those produced at NSLS today. The facility, with various insertion devices, including three-pole-wigglers and low-field dipole radiations, has the capability of covering a broad range of radiation spectra, from hard x-ray to far infra-red. The superlative character and combination of capabilities will have broad impact on a wide range of disciplines and scientific initiatives in the coming decades, including new studies of small crystals in structural biology, a wide range of nanometer-resolution probes for nanoscience, coherent imaging of the structure and dynamics of disordered materials, greatly increased applicability of inelastic x-ray scattering, and properties of materials under extreme conditions. Commissioned in 1982, the existing National Synchrotron Light Source (NSLS) provides essential scientific tools for 2,300 scientists per year from more than 400 academic, industrial, and government institutions. Their myriad research programs produce about 800 publications per year, with more than 130 appearing in premier journals. It was designed in the 1970s and is now in its third decade of service. It has been continually upgraded over the years, with the brightness increasing fully five orders of magnitude. However, it has reached the theoretical limits of performance given its small circumference and small periodicity, and only a small number of insertion devices are possible.

  7. Multifunctional hyper-structured molecules

    SciTech Connect (OSTI)

    Wada, T.; Zhang, Y.; Aoyama, T.; Kubo, Y.; Sasabe, H.

    1998-07-01

    To fill the gap between molecular design and the architecture of three-dimensional functional structures, the authors propose novel hyper-structured molecules (HSMs) based on well-defined and topologically controlled molecular systems. To this end they have developed carbazole dendrimers, trimers, cyclic oligomers and chromogenic calix[4]arenes as HSMs. Photorefractivity was selected as the primary target function of these HSMs. Oligomers developed in their laboratory exhibit intrinsic photocarrier generation, transport, electro-optic, film-forming and poling properties. These multifunctional properties allow us to demonstrate optical image processing using optical phase conjugation. The topological shapes of indoaniline-derived calix[4]arenes were studied by hyper-Rayleigh scattering. The two indoaniline moieties in calix[4]arene derivatives were pre-aligned so as to enhance the net molecular hyperpolarizability. Besides dendric oligomers, cyclic oligomers can be used as a molecular platform which allows molecular level tuning of shape, size and topology for superior opto-electronic functions.

  8. LANL PDMLink Product Structure Implementation

    SciTech Connect (OSTI)

    Scully, Christopher J.

    2012-08-29

    Over the past 2 and a half years LANL has done both functionality exploration as well as production implementations of PDMLink Product Structure to control the configuration of many of the LANL Design Agency Products. Based on this experience LANL has been recommending for over a year that future product structure implementation in PDMLink do not use the two digit suffix in the number field of enterprise parts (or WTParts). The suffix will be part of one of the attributes for Part Number. Per the TBP's the two digit suffix represents a change in form, fit, or function in a part or a change in the production agency or a number of other conditions. It also denotes backward compatibility with earlier suffixed parts (see TBP 402 section 3.1).

  9. coherent-structures-html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Role of Coherent Structures in Scour Process Around Bridge Piers and Abutments

  10. U10.0 Undulator conceptual design report

    SciTech Connect (OSTI)

    Hoyer, E.

    1994-06-01

    The U10.0 Undulator described here is a 43 period, 10 cm period, 4.5 meter long insertion device. Designed for the Advanced Light Source (ALS) storage ring at the Lawrence Berkeley Laboratory. This insertion device will provide high brightness, quasi-monochromatic radiation in the 5-950 eV energy range. This conceptual design report includes sections on: parameter development, spectral performance, and accelerator requirements, physics specifications and the detailed conceptual design of the magnetic structure, the support/drive systems, the insertion device control system, the vacuum system, and installation for the U10.0 Undulator.

  11. Designing for the Active Classroom

    SciTech Connect (OSTI)

    Wilkerson, Andrea M.; Donohue, Amy; Davis, Robert G.

    2015-02-01

    The article discusses trends in classroom design and then transitions to a discussion of the future of the classroom and how the lighting industry needs to be preparing to meet the needs of the future classroom. The OSU Classroom building as an example throughout, first discussing how trends in classroom design were incorporated into the Classroom Building and then discussing how future lighting systems could enhance the Classroom Building, which is a clear departure from the actual lighting design and current technology.

  12. Lighting Design | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. If you're

  13. Biosystems Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biosystems Design Biosystems Design Breakout Session 2: Frontiers and Horizons Session 2-A: Synthetic Biology and the Promise of Biofuels Pablo Rabinowicz, Program Manager, Biosystems Design Program, Biological and Environmental Research (BER), U.S. Department of Energy PDF icon b13_rabinowicz_2-a.pdf More Documents & Publications Biomass 2013 Agenda Before the House Science and Technology Subcommittee on Energy and Environment Briefing: DOE and the Life and Medical Sciences

  14. SSC 50 mm collider dipole cryostat design

    SciTech Connect (OSTI)

    Nicol, T.H.

    1992-04-01

    The cryostat of a Superconducting Super Collider (SSC) dipole magnet consists of all magnet components except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be manufacturable at low cost. The major components of the cryostat are the vacuum vessel, thermal shields, multilayer insulation system, cryogenic piping, interconnections, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating life. This paper describes the design of the current SSC dipole magnet cryostat and includes discussions on the structural and thermal considerations involved in the development of each of the major systems.

