Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mercury Vapor Pressure Correlation  

Science Conference Proceedings (OSTI)

An apparent difference between the historical mercury vapor concentration equations used by the mercury atmospheric measurement community ...

2012-10-09T23:59:59.000Z

2

Definition: Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Jump to: navigation, search Dictionary.png Mercury Vapor Mercury is discharged as a highly volatile vapor during hydrothermal activity and high concentrations in...

3

Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mercury Vapor Details Activities (23) Areas (23) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Anomalously high concentrations can indicate high permeability or conduit for fluid flow Hydrological: Field wide soil sampling can generate a geometrical approximation of fluid circulation Thermal: High concentration in soils can be indicative of active hydrothermal activity Dictionary.png Mercury Vapor: Mercury is discharged as a highly volatile vapor during hydrothermal

4

Mercury Vapor (Kooten, 1987) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor (Kooten, 1987) Mercury Vapor (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor (Kooten, 1987) Exploration Activity Details Location Unspecified Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury were conducted in 16 areas in 1979-1981 by ARCO Oil and Gas Company as part of its geothermal evaluation program. Three techniques used together have proved satisfactory in evaluating surface mercury data. These are contouring, histograms and cumulative frequency plots of the data. Contouring geochemical data and constructing histograms are standard

5

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...  

Open Energy Info (EERE)

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Desert Peak Area...

6

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area...

7

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Mercury Vapor Activity Date Usefulness not...

8

Hanford Identification (HID) PIA, Richland Operations Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Identification (HID) PIA, Richland Operations Office Hanford Identification (HID) PIA, Richland Operations Office Hanford Identification (HID) PIA, Richland Operations...

9

Hanford Identification (HID) PIA, Richland Operations Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identification (HID) PIA, Richland Operations Office Hanford Identification (HID) PIA, Richland Operations Office Hanford Identification (HID) PIA, Richland Operations Office...

10

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

11

Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor At Kawaihae Area (Thomas, 1986) Mercury Vapor At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury concentrations toward both the north and south. There is no correlation apparent between the mercury patterns and either the resistivity sounding data or the surface geology in the area. The radon emanometry data (Fig.

12

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Jump to:...

13

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation,...

14

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

15

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation, search...

16

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents (OSTI)

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

17

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details Location Silver Peak Area Exploration Technique Mercury Vapor Activity Date Usefulness useful...

18

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

19

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

20

Spectral distribution of dimmed HID lamps in a plant growth facility  

SciTech Connect

A commercial dimming ballast system for high intensity discharge (HID) lamps has been tested for use in plant growth chambers. The dimming ballast system can be controlled either manually at the dimming panel or by a d.c. voltage from a programmer or computer. Using the dimming system, photosynthetically active radiation can be continuously varied from about 200 to about 2000 ..mu..E m/sup -2/s/sup -1/. This paper shows the effects of dimming on the spectral intensity (400 to 750 nm) of three types of HID lamps measured individually and in combination to achieve a better spectral mix. The lamps used in this study were 400 w metal halide, mercury vapor and high pressure sodium.

Bingham, G.E.; Coyne, P.I.

1979-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Apparatus for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

1988-01-01T23:59:59.000Z

22

Apparatus and method for removing mercury vapor from a gas stream  

DOE Patents (OSTI)

A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

Ganesan, Kumar (Butte, MT)

2008-01-01T23:59:59.000Z

23

Filter for isotopic alteration of mercury vapor  

DOE Green Energy (OSTI)

A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

1989-01-01T23:59:59.000Z

24

Filter for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

Grossman, M.W.; George, W.A.

1989-06-13T23:59:59.000Z

25

Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mokapu Penninsula Area (Thomas, 1986) Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The high degree of cultural activity (e.g. residential areas, streets, jet runways, etc.) on Mokapu both limited the extent of the soil geochemical surveys performed and rendered their interpretation much more difficult. Soil mercury concentrations and radon emanometry data on the peninsula showed a few localized high values (Figs 13, 14), but no consistent correlation between the anomalous zones and geologic features could be

26

Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Mercury Vapor Activity Date - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

27

HID Laboratories Inc | Open Energy Information  

Open Energy Info (EERE)

HID Laboratories Inc HID Laboratories Inc Jump to: navigation, search Name HID Laboratories, Inc. Place Menlo Park, California Zip 94025 Product HID Laboratories develops commercial-grade, high intensity lighting products that manage lighting demand and reduce energy use. References HID Laboratories, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. HID Laboratories, Inc. is a company located in Menlo Park, California . References ↑ "HID Laboratories, Inc." Retrieved from "http://en.openei.org/w/index.php?title=HID_Laboratories_Inc&oldid=346520" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

28

Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Kilauea East Rift Area (Thomas, Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The sampling network for soil mercury concentrations undertaken by Cox (1981) identified a complicated pattern of mercury concentrations throughout the lower Puna area (Fig. 60). The highest soil mercury concentrations found were generally located within the rift zone, but an analysis of the data showed that soil type and soil pH also had a marked impact on mercury concentration. Making corrections for these effects improved the correspondence between the surface geological expression of the rift zone and the mercury concentrations observed; interpretation of

29

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

30

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The soil mercury concentration and radon emanometry patterns observed for the Lahaina prospect were similar to those found in Olowalu. Several localized zones of high mercury concentration or enhanced radon emanation were observed, but showed little relationship to each other or to the recognized geologic structure in the area. The data were interpreted to suggest that there might be a small thermal anomaly to the northeast of the

31

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)  

Open Energy Info (EERE)

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes One-hundred twelve samples were collected from relatively unaltered air-fall ejecta along two Novarupta Basin traverse lines (Fig. 5). One hundred eighty-two samples were taken from active/fossil fumaroles in Novarupta Basin (22 sites, Fig. 5), fossil fumaroles (41 sites) and air-fall tephra (2 sites) within and immediately adjacent to the remainder of the VTTS (Fig. 6). In total, 294 samples were collected from 127 sites

32

Acid effects on the measurement of mercury by cold vapor atomic absorption spectrometry  

Science Conference Proceedings (OSTI)

The influence of nitric, hydrochloric and sulfuric acids on the measurement of mercury by cold vapor atomic absorption spectrometry has been investigated. Small pre-reduction peaks associated with the instability of mercury were observed in solutions containing less than or equal to 12.5, tuna using both of these approaches to overcome the interference problem proved to be successful.

Adeloju, S.B.; Mann, T.F.

1987-07-01T23:59:59.000Z

33

Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Area (Thomas, 1986) Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=390060

34

Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys

35

Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively  

E-Print Network (OSTI)

Articles Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively developed for high-accuracy determinations of mer- cury in bituminous and sub-bituminous coals. A closed- system digestion process employing a Carius tube is used to completely oxidize the coal matrix

36

Mercury Vapor At Akutan Fumaroles Area (Kolker, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Akutan Fumaroles Area (Kolker, Et Al., 2010) Akutan Fumaroles Area (Kolker, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity Details Location Akutan Fumaroles Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Arsenic (As), mercury (Hg), and carbon dioxide (CO2) all appear in anomalously high concentrations near the hot springs and at the junction of the Fumarole Valley and the HSBV. This indicates either that Hg is being lost from a reservoir due to boiling and steam loss, probably northwest of the junction, or erosion has carried these elements in sediment from the higher elevation manifestations. The presence of such volatiles in

37

Controlling the vapor pressure of a mercury lamp  

DOE Patents (OSTI)

The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

38

Controlling the vapor pressure of a mercury lamp  

DOE Patents (OSTI)

The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

Grossman, M.W.; George, W.A.

1988-05-24T23:59:59.000Z

39

Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Klusman & Landress, 1979) Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

40

Vaporization of mercury from molten lead droplets doped with mercury: Pb/Hg source term experiment for the APT/SILC target  

SciTech Connect

Experiments were performed to measure the fraction of mercury inventory released when droplets of molten lead, doped with a known concentration of mercury, fall through a controlled environment. The temperature of molten droplets ranged from 335 C to 346 C, and the concentration of mercury in the droplets ranged from 0.2 mass % to 1.0 mass %. The environment consisted of an air stream, at a temperature nominally equal to the melt temperature, and moving vertically upwards at a velocity of 10 cm/s. Direct observations and chemical analysis showed that no mercury was released from the molten droplets. Based upon the experimental results, it is concluded that no mercury vapor is likely to be released from the potentially molten source rod material in the APT-SILC Neutron Source Array to the confinement atmosphere during a postulated Large Break Loss Of Coolant Accident scenario leading to the melting of a fraction of the source rods.

Tutu, N.K.; Greene, G.A.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

New and Underutilized Technology: HID Electronic/Dimming Ballasts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HID Electronic/Dimming Ballasts HID Electronic/Dimming Ballasts New and Underutilized Technology: HID Electronic/Dimming Ballasts October 7, 2013 - 8:51am Addthis The following information outlines key deployment considerations for HID electronic/dimming ballasts within the Federal sector. Benefits Most HID electronic/dimming ballasts, typically metal halide or high-pressure sodium lamps, are currently driven by magnetic ballasts. Several manufacturers now offer electronic ballasts for these lamps, which promise better efficiency, longer lamp life, and faster startup and re-strike. Application HID electronic/dimming ballasts are applicable in exterior/security lighting and facilities with high bay areas. Key Factors for Deployment Federal agencies must evaluate relative costs, benefits, and application of

42

Lighting Group: Sources and Ballasts: HID Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Ballasts and Controls for HID Lighting Ballasts and Controls for HID Lighting Systems Evaluation of Electronic Ballasts and Related Controls for HID Lighting Systems Objective HID ballast The goal of this project is to evaluate the potential of electronic ballasts and related controls for HID lighting systems to improve the efficiency of current technology. The specific objectives of this project are to: Test, analyze and determine the potential of electronic ballasts for HID lighting systems in cooperation with manufacturers as an emerging energy efficient technology to reduce lighting loads in commercial, industrial and municipal applications. Identify control strategies to further improve the energy efficiency of these systems with a municipal partner. Provide appropriate recommendations for incorporating these technologies into current state codes and regulations.

43

T-547: Microsoft Windows Human Interface Device (HID) Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

547: Microsoft Windows Human Interface Device (HID) Vulnerability 547: Microsoft Windows Human Interface Device (HID) Vulnerability T-547: Microsoft Windows Human Interface Device (HID) Vulnerability February 1, 2011 - 3:20am Addthis PROBLEM Microsoft Windows Human Interface Device (HID) Vulnerability. PLATFORM: Microsoft 2003 SP2, Vista SP2, 2008 SP2, XP SP3, 7; and prior service packs ABSTRACT: Microsoft Windows does not properly warn the user before enabling additional Human Interface Device (HID) functionality over USB, which allows user-assisted attackers to execute arbitrary programs via crafted USB data, as demonstrated by keyboard and mouse data sent by malware on a Smartphone that the user connected to the computer. reference LINKS: Security Lab: Reference CVE-2011-0638 CVE Details: Reference CVE-2011-0638 Mitre Reference: CVE-2011-0638

44

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and  

E-Print Network (OSTI)

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium light tubes are recycled. They are made from aluminum and metal. Aluminum is a silver-white metal and is very light in weight and strong. Because aluminum is ductile, it can be drawn into wires or pressed

Ungerleider, Leslie G.

45

The control of mercury vapor using biotrickling filters Ligy Philip a,b,1  

E-Print Network (OSTI)

technologies for mercury control for flue gases of Municipal Waste Combustors (MWCs) not only ecological hydrochloric acid (HCl) and elemental mercury (Hg") under oxidizing conditions of the off-gases downstream to the decreasing gas temperature, the elemental mercury is able to react with other flue gas components. The main

46

Mercury Detection with Gold Nanoparticles  

E-Print Network (OSTI)

R. J. Warmack, Detection of mercury vapor using resonatingA surface acoustic wave mercury vapor sensor, Ieee Trans.N. E. Selin, Integrating mercury science and policy in the

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

47

Method and apparatus for sampling atmospheric mercury  

DOE Patents (OSTI)

A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

Trujillo, Patricio E. (Santa Fe, NM); Campbell, Evan E. (Los Alamos, NM); Eutsler, Bernard C. (Los Alamos, NM)

1976-01-20T23:59:59.000Z

48

High frequency electronic ballast for HID lamps. Technical progress report, October 1, 1993--December 31, 1994  

SciTech Connect

Electronic Ballast Systems Corp. has been working on the development of highly efficient (94%) electronic ballast for HID lamps (35W,...,400W) providing energy savings of up to thirty five percent (35%) as compared to the only available alternative, the standard core and coil HID ballasts currently on the market.

1995-03-01T23:59:59.000Z

49

GRR/Section 14-HI-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

HI-d - Section 401 Water Quality Certification HI-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-HI-d - Section 401 Water Quality Certification 14HID - Section401WaterQualityCertification (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Clean Water Branch United States Environmental Protection Agency Regulations & Policies Clean Water Act (33 U.S.C. 1251) Section 401 Hawaii Administrative Rules Title 11, Chapter 54 Triggers None specified Click "Edit With Form" above to add content 14HID - Section401WaterQualityCertification (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

50

Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment  

DOE Patents (OSTI)

The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

Grossman, Mark W. (Belmont, MA)

1993-01-01T23:59:59.000Z

51

Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment  

DOE Patents (OSTI)

The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

Grossman, M.W.

1993-02-16T23:59:59.000Z

52

GRR/Section 18-HI-d - Variance from Pollution Control | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 18-HI-d - Variance from Pollution Control < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-HI-d - Variance from Pollution Control 18HID - VarianceFromPollutionControl (4).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Clean Water Branch Regulations & Policies Wastewater Systems Triggers None specified Click "Edit With Form" above to add content 18HID - VarianceFromPollutionControl (4).pdf Error creating thumbnail: Page number not in range.

53

2003 CBECS Pre-Test Questionnaire  

U.S. Energy Information Administration (EIA) Indexed Site

(HID) lights such as high pressure sodium, metal halide or mercury vapor HID 6 Light-emitting diode (LED) lights LED 7 Other type of lighting OTLT NEXT IF Other type of lighting...

54

GRR/Section 3-HI-d - Use and Occupancy Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-HI-d - Use and Occupancy Permit GRR/Section 3-HI-d - Use and Occupancy Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-HI-d - Use and Occupancy Permit 03HIDUseAndOccupancyPermit.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Transportation Highways Division Regulations & Policies Hawaii Administrative Rules Title 19, Chapter 102 Hawaii Administrative Rules Title 19, Chapter 105 Triggers None specified Click "Edit With Form" above to add content 03HIDUseAndOccupancyPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer needs a Use and Occupancy Permit from the Hawaii Department of

55

Method for the removal and recovery of mercury  

DOE Patents (OSTI)

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

1997-01-28T23:59:59.000Z

56

Method for the removal and recovery of mercury  

DOE Patents (OSTI)

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, Clay E. (Knoxville, TN); Vass, Arpad A. (Oak Ridge, TN); Tyndall, Richard L. (Clinton, TN)

1997-01-01T23:59:59.000Z

57

Determination of the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis  

Science Conference Proceedings (OSTI)

This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl{sub 2} was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl{sub 2} were 1.75, 0.688, and 0.230 mg of HgCl{sub 2} per gram of powdered activated carbon derived from carbon black at 30, 70, and 150{sup o} for 500 {mu}g/m{sup 3} of HgCl{sub 2}, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer-Emmett-eller (BET) models were used to simulate the adsorption of HgCl{sub 2}. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30{sup o}, whereas the Freundlich isotherm fit the experimental results better at 70 and 150{sup o}. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl{sub 2} by PAC-derived carbon black favored adsorption at various HgCl{sub 2} concentrations and temperatures. 35 refs., 7 figs., 3 tabs.

Hsun-Yu Lin; Chung-Shin Yuan; Wei-Ching Chen; Chung-Hsuang Hung [National Sun Yat-Sen University, Taiwan (China). Institute of Environmental Engineering

2006-11-15T23:59:59.000Z

58

COMBINED THEORETICAL AND EXPERIMENTAL INVESTIGATION OF MECHANISMS AND KINETICS OF VAPOR-PHASE MERCURY UPTAKE BY CARBONACOUES SURFACES  

SciTech Connect

The first part of this study evaluated the application of a versatile optical technique to study the adsorption and desorption of model adsorbates representative of volatile polar (acetone) and non-polar (propane) organic compounds on a model carbonaceous surface under ultra high vacuum (UHV) conditions. The results showed the strong correlation between optical differential reflectance (ODR) and adsorbate coverage determined by temperature programmed desorption (TPD). ODR technique was proved to be a powerful tool to investigate surface adsorption and desorption from UHV to high pressure conditions. The effects of chemical functionality and surface morphology on the adsorption/desorption behavior of acetone, propane and mercury were investigated for two model carbonaceous surfaces, namely air-cleaved highly oriented pyrolytic graphite (HOPG) and plasma-oxidized HOPG. They can be removed by thermal treatment (> 500 K). The presence of these groups almost completely suppresses propane adsorption at 90K and removal of these groups leads to dramatic increase in adsorption capacity. The amount of acetone adsorbed is independent of surface heat treatment and depends only on total exposure. The effects of morphological heterogeneity is evident for plasma-oxidized HOPG as this substrate provides greater surface area, as well as higher energy binding sites. Mercury adsorption at 100 K on HOPG surfaces with and without chemical functionalities and topological heterogeneity created by plasma oxidation occurs through physisorption. The removal of chemical functionalities from HOPG surface enhances mercury physisorption. Plasma oxidation of HOPG provides additional surface area for mercury adsorption. Mercury adsorption by activated carbon at atmospheric pressure occurs through two distinct mechanisms, physisorption below 348 K and chemisorption above 348 K. No significant impact of oxygen functionalities was observed in the chemisorption region. The key findings of this study open the possibility to apply scientific information obtained from the studies with simple surfaces like HOPG under ideal conditions (UHV) to industrial sorbents under realistic process conditions. HOPG surface can be modified chemically and topologically by plasma oxidation to simulate key features of activated carbon adsorbents.

Radisav D. Vidic

2002-05-01T23:59:59.000Z

59

End of an Era: NIST to Cease Calibrating Mercury ...  

Science Conference Proceedings (OSTI)

... Burning of coal is a major source of vaporous mercury released into the atmosphere. Compact fluorescents use less electricity ...

2011-10-03T23:59:59.000Z

60

GRR/Section 6-HI-d - Other Overview | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 6-HI-d - Other Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-HI-d - Other Overview 06HIDOtherOverview.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 06HIDOtherOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Add Text Print PDF Retrieved from "http://en.openei.org/w/index.php?title=GRR/Section_6-HI-d_-_Other_Overview&oldid=685852"

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mercury Calibration System  

Science Conference Proceedings (OSTI)

U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on actual capabilities of the current calibration technology. As part of the current effort, WRI worked with Thermo Fisher elemental mercury calibrator units to conduct qualification experiments to demonstrate their performance characteristics under a variety of conditions and to demonstrate that they qualify for use in the CEM calibration program. Monitoring of speciated mercury is another concern of this research. The mercury emissions from coal-fired power plants are comprised of both elemental and oxidized mercury. Current CEM analyzers are designed to measure elemental mercury only. Oxidized mercury must first be converted to elemental mercury prior to entering the analyzer inlet in order to be measured. CEM systems must demonstrate the ability to measure both elemental and oxidized mercury. This requires the use of oxidized mercury generators with an efficient conversion of the oxidized mercury to elemental mercury. There are currently two basic types of mercuric chloride (HgCl{sub 2}) generators used for this purpose. One is an evaporative HgCl{sub 2} generator, which produces gas standards of known concentration by vaporization of aqueous HgCl{sub 2} solutions and quantitative mixing with a diluent carrier gas. The other is a device that converts the output from an elemental Hg generator to HgCl{sub 2} by means of a chemical reaction with chlorine gas. The Thermo Fisher oxidizer system involves reaction of elemental mercury vapor with chlorine gas at an elevated temperature. The draft interim protocol for oxidized mercury units involving reaction with chlorine gas requires the vendors to demonstrate high efficiency of oxidation of an elemental mercury stream from an elemental mercury vapor generator. The Thermo Fisher oxidizer unit is designed to operate at the power plant stack at the probe outlet. Following oxidation of elemental mercury from reaction with chlorine gas, a high temperature module reduces the mercuric chloride back to elemental mercury. WRI conducted work with a custom laboratory configured stand-alone oxidized mercury generator unit prov

John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

2009-03-11T23:59:59.000Z

62

Information on the Fate of Mercury From Fluorescent Lamps Disposed in Landfills  

Science Conference Proceedings (OSTI)

Mercury is contained in energy-efficient fluorescent, mercury-vapor, metal halide, and high-pressure sodium lamps. This report presents information on the potential for air and groundwater contamination when mercury lamps are disposed in municipal landfills.

1995-04-19T23:59:59.000Z

63

GRR/Section 6-HI-d - Oversize and/or Overweight Vehicles and Loads Permit |  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 6-HI-d - Oversize and/or Overweight Vehicles and Loads Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections or Overweight Vehicles and Loads Permit Flowchart Narrative Content Here Print PDF Retrieved from "http://en.openei.org/w/index.php?title=GRR/Section_6-HI-d_-_Oversize_and/or_Overweight_Vehicles_and_Loads_Permit&oldid=685849" Categories: Regulatory Roadmap Overview Sections Geothermal Regulatory Roadmap Sections What links here Related changes Special pages

64

Catalogue of OSD and HID Offshore Research by Key Human Factor Elements 2002 Revision. Prepared by AEA Technology Environment for the Health and Safety Executive  

E-Print Network (OSTI)

The catalogue of OSD and HID Offshore human factors research was conceived by HSE OSD OD6 as an aid to OSD Inspectors and the offshore Industry. It was originally published in 1999 under Project 3696. This catalogue has now been updated by AEA Technology Environment. OSD Offshore has been renamed HID Offshore and hence the catalogue contains both OSD and HID Offshore human factors research, although the majority of the projects included date from the HSE Offshore Safety Division era. The catalogue provides: description of the human factor elements as derived by AEA Technology from the Revision

Angela Crosbie; Fiona Davies

2002-01-01T23:59:59.000Z

65

THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE  

Science Conference Proceedings (OSTI)

Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods. A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.

Sandra Meischen

2004-07-01T23:59:59.000Z

66

Method and apparatus for controlling the flow rate of mercury in a flow system  

DOE Patents (OSTI)

A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

1991-01-01T23:59:59.000Z

67

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network (OSTI)

Cryostat 1. Remote handling The high radiation levels and presence of hazardous, ac- tivated mercury vaporsMERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 placement within the Shielding Module in a remote environment. · Providing double containment of the mercury

McDonald, Kirk

68

NETL: Mercury Emissions Control Technologies - Enhanced High Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced High Temperature Mercury Oxidation and Enhanced High Temperature Mercury Oxidation and In-Situ Active Carbon Generation for Low Cost Mercury Capture Mercury oxidation phenomenon and the studies of this phenomenon have generally focused on lower temperatures, typically below 650°F. This has been based on the mercury vapor equilibrium speciation curve. The baseline extents of mercury oxidation as reported in the ICR dataset and observed during subsequent tests has shown a tremendous amount of scatter. The objective of this project is to examine, establish and demonstrate the effect of higher temperature kinetics on mercury oxidation rates. Further, it is the objective of this project to demonstrate how the inherent mercury oxidation kinetics can be influenced to dramatically increase the mercury oxidation.

69

Mercury audit at Rocky Mountain Arsenal  

Science Conference Proceedings (OSTI)

This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

1994-02-01T23:59:59.000Z

70

Publications | Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

A. Afsahi, and R. Ross, Mercury: Enabling Remote Procedure Call for High-Performance Computing, IEEE International Conference on Cluster Computing, Sep 2013. DOIslides...

71

Development and Evaluation of Low-Cost Sorbents for Removal of Mercury Emissions from Coal Combustion Flue Gas  

Science Conference Proceedings (OSTI)

Determining how physical and chemical properties of sorbents affect vapor-phase mercury adsorption has led to potential approaches for tailoring the properties of sorbents for more effective mercury removal.

1998-10-12T23:59:59.000Z

72

Apparatus for control of mercury  

DOE Patents (OSTI)

A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH)

2001-01-01T23:59:59.000Z

73

LFCM (liquid-fed ceramic melter) processing characteristics of mercury  

SciTech Connect

An experimental-scale liquid-fed ceramic melter was used in a series of tests to evaluate the processing characteristics of mercury in simulated defense waste under various melter operating conditions. This solidification technology had no detectable capacity for incorporating mercury into its borosilicate, vitreous, product, and essentially all the mercury fed to the melter was lost to the off-gas system as gaseous effluent. An ejector venturi scrubber condensed and collected 97% of the mercury evolved from the melter. Chemically the condensed mercury effluent was composed entirely of chlorides, and except in a low-temperature test, mercury chlorides (Hg{sub 2}Cl{sub 2}) was the primary chloride formed. As a result, combined mercury accounted for most of the insoluble mass collected by the process quench scrubber. Although macroscopic quantities of elemental mercury were never observed in process secondary waste streams, finely divided and dispersed mercury that blackened all condensed Hg{sub 2}Cl{sub 2} residues was capable of saturating the quenched process exhaust with mercury vapor. However, the vapor pressure of mercury in the quenched melter exhaust was easily and predictably controlled with an off-gas stream chiller. 5 refs., 4 figs., 12 tabs.

