Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High-intensity discharge (HID) solid-state ballast program: engineering development report. Phase II  

SciTech Connect

A high frequency (28 to 31/sup 0/K Hz) electronic current source (ballast) designed to drive a 200 watt 100 volt sodium vapor gas discharge lamp is described. A resonant switching power amplifier system utilizing a novel constant power feedback loop is employed to maintain the lamp input power constant within two percent via changes due to lamp aging etc. The lamp input power and therefore the light output is adjustable from 50 to 100 percent of rated power. A input (electronic filter) inverter, changes the 277 volts alternating voltage input to a regulated direct current (DC) voltage used to power the output stage. The inverter reflects, a essentially unity power factor load to the power input source at all times.

Carlson, R.S.

1983-12-01T23:59:59.000Z

2

High-Intensity Discharge Lighting  

Energy.gov (U.S. Department of Energy (DOE))

High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting.

3

Electronic High-Intensity Discharge Lighting  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the most promising controllable energy efficient light source electronic high-intensity discharge (HID) lighting. Business and technical market factors (Chapter 2) explain the upcoming growth of the HID lamp and electronic HID ballast market. Future technical improvements are emphasized along with discussion of the importance of utility involvement in helping their customers make the switch from magnetically-ballasted HID lighting to higher efficiency electronic HID l...

2007-12-21T23:59:59.000Z

4

High-Intensity Discharge Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Mercury, sodium, or metal halide gas

5

Max Tech and Beyond: High-Intensity Discharge Lamps  

Science Conference Proceedings (OSTI)

High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and this necessitates additional power beyond that used by the lamp itself. HID lamps offer important advantages compared to other lighting technologies, making them well suited for certain applications. HID lamps can be very efficient, have long operating lives, are relatively temperature-insensitive and produce a large quantity of light from a small package. For these reasons, HID lamps are often used when high levels of illumination are required over large areas and where operating and maintenance costs must be kept to a minimum. Furthermore, if the installation has a significant mounting height, high-power HID lamps can offer superior optical performance luminaires, reducing the number of lamps required to illuminate a given area. The indoor environments best suited to HID lamps are those with high ceilings, such as those commonly found in industrial spaces, warehouses, large retail spaces, sports halls and large public areas. Research into efficacy improvements for HID lighting technologies has generally followed market demand for these lamps, which is in decline for MV and LPS, has reached a plateau for HPS and is growing for MH. Several manufacturers interviewed for this study indicated that although solid-state lighting was now receiving the bulk of their company's R&D investment, there are still strong HID lamp research programs, which concentrate on MH technologies, with some limited amount of investment in HPS for specific niche applications (e.g., agricultural greenhouses). LPS and MV lamps are no longer being researched or improved in terms of efficacy or other performance attributes, although some consider MH HID lamps to be the next-generation MV lamp. Thus, the efficacy values of commercially available MV, LPS and HPS lamps are not expected to increase in the next 5 to 10 years. MH lamps, and more specifically, ceramic MH lamps are continuing to improve in efficacy as well as light quality, manufacturability and lamp life. Within an HID lamp, the light-producing plasma must be heated to sufficiently high temperatures to achieve high efficiencie

Scholand, Michael

2012-04-01T23:59:59.000Z

6

400-Watt Electronic High-Bay Fixture for Metal-Halide High-Intensity Discharge Lighting  

Science Conference Proceedings (OSTI)

The product under assessment is an advanced lighting technology8212a 400-watt, metal-halide, electronic high-intensity discharge (HID) ballast technology designed to be operated as a stand-alone ballast or integrated as a fixture where the ballast becomes part of the fixture mechanical support system.

2008-06-12T23:59:59.000Z

7

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic High-Intensity Discharge Ballasts  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the dimming performance of electronic high-intensity discharge (HID) ballasts. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth the dimming methods used in advanced lighting sources and controls for incandescent, fluorescent, high-intensity discharge (HID) and light-emit...

2008-12-18T23:59:59.000Z

8

Energy Basics: High-Intensity Discharge Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. HID lamps use an electric arc to produce...

9

High intensity discharge device containing oxytrihalides  

DOE Patents (OSTI)

A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

Lapatovich, Walter P. (Hudson, MA); Keeffe, William M. (Rockport, MA); Liebermann, Richard W. (Danvers, MA); Maya, Jakob (Brookline, MA)

1987-01-01T23:59:59.000Z

10

High intensity discharge device containing oxytrihalides  

DOE Patents (OSTI)

A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

1987-06-09T23:59:59.000Z

11

High intensity discharge 400-watt sodium ballast. Phase I. Final report  

SciTech Connect

The results of a research and development program directed toward design, test, and evaluation of energy efficient High Intensity Discharge (HID) Solid State 400-Watt Ballast lighting system are reported. Phase I of the project which was designed to modify the existing Datapower ballast to LBL configuration, measure performance characteristics, and compare efficiency with a core/coil ballast including energy loss analysis is covered. In addition, Datapower was tasked to build six (6) prototype 400-Watt High Pressure Sodium Ballasts for verification tests by an independent test facility and follow-on performance and life tests at LBL.

Felper, G.

1980-06-01T23:59:59.000Z

12

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Technologies: Dimmable Advanced Lighting Tech nologies -- Electronic Fluorescent, High-Intensity Discharge, and Light-Emitting Diode  

Science Conference Proceedings (OSTI)

This EPRI Technical Report is a compilation of four technical updates that address the basic dimming performance of advanced lighting sources: EPRI report 1018476 for linear fluorescent ballasts, 1018477 for hot and cold cathode compact fluorescent lamps, 1018479 for electronic high-intensity discharge (HID) ballasts, and 1018480 for light-emitting diode (LED) lighting. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting con...

2008-12-22T23:59:59.000Z

13

High-intensity-discharger 400-W sodium ballast. Phase II. Final report  

SciTech Connect

A research and development program directed toward design, test, and evaluation of an energy efficient High Intensity Discharge (HID) Solid-State 400 Watt Ballast lighting system was undertaken. Under Phase I of the project, the existing ballast was modified, performance characteristics were measured, efficiency was compared with a core/coil ballast including energy loss analysis. Six (6) prototype 400 W High Pressure Sodium Ballasts were built, for verification tests by an independent test facility prior to follow-on performance and life tests. This report covers Phase II of the project which was designed to make test data comparisons on results received from the independent test laboratory, determine methods to increase ballast efficiency, determine the importance of power factors, conduct bulb life tests, perform specification review, performance versus cost analysis, investigate the ballast to determine compliance with new FCC requirement, and determine a line transient specification in respect to solid state ballasting. In addition, Phase II required reliability testing, a manufacturing test plan, a marketing study for solid-state ballast, and the manufacture and delivery of fifteen (15) demonstration ballast units to LBL. These requirements are discussed.

Felper, G.

1981-10-01T23:59:59.000Z

14

HIGH INTENSITY DISCHARGE (HID) SOLID STATE BALLAST PROGRAM PHASE I FINAL REPORT  

E-Print Network (OSTI)

quite expensive. Cost projections based on these unitsmeaningless, however, cost projections can be made based onsavings and benefit projections to the end user. Luminoptics

Ailing, W.R.

2013-01-01T23:59:59.000Z

15

HIGH INTENSITY DISCHARGE (HID) SOLID STATE BALLAST PROGRAM PHASE I FINAL REPORT  

E-Print Network (OSTI)

1·-T-· 1''-'-'-l l% Lamp Volts (ri! VGII >! IH! At ()fvolt (maximum) pulse 1 usee wide atRMS voltage is 215 Volts. For complete specifications write

Ailing, W.R.

2013-01-01T23:59:59.000Z

16

Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm  

Science Conference Proceedings (OSTI)

For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

Drakakis, E. [Technological Educational Institute, Department of Electrical Engineering, 71004 Heraklion (Greece); Karabourniotis, D. [Institute of Plasma Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece)

2012-09-01T23:59:59.000Z

17

HID Laboratories Inc | Open Energy Information  

Open Energy Info (EERE)

HID Laboratories Inc HID Laboratories Inc Jump to: navigation, search Name HID Laboratories, Inc. Place Menlo Park, California Zip 94025 Product HID Laboratories develops commercial-grade, high intensity lighting products that manage lighting demand and reduce energy use. References HID Laboratories, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. HID Laboratories, Inc. is a company located in Menlo Park, California . References ↑ "HID Laboratories, Inc." Retrieved from "http://en.openei.org/w/index.php?title=HID_Laboratories_Inc&oldid=346520" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

18

Hanford Identification (HID) PIA, Richland Operations Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identification (HID) PIA, Richland Operations Office Hanford Identification (HID) PIA, Richland Operations Office Hanford Identification (HID) PIA, Richland Operations Office...

19

Hanford Identification (HID) PIA, Richland Operations Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Identification (HID) PIA, Richland Operations Office Hanford Identification (HID) PIA, Richland Operations Office Hanford Identification (HID) PIA, Richland Operations...

20

X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence  

SciTech Connect

We describe the use of x-ray induced fluorescence to study metal-halide high-intensity discharge lamps and to measure equilibrium vapor pressures of metal-halide salts. The physical principles of metal-halide lamps, relevant aspects of x-ray-atom interactions, the experimental method using synchrotron radiation, and x-ray induced fluorescence measurements relevant to metal-halide lamps are covered.

Curry, John J.; Lapatovich, Walter P.; Henins, Albert (NIST)

2011-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Spectral distribution of dimmed HID lamps in a plant growth facility  

SciTech Connect

A commercial dimming ballast system for high intensity discharge (HID) lamps has been tested for use in plant growth chambers. The dimming ballast system can be controlled either manually at the dimming panel or by a d.c. voltage from a programmer or computer. Using the dimming system, photosynthetically active radiation can be continuously varied from about 200 to about 2000 ..mu..E m/sup -2/s/sup -1/. This paper shows the effects of dimming on the spectral intensity (400 to 750 nm) of three types of HID lamps measured individually and in combination to achieve a better spectral mix. The lamps used in this study were 400 w metal halide, mercury vapor and high pressure sodium.