  15. Cryostat design for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Nicol, T.H.

    1990-09-01

    The cryostat of an SSC dipole magnet consists of all magnet components except the cold mass assembly. It serves to support the cold mass accurately and reliably within the vacuum vessel, provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations and must be manufacturable at low cost. The major components of the cryostat are the vacuum vessel, thermal shields, multilayer insulation (MLI) system, cryogenic piping, interconnections, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course their 25 year expected life. This paper describes the design of the current SSC collider dipole magnet cryostat and includes discussions on the thermal, structural, and dynamic considerations involved in the development of each of the major systems. 7 refs., 4 figs.

  16. Automated solar collector installation design

    DOE Patents [OSTI]

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  17. Voluntary Initiative: Designing Incentives Toolkit

    Broader source: Energy.gov [DOE]

    Design incentives that motivate potential customers to act by lowering the risk, decreasing the cost, or offering additional benefits of home energy upgrades.

  18. ORISE: Instructional Design and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    customized training and instructional design programs, from traditional classroom teaching to online education. ORISE uses a multi-step process to define the instructional...

  19. Novel rocket design flight tested

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel rocket design flight tested Novel rocket design flight tested Scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. October 23, 2014 Rocket flight test at the Energetic Materials Research and Testing Center launch sitE near Socorro, NM. Rocket flight test at the Energetic Materials Research and Testing Center launch sitE near Socorro, NM. Contact Kevin Roark Communications Office (505) 665-9202

  20. Precision Designs | Open Energy Information

    Open Energy Info (EERE)

    Name: Precision Designs Place: Rochester, New York Zip: 14624 Product: Manufacturer of test equipment for fuel cells. Coordinates: 43.1555, -77.616033 Show Map Loading map......

  1. Challenge Home Student Design Competition

    Broader source: Energy.gov [DOE]

    Check out student designs of zero energy ready homes -- homes that are so efficient they can produce as much energy as the use with a renewable energy system.

  2. Design of Surface Micromachined Compliant MEMS

    SciTech Connect (OSTI)

    Joe Anthony Bradley

    2002-12-31

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMs, most have used comb-drive actuation methods and bulk micromachining processes. This research focused on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  3. Design of Surface micromachined Compliant MEMS

    SciTech Connect (OSTI)

    Joe Anthony Bradley

    2002-08-01

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMS, most have used comb-drive actuation methods and bulk micromachining processes. This research focuses on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  4. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  5. Novette chain design and performance

    SciTech Connect (OSTI)

    Hunt, J.T.; Speck, D.R.

    1980-12-11

    The design and performance of the Novette laser system, which is a two-beam, two-wavelength (1.05 ..mu.. and 0.53 ..mu..) target irradiation facility using phosphate glass laser chains, are discussed with information on the glass properties, controlling factors in the design selection, and projected performance with varying operating conditions. (LCL)

  6. MINIMARS conceptual design: Final report

    SciTech Connect (OSTI)

    Lee, J.D.

    1986-09-01

    This volume contains the following sections: (1) fueling systems; (2) blanket; (3) alternative blanket concepts; (4) halo scraper/direct converter system study and final conceptual design; (5) heat-transport and power-conversion systems; (6) tritium systems; (7) minimars air detritiation system; (8) appropriate radiological safety design criteria; and (9) cost estimate. (MOW)

  7. Kansas State University: Technical Design Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIND TURBINE DESIGN REPORT Wildcat Wind Power - Kansas State University 18 April 2014 1 Table of Contents Introduction .................................................................................................................................................. 2 Mechanical Design ........................................................................................................................................ 3 Design Motivations

  8. Visual Design Group | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visual Design Group Ames Laboratory Logos You are here Home Visual Design Group Graphics Services supports the design, printing and production needs of the Ames Laboratory. For...

  9. Ecowatt Design LLC | Open Energy Information

    Open Energy Info (EERE)

    Ecowatt Design LLC Jump to: navigation, search Logo: Ecowatt Design LLC Name: Ecowatt Design LLC Address: 10900 Northwest Fwy Place: Houston, Texas Zip: 77092 Region: Texas Area...

  10. Bay Solar Power Design | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Design Jump to: navigation, search Name: Bay Solar Power Design Place: California Product: US-based PV system installer. References: Bay Solar Power Design1 This...

  11. Commerce RISE Program Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commerce RISE Program Design Commerce RISE Program Design Community Power Works program design, a document posted on the U.S. Department of Energy's Better Buildings Neighborhood ...

  12. California Green Designs | Open Energy Information

    Open Energy Info (EERE)

    Designs Jump to: navigation, search Name: California Green Designs Place: Encino, California Zip: 91316 Sector: Buildings, Renewable Energy Product: Designs and builds...

  13. Green Integrated Design | Open Energy Information

    Open Energy Info (EERE)

    Integrated Design Jump to: navigation, search Logo: Green Integrated Design Name: Green Integrated Design Place: Tempe, Arizona Zip: 85283 Number of Employees: 1-10 Year Founded:...

  14. Identity and Design Guidelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Guidelines Identity and Design Guidelines Package icon Identity and Design Guidelines More Documents & Publications Collegiate Wind Competition Identity Guidelines Policy ...

  15. CASE Design/Remodeling | Open Energy Information

    Open Energy Info (EERE)

    DesignRemodeling Jump to: navigation, search Name: CASE DesignRemodeling Place: Bethesda, MD Website: www.casedesignremodeling.com References: CASE DesignRemodeling1...