Goles, R.W.; Sevigny, G.J.; Andersen, C.M.

1990-06-01T23:59:59.000Z

74

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents (OSTI)

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

Grossman, Mark W. (Belmont, MA); Biblarz, Oscar (Swampscott, MA)

1991-01-01T23:59:59.000Z

75

Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm  

Science Conference Proceedings (OSTI)

For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

Drakakis, E. [Technological Educational Institute, Department of Electrical Engineering, 71004 Heraklion (Greece); Karabourniotis, D. [Institute of Plasma Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece)

2012-09-01T23:59:59.000Z

76

High-intensity discharge (HID) solid-state ballast program: engineering development report. Phase II  

SciTech Connect

A high frequency (28 to 31/sup 0/K Hz) electronic current source (ballast) designed to drive a 200 watt 100 volt sodium vapor gas discharge lamp is described. A resonant switching power amplifier system utilizing a novel constant power feedback loop is employed to maintain the lamp input power constant within two percent via changes due to lamp aging etc. The lamp input power and therefore the light output is adjustable from 50 to 100 percent of rated power. A input (electronic filter) inverter, changes the 277 volts alternating voltage input to a regulated direct current (DC) voltage used to power the output stage. The inverter reflects, a essentially unity power factor load to the power input source at all times.

Carlson, R.S.

1983-12-01T23:59:59.000Z

77

Bench-scale studies with mercury contaminated SRS soil  

SciTech Connect

Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na{sub 2}CO{sub 3} and 16 weight percent CaCO{sub 3}. Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na{sub 2}S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na{sub 2}S, where it would be converted to Hg{sub 2}S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na{sub 2}S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury.

Cicero, C.A.

1995-12-31T23:59:59.000Z

78

SNAP I MERCURY BOILER DEVELOPMENT, JANUARY 1957 TO JUNE 1959  

SciTech Connect

The mercury-boiler development program was undertaken to develop a system that would utilize the heat of radioisotope decay to boil and superheat mercury vapor for use with a small turbine-generator package. Through the use of a Rankine cycle, the mercury vapor can be provided continuously to power a turbine-driven alternator and produce electricity for extended periods of time. This mercury boiler and the related power-conversion system was planned for a satellite that would orbit the earth. This system design and development program was designated as SNAP-I. Development of the mercury boiler is described and a chronological description of the various mercury-boiler concepts is presented. The applicable results of an extensive literature survey of mercury are included. The mercury-boiler experimental-test-program description provides complete coverage of each experimental boiler and its relation to the system design of that period. A summary of all mercury boilers and their final disposition is also given. (auth)

Jicha, J.; Keenan, J.J.

1960-06-01T23:59:59.000Z

79

Mercury Continuous Emmission Monitor Calibration  

SciTech Connect

Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

2009-03-12T23:59:59.000Z

80

NETL: Mercury Emissions Control Technologies - Advanced Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Mercury Sorbents with Low Impact on Power Plant Operations Advanced Mercury Sorbents with Low Impact on Power Plant Operations Apogee Scientific, Inc. (Apogee) will lead a Team comprised of Southern Company Services, TXU, Tennessee Valley Authority, EPRI, URS Group, University of Illinois-Illinois State Geological Survey (ISGS), Southern Research Institute (SRI), Calgon Carbon, and TDA Research, Inc., to evaluate a number of advanced sorbents for removing vapor-phase mercury from coal-fired flue gas that have minimal impact on by-product utilization and/or on existing particulate collection devices (PCD). The main objective of this program is to evaluate several advanced sorbents for removing mercury from coal-fired flue gas while posing minimal impact on plant operations through three advanced sorbent concepts: 1) Sorbents which minimize impact on concrete production through selective chemical passivation of activated carbon and use of non-carbon material, 2) sorbents that minimize baghouse pressure drop and ESP emissions, and 3) sorbents that can be recovered and reused.

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Glossary Term - Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Previous Term (Liquid Nitrogen) Glossary Main Index Next Term (Mole) Mole Mercury Mercury as seen by the Mariner 10 spacecraft on March 24, 1974. Mercury is the...

82

Vapor Degreasing  

Science Conference Proceedings (OSTI)

Table 6   Applications of vapor degreasing by vapor-spray-vapor systems...hardware Brass 2270 5000 Buffing compound; rouge Lacquer spray Racked work on continuous monorail Acoustic ceiling tile Steel 2720 6000 Light oil (stamping lubricant) Painting Monorail conveyor Gas meters Terneplate 4540 10,000 Light oil Painting Monorail conveyor Continuous strip, 0.25??4.1 mm...

83

Mercury contamination extraction  

DOE Patents (OSTI)

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

84

CFL Bulbs: Good or Bad for the Environment? Q: I've heard that CFL bulbs contain mercury and that mercury is  

E-Print Network (OSTI)

mercury, a tiny amount primarily in vapor form. It is what makes the bulb give off light determines the color of the light that you see. The amount of mercury involved in a typical CFL bulb is 5, there is nothing "magic" about CFL bulbs in this regard. This is exactly how regular fluorescent light tubes work

85

Vapor Characterization  

Science Conference Proceedings (OSTI)

... thermodynamics (that is, vapor liquid equilibrium) as ... of solids and low volatility liquids is extraordinarily ... such situations is the gas saturation method ...

2013-12-10T23:59:59.000Z

86

Microsoft Word - Vapor Phase Elemental Sulfur Tech Brief DRAFT bbl 08-24.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

AT A GLANCE AT A GLANCE  eliminates excavation expense  applicable to large or small sites  straightforward deployment  uses heat to distribute sulfur throughout a soil  mercury reacts with sulfur to form immobile and insoluble minerals  patent applied for TechBrief Vapor Phase Elemental Sulfur Amendment for Sequestering Mercury in Contaminated Soil Scientists at the Savannah River National Laboratory (SRNL) have identified a method of targeting mercury in contaminated soil zone by use of sulfur vapor heated gas. Background Mercury contamination in soil is a common problem in the environment. The most common treatment is excavation - a method that works well for small sites where the

87

Evaluation of Sorbent Trap Materials and Methods for Flue Gas Mercury Measurement  

Science Conference Proceedings (OSTI)

Sorbent traps are used as an alternative to continuous mercury monitors (CMM) for measuring vapor phase mercury concentrations in stacks of coal-fired power plants and for relative accuracy test audits (RATAs) of CMMs. EPRI has an ongoing program of research on sorbent trap methods, evaluating the performance of sorbent materials and the methods used to measure mercury on the sorbent traps. This report presents results of two investigations targeted at evaluating the performance of sorbent trap methods f...

2009-02-16T23:59:59.000Z

88

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Intensity Discharge Lamps High-Intensity Discharge Lamps Sign up for e-mail updates on regulations for this and other products There are currently no energy conservation standards for high-intensity discharge (HID) lamps. HID lamps are electric discharge lamps and include high-pressure sodium, mercury vapor, and metal halide lamps. HID lamps require an HID ballast to start and regulate electric current flow through the lamp. HID lamps are used in street and roadway lighting, area lighting such as for parking lots and plazas, industrial and commercial building interior lighting, security lighting for commercial, industrial, and residential spaces, and landscape lighting. The Standards and Test Procedures for this product are related to Rulemaking for High Intensity Discharge Lamps Energy Conservation Standard and Rulemaking for High Intensity Discharge Lamps Test Procedures.

89

Atomic Data for Mercury (Hg)  

Science Conference Proceedings (OSTI)

... Mercury (Hg) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Mercury (Hg). ...

90

Strong Lines of Mercury ( Hg )  

Science Conference Proceedings (OSTI)

... Mercury (Hg) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Strong Lines of Mercury ( Hg ). ...

91

Sulfur polymer cement stabilization of elemental mercury mixed waste  

SciTech Connect

Elemental mercury, contaminated with radionuclides, is a problem throughout the Department of Energy (DOE) complex. This report describes the development and testing of a process to immobilize elemental mercury, contaminated with radionuclides, in a form that is non-dispersible, will meet EPA leaching criteria, and has low mercury vapor pressure. In this stabilization and solidification process (patent pending) elemental mercury is mixed with an excess of powdered sulfur polymer cement (SPC) and additives in a vessel and heated to {approximately}35 C, for several hours, until all of the mercury is converted into mercuric sulfide (HgS). Additional SPC is then added and the mixture raised to 135 C, resulting in a homogeneous molten liquid which is poured into a suitable mold where is cools and solidifies. The final stabilized and solidified waste forms were characterized by powder X-ray diffraction, as well as tested for leaching behavior and mercury vapor pressure. During this study the authors have processed the entire inventory of mixed mercury waste stored at Brookhaven National Laboratory (BNL).

Melamed, D.; Fuhrmann, M.; Kalb, P.; Patel, B.

1998-04-01T23:59:59.000Z

92

Phytoremediation of Ionic and Methyl Mercury P  

DOE Green Energy (OSTI)

Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes, merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period is that transgenic plants expressing the bacterial merB and merA genes will (a) remove mercury from polluted soil and water and (b) prevent methylmercury from entering the food chain. Our specific aims center on understanding the mechanisms by which plants process the various forms of mercury and volatilize or transpire mercury vapor. This information will allow us to improve the design of our current phytoremediation strategies. As an alternative to volatilizing mercury, we are using several new genes to construct plants that will hyperaccumulate mercury in above-ground tissues for later harvest. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. The knowledge and expertise gained by engineering plants to hyperaccumulate mercury can be applied to the remediation of other heavy metals pollutants (e.g., arsenic, cesium, cadmium, chromium, lead, strontium, technetium, uranium) found at several DOE facilities.

Meagher, Richard B.

1999-06-01T23:59:59.000Z

93

Mercury and Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury and Fish Mercury and Fish Name: donna Location: N/A Country: N/A Date: N/A Question: how does mercury get into fish in rivers. what is the ecological process involved which could produce toxic levels of mercury in fish and eventually get into humans? Replies: Hi Donna! Nowadays mercury or its compounds are used at a high scale in many industries as the manufacture of chemicals, paints, household itens, pesticides and fungicides. These products can contaminate humans (and mamals) by direct contact, ingestion or inhalation. Besides the air can become contaminated also, and since mercury compounds produce harmful effects in body tissues and functions, that pollution is very dangerous. Now for your question: Efluent wastes containing mercury in various forms sometimes are dropped in sea water or in rivers or lakes. There the mercury may be converted by bacteria, that are in the muddy sediments, into organic mercurial compounds particularly the highly toxic alkyl mercurials ( methyl and di-methyl mercury), which may in turn be concentrated by the fishes and other aquatic forms of life that are used as food by men. The fishes dont seem to be affected but they are able to concentrate mercury in high poisoning levels, and if human beings, mamals or birds eat these containing mercury fishes, algae, crabs or oysters they will be contaminated and poisoned.

94

Mercury's Protoplanetary Mass  

E-Print Network (OSTI)

Major element fractionation among chondrites has been discussed for decades as ratios relative to Si or Mg. Recently, by expressing ratios relative to Fe, I discovered a new relationship admitting the possibility that ordinary chondrite meteorites are derived from two components, a relatively oxidized and undifferentiated, primitive component and a somewhat differentiated, planetary component, with oxidation state like the highly reduced enstatite chondrites, which I suggested was identical to Mercury's complement of lost elements. Here, on the basis of that relationship, I derive expressions, as a function of the mass of planet Mercury and the mass of its core, to estimate the mass of Mercury's lost elements, the mass of Mercury's alloy and rock protoplanetary core, and the mass of Mercury's gaseous protoplanet. Although Mercury's mass is well known, its core mass is not, being widely believed to be in the range of 70-80 percent of the planet mass. For a core mass of 75 percent, the mass of Mercury's lost elements is about 1.32 times the mass of Mercury, the mass of the alloy and rock protoplanetary core is about 2.32 times the mass of Mercury, and the mass of the gaseous protoplanet of Mercury is about 700 times the mass of Mercury. Circumstantial evidence is presented in support of the supposition that Mercury's lost elements is identical to the planetary component of ordinary chondrite formation.

J. Marvin Herndon

2004-10-01T23:59:59.000Z

95

Mercury in the Environment  

Science Conference Proceedings (OSTI)

EPRI periodically issues updates on critical research on environmental mercury, discussing scientific findings of crucial interest for a complete understanding of mercury sources, transport, fate, cycling, human exposure, and health effects. This document is part of that EPRI series, focusing on several critical reviews of mercury sources and impacts.

2007-03-30T23:59:59.000Z

96

Watershed Mercury Loading Framework  

Science Conference Proceedings (OSTI)

This report explains and illustrates a simplified stochastic framework, the Watershed Mercury Loading Framework, for organizing and framing site-specific knowledge and information on mercury loading to waterbodies. The framework permits explicit treatment of data uncertainties. This report will be useful to EPRI members, state and federal regulatory agencies, and watershed stakeholders concerned with mercury-related human and ecological health risk.

2003-05-23T23:59:59.000Z

97

NETL: IEP - Mercury and Air Toxic Element Impacts of CCB Disposal and  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury and Air Toxic Element Impacts of CCB Disposal and Utilization Mercury and Air Toxic Element Impacts of CCB Disposal and Utilization The goal of the proposed effort is to evaluate the impact of mercury and other air toxic elements on the management of CCBs. Supporting objectives are to 1) determine the release potential of selected air toxic elements, including mercury and arsenic, from CCBs under specific environmental conditions; 2) increase the database of information on mercury and other air toxic element releases for CCBs; 3) develop comparative laboratory and field data; and 4) develop appropriate laboratory and field protocols. The specific mechanisms of air toxic element releases to be evaluated will be leaching releases, vapor releases to the atmosphere, and biologically induced leaching and vapor releases.

98

Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device  

SciTech Connect

Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the application of this technology for removing elemental mercury from flue gas streams generated by utility boilers. On an absolute basis, the quantity of reagent required to accomplish the oxidation was small. For example, complete oxidation of mercury was accomplished using a 1% volume fraction of oxygen in a nitrogen stream. Overall, the tests with mercury validated the most useful aspect of the CR&E technology: Providing a method for elemental mercury removal from a gas phase by employing a specific plasma reagent to either increase reaction kinetics or promote reactions that would not have occurred under normal circumstances.

Charles Mones

2006-12-01T23:59:59.000Z

99

Studies of Mercury in High Level Waste Systems  

Science Conference Proceedings (OSTI)

During nuclear weapons production, nuclear reactor target and fuel rods were processed in F- and H-Canyons. For the target rods, a caustic dissolution of the aluminum cladding was performed prior to nitric acid dissolution of the uranium metal targets in the large canyon dissolvers. To dissolve the aluminum cladding and the U-Al fuel, mercury in the form of soluble mercury (II) nitrate was added as a catalyst to accelerate the dissolution of the aluminum. F-Canyon began to process plutonium-containing residues that were packaged in aluminum cans and thus required the use of mercury as a dissolution catalyst. Following processing to remove uranium and plutonium using the solvent extraction process termed the Plutonium-Uranium Recovery by Extraction (PUREX) process, the acidic waste solutions containing fission products and other radionuclides were neutralized with sodium hydroxide. The mercury used in canyon processing is fractionated between the sludge and supernate that is transferred from the canyons to the tank farm. The sludge component of the waste is currently vitrified in the Defense Waste Processing Facility (DWPF). The vitrified waste canisters are to be sent to the federal repository for High Level Waste. The mercury in the sludge, presumably in an oxide or hydroxide form is reduced to elemental mercury by the chemical additions and high temperatures, steam stripped and collected in the Mercury Collection Tank. The mercury in the dilute supernate is in the form of mercuric ion and is soluble. During evaporation, the mercuric ion is reduced to elemental mercury, vaporizes into the overheads system and is collected as a metallic liquid in the Mercury Removal Tank.

Wilmarth, W.R.

2003-09-03T23:59:59.000Z

100

Determination of the Vapor Pressure of Lanthanum Fluoride  

SciTech Connect

Preliminary experiments have been made to determine the vapor pressure of lanthanum fluoride between 0.001 and 0.1 millimeter of mercury by means of the Knudsen effusion method. A tantalum cell for this purpose is described. Only preliminary results were obtained and they were all in a relatively high pressure region. However, a plot of the vapor pressure against the reciprocal of absolute temperature approximates a straight line such as would be predicted from theoretical considerations.

Stone, B. D.

1954-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Process for low mercury coal  

DOE Patents (OSTI)

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

102

Process for low mercury coal  

SciTech Connect

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

103

NETL: Mercury Emissions Control Technologies - Low-Cost Options for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Options for Moderate Levels of Mercury Control Low-Cost Options for Moderate Levels of Mercury Control ADA- Environmental Solutions will test two new technologies for mercury control. The TOXECON II(tm) technology injects activated carbon directly into the downstream collecting fields of an electrostatic precipitator. The benefit of this technology is that the majority of the fly ash is collected in the upstream collecting fields which results in only a small portion of carbon-contaminated ash. Additionally, the TOXECON II(tm) technology requires minimal capital investment as only minor retrofits to the electrostatic precipitator are needed. The second technology is injection of novel sorbents for mercury removal on units with hot-side electrostatic precipitators (ESPs). Mercury removal from hot-side electrostatic precipitators is difficult as their high operating temperature range keeps the mercury in the vapor phase and prevents the mercury from adsorbing onto sorbents. The TOXECON II(tm) technology will be tested at Entergy's Independence Station which burns PRB coal. The novel sorbents for hot-side ESPs technology will be tested at MidAmerican's Council Bluffs Energy Center and MidAmerican's Louisa Station, both of which burn PRB coal. Additional project partners include EPRI, MidAmerican, Entergy, Alliant, ATCO Power, DTE Energy, Oglethorpe Power, Norit Americas Inc., Xcel Energy, Southern Company, Arch Coal, and EPCOR.

104

Atmospheric Mercury Research Update  

Science Conference Proceedings (OSTI)

This report is a summary and analysis of research findings on utility and environmental mercury from 1997 to 2003. The update categorizes and describes recent work on mercury in utility-burned coal and its route through power plants, the measures for its control, and its fate in the environment following emissions from utility stacks. This fate includes atmospheric chemistry and transport, deposition to land and water surfaces, aquatic cycling, the dynamics of mercury in freshwater fish food webs, and th...

2004-03-30T23:59:59.000Z

105

Mercury Thermometer Alternatives Training  

Science Conference Proceedings (OSTI)

... tutorials are designed for educating various industrial user groups about the upcoming and current changes that ban the use of mercury products. ...

2013-06-04T23:59:59.000Z

106

MERCURY & DIMETHYLMERCURY EXPOSURE & EFFECTS  

SciTech Connect

This report identifies the dose response data available for several toxic mercury compounds and summarizes the symptoms and health effects associated with each of them.

HONEYMAN, J.O.

2005-12-13T23:59:59.000Z

107

Mercury Risk Assessment II  

NLE Websites -- All DOE Office Websites (Extended Search)

Protection Agency in 2005, will require significant reductions in mercury emissions from coal-fired power plants. In formulating the regulations, a central point of debate...

108

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents (OSTI)

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

Grossman, M.W.; Biblarz, O.

1991-10-15T23:59:59.000Z

109

The current state of the science related to the re-release of mercury from coal combustion products  

Science Conference Proceedings (OSTI)

The stability of mercury associated with CCPs is an issue that has only recently been under investigation but has become a prominent question as the industry strives to determine if current management options for CCPs will need to be modified. Mercury and other air toxic elements can be present in fly ash, FGD material and bottom ash and boiler slag. Mercury concentrations ranging from {lt} 0.01 to 2.41 ppm in fly ash and from 0.001 to 0.342 ppm in bottom ash have been reported. Stability of mercury must be evaluated by tests that include 1) direct leachability; 2) vapor-phase release at ambient and elevated temperatures; and 3) microbiologically induced leachability and vapor-phase release. The amount of mercury leached from currently produced CCPs is extremely low and does not appear to represent an environmental or re-release hazard. Concentrations of mercury in leachates from fly ashes and FGD material using either the toxicity characteristic leaching procedure (TCLP) or the synthetic groundwater leaching procedure (SGLP) are generally below detection limits. The release of mercury vapor from CCPs resulting from the use of mercury control technologies has been evaluated on a limited basis. Research indicates that mercury bound to the ash or activated carbon is fairly stable. The EERC found that organomercury species were detected at very low levels both in the vapor and leachate generated from the microbiologically mediated release experiments. The current state of the science indicates that mercury associated with CCPs is stable and highly unlikely to be released under most management conditions, including utilisation and disposal. The exception to this is exposure to high temperatures such as those that may be achieved in cement and wallboard production. Therefore, existing CCPs management options are expected to be environmentally sound options for CCPs from systems with mercury control technologies installed. 2 refs., 2 photos.

Debra F. Pflughoeft-Hassett; David J. Hassett; Loreal V. Heebink; Tera D. Buckley [University of North Dakota Energy and Environmental Research Center (EERC) (United States)

2006-07-01T23:59:59.000Z

110

Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

Rey-Raap, Natalia [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I de Castellon, Av. de Vicent Sos Baynat s/n, 12071 Castellon de la Plana, Espana (Spain); Gallardo, Antonio, E-mail: gallardo@emc.uji.es [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I de Castellon, Av. de Vicent Sos Baynat s/n, 12071 Castellon de la Plana, Espana (Spain)

2012-05-15T23:59:59.000Z

111

Mercury Control Update 2009  

Science Conference Proceedings (OSTI)

EPRI has been evaluating cost-effective methods for reducing mercury emissions from coal-fired power plants. This report summarizes the current status of mercury control technologies and offers detailed discussion of boiler bromide addition balance-of-plant impacts and activated carbon injection (ACI) tests at selected sites.

2009-12-14T23:59:59.000Z

112

DOE Mercury Control Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Research Mercury Control Research Air Quality III: Mercury, Trace Elements, and Particulate Matter September 9-12, 2002 Rita A. Bajura, Director National Energy Technology Laboratory www.netl.doe.gov 169330 RAB 09/09/02 2 Potential Mercury Regulations MACT Standards * Likely high levels of Hg reduction * Compliance: 2007 Clean Power Act of 2001 * 4-contaminant control * 90% Hg reduction by 2007 Clear Skies Act of 2002 * 3-contaminant control * 46% Hg reduction by 2010 * 70% Hg reduction by 2018 * Hg emission trading President Bush Announcing Clear Skies Initiative February 14, 2002 169330 RAB 09/09/02 3 Uncertainties Mercury Control Technologies * Balance-of-plant impacts * By-product use and disposal * Capture effectiveness with low-rank coals * Confidence of performance 169330 RAB 09/09/02 4

113

NETL: Mercury Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Innovations for Existing Plants Mercury Emissions Control NETL managed the largest funded research program in the country to develop an in-depth understanding of fossil combustion-based mercury emissions. The program goal was to develop effective control options that would allow generators to comply with regulations. Research focus areas included measurement and characterization of mercury emissions, as well as the development of cost-effective control technologies for the U.S. coal-fired electric generating industry. Control Technologies Field Testing Phase I & II Phase III Novel Concepts APCD Co-benefits Emissions Characterization

114

Gaseous mercury release during steam curing of aerated concretes that contain fly ash and activated carbon sorbent  

Science Conference Proceedings (OSTI)

Gaseous mercury released from aerated concrete during both presteam curing at 25{sup o}C and steam curing at 80{sup o}C was measured in controlled laboratory experiments. Mercury release originated from two major components in the concrete mixture: (1) class F coal fly ash and (2) a mixture of the fly ash and powdered activated carbon onto which elemental mercury was adsorbed. Mercury emitted during each curing cycle was collected on iodated carbon traps in a purge-and-trap arrangement and subsequently measured by cold-vapor atomic fluorescence spectrometry. Through 3 h of presteam curing, the release of mercury from the freshly prepared mixture was less than 0.03 ng/kg of concrete. Releases of total mercury over the 21 h steam curing process ranged from 0.4 to 5.8 ng of mercury/kg of concrete and depended upon mercury concentrations in the concrete. The steam-cured concrete had a higher mercury release rate (ng kg{sup -1} h{sup -1}) compared to air-cured concrete containing fly ash, but the shorter curing interval resulted in less total release of mercury from the steam-cured concrete. The mercury flux from exposed concrete surfaces to mercury-free air ranged from 0.77 to 11.1 ng m{sup -2} h{sup -1}, which was similar to mercury fluxes for natural soils to ambient air of 4.2 ng m{sup -2} h{sup -1} reported by others. Less than 0.022% of the total quantity of mercury present from all mercury sources in the concrete was released during the curing process, and therefore, nearly all of the mercury was retained in the concrete. 31 refs., 4 figs., 2 tabs.