Bingham, G.E.; Coyne, P.I.

1979-05-01T23:59:59.000Z

22

High intensity discharge lamp self-adjusting ballast system sensitive to the radiant energy or heat of the lamp  

SciTech Connect

This patent describes a self-adjusting ballast system for mercury vapor, high intensity discharge lamps having outputs of 100 watts or greater, comprising: a direct current source; a lamp circuit containing a high intensity discharge lamp; sensing means for sensing the radiant energy output of the lamp; a pulse width modulator which, in response to the output of the sensing means, varies the width of the pulses that power the lamp during warm-up of the lamp; a high frequency oscillator; a DC to AC converter that converts current from the direct source to pulses of alternating current for powering the lamp, the converter comprising: at least one switch for gating current to the lamp; a switch control means, responsive to the high frequency oscillator, for controlling the switch and controlling the frequency of the alternating current pulses that power the lamp; current sensing means for sensing the current being supplied to the lamp; and current control means for limiting the current through the lamp to a predetermined safe level when the current sensed by the current sensing means exceeds a reference value.

Kuhnel, D.S.; Ottenstein, S.A.

1987-07-21T23:59:59.000Z

23

Contribution to the numerical study of turbulence in high intensity discharge lamps  

SciTech Connect

We present in this paper a comparison between results obtained with a laminar and turbulent models for high-pressure mercury arc. The two models are based on the resolution of bidimensional time-dependent equations by a semi-implicit finite-element code. The numerical computation of turbulent model is solved with large eddy simulation model; this approach takes into account the various scales of turbulence by a filtering method on each scale. The results show the quantitative influence of turbulence on the flow fields and also the difference between laminar and turbulent effects on the dynamic thermal behaviour and on the characteristics of the discharge.

Kaziz, S.; Ben Ahmed, R.; Helali, H.; Gazzah, H.; Charrada, K. [Unite d'Etude des Milieux Ionises et Reactifs, IPEIM, 5019 route de Kairouan Monastir (Tunisia)

2011-07-15T23:59:59.000Z

24

,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"  

U.S. Energy Information Administration (EIA) Indexed Site

B39. Lighting Equipment, Floorspace, 1999" B39. Lighting Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",67338,64321,38156,60344,20666,19223,17926 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5859,2946,5154,738,245,600 "5,001 to 10,000 ..............",8238,7464,4047,6722,1108,663,991 "10,001 to 25,000 .............",11153,10393,6055,9815,1759,1701,1996 "25,001 to 50,000 .............",9311,9053,5004,8344,2296,2224,1611

25

High intensity hadron accelerators  

SciTech Connect

This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

Teng, L.C.

1989-05-01T23:59:59.000Z

26

New and Underutilized Technology: HID Electronic/Dimming Ballasts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HID Electronic/Dimming Ballasts HID Electronic/Dimming Ballasts New and Underutilized Technology: HID Electronic/Dimming Ballasts October 7, 2013 - 8:51am Addthis The following information outlines key deployment considerations for HID electronic/dimming ballasts within the Federal sector. Benefits Most HID electronic/dimming ballasts, typically metal halide or high-pressure sodium lamps, are currently driven by magnetic ballasts. Several manufacturers now offer electronic ballasts for these lamps, which promise better efficiency, longer lamp life, and faster startup and re-strike. Application HID electronic/dimming ballasts are applicable in exterior/security lighting and facilities with high bay areas. Key Factors for Deployment Federal agencies must evaluate relative costs, benefits, and application of

27

Lighting Group: Sources and Ballasts: HID Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Ballasts and Controls for HID Lighting Ballasts and Controls for HID Lighting Systems Evaluation of Electronic Ballasts and Related Controls for HID Lighting Systems Objective HID ballast The goal of this project is to evaluate the potential of electronic ballasts and related controls for HID lighting systems to improve the efficiency of current technology. The specific objectives of this project are to: Test, analyze and determine the potential of electronic ballasts for HID lighting systems in cooperation with manufacturers as an emerging energy efficient technology to reduce lighting loads in commercial, industrial and municipal applications. Identify control strategies to further improve the energy efficiency of these systems with a municipal partner. Provide appropriate recommendations for incorporating these technologies into current state codes and regulations.

28

T-547: Microsoft Windows Human Interface Device (HID) Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

547: Microsoft Windows Human Interface Device (HID) Vulnerability 547: Microsoft Windows Human Interface Device (HID) Vulnerability T-547: Microsoft Windows Human Interface Device (HID) Vulnerability February 1, 2011 - 3:20am Addthis PROBLEM Microsoft Windows Human Interface Device (HID) Vulnerability. PLATFORM: Microsoft 2003 SP2, Vista SP2, 2008 SP2, XP SP3, 7; and prior service packs ABSTRACT: Microsoft Windows does not properly warn the user before enabling additional Human Interface Device (HID) functionality over USB, which allows user-assisted attackers to execute arbitrary programs via crafted USB data, as demonstrated by keyboard and mouse data sent by malware on a Smartphone that the user connected to the computer. reference LINKS: Security Lab: Reference CVE-2011-0638 CVE Details: Reference CVE-2011-0638 Mitre Reference: CVE-2011-0638

29

1997 Glossary  

U.S. Energy Information Administration (EIA)

All types of light bulbs are included: incandescent, fluorescent, compact fluorescent, halogen, and high-intensity-discharge (HID). (See Appliances ...

30

High frequency electronic ballast for HID lamps. Technical progress report, October 1, 1993--December 31, 1994  

SciTech Connect

Electronic Ballast Systems Corp. has been working on the development of highly efficient (94%) electronic ballast for HID lamps (35W,...,400W) providing energy savings of up to thirty five percent (35%) as compared to the only available alternative, the standard core and coil HID ballasts currently on the market.

1995-03-01T23:59:59.000Z

31

Transverse instability in high intensity proton rings  

SciTech Connect

In recent years, many applications are being considered for low energy high intensity proton synchrotrons. Most high intensity proton rings are at low energy below transition. Several aspects of the beam dynamics of this kind of rings are different from the electron or high energy rings. The transverse microwave instabilities will be discussed in this article.

Zhang, S.Y.; Weng, W.T.

1997-07-01T23:59:59.000Z

32

GRR/Section 14-HI-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

HI-d - Section 401 Water Quality Certification HI-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-HI-d - Section 401 Water Quality Certification 14HID - Section401WaterQualityCertification (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Clean Water Branch United States Environmental Protection Agency Regulations & Policies Clean Water Act (33 U.S.C. 1251) Section 401 Hawaii Administrative Rules Title 11, Chapter 54 Triggers None specified Click "Edit With Form" above to add content 14HID - Section401WaterQualityCertification (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

33

Very high efficacy electrodeless high intensity discharge lamps  

DOE Patents (OSTI)

An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

Johnson, P.D.

1985-10-03T23:59:59.000Z

34

Max Tech and Beyond: High-Intensity Discharge Lamps  

E-Print Network (OSTI)

demonstration (like street lights) and commercialization andthe dominant light source for street and roadway lighting,has been a popular light source for street lighting because

Scholand, Michael

2012-01-01T23:59:59.000Z

35

Max Tech and Beyond: High-Intensity Discharge Lamps  

E-Print Network (OSTI)

presents the national energy consumption profile for HIDVolume I: National Lighting Inventory and Energy Consumption

Scholand, Michael

2012-01-01T23:59:59.000Z

36

Max Tech and Beyond: High-Intensity Discharge Lamps  

E-Print Network (OSTI)

the reason industry started by developing ceramic MH lampsceramic metal halide lamps, which are the focus of industry’industry had invested in the development of very low wattage ceramic

Scholand, Michael

2012-01-01T23:59:59.000Z

37

STABILIZED HIGH INTENSITY SOURCE OF 80 kv  

SciTech Connect

With the change of the current load from 0 to 2.5 mamp and simultaneous change of incoming intensity from 270 to 190 v, the stabilized high-intensity source changes less than l%.. The stabilized intensity can be arranged in steps of 5 kv from 60 to 80 kv. The high-intensity stabilizer automatically switches on upon reaching 60 kv. (tr-auth)

Polivanov, V.V.; Izyurov, A.V.; Pyatakov, N.I.

1959-09-01T23:59:59.000Z

38

GRR/Section 18-HI-d - Variance from Pollution Control | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 18-HI-d - Variance from Pollution Control < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-HI-d - Variance from Pollution Control 18HID - VarianceFromPollutionControl (4).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Clean Water Branch Regulations & Policies Wastewater Systems Triggers None specified Click "Edit With Form" above to add content 18HID - VarianceFromPollutionControl (4).pdf Error creating thumbnail: Page number not in range.

39

Very high intensity reaction chamber design  

SciTech Connect

The problem of achieving very high intensity irradiation by light in minimal regions was studied. Three types of irradiation chamber are suggested: the common laser-reaction chamber, the folded concentric or near-concentric resonator, and the asymmetric confocal resonator. In all designs the ratio of high-intensity illuminated volume to other volume is highly dependent (to the $sup 3$/$sub 2$ power) on the power and fluence tolerances of optical elements, primarily mirrors. Optimization of energy coupling is discussed for the common cavity. For the concentric cavities, optimization for both coherent and incoherent beams is treated. Formulae and numerical examples give the size of chambers, aspect ratios, maximum pass number, image sizes, fluences, and the like. Similarly for the asymmetric confocal chamber, formulae and numerical examples for fluences, dimensions, losses, and totally contained pass numbers are given. (auth)

Devaney, J.J.

1975-09-01T23:59:59.000Z

40

Exhibit F-3  

U.S. Energy Information Administration (EIA) Indexed Site

on All Night Outdoor Lights with a Timer, Motion Sensor, or Photosensor Outdoor Gas Light High Intensity Discharge (HID) Outdoor Lights (Such as metal halide or high pressure...

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Top Resources | Commercial Buildings Resource Database  

NLE Websites -- All DOE Office Websites (Extended Search)

(Parking Lot) Lighting Specification To maximize the benefits of converting to light-emitting diode (LED) technology from the traditional high-intensity discharge (HID)...