  16. Waterflooding injectate design systems and methods (Patent) ...

    Office of Scientific and Technical Information (OSTI)

    Waterflooding injectate design systems and methods Citation Details In-Document Search Title: Waterflooding injectate design systems and methods A method of designing an injectate...

  17. Structural mapping of the ClpB ATPases of Plasmodium falciparum...

    Office of Scientific and Technical Information (OSTI)

    Structural mapping of the ClpB ATPases of Plasmodium falciparum: Targeting protein folding and secretion for antimalarial drug design Citation Details In-Document Search Title:...

  18. FINITE ELEMENT MODELS FOR COMPUTING SEISMIC INDUCED SOIL PRESSURES ON DEEPLY EMBEDDED NUCLEAR POWER PLANT STRUCTURES.

    SciTech Connect (OSTI)

    XU, J.; COSTANTINO, C.; HOFMAYER, C.

    2006-06-26

    PAPER DISCUSSES COMPUTATIONS OF SEISMIC INDUCED SOIL PRESSURES USING FINITE ELEMENT MODELS FOR DEEPLY EMBEDDED AND OR BURIED STIFF STRUCTURES SUCH AS THOSE APPEARING IN THE CONCEPTUAL DESIGNS OF STRUCTURES FOR ADVANCED REACTORS.

  19. Genome Structure Gallery from the Mycobacterium Tuberculosis Structual Genomics Consortium

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The TB Structural Genomics Consortium works with the structures of proteins from M. tuberculosis, analyzing these structures in the context of functional information that currently exists and that the Consortium generates. The database of linked structural and functional information constructed from this project will form a lasting basis for understanding M. tuberculosis pathogenesis and for structure-based drug design. The Consortium's structural and functional information is publicly available. The Structures Gallery makes more than 650 total structures available by PDB identifier. Some of these are not consortium targets, but all are viewable in 3D color and can be manipulated in various ways by Jmol, an open-source Java viewer for chemical structures in 3D from http://www.jmol.org/

  20. KJRR-FAI Status Report of Conceptual Design Activities

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; B.P. Nielson; D.B. Chapman; J.W. Nielsen; P.E. Murray; D.S. Crawford; S.D. Snow

    2013-12-01

    The Korea Atomic Energy Research Institute has initiated the Ki-Jang Research Reactor (KJRR) project to construct a new dedicated radio-isotope production facility in the KiJang province of South Korea. The KJRR will employ a uranium-molybdenum dispersion plate-type fuel clad in aluminum. The KJRR fuel assembly design will undergo irradiation in the Advanced Test Reactor (ATR) as part of the regulatory qualification of the fuel. The Idaho National Laboratory performed a multi-disciplined conceptual design effort and found that one full-size KJRR fuel assembly can be irradiated in the ATRs north east flux trap. The analyses accomplished during the conceptual design phase are sufficient to prove viability of the overall design and irradiation campaign. Requirements for fission power can be met. The desired burnup can be achieved well within 15% depending on reactor operating availability. Mechanical design and structural analysis show that structural integrity of the irradiation test is maintained. It is recommended that future detailed design efforts be based on the concept described in this report.

  1. ARIES-ACT1 Safety Design and Analysis

    SciTech Connect (OSTI)

    Humrickhouse, Paul W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, Brad J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-01-01

    ARIES-ACT1 (Advanced and Conservative Tokamak) is a 1000-MW(electric) tokamak design featuring advanced plasma physics and divertor and blanket engineering. Some relevant features include an advanced SiC blanket with PbLi as coolant and breeder; a helium-cooled steel structural ring and tungsten divertors; a thin-walled, helium-cooled vacuum vessel; and a room-temperature, water-cooled shield outside the vacuum vessel. We consider here some safety aspects of the ARIES-ACT1 design and model a series of design-basis and beyond-design-basis accidents with the MELCOR code modified for fusion. The presence of multiple coolants (PbLi, helium, and water) makes possible a variety of such accidents. We consider here a loss-of-flow accident caused by a long-term station blackout (LTSBO), an ex-vessel helium break into the cryostat, and a beyond-design-basis accident in which a LTSBO is aggravated by a loss-of-coolant accident in ARIES-ACT1's ultimate decay heat removal system, the water-cooled shield. In the design-basis accidents, we find that the secondary confinement boundaries are not challenged, and the structural integrity of in-vessel components is not threatened by high temperatures or pressures; decay heat can be passively removed.

  2. Stormwater Control Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stormwater Control Structures Stormwater Control Structures Stormwater control structures are engineered to control run-on and runoff water from suspected contaminated sites. Structures trap sediment, keep water on-site, slow water flow and redirect water around problem areas. Rock check dams Rock check dams Silt tence Silt fence Sediment trap Sediment trap Wood mulch and native seed Wood mulch and native seed Gabion Gabion Concrete lined swales Concrete lined swales Hydroseeding Hydroseeding

  3. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  4. Cambridge Structural Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cambridge Structural Database Cambridge Structural Database LANL researchers can access WebCSD from offsite via Remote Access. Question? 667-5809 Email Cambridge Structural Database (CSD) includes bibliographic, chemical, and crystallographic information for organic molecules and metal-organic compounds. The crystal structure data comes from the open literature or direct deposits by researchers. The CSD System incorporations a suite of flexible search and analysis tools. The Research Library

  5. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  6. Salt Repository Project shaft design guide: Revision 0

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    The Salt Repository Project (SRP) Shaft Design Guide (SDG) and the accompanying SRP Input to Seismic Design define the basic approach for developing appropriate shaft designs for a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. The SDG is based on current mining industry standards and practices enhanced to meet the special needs of an underground nuclear waste repository. It provides a common approach for design of both the exploratory and repository shafts. The SDG defines shaft lining and material concepts and presents methods for calculating the loads and displacements that will be imposed on lining structures. It also presents the methodology and formulae for sizing lining components. The SDG directs the shaft designer to sources of geoscience and seismic design data for the Deaf Smith County, Texas repository site. In addition, the SDG describes methods for confirming shaft lining design by means of computer analysis, and it discusses performance monitoring needs that must be considered in the design. 113 refs., 18 figs., 14 tabs.