Danold W. Golightly; Chin-Min Cheng; Ping Sun; Linda K. Weavers; Harold W. Walker; Panuwat Taerakul; William E. Wolfe [Ohio State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

2008-09-15T23:59:59.000Z

115

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network (OSTI)

We assume that the mass of mercury adsorbed at saturation istactics, nanoparticle based mercury sensing should advancemost sensitive method for mercury sensing. References "1!

James, Jay Zachary

2012-01-01T23:59:59.000Z

116

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 3 Topical Report  

Science Conference Proceedings (OSTI)

Researchers conducted field tests to evaluate the ability of a variety of materials to oxidize vapor-phase elemental mercury at a coal-fired power plant equipped with a wet flue gas desulfurization (FGD) system. Results, while confounded by measurement difficulties, showed that under bituminous coal flue gas conditions, two catalysts, Pd #1 and Carbon #6, continued to oxidize at least 85 percent of the inlet elemental mercury after three months.

2002-02-06T23:59:59.000Z

117

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

118

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

Grossman, M.W.; George, W.A.

1989-11-07T23:59:59.000Z

119

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1989-01-01T23:59:59.000Z

120

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

Grossman, M.W.; George, W.A.

1991-06-18T23:59:59.000Z

122

Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps  

SciTech Connect

This work investigates the thermal release of mercury from phosphor powder of spent fluorescent lamps. The treatment conditions and the ability of various reducing agents (primarily sodium borohydride) to lower the overall heating temperature required to improve the release of Hg have been evaluated. Hg species in samples were monitored in a thermal desorption atomic absorption spectrometer system, and total mercury was analyzed in a cold vapor atomic absorption spectrometer. Sodium borohydride was the best reducing agent among the ones studied. However, citric acid presented a high capacity to weaken mercury bonds with the matrix. When the sample was crushed with sodium borohydride for 40 min in a mass ratio of 10:1 (sample:reducing agent) and submitted to thermal treatment at 300 deg. C for 2 h, the concentration of mercury in a phosphor powder sample with 103 mg kg{sup -1} of mercury reached 6.6 mg kg{sup -1}.

Alves Durao, Walter [Chemistry Department, Federal University of Minas Gerais (UFMG), Cidade Universitaria 30.123-970 Belo Horizonte, MG (Brazil); Andreva de Castro, Camila [Chemistry Engineering Department, Federal University of Minas Gerais (UFMG) (Brazil); Carvalhinho Windmoeller, Claudia [Chemistry Department, Federal University of Minas Gerais (UFMG), Cidade Universitaria 30.123-970 Belo Horizonte, MG (Brazil)], E-mail: claucw@netuno.lcc.ufmg.br

2008-11-15T23:59:59.000Z

123

Mercury Risk Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED WITH COAL-FIRED POWER PLANTS: IMPACTS OF LOCAL DEPOSITIONS *T.M. Sullivan 1 , F.D. Lipfert 2 , S.M. Morris 2 , and S. Renninger 3 1 Building 830, Brookhaven National Laboratory, Upton, NY 11973 2 Private Consultants 3 Department of Energy, National Energy Technology Laboratory, Morgantown, WV ABSTRACT The U.S. Environmental Protection Agency has announced plans to regulate emissions of mercury to the atmosphere from coal-fired power plants. However, there is still debate over whether the limits should be placed on a nationwide or a plant-specific basis. Before a nationwide limit is selected, it must be demonstrated that local deposition of mercury from coal-fired power plants does not impose an excessive local health risk. The principal health

124

Mercury-selenium interactions in the environment  

Science Conference Proceedings (OSTI)

The Clean Air Act Amendments of 1990 require the U.S. Environmental Protection Agency (EPA) to consider the need to control emissions of trace elements and compounds emitted from coal combustion, including coal-fired power plants. Concern has been expressed about emissions of mercury and arsenic, for example, since health effects may be associated with exposure to some of these compounds. By and large, effects of trace element emissions have been considered individually, without regard for possible interactions. To the extent that the relevant environmental pathways and health endpoints differ, this mode of analysis is appropriate. For example, arsenic is considered a carcinogen and mercury affects the brain. However, there may be compelling reasons to consider emissions of mercury (Hg) and selenium (Se) together: (1) Both Se and Hg are emitted from power plants primarily as vapors. (2) Hg and Se are both found in fish, which is the primary pathway for Hg health effects. (3) Se has been shown to suppress Hg methylation in aqueous systems, which is a necessary step for Hg health effects at current environmental concentrations. (4) Se is a trace element that is essential for health but that can also be toxic at high concentrations; it can thus have both beneficial and adverse health effects, depending on the dosage. This paper reviews some of the salient characteristics and interactions of the Hg-Se system, to consider the hypothesis that the effects of emissions of these compounds should be considered jointly.

Saroff, L. [Department of Energy, Washington, DC (United States); Lipfert, W.; Moskowitz, P.D. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

1996-02-01T23:59:59.000Z

125

Mercury Control Update 2010  

Science Conference Proceedings (OSTI)

A February 2008 decision by the U.S. District of Columbia Circuit Court of Appeals remanded the Clean Air Mercury Rule back to the U.S. Environmental Protection Agency, opening the possibility of more stringent federal emission limits similar to those already adopted by some states. To meet these stringent limits, high mercury removals based on Maximum Achievable Control Technology for individual power plants may be needed. To help electric power companies comply with tightening emission standards in a ...

2010-12-31T23:59:59.000Z

126

Method and apparatus for monitoring mercury emissions  

DOE Patents (OSTI)

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

1997-10-21T23:59:59.000Z

127

Method and apparatus for monitoring mercury emissions  

DOE Patents (OSTI)

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

Durham, Michael D. (Castle Rock, CO); Schlager, Richard J. (Aurora, CO); Sappey, Andrew D. (Golden, CO); Sagan, Francis J. (Lakewood, CO); Marmaro, Roger W. (Littleton, CO); Wilson, Kevin G. (Littleton, CO)

1997-01-01T23:59:59.000Z

128

Understanding Mercury Chemistry in Coal-Fired Boilers  

Science Conference Proceedings (OSTI)

A pilot combustor has been used successfully to investigate the reaction mechanisms that govern oxidation and sorption onto fly ash of vapor-phase mercury in coal combustion flue gases. This project was designed to gain the understanding necessary to intelligently manipulate conditions leading to increased native capture by the fly ash and/or oxidation for subsequent capture by existing air pollution controls. This report describes parametric tests conducted to determine the relative impact of each varia...

2006-10-11T23:59:59.000Z

129

Current Status of Mercury Measurement at Coal-Fired Sources  

Science Conference Proceedings (OSTI)

The past five years have seen the emergence of federal regulation of mercury (Hg) emissions from coal-fired utility plants. This report provides a synopsis of the state of the science for measuring vapor phase Hg emissions at these plants. It provides a description of the systems currently in use, including information on their vendors and a discussion of lessons learned from recent demonstration projects.

2009-11-02T23:59:59.000Z

130

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

131

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

1995-09-26T23:59:59.000Z

132

NETL: Mercury Emissions Inactive Mercury Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Completed Mercury Projects Completed Mercury Projects View specific project information by clicking the state of interest on the map. Clickable U.S. Map ALABAMA Characterizing Toxic Emissions from Coal-Fired Power Plants Southern Research Institute The objective of this contract is to perform sampling and analysis of air toxic emissions at commercial coal-fired power plants in order to collect data that the EPA will use in their Congressionally mandated report on Hazardous Air Pollutants from Electric Utilities. CALIFORNIA Assessment of Toxic Emissions from a Coal-Fired Power Plant Utilizing an ESP Energy & Environmental Research Corporation – CA The overall objective of this project is to conduct comprehensive assessments of toxic emissions of two coal-fired electric utility power plants. The power plant that was assessed for toxic emissions during Phase I was American Electric Power Service Corporation's Cardinal Station Unit 1.

133

Mercury Specie and Multi-Pollutant Control  

SciTech Connect

This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

Rob James; Virgil Joffrion; John McDermott; Steve Piche

2010-05-31T23:59:59.000Z

134

Groundwater Discharge of Mercury to California Coastal Waters  

E-Print Network (OSTI)

too much is consumed. This toxic form of mercury is producedfrom inorganic mercury by sulfur- and iron-reducing bacteriadischarge of total mercury and monomethyl mercury to central

Flegal, Russell; Paytan, Adina; Black, Frank

2009-01-01T23:59:59.000Z

135

ORNL DAAC Announces Mercury EOS  

NLE Websites -- All DOE Office Websites (Extended Search)

Announces Mercury EOS Search and Order April 21, 2003: Mercury EOS, the ORNL DAAC's new search and order system that works with NASA's EOS ClearingHouse (ECHO), is now operational....

136

Dynamic Mercury Cycling Model Upgrade  

Science Conference Proceedings (OSTI)

This technical update describes the status of activities to upgrade the Dynamic Mercury Cycling Model (D-MCM), an EPRI simulation model that predicts mercury cycling and bioaccumulation in lakes.

2008-12-17T23:59:59.000Z

137

Mercury Oxidation via Catalytic Barrier Filters Phase II  

SciTech Connect

In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

2007-09-30T23:59:59.000Z

138

ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL  

Science Conference Proceedings (OSTI)

U.S. Department of Energy (DOE) used large quantities of mercury in the uranium separating process from the 1950s until the late 1980s in support of national defense. Some of this mercury, as well as other hazardous metals and radionuclides, found its way into, and under, several buildings, soil and subsurface soils and into some of the surface waters. Several of these areas may pose potential health or environmental risks and must be dealt with under current environmental regulations. DOE's National Energy Technology Laboratory (NETL) awarded a contract ''Alternative Field Methods to Treat Mercury in Soil'' to IT Group, Knoxville TN (IT) and its subcontractor NFS, Erwin, TN to identify remedial methods to clean up mercury-contaminated high-clay content soils using proven treatment chemistries. The sites of interest were the Y-12 National Security Complex located in Oak Ridge, Tennessee, the David Witherspoon properties located in Knoxville, Tennessee, and at other similarly contaminated sites. The primary laboratory-scale contract objectives were (1) to safely retrieve and test samples of contaminated soil in an approved laboratory and (2) to determine an acceptable treatment method to ensure that the mercury does not leach from the soil above regulatory levels. The leaching requirements were to meet the TC (0.2 mg/l) and UTS (0.025 mg/l) TCLP criteria. In-situ treatments were preferred to control potential mercury vapors emissions and liquid mercury spills associated with ex-situ treatments. All laboratory work was conducted in IT's and NFS laboratories. Mercury contaminated nonradioactive soil from under the Alpha 2 building in the Y-12 complex was used. This soils contained insufficient levels of leachable mercury and resulted in TCLP mercury concentrations that were similar to the applicable LDR limits. The soil was spiked at multiple levels with metallic (up to 6000 mg/l) and soluble mercury compounds (up to 500 mg/kg) to simulate expected ranges of mercury contamination and to increase the TCLP mercury values. IT/NFS investigated ambient temperature amalgamation/stabilization/fixation of mercury-contaminated soils to meet these objectives. Treatment ranged in size from a few ounces to 10 pounds. The treatability study philosophy was to develop working envelops of formulations where reasonable minimum and maximum amounts of each reagent that would successfully treat the contaminated soil were determined. The dosages investigated were based on ratios of stoichiometric reactions and applications of standard sets of formulations. The approach purposely identified formulations that failed short or longer cure-time performance criteria to define the limits of the envelope. Reagent envelops successfully met the project requirements one day after treatment and after greater than 30-day cures. The use of multiple levels of spikes allowed the establishment of reagent dosages that were successful across a broad range of mercury values, e.g., 50 to 6000 mg/kg mercury. The treatment products were damp to slightly wet material. Enough drying reagent, e.g., Portland cement or lime by-product, were added to some formulations to control the leachability of uranium and other hazardous metals and to ensure the product passed the paint filter test. Cost analyzes and conceptual designs for four alternatives for full-scale treatments were prepared. The alternatives included two in-situ treatments and two ex-situ treatments. The cost estimates were based on the results from the bench-scale study. All four alternatives treatment costs were well below the baseline costs.

Ernest F. Stine Jr; Steven T. Downey

2002-08-14T23:59:59.000Z

139

Gas Mileage of 1994 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1994 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Capri 20 City 21 Combined 24 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 21 City 23 Combined 26 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 22 City 24 Combined 28 Highway 1994 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 17 City 19 Combined 24 Highway 1994 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 16 City 18 Combined 23 Highway 1994 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Grand Marquis 16

140

Gas Mileage of 1985 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 19 City 20 Combined 23 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1985 Mercury Capri 21 City 23 Combined 27 Highway 1985 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 17 City 18 Combined 20 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 18 City

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors  

SciTech Connect

This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

Gary Blythe; John Currie; David DeBerry

2008-03-31T23:59:59.000Z

142

NETL: Mercury Emissions Control Technologies - Oxidation of Mercury Across  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels The objective of the proposed research is to assess the potential for the oxidation of mercury in flue gas across SCR catalysts in a coal fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. Results from the project will contribute to a greater understanding of mercury behavior across SCR catalysts. Additional tasks include: review existing pilot and field data on mercury oxidation across SCR catalysts and propose a mechanism for mercury oxidation and create a simple computer model for mercury oxidation based on the hypothetical mechanism. Related Papers and Publications: Final Report - December 31, 2004 [PDF-532KB]

143

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, Marshall G. (Woodside, CA)

1985-01-01T23:59:59.000Z

144

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, M.G.

1984-04-20T23:59:59.000Z

145

SAP for Mercury Control  

Science Conference Proceedings (OSTI)

EPRI and the Illinois State Geological Survey (ISGS) have developed and patented a technology for the on-site production of activated carbon (AC). The basic approach of the sorbent activation process (SAP) is to use coal from the plant site to form AC for direct injection into flue gas, upstream of the particulate control device, for mercury adsorption. The SAP is designed to help significantly reduce the cost of AC for power plant mercury control. This report summarizes laboratory and Phase 1 field test...

2009-06-17T23:59:59.000Z

146

Mercury Controls Update 2011  

Science Conference Proceedings (OSTI)

In light of the proposed Maximum Achievable Control Technology (MACT) ruling for hazardous air pollutants (HAPs) issued by the U.S. Environmental Protection Agency on March 16, 2011, the requirement to reduce emissions of mercury and other HAPs is one of the key challenges for coal-fired power plants. The proposed MACT ruling limits mercury emissions to 1.2 lb/TBtu at the stack (4.0 lb/TBtu for lignite-fired units), based on a 30-day rolling average including startup and shutdown periods. To help electri...

2011-12-21T23:59:59.000Z

147

Mercury in FGD Byproducts  

Science Conference Proceedings (OSTI)

This report provides interim results from two EPRI co-funded projects that pertain to what happens to mercury in flue gas from coal-fired power boilers when the scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) and by USG Corporation under Cooperative Agreement DE-FC26-04NT42080, "Fate of Mercury in Synthetic Gypsum Used for Wallboard Production." The second project is being co-sponsore...

2005-12-07T23:59:59.000Z

148

It's Elemental - The Element Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Gold Gold Previous Element (Gold) The Periodic Table of Elements Next Element (Thallium) Thallium The Element Mercury [Click for Isotope Data] 80 Hg Mercury 200.59 Atomic Number: 80 Atomic Weight: 200.59 Melting Point: 234.32 K (-38.83°C or -37.89°F) Boiling Point: 629.88 K (356.73°C or 674.11°F) Density: 13.5336 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Metal Period Number: 6 Group Number: 12 Group Name: none What's in a name? Named after the planet Mercury. Mercury's chemical symbol comes from the Greek word hydrargyrum, which means "liquid silver." Say what? Mercury is pronounced as MER-kyoo-ree. History and Uses: Mercury was known to the ancient Chinese and Hindus and has been found in 3500 year old Egyptian tombs. Mercury is not usually found free in nature

149

Gas Mileage of 1986 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Mercury Vehicles 6 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1986 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 18 City 20 Combined 23 Highway 1986 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1986 Mercury Capri 21 City 23 Combined 26 Highway 1986 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 17 City 19 Combined 22 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1986 Mercury Capri 15 City 18 Combined 24 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1986 Mercury Capri View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1986 Mercury Cougar 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline

150

Gas Mileage of 1991 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1991 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Capri 21 City 22 Combined 24 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri 22 City 24 Combined 28 Highway 1991 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar 17 City 20 Combined 24 Highway 1991 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 22 Highway 1991 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

151

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, First-Year Results  

Science Conference Proceedings (OSTI)

Researchers are conducting field tests to evaluate the ability of a variety of materials to oxidize vapor-phase elemental mercury. Testing will be conducted at two sites for 14 months at each site. This report summarizes the first year of work on the project, including installation, and four months of testing of the pilot at the first site.

2003-03-17T23:59:59.000Z

152

Mercury Information Clearinghouse  

SciTech Connect

The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through analysis and quality assurance programs; and (4) Create and maintain an information clearinghouse to ensure that all parties can keep informed on global mercury research and development activities.

Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

2006-03-31T23:59:59.000Z

153

Removal of mercury from powder river basin coal by low-temperature thermal treatment  

Science Conference Proceedings (OSTI)

This report describes work conducted at Western Research Institute (WRI) to remove mercury from Powder River Basin (PRB) coal as part of the research performed under Task 2.1, Development and Optimization of a Process for the Production of a Premium Solid Fuel from Western US Coals, of the 1993 Annual Project Plan. In the tests minus 16 mesh PRB coal was fed to a bench-scale fluidized-bed reactor where it was heated by contact with carbon dioxide fluidizing gas. A side stream of the gas from the reactor was passed through traps containing activated carbon where mercury driven from the coal was collected. The feed coal (which contains about 0.062 milligrams of mercury/kilogram of coal), the fines elutriated from the reactor, the activated carbon, and the condensed water from the reactor were analyzed for mercury. The solid products were analyzed using cold vapor atomic adsorption spectroscopy (ASTM D3684) while the water was analyzed using US Environmental Protection Agency (EPA) Method 245.1 which is based upon reduction of mercury to elemental form followed by adsorption at a wave length of 253.7 nanometers. The results of these tests show that about 70 to 80 wt % of the mercury is removed from the coal when the temperature is raised from about 300{degree}F (149{degree}C) to about 550{degree}F (288{degree}C). The remaining 20 wt % of the mercury remains in the char at temperatures up to about 1100{degree}F (593{degree}C). About 0.5 wt % of the mercury in the feed coal is condensed with water recovered from the coal. Nearly all of the mercury driven from the coal remains in the gas stream. Fines elutriated from the reactor contain about the same concentration of mercury as the feed coal.

Merriam, N.W.

1993-07-01T23:59:59.000Z

154

Gas Mileage of 2008 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2008 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2008 Mercury Grand Marquis FFV Gas 15 City 18 Combined 23 Highway E85 11 City 13 Combined 16 Highway 2008 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD 19 City 21 Combined 24 Highway 2008 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 22 Highway 2008 Mercury Mariner FWD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD 20 City 22 Combined 26 Highway 2008 Mercury Mariner FWD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD

155

Gas Mileage of 1987 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1987 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar 17 City 19 Combined 24 Highway 1987 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis Wagon 16 City 19 Combined 24 Highway 1987 Mercury Lynx 4 cyl, 1.9 L, Automatic 3-spd, Regular Gasoline Compare 1987 Mercury Lynx 23

156

Gas Mileage of 1990 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

90 Mercury Vehicles 90 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 21 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 24 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis Wagon 15

157

Gas Mileage of 1999 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1999 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1999 Mercury Cougar 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1999 Mercury Cougar View MPG Estimates Shared By...

158

Gas Mileage of 1984 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1984 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1984 Mercury Capri 18 City 20 Combined 22 Highway 1984...

159

Gas Mileage of 1988 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1988 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1988 Mercury Cougar 18 City 21 Combined 25 Highway 1988...

160

Gas Mileage of 1992 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1992 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1992 Mercury Capri View MPG Estimates Shared By Vehicle...

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gas Mileage of 1996 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1996 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1996 Mercury Cougar 17 City 19 Combined 24 Highway 1996...

162

Gas Mileage of 2007 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2007 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2007 Mercury Grand Marquis View MPG Estimates...

163

Gas Mileage of 2002 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mercury Vehicles 2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2002 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 26 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 27 Highway 2002 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2002 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2002 Mercury Mountaineer 2WD 14 City

164

Gas Mileage of 1989 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Mercury Vehicles 9 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 25 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 17 Combined 21 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis Wagon 15

165

Gas Mileage of 1993 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Mercury Vehicles 3 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1993 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Capri 20 City 21 Combined 24 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 22 City 24 Combined 28 Highway 1993 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar 17 City 19 Combined 24 Highway 1993 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15

166

Recovery of mercury from acid waste residues  

DOE Patents (OSTI)

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

Greenhalgh, W.O.

1987-02-27T23:59:59.000Z

167

Recovery of mercury from acid waste residues  

DOE Patents (OSTI)

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

Greenhalgh, Wilbur O. (Richland, WA)

1989-01-01T23:59:59.000Z

168

Method and apparatus for monitoring the flow of mercury in a system  

DOE Patents (OSTI)

An apparatus and method for monitoring the flow of mercury in a system. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission.

Grossman, Mark W. (Belmont, MA)

1987-01-01T23:59:59.000Z

169

Mercury oxidization in dielectric barrier discharge plasma system  

SciTech Connect

The pronounced volatility of elemental mercury (Hg{sup 0}) and some of its compounds, coupled with their extreme toxicity, makes these substances extremely hazardous. Conversion of Hg{sup 0} to HgO would significantly enhance mercury removal from flue gases. This investigation is focused on studying the effect of some of the constituents such as O{sub 2}, H{sub 2}O, CO{sub 2}, and NOx present in flue gases on elemental mercury oxidation in a dielectric barrier discharge (DBD) reactor. The results show that Hg vapors (6 ppbv) in a stream of 0.1% O{sub 2} and N{sub 2} are effectively oxidized at the energy density of up to 114 J/L. Hg conversion of over 80% is achieved when present in a gas mixture of 8% O{sub 2}, 2% H{sub 2}O, and 10% CO{sub 2} in N{sub 2} balance. The presence of NOx enhanced mercury oxidation in the DBD reactor. The oxidation chemistry is discussed. Studies show that Hg can be simultaneously removed along with the other two major pollutants, NOx and SO{sub 2}, in one DBD reactor followed by a wet scrubber system. This avoids the need of three techniques for the removal of major gaseous pollutants from coal-fired power plants.

Chen, Z.Y.; Mannava, D.P.; Mathur, V.K. [University New Hampshire, Durham, NH (United States). Dept. for Chemical Engineering

2006-08-16T23:59:59.000Z

170

Public Health Guidance Note Mercury  

E-Print Network (OSTI)

Mercury (Hg) occurs in nature as the mineral cinnibar (red mercuric sulfide) and has found widespread use in industry. The commercial

unknown authors

2002-01-01T23:59:59.000Z

171

ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw E&I. The company will be denoted as ''IT'' for the rest of the document since the original contract was awarded to IT. This report details IT, Knoxville, TN and its subcontractor Nuclear Fuels Services (NFS) study to investigate alternative mercury treatment technology. The IT/NFS team demonstrated two processes for the amalgamation/stabilization/fixation of mercury and potentially Resource Conservation Recovery Act (RCRA) and radionuclide-contaminated soils. This project was to identify and demonstrate remedial methods to clean up mercury-contaminated soil using established treatment chemistries on soil from the Oak Ridge Reservation, Y-12 National Security Complex, the off-site David Witherspoon properties, and/or other similarly contaminated sites. Soil from the basement of Y-12 Plant Alpha 2 Building at the Oak Ridge Reservation was received at IT and NFS on December 20, 2001. Soils from the other locations were not investigated. The soil had background levels of radioactivity and had all eight RCRA metals well below the Toxicity Characteristic (TC) criteria. This project addresses the new DOE Environmental Management Thrust 2 ''Alternative Approaches to Current High Risk/High Cost Baselines''. Successful completion of this project will provide a step-change in DOE's treatment ability.

Ernie F. Stine

2002-08-14T23:59:59.000Z

172

Method for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

173

Apparatus for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

174

Apparatus for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-07-16T23:59:59.000Z

175

PUBLIC HEALTH STATEMENT MERCURY  

E-Print Network (OSTI)

This Public Health Statement is the summary chapter from the Toxicological Profile for Mercury. It is one in a series of Public Health Statements about hazardous substances and their health effects. A shorter version, the ToxFAQs, is also available. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are

unknown authors

1999-01-01T23:59:59.000Z

176

Method for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-04-09T23:59:59.000Z

177

Mercury Emissions Data Analyses  

Science Conference Proceedings (OSTI)

This report contains the visual materials included in presentations given at Research Triangle Park, North Carolina on April 3, 2002. Participants included representatives from EPRI, DOE, RMB Consulting & Research, and EERC. The MACT Working Group gave a presentation on "Variability in Hg Emissions Based on SCEM Data." The visuals in the report are a set of graphs documenting results of mercury emissions over time, using semi-continuous emissions monitor (SCEM) data. The EPA Utility Working Group gave a ...