42

GRR/Section 3-HI-d - Use and Occupancy Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-HI-d - Use and Occupancy Permit GRR/Section 3-HI-d - Use and Occupancy Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-HI-d - Use and Occupancy Permit 03HIDUseAndOccupancyPermit.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Transportation Highways Division Regulations & Policies Hawaii Administrative Rules Title 19, Chapter 102 Hawaii Administrative Rules Title 19, Chapter 105 Triggers None specified Click "Edit With Form" above to add content 03HIDUseAndOccupancyPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer needs a Use and Occupancy Permit from the Hawaii Department of

43

A Plasma Lens for High Intensity Laser Focusing  

SciTech Connect

A plasma lens based on a short hydrogen-filled alumina capillary discharge is experimentally characterized. For a plasma length of about 5mm, the focal length, measured from the plasma entrance, was {approx} 11 to 8mm for on axis densities of {approx} 2.5 to 5 x 1018cm-3, respectively. The plasma temperature away from the walls of the 1/2mm diameter capillary was estimated to be {approx} 8eV indicating that the plasma is fully ionized. Such a lens should thus be suitable for focusing very high intensity pulses. Comparisons of the measured focusing strength to that predicted by a first-order fluid model [N. A. Bobrova, et al., Phys. Rev. E 65, 016407 (2002)] shows reasonable agreement given that some of the observed plasma parameters are not predicted by this model.

Fang, F.; Clayton, C. E.; Marsh, K. A.; Joshi, C. [UCLA Department of Electrical Engineering, Los Angeles, CA, 90095 (United States); Lopes, N. C. [Grupo de Lasers e Plasmas, ESuperior Tecnico, Lisbon (Portugal); Ito, H. [Utsunomiya University, 7-1-2 Yoto, Utsunomiya City, Zip 321-8585 (Japan)

2006-11-27T23:59:59.000Z

44

High intensity performance of the Brookhaven AGS  

SciTech Connect

Experience and results from recent high intensity proton running periods of the Brookhaven AGS, during which a record intensity for a proton synchrotron of 6.3 x 10{sup 13} protons/pulse was reached, is presented. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

Brennan, J.M.; Roser, T.

1996-07-01T23:59:59.000Z

45

AGS RESONANT EXTRACTION WITH HIGH INTENSITY BEAMS.  

SciTech Connect

The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams.[1] Learning to extract and transport these higher intensity beams has required a process of careful modeling and experimentation. We have had to learn how to correct for various instabilities and how to better match extraction and the transport lines to the higher emittance beams being accelerated in the AGS. Techniques employed include ''RF'' methods to smooth out momentum distributions and fine structure. We will present results of detailed multi-particle tracking modeling studies which enabled us to develop a clear understanding of beam loss mechanisms in the transport and extraction process. We will report on our status, experiences, and the present understanding of the intensity limitations imposed by resonant extraction and transport to fixed target stations.

AHRENS,L.; BROWN,K.; GLENN,J.W.; ROSER,T.; TSOUPAS,N.; VANASSELT,W.

1999-03-29T23:59:59.000Z

46

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Intensity Discharge Lamps High-Intensity Discharge Lamps Sign up for e-mail updates on regulations for this and other products There are currently no energy conservation standards for high-intensity discharge (HID) lamps. HID lamps are electric discharge lamps and include high-pressure sodium, mercury vapor, and metal halide lamps. HID lamps require an HID ballast to start and regulate electric current flow through the lamp. HID lamps are used in street and roadway lighting, area lighting such as for parking lots and plazas, industrial and commercial building interior lighting, security lighting for commercial, industrial, and residential spaces, and landscape lighting. The Standards and Test Procedures for this product are related to Rulemaking for High Intensity Discharge Lamps Energy Conservation Standard and Rulemaking for High Intensity Discharge Lamps Test Procedures.

47

GRR/Section 6-HI-d - Other Overview | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 6-HI-d - Other Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-HI-d - Other Overview 06HIDOtherOverview.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 06HIDOtherOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Add Text Print PDF Retrieved from "http://en.openei.org/w/index.php?title=GRR/Section_6-HI-d_-_Other_Overview&oldid=685852"

48

ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.  

SciTech Connect

One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

WEI,J.; MACEK,R.J.

2002-04-14T23:59:59.000Z

49

A New High Intensity Electron Beam for Wakefield Acceleration...  

NLE Websites -- All DOE Office Websites (Extended Search)

HIGH INTENSITY ELECTRON BEAM FOR WAKEFIELD ACCELERATION STUDIES* M.E. Conde , W. Gai, C. Jing, R. Konecny, W. Liu, J.G. Power, H. Wang, Z. Yusof ANL, Argonne, IL 60439, USA...

50

Simulations Identify Requirements for LANL's High Intensity Laser...  

NLE Websites -- All DOE Office Websites (Extended Search)

Identify Requirements for LANL's High Intensity Laser Lab cielo equip Fig. 1. Cielo is a 1.37 petaflops capability-class supercomputer installed at LANL, funded by the US DOE NNSA...

51

On the high intensity aspects of AGS Booster proton operation  

SciTech Connect

Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

1993-06-01T23:59:59.000Z

52

On the high intensity aspects of AGS Booster proton operation  

SciTech Connect

Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

1993-01-01T23:59:59.000Z

53

GRR/Section 6-HI-d - Oversize and/or Overweight Vehicles and Loads Permit |  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 6-HI-d - Oversize and/or Overweight Vehicles and Loads Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections or Overweight Vehicles and Loads Permit Flowchart Narrative Content Here Print PDF Retrieved from "http://en.openei.org/w/index.php?title=GRR/Section_6-HI-d_-_Oversize_and/or_Overweight_Vehicles_and_Loads_Permit&oldid=685849" Categories: Regulatory Roadmap Overview Sections Geothermal Regulatory Roadmap Sections What links here Related changes Special pages

54

Drift tube suspension for high intensity linear accelerators  

DOE Patents (OSTI)

The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

1980-03-11T23:59:59.000Z

55

Critical design issues of high intensity proton linacs  

SciTech Connect

Medium-energy proton linear accelerators are being studied as drivers for spallation applications requiring large amounts of beam powder. Important design factors for such high-intensity linacs are reviewed, and issues and concerns specific to this unprecedented power regime are discussed.

Lawrence, G.P.

1994-08-01T23:59:59.000Z

56

Drift tube suspension for high intensity linear accelerators  

SciTech Connect

The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

Liska, Donald J. (Los Alamos, NM); Schamaun, Roger G. (Los Alamos, NM); Clark, Donald C. (Los Alamos, NM); Potter, R. Christopher (Los Alamos, NM); Frank, Joseph A. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

57

A high-intensity plasma-sputter heavy negative ion source  

SciTech Connect

A multicusp magnetic field plasma surface ion source, normally used for H/sup /minus//ion beam formation, has been modified for the generation of high-intensity, pulsed, heavy negative ion beams suitable for a variety of uses. To date, the source has been utilized to produce mA intensity pulsed beams of more than 24 species. A brief description of the source, and basic pulsed-mode operational data, (e.g., intensity versus cesium oven temperature, sputter probe voltage, and discharge pressure), are given. In addition, illustrative examples of intensity versus time and the mass distributions of ion beams extracted from a number of samples along with emittance data, are also presented. Preliminary results obtained during dc operation of the source under low discharge power conditions suggest that sources of this type may also be used to produce high-intensity (mA) dc beams. The results of these investigations are given, as well, and the technical issues that must be addressed for this mode of operation are discussed. 15 refs., 10 figs., 2 tabs.

Alton, G.D.; Mori, Y.; Takagi, A.; Ueno, A.; Fukumoto, S.

1989-01-01T23:59:59.000Z

58

Catalogue of OSD and HID Offshore Research by Key Human Factor Elements – 2002 Revision. Prepared by AEA Technology Environment for the Health and Safety Executive  

E-Print Network (OSTI)

The catalogue of OSD and HID Offshore human factors research was conceived by HSE OSD OD6 as an aid to OSD Inspectors and the offshore Industry. It was originally published in 1999 under Project 3696. This catalogue has now been updated by AEA Technology Environment. OSD Offshore has been renamed HID Offshore and hence the catalogue contains both OSD and HID Offshore human factors research, although the majority of the projects included date from the HSE Offshore Safety Division era. The catalogue provides: • description of the human factor elements as derived by AEA Technology from the Revision

Angela Crosbie; Fiona Davies

2002-01-01T23:59:59.000Z

59

High intensity performance and upgrades at the Brookhaven AGS  

SciTech Connect

The high intensity proton beam of the AGS is used both for the slow-extracted-beam (SEB) area with many target station to produce secondary beams and the fast-extracted-beam (FEB) line used for the production of muons for the g-2 experiment and for high intensity target testing for the spallation neutron sources and muon production targets for the muon collider. The same FEB line will also be used for the transfer of beam to RHIC. The proton beam intensity in the AGS has increased steadily over the 35 year existence of the AGS, but the most dramatic increase occurred over the last couple of years with the addition of the new AGS Booster. All modifications associated with this are discussed.

Roser, T.

1998-12-01T23:59:59.000Z

60

BEAM HALO FORMATION IN HIGH-INTENSITY BEAMS.  

SciTech Connect

Studies of beam halo became unavoidable feature of high-intensity machines where uncontrolled beam loss should be kept to extremely small level. For a well controlled stable beam such a loss is typically associated with the low density halo surrounding beam core. In order to minimize uncontrolled beam loss or improve performance of an accelerator, it is very important to understand what are the sources of halo formation in a specific machine of interest. The dominant mechanisms are, in fact, different in linear accelerators, circular machines or Energy Recovering Linacs (ERL). In this paper, we summarize basic mechanisms of halo formation in high-intensity beams and discuss their application to various types of accelerators of interest, such as linacs, rings and ERL.

FEDOTOV, A.V.

2005-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Novel Light Source Based on a RF-Driven High Intensity Discharge...  