  7. Center for Inverse Design: About the Center for Inverse Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Partner Institutions Principal Investigators Research Thrusts & Subtasks Approach Publications SharePoint Collaboration Tool For research results, information, and discussion board Learn more about some recent research highlights from the Center for Inverse Design Meet some of our principal investigators in the Center for Inverse Design by viewing the short videos Download latest chart of efficiencies determined by certified agencies/labs of best research solar cells worldwide

  8. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  9. Vitrified underground structures

    DOE Patents [OSTI]

    Murphy, Mark T. (Kennewick, WA); Buelt, James L. (Richland, WA); Stottlemyre, James A. (Richland, WA); Tixier, Jr., John S. (Richland, WA)

    1992-01-01

    A method of making vitrified underground structures in which 1) the vitrification process is started underground, and 2) a thickness dimension is controlled to produce substantially planar vertical and horizontal vitrified underground structures. Structures may be placed around a contaminated waste site to isolate the site or may be used as aquifer dikes.

  10. Zero Student Design Competition Guide

    Broader source: Energy.gov (indexed) [DOE]

    Race to Zero Student Design Competition | 1 2016 U.S. Department of Energy Race to Zero Student Design Competition Guide August 2015 FOREWORD Race to Zero Student Design Competition | 2 FOREWORD This is an exciting time-a time when zero energy ready homes have become readily achievable and cost-effective. By definition, these high-performance homes are so energy efficient that renewable power can offset all or most of their annual energy consumption. The U.S. Department of Energy (DOE) Race to

  11. Chapter 4: The Building Architectural Design

    Broader source: Energy.gov [DOE]

    Chapter 4 of the LANL Sustainable Design Guide featuring schematic design, designing using computer simulations, design of high performance featurea and systems, daylighting, passive and active solar systems, and accommodating recycling activities.

  12. Thickness dependent hierarchical meso/nano scale morphologies of a metal-containing block copolymer thin film induced by hybrid annealing and their pattern transfer abilities.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Center for Nanoscale Materials

    2009-01-01

    In this paper we describe dewetting phenomena in organic (polystyrene, PS)/inorganic (polyferrocenyldimethylsilane, PFS) block copolymer thin films. Mesoscale dendritic structures are induced when the spin-cast thin film of this polymer is subjected to so-called hybrid annealing, which involves both thermal and solvent annealing. We show that the development and arrangement of these mesoscale dendritic structures depends on the initial film thickness in addition to the annealing time. Importantly, there are two criteria that must be fulfilled to achieve these mesoscale morphologies: (i) the film has to be subjected to hybrid annealing, i.e. either only thermal or only solvent annealing does not produce any notable mesostructures and (ii) both PS and PFS blocks must be present during the thermal and solvent annealing procedures; if one of the blocks, for instance PS, is removed before annealing then there is no mesostructure. Various possible mechanisms for the formation of these structures are discussed and results indicate that the PFS block dominates the structure formation. We also observe a ring- or worm-like nanostructure which develops only when the film is subjected to hybrid annealing at a particular film thickness. Apart from these results, here we demonstrate that mesoscale structures can be successfully transferred onto underlying substrates.

  13. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation Catalyst for Diesel Engine Emission Treatment Catalyst by Design - Theoretical, ... More Documents & Publications Catalyst by Design - Theoretical, Nanostructural, and ...

  14. Electronic Records Management Software Applications Design Criteria...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronic Records Management Software Applications Design Criteria Standard Electronic Records Management Software Applications Design Criteria Standard This Standard is reissued...

  15. Conceptual Safety Design RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Design RM Conceptual Safety Design RM The Conceptual Safety Design (CSD) Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the Conceptual Safety Design work, processes and documentation prior to approval of CD-1. PDF icon Conceptual Safety Design RM More Documents & Publications Preliminary Safety Design RM Safety Design Strategy RM Safety Design Strategy Standard Review Plan (SRP)

  16. Audit Implementation Design Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Audit Implementation Design Plan Document Number: NA Effective Date: 082014 File (public): PDF icon Audit Implementation Design Plan April 2014...

  17. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power ...

  18. Final Design RM | Department of Energy

    Energy Savers [EERE]

    Final Design RM Final Design RM The Final Design (FD) Review Module (RM) is a tool that assists Department of Energy (DOE) federal project review teams in evaluating the technical sufficiency of the final design prior to CD-3 approval. The FD RM focuses on the engineering design, technology, safety, and quality assurance to determine whether it meets overall design commitments, technical and safety requirements. PDF icon Final Design RM More Documents & Publications Seismic Design

  19. Center for Energy Efficient Design

    High Performance Buildings Database

    Rocky Mount, VA As the first Passivhaus public school in North America, the Center for Energy Efficient Design (CEED) in Rocky Mount, Virginia, is a national model for green school construction. An extension of The Leonard A.