2002-05-02T23:59:59.000Z

178

Method for scavenging mercury  

DOE Patents (OSTI)

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Bejing, CN); Yan, Naiqiang (Burkeley, CA)

2010-07-13T23:59:59.000Z

179

Method for scavenging mercury  

SciTech Connect

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-Ger (El Cerrito, CA); Liu, Shou-Heng (Kaohsiung, TW); Liu, Zhao-Rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2011-08-30T23:59:59.000Z

180

Method for scavenging mercury  

SciTech Connect

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2009-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vapor spill monitoring method  

DOE Patents (OSTI)

Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

182

Gas Mileage of 2001 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2001 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 27 Highway 2001 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2001 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

183

Gas Mileage of 1998 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1998 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1998 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 18 Highway 1998 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD 12 City 14 Combined 17 Highway 1998 Mercury Mountaineer 4WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 4WD View MPG Estimates Shared By Vehicle Owners 14 City 15 Combined 18 Highway 1998 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

184

Gas Mileage of 2005 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2005 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 23 Highway 2005 Mercury Mariner 2WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 19 City 21 Combined 24 Highway 2005 Mercury Mariner 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 23 Highway 2005 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 4WD 17 City 19 Combined 21 Highway 2005 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline

185

Gas Mileage of 2000 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2000 Mercury Vehicles 2000 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2000 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar 21 City 25 Combined 31 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2000 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

186

Gas Mileage of 2004 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2004 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2004 Mercury Marauder 8 cyl, 4.6 L, Automatic 4-spd, Premium Gasoline Compare 2004 Mercury Marauder View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Monterey Wagon FWD 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Monterey Wagon FWD View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Mountaineer 2WD 8 cyl, 4.6 L, Automatic 5-spd, Regular Gasoline Compare 2004 Mercury Mountaineer 2WD 13 City 15 Combined 18 Highway 2004 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

187

Gas Mileage of 1997 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1997 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1997 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 12 City 14 Combined 17 Highway 1997 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

188

Gas Mileage of 1995 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1995 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar 17 City 19 Combined 24 Highway 1995 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Mystique 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Mystique View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 1995 Mercury Mystique 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline

189

NETL: Mercury Emissions Control Technologies - Pilot Testing of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Oxidation Catalysts Project Summary Testing of Mercury Oxidation Catalysts Project Summary URS Group, Inc., Austin, TX, will demonstrate at the pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project's pilot tests, conducted at electric generating plants using wet flue gas desulfurization systems and particulate collection systems, will be conducted for periods up to 14 months to provide data for future, full-scale designs. Mercury-oxidation potential will be measured periodically to provide long-term catalyst life data. The project is applicable to about 90,000 megawatts of generation capacity. Project partners are the Electric Power Research Institute, Palo Alto, CA, which will co-manage and co-fund the pilot tests, and five utilities.

190

NETL: Mercury Emissions Control Technologies - Evaluation of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems CONSOL is evaluating the mercury removal co-benefits achieved by SCR-FGD combi nations. Specific issues that will be addressed include the effects of SCR, catalyst degradation, and load changes on mercury oxidation and capture. This objective will be achieved by measuring mercury removal achieved by SCR-FGD combinations at ten plants with such equipment configurations. These plants include five with wet limestone, three wet lime, and two with dry scrubbing. Material balance will be conducted. Related Papers and Publications: Final Report - April 2006 [PDF-377KB] Topical Report # 11 - January 2006 [PDF-19MB] Topical Report # 9 - January 2006 [PDF-6MB]

191

Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.  

SciTech Connect

Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts

Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

2008-06-30T23:59:59.000Z

192

Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.  

Science Conference Proceedings (OSTI)

Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts

Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

2008-06-30T23:59:59.000Z

193

The Clean Air Mercury Rule  

SciTech Connect

Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

Michael Rossler [Edison Electric Institute, Washington, DC (US)

2005-07-01T23:59:59.000Z

194

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 2 Results  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy and EPRI are co-funding this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project is investigating catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installation...

2000-11-28T23:59:59.000Z

195

Methods for dispensing mercury into devices  

DOE Patents (OSTI)

A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1987-04-28T23:59:59.000Z

196

Methods for dispensing mercury into devices  

DOE Patents (OSTI)

A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

Grossman, M.W.; George, W.A.

1987-04-28T23:59:59.000Z

197

Recovery from Mercury Contamination in the Second Songhua River, China  

E-Print Network (OSTI)

K. , & Rubin, J. R. (2005). Mercury levels and relationshipsJ. , et al. (1999). Mercury in contaminated coastalEnvironmental costs of mercury pollution. Science of the

Zhang, Z. S.; Sun, X. J.; Wang, Q. C.; Zheng, D. M.; Zheng, N.; Lv, X. G.

2010-01-01T23:59:59.000Z

198

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network (OSTI)

measurements of atomic mercury. Applied Physics B, 87(2),M. & Covelli, S. , 2000. Mercury speciation in sedimentsarea of the Idrija mercury mine, Slovenia. Environmental

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

199

NETL: Health Effects - Risk Assessment of Reduced Mercury Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

of mercury. The primary pathway for mercury exposure is through consumption of fish. The most susceptible population to mercury exposure is the fetus. Therefore, the risk...

200

Fluorescent sensor for mercury  

DOE Patents (OSTI)

The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

Wang, Zidong (Urbana, IL); Lee, Jung Heon (Evanston, IL); Lu, Yi (Champaign, IL)

2011-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

High Intensity Discharge Lamps Test Procedures High Intensity Discharge Lamps Test Procedures Sign up for e-mail updates on regulations for this and other products High-intensity discharge (HID) lamps include mercury vapor (MV), metal halide (MH), and high-pressure sodium (HPS) lamps. The Department of Energy (DOE) is establishing test procedures for HID lamps. This rulemaking is mandated by the Energy Policy and Conservation Act (EPCA). ( 42 U.S.C. 6291-6309) This Rulemaking is related to the High-Intensity Discharge Lamps Standard and Test Procedure. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of proposed rulemaking regarding test procedures for HID lamps. 76 FR 77914 (Dec. 15, 2011).

202

Mercury emission control for coal fired power plants using coal and biomass  

E-Print Network (OSTI)

Mercury is a leading concern among the air toxic metals addressed in the 1990 Clean Air Act Amendments (CAAA) because of its volatility, persistence, and bioaccumulation as methylmercury in the environment and its neurological health impacts. The Environmental Protection Agency (EPA) reports for 2001 shows that total mercury emissions from all sources in USA is about 145 tons per annum, of which coal fired power plants contribute around 33% of it, about 48 tons per annum. Unlike other trace metals that are emitted in particulate form, mercury is released in vapor phase in elemental (Hg0) or oxidized (Hg2+, mainly HgCl2) form. To date, there is no post combustion treatment which can effectively capture elemental mercury vapor, but the oxidized form of mercury can be captured in traditional emission control devices such as wet flue gas defulrization (WFGD) units, since oxidized mercury (HgCl2) is soluble in water. The chlorine concentration present during coal combustion plays a major role in mercury oxidation, which is evident from the fact that plants burning coal having high chlorine content have less elemental mercury emissions. A novel method of co-firing blends of low chlorine content coal with high chlorine content cattle manure/biomass was used in order to study its effect on mercury oxidation. For Texas Lignite and Wyoming coal the concentrations of chlorine are 139 ppm and 309 ppm on dry ash free basis, while for Low Ash Partially Composted Dairy Biomass it is 2,691 ppm. Co-firing experiments were performed in a 100,000 BTU/hr (29.3 kWt) Boiler Burner facility located in the Coal and Biomass Energy laboratory (CBEL); coal and biomass blends in proportions of 80:20, 90:10, 95:5 and 100:0 were investigated as fuels. The percentage reduction of Hg with 95:5, 90:10 and 80:20 blends were measured to be 28- 50%, 42-62% and 71-75% respectively. Though cattle biomass serves as an additive to coal, to increase the chlorine concentration, it leads to higher ash loading. Low Ash and High Ash Partially Composted Dairy Biomass have 164% and 962% more ash than Wyoming coal respectively. As the fraction of cattle biomass in blend increases in proportion, ash loading problems increase simultaneously. An optimum blend ratio is arrived and suggested as 90:10 blend with good reduction in mercury emissions without any compromise on ash loading.

Arcot Vijayasarathy, Udayasarathy

2007-12-01T23:59:59.000Z

203

NETL: Mercury Emissions Control Technologies - Testing of Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Southern Research Institute, Birmingham, Alabama Subcontractor- ARCADIS Geraghty & Miller The overall goal of this project is to test the effectiveness of calcium-based sorbents and oxidizing agents for controlling mercury emissions from coal-fired power plant boilers. ARCADIS Geraghty & Miller, with EPA support, has developed calcium-based sorbents to remove SO2 and mercury simultaneously. The sorbents consist of hydrated lime (Ca(OH)2) and an added oxidant and a silica-modified calcium (CaSiO3) with an added oxidant. The mercury capacity in ug Hg/g sorbent for the two sorbents is 20 and 110-150, respectively, verses a mercury capacity for the current standard sorbent, activated carbon, of 70-100. The advantages of a lime based sorbent verses carbon is lower cost, simultaneous removal of sulfur, and allowance of ash to be utilized for a cement additive.

204

Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL  

SciTech Connect

Over 1,140 yd{sup 3} of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations ({approximately} 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system.

Kalb, P.; Adams, J.; Milian, L.

2001-01-29T23:59:59.000Z

205

Discovery of the Mercury Isotopes  

E-Print Network (OSTI)

Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; M. Thoennessen

2009-12-01T23:59:59.000Z

206

Mercury Atomic Clock Sets Time-Keeping Record  

Science Conference Proceedings (OSTI)

Mercury Atomic Clock Sets Time-Keeping Record. ... A prototype mercury optical clock originally was demonstrated at NIST in 2000. ...

2013-08-27T23:59:59.000Z

207

Mercury Control Technology Selection Guide  

Science Conference Proceedings (OSTI)

EPRI, the DOE National Energy Technology Laboratory, and various other organizations have undertaken extensive RD programs over the past decade to develop cost-effective methods for reducing mercury emissions from coal-burning power plants. The field tests sponsored by these organizations have produced a significant amount of pilot and full-scale mercury control data for a variety of technologies at power plant sites with different boiler types, firing different coals, and equipped with various air emiss...

2006-09-22T23:59:59.000Z

208

Mercury Stability in FGD Byproducts  

Science Conference Proceedings (OSTI)

A significant fraction of the mercury in coals fired for power generation currently is removed by wet flue gas desulfurization (FGD) systems and incorporated in the byproducts from those systems. This report summarizes the results of an EPRI-sponsored project to measure the stability of mercury in FGD byproducts from coal-fired generating plants under simulated landfill and reuse conditions. The current effort repeated portions of a 2003 project, documented in EPRI report 1004254, to determine whether th...

2004-03-24T23:59:59.000Z

209

www.mdpi.com/journal/ijerph Communication Mercury Levels in Locally Manufactured Mexican Skin-Lightening Creams  

E-Print Network (OSTI)

Abstract: Mercury is considered one of the most toxic elements for plants and animals. Nevertheless, in the Middle East, Asia and Latin America, whitening creams containing mercury are being manufactured and purchased, despite their obvious health risks. Due to the mass distribution of these products, this can be considered a global public health issue. In Mexico, these products are widely available in pharmacies, beauty aid and health stores. They are used for their skin lightening effects. The aim of this work was to analyze the mercury content in some cosmetic whitening creams using the cold vapor technique coupled with atomic absorption spectrometry (CV-AAS). A total of 16 skin-lightening creams from the local market were investigated. No warning information was noted on the packaging. In 10 of the samples, no mercury was detected. The mercury content in six of the samples varied between 878 and 36,000 ppm, despite the fact that the U.S. Food and Drug Administration (FDA) has determined that the limit for mercury in creams should be less than 1 ppm. Skin creams containing mercury are still available and commonly used in Mexico and many developing countries, and their contents are poorly controlled.

Claudia P. Peregrino; Myriam V. Moreno; Silvia V. Mir; Alma D. Rubio; Luz O. Leal

2011-01-01T23:59:59.000Z

210

Correlations Between Gene Expression and Mercury Levels in Blood of Boys With and Without Autism  

E-Print Network (OSTI)

AJ (2005) Inorganic mercury dissociates preassembledmetabolize toxicants, such as mercury, differently. RNA wasexpression microarrays. Mercury levels were measured using

2011-01-01T23:59:59.000Z

211

Investigation of modified speciation for enhanced control of mercury  

SciTech Connect

The control of hazardous air pollutant (HAP) emissions was addressed in Title III of the Clean Air Act Amendments of 1990, which provided an initial list of 189 elements and compounds of concern. The combustion of coal has the potential to produce a number of those species, either directly as a result of the trace elements found in coal, or as products of chemical reactions occurring in combustion. However, field studies conducted by the U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and others have shown that the actual emissions are very low and that effective particulate-matter capture can control most of the inorganic species. The most significant exception is mercury, which has also been singled out for particular regulatory attention because of its behavior in the environment (bioaccumulation) and the potential for deleterious health effects. In anticipation of possible regulations regarding mercury emissions, research efforts sponsored by DOE, EPRI, and others are investigating the risks posed by mercury emissions, improved techniques for measuring those emissions, and possible control measures. The focus in the control research is on techniques that can be used in conjunction with existing flue-gas-cleanup (FGC) systems in order to minimize additional capital costs and operational complexity. The very small amount of mercury (on the order of a few micrograms per cubic meter) in flue gas, its occurrence in several chemical forms that vary from system to system, the very low solubility of the elemental form, and the fact that it is usually in the vapor phase combine to make the achievement of cost-effective control a challenging task.

Livengood, C.D.; Mendelsohn, M.H.

1997-09-01T23:59:59.000Z

212

NETL: Mercury Emissions Control Technologies - Mercury Control For Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD URS Group, Inc., in collaboration with EPRI, Apogee Scientific, AEP, Texas Genco, and TXU Power, ADA-ES, will evaluate sorbent injection for mercury control in an 85/15 blend Texas lignite/PRB derived flue gas, upstream of a cold-side ESP – wet FGD combination. Full-scale sorbent injection tests conducted with various sorbents and combinations of fuel and plant air pollution control devices (APCD) have provided a good understanding of variables that affect sorbent performance. However, many uncertainties exist regarding long-term performance and data gaps remain for specific plant configurations. For example, sorbent injection has not been demonstrated at full-scale for plants firing Texas lignite, which represent approximately 10% of the annual U.S. power plant mercury emissions. The low and variable chloride content of Texas lignite may pose a challenge to achieving high levels of mercury removal with sorbent injection. Furthermore, activated carbon injection may render the fly ash unsuitable for sale, posing an economic liability to Texas lignite utilities. Alternatives to standard activated carbon, such as non-carbon sorbents and alternate injection locations (Toxecon II), have not been fully explored. Toxecon II involves sorbent injection in the middle field(s) of an ESP, thus preserving the integrity of the fly ash in the first fields.

213

Mercury switch with non-wettable electrodes  

DOE Patents (OSTI)

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, M.M.; Yost, F.G.

1986-04-09T23:59:59.000Z

214

Mercury switch with non-wettable electrodes  

DOE Patents (OSTI)

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, Maurice M. (Albulquerque, NM); Yost, Frederick G. (Carlsbad, NM)

1987-01-01T23:59:59.000Z

215

Gas Mileage of 2009 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2009 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2009 Mercury Grand Marquis FFV Gas 16 City 19 Combined 24 Highway E85 12 City...

216

Gas Mileage of 2010 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2010 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2010 Mercury Grand Marquis FFV View MPG Estimates Shared By Vehicle Owners Gas...

217

Gas Mileage of 2011 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2011 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Mercury Grand Marquis FFV View MPG Estimates Shared By Vehicle Owners Gas...

218

Gas Mileage of 2003 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway 2003 Mercury Mountaineer 2WD FFV 6 cyl, 4.0 L, Automatic 5-spd, Regular Gas or E85 Compare 2003 Mercury Mountaineer 2WD FFV Gas 14 City 16 Combined 19 Highway E85 10 City...

219

Mercury Solar Systems | Open Energy Information  

Open Energy Info (EERE)

OpenEI by expanding it. Mercury Solar Systems is a company located in New Rochelle, New York . References "Mercury Solar Systems" Retrieved from "http:en.openei.orgw...

220

NETL: Emissions Characterization - Mercury Reactions in Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Reactions in Power Plant Plumes: Bowen Study DOE-NETL is participating in a field study, managed by EPRI, to document the changes in mercury speciation that may be...

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gas Mileage of 2006 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

23 Highway 2006 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2006 Mercury Grand Marquis Gas 15 City 18 Combined 23 Highway E85 11 City 13...

222

Mercury Oxidation Performance of Advanced SCR Catalyst  

Science Conference Proceedings (OSTI)

The ability of selective catalytic reduction (SCR) catalysts to oxidize mercury is an important aspect of many utilities mercury control strategies. Improved SCR mercury oxidation will facilitate its capture in downstream wetflue gas desulfurization systems and will generally result in lower emission rates. Recently, catalyst manufacturers have attempted to maximize mercury oxidation through advanced catalyst formulations.This study documents the performance of an advanced ...

2012-12-31T23:59:59.000Z

223

Transitioning from Mercury Thermometers to Alternative ...  

Science Conference Proceedings (OSTI)

... methods in the petroleum industry continue to specify mercury- in-glass thermometers. ... Thermometers are available from many commercial sources ...

2013-06-03T23:59:59.000Z

224

Mercury Flux Measurements: An Intercomparison and Assessment: Nevada Mercury Emissions Project (NvMEP)  

Science Conference Proceedings (OSTI)

An understanding of the contribution of natural nonpoint mercury sources to regional and global atmospheric mercury pools is critical for developing emission inventories, formulating environmental regulations, and assessing human and ecological health risks. This report discusses the results of the Nevada Mercury Emissions Project (NvMEP) and takes a close look at the emerging technologies used to obtain mercury flux field data. In specific, it provides an intercomparison of mercury flux measurements obt...

1998-12-14T23:59:59.000Z

225

JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas  

Science Conference Proceedings (OSTI)

This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

Ye Zhuang; Christopher Martin; John Pavlish

2009-03-31T23:59:59.000Z

226

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

1983-02-08T23:59:59.000Z

227

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

1983-01-01T23:59:59.000Z

228

Vapor concentration monitor  

DOE Patents (OSTI)

An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

Bayly, John G. (Deep River, CA); Booth, Ronald J. (Deep River, CA)

1977-01-01T23:59:59.000Z

229

Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

Alan Bland; Kumar Sellakumar; Craig Cormylo

2007-08-01T23:59:59.000Z

230

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

Science Conference Proceedings (OSTI)

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

231

FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS  

SciTech Connect

Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

2003-05-07T23:59:59.000Z

232

Method and apparatus for monitoring the flow of mercury in a system  

DOE Patents (OSTI)

An apparatus and method for monitoring the flow of mercury in a system are disclosed. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission. 4 figs.

Grossman, M.W.

1987-12-15T23:59:59.000Z

233

Lumex Mercury CEM  

E-Print Network (OSTI)

Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV Program is to further environmental protection by substantially accelerating the acceptance and use of improved and cost-effective technologies. ETV seeks to achieve this goal by providing high-quality, peer-reviewed data on technology performance to those involved in the design, distribution, financing, permitting, purchase, and use of environmental technologies. ETV works in partnership with recognized standards and testing organizations; with stakeholder groups that consist of buyers, vendor organizations, and permitters; and with the full participation of individual technology developers. The program evaluates the performance of innovative technologies by developing test plans that are responsive to the needs of stakeholders, conducting field or laboratory tests (as appropriate), collecting and analyzing data, and preparing peer-reviewed reports. All evaluations are conducted in accordance with rigorous quality assurance protocols to ensure that data of known and adequate quality are generated and that the results are defensible. The Advanced Monitoring Systems (AMS) Center, one of six technology centers under ETV, is operated by Battelle in cooperation with EPAs National Exposure Research Laboratory. The AMS Center has recently evaluated the performance of continuous emission monitors used to measure mercury in flue gases. This

unknown authors

2001-01-01T23:59:59.000Z

234

DFJ Mercury | Open Energy Information  

Open Energy Info (EERE)

DFJ Mercury DFJ Mercury Jump to: navigation, search Name DFJ Mercury Place Houston, Texas Zip 77046 Product Houston-based seed and early-stage venture capital firm that targets the information technology, advanced materials, and bioscience sectors. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Organic vapor jet printing system  

DOE Patents (OSTI)

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

236

Mercury and platinum abundances in mercury-manganese stars  

E-Print Network (OSTI)

We report new results for the elemental and isotopic abundances of the normally rare elements mercury and platinum in HgMn stars. Typical overabundances can be 4 dex or more. The isotopic patterns do not follow the fractionation model of White et al (1976).

C. M. Jomaron; M. M. Dworetsky; D. A. Bohlender

1998-05-06T23:59:59.000Z

237

Development of new sorbents to remove mercury and selenium from flue gas. Final report, September 1, 1993--August 31, 1994  

Science Conference Proceedings (OSTI)

Mercury (Hg) and selenium (Se) are two of the volatile trace metals in coal, which are often not captured by conventional gas clean up devices of coal-fired boilers. An alternative is to use sorbents to capture the volatile components of trace metals after coal combustion. In this project sorbent screening tests were performed in which ten sorbents were selected to remove metallic mercury in N{sub 2}. These sorbents included activated carbon, char prepared from Ohio No. 5 coal, molecular sieves, silica gel, aluminum oxide, hydrated lime, Wyoming bentonite, kaolin, and Amberite IR-120 (an ion-exchanger). The sorbents were selected based on published information and B&W`s experience on mercury removal. The promising sorbent was then selected and modified for detailed studies of removal of mercury and selenium compounds. The sorbents were tested in a bench-scale adsorption facility. A known amount of each sorbent was loaded in the column as a packed bed. A carrier gas was bubbled through the mercury and selenium compounds. The vaporized species were carried by the gas and went through the sorbent beds. The amount of mercury and selenium compounds captured by the sorbents was determined by atomic absorption. Results are discussed.

Shiao, S.Y. [Babcock and Wilcox Co., Alliance, OH (United States)

1995-02-01T23:59:59.000Z

238

Stratified vapor generator  

DOE Patents (OSTI)

A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

2008-05-20T23:59:59.000Z

239

Fuel vapor canister  

SciTech Connect

This paper discusses an improved fuel vapor storage canister for use in a vehicle emission system of the type utilizing an enclosure with an interior communicated with a source of fuel vapor. The improved canister comprises: the enclosure having a mixture including particles of activated charcoal and many pieces of foam rubber, the pieces of foam rubber in the mixture being randomly and substantially evenly dispersed whereby substantially all the charcoal particles are spaced relatively closely to at least one foam rubber piece; the mixture being packed into the enclosure under pressure so that the pieces of foam rubber are compressed enough to tightly secure the charcoal particles one against another to prevent a griding action therebetween.

Moskaitis, R.J.; Ciuffetelli, L.A.

1991-03-26T23:59:59.000Z

240

VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS  

DOE Green Energy (OSTI)

This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

Eric M. Suuberg; Vahur Oja

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Mercury orientation model including non-zero obliquity and librations  

E-Print Network (OSTI)

Long-period forcing of Mercurys libration in longitude.M. : Resonant forcing of Mercurys libration in longitude.A revised control network for Mercury. J. Geophys. Res. 104,

Margot, Jean-Luc

2009-01-01T23:59:59.000Z

242

RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES  

SciTech Connect

Mercury was widely used in U.S. Department of Energy (DOE) weapons facilities, resulting in a broad range of mercury-contaminated wastes and wastewaters. Some of the mercury contamination has escaped to the local environment, particularly at the Y-12 Plant in Oak Ridge, Tennessee, where approximately 330 metric tons of mercury were discharged to the environment between 1953 and 1963 (TN & Associates, 1998). Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury in the environment is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, an effective sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. ADA Technologies, Inc. has developed four new sorbents to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have been successfully demonstrated very high removal efficiencies for soluble mercury species, reducing mercury concentrations at the outlet of a pilot-scale system to less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant targeted colloidal mercury not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a magnetic field was evaluated. Field results indicated good removal of this mercury fraction from the Y-12 waters. In addition, this sorbent is easily regenerated by simply removing the magnetic field and flushing the columns with water. The fourth sorbent is still undergoing laboratory development, but results to date indicate exceptionally high mercury sorption capacity. The sorbent is capable of removing all forms of mercury typically present in natural and industrial waters, including Hg{sup 2+}, elemental mercury, methyl mercury, and colloidal mercury. The process possesses very fast kinetics, which allows for higher flow rates and smaller treatment units. These sorbent technologies, used in tandem or individually depending on the treatment needs, can provide DOE sites with a cost-effective method for reducing mercury concentrations to very low levels mandated by the regulatory community. In addition, the technologies do not generate significant amounts of secondary wastes for disposal. Furthermore, the need for improved water treatment technologies is not unique to the DOE. The new, stringent requirements on mercury concentrations impact other government agencies as well as the private sector. Some of the private-sector industries needing improved methods for removing mercury from water include mining, chloralkali production, chemical processing, and medical waste treatment. The next logical step is to deploy one or more of these sorbents at a contaminated DOE site or at a commercial facility needing improved mercury treatment technologies. A full-scale deployment is planned in fiscal year 2000.