NLE Websites -- All DOE Office Websites (Extended Search)

90-3122 Almost all the lighting news recently has been about advances in LED (Light Emitting Diode) lighting. But several companies are quietly developing new light sources that...

62

HIGH INTENSITY DISCHARGE 400-WATT SODIUM BALLAST PHASE I FINAL REPORT  

E-Print Network (OSTI)

Output as a f n of line volt volts, and the test terminated at77H312 LRL :nG. 18 LA)YLP VOLTS Unh~$$ otherwise stiHed J aU

Felper, G.

2010-01-01T23:59:59.000Z

63

ELECTRON COUD DYNAMICS IN HIGH-INTENSITY RINGS.  

SciTech Connect

Electron cloud due to beam-induced multipacting is one of the main concerns for the high intensity. Electrons generated and accumulated inside the beam pipe form an ''electron cloud'' that interacts with the circulating charged particle beam. With sizeable amount of electrons, this interaction can cause beam instability, beam loss and emittance growth. At the same time, the vacuum pressure will rise due to electron desorption. This talk intends to provide an overview of the mechanism and dynamics of the typical electron multipacting in various magnetic fields and mitigation measures with different beams.

WANG, L.; WEI, J.

2005-05-16T23:59:59.000Z

64

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Energy Efficient Street Lighting Changeover - Light-Emitting Diode (LED)High Intensity Discharge (HID) CX(s) Applied: A1, A9, B1.3, B5.1 Date:...

65

CX-003524: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Energy Efficient Street Lighting Changeover - Light-Emitting Diode (LED)High Intensity Discharge (HID) CX(s) Applied: A1, A9, B1.3, B5.1 Date:...

66

Automatic monitoring helps reduce lighting costs  

SciTech Connect

A Benton, Arkansas utility is using a dimmable ballast system to curb high-intensity-discharge (HID) lighting costs. The system also incorpoates a monitoring control system. This control automatically maintains minimum illumination levels.

1978-11-01T23:59:59.000Z

67

CW high intensity non-scaling FFAG proton drivers  

SciTech Connect

Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider). These high-intensity GeV-range proton drivers are particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient, or FFAG, is an attractive alternative to the cyclotron. Its strong focusing optics are expected to mitigate space charge effects, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron. This paper reports on these new advances in FFAG accelerator technology and references advanced modeling tools for fixed-field accelerators developed for and unique to the code COSY INFINITY.

Johnstone, C.; /Fermilab; Berz, M.; Makino, K.; /Michigan State U.; Snopok, P.; /IIT, Chicago

2011-04-01T23:59:59.000Z

68

Computational Simulations of High Intensity X-Ray Matter Interaction  

SciTech Connect

Free electron lasers have the promise of producing extremely high-intensity short pulses of coherent, monochromatic radiation in the 1-10 keV energy range. For example, the Linac Coherent Light Source at Stanford is being designed to produce an output intensity of 2 x 10{sup 14} W/cm{sup 2} in a 230 fs pulse. These sources will open the door to many novel research studies. However, the intense x-ray pulses may damage the optical components necessary for studying and controlling the output. At the full output intensity, the dose to optical components at normal incidence ranges from 1-10 eV/atom for low-Z materials (Z < 14) at photon energies of 1 keV. It is important to have an understanding of the effects of such high doses in order to specify the composition, placement, and orientation of optical components, such as mirrors and monochromators. Doses of 10 eV/atom are certainly unacceptable since they will lead to ablation of the surface of the optical components. However, it is not precisely known what the damage thresholds are for the materials being considered for optical components for x-ray free electron lasers. In this paper, we present analytic estimates and computational simulations of the effects of high-intensity x-ray pulses on materials. We outline guidelines for the maximum dose to various materials and discuss implications for the design of optical components.

London, R A; Rionta, R; Tatchyn, R; Roessler, S

2001-08-02T23:59:59.000Z

69

HIGH INTENSITY PERFORMANCE AND UPGRADES AT THE BROOKHAVEN AGS  

SciTech Connect

Fig. 1 shows the present layout of the AGS-RHIC accelerator complex. The high intensity proton beam of the AGS is used both for the slow-extracted-beam (SEB) area with many target station to produce secondary beams and the fast-extracted-beam (FEB) line used for the production of muons for the g-2 experiment and for high intensity target testing for the spallation neutron sources and muon production targets for the muon collider. The same FEB line will also be used for the transfer of beam to RHIC. The proton beam intensity in the AGS has increased steadily over the 35 year existence of the AGS, but the most dramatic increase occurred over the last couple of years with the addition of the new AGS Booster[1]. In Fig. 2 the history of the AGS intensity improvements is shown and the major upgrades are indicated. The AGS Booster has one quarter the circumference of the AGS and therefore allows four Booster beam pulses to be stacked in the AGS at an injection energy of 1.5--1.9 GeV. At this increased energy, space charge forces are much reduced and this in turn allows for the dramatic increase in the AGS beam intensity. The 200 MeV LINAC is being used both for the injection into the Booster as well as an isotope production facility. A recent upgrade of the LINAC rf system made it possible to operated at an average H{sup {minus}} current of 150 {micro}A and a maximum of 12 x 10{sup 13} H{sup {minus}} per 500 {micro}s LINAC pulse for the isotope production target. Typical beam currents during the 500 {micro}s pulse are about 80 mA at the source, 60 mA after the 750 keV RFQ, 38 mA after the first LINAC tank (10 MeV), and 37 mA at end of the LINAC at 200 MeV. The normalized beam emittance is about 2 {pi} mm mrad for 95% of the beam and the beam energy spread is about {+-}1.2 MeV. A magnetic fast chopper installed at 750 keV allows the shaping of the beam injected into the Booster to avoid excessive beam loss.

ROSER,T.

1998-05-04T23:59:59.000Z

70

Summary of sessions B and F: High intensity linacs and frontend & proton drivers  

SciTech Connect

This paper summarizes the sessions B&F of the 33rd ICFA Advanced Beam Dynamics Workshop on High Intensity & High Brightness Hadron Beams held in Bensheim, Germany. It covers high intensity linacs, front ends and proton driver topics.

Ferdinand, R.; /Saclay; Chou, W.; /Fermilab; Galambos, J.; /Oak Ridge

2005-01-01T23:59:59.000Z

71

Device for providing high-intensity ion or electron beam  

SciTech Connect

A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.

McClanahan, Edwin D. (Richland, WA); Moss, Ronald W. (Richland, WA)

1977-01-01T23:59:59.000Z

72

Frequency conversion of high-intensity, femtosecond laser pulses  

SciTech Connect

Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated that conversion efficiencies of 30-40% are possible at intensities of 600-800 GW/cm2, which is the operating level of the Petawatt laser at LLNL. The main limiting factors are phase modulation and material damage.

Banks, P S

1997-06-01T23:59:59.000Z

73

HIGH INTENSITY LIGHT SOURCES (Part II of Thesis)  

SciTech Connect

A stable carbon arc operated in controlled atmosphere is described. The arc was designed to serve as a light source during lifetime studies of the B/sup 2/ SIGMA state of the CN molecule. The CN radiation from the plasma of the arc was investigated and found to have a brightness temperature of 5500 icient laborato K at lambda 3883 A. This is considerably higher than an estimate of the value required for lifetime measurements. The stability of the carbon arc under various conditions is discussed. For successful lifetime measurements, the light source employed must have a high brightness temperature (intensity). A method for the determination of the brightness temperature of a light source at a specific wave length is described. The method was used for determining the brightness temperatures of some available light sources. Sodium, thallium, and mercury discharge lamps, a medium-pressure mercury arc lamp, and the carbon arc were studied. (auth)

Worden, E.F. Jr.

1958-10-01T23:59:59.000Z

74

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

High Intensity Discharge Lamps Test Procedures High Intensity Discharge Lamps Test Procedures Sign up for e-mail updates on regulations for this and other products High-intensity discharge (HID) lamps include mercury vapor (MV), metal halide (MH), and high-pressure sodium (HPS) lamps. The Department of Energy (DOE) is establishing test procedures for HID lamps. This rulemaking is mandated by the Energy Policy and Conservation Act (EPCA). ( 42 U.S.C. 6291-6309) This Rulemaking is related to the High-Intensity Discharge Lamps Standard and Test Procedure. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of proposed rulemaking regarding test procedures for HID lamps. 76 FR 77914 (Dec. 15, 2011).

75

Initial Results of the New High Intensity Electron Gun at the...  

NLE Websites -- All DOE Office Websites (Extended Search)

INITIAL RESULTS OF THE NEW HIGH INTENSITY ELECTRON GUN AT THE ARGONNE WAKEFIELD ACCELERATOR * M.E. Conde, W. Gai, R. Konecny, J.G. Power, P. Schoessow, X. Sun, ANL, Argonne, IL...

76

High-Intensity Discharge Industrial Lighting Design Strategies for the Minimization of Energy Usage and Life-Cycle Cost.  

E-Print Network (OSTI)

??Worldwide, the electrical energy consumed by artificial lighting is second only to the amount consumed by electric machinery. Of the energy usage attributed to lighting… (more)

Flory IV, Isaac L.

2008-01-01T23:59:59.000Z

77

Analysis, design and optimization of the LCC resonant inverter as a high-intensity discharge lamp ballast  

SciTech Connect

A complete study of the clamped-mode (CM) series-parallel (LCC) resonant inverter together with some of the control-to-output characteristics are presented in this paper. Also, a new control method for the CM LCC resonant inverter is introduced. With this method, the inverter is forced to operate with optimum commutations and without handling reactive energy, thus minimizing both switching and conduction losses. The corresponding design procedure is illustrated with a design example. Finally, some experimental results obtained from a prototype at the laboratory are also shown to validate the analysis and evaluate the proposed control method.