  20. NCSX Toroidal Field Coil Design

    SciTech Connect (OSTI)

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  1. Geothermal Design Challenge Overview Webinar

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Geothermal Technologies Office, in partnership with the Center for Advanced Energy Studies and Idaho National Lab is recruiting students in graphic design,...

  2. Production Facility SCADA Design Report

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Baily, Scott A.; Woloshun, Keith Albert; Wheat, Robert Mitchell Jr.

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  3. NREL: Technology Deployment - Microgrid Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid Design Photo of a microgrid test site at the National Wind Technology Center. NREL designs independent electrical generation and distribution systems called microgrids, which deliver energy that is reliable, economical, and sustainable. NREL experts work with military, government, industry, and other organizations that cannot afford to lose power to develop reliable and cost-effective microgrid systems. Expertise and Knowledge NREL offers microgrid technical expertise and project

  4. development-plans-and-design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Plans and Design Concepts for TRANSIMS Version 5 David Roden AECOM List of Authors ================ David Roden AECOM 3101 Wilson Boulevard, 4th Floor Arlington, VA This email address is being protected from spambots. You need JavaScript enabled to view it. Abstract ========= This presentation will provide an overview of the software changes planned for TRANSIMS Version 5.0 and solicit feedback from users on desirable improvements. The Version 5.0 design attempts to streamline the

  5. Design guidance for elastic followup

    SciTech Connect (OSTI)

    Naugle, F.V.

    1983-01-01

    The basic mechanism of elastic followup is discussed in relation to piping design. It is shown how mechanistic insight gained from solutions for a two-bar problem can be used to identify dominant design parameters and to determine appropriate modifications where elastic followup is a potential problem. It is generally recognized that quantitative criteria are needed for elastic followup in the creep range where badly unbalanced lines can pose potential problems. Approaches for criteria development are discussed.

  6. Fuel cell design and assembly

    DOE Patents [OSTI]

    Myerhoff, Alfred

    1984-01-01

    The present invention is directed to a novel bipolar cooling plate, fuel cell design and method of assembly of fuel cells. The bipolar cooling plate used in the fuel cell design and method of assembly has discrete opposite edge and means carried by the plate defining a plurality of channels extending along the surface of the plate toward the opposite edges. At least one edge of the channels terminates short of the edge of the plate defining a recess for receiving a fastener.

  7. TAPS design concepts: environmental concerns

    SciTech Connect (OSTI)

    Turner, M.J.

    1981-05-01

    The engineering concepts used in the design, construction, and operation of the Trans-Alaska Pipeline System (TAPS) were often new and in many cases in the state of the art. To accommodate environmental concerns for operating a hot oil pipeline in permafrost soil, unique features were incorporated into TAPS. Design concepts include a sophisticated leak detection and internal pipeline monitoring system. Additional features for accommodating thaw-unstable soils, earthquakes, and river systems are described. (23 references)

  8. Design of Roadside Safety Features

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis and Design of the Roadside Safety Features for Safety Performance Texas Transportation Institute (TTI) researchers are investigating the performance of a crash wall design to determine its effectiveness in reducing the damage to mechanically supported earth (MSE) wall panels during a vehicular impact. The simulations are based on Test Level 4 impact conditions of the new AASHTO Manual for Assessing Safety Hardware (MASH). This involves a 10,000-kg single unit truck (SUT) impacting at 90

  9. Center for Inverse Design: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center the Inverse Design Highlights Read short descriptions of some recent successes by researchers within the Center for Inverse Design, an Energy Research Frontier Center led by the National Renewable Energy Laboratory. Illustration of Seebeck coefficient mapping instrument showing various components in an "exploded" view. Spatially Resolved Seebeck Coefficient Measurements An instrument for spatially resolved Seebeck coefficient measurements has been developed and applied to test

  10. The TPX Cryostat Conceptual Design

    SciTech Connect (OSTI)

    Ravenscroft, D.; Posey, A.; Heitzenroeder, P.; Brown, T.

    1993-10-06

    The TPX (Tokamak Physics Experiment) will be the first tokamak to employ both superconducting TF (toroidal field) and PF (poloidal field) magnets. Consequently, the entire device is located within an evacuated cryostat to provide the necessary thermal barrier between the ambient temperature test cell and the magnets that are cooled by supercritical liquid helium at 5{degrees}K. This paper describes the cryostat design requirements, design concepts, and the cryostat fabrication and installation.

  11. Design Competitions | Department of Energy

    Office of Environmental Management (EM)

    Research & Development » Technology Application R&D » Design Competitions Design Competitions National technology competitions encourage and recognize innovation in solid-state lighting products. Next Generation Luminaires Logo consisting of the words Logo consisting of the words 'Next Generation Luminaires,' with each word on its own line. 'Next' and 'Generation' are in black and 'Luminaires' is in gray uppercase letters. To the left above the word 'Next' is a curved yellow rectangle

  12. On the computational complexity of sequence design problems

    SciTech Connect (OSTI)

    Hart, W.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-01

    Inverse protein folding concerns the identification of an amino acid sequence that folds to a given structure. Sequence design problems attempt to avoid the apparant difficulty of inverse protein folding by defining an energy that can be minimized to find protein-like sequences. We evaluate the practical relevance of two sequence design problems by analyzing their computational complexity. We show that the canonical method of sequence design is intractable and describe approximation algorithms for this problem. We also describe an efficient algorithm that exactly solves the grand canonical method. Our analysis shows how sequence design problems can fail to reduce the difficulty of the inverse protein folding problem and highlights the need to analyze these problems to evaluate their practical relevance. 10 refs., 8 figs.