Robin M. Stewart

1999-09-29T23:59:59.000Z

243

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network (OSTI)

S, and Flegal AR 2008. Mercury in the San Francisco Estuary.may 2010 Mercury-Contaminated Hydraulic Mining Debris in Sancontaminants such as ele- mental mercury and cyanide used in

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

244

Control of mercury methylation in wetlands through iron addition  

E-Print Network (OSTI)

Mason, R. P. ; Flegal, A. R. , Mercury speciation in the SanP. ; Flegal, A. R. , Decadal mercury trends in San FranciscoP. G. ; Nelson, D. C. , Mercury methylation from unexpected

Sedlak, David L; Ulrich, Patrick D

2009-01-01T23:59:59.000Z

245

Amended Silicated for Mercury Control  

Science Conference Proceedings (OSTI)

Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly ash is sold as a by-product.

James Butz; Thomas Broderick; Craig Turchi

2006-12-31T23:59:59.000Z

246

Mercury in Alaskan Eskimo mothers and infants  

E-Print Network (OSTI)

The potential danger of natural mercury accumulation in the diet of the Eskimo is evaluated through mercury levels determined in cord blood, placenta, maternal blood, hair, and milk of 38 maternal-infant pairs from Anchorage and the Yukon-Kuskokwim Delta. Although mercury levels are not discernably dangerous, trends to larger accumulations in maternal and fetal RBC and placental tissue with proximity to the sea and consumption of seals during pregnancy provide the basis for considering possible indicators of neonatal involvement. Mercury level in RBC from cord blood appeared as the best potential indicator of this involvement, although relationships with the mother's diet and level of mercury in the placenta also appear useful. In this area, average and maximal mercury levels in cord blood are 39 and 78 ng/ml, respectively, far below the acknowledged toxic level in infants of these mothers who eat seals or fish every day during their pregnancy.

William A. Galster

1976-01-01T23:59:59.000Z

247

COST OF MERCURY REMOVAL IN IGCC PLANTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Mercury Removal Cost of Mercury Removal in an IGCC Plant Final Report September 2002 Prepared for: The United States Department of Energy National Energy Technology Laboratory By: Parsons Infrastructure and Technology Group Inc. Reading, Pennsylvania Pittsburgh, Pennsylvania DOE Product Manager: Gary J. Stiegel DOE Task Manager: James R. Longanbach Principal Investigators: Michael G. Klett Russell C. Maxwell Michael D. Rutkowski PARSONS The Cost of Mercury Removal in an IGCC Plant Final Report i September 2002 TABLE OF CONTENTS Section Title Page 1 Summary 1 2 Introduction 3 3 Background 4 3.1 Regulatory Initiatives 4 3.2 Mercury Removal for Conventional Coal-Fired Plants 4 3.3 Mercury Removal Experience in Gasification 5 3.4 Variability of Mercury Content in Coal 6 4 Design Considerations 7 4.1 Carbon Bed Location

248

Mercury in the Lake Powell ecosystem  

SciTech Connect

Flameless atomic absorption analyses of samples from Lake Powell yield the following mercury levels (in mean parts per billion): 0.01 in lake water, 30 in bottom sediments, 10 in shoreline substrates, 34 in plant leaves, 145 in plant debris, 28 in algae, 10 in crayfish, and 232 in fish muscle. Bioamplification and the association of mercury with organic matter are evident in this recently created, relatively unpolluted reservoir. Formulation of an estimated mercury budget suggests that the restriction of outflow in the impounded Colorado River leads to mercury accumulation, and that projected regional coal-fired power generation may produce sufficient amounts of mercury to augment significantly the mercury released by natural weathering.

Standiford, D.R.; Potter, L.D.; Kidd, D.E.

1973-06-01T23:59:59.000Z

249

Assessment of Low Cost Novel Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control Technologies Testing of Mercury Control Technologies for Coal-Fired Power Plants by Thomas J. Feeley, III 1. , Lynn A. Brickett 1. , B. Andrew O'Palko 1. , and James T. Murphy 2. 1. U.S. Department of Energy, National Energy Technology Laboratory 2. Science Applications International Corporation The U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research, development, and demonstration (RD&D) program directed at advancing the performance and economics of mercury control technologies for coal- fired power plants. The program also includes evaluating the fate of mercury in coal by-products and studying the transport and transformation of mercury in power plant plumes. This paper presents results from ongoing full-scale and slip-stream field testing of several mercury control

250

Release of Mercury During Curing of Concrete Containing Fly Ash and Mercury Sorbent Material  

Science Conference Proceedings (OSTI)

This report provides laboratory data on mercury release during the initial curing stage of concrete made with fly ash or mixtures of fly ash and activated carbon containing mercury. These experiments suggest that mercury is not released from these concretes during initial curing.

2002-12-09T23:59:59.000Z

251

Process for removing mercury from aqueous solutions  

DOE Patents (OSTI)

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, John M. (Oak Ridge, TN); Napier, John M. (Oak Ridge, TN); Makarewicz, Mark A. (Knoxville, TN); Meredith, Paul F. (Knoxville, TN)

1986-01-01T23:59:59.000Z

252

Process for removing mercury from aqueous solutions  

DOE Patents (OSTI)

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

1985-03-04T23:59:59.000Z

253

Remediation of Mercury and Industrial Contaminants Applied Field...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

254

NETL: Mercury Emissions Control Technologies - Non-Thermal Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma Based Removal of Mercury Project Summary Powerspan Corp. will pilot test a multi-pollutant technology that converts mercury into mercuric oxide, nitrogen oxide...

255

NETL: Mercury Emissions Control Technologies - Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Integrated Approach to Mercury Control This project will demonstrate a novel multi-pollutant control technology for coal-fired power plants that can reduce...

256

NETL: IEP - Mercury Emissions Control: News Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

News Releases The following are links to various recent news stories related to mercury in the environment. These links are provided strictly as a convenience to the general...

257

NETL: Mercury Emissions Control Technologies - Brominated Sorbents...  

NLE Websites -- All DOE Office Websites (Extended Search)

ESPs, and Fly Ash Use in Concrete Sorbent Technology will test two technologies for mercury removal from flue gas. Their concrete safe brominated sorbent will be tested at...

258

Mercury Emission Measurement at a CFB Plant  

DOE Green Energy (OSTI)

In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.

John Pavlish; Jeffrey Thompson; Lucinda Hamre

2009-02-28T23:59:59.000Z

259

Establishing Measurement Traceability for Gaseous Mercury ...  

Science Conference Proceedings (OSTI)

... NIST already provides mercury traceability to the SI for many solid- and liquid-matrix materials, including fossil fuels, through the SRM program, but ...

2012-10-01T23:59:59.000Z

260

Mercury concentrations in Maine sport fishes  

Science Conference Proceedings (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

262

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

263

Fate of Mercury in Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report describes the results of a bench-scale, laboratory investigation of the fate of flue gas mercury species in wet flue gas desulfurization (FGD) scrubbers that are used for sulfur dioxide (SO2) control in coal-fired power plants. Data collected in the EPA mercury Information Collection Request (ICR), and in research projects sponsored by EPRI show that most wet scrubbers used for SO2 control achieve high removals of oxidized mercury and little or no elemental mercury removal. However, some scru...

2004-03-12T23:59:59.000Z

264

NETL: Mercury Emissions Control Technologies - University of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Using SCR and SNCR NOx Control Technologies Determination of the Speciated Mercury Inventory at Four Coal-Fired Boilers Using Continuous Hg Monitors Longer-Term Testing of...

265

Mercury Sorbent Delivery System for Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) is seeking licensing partners interested in implementing United States Patent Number 7,494,632 entitled "Mercury Sorbent Delivery System for Flue Gas." Disclosed in...

266

NETL: Mercury Emissions Control Technologies - Field Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

or without performance additives, to reduce mercury emissions from a Texas utility burning either Texas lignite or a blend of Texas lignite and subbituminous coals. Sorbents...

267

NETL: Mercury Emissions Control Technologies - Modifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Jointly funded by DOE and the Electric Power Research Institute (EPRI), this project's purpose is to investigate novel approaches of capturing elemental and...

268

The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture  

DOE Green Energy (OSTI)

Trace amounts of mercury are found in all coals. During combustion, or during thermal treatment in advanced coal processes, this mercury is vaporized and can be released to the atmosphere with the ultimate combustion products. This has been a cause for concern for a number of years, and has resulted in a determination by the EPA to regulate and control these emissions. Present technology does not, however, provide inexpensive ways to capture or remove mercury. Mercury that exits the furnace in the oxidized form (HgCl{sub 2}) is known to much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}), principally due to its high solubility in water. Work funded by DOE has helped understand the chemical kinetic processes that lead to mercury oxidation in furnaces. The scenario is as follows. In the flame the mercury is quantitatively vaporized as elemental mercury. Also, the chlorine in the fuel is released as HCl. The direct reaction Hg+HCl is, however, far too slow to be of practical consequence in oxidation. The high temperature region does supports a small concentration of atomic chlorine. As the gases cool (either in the furnace convective passes, in the quench prior to cold gas cleanup, or within a sample probe), the decay in Cl atom is constrained by the slowness of the principal recombination reaction, Cl+Cl+M{yields}Cl{sub 2}+M. This allows chlorine atom to hold a temporary, local superequilibrium concentration . Once the gases drop below about 550 C, the mercury equilibrium shifts to favor HgCl{sub 2} over Hg, and this superequilibrium chlorine atom promotes oxidation via the fast reactions Hg+Cl+M{yields}HgCl+M, HgCl+Cl+M{yields}HgCl{sub 2}+M, and HgCl+Cl{sub 2}{yields}HgCl{sub 2}+Cl. Thus, the high temperature region provides the Cl needed for the reaction, while the quench region allows the Cl to persist and oxidize the mercury in the absence of decomposition reactions that would destroy the HgCl{sub 2}. Promoting mercury oxidation is one means of getting moderate-efficiency, 'free' mercury capture when wet gas cleanup systems are already in place. The chemical kinetic model we developed to describe the oxidation process suggests that in fuel lean gases, the introduction of trace amounts of H{sub 2} within the quench region leads to higher Cl concentrations via chain branching. The amount of additive, and the temperature at the addition point are critical. We investigated this process in a high-temperature quartz flow reactor. The results do indicate a substantial amount of promotion of oxidation with the introduction of relatively small amounts of hydrogen at around 1000 K ({approx}100 ppm relative to the furnace gas). In practical systems the source of this hydrogen is likely to be a small natural gas steam reformer. This would also produce CO, so co-injection of CO was also tested. The CO did not provide any additional promotion, and in some cases led to a reduction in oxidation. We also examined the influence of NO and SO{sub 2} on the promotion process. We did not see any influence under the conditions examined. The present results were for a 0.5 s, isothermal plug flow environment. The next step should be to determine the appropriate injection point for the hydrogen and the performance under realistic temperature quench conditions. This could be accomplished first by chemical kinetic modeling, and then by tunnel flow experiment.

John Kramlich; Linda Castiglone

2007-06-30T23:59:59.000Z

269

Improved method for removing metal vapor from gas streams  

DOE Patents (OSTI)

This invention relates to a process for gas cleanup to remove one or more metallic contaminants present as vapor. More particularly, the invention relates to a gas cleanup process using mass transfer to control the saturation levels such that essentially no particulates are formed, and the vapor condenses on the gas passage surfaces. It addresses the need to cleanup an inert gas contaminated with cadmium which may escape from the electrochemical processing of Integral Fast Reactor (IFR) fuel in a hot cell. The IFR is a complete, self-contained, sodium-cooled, pool-type fast reactor fueled with a metallic alloy of uranium, plutonium and zirconium, and is equipped with a close-coupled fuel cycle. Tests with a model have shown that removal of cadmium from argon gas is in the order of 99.99%. The invention could also apply to the industrial cleanup of air or other gases contaminated with zinc, lead, or mercury. In addition, the invention has application in the cleanup of other gas systems contaminated with metal vapors which may be toxic or unhealthy.

Ahluwalia, R.K.; Im, K.H.

1994-09-19T23:59:59.000Z

270

Vapor spill pipe monitor  

DOE Patents (OSTI)

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

271

Controls on Fluxes of Mercury in Aquatic Food Webs: Application of the Dynamic Mercury Cycling Model to Four Enclosure Experiments w ith Additions of Stable Mercury Isotopes  

Science Conference Proceedings (OSTI)

New controls on utility mercury emissions are under consideration in order to limit human exposure to mercury resulting from fish consumption. Evaluation of such measures requires an understanding of how mercury cycles through lakes and streams. This report describes the application of EPRI's Dynamic Mercury Cycling Model (D-MCM) to experiments involving the addition of stable mercury Hg(II) isotopes to four 10-meter-diameter enclosures in a lake.

2001-09-21T23:59:59.000Z

272

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

273

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward in Mercury Cleanup Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

274

Mercury: the planet and its orbit  

E-Print Network (OSTI)

The planet closest to the Sun, Mercury, is the subject of renewed attention among planetary scientists, as two major space missions will visit it within the next decade. These will be the first to return to Mercury, after the flybys by NASA's Mariner 10 spacecraft in 1974--5. The difficulties of observing this planet from the Earth make such missions necessary for further progress in understanding its origin, evolution and present state. This review provides an overview of what is known about Mercury and what are the major outstanding issues. Mercury's orbital and rotation periods are in a unique 2:3 resonance; an analysis of the orbital dynamics of Mercury is presented here, as well as Mercury's special role in testing theories of gravitation. These derivations provide a good insight into the complexities of planetary motion in general, and how, in the case of Mercury, its proximity to the Sun can be described and exploited in terms of general relativity. Mercury's surface, superficially similar to that of the Moon, presents intriguing differences, representing a different, and more complex history in which the role of early volcanism remains to be clarified and understood. Mercury's interior presents the most important puzzles: it has the highest uncompressed density among the terrestrial planets, implying a very large, mostly iron core. This does not appear to be the completely solidified yet, as Mariner 10 found a planetary magnetic field that is probably generated by an internal dynamo, in a liquid outer layer of the large iron core. The current state of the core, once established, will provide a constraint for its evolution from the time of the planet's formation. Mercury's environment is highly variable. There is only a tenuous exosphere around Mercury; its sourc...

Andr Balogh; Giacomo Giampieri

2002-01-01T23:59:59.000Z

275

Recovery of Mercury From Contaminated Liquid Wastes  

SciTech Connect

The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles.

1998-06-12T23:59:59.000Z

276

Fly ash properties and mercury sorbent affect mercury release from curing concrete  

Science Conference Proceedings (OSTI)

The release of mercury from concrete containing fly ashes from various generator boilers and powdered activated carbon sorbent used to capture mercury was measured in laboratory experiments. Release of gaseous mercury from these concretes was less than 0.31% of the total quantity of mercury present. The observed gaseous emissions of mercury during the curing process demonstrated a dependency on the organic carbon content of the fly ash, with mercury release decreasing with increasing carbon content. Further, lower gaseous emissions of mercury were observed for concretes incorporating ash containing activated carbon sorbent than would be expected based on the observed association with organic carbon, suggesting that the powdered activated carbon more tightly binds the mercury as compared to unburned carbon in the ash. Following the initial 28-day curing interval, mercury release diminished with time. In separate leaching experiments, average mercury concentrations leached from fly ash concretes were less than 4.1 ng/L after 18 h and 7 days, demonstrating that less than 0.02% of the mercury was released during leaching. 25 refs., 4 figs., 5 tabs.

Danold W. Golightly; Chin-Min Cheng; Linda K. Weavers; Harold W. Walker; William E. Wolfe [State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

2009-04-15T23:59:59.000Z

277

2006 Mercury Control Technology Conference Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Technology Conference Mercury Control Technology Conference December 11-13, 2006 Table of Contents Disclaimer Papers and Presentations Introduction Sorbent Injection By-Product Characterization/Management Mercury Oxidation and Co-Removal with FGD Systems Other Mercury Control Technology Panel Discussions Posters New 2006 Phase III Mercury Field Testing Projects Sorbent Injection Pretreatment of Coal Oxidation of Mercury Environmental Studies on Mercury Mercury in CUBs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

278

Milestone Project Demonstrates Innovative Mercury Emissions Reduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Project Demonstrates Innovative Mercury Emissions Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology January 12, 2010 - 12:00pm Addthis Washington, DC - An innovative technology that could potentially help some coal-based power generation facilities comply with anticipated new mercury emissions standards was successfully demonstrated in a recently concluded milestone project at a Michigan power plant. Under a cooperative agreement with the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), WE Energies demonstrated the TOXECON(TM) process in a $52.9million project at the Presque Isle Power Plant in Marquette, Mich. TOXECON is a relatively cost-effective option for achieving significant reductions in mercury emissions and increasing the

279

Mercury removal from solid mixed waste  

SciTech Connect

The removal of mercury from mixed wastes is an essential step in eliminating the temporary storage of large inventories of mixed waste throughout the Department of Energy (DOE) complex. Currently thermal treatment has been identified as a baseline technology and is being developed as part of the DOE Mixed Waste Integrated Program (MWIP). Since thermal treatment will not be applicable to all mercury containing mixed waste and the removal of mercury prior to thermal treatment may be desirable, laboratory studies have been initiated at Oak Ridge National Laboratory (ORNL) to develop alternative remediation technologies capable of removing mercury from certain mixed waste. This paper describes laboratory investigations of the KI/I{sub 2} leaching processes to determine the applicability of this process to mercury containing solid mixed waste.

Gates, D.D.; Morrissey, M.; Chava, K.K.; Chao, K.

1994-12-31T23:59:59.000Z

280

Mercury Emissions Control in Wet FGD Systems  

E-Print Network (OSTI)

The Babcock & Wilcox Company (B&W) and McDermott Technology, Inc. (MTI) have had a continuing program over the past decade for characterizing and optimizing mercury control in flue gas desulfurization (FGD) systems. These efforts have led to the characterization of mercury emissions control at two utility installations and full-scale demonstration (55 MW and 1300 MW) of the effect of a mercury control performance enhancement additive for wet FGD systems. This paper presents the results of the mercury emissions control testing conducted at these two sites. The performance is related to EPA Information Collection Request (ICR) data from an FGD system suppliers perspective, highlighting the need to consider the effects of system design and operation when evaluating mercury emissions control performance.

Paul S. Nolan; Babcock Wilcox; Kevin E. Redinger; Babcock Wilcox; Gerald T. Amrhein; Gregory A. Kudlac

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Photochemical vapor deposition of amorphous silicon photovoltaic devices. Semiannual subcontract report, 1 May 1985-31 October 1985  

DOE Green Energy (OSTI)

Intrinsic, p-type, and n-type hydrogenated amorphous silicon thin-films have been deposited by mercury-sensitized photochemical vapor deposition (photo-CVD) from disilane. The photochemical reactor design includes two chambers separated by a movable uv-transparent Teflon curtain to eliminate deposition on the reactor window. Glass/TCO/p-i-n/metal photovoltaic devices were fabricated by photo-CVD. The efficiency at 87.5 MW/cm/sup 2/(ELH) was 5.1%.

Baron, B.N.; Rocheleau, R.E.; Hegedus, S.S.

1986-06-01T23:59:59.000Z

282

Selective extraction of copper, mercury, silver and palladium ions from water using hydrophobic ionic liquids.  

E-Print Network (OSTI)

K. ; Khan, R. H. Low dose mercury toxicity and human health.Gochfeld, M. Cases of mercury exposure, bioavailability, andto enhanced extraction for mercury. Acknowledgements For

Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; Von Stosch, Moritz; Prausnitz, John M.

2008-01-01T23:59:59.000Z

283

A Mass Balance for Mercury in the San Francisco Bay Area  

E-Print Network (OSTI)

and transformation of mercury. I. Model development andand transformation of mercury. II. Simulation results forFernandez, G. C. J. , Mercury and plants in contaminated

MacLeod, Matthew; McKone, Thomas E.; Mackay, Don

2005-01-01T23:59:59.000Z

284

Geothermal Exploration Using Surface Mercury Geochemistry | Open Energy  

Open Energy Info (EERE)

Surface Mercury Geochemistry Surface Mercury Geochemistry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration Using Surface Mercury Geochemistry Details Activities (5) Areas (3) Regions (0) Abstract: Shallow, soil-mercury surveys can be used effectively in exploration for geothermal resources. Soil-mercury data from six areas in Nevada, California and New Mexico are analyzed using contour maps, histogram and probability graphs. Plotting on probability graphs allows background and anomalous populations to be resolved even when considerable overlap between populations is present. As is shown in several examples, separate soil-mercury populations can be plausibly interpreted. Mercury data can significantly enhance the structural understanding of a prospect

285

Analysis of mercury diffusion pumps  

SciTech Connect

Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. 4 refs.

Dunn, K.A.

1991-12-31T23:59:59.000Z

286

Analysis of mercury diffusion pumps  

SciTech Connect

Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. 4 refs.

Dunn, K.A.

1991-01-01T23:59:59.000Z

287

Treatment of mercury containing waste  

DOE Patents (OSTI)

A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

2002-01-01T23:59:59.000Z

288

Guidelines for Mercury Measurements Using the Ontario Hydro Method  

Science Conference Proceedings (OSTI)

The Clean Air Mercury Rule (CAMR) requires measurement of mercury emissions from coal-fired power plants. The rule requires that all coal-fired power plants emitting >29 lb of mercury per year install continuous mercury measurement technology. Either a continuous mercury monitor (CMM) or sorbent traps meeting the requirements of 40 Code of Federal Regulations (CFR) Part 75, Appendix K, protocols must be used. To ensure the technologies are operating properly, CAMR also requires that a relative accuracy t...

2007-08-28T23:59:59.000Z

289

VAPOR SHIELD FOR INDUCTION FURNACE  

DOE Patents (OSTI)

This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

Reese, S.L.; Samoriga, S.A.

1958-03-11T23:59:59.000Z

290

Vapor adsorption process  

SciTech Connect

The removal of undesirable acid components from sour natural gas is often accomplished by a vapor adsorption process wherein a bed of solid adsorbent material is contacted with an inlet gas stream so that desired components contained in the gas stream are adsorbed on the bed, then regenerated by contact with a heated regeneration gas stream. Adsorbed components are desorbed from the bed and the bed is cooled preparatory to again being contacted with the inlet gas stream. By this process, the bed is contacted, during the regeneration cycle, with a selected adsorbable material. This material has the property of being displaced from the bed by the desired components and has a heat of desorption equal to or greater than the heat of adsorption of the desired components. When the bed is contacted with the inlet gas stream, the selected adsorbable material is displaced by the desired components resulting in the temperature of the bed remaining relatively constant, thereby allowing the utilization of the maximum bed adsorption capacity. (4 claims)

Snyder, C.F.; Casad, B.M.

1973-04-24T23:59:59.000Z

291

Development of Mercury Oxidation Catalyst for Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on a mercury control technology development program co-funded by EPRI, the U.S. Department of Energys National Energy Technology Laboratory (DOE-NETL), and several EPRI-member companies. The mercury control process under development uses catalysts installed downstream of the air heater and particulate control device to promote the oxidation of elemental mercury in flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) ...

2007-03-13T23:59:59.000Z

292

Atmospheric Water Vapor over China  

Science Conference Proceedings (OSTI)

Chinese radiosonde data from 1970 to 1990 are relatively homogeneous in time and are used to examine the climatology, trends, and variability of Chinas atmospheric water vapor content. The climatological distribution of precipitable water (PW) ...

Panmao Zhai; Robert E. Eskridge

1997-10-01T23:59:59.000Z

293

MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM - PRELIMINARY REPORT  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

Zamecnik, J.; Choi, A.

2009-03-25T23:59:59.000Z

294

MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

Zamecnik, J.; Choi, A.