Alonso, J.M.; Blanco, C.; Lopez, E.; Calleja, A.J.; Rico, M. [Univ. de Oviedo, Gijon (Spain). Dept. de Ingenieria Electrica y Electronica

1998-05-01T23:59:59.000Z

78

Overview of the High Intensity Neutrino Source Linac R&D program at Fermilab  

SciTech Connect

The Fermilab High Intensity Neutrino Source (HINS) Linac R&D program is building a first-of-a-kind 60 MeV superconducting H- linac. The HINS Linac incorporates superconducting solenoids for transverse focusing, high power RF vector modulators for independent control of multiple cavities powered from a single klystron, and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linear accelerator. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. An overview of the HINS program, machine design, status, and outlook is presented.

Webber, R.C.; Appollinari, G.; Carneiro, J.P.; Gonin, I.; Hanna, B.; Hays, S.; Khabiboulline, T.; Lanfranco, G.; Madrak, R.L.; Moretti, A.; Nicol, T.; /Fermilab /Argonne

2008-09-01T23:59:59.000Z

79

New Electronic Light Sources for Sustainability in a Greener Environment  

Science Conference Proceedings (OSTI)

This EPRI Technical Update continues the technical assessment of advanced lighting technologies in the product areaselectronic linear fluorescent, electronic compact fluorescent, electronic high-intensity discharge (HID), and light-emitting diode (LED). This year, a new type of light sourcesolid-state plasma lighting (a miniature HID technology)was assessed. This project demonstrates how light sources are making their way into new designs providing new types of light fixtures. A total of seven products w...

2010-12-31T23:59:59.000Z

80

Advanced Lighting Technologies  

Science Conference Proceedings (OSTI)

This report continues the technical assessment of advanced lighting technologies in the following product areasdimmable light-emitting diode (LED) screw-in replacement lamp, hybrid compact fluorescent lamp/halogen screw-in replacement lamp, replacement recessed can LED downlight, organic LED (OLED) disc, replacement mini high-intensity discharge (HID) lamp and ballast system, and solid-state plasma lighting (miniature HID technology) high-bay fixture. The research in this project helps to demonstrate how...

2011-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Edward teller medal lecture: High intensity lasers and the road to ignition  

SciTech Connect

There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement. {copyright} {ital 1997 American Institute of Physics.}

Key, M.H. [Lawrence Livermore National Laboratory, Livermore, California94551 (United States)

1997-04-01T23:59:59.000Z

82

The Edward Teller medal lecture: High intensity lasers and the road to ignition  

SciTech Connect

There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

Key, M. H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

1997-04-15T23:59:59.000Z

83

Edward Teller medal lecture: high intensity lasers and the road to ignition  

SciTech Connect

There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

Key, M.H.

1997-06-02T23:59:59.000Z

84

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network (OSTI)

Developments over the past fifteen years have evolved new short flame, high intensity (1,000,000 BTU/HR/ft3 ) combustion systems for industrial uses. Such systems produce a more uniform and higher heat flux than conventional low intensity systems and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design performance. High intensity combustion systems can operate at zero excess air conditions without generating undesirable constituents in the exhaust. A more uniform gas temperature and gas emissivity renders modeling and design of the furnace radiant heat transfer section more realistic. 'Over-design' to allow for the less determinate conditions typical of low intensity, turbulent diffusion oil flame systems should be avoidable. A model has been set up and results generated which indicate the potentialities of the above premise. The application of vortex stabilized high intensity burners for reformer furnaces in the petrochemical industry is then reviewed and emphasized.

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

85

Commissioning of the new high-intensity ultracold neutron source at the Paul Scherrer Institut  

E-Print Network (OSTI)

Commissioning of the new high-intensity ultracold neutron (UCN) source at the Paul Scherrer Institut (PSI) has started in 2009. The design goal of this new generation high intensity UCN source is to surpass by a factor of ~100 the current ultracold neutron densities available for fundamental physics research, with the greatest thrust coming from the search for a neutron electric dipole moment. The PSI UCN source is based on neutron production via proton induced lead spallation, followed by neutron thermalization in heavy water and neutron cooling in a solid deuterium crystal to cold and ultracold energies. A successful beam test with up to 2 mA proton beam on the spallation target was conducted recently. Most source components are installed, others being finally mounted. The installation is on the track for the first cool-down and UCN production in 2010.

Bernhard Lauss

2010-11-17T23:59:59.000Z

86

Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields  

DOE Patents (OSTI)

A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

Scott, Timothy C. (Knoxville, TN); Wham, Robert M. (Oak Ridge, TN)

1988-01-01T23:59:59.000Z

87

HIGH-INTENSITY EFFECTS IN THE LONGITUDINAL MOTION OF STORED PARTICLE BEAMS  

SciTech Connect

A brief review is given of the various self-field phenomena associated with the longitudinal motion of particles in storage rings. Although there are some high-intensity phenomena for which the coupling of longitudinal and transverse motion is essential, such as, for example, the headtail effect; the great majority of high-intensity phenomena primarily involve either longitudinal or transverse degrees of freedom. In this review, we restrict our attention to phenomena which are essentially longitudinal in nature. It is convenient to consider separately the behavior of unbunched (coasting) and bunched (external RF system in operation) beams. Detailed experimental information on coasting beams has been obtained on the ISR, on the (old) CERN electron model CESAR, and on electron ring accelerators. All high-energy electron storage rings have bunched beams and, of course, so do synchrotrons, so that there are a large number of sources of experimental information about the longitudinal motion of bunched beams.

Sessler, Andrew M.

1973-02-01T23:59:59.000Z

88

STATUS OF SLOW EXTRACTION OF HIGH INTENSITY PROTONS FROM BROOKHAVEN'S AGS.  

SciTech Connect

The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams. We have an active program of high energy physics experiments, including the high precision measurement of the muons magnetic moment [1] and the discovery of the rare Kaon decay, K+ {yields} {pi} + {nu}{bar {nu}} [2]. This program is continuing into the future with the rare symmetry violating process experiments [3] currently being designed to operate at the AGS. In this paper, we will present results from operation of high intensity slow extraction, the problems we encounter, and our solutions to those problems.

BROWN,K.A.AHRENS,L.BRENNAN,J.M.GLENN,J.W.ROSER,T.RUSSO,T.TSOUPAS,N.SMITH,K.ZENO,K.

2003-05-12T23:59:59.000Z

89

650 mm long liquid hydrogen target for use in a high intensity electron beam  

DOE Green Energy (OSTI)

This paper describes a 650 mm long liquid hydrogen targetr constructed for use in the high intensity electron beam at the Stanford Linear Accelerator Center (SLAC). The main design problem was to construct a target that would permit the heat deposited by the electron beam to be removed rapidly without boiling the hydrogen so as to maintain constant target density for optimum data taking. Design requirements, cosntruction details and operating experience are discussed.

Mark, J.W.

1984-02-01T23:59:59.000Z

90

650 mm long liquid hydrogen target for use in a high intensity electron beam  

DOE Green Energy (OSTI)

This paper describes a 650 mm long liquid hydrogen target constructed for use in the high intensity electron beam at the Stanford Linear Accelerator Center. The main design problem was to construct a target that would permit the heat deposited by the electron beam to be removed rapidly without boiling the hydrogen so as to maintain constant target density for optimum data taking. Design requirements, construction details and operating experience are discussed.

Mark, J.W.

1983-07-01T23:59:59.000Z

91

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Intensity Discharge Lamps Energy Conservation Standard High-Intensity Discharge Lamps Energy Conservation Standard Sign up for e-mail updates on regulations for this and other products High-intensity discharge (HID) lamps include mercury vapor (MV), metal halide (MH), and high-pressure sodium (HPS) lamps. The Department of Energy (DOE) is considering establishing energy conservation standards for certain HID lamps. This rulemaking is mandated by the Energy Policy and Conservation Act (EPCA). (42 USC 6311-6317) Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of public meeting and availability of interim technical support document regarding energy conservation standards for high-intensity discharge lamps. 78 FR 13566 (February 28, 2013).

92

Generation of high intensity rf pulses in the ionosphere by means of in situ compression  

SciTech Connect

We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence.

Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

1993-04-01T23:59:59.000Z

93

High intensity electron beam ion trap for charge state boosting of radioactive ion beams  

SciTech Connect

A high intensity electron beam ion trap under development at LLNL could be adapted for charge state boosting of radioactive ion beams, enabling a substantial reduction in the size and cost of a post-accelerator. We report estimates of the acceptance, ionization time, charge state distribution, emittance, and beam intensity for charge state boosting of radioactive ions in this device. The estimates imply that, for tin isotopes, over 10{sup 10} ions/s can be ionized to q = 40+ with an absolute emittance of approximately 1 (pi) mm mrad at an energy of 30 x q.k.

Marrs, R.

1998-09-30T23:59:59.000Z

94

Program on Technology Innovation: Advanced Light Source Research  

Science Conference Proceedings (OSTI)

The Advanced Light Source (ALITE) research program is aimed at breakthrough basic research to achieve approximately 150 to 200 lumens per watt for fluorescent light sources, and to increase high intensity discharge light source efficiency by up to 50%. This report describes work on high intensity discharge (HID) lamps. These commercially available lamps currently have efficacies up to 120 lumens per watt (LPW), and radiate approximately 36% of their energy in the visible spectrum and 53% in the infrared ...

2006-03-27T23:59:59.000Z

95

Dynamical Schwinger effect and high-intensity lasers. Realising nonperturbative QED.  

Science Conference Proceedings (OSTI)

We consider the possibility of experimental verification of vacuum e{sup +}e{sup -} pair creation at the focus of two counter-propagating optical laser beams with intensities 10{sup 20}-10{sup 22} W/cm{sup 2}, achievable with present-day petawatt lasers, and approaching the Schwinger limit: 10{sup 29} W/cm{sup 2} to be reached at ELI. Our approach is based on the collisionless kinetic equation for the evolution of the e{sup +} and e{sup -} distribution functions governed by a non-Markovian source term for pair production. As possible experimental signals of vacuum pair production we consider e{sup +}e{sup -} annihilation into {gamma}-pairs and the refraction of a high-frequency probe laser beam by the produced e{sup +}e{sup -} plasma. We discuss the dependence of the dynamical pair production process on laser wavelength, with special emphasis on applications in the X-ray domain (X-FEL), as well as the prospects for {mu}{sup +}{mu}{sup -} and {pi}{sup +}{pi}{sup -} pair creation at high-intensity lasers. We investigate perspectives for using high-intensity lasers as 'boosters' of ion beams in the few-GeV per nucleon range, which is relevant, e.g., to the exploration of the QCD phase transition in laboratory experiments.