  13. On the computational complexity of sequence design problems

    SciTech Connect (OSTI)

    Hart, W.E. [Sandia National Labs., Albuquerque, NM (United States). Algorithms and Discrete Mathematics Dept.

    1996-12-31

    Inverse protein folding concerns the identification of an amino acid sequence that folds to a given structure. Sequence design problems attempt to avoid the apparent difficulty of inverse protein folding by defining an energy that can be minimized to find protein-like sequences. The authors evaluate the practical relevance of two sequence design problems by analyzing their computation complexity. They show that the canonical method of sequence design is intractable, and describe approximation algorithms for this problem. The authors also describe an efficient algorithm that exactly solves the grand canonical method. The analysis shows how sequence design problems can fail to reduce the difficulty of the inverse protein folding problem, and highlights the need to analyze these problems to evaluate their practical relevance.

  14. PHY and MAC Layer Design of Hybrid Spread Spectrum Based Smart Meter Network

    SciTech Connect (OSTI)

    Kuruganti, Phani Teja

    2012-01-01

    The smart grid is a combined process of revitalizing the traditional power grid applications and introducing new applications to improve the efficiency of power generation, transmission and distribution. This can be achieved by leveraging advanced communication and networking technologies. Therefore the selection of the appropriate communication technology for different smart grid applications has been debated a lot in the recent past. After comparing different possible technologies, a recent research study has arrived at a conclusion that the 3G cellular technology is the right choice for distribution side smart grid applications like smart metering, advanced distribution automation and demand response management system. In this paper, we argue that the current 3G/4G cellular technologies are not an appropriate choice for smart grid distribution applications and propose a Hybrid Spread Spectrum (HSS) based Advanced Metering Infrastructure (AMI) as one of the alternatives to 3G/4G technologies. We present a preliminary PHY and MAC layer design of a HSS based AMI network and evaluate their performance using matlab and NS2 simulations. Also, we propose a time hierarchical scheme that can significantly reduce the volume of random access traffic generated during blackouts and the delay in power outage reporting.

  15. Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. Y-12 Sustainable Design Principles for Building Design and Construction

    SciTech Connect (OSTI)

    Jackson, J. G.

    2008-11-01

    B&W Y-12 is committed to modernizing the Y-12 complex to meet future needs with a sustainable and responsive infrastructure and to integrating sustainability principles and practices into Y-12 work (Y72-001, B&W Y-12 Environmental, Safety and Health Policy). This commitment to sustainability and specifically sustainable design of buildings is also incorporated into Presidential Executive Orders (EO), DOE Orders (DOE O), and goals. Sustainable building design is an approach to design, construct, and operate facilities in an efficient and environmentally sound manner that will produce a healthful, resource-efficient and productive working environment that is inherently protective of the environment. The DOE has established the following 5 Guiding Principles for High Performance Sustainable Building (HPSB), and has issued directives that require Y-12 to incorporate the principles and a number of supporting specific practices and techniques into building design, construction and renovation projects: (1) Employ Integrated Design Principles; (2) Optimize Energy Performance; (3) Protect and Conserve Water; (4) Enhance Indoor Environmental Quality; and (5) Reduce Environmental Impact of Materials. The purpose of this document is to present the required sustainable building principles, practices and techniques, summarize the key drivers for incorporating them into Y-12 projects, and present additional recommendations and resources that can be used to support sustainable buildings to enhance the environmental and economic performance of the Y-12 Complex.

  17. Electrochemical Cell Design With A Hollow Gate

    DOE Patents [OSTI]

    Romero, Antonio; Oweis, Salah; Chagnon, Guy; Staniewicz, Robert; Briscoe, Douglas

    2000-02-01

    An electrochemical cell having a spiral winding around a central core, wherein the central core is provided with longitudinal grooves on its outer surface to facilitate electrolyte filing and accommodate overpressure. The core itself improves dissipation of heat generated along the center of the cell, and the hollow core design allows the cell core to have a larger radius, permitting the "jelly roll" winding to begin at a larger radius and thereby facilitate the initial turns of the winding by decreasing the amount of bending required of the electrode laminate at the beginning of the winding operation. The hollow core also provides mechanical support end-to-end. A pair of washers are used at each end of the cell to sandwich current collection tabs in a manner that improves electrical and thermal conductivity while also providing structural integrity.

  18. Mechanical Design of the LSST Camera

    SciTech Connect (OSTI)

    Nordby, Martin; Bowden, Gordon; Foss, Mike; Guiffre, Gary; Ku, John; Schindler, Rafe; /SLAC

    2008-06-13

    The LSST camera is a tightly packaged, hermetically-sealed system that is cantilevered into the main beam of the LSST telescope. It is comprised of three refractive lenses, on-board storage for five large filters, a high-precision shutter, and a cryostat that houses the 3.2 giga-pixel CCD focal plane along with its support electronics. The physically large optics and focal plane demand large structural elements to support them, but the overall size of the camera and its components must be minimized to reduce impact on the image stability. Also, focal plane and optics motions must be minimized to reduce systematic errors in image reconstruction. Design and analysis for the camera body and cryostat will be detailed.