2010-08-18T23:59:59.000Z

295

AN EXPERIMENT ON DEHASIDDHI WITH MERCURY  

E-Print Network (OSTI)

ABSTRACT: The author experimented with the dehasiddhi using mercury. The interesting experiment is narrated in this article. The land of Bharath is the only place which developed the science dealing with the metal remedies for holistic health during the Vedic period when people in other parts of the world continued to use potions and witchcraft to cure diseases of the body. This science in Vedic language is termed rasa sastra. It uses metals such as iron, copper, silver, gold mercury, elements such as iron, copper, silver, gold mercury, elements such as sulphur, mica and other materials such as shells, pearls corals jewels, salts, etc in a purified and processed form for internal

M. P Alexander

1995-01-01T23:59:59.000Z

296

Vapor deposition of hardened niobium  

DOE Patents (OSTI)

A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

1983-04-19T23:59:59.000Z

297

Chemical vapor deposition sciences  

SciTech Connect

Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

1992-12-31T23:59:59.000Z

298

Mercury cleanup efforts intensify | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury cleanup efforts ... Mercury cleanup efforts ... Mercury cleanup efforts intensify Posted: February 11, 2013 - 3:31pm | Y-12 Report | Volume 9, Issue 2 | 2013 Millions of pounds of mercury were required to support Y-12's post-World War II mission of separating lithium isotopes. Cleaning up the toxic heavy metal poses many challenges, but what Y-12 is learning could help conquer mercury pollution worldwide. There's a reason you won't find mercury in many thermometers these days. Mercury is a heavy metal that occurs in several chemical forms, all of which can produce toxic effects in high enough doses. Mercury was used in the column exchange process, which Y-12 employed to produce lithium-6 from 1953 to 1962. Through process spills, system leaks and surface runoff, some 700,000 pounds of mercury have been lost to the

299

Why 25?? and Y-12 mercury losses  

NLE Websites -- All DOE Office Websites (Extended Search)

"25"? and Y-12 mercury losses Recently I learned something new regarding the "shortcut names" or code names for uranium-235 and plutonium-239. It seems the codes used to discuss...

300

NETL: News Release - Meeting Mercury Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

June 18, 2001 June 18, 2001 Meeting Mercury Standards DOE Selects 6 Projects to Develop Cost-Saving Technologies for Curbing Mercury Emissions from Coal Power Plants Power Plant with Fish - MORGANTOWN, WV - With President Bush's National Energy Plan calling for mandatory reductions in the release of mercury from electric power plants - part of the Plan's multi-pollutant reduction strategy - the U.S. Department of Energy today named six new projects to develop innovative technologies that can curb mercury emissions from coal plants more effectively and at a fraction of today's costs. The winning projects were submitted by the University of North Dakota's Energy & Environmental Research Center in Grand Forks; URS Group. Inc., of Austin, TX; CONSOL, Inc., of Library, PA; Southern Research Institute in

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ZZ Mercury Storage Book.indb  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Comment Response Document Environmental Impact Statement Final Final Environmental Impact Statement DOE/EIS-0423 January 2011 Long-Term Management and Storage of Elemental Mercury Long-Term Management and Storage of Elemental Mercury For additional information on this Final Mercury Storage EIS, contact: AVAILABILITY OF THIS FINAL LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY ENVIRONMENTAL IMPACT STATEMENT David Levenstein, Document Manager Office of Environmental Compliance (EM-41) U.S. Department of Energy Post Office Box 2612 Germantown, MD 20874 Website: http://www.mercurystorageeis.com Fax: 877-274-5462 Printed with soy ink on recycled paper Cover Sheet Lead Agency: U.S. Department of Energy (DOE) Cooperating Agencies: U.S. Environmental Protection Agency (EPA)

302

Analysis of Alternative Mercury Control Strategies  

Reports and Publications (EIA)

This analysis responds to a September 14, 2004, request from Chairmen James M. Inhofe and George V. Voinovich asking the Energy Information Administration (EIA) to analyze the impacts of different approaches for removing mercury from coal-fired power plants.

Alan Beamon

2005-01-01T23:59:59.000Z

303

Mercury sorbent delivery system for flue gas  

DOE Patents (OSTI)

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

304

NETL: Mercury Emissions Control Technologies - Utilization of...  

NLE Websites -- All DOE Office Websites (Extended Search)

for mercury removal is produced from coal in a gasification process in-situ at coal burning plant. The main objective of this project is to obtained technical information...

305

Remediation of Mercury and Industrial Contaminants  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

306

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

of Catalysts for Oxidation of Mercury in Flue Gas, Environ.mercury oxidation when the chlorine concentration in flue gas

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

307

Space Debris-de-Orbiting by Vaporization Impulse using Short Pulse Laser  

SciTech Connect

Space debris constitutes a significant hazard to low earth orbit satellites and particularly to manned spacecraft. A quite small velocity decrease from vaporization impulses is enough to lower the perigee of the debris sufficiently for atmospheric drag to de-orbit the debris. A short pulse (picosecond) laser version of the Orion concept can accomplish this task in several years of operation. The ''Mercury'' short pulse Yb:S-FAP laser being developed at LLNL for laser fusion is appropriate for this task.

Early, J; Bibeau, C; Claude, P

2003-09-16T23:59:59.000Z

308

Symplectic Integrator Mercury: Bug Report  

E-Print Network (OSTI)

We report on a problem found in MERCURY, a hybrid symplectic integrator used for dynamical problems in Astronomy. The variable that keeps track of bodies' statuses is uninitialised, which can result in bodies disappearing from simulations in a non-physical manner. Some FORTRAN compilers implicitly initialise variables, preventing simulations from having this problem. With other compilers, simulations with a suitably large maximum number of bodies parameter value are also unaffected. Otherwise, the problem manifests at the first event after the integrator is started, whether from scratch or continuing a previously stopped simulation. Although the problem does not manifest in some conditions, explicitly initialising the variable solves the problem in a permanent and unconditional manner.

K. de Souza Torres; D. R. Anderson

2008-08-04T23:59:59.000Z

309

Why mercury prefers soft ligands  

Science Conference Proceedings (OSTI)

Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+ ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a clear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere.

Riccardi, Demian M [ORNL] [ORNL; Guo, Hao-Bo [ORNL] [ORNL; Gu, Baohua [ORNL] [ORNL; Parks, Jerry M [ORNL] [ORNL; Summers, Anne [University of Georgia, Athens, GA] [University of Georgia, Athens, GA; Miller, S [University of California, San Francisco] [University of California, San Francisco; Liang, Liyuan [ORNL] [ORNL; Smith, Jeremy C [ORNL] [ORNL

2013-01-01T23:59:59.000Z

310

SCR Catalyst Management for Mercury Control  

Science Conference Proceedings (OSTI)

A number of EPRI projects conducted over the past several years have examined the effects of SCR catalyst on mercury speciation. These projects have focused on the various factors influencing mercury oxidation, related to both the flue gas conditions and the catalysts themselves. However, the majority of these studies have only examined the speciation at the SCR inlet and outlet. Much less is known about the interlayer speciation, however, which is very important when developing catalyst management ...

2012-11-16T23:59:59.000Z

311

Article Removal of Mercury by Foam Fractionation Using Surfactin,  

E-Print Network (OSTI)

Abstract: The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ionsInt. J. Mol. Sci. 2011, 12 8246 was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 CMC, while recovery using SDS required 10 CMC. However, the enrichment of mercury

A Biosurfactant; Hau-ren Chen; Chien-cheng Chen; A. Satyanarayana Reddy; Chien-yen Chen; Wun Rong Li; Min-jen Tseng; Hung-tsan Liu; Wei Pan; Jyoti Prakash Maity; Shashi B. Atla

2011-01-01T23:59:59.000Z

312

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Intensity Discharge Lamps Energy Conservation Standard High-Intensity Discharge Lamps Energy Conservation Standard Sign up for e-mail updates on regulations for this and other products High-intensity discharge (HID) lamps include mercury vapor (MV), metal halide (MH), and high-pressure sodium (HPS) lamps. The Department of Energy (DOE) is considering establishing energy conservation standards for certain HID lamps. This rulemaking is mandated by the Energy Policy and Conservation Act (EPCA). (42 USC 6311-6317) Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of public meeting and availability of interim technical support document regarding energy conservation standards for high-intensity discharge lamps. 78 FR 13566 (February 28, 2013).

313

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

Zhao, L; Xiao, Y; Yelin, S F

2007-01-01T23:59:59.000Z

314

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

2007-10-22T23:59:59.000Z

315

On the oscillations in Mercury's obliquity  

E-Print Network (OSTI)

One major objective of MESSENGER and BepiColombo spatial missions is to accurately measure Mercury's rotation and its obliquity in order to obtain constraints on internal structure of the planet. Which is the obliquity's dynamical behavior deriving from a complete spin-orbit motion of Mercury simultaneously integrated with planetary interactions? We have used our SONYR model integrating the spin-orbit N-body problem applied to the solar System (Sun and planets). For lack of current accurate observations or ephemerides of Mercury's rotation, and therefore for lack of valid initial conditions for a numerical integration, we have built an original method for finding the libration center of the spin-orbit system and, as a consequence, for avoiding arbitrary amplitudes in librations of the spin-orbit motion as well as in Mercury's obliquity. The method has been carried out in two cases: (1) the spin-orbit motion of Mercury in the 2-body problem case (Sun-Mercury) where an uniform precession of the Keplerian orbital plane is kinematically added at a fixed inclination (S2K case), (2) the spin-orbit motion of Mercury in the N-body problem case (Sun and planets) (Sn case). We find that the remaining amplitude of the oscillations in the Sn case is one order of magnitude larger than in the S2K case, namely 4 versus 0.4 arcseconds (peak-to-peak). The mean obliquity is also larger, namely 1.98 versus 1.80 arcminutes, for a difference of 10.8 arcseconds. These theoretical results are in a good agreement with recent radar observations but it is not excluded that it should be possible to push farther the convergence process by drawing nearer still more precisely to the libration center.

E. Bois; N. Rambaux

2007-09-07T23:59:59.000Z

316

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

317

DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Issues Final Mercury Storage Environmental Impact Statement: DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage January 19, 2011 - 12:00pm Addthis Media Contact (202) 586-4940 WASHINGTON - The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations. Based on these factors, DOE identified the Waste Control Specialists, LLC, site near Andrews, Texas, as the preferred alternative for long-term management and storage of mercury. DOE will consider the environmental impact information presented in this

318

Laser altimeter measurements from MESSENGER's recent mercury flybys  

E-Print Network (OSTI)

The performance of the Mercury Laser Altimeter is reported from MESSENGER's flybys of Mercury in January and October 2008. The instrument ranged to 600 km at >60deg incidence angle and 1600 km in nadir direction.

Sun, Xiaoli

319

Seismic effects of the Caloris basin impact, Mercury  

E-Print Network (OSTI)

Striking geological features on Mercury's surface have been linked to tectonic disruption associated with the Caloris impact and have the potential to provide information on the interior structure of Mercury. The unusual ...

L, Jiangning

2011-01-01T23:59:59.000Z

320

Mitigation and Remediation of Mercury Contamination at the Y...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and...

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

VEE-0020 - In the Matter of Mercury Fuel Service, Inc.  

Energy.gov (U.S. Department of Energy (DOE))

On April 9, 1996, Mercury Fuel Service, Inc. (Mercury) of Waterbury, Connecticut, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....

322

Mercurial commitments with applications to zero-knowledge sets  

Science Conference Proceedings (OSTI)

We introduce a new flavor of commitment schemes, which we call mercurial commitments. Informally, mercurial commitments are standard commitments that have been extended to allow for soft decommitment. Soft decommitments, on the one hand, ...

Melissa Chase; Alexander Healy; Anna Lysyanskaya; Tal Malkin; Leonid Reyzin

2005-05-01T23:59:59.000Z

323

Removal of mercury from coal via a microbial pretreatment process  

Science Conference Proceedings (OSTI)

A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

2011-08-16T23:59:59.000Z

324

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

325

NIST: Mercury, Atomic Ref. Data for Elect. Struct. Calc.  

Science Conference Proceedings (OSTI)

Table of contents logo, Atomic Reference Data for Electronic Structure Calculations. Mercury. Key to notation | HTML table ...

326

Mercury in Nelsons Sparrow Subspecies at Breeding Sites  

E-Print Network (OSTI)

Background: Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelsons Sparrows (Ammodramus nelsoni) use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelsons Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies.

Virginia L Winder; Steven D. Emslie

2012-01-01T23:59:59.000Z

327

U.S. Mercury Deposition Under Alternative Regulatory Scenarios  

Science Conference Proceedings (OSTI)

The Federal Clean Air Mercury Rule regulates electric utility mercury emissions while permitting individual states to enact stricter rules at their discretion. Computer modeling has shown how mercury deposition patterns will change if all regulated utility power plants follow the Federal rule, vs. alternative state rules. These patterns of deposition can be compared to the limiting case: what if all U.S. utility mercury emissions were zeroed out? The findings show that regulations stricter than the Feder...

2007-12-14T23:59:59.000Z

328

Selective Catalytic Reduction Mercury Oxidation Data to Support Catalyst Management  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) mercury oxidation can be pivotal for Mercury and Air Toxics Standards compliance, especially for those units that rely on co-benefits as their primary method of mercury control. Much work has been done historically to understand the mercury behavior across SCRs, especially as a function of operating conditions, and in particular, flue gas composition. The present work seeks to integrate the accumulated knowledge into a practical document that will aid utilities in ...

2013-11-13T23:59:59.000Z

329

MERCURY CONTROL FOR MWCs USING THE SODIUM TETRASULFIDE PROCESS  

E-Print Network (OSTI)

technologies for mercury control for flue gases of Municipal Waste Combustors (MWCs) not only ecological hydrochloric acid (HCl) and elemental mercury (Hg") under oxidizing conditions of the off-gases downstream to the decreasing gas temperature, the elemental mercury is able to react with other flue gas components. The main

Columbia University

330

PEER-REVIEW An Experimental Study on Mercury Sorption by  

E-Print Network (OSTI)

flue gases. These studies have shown the relative ease of controlling oxidized mercury (specifically, Nashville, 1996 8. B. Hall, O . Lindqvist, and E. Ljungstrom, "Mercury Chemistry in Simulated Flue Gases municipal waste combustor (MWC), flue gas mercury is mainly found as HgCI2. They postulated thatHgCl2

Columbia University

331

Mercury and Dioxin Control for Municipal Waste Combustors Anthony Licata  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

332

National Waste Processing Conference Proceedings ASME 1994 ACID GASES, MERCURY,  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

333

Mercury Removal Characteristics of Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

The standard Ontario Hydro Method (OHM) was used into the flue gas mercury sampling before and after fabric filter (FF)/ electrostatic precipitator (ESP) locations in coal-fired power stations in China, and then various mercury speciation, Hg0, Hg2+ ... Keywords: coal-fired power plant, mercury, fabric filter, electrostatic precipitator

Yang Liguo, Fan Xiaoxu, Duanyu Feng, Wang Yunjun

2013-01-01T23:59:59.000Z

334

Fission modes of mercury isotopes  

E-Print Network (OSTI)

Background: Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asym- metric fission in 180 Hg [1] have stimulated theoretical interest in the mechanism of fission in heavy nuclei. Purpose: We study fission modes and fusion valleys in 180 Hg and 198 Hg to reveal the role of shell effects in pre-scission region and explain the experimentally observed fragment mass asymmetry and its variation with A. Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. Results: The potential energy surfaces in multi-dimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180 Hg and 198 Hg. The asymmetric fission valleys - well separated from fusion valleys associated with nearly spherical fragments - are found in in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits. Conclusions: The energy density functionals SkM\\ast and D1S give a very consistent description of the fission process in 180 Hg and 198 Hg. We predict a transition from asymmetric fission in 180 Hg towards more symmetric distribution of fission fragments in 198 Hg. For 180 Hg, both models yield 100 Ru/80 Kr as the most probable split. For 198 Hg, the most likely split is 108 Ru/90 Kr in HFB-D1S and 110 Ru/88 Kr in HFB-SkM\\ast.

M. Warda; A. Staszczak; W. Nazarewicz

2012-05-25T23:59:59.000Z

335

Fission Modes of Mercury Isotopes  

Science Conference Proceedings (OSTI)

Background: Recent experiments on -delayed fission in the mercury-lead region and the discovery of asymmetric fission in 180Hg [A. N. Andreyev et al., Phys. Rev. Lett. 105, 252502 (2010)] have stimulated theoretical interest in the mechanism of fission in heavy nuclei. Purpose: We study fission modes and fusion valleys in 180Hg and 198Hg to reveal the role of shell effects in the prescission region and explain the experimentally observed fragment mass asymmetry and its variation with A. Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. Results: The potential energy surfaces in multidimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180Hg and 198Hg. The asymmetric fission valleys well separated from fusion valleys associated with nearly spherical fragments are found in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits. Conclusions: The energy density functionals SkM and D1S give a very consistent description of the fission process in 180Hg and 198Hg. We predict a transition from asymmetric fission in 180Hg toward a more symmetric distribution of fission fragments in 198Hg. For 180Hg, both models yield 100Ru/80Kr as the most probable split. For 198Hg, the most likely split is 108Ru/90Kr in HFB-D1S and 110Ru/88Kr in HFB-SkM .

Warda, M. [Maria Curie-Sk?odowska University-Poland; Staszczak, A. [Maria Curie-Sklodowska University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw

2012-01-01T23:59:59.000Z

336

Mercury-free fluorescent lighting  

Science Conference Proceedings (OSTI)

A brief comparative review of possible mercury free fluorescent lighting technologies is presented, including rare-gas positive column discharges, molecular discharges, and dielectric barrier discharges. Detailed experimental results on xenon positive column discharges will then be considered. In order to judge whether xenon-based discharges are a viable UV source it is necessary to measure the radiant emittance (power per unit area) for the vacuum ultraviolet (VUV) resonance xenon emission at 147 nm. Two techniques to determine the VUV radiant emittance have been developed and applied to xenon discharges. One method combines the measured resonance level density using absorption spectroscopy and a calculation of the trapped decay rate for the resonance radiation to arrive at the radiant emittance at 147 nm. A second method utilizes a direct measurement of the radiance (power per unit area per unit solid angle) at 147 nm using a calibrated VUV photodiode, and a calculation of the relative angular distribution of the resonance radiation to determine the radiant emittance. In both techniques a simulation of the transport of resonance radiation is key to determining the radiant emittance.

Doughty, D.A. [General Electric Corporate Research and Development, Schenectady, NY (United States)

1996-05-01T23:59:59.000Z

337

Mixed Waste Focus Area Mercury Working Group: An integrated approach to mercury waste treatment and disposal  

SciTech Connect

In May 1996, the US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Working Group (HgWG). The HgWG was established to address and resolve the issues associated with mercury contaminated mixed wastes. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation removal technologies for the treatment of mercury and mercury contaminated mixed waste. The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. The focus of the HgWG is to better establish the mercury related treatment technologies at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate both the amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded that will address DOE`s needs for separation removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the HgWG to date through these various activities.

Conley, T.B.; Morris, M.I.; Osborne-Lee, I.W.

1998-01-01T23:59:59.000Z

338

The mixed waste focus area mercury working group: an integrated approach for mercury treatment and disposal  

SciTech Connect

In May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG), which was established to address and resolve the issues associated with mercury- contaminated mixed wastes. Three of the first four technology deficiencies identified during the MWFA technical baseline development process were related to mercury amalgamation, stabilization, and separation/removal. The HgWG will assist the MWFA in soliciting, identifying, initiating, and managing all the efforts required to address these deficiencies. The focus of the HgWG is to better establish the mercury-related treatment needs at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. The team will initially focus on the sites with the most mercury-contaminated mixed wastes, whose representatives comprise the HgWG. However, the group will also work with the sites with less inventory to maximize the effectiveness of these efforts in addressing the mercury- related needs throughout the entire complex.

Conley, T.B.; Morris, M.I. [Oak Ridge National Lab., TN (United States); Holmes-Burns, H. [Westinghouse Savannah River Co., Aiken, SC (United States); Petersell, J. [AIMS, Inc., Golden, CO (United States); Schwendiman, L. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

1997-02-01T23:59:59.000Z

339

Atomic vapor laser isotope separation process  

DOE Patents (OSTI)

A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

Wyeth, R.W.; Paisner, J.A.; Story, T.

1990-08-21T23:59:59.000Z

340

Distribution of Tropical Tropospheric Water Vapor  

Science Conference Proceedings (OSTI)

Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence ...

De-Zheng Sun; Richard S. Lindzen

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Atmospheric Water Vapor Characteristics at 70N  

Science Conference Proceedings (OSTI)

Using an extensive rawinsonde archive, characteristics of Arctic water vapor and its transports at 70N are examined for the period 19741991. Monthly-mean profiles and vertically integrated values of specific humidity and meridional vapor fluxes ...

Mark C. Serreze; Roger G. Barry; John E. Walsh

1995-04-01T23:59:59.000Z

342

Vapor Pressure Measurement of Supercooled Water  

Science Conference Proceedings (OSTI)

A new dewpoint hygrometer was developed for subfreezing temperature application. Vapor pressure of supercooled water was determined by measuring temperatures at the dew-forming surface and the vapor source ice under the flux density balance, and ...

N. Fukuta; C. M. Gramada

2003-08-01T23:59:59.000Z

343

Mercury levels in Lake Powell. Bioamplification of mercury in man-made desert reservoir  

SciTech Connect

Flameless atomic absorption analyses of samples from Lake Powell yield mean mercury levels in ppb of 0.01 in water, 30 in bottom sediments, 10 in shoreline substrates, 34 in plant leaves, 145 in plant debris, 28 in algae, 10 in crayfish, and 232 in fish muscle. Trout were unique in having lower concentrations in muscle than in highly vascularized blood tissues. Concentrations increased with increased body weight and higher levels on the food chain. Muscle of some large fish over 2 kg whole body weight exceeded 500 ppb. Bioamplification of mercury up the food chain and association of mercury with organic matter are demonstrated.

Potter, L.; Kidd, D.; Standiford, D.

1975-01-01T23:59:59.000Z

344

Vapor phase modifiers for oxidative coupling  

DOE Patents (OSTI)

Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, Barbara K. (Charleston, WV)

1991-01-01T23:59:59.000Z

345

LOW PRESSURE CHEMICAL VAPOR DEPOSITION OF POLYSILICON  

E-Print Network (OSTI)

THEORY The mass transport processes in low pressure chemical vapor deposition (LPCVD) are similar to those occuring in catalytic reactors

Gieske, R.J.

2011-01-01T23:59:59.000Z

346

October 2001 Mercury Report of Earth Engineering Center to New York Academy of Sciences SOURCES AND MATERIAL BALANCE OF MERCURY  

E-Print Network (OSTI)

of mercury from MWC flue gases. After MACT controls reduce total mercury emission rates by 90% or greater not address any chemical transformations affecting mercury in soil, water or sediments (oxidation, reduction Speciation in Flue Gases: Overcoming the Analytical Difficulties," Brooks Rand Ltd., Seattle, WA, Fall 1991

Columbia University

347

NETL: Mercury Emissions Control Technologies - Advanced Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

348

EVALUATION OF MERCURY COOLED BREEDER REACTORS  

SciTech Connect

A technical and economic evaluation of a mercury-cooled fast breeder reactor is presented. The objectives of the program were to establish the technical feasibility of a fast breeder reactor cooled with boiling mercury and to evaluate the long-range potential of such a reactor power plant for production of economic power. Details of the conceptual design of a 100-Mw(e) reactor and system are discussed. The power cost from a mercury cooled fast breeder reactor was estimated as 21.4 mills/kwh which is competitive with the power cost for the initial Enrico Fermi plant. It was concluded that this reactor concept is technically feasible and has promising long-range economic potential. (M.C.G.)

Battles, D.W.

1960-12-14T23:59:59.000Z

349

Optimized Parameters for a Mercury Jet Target  

Science Conference Proceedings (OSTI)

A study of target parameters for a high-power, liquid mercury jet target system for a neutrino factory or muon collider is presented. Using the MARS code, we simulate particle production initiated by incoming protons with kinetic energies between 2 and 100 GeV. For each proton beam energy, we maximize production by varying the geometric parameters of the target: the mercury jet radius, the incoming proton beam angle, and the crossing angle between the mercury jet and the proton beam. The number of muons surviving through an ionization cooling channel is determined as a function of the proton beam energy. We optimize the mercury jet target parameters: the mercury jet radius, the incoming proton beam angle and the crossing angle between the mercury jet and the proton beam for each proton beam energy. The optimized target radius varies from about 0.4 cm to 0.6 cm as the proton beam energy increases. The optimized beam angle varies from 75 mrad to 120 mrad. The optimized crossing angle is near 20 mrad for energies above 5 GeV. These values differ from earlier choices of 67 mrad for the beam angle and 33 mrad for the crossing angle. These new choices for the beam parameters increase the meson production by about 20% compared to the earlier parameters. Our study demonstrates that the maximum meson production efficiency per unit proton beam power occurs when the proton kinetic energy is in the range of 5-15 GeV. Finally, the dependence on energy of the number of muons at the end of the cooling channel is nearly identical to the dependence on energy of the meson production 50 m from the target. This demonstrates that the target parameters can be optimized without the additional step of running the distribution through a code such as ICOOL that simulates the bunching, phase rotation, and cooling.