Blaschke, D. B.; Prozorkevich, A. V.; Roepke, G.; Roberts, C. D.; Schmidt, S. M.; Shkirmanov, D. S.; Smolyansky, S. A.; Physics; Univ. of Wroclaw; Joint Inst. for Nuclear Research; Univ. Rostock; Saratov State Univ.; Forschungszentrum Juelich GmbH

2009-11-01T23:59:59.000Z

96

Dynamical Schwinger effect and high-intensity lasers. Realising nonperturbative QED  

E-Print Network (OSTI)

We consider the possibility of experimental verification of vacuum e^+e^- pair creation at the focus of two counter-propagating optical laser beams with intensities 10^{20}-10^{22} W/cm^2, achievable with present-day petawatt lasers, and approaching the Schwinger limit: 10^{29} W/cm^2 to be reached at ELI. Our approach is based on the collisionless kinetic equation for the evolution of the e^+ and e^- distribution functions governed by a non-Markovian source term for pair production. As possible experimental signals of vacuum pair production we consider e^+e^- annihilation into gamma-pairs and the refraction of a high-frequency probe laser beam by the produced e^+e^- plasma. We discuss the dependence of the dynamical pair production process on laser wavelength, with special emphasis on applications in the X-ray domain (X-FEL), as well as the prospects for \\mu^+\\mu^- and \\pi^+\\pi^- pair creation at high-intensity lasers. We investigate perspectives for using high-intensity lasers as ``boosters'' of ion beams in the few-GeV per nucleon range, which is relevant, e.g., to the exploration of the QCD phase transition in laboratory experiments.

D. B. Blaschke; A. V. Prozorkevich; G. Roepke; C. D. Roberts; S. M. Schmidt; D. S. Shkirmanov; S. A. Smolyansky

2008-11-21T23:59:59.000Z

97

The upgraded rf system for the AGS and high intensity proton beams  

SciTech Connect

The AGS has been upgraded over the past three years to produce a record beam intensity of 6 {times} 10{sup 13} protons per pulse for the fixed-target physics program. The major elements of the upgrade are: the new 1.5 GeV Booster synchrotron, the main magnet power supply, a high frequency longitudinal dilution cavity, a feedback damper for transverse instabilities, a fast gamma transition jump system, and a new high-power rf system. The new rf system and its role in achieving the high intensity goal are the subjects of this report. The rf system is heavily beam loaded, with 7 Amps of rf current in the beam and a peak power of 0.75 MW delivered to the beam by ten cavities. As an example of the scale of beam loading, at one point in the acceleration cycle the cavities are operated at 1.5 kV/gap; whereas, were it not for the new power amplifiers, the beam-induced voltage on the cavities would be over 25 kV/gap. The upgraded rf system, comprising: new power amplifiers, wide band rf feedback, improved cavities, and new low-level beam control electronics, is described. Results of measurements with beam, which characterize the system`s performance, are presented. A typical high intensity acceleration cycle is described with emphasis on the key challenges of beam loading.

Brennan, J.M. [Brookhaven National Lab., Upton, NY (United States). AGS Dept.

1995-05-01T23:59:59.000Z

98

A Class Of Generalized Kapchinskij-Vladimirskij Solutions And Associated Envelope Equations For High-intensity Charged Particle Beams  

SciTech Connect

A class of generalized Kapchinskij-Vladimirskij solutions of the nonlinear Vlasov-Maxwell equations and the associated envelope equations for high-intensity beams in a periodic lattice is derived. It includes the classical Kapchinskij-Vladimirskij solution as a special case. For a given lattice, the distribution functions and the envelope equations are specified by eight free parameters. The class of solutions derived captures a wider range of dynamical envelope behavior for high-intensity beams, and thus provides a new theoretical tool to investigate the dynamics of high-intensity beams.

Hong Qin and Ronald C. Davidson

2012-04-25T23:59:59.000Z

99

Space charge measurements with a high intensity bunch at the Fermilab Main Injector  

SciTech Connect

For Project X, the Fermilab Main Injector will be required to operate with 3 times higher bunch intensity. The plan to study the space charge effects at the injection energy with intense bunches will be discussed. A multi-MW proton facility has been established as a critical need for the U.S. HEP program by HEPAP and P5. Utilization of the Main Injector (MI) as a high intensity proton source capable of delivering in excess of 2 MW beam power will require a factor of three increase in bunch intensity compared to current operations. Instabilities associated with beam loading, space charge, and electron cloud effects are common issues for high intensity proton machines. The MI intensities for current operations and Project X are listed in Table 1. The MI provides proton beams for Fermilab's Tevatron Proton-Antiproton Collider and MINOS neutrino experiments. The proposed 2MW proton facility, Project X, utilizes both the Recycler (RR) and the MI. The RR will be reconfigured as a proton accumulator and injector to realize the factor 3 bunch intensity increase in the MI. Since the energy in the RR and the MI at injection will be 6-8 GeV, which is relatively low, space charge effects will be significant and need to be studied. Studies based on the formation of high intensity bunches in the MI will guide the design and fabrication of the RF cavities and space-charge mitigation devices required for 2 MW operation of the MI. It is possible to create the higher bunch intensities required in the MI using a coalescing technique that has been successfully developed at Fermilab. This paper will discuss a 5 bunch coalescing scheme at 8 GeV which will produce 2.5 x 10{sup 11} protons in one bunch. Bunch stretching will be added to the coalescing process. The required RF parameters were optimized with longitudinal simulations. The beam studies, that have a goal of 85% coalescing efficiency, were started in June 2010.

Seiya, K.; Chase, B.; Dey, J.; Joireman, P.; Kourbanis, I.; /Fermilab; Yagodnitsyna, A.; /Novosibirsk State U.

2011-03-01T23:59:59.000Z

100

Liquid lithium target as a high intensity, high energy neutron source  

DOE Patents (OSTI)

This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

Parkin, Don M. (Los Alamos, NM); Dudey, Norman D. (Glen Ellyn, IL)

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High intensity production of high and medium charge state uraniumand other heavy ion beams with VENUS  

SciTech Connect

The next generation, superconducting ECR ion source VENUS(Versatile ECR ion source for NUclear Science) started operation with 28GHzmicrowave heating in 2004. Since then it has produced world recordion beam intensities. For example, 2850 e mu A of O6+, 200 e mu A of U33+or U34+, and in respect to high charge state ions, 1 e mu A of Ar18+, 270e mu A of Ar16+, 28 e mu A of Xe35+ and 4.9 e mu A of U47+ have beenproduced. A brief overview of the latest developments leading to theserecord intensities is given and the production of high intensity uraniumbeams is discussed in more detail.

Leitner, Daniela; Galloway, Michelle L.; Loew, Timothy J.; Lyneis, Claude M.; Rodriguez, Ingrid Castro; Todd, Damon S.

2007-11-15T23:59:59.000Z

102

ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS  

SciTech Connect

Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

Qiu, Rui

2011-03-21T23:59:59.000Z

103

Design of a high-intensity RFQ for a possible LHC laser ion source  

E-Print Network (OSTI)

We have designed a 100 MHz RFQ to accelerate Pb25+ ions from 9.6 keV/u to 250 keV/u for the LHC ion program. We assume an input beam from a laser ion source with a total beam current of 90 mA, out of which 9 mA is Pb25+. The main challenge of the design is to match the tight longitudinal acceptance of the downstream Interdigital H structure while dealing with a high intensity beam composed of a variety of charge states. In this paper, we present a baseline setup optimized for nominal conditions, and show the sensitivity of the RFQ performance to varying input beam characteristics and rf parameters. Further studies will cover the compatibility of this design with an upgraded ECR source under investigation at CERN.

Hanke, K

2002-01-01T23:59:59.000Z

104

High-intensity, high-brightness polarized and unpolarized beam production in charge-exchange collisions  

DOE Green Energy (OSTI)

Basic limitations on the high-intensity H{sup -} ion beam production were experimentally studied in charge-exchange collisions of the neutral atomic hydrogen beam in the Na-vapour jet ionizer cell. These studies are the part of the polarized source upgrade (to 10 mA peak current and 85% polarization) project for RHIC. In the source the atomic hydrogen beam of a 5-10 keV energy and total (equivalent) current up to 5 A is produced by neutralization of proton beam in pulsed hydrogen gas target. Formation of the proton beam (from the surface of the plasma emitter with a low transverse ion temperature {approx}0.2 eV) is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. The hydrogen atomic beam intensity up to 1.0 A/cm{sup 2} (equivalent) was obtained in the Na-jet ionizer aperture of a 2.0 cm diameter. At the first stage of the experiment H-beam with 36 mA current, 5 keV energy and {approx}1.0 cm {center_dot} mrad normalized emittance was obtained using the flat grids and magnetic focusing.

Zelenski, A.; Ritter, J.; Zubets, V.; Steski, D.; Atoian, G.; Davydenko, V.; Ivanov, A.; Kolmogorov, A.