  19. Passive solar design handbook. Volume III. Passive solar design analysis

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Kosiewicz, C.E.; Lazarus, G.S.; McFarland, R.D.; Wray, W.O.

    1982-07-01

    Simple analytical methods concerning the design of passive solar heating systems are presented with an emphasis on the average annual heating energy consumption. Key terminology and methods are reviewed. The solar load ratio (SLR) is defined, and its relationship to analysis methods is reviewed. The annual calculation, or Load Collector Ratio (LCR) method, is outlined. Sensitivity data are discussed. Information is presented on balancing conservation and passive solar strategies in building design. Detailed analysis data are presented for direct gain and sunspace systems, and details of the systems are described. Key design parameters are discussed in terms of their impact on annual heating performance of the building. These are the sensitivity data. The SLR correlations for the respective system types are described. The monthly calculation, or SLR method, based on the SLR correlations, is reviewed. Performance data are given for 9 direct gain systems and 15 water wall and 42 Trombe wall systems. (LEW)

  20. Feed-in Tariff Policy: Design, Implementation, and RPS Policy Interactions

    Broader source: Energy.gov [DOE]

    This report explores the design and implementation of feed-in tariff policies, including a policy definition, various payment structures, and payment differentiation options. The report also discusses the interaction between FIT and RPS policies.

  1. Protein Structure Recognition: From Eigenvector Analysis to Structural...

    Office of Scientific and Technical Information (OSTI)

    ThesisDissertation: Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method Citation Details In-Document Search Title: Protein Structure ...

  2. The Draugen platform and subsea structures, installation and foundation aspects

    SciTech Connect (OSTI)

    Alm, T.; Bye, A.; Sandvik, K.; Egeland, S.

    1995-12-01

    Installation data from the Draugen GBS and subsea structures have been processed and analyzed in order to verify the design assumptions with regards to soil reactions. These results have shown that penetration of concrete skirts and piles into the very hard clay layer, typically found at the Haltenbanken area is feasible. The resistances may be predicted with reasonable accuracy using conventional methods and average soil strength values as obtained by traditional soil testing. This paper reveals and comments the installation data both for the gravity platform and the piles for the different subsea structures and provides and updated basis for foundation design of similar structures in the area.

  3. System 80+{trademark} Standard Design: CESSAR design certification. Volume 13

    SciTech Connect (OSTI)

    1997-12-31

    This report has been prepared in support of the industry effort to standardize nuclear plant designs. This document describes the Combustion Engineering, Inc. System 80+{trademark} Standard Design. This volume contains sections 2 thru 7 of Chapter 15 -- Accident Analyses. Topics covered are: decrease in heat removal by the secondary system; decrease in reactor coolant flow rate; reactivity and power distribution anomalies; increase in RCS inventory; decrease in RCS inventory; and radioactive material release from a system or component. Appendices 15A, 15B, and 15C are included.

  4. SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT

    SciTech Connect (OSTI)

    CARRO CA

    2010-03-09

    This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysis is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.

  5. Pipeline integrity design for differential settlement in discontinuous permafrost areas

    SciTech Connect (OSTI)

    Zhou, Z.J.; Boivin, R.P.; Glover, A.G.; Kormann, P.J.

    1996-12-31

    The NOVA Gas Transmission Ltd. (NGTL) gas pipeline system is expanding northwards as the producers search for and find new gas reserves. This growth has taken the system into the discontinuous permafrost zone, and also into new design problems. One such problem is the structural integrity of a pipeline subjected to the settlement differentials that occur between frozen and unfrozen soils. Adequate integrity design for differential settlement is required by design codes, such as CSA Z662, but the procedures and criteria must be established by the pipeline designers. This paper presents the methodology of pipeline integrity design for differential settlements used on a number of pipeline projects in Northwest Alberta. Outlined in the paper are the procedures, rationales and models used to: (a) locate discontinuous permafrost; (b) quantify the potential differential settlement; (c) predict pipeline stresses and strains; (d) establish strain limits; and (e) determine the pipe wall thickness to withstand those potential differential settlements. Several design options are available and are briefly discussed. For the projects mentioned, the heavy wall pipe option was identified as a cost effective design for medium to large differential settlements.

  6. Design of the beryllium window for Brookhaven Linac Isotope Producer

    SciTech Connect (OSTI)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by worker due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasnt been a single window failure since the new design was implemented in 2012.

  7. Probabilistic Based Design Methodology for Solid Oxide Fuel Cell Stacks

    SciTech Connect (OSTI)

    Sun, Xin; Tartakovsky, Alexandre M.; Khaleel, Mohammad A.

    2009-05-01

    A probabilistic-based component design methodology is developed for solid oxide fuel cell (SOFC) stack. This method takes into account the randomness in SOFC material properties as well as the stresses arising from different manufacturing and operating conditions. The purpose of this work is to provide the SOFC designers a design methodology such that desired level of component reliability can be achieved with deterministic design functions using an equivalent safety factor to account for the uncertainties in material properties and structural stresses. Multi-physics-based finite element analyses were used to predict the electrochemical and thermal mechanical responses of SOFC stacks with different geometric variations and under different operating conditions. Failures in the anode and the seal were used as design examples. The predicted maximum principal stresses in the anode and the seal were compared with the experimentally determined strength characteristics for the anode and the seal respectively. Component failure probabilities for the current design were then calculated under different operating conditions. It was found that anode failure probability is very low under all conditions examined. The seal failure probability is relatively high, particularly for high fuel utilization rate under low average cell temperature. Next, the procedures for calculating the equivalent safety factors for anode and seal were demonstrated such that uniform failure probability of the anode and seal can be achieved. Analysis procedures were also included for non-normal distributed random variables such that more realistic distributions of strength and stress can be analyzed using the proposed design methodology.

  8. Designing a Micro-Mechanical Transistor

    SciTech Connect (OSTI)

    Mainieri, R.

    1999-06-03

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Micro-mechanical electronic systems are chips with moving parts. They are fabricated with the same techniques that are used to manufacture electronic chips, sharing their low cost. Micro-mechanical chips can also contain electronic components. By combining mechanical parts with electronic parts it becomes possible to process signal mechanically. To achieve designs comparable to those obtained with electronic components it is necessary to have a mechanical device that can change its behavior in response to a small input - a mechanical transistor. The work proposed will develop the design tools for these complex-shaped resonant structures using the geometrical ray technique. To overcome the limitations of geometrical ray chaos, the dynamics of the rays will be studied using the methods developed for the study of nonlinear dynamical systems. T his leads to numerical methods that execute well in parallel computer architectures, using a limited amount of memory and no inter-process communication.

  9. Southern Regional Center for Lightweight Innovative Design

    SciTech Connect (OSTI)

    2012-08-24

    The Southern Regional Center for Lightweight Innovative Design (SRCLID) has developed an experimentally validated cradle-to-grave modeling and simulation effort to optimize automotive components in order to decrease weight and cost, yet increase performance and safety in crash scenarios. In summary, the three major objectives of this project are accomplished: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantify microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios. In this final report, we divided the content into two parts: the first part contains the development of building blocks for the project, including materials and process models, process-structure-property (PSP) relationship, and experimental validation capabilities; the second part presents the demonstration task for Mg front-end work associated with USAMP projects.

  10. Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems

    Energy Savers [EERE]

    | Department of Energy Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems October 1, 2013 - 3:10pm Addthis Pressure profile of a wave moving through an offshore structure. Courtesy of MMI Engineering Pressure profile of a wave moving through an offshore structure. Courtesy of MMI Engineering This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. The

  11. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  12. Undergraduate Program Salary Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salary Structure Undergraduate Program Salary Structure Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Student Programs (505) 665-8899 Email Undergraduate salary determination process Salaries are evaluated from students' current transcripts based on college academic progression and hours completed in a degree program. Professional Salary Structure Years

  13. Chapter 2: Whole-Buildling Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Whole-Building Design Whole-Building Design - the What and How Articulating and Communicating a Vision Creating an Integrated Project Team Developing Project Goals Design and Execution Phases Decision-Making Process Writing Sustainable F&OR Documents Specific Sustainable Elements of F&OR Documents Fitting into the LANL Design Process LANL | Chapter 2 Whole-Building Design - the What and How Sustainable design can most easily be achieved through Whole-Building Design a whole-building

  14. Chapter 4: The Building Architectural Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : The Building Architectural Design Schematic Design Designing Using Computer Simulations Design of High Performance Features and Systems Designing for Daylighting Passive and Active Solar Systems Accommodating Recycling Activities LANL | Chapter 4 The Building Architectural Design Schematic Design Achieving a sustainable building requires a commitment from developing the initial F&OR documents through construction detailing and commissioning. Initial deci- sions, such as the building's

  15. Safety Design Strategy RM | Department of Energy

    Energy Savers [EERE]

    Safety Design Strategy RM Safety Design Strategy RM The SDS Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the conceptual safety design strategy documentation package (Conceptual Safety Design Report) prior to CD-1 approval and the adequacy of the preliminary safety design strategy documentation packaged (Preliminary Safety Design Report) prior to CD- 2 approval. PDF icon Safety Design Strategy RM More Documents & Publications Safety

  16. Preliminary Safety Design RM | Department of Energy

    Energy Savers [EERE]

    Safety Design RM Preliminary Safety Design RM The Preliminary Safety Design (PSD) Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the Preliminary Safety Design work, processes and documentation prior to approval of CD-2. PDF icon Preliminary Safety Design RM More Documents & Publications Conceptual Safety Design RM Preliminary Safety Design RM CD-1, Approve Alternative Selection and Cost Range Requirements Crosswalk of

  17. Lead-Cooled Fast Reactor (LFR) Design: Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design

    SciTech Connect (OSTI)

    Smith, C

    2010-02-22

    The idea of developing fast spectrum reactors with molten lead (or lead alloy) as a coolant is not a new one. Although initially considered in the West in the 1950s, such technology was not pursued to completion because of anticipated difficulties associated with the corrosive nature of these coolant materials. However, in the Soviet Union, such technology was actively pursued during the same time frame (1950s through the 1980s) for the specialized role of submarine propulsion. More recently, there has been a renewal of interest in the West for such technology, both for critical systems as well as for Accelerator Driven Subcritical (ADS) systems. Meanwhile, interest in the former Soviet Union, primarily Russia, has remained strong and has expanded well beyond the original limited mission of submarine propulsion. This section reviews the past and current status of LFR development.

  18. Structural Health Monitoring Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure Dataset to expand menu (d) Click on Dataset output 9. Add and configure Statistical Moments function as Step 3 of sequence (a) Navigate to SHMFunctionsFeature...

  19. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  20. Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time Reversal Acoustics LANL also investigates the applicability of time reversal concept in modern acoustics to structural damage identification. In the time reversal...