Ding, X.; Kirk, H.

2010-12-01T23:59:59.000Z

350

Vapor Pressures and Heats of Vaporization of Primary Coal Tars  

Office of Scientific and Technical Information (OSTI)

/ PC92544-18 / PC92544-18 VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS FINAL REPORT Grant Dates: August, 1992 - November, 1996 Principal Authors: Eric M. Suuberg (PI) and Vahur Oja Report Submitted: April, 1997 Revised: July, 1997 Grant Number: DE-FG22-92PC92544 Report Submitted by: ERIC M. SUUBERG DIVISION OF ENGINEERING BROWN UNIVERSITY PROVIDENCE, RI 02912 TEL. (401) 863-1420 Prepared For: U. S. DEPT. OF ENERGY FEDERAL ENERGY TECHNOLOGY CENTER P.O. BOX 10940 PITTSBURGH, PA 15236 DR. KAMALENDU DAS, FETC, MORGANTOWN , WV TECHNICAL PROJECT OFFICER "US/DOE Patent Clearance is not required prior to the publication of this document" ii United States Government Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any

351

A proposed sensor deployment to investigate biogeochemical controls on mercury cycling in Mugu Lagoon, California (CON 5)  

E-Print Network (OSTI)

biogeochemical controls on mercury cycling in Mugu Lagoon,of UCLA, is impaired for mercury, a potent neurotoxin, whichhealth and wildlife t o Mercury methylation is the process

Sarah Rothenberg; Jenny Jay

2006-01-01T23:59:59.000Z

352

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

353

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2012-05-01T23:59:59.000Z

354

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2008-10-14T23:59:59.000Z

355

NETL: IEP - Mercury Emissions Control: Emissions Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Control Emissions Characterization In anticipation of the 1990 CAAAs, specifically the draft Title III regarding the characterization of potential HAPs from electric steam generating units, DOE initiated a new Air Toxics Program in 1989. The DOE Mercury Measurement and Control Program evolved as a result of the findings from the comprehensive assessment of hazardous air pollutants studies conducted by DOE from 1990 through 1997. DOE, in collaboration with EPRI, performed stack tests at a number of coal-fired power plants (identified on map below) to accurately determine the emission rates of a series of potentially toxic chemicals. These tests had not been conducted previously because of their cost, about $1 million per test, so conventional wisdom on emissions was based on emission factors derived from analyses of coal. In general, actual emissions were found to be about one-tenth previous estimates, due to a high fraction of the pollutants being captured by existing particulate control systems. These data resulted in a decision by EPA that most of these pollutants were not a threat to the environment, and needed no further regulation at power plants. This shielded the coal-fired power industry from major (tens of millions) costs that would have resulted from further controlling these emissions. However, another finding of these studies was that mercury was not effectively controlled in coal-fired utility boiler systems. Moreover, EPA concluded that a plausible link exists between these emissions and adverse health effects. Ineffective control of mercury by existing control technologies resulted from a number of factors, including variation in coal composition and variability in the form of the mercury in flue gases. The volatility of mercury was the main contributor for less removal, as compared to the less volatile trace elements/metals which were being removed at efficiencies over 99% with the fly ash. In addition, it was determined that there was no reliable mercury speciation method to accurately distinguish between the elemental and oxidized forms of mercury in the flue gas. These two forms of mercury respond differently to removal techniques in existing air pollution control devices utilized by the coal-fired utility industry.

356

Enhanced Mercury Removal by Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report provides results from testing conducted in 2005 as part of three EPRI co-funded projects that are aimed at enhancing the capture of mercury in flue gas from coal-fired power boilers when scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) under Cooperative Agreement DE-FC26-01NT41185, "Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD," as well as by two...

2006-03-07T23:59:59.000Z

357

MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

Ye Zhuang; Stanley J. Miller

2005-05-01T23:59:59.000Z

358

Mercury in mussels of Bellingham Bay, Washington, (USA)  

SciTech Connect

Laboratory experiments demonstrated the existence of metallothionein-like, low molecular weight, mercury-binding proteins in the marine mussel Mytilus edulis. Relatively large quantities of mercury were associated with such proteins in gills and digestive gland, the organs of interest in the present study. /sup 14/C-incorporation indicated induction of the protein in gills, but not in digestive gland. Mercury in digestive gland may have bound to existing metal-binding proteins. Short-term incorporation of mercury occurred primarily in gills. The induction of mercury-binding proteins in gills may have facilitated detoxification of mercury at the site of uptake. Mercury in mussels of Bellingham Bay were shown to have decreased from 1970 to 1978, the collection date for the present study. Mercury levels were low but approximately three times higher than those from uncontaminated areas. Mercury associated with the mercury-binding protein of gills and digestive glands of Bellingham Bay mussels were low and reflected the concentrations measured in the whole tissues. However, the highest concentration of mercury was associated with the low molecular pool components, the identity of which is not presently known.

Roesijadi, G.; Drum, A.S.; Bridge, J.R.

1978-11-01T23:59:59.000Z

359

FY09 assessment of mercury reduction at SNL/NM.  

Science Conference Proceedings (OSTI)

This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

McCord, Samuel Adam

2010-02-01T23:59:59.000Z

360

NETL: Mercury Emissions Control Technologies - Full- Scale Testing of  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Testing of Enhanced Mercury Control in Wet FGD Full-Scale Testing of Enhanced Mercury Control in Wet FGD The goal of this project is to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The two specific objectives of this project are 1) ninety percent (90%) total mercury removal and 2) costs below 1/4 to 1/2 of today's commercially available activated carbon mercury removal technologies. Babcock and Wilcox and McDermott Technology, Inc's (B&W/MTI's) will demonstrate their wet scrubbing mercury removal technology (which uses very small amounts of a liquid reagent to achieve increased mercury removal) at two locations burning high-sulfur Ohio bituminous coal: 1) Michigan South Central Power Agency's (MSCPA) 55 MWe Endicott Station located in Litchfield, Michigan and 2) Cinergy's 1300 MWe Zimmer Station located near Cincinnati, Ohio.

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NETL: News Release - Innovative Mercury Removal Technique Shows Early  

NLE Websites -- All DOE Office Websites (Extended Search)

August 5, 2003 August 5, 2003 Innovative Mercury Removal Technique Shows Early Promise Photochemical Process Developed in Federal Lab Removes Mercury from Flue Gas - NETL scientist Evan Granite prepares a lab test of the UV mercury removal process. - NETL scientist Evan Granite prepares for a lab test of the UV mercury removal process. MORGANTOWN, WV - A promising technology to remove mercury from coal-fired power plants -- dubbed the "GP-254 Process" -- has been developed and is currently being tested at the Department of Energy's National Energy Technology Laboratory (NETL). Newly patented, the GP-254 Process enhances mercury removal using ultraviolet light to induce various components of power plant stack gas to react with the mercury, and changes the

362

NETL: Mercury Emissions Control Technologies - Bench Scale Kinetics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench Scale Kinetics of Mercury Reactions in FGD Liquors Bench Scale Kinetics of Mercury Reactions in FGD Liquors When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury can not. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have shown substantial re-emissions from some FGD systems. The goal of this project is to develop a fundamental understanding of the aqueous chemistry of mercury (Hg) absorbed by wet flue gas desulfurization (FGD) scrubbing liquors. Specifically, the project will determine the chemical reactions that oxidized mercury undergoes once absorbed, the byproducts of those reactions, and reaction kinetics.

363

NETL: Mercury Emissions Control Technologies - Development of Comprehensive  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Testing of Mercury Control Via Sorbent Injection Full-Scale Testing of Mercury Control Via Sorbent Injection DOE has identified technologies (based on past DOE and other R&D organizations' mercury measurement and control achievements) that are expected to be important in developing possible strategies on mercury control for the coal-fired electric utility industry. To address critical questions related to cost and efficiency of these mercury control technologies, DOE has funded the first of a kind large-scale initiative aimed at testing and evaluating large-scale mercury control technologies for coal-based power systems. These tests will collect cost and performance data with parametric and long term field experiments at power plants with existing air pollution control devices (APCDs) utilized to control other pollutants as well as mercury in hopes of providing the cheapest control options for the utility industry in mid-term application (5 to 10 years).

364

Mercury Handling for the Target System for a Muon Collider  

Science Conference Proceedings (OSTI)

The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes and waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.

Graves, Van B [ORNL; Mcdonald, K [Princeton University; Kirk, H. [Brookhaven National Laboratory (BNL); Weggel, Robert [Particle Beam Laser, Inc.; Souchlas, Nicholas [Particle Beam Laser, Inc.; Sayed, H [Brookhaven National Laboratory (BNL); Ding, X [University of California, Los Angeles

2012-01-01T23:59:59.000Z

365

Means and method for vapor generation  

DOE Patents (OSTI)

A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

Carlson, Larry W. (Oswego, IL)

1984-01-01T23:59:59.000Z

366

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

Brayton Point Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of the impacts of future mercury regulations to Brayton Point Unit 1, including performance, estimated cost, and operation data. This unit has variable (29-75%) native mercury removal, thus it was important to understand the impacts of process variables and activated carbon on mercury capture. The team responsible for executing this program included: (1) Plant and PG&E National Energy Group corporate personnel; (2) Electric Power Research Institute (EPRI); (3) United States Department of Energy National Energy Technology Laboratory (DOE/NETL); (4) ADA-ES, Inc.; (5) NORIT Americas, Inc.; (6) Apogee Scientific, Inc.; (7) TRC Environmental Corporation; (8) URS Corporation; (9) Quinapoxet Solutions; (10) Energy and Environmental Strategies (EES); and (11) Reaction Engineering International (REI). The technical support of all of these entities came together to make this program achieve its goals. Overall, the objectives of this field test program were to determine the impact of activated carbon injection on mercury control and balance-of-plant processes on Brayton Point Unit 1. Brayton Point Unit 1 is a 250-MW unit that fires a low-sulfur eastern bituminous coal. Particulate control is achieved by two electrostatic precipitators (ESPs) in series. The full-scale tests were conducted on one-half of the flue gas stream (nominally 125 MW). Mercury control sorbents were injected in between the two ESPs. The residence time from the injection grid to the second ESP was approximately 0.5 seconds. In preparation for the full-scale tests, 12 different sorbents were evaluated in a slipstream of flue gas via a packed-bed field test apparatus for mercury adsorption. Results from these tests were used to determine the five carbon-based sorbents that were tested at full-scale. Conditions of interest that were varied included SO{sub 3} conditioning on/off, injection concentrations, and distribution spray patterns. The original test plan called for parametric testing of NORIT FGD carbon at 1, 3, and 10 lbs/MMacf. These injection concentrations were estimated based on results from the Pleasant Prairie tests that showed no additional mercury removal when injection concentrations were increased above 10 lbs/MMacf. The Brayton Point parametric test data indicated that higher injection concentrations would achieve higher removal efficiencies and should be tested. The test plan was altered to include testing at 20 lbs/MMacf. The first test at this higher rate showed very high removal across the second ESP (>80%). Unlike the ''ceiling'' phenomenon witnessed at Pleasant Prairie, increasing sorbent injection concentration resulted in further capture of vapor-phase mercury. The final phase of field-testing was a 10-day period of continuous injection of NORIT FGD carbon. During the first five days, the injection concentration was held at 10 lbs/MMacf, followed by nominally five days of testing at an injection concentration of 20 lbs/MMacf. The mercury removal, as measured by the semi-continuous emission monitors (S-CEM), varied between 78% and 95% during the 10 lbs/MMacf period and increased to >97% when the injection concentration was increased to 20 lbs/MMacf. During the long-term testing period, mercury measurements following EPA's draft Ontario Hydro method were conducted by TRC Environmental Corporation at both 10 and 20 lbs/MMacf test conditions. The Ontario Hydro data showed that the particulate mercury removal was similar between the two conditions of 10 or 20 lbs/MMacf and removal efficiencies were greater than 99%. Elemental mercury was not detected in any samples, so no conclusions as to its removal can be drawn. Removal of oxidized mercury, on the other hand, increased from 68% to 93% with the higher injection concentration. These removal rates agreed well with the S-CEM results.

Michael D. Durham

2005-03-17T23:59:59.000Z

367

Application of chemical kinetics to mercury cycling in the aquatic environment: Photoreduction of mercury(II) and binding of mercury(II) and methylmercury(+) to natural ligands .  

E-Print Network (OSTI)

??The thesis comprises four main chapters on chemical reactions and kinetics of some of the processes involved in the global mercury cycle. In the first (more)

Ababneh, Fuad A

2013-01-01T23:59:59.000Z

368

The Homogeneous Forcing of Mercury Oxidation to Provide Low-Cost Capture  

DOE Green Energy (OSTI)

Oxidized mercury formed in combustors (e.g., HgCl{sub 2}) is much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}) than elemental mercury. This is principally due to the high solubility of the oxidized form in water. Work over the last several years in our laboratory and elsewhere has identified the general outlines of the homogeneous chemistry of oxidation. The goal of the work reported here is to make use of this knowledge of the oxidation mechanism to devise simple and inexpensive ways to promote the oxidation. The hypothesis is that simple fuels such as hydrogen or CO can promote oxidation via the free radicals they generate during their decomposition. These free radicals then promote the formation of Cl from HCl via reactions such as OH+HCl {yields} H{sub 2}O+Cl. The Cl (and Cl{sub 2} derived from Cl recombination) are considered the principal oxidizing species. In our studies, mercury vapor is exposed to HCl under isothermal conditions in a gas containing N{sub 2}, O{sub 2}, and H{sub 2}O. The experiments systematically explore the influence of reaction temperature, HCl concentration, and H{sub 2}O concentration. These baseline conditions are then perturbed by the addition of varying amounts of H{sub 2}, CO, and H{sub 2}/CO added jointly. The following report presents the results of a literature review associated with the dissertation of the student supported by the program. This outlines the state-of-the-art in mercury behavior. It then describes the experimental facilities and the results of tests involving the promotion of the oxidation reaction by H{sub 2}, CO, and H{sub 2}/CO combinations. These results indicate a substantial enhancement of oxidation under isothermal conditions at 900-1000 K, while the additives inhibit oxidation at 1200 K. The next step is to determine whether the existing chemical kinetic models of mercury oxidation are capable of reproducing this behavior. These models can then be used to extrapolate the findings to nonisothermal conditions typical of boiler environments. This would provide guidance on where to inject the oxidation promoters in a practical boiler, and how much promoter is required.

John C. Kramlich; Linda Castiglone

2006-04-01T23:59:59.000Z

369

NETL: IEP - Mercury Emissions Control: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Drivers Regulatory Drivers The Clean Air Act Amendments of 1990 (CAAA) brought about new awareness regarding the overall health-effects of stationary source fossil combustion emissions. Title III of the CAAA identified 189 pollutants, including mercury, as hazardous or toxic and required the Environmental Protection Agency (EPA) to evaluate their emissions by source, health effects and environmental implications, including the need to control these emissions. These pollutants are collectively referred to as air toxics or hazardous air pollutants (HAPs). The provisions in Title III specific to electric generating units (EGU) were comprehensively addressed by DOE's National Energy Technology Laboratory (NETL) and the Electric Power Research Institute (EPRI) in collaborative air toxic characterization programs conducted between 1990 and 1997. This work provided most of the data supporting the conclusions found in EPA's congressionally mandated reports regarding air toxic emissions from coal-fired utility boilers; the Mercury Study Report to Congress (1997)1 and the "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units -- Final Report to Congress" (1998).2 The first report identified coal-fired power plants as the largest source of human-generated mercury emissions in the U.S. and the second concluded that mercury from coal-fired utilities was the HAP of "greatest potential concern" to the environment and human health that merited additional research and monitoring.

370

Mercury and Other Trace Metals in Coal  

Science Conference Proceedings (OSTI)

This document summarizes the trace metal analyses of more than 150 as-received bituminous, sub-bituminous, and lignite coal samples from full-scale power plants. Analyses for mercury, arsenic, beryllium, cadmium, chromium, copper, nickel, and lead offer a benchmark for utilities to compare and contrast their own estimates and measurements of trace element content in coal.

1997-02-25T23:59:59.000Z

371

Coal Biomodification to Reduce Mercury Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4132 heino.beckert@netl.doe.gov Coal BiomodifiCation to ReduCe meRCuRy emissions Description In partnership with a number of...

372

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

Sharon Sjostrom

2008-06-30T23:59:59.000Z

373

Impacts of NOx Controls on Mercury Controllability  

Science Conference Proceedings (OSTI)

Past tests have led researchers and air pollution regulators to hypothesize that nitrogen oxides (NOx) controls can enhance mercury capture by particulate collection devices and sulfur dioxide (SO2) scrubbers. This technology review presents results obtained to date from a comprehensive program designed to confirm, qualify, and quantify these hypotheses.

2002-03-13T23:59:59.000Z

374

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

375

Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria  

Science Conference Proceedings (OSTI)

Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

Hu, Haiyan [ORNL] [ORNL; Lin, Hui [ORNL] [ORNL; Zheng, Wang [ORNL] [ORNL; Tomanicek, Stephen J [ORNL] [ORNL; Johs, Alexander [ORNL] [ORNL; Feng, Xinbin [ORNL] [ORNL; Elias, Dwayne A [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Gu, Baohua [ORNL] [ORNL

2013-01-01T23:59:59.000Z

376

Mercury Control with Calcium-Based Sorbents and Oxidizing Agents  

SciTech Connect

This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including the synergistic enhancement of mercury removal by calcium.

Thomas K. Gale

2005-07-01T23:59:59.000Z

377

Method and apparatus for dispensing small quantities of mercury from evacuated and sealed glass capsules  

DOE Patents (OSTI)

A technique is disclosed for opening an evacuated and sealed glass capsule containing a material that is to be dispensed which has a relatively high vapor pressure such as mercury. The capsule is typically disposed in a discharge tube envelope. The technique involves the use of a first light source imaged along the capsule and a second light source imaged across the capsule substantially transversely to the imaging of the first light source. Means are provided for constraining a segment of the capsule along its length with the constraining means being positioned to correspond with the imaging of the second light source. These light sources are preferably incandescent projection lamps. The constraining means is preferably a multiple looped wire support. 6 figs.

Grossman, M.W.; George, W.A.; Pai, R.Y.

1985-08-13T23:59:59.000Z

378

The Effect of Wildfire on Soil Mercury Concentrations in Southern California Watersheds  

E-Print Network (OSTI)

G. J. (2007). Release of mercury from Rocky Mountain forestSlemr, F. (2001). Gaseous mercury emissions from a fire inMontesdeoca, M. R. (2008). Mercury transport in response to

2010-01-01T23:59:59.000Z

379

Contribution of Iron-Reducing Bacteria to Mercury Methylation in Marine Sediments  

E-Print Network (OSTI)

AND R. P. MASON. 2006. Mercury methylation by dissimilatoryPRUCHA, AND G. MIERLE. 1991. Mercury methylation by sulfate-AND J. M. SIEBURTH. 1993. Mercury biogeochemical cycling in

Fleming, Emily J.; Nelson, D C

2006-01-01T23:59:59.000Z

380

ROTATION OF MERCURY: THEORETICAL ANALYSIS OF THE DYNAMICS OF A RIGID ELLIPSOIDAL PLANET  

E-Print Network (OSTI)

Laboratory ROTATION OF MERCURY: THEDRETICAL ANALYSIS OF THEW -7405-eng-48 ROTATION OF MERCURY: THEORETICAL ANALYSIS OFfor the rotation of Mercury is sho'ln to imply locked-in

Laslett, L. Jackson

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES  

E-Print Network (OSTI)

and R. E. Poulson. Mercury Emissions From A Simulated In-for the Measurement of Mercury in Oil Shale Gases D. GirvinJFOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES D. C.

Girvin, D.G.

2011-01-01T23:59:59.000Z

382

A Solid-State 199Hg NMR Study of Mercury Halides  

E-Print Network (OSTI)

red polymorph) suggest that the mercury is in sites of cubicTable III. NMR Properties of Mercury Halide Nuclei a IsotopeState 199 Hg NMR Study of Mercury Halides R. E. Taylor 1 *,

Taylor, Robert E; Bai, Shi; Dybowski, Cecil

2011-01-01T23:59:59.000Z

383

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

Shi, J.B. ; Feng, X.B. Mercury Pollution in China. Environ.J T. DOE/NETLs Phase II Mercury Control Technology Fieldoxidants for the oxidation of mercury gas. Ind. vEng. Chem.

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

384

Oxidation of elemental mercury by chlorine: Gas phase, Surface, and Photo-induced reaction pathways  

E-Print Network (OSTI)

of Air Quality III: Mercury, Trace Elements, and Particulate34, 2711. 7. Sloss, L.L. Mercury Emissions and Control.1996 , Jan. , 60 pp. 2. Mercury Study Report to Congress;

Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

2004-01-01T23:59:59.000Z

385

Mercury, Cadmium and Lead Biogeochemistry in the SoilPlantInsect System in Huludao City  

E-Print Network (OSTI)

YE, Ketris MP (2005a) Mercury in coal: a review part 1of total and methyl mercury by arthropods. Bull Environ259 DOI 10.1007/s00128-009-9688-6 Mercury, Cadmium and Lead

Zhang, Zhong-Sheng; Lu, Xian-Guo; Wang, Qi-Chao; Zheng, Dong-Mei

2009-01-01T23:59:59.000Z

386

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

M. and Chang, B. , 1974; Mercury Monitor for Ambient Air,E. Poulson INTRODUCTION Mercury emissions from fossil-fuelHarley, R. A. , 1973; Mercury Balance on a Large Pulverized

Fox, J. P.

2012-01-01T23:59:59.000Z

387

Mercury and Methylmercury in the San Francisco Bay area: land-use impact and indicators  

E-Print Network (OSTI)

R.P. , and Flegal A. R. 2003, Mercury speciation in the SanAbdrashitova S. A. , 2001, Mercury in Aquatic Environment: A222 Hydrology for Planner Mercury and Methylmercury in the

Kim, Hyojin

2008-01-01T23:59:59.000Z

388

Evaluation of MerCAP^TM for Power Plant Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of MErCaP(tm) for PowEr Plant MErCury Control Background Several technologies are under development for removing mercury from power plant flue gas streams. The mercury...

389

Vapor phase heat transport systems  

DOE Green Energy (OSTI)

Vapor phase heat-transport systems are being tested in two of the passive test cells at Los Alamos. The systems consist of an active fin-and-tube solar collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by a pump or by a self-pumping scheme. In one of the test cells the liquid was self-pumped to the roof-mounted collector 17 ft above the condenser. A mechanical valve was designed and tested that showed that the system could operate in a completely passive mode. Performance comparisons have been made with a passive water wall test cell.

Hedstrom, J.C.

1984-01-01T23:59:59.000Z

390

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

SciTech Connect

The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

Jost Wendt; Sung Jun Lee; Paul Blowers

2008-09-30T23:59:59.000Z

391

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

392

Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological and Anthropogenic Factors Influencing Mercury Speciation Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine Wastes Christopher S. Kim,1 James J. Rytuba,2 Gordon E. Brown, Jr.3 1Department of Physical Sciences, Chapman University, Orange, CA 92866 2U.S. Geological Survey, Menlo Park, CA 94025 3Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 Introduction Figure 1. Dr. Christopher Kim collects a mine waste sample from the Oat Hill mercury mine in Northern California. The majority of mercury mine wastes at these sites are present as loose, unconsolidated piles, facilitating the transport of mercury-bearing material downstream into local watersheds. Mercury (Hg) is a naturally occurring element that poses considerable health risks to humans, primarily through the consumption of fish which

393

Thief Process Removal of Mercury from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Process for the Removal of Mercury from Flue Gas Process for the Removal of Mercury from Flue Gas Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 6,521,021 entitled "Thief Process for the Removal of Mercury from Flue Gas." Disclosed in this patent is a novel process in which partially combusted coal is removed from the combustion chamber of a power plant using a lance (called a "thief"). This partially combusted coal acts as a thermally activated adsorbent for mercury. When it is in- jected into the duct work of the power plant downstream from the exit port of the combustion chamber, mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury

394

Oxidation of Mercury in Products of Coal Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heng Ban Heng Ban Principal Investigator University of Alabama at Birmingham 1150 10th Avenue South Birmingham, AL 35294-4461 205-934-0011 hban@uab.edu Environmental and Water Resources OxidatiOn Of Mercury in PrOducts Of cOal cOMbustiOn Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. A variety of mercury reduction technologies are under commercial development, but an improved understanding of the fundamental chemical mechanisms that control the transformations and capture of mercury in boilers and pollution control devices is required to achieve necessary performance and cost reduction levels. Oxidized mercury is more easily captured by pollution control devices, such as Selective

395

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

396

Mercury Energy formerly Aquus Energy | Open Energy Information  

Open Energy Info (EERE)

Energy formerly Aquus Energy Energy formerly Aquus Energy Jump to: navigation, search Name Mercury Energy (formerly Aquus Energy) Place New Rochelle, New York Zip 10801 Sector Solar Product Integrator of solar energy systems for commercial and residential clients located in the mid-Atlantic and Northeast regions of the US through its wholly-owned subsidary Mercury Solar Energy. References Mercury Energy (formerly Aquus Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mercury Energy (formerly Aquus Energy) is a company located in New Rochelle, New York . References ↑ "Mercury Energy (formerly Aquus Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Energy_formerly_Aquus_Energy&oldid=348731

397

Evaluation of the mercury soil mapping geothermal exploration techniques  

Science Conference Proceedings (OSTI)

In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrations of mercury are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Noya, Japan. Zones containing high-mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations of mercury and high-measured geothermal gradients strongly suggests that relatively low-cost soil mercury geochemical sampling can be effective in identifying drilling targets within high-temperature areas.