2011-03-28T23:59:59.000Z

105

Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)  

Science Conference Proceedings (OSTI)

2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

Stafford, D

2009-06-01T23:59:59.000Z

106

High-order harmonics from bow wave caustics driven by a high-intensity laser  

Science Conference Proceedings (OSTI)

We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh. [Advanced Beam Technology Division, Japan Atomic Energy Agency (Japan); and others

2012-07-11T23:59:59.000Z

107

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

efficiency motors Lighting Controls Replace metal halide HID with high-intensity Daylighting fluorescents Replace incandescent with fluorescent or CFL

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

108

Development of a high intensity EBIT for basic and applied science/011  

Science Conference Proceedings (OSTI)

The electron-beam ion trap (EBIT) is a device for producing and studying cold, very highly charged ions of any element, up to a fully ionized U{sup 92+}. These highly charged ions occur in hot plasmas and therefore play important roles in nuclear weapons, controlled fusion, and astrophysical phenomena. The remarkable interaction of these ions with surfaces may lead to technological applications. The highly charged ions can either be studied inside the EBIT itself with measurements of their x-ray emission spectra, or the ions can be extracted from the EBIT in order to study their interaction with solid material. Both types of measurements are being pursued vigorously with the two existing low-intensity EBITs at LLNL and with similar EBITs that have been built at six other laboratories around the world since the EBIT was first developed at LLNL 10 years ago. However, all existing EBITs have approximately the same intensity as the original LLNL EBIT; that is, they all produce about the same number of very-highly-charged ions (roughly 2 x 10{sup 6} per second) and the same number of x-ray photons (roughly 10{sup 7} per second). The goal of the High-Intensity-EBIT project is to increase the x-ray emission per centimeter of length along the electron beam by a factor of 100 and to increase the ion output by a factor of 1000. This dramatic increase in intensity will enable the next generation of basic and applied experimental research in the structure of highly charged ions. For example, the precision of EBIT x-ray measurements of atomic energy levels- which is now limited by count rate-can be improved by an order of magnitude, and new applications in surface science, nanotechnology, and microscopy will be possible with the expected intense ion beams. When the high ion output is combined with the demonstrated low emittance of EBIT ions, we will have a high-brightness source of highly charged ions that can be focused to submicrometer spots. One example of a measurement that will benefit from increased x-ray intensity is our study of the binding energy of high-Z heliumlike ions. The small ``two-electron`` contribution to this binding energy is a fundamental aspect of atomic structure. It arises from the small forces that the two electrons exert on each other in the presence of the much larger force from the atomic nucleus. Our existing EBIT measurements are sensitive to the so-called ``second order`` contribution to the two-electron binding energy, but with the High-Intensity EBIT we can probe an even more subtle effect: the screening by one electron of the quantum electrodynamic (QED) energy contribution from the other electron.

Marrs, R.E., LLNL

1998-02-05T23:59:59.000Z

109

Generalized Kapchinskij-Vladimirskij Distribution and Envelope Equation for High-intensity Beams in a Coupled Transverse Focusing Lattice  

SciTech Connect

In an uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function first analyzed in 1959 is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high- intensity beams including self-fields in a self-consistent manner. The KV solution is generalized here to high-intensity beams in a coupled transverse lattice using the recently developed generalized Courant-Snyder invariant for coupled transverse dynamics. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space, determined by the generalized matrix envelope equation.

Hong Qin, Moses Chung, and Ronald C. Davidson

2009-11-20T23:59:59.000Z

110

Attaining and using extremely high intensities of solar energy with non-imaging concentrators  

SciTech Connect

Using the principles and techniques of non-imaging optics, solar concentrations that approach the theoretical maximum can be achieved. In this paper, the authors review recent progress in attaining, measuring, and using such ultrahigh solar fluxes. In particular, they review the design principles for optimized two-stage concentrators and solar furnaces and discuss the characteristics and properties of a variety of non-imaging secondaries which have been employed. These include Compound Parabolic Concentrators (CPC) type secondaries, Dielectric Totally Internally Reflecting Concentrators (DTIRC), and flow-line or {open_quotes}trumpet{close_quotes} concentrators. The usual design is a configuration where {phi}, the rim angle of the primary, is small, that is, corresponding to a system with a relatively large focal length to diameter (F/D) ratio. All three types of secondary are characterized by a design acceptance angle {phi}{sub a} which must be greater than or equal to {phi}. The design parameters and trade-offs for each of these systems including strategies for choice of particular secondary and degree of truncation, are presented. The authors review the calorimetric techniques used to measure these high intensities and describe a newly developed technique for {open_quotes}extracting{close_quotes} light from inside a high index medium. Finally they review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potential economic uses of solar energy. 63 refs., 34 figs., 3 tabs.

Jenkins, D.; O`Gallagher, J.; Winston, R.

1997-12-31T23:59:59.000Z

111

Conceptual design of a high-intensity positron source for the Advanced Neutron Source  

SciTech Connect

The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world`s best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world`s best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using {sup 64}Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet.

Hulett, L.D.; Eberle, C.C.

1994-12-01T23:59:59.000Z

112

High-intensity ion sources for accelerators with emphasis on H-beam formation and transport  

SciTech Connect

This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

Keller, Roderich [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

113

Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves  

SciTech Connect

The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10{sup 18}W/cm{sup 2}) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.

Rax, J.M.

1992-04-01T23:59:59.000Z

114

GAS DISCHARGE DEVICES  

DOE Patents (OSTI)

The construction of gas discharge devices where the object is to provide a gas discharge device having a high dark current and stabilized striking voltage is described. The inventors have discovered that the introduction of tritium gas into a discharge device with a subsequent electrical discharge in the device will deposit tritium on the inside of the chamber. The tritium acts to emit beta rays amd is an effective and non-hazardous way of improving the abovementioned discharge tube characteristics

Arrol, W.J.; Jefferson, S.

1957-08-27T23:59:59.000Z

115

Sensitivity to Dark Energy candidates by searching for four-wave mixing of high-intensity lasers in the vacuum  

E-Print Network (OSTI)

Theoretical challenges to understand Dark Matter and Dark Energy suggest the existence of low-mass and weakly coupling fields in the universe. The quasi-parallel photon-photon collision system (QPS) can provide chances to probe the resonant production of these light dark fields and the induced decay by the coherent nature of laser fields simultaneously. By focusing high-intensity lasers with different colors in the vacuum, new colors emerge as the signature of the interaction. Because four photons in the initial and final states interplay via the dark field exchange, this process is analogous to four-wave mixing in quantum optics, where the frequency sum and difference among the incident three waves generate the fourth wave with a new frequency via the nonlinear property of crystals. The interaction rate of the four-wave mixing process has the cubic dependence on the intensity of each wave. Therefore, if high-intensity laser fields are given, the sensitivity to the weakly coupling of dark fields to photons rapidly increases over the wide mass range below sub-eV. Based on the experimentally measurable photon energies and the linear polarization states, we formulate the relation between the accessible mass-coupling domains and the high-intensity laser parameters, where the effects of the finite spectrum width of pulse lasers are taken into account. The expected sensitivity suggests that we have a potential to explore interactions at the Super-Planckian coupling strength in the sub-eV mass range, if the cutting-edge laser technologies are properly combined.

Kensuke Homma

2012-11-09T23:59:59.000Z

116

Experimental Estimate of Beam Loading and Minimum rf Voltage for Acceleration of High Intensity Beam in the Fermilab Booster  

E-Print Network (OSTI)

The difference between the rf voltage seen by the beam and the accelerating voltage required to match the rate of change of the Booster magnetic field is used to estimate the energy loss per beam turn. Because the rf voltage (RFSUM) and the synchronous phase can be experimentally measured, they can be used to calculate the effective accelerating voltage. Also an RFSUM reduction technique has been applied to measure experimentally the RFSUM limit at which the beam loss starts. With information on beam energy loss, the running conditions, especially for the high intensity beam, can be optimized in order to achieve a higher intensity beam from the Fermilab Booster.

Yang, X; Norem, J; Yang, Xi

2004-01-01T23:59:59.000Z

117

Plume splitting and rebounding in a high-intensity CO{sub 2} laser induced air plasma  

Science Conference Proceedings (OSTI)

The dynamics of plasma plume formed by high-intensity CO{sub 2} laser induced breakdown of air at atmospheric pressure is investigated. The laser wavelength is 10.6 {mu}m. Measurements were made using 3 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The behavior of the plasma plume was studied with a laser energy of 3 J and 10 J. The results show that the evolution of the plasma plume is very complicated. The splitting and rebounding of the plasma plume is observed to occur early in the plumes history.

Chen Anmin; Jiang Yuanfei; Liu Hang; Jin Mingxing; Ding Dajun [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China)

2012-07-15T23:59:59.000Z

118

Experimental estimate of beam loading and minimum rf voltage for acceleration of high intensity beam in the Fermilab Booster  

SciTech Connect

The difference between the rf voltage seen by the beam and the accelerating voltage required to match the rate of change of the Booster magnetic field is used to estimate the energy loss per beam turn. Because the rf voltage (RFSUM) and the synchronous phase can be experimentally measured, they can be used to calculate the effective accelerating voltage. Also an RFSUM reduction technique has been applied to measure experimentally the RFSUM limit at which the beam loss starts. With information on beam energy loss, the running conditions, especially for the high intensity beam, can be optimized in order to achieve a higher intensity beam from the Fermilab Booster.

Xi Yang; Charles M Ankenbrandt and Jim Norem

2004-04-01T23:59:59.000Z

119

GAS DISCHARGE DEVICES  

DOE Patents (OSTI)

An apparatus utilized in introducing tritium gas into envelope of a gas discharge device for the purpose f maintaining the discharge path in ionized condition is described. ln addition to the cathode and anode, the ischarge device contains a zirconium or tantalum ilament arranged for external excitation and a metallic seed containing tritium, and also arranged to have a current passed through it. Initially, the zirconium or tantalum filament is vaporized to deposit its material adjacent the main discharge region. Then the tritium gas is released and, due to its affinity for the first released material, it deposits in the region of the main discharge where it is most effective in maintaining the discharge path in an ionized condition.

Jefferson, S.

1958-11-11T23:59:59.000Z

120

MR-Guided High-Intensity Focused Ultrasound Ablation of Breast Cancer with a Dedicated Breast Platform  

SciTech Connect

Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

Merckel, Laura G., E-mail: L.G.Merckel-2@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Bartels, Lambertus W., E-mail: W.Bartels@umcutrecht.nl [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Koehler, Max O., E-mail: max.kohler@philips.com [Philips Healthcare (Finland); Bongard, H. J. G. Desiree van den, E-mail: D.vandenBongard@umcutrecht.nl [University Medical Center Utrecht, Department of Radiotherapy (Netherlands); Deckers, Roel, E-mail: R.Deckers-2@umcutrecht.nl [University Medical Center Utrecht, Image Sciences Institute (Netherlands)] [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Mali, Willem P. Th. M., E-mail: W.Mali@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Binkert, Christoph A., E-mail: Christoph.Binkert@ksw.ch [Cantonal Hospital Winterthur, Department of Radiology (Switzerland); Moonen, Chrit T., E-mail: C.Moonen@umcutrecht.nl [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Gilhuijs, Kenneth G. A., E-mail: K.G.A.Gilhuijs@umcutrecht.nl; Bosch, Maurice A. A. J. van den, E-mail: mbosch@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands)

2013-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Guiding of high intensity ultrashort laser pulses in plasma channels produced with the dual laser pulse ignitor-heater technique  

DOE Green Energy (OSTI)

The authors present results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme is proposed and experimentally tested in hydrogen and nitrogen. It makes use of two laser pulses. The Ignitor, an ultrashort (< 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used subsequently to heat the existing spark via inverse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. The channel density was diagnosed with time resolved longitudinal interferometry. From these measurements the plasma temperature was inferred. The guiding properties of the channels were tested by injecting a > 5 {times} 10{sup 17} W/cm{sup 2}, 75 fs laser pulse.

Volfbeyn, P.; Leemans, W.P.

1998-07-01T23:59:59.000Z

122

High-Intensity and High-Density Charge-Exchange Injection Studies into the CERN PS Booster at Intermediate Energies  

E-Print Network (OSTI)

For the high brilliance LHC ultimate beam and the high intensity CNGS beam, single batch injections into the CERN Proton Synchrotron (PS) will be used to increase the overall machine intensity compared with the present double batch injections. Charge-exchange injection into the PS Booster with a new linac at intermediate energies is thus examined. A key parameter to consider is the energy dependence of beam incoherent tune shifts at injection. Increasing the linac energy from the present 50 MeV to 160 MeV should yield a safer tune shift. For each PS Booster ring, a charge-exchange injection scheme is envisaged inside a proper straight section, redesigned with new bends to make a local bump and using the existing fast bump magnets for horizontal phase-space painting. ACCSIM simulations for charge-exchange injection at 160 MeV have been investigated for both LHC and CNGS beams. After optimizing the parameters that are used for the space charge tracking routines, the results of the simulations agree well with ex...

Martini, M

2004-01-01T23:59:59.000Z

123

Silane discharge ion chemistry  

SciTech Connect

Silane dc, rf, and dc proximity discharges have been studied using mass spectroscopic measurements of the positive ions as a detailed diagnostic for the type of discharge used to produce hydrogenated amorphous silicon solar photovoltaic cells. The properties and quality of these films depends in a very complex way upon the interactions of the many reactive neutral and ion species in the discharge. Qualitative models of the ion chemical processes in these discharges have been developed from experimental measurements. Knowledge of the ion-molecule and electron-molecule collision cross sections is important to any attempt at understanding silane discharge chemistry. Consequently, the electron impact ionization cross sections for silane and disilane have been measured and for comparison purposes also for methane and ethane. In addition, the rate coefficients for charge exchange reactions of He , Ne , and Ar with silane, disilane, methane, and ethane have been measured as these are important to understanding discharges in inert gas-silane mixtures. A detailed quantitative model of the cathode sheath region of a silane dc discharge has been developed by extending the best recent calculation of the electron motion in the sheath to a self-consistent form which includes the ion motion. This model is used with comparison of silane dc discharge data to diagnose the ion chemistry occurring in the sheath region of silane dc discharge. The understanding of the discharge ion chemical processes that have been gained in this study represent an important step toward understanding the chemical and physical processes leading to film growth.

Chatham, R.H. III

1984-01-01T23:59:59.000Z

124

Advanced Light Sources  

Science Conference Proceedings (OSTI)

In the generation of artificial light using electric lamps, photometric and color performance have been paramount in lamp design, manufacturing, measurement, lighting design, and visual perception. Many designers and researchers have strived to understand how light and color are generated, related, and to improve them. This has stemmed from the development of incandescent lamps, halogen lamps, linear fluorescent lamps, high-intensity discharge (HID) lamps, and compact fluorescent lamps (CFLs) among other...

2008-03-31T23:59:59.000Z

125

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic Light-Emitting Diode (LED) Fixtures, Lamps, and Drivers  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the dimming performance of light-emitting diode (LED) lighting. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth the dimming methods used in advanced lighting sources and controls for incandescent, fluorescent, high-intensity discharge (HID) and LED sources. Chapter 3 ad...

2008-12-19T23:59:59.000Z

126

Dynamic T{sub 2}-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow  

Science Conference Proceedings (OSTI)

Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1 Degree-Sign C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T{sub 2}, since T{sub 2} increases linearly in fat during heating. T{sub 2}-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T{sub 2}. Calibration of T{sub 2}-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T{sub 2} and temperature with a thermocouple. A positive T{sub 2} temperature dependence in bone marrow of 20 ms/ Degree-Sign C was observed. Dynamic T{sub 2}-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M. [Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Philips Healthcare Canada, Markham, ON, L6C 2S3 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada)

2012-11-28T23:59:59.000Z

127

Narrow Energy Spread Protons and Ions from High-Intensity, High-Contrast Laser Solid Target Interactions  

Science Conference Proceedings (OSTI)

Recent simulations show that an idealized, high intensity, short pulse laser can generate quasi-monoenergetic proton beams with energies over 100 MeV in an interaction with a thin film. However, most short pulse laser facilities with sufficient intensity have difficulty controlling the nanosecond and picosecond contrast necessary to realize such a regime. Experiments were performed to investigate proton and ion acceleration from a high contrast, short pulse laser by employing dual plasma mirrors along with a deformable mirror at the HERCULES laser facility at the Center for Ultrafast Optical Sciences, University of Michigan. Plasma mirrors were characterized, allowing a 50% throughput with an intensity contrast increase of 105. The focal spot quality was also exceptional, showing a 1.1 micron full width at half maximum (FWHM) focal diameter. Experiments were done using temporally cleaned 30 TW, 32 fs pulses to achieve an intensity of up to 10{sup 21} Wcm{sup -2} on Si{sub 3}N{sub 4} and Mylar targets with thicknesses ranging 50 nm to 13 microns. Proton beams with energy spreads below 2 MeV were observed from all thicknesses, peaking with energies up to 10.3 MeV and an energy spread of 0.8 MeV. Similar narrow energy spreads were observed for oxygen, nitrogen, and carbon at the silicon nitride thickness of 50 nm with energies up to 24 MeV with an energy spread of 3 MeV, whereas the energy spread is greatly increased at a larger thickness. Maximum energies were confirmed with CR39 track detectors, while a Thomson ion spectrometer was used to gauge the monoenergetic nature of the beam.

Dollar, Franklin; Matsuoka, Takeshi; McGuffey, Christopher; Bulanov, Stepan S.; Chvykov, Vladimir; Kalintchenko, Galina; Thomas, Alec G. R.; Willingale, Louise; Yanovsky, Victor; Maksimchuk, Anatoly; Krushelnick, Karl [Center for Ultrafast Optical Science, Univ. Of Michigan, Ann Arbor, MI 48109 (United States); Davis, Jack; Petrov, George [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2010-11-04T23:59:59.000Z

128

HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel  

SciTech Connect

Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or Omega may offer additional advantages and we would expect these to be explored and evaluated during the CD process. Question 3 - A laser/optics experts group should review this proposal to ensure the level of R&D is reasonable to provide a sufficient chance of success (>50%). In the preparation of the HILL proposal, we sent our proposal and cost estimates to laser designers/scientists across the complex. Though risks were identified with our design, the prevailing view of those we engaged was that the risks were appropriately represented by the TRL levels assigned and that the enabling R&D planned in our proposal was adequate for risk mitigation. Question 4 - More data and peer review is needed from its sister facilities around the world. It is our specific intent to conduct both scientific and technical workshops with the user community if the High Intensity Science field is further encouraged as part of the NNSA Roadmap. Question 5 - Does HILL have to be co-located with MARIE 1.0? Is that feasible from the point of view of TA-53 real estate? Multiple siting options were considered for HILL, including co-location with MaRIE 1.0 (the most cost-effective and flexible option), as well as in a separate, stand-alone building and in a retro-fitted existing building. The cost estimate included these contingencies and candidate locations for HILL in TA-53 were identified. There is actually significant space at TA-53 on the hill in the northeast end of the mesa. Question 6 - What would be the impact on the weapons program if this facility were NOT built? An inability to elucidate aspects of weapons science in the dense plasma regime and validate computer models for same. This will lead to reduced confidence in the computer tools used for certification. Question 7 - Will HILL allow some of the x-ray vulnerability studies proposed by SPARC? If so what does Sandia's vulnerability group think of this method versus SPARC. It is possible that some of the scope envisioned for SPARC could be achieved on HILL, although likely that the energy produced at HILL not bei

Albright, B J [Los Alamos National Laboratory

2012-08-02T23:59:59.000Z

129

Generalized Courant-Snyder Theory and Kapchinskij-Vladimirskij Distribution For High-intensity Beams In A Coupled Transverse Focusing Lattice  

SciTech Connect

The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in a uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are non-commutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation, and reduces beam pulsation.

Hong QIn, Ronald Davidson

2011-07-18T23:59:59.000Z

130

PERIODIC GLOW DISCHARGE REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

GLOW DISCHARGE REPORT GLOW DISCHARGE REPORT TIME: Jan 11 2014 11:29:09:000PM Power Supply ON/OFF Status OFF Power Supply Fault Status FAULT Power Supply Standby Status ON Power Supply Interlock Status NOT OK HV Power Resistors Status NORMAL Power Supply Voltage 52.00 Power Supply Current -71.00 Electrode 1 Voltage -15.00 Electrode 1 Current -79.00 Electrode 2 Voltage -14.00 Electrode 2 Current -70.00 ROSS 1 Status OPEN ROSS 2 Status OPEN ROSS 1 Common Line OPEN ROSS 2 Common Line OPEN IGBT1 Enable DISABLE IGBT