Matlick, J.S.; Shiraki, M.

1981-10-01T23:59:59.000Z

398

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

399

NETL: Emissions Characterization - Direct Measurement of Mercury Reactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Measurement of Mercury Reactions in Coal Power Plant Plumes: Pleasant Prairie Plant Direct Measurement of Mercury Reactions in Coal Power Plant Plumes: Pleasant Prairie Plant Under DOE-NETL Cooperative Agreement DE-FC26-03NT41724, EPRI, in collaboration with Frontier Geosciences and the University of North Dakota Energy and Environmental Research Center (EERC), will perform precise in-stack and in-plume sampling of mercury emitted from the stack of WE Energies' Pleasant Prairie coal-fired power plant near Kenosha, Wisconsin. The overall objective of the project is to clarify the role, rates and end result of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. This information is critical in determining the role of coal-fired plants in mercury deposition and in developing cost-effective, environmentally sound policies and strategies for reducing the adverse environmental effects of mercury.

400

Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Speciation in Piscivorous Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs Mercury toxicity generates environmental concerns in diverse aquatic systems because methylmercury enters the water column in diverse ways then biomagnifies through food webs. At the apex of many freshwater food webs, piscivorous fish can then extend that trophic transfer and potential for neurotoxicity to wildlife and humans. Mining activities, particularly those associated with the San Francisco Bay region, can generate both point and non-point mercury sources. Replicate XANES analyses on largemouth bass and hybrid striped bass from Guadalupe Reservoir (GUA), California and Lahontan Reservoir (LAH), Nevada, were performed to determine predominant chemical species of mercury accumulated by high-trophic-level piscivores that are exposed to elevated mercury in both solution and particulate phases in the water column.

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Stabilization of Mercury in High pH Tank Sludges  

Science Conference Proceedings (OSTI)

DOE complex contains many tank sludges contaminated with mercury. The high pH of these tank sludges typically fails to stabilize the mercury, resulting in these radioactive wastes also being characteristically hazardous or mixed waste. The traditional treatment for soluble inorganic mercury species is precipitation as insoluble mercuric sulfide. Sulfide treatment and a commercial mercury-stabilizing product were tested on surrogate sludges at various alkaline pH values. Neither the sulfide nor the commercial product stabilized the mercury sufficiently at the high pH of the tank sludges to pass the Toxicity Characteristic Leach Procedure (TCLP) treatment standards of the Resource Conservation and Recovery Act (RCRA). The commercial product also failed to stabilize the mercury in samples of the actual tank sludges.

Spence, R.; Barton, J.

2003-02-24T23:59:59.000Z

402

Significance of Pre-Industrial and Older Anthropogenic Sources of Mercury in Ichawaynochaway Creek Watershed, Georgia  

Science Conference Proceedings (OSTI)

In response to concerns about elevated levels of mercury in fish tissue, the U.S. Environmental Protection Agency (EPA) has developed mercury Total Maximum Daily Loads (TMDL), which is a calculation of the maximum amount of mercury a waterbody can assimilate without exceeding the applicable water quality standard. These calculations assume that >99% of mercury load to the aquatic systems is derived from recent atmospheric deposition and that older anthropogenic mercury or mercury from terrestrial sources...

2004-06-16T23:59:59.000Z

403

Coupling apparatus for a metal vapor laser  

DOE Patents (OSTI)

Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

Ball, D.G.; Miller, J.L.

1993-02-23T23:59:59.000Z

404

Vapor phase modifiers for oxidative coupling  

DOE Patents (OSTI)

Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, B.K.

1991-12-17T23:59:59.000Z

405

Thermoplastic Composite with Vapor Grown Carbon Fiber.  

E-Print Network (OSTI)

??Vapor grown carbon fiber (VGCF) is a new class of highly graphitic carbon nanofiber and offers advantages of economy and simpler processing over continuous-fiber composites. (more)

Lee, Jaewoo

2005-01-01T23:59:59.000Z

406

Moisture Durability of Vapor Permeable Insulating Sheathing ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Homes, Building Technologies Office (BTO) In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor...

407

Water Vapor Fields Deduced from METEOSAT-1 Water Vapor Channel Data  

Science Conference Proceedings (OSTI)

A quasi-operational process for the determination of water vapor fields from METEPSAT-1 water vapor channel data is described. Each count of the WV picture is replaced by the corresponding mean relative humidity value using both the calibration ...

M. M. Poc; M. Roulleau

1983-09-01T23:59:59.000Z

408

Development and Evaluation of Low Cost Mercury Sorbents  

Science Conference Proceedings (OSTI)

EPRI is conducting research to investigate sorbent injection for mercury removal in utility flue gas. This report describes laboratory work conducted from mid-1999 through mid-2000 to investigate the ability of low-cost sorbents to remove mercury from simulated and actual flue gas. The goal of this program is the development of effective mercury sorbents that can be produced at lower costs than existing commercial activated carbons. In this work, low-cost sorbents were prepared and then evaluated in labo...

2000-11-27T23:59:59.000Z

409

Thief Carbon Catalyst for Oxidation of Mercury in Effluent Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Catalyst for Oxidation of Mercury in Effluent Carbon Catalyst for Oxidation of Mercury in Effluent Stream Contact NETL Technology Transfer Group techtransfer@netl.doe.gov January 2012 Significance * Oxidizes heavy metal contaminants, especially mercury, in gas streams * Uses partially combusted coal ("Thief" carbon) * Yields an inexpensive catalyst * Cheap enough to be a disposable catalyst * Cuts long-term costs * Simultaneously addresses oxidation and adsorption issues Applications * Any process requiring removal of heavy

410

2009 Update on Mercury Capture by Wet Flue Gas Desulfurization  

Science Conference Proceedings (OSTI)

This technical update presents results of four research and development projects focused on understanding and enhancing mercury emissions control associated with wet flue gas desulfurization (FGD) technology. The first project was directed at characterizing partitioning of elemental and oxidized mercury species in solid, liquid, and gas phases within process streams involved in an operating commercial system. The second project explored dewatering options with an objective of producing low-mercury-conten...

2009-12-15T23:59:59.000Z

411

Controlling mercury spills in laboratories with a thermometer exchange program  

SciTech Connect

This paper presents a case for replacing mercury thermometers with their organic-liquid-filled counterparts. A review of liquid-in glass-thermometers is given. In addition, a brief summary of mercury's health effects and exposure limits is presented. Spill cleanup methods and some lessons learned from our experience are offered as well. Finally, an overview of the mercury thermometer exchange program developed at Lawrence Berkeley National Laboratory is presented.

McLouth, Lawrence D.

2002-03-25T23:59:59.000Z

412

The Effect of Ammonia on Mercury Partitioning in Fly Ash  

Science Conference Proceedings (OSTI)

Management options and environmental assessments for fly ash are driven primarily by their physical and chemical characteristics. This report describes the results of a laboratory study on the leaching of mercury from several paired fly ash samples from facilities employing powdered activated carbon (PAC) injection for mercury control. While previous EPRI research has shown that mercury leaching from ash with PAC is negligible, it has also been found that ammonia complexes can increase the mobility of so...

2008-03-25T23:59:59.000Z

413

State of Knowledge on Mercury Chemistry in Power Plant Plumes  

Science Conference Proceedings (OSTI)

Chemical transformations may occur in the flue gas plume of coal-fired power plants (CFPP) that convert reactive gaseous mercury (RGM) into gaseous elemental mercury (GEM). Since the chemical form of inorganic Hg determines its solubility in water and therefore its deposition rate, understanding this chemistry has important implications for emission control. This fact sheet summarizes the state-of-knowledge of mercury chemistry, kinetics, and thermodynamics in CFPP plumes.

2008-12-23T23:59:59.000Z

414

Development and Demonstration of Mercury Control by Dry Technologies  

Science Conference Proceedings (OSTI)

The Environmental Protection Agency (EPA) will regulate mercury emissions from coal-fired boilers under Title III of the Clean Air Act Amendments of 1990, with compliance slated for December 2007. It is thus very important for power producers to determine the amount of mercury emissions from their power plants, options for reducing mercury emissions, the cost-effectiveness of various removal technologies, and the potential impact on power plant operation and other air pollutant emissions.

2003-02-17T23:59:59.000Z

415

Thief carbon catalyst for oxidation of mercury in effluent stream  

DOE Patents (OSTI)

A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

416

Oxidation of elemental mercury by chlorine: Gas phase, Surface, and Photo-induced reaction pathways  

E-Print Network (OSTI)

of Elemental Mercury by Chlorine: Gas Phase, Surface, andthe oxidation of mercury by chlorine gas. The kinetics wasoxidation of Hg 0 by chlorine (Cl 2 ). The three concurrent

Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

2004-01-01T23:59:59.000Z

417

Mercury levels in albacore tuna (Thunnus alalunga) and the effects of canning.  

E-Print Network (OSTI)

??Mercury is a toxic heavy metal released into the environment from both natural and anthropogenic sources. The organic form of mercury is a potent neurotoxin (more)

Rasmussen, Rosalee S.

2006-01-01T23:59:59.000Z

418

The mission of the Remediation of Mercury and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

419

NETL: Mercury Emissions Control Technologies - Long-Term Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Demonstration of Sorbent Enhancement Additive Technology for Mercury Control In this project, The University of North Dakota Energy & Environmental Research Center...

420

NIST: X-Ray Mass Attenuation Coefficients - Mercury  

Science Conference Proceedings (OSTI)

Table of Contents Back to table 3 Mercury Z = 80 HTML table format. Energy, ?/?, ? en /?. (MeV), (cm 2 /g), (cm 2 /g). 1.00000 ...

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ORNL DAAC, Land Validation Data in Mercury, June 4, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

collected at field sites for comparison with satellite-derived products. A total of 51 land validation data sets are currently registered in Mercury. The data include land...

422

BSA 99-09: Improved Ex-Situ Mercury Remediation  

The present invention provides a process for the treatment of mercury containing waste in a single reaction vessel. ... i.e. mixed wastes. ...

423

Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

6 FEBRUARY 2008 6 FEBRUARY 2008 Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant * Bottom left: AES Greenidge Power Plant * Bottom right: Presque Isle Power Plant A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Consol Energy * Pegasus Technologies * We Energies  Mercury Control Demonstration Projects Executive Summary ............................................................................ 4 Background ......................................................................................... 5 Mercury Removal Projects ................................................................ 7 TOXECON(tm) Retrofit For Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers ........................................7

424

Catalysts for Oxidation of Mercury in Flue Gas  

Disclosed in this patent are catalysts for the oxidation of elemental mercury in flue gas. These novel catalysts include iridium (Ir), ...

425

Simultaneous Determination of Mercury and Tin Species in ...  

Science Conference Proceedings (OSTI)

... humans. In some cases, more than 90 % of the total mercury found in edible fish tissue is in the form of methylmercury. ...

2013-03-21T23:59:59.000Z

426

AWMA 97th Annual Conference & Exhibition Mercury and Power Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program for Coal-Fired Power Plants AWMA 97 th Annual Conference & Exhibition Mercury and Power Generation Panel June 23, 2003 Indianapolis, IN Thomas J. Feeley, III...

427

DOE-NETLs Mercury R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative February 14, 2002 ACS Monthly Meeting November 4, 2004 History of Mercury R&D 1990 1995 2000 2005 2010 * Field testing * Plume chemistry Final Hg Regulations *...

428

Mercury Oxidation and Capture over SCR Catalysts in Simulated ...  

Science Conference Proceedings (OSTI)

The SCR catalysts were tested for oxidation and capture of elemental mercury ... EBSD Analysis of Complex Microstructures of CSP? Processed Low Carbon...

429

Critical National Need Idea Title: Effective Mercury Removal ...  

Science Conference Proceedings (OSTI)

... a report to the White House, "Methylmercury in the GulfOfMexico: State of Knowledge and Research Needs", detailed the harm of mercury from coal- ...

2011-08-02T23:59:59.000Z

430

NETL: Advanced NOx Emissions Control: Control Technology - Mercury...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Speciation from NOx Control University of North Dakota Energy and Environmental Research Center (UNDEERC) is addressing the impact that selective catalytic reduction (SCR),...

431

Large-Scale Testing of Enhanced Mercury Removal for Subbituminous...  

NLE Websites -- All DOE Office Websites (Extended Search)

the mid-1990s to develop advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Anticipating new Federal rules and possible state legislation,...

432

ORNL research reveals new challenges for mercury cleanup | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jennifer Brouner Communications 865.241.0709 ORNL research reveals new challenges for mercury cleanup ORNL researchers are learning more about the microbial processes that convert...

433

Method for Removal of Mercury from Various Gas Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) is seeking licensing partners interested in implementing United States Patent Number 6,576,092 entitled "Method for Removal of Mercury from Various Gas Streams."...

434

NETL: News Release - DOE Licenses Mercury Control Patent to Help...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2007 DOE Licenses Mercury Control Patent to Help Meet Clean Air Regulations Research Aims at Trace Element Reduction from Power Generation Facilities by 2010 Washington, DC - A...

435

NETL: CCPI - TOXECON Retrofit for Mercury and Multi-Pollutant...  

NLE Websites -- All DOE Office Websites (Extended Search)

2004) Environmental Reports TOXECON Retrofit for Mercury and Multi-Pollutant Control, Environmental Assessment PDF-847KB (Sept 2003) PAPERS AND PRESENTATIONS Concrete...

436

NETL: Mercury Emissions Control Technologies - Long-term Operation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Papers and Publications: Long-Term Evaluation of Activated Carbon Injection for Mercury Control Upstream of a COHPAC Fabric Filter PDF-298KB presented at Air Quality IV...

437

Mercury removal from coal by leaching with sulfur-dioxide.  

E-Print Network (OSTI)

??Mercury from coal-fired utilities has been identified as one of the most hazardous air pollutants and the greatest potential public health concern. Furthermore, it has (more)

Chateker, Poornima.

2010-01-01T23:59:59.000Z

438

DOE/NETL & EPRI Sponsored Mercury Measurements Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL & EPRI Sponsored Mercury Measurements Workshop July 13, 2004 Table of Contents Disclaimer Papers and Presentations Disclaimer This report was prepared as an account of work...

439

Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical  

Open Energy Info (EERE)

Geochemical, Groundwater Geochemical, And Radiometric Geophysical Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Details Activities (14) Areas (3) Regions (0) Abstract: Ground water sampling, desorbed mercury soil geochemical surveys and a radiometric geophysical survey was conducted in conjunction with geological mapping at three geothermal prospects in northern Nevada. Orientation sample lines from 610 m (2000 ft.) to 4575 m (15,000 ft.) in length were surveyed at right angles to known and suspected faults. Scintillometer readings (gamma radiation - total counts / second) were also

440

Novel Solution of Mercury Perihelion Shift  

E-Print Network (OSTI)

We present a novel solution of the Mercury perihelion advance shift in the new gravity model. It is found that the non-relativistic reduction of the Dirac equation with the gravitational potential produces the new gravitational potential of $\\displaystyle{V(r)=-{GMm\\over r}+{G^2M^2m^2\\over 2mc^2r^2}}$. This potential can explain the Mercury perihelion advance shift without any free parameters. Also, it can give rise to the $\\omega-$shift of the GPS satellite where the advance shift amounts to $({\\Delta \\omega\\over \\omega})_{th} \\simeq 3.4\\times 10^{-10}$ which should be compared to the recent observed value of $({\\Delta \\omega\\over \\omega})_{exp} \\simeq 4.5\\times 10^{-10}$.

Takehisa Fujita; Naohiro Kanda

2009-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "hid mercury vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: IEP - Mercury Emissions Control: Methods Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods Development Methods Development EPRI and NETL collaboratively funded a $3-million program under the DOE/ University of North Dakota Energy and Environmental Research Center (UNDEERC) Jointly Sponsored Research Program (JSRP) to evaluate, develop, and validate a mercury speciation method for coal-fired produced flue gas. There was a 60/40 percent split of the funding, as required under the JSRP for this two-year effort. The work conducted by the EERC identified the Ontario Hydro Method as the best mercury speciation method. The EERC has validated the Ontario Hydro Method at both pilot- and full-scale levels. Radian International aided in the full-scale validation, with a written protocol of the method being finalized through the American Society for Testing and Materials (ASTM).

442

FUNDAMENTALS OF MERCURY OXIDATION IN FLUE GAS  

Science Conference Proceedings (OSTI)

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves two experimental scales and a modeling effort. The team is comprised of University of Utah, Reaction Engineering International, and University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studies include HCl, NOx, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 1 results for the experimental and modeling tasks. Experiments in the drop tube are just beginning and a new, speciated mercury analyzer is up and running. A preliminary assessment has been made for the drop tube experiments using the existing model of gas-phase kinetics.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble

2004-08-01T23:59:59.000Z

443

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

444

G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product  

SciTech Connect

The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 1, 3, 7, and 14 GHz.

Koontz, A; Cadeddu, M

2012-12-05T23:59:59.000Z

445

Max Tech and Beyond: High-Intensity Discharge Lamps  

Science Conference Proceedings (OSTI)

High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and this necessitates additional power beyond that used by the lamp itself. HID lamps offer important advantages compared to other lighting technologies, making them well suited for certain applications. HID lamps can be very efficient, have long operating lives, are relatively temperature-insensitive and produce a large quantity of light from a small package. For these reasons, HID lamps are often used when high levels of illumination are required over large areas and where operating and maintenance costs must be kept to a minimum. Furthermore, if the installation has a significant mounting height, high-power HID lamps can offer superior optical performance luminaires, reducing the number of lamps required to illuminate a given area. The indoor environments best suited to HID lamps are those with high ceilings, such as those commonly found in industrial spaces, warehouses, large retail spaces, sports halls and large public areas. Research into efficacy improvements for HID lighting technologies has generally followed market demand for these lamps, which is in decline for MV and LPS, has reached a plateau for HPS and is growing for MH. Several manufacturers interviewed for this study indicated that although solid-state lighting was now receiving the bulk of their company's R&D investment, there are still strong HID lamp research programs, which concentrate on MH technologies, with some limited amount of investment in HPS for specific niche applications (e.g., agricultural greenhouses). LPS and MV lamps are no longer being researched or improved in terms of efficacy or other performance attributes, although some consider MH HID lamps to be the next-generation MV lamp. Thus, the efficacy values of commercially available MV, LPS and HPS lamps are not expected to increase in the next 5 to 10 years. MH lamps, and more specifically, ceramic MH lamps are continuing to improve in efficacy as well as light quality, manufacturability and lamp life. Within an HID lamp, the light-producing plasma must be heated to sufficiently high temperatures to achieve high efficiencie

Scholand, Michael

2012-04-01T23:59:59.000Z

446

Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage  

Science Conference Proceedings (OSTI)

In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

Guo, Hao-Bo [ORNL; Parks, Jerry M [ORNL; Johs, Alexander [ORNL; Smith, Jeremy C [ORNL

2011-01-01T23:59:59.000Z

447

Gravitomagnetism and the Earth-Mercury range  

E-Print Network (OSTI)

We numerically work out the impact of the general relativistic Lense-Thirring effect on the Earth-Mercury range caused by the gravitomagnetic field of the rotating Sun. The peak-to peak nominal amplitude of the resulting time-varying signal amounts to 1.75 10^1 m over a temporal interval 2 yr. Future interplanetary laser ranging facilities should reach a cm-level in ranging to Mercury over comparable timescales; for example, the BepiColombo mission, to be launched in 2014, should reach a 4.5 - 10 cm level over 1 - 8 yr. We looked also at other Newtonian (solar quadrupole mass moment, ring of the minor asteroids, Ceres, Pallas, Vesta, Trans-Neptunian Objects) and post-Newtonian (gravitoelectric Schwarzschild solar field) dynamical effects on the Earth-Mercury range. They act as sources of systematic errors for the Lense-Thirring signal which, in turn, if not properly modeled, may bias the recovery of some key parameters of such other dynamical features of motion. Their nominal peak-to-peak amplitudes are as large as 4 10^5 m (Schwarzschild), 3 10^2 m (Sun's quadrupole), 8 10^1 m (Ceres, Pallas, Vesta), 4 m (ring of minor asteroids), 8 10^-1 m (Trans-Neptunian Objects). Their temporal patterns are different with respect to that of the gravitomagnetic signal.

Lorenzo Iorio

2010-02-01T23:59:59.000Z

448

HISTORY OF MERCURY USE AND ENVIRONMENTAL CONTAMINATION  

SciTech Connect

Between 1950 and 1963 approximately 11 million kilograms of mercury (Hg) were used at the Oak Ridge Y-12 National Security Complex (Y-12 NSC) for lithium isotope separation processes. About 3% of the Hg was lost to the air, soil and rock under facilities, and East Fork Poplar Creek (EFPC) which originates in the plant site. Smaller amounts of Hg were used at other Oak Ridge facilities with similar results. Although the primary Hg discharges from Y-12 NSC stopped in 1963, small amounts of Hg continue to be released into the creek from point sources and diffuse contaminated soil and groundwater sources within Y-12 NSC. Mercury concentration in EFPC has decreased 85% from not, vert, similar2000 ng/L in the 1980s. In general, methylmercury concentrations in water and in fish have not declined in response to improvements in water quality and exhibit trends of increasing concentration in some cases.Mercury discharges from an industrial plant have created a legacy contamination problem exhibiting complex and at times counter-intuitive patterns in Hg cycling.

Brooks, Scott C [ORNL; Southworth, George R [ORNL

2011-01-01T23:59:59.000Z

449

The free precession and libration of Mercury  

E-Print Network (OSTI)

An analysis based on the direct torque equations including tidal dissipation and a viscous core-mantle coupling is used to determine the damping time scales of O(10^5) years for free precession of the spin about the Cassini state and free libration in longitude for Mercury. The core-mantle coupling dominates the damping over the tides by one to two orders of magnitude for the plausible parameters chosen. The short damping times compared with the age of the solar system means we must find recent or on-going excitation mechanisms if such free motions are found by the current radar experiments or the future measurement by the MESSENGER and BepiColombo spacecraft that will orbit Mercury. We also show that the average precession rate is increased by about 30% over that obtained from the traditional precession constant because of a spin-orbit resonance induced contribution by the C_{22} term in the expansion of the gravitational field. The C_{22} contribution also causes the path of the spin during the precession to be slightly elliptical with a variation in the precession rate that is a maximum when the obliquity is a minimum. An observable free precession will compromise the determination of obliquity of the Cassini state and hence of C/MR^2 for Mercury, but a detected free libration will not compromise the determination of the forced libration amplitude and thus the verification of a liquid core

S. J. Peale

2005-07-06T23:59:59.000Z

450

Analysis of Halogen-Mercury Reactions in Flue Gas  

SciTech Connect

Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

2010-01-01T23:59:59.000Z

451

Quantitative organic vapor-particle sampler  

DOE Patents (OSTI)

A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

1998-01-01T23:59:59.000Z

452

A New Global Water Vapor Dataset  

Science Conference Proceedings (OSTI)

A comprehensive and accurate global water vapor dataset is critical to the adequate understanding of water vapor's role in the earth's climate system. To begin to satisfy this need, the authors have produced a blended dataset made up of global, 5-...

David L. Randel; Thomas J. Greenwald; Thomas H. Vonder Haar; Graeme L. Stephens; Mark A. Ringerud; Cynthia L. Combs

1996-06-01T23:59:59.000Z

453

LNG fire and vapor control system technologies  

SciTech Connect

This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

1982-06-01T23:59:59.000Z

454

Atomic vapor laser isotope separation  

SciTech Connect

Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

Stern, R.C.; Paisner, J.A.

1985-11-08T23:59:59.000Z

455

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect

The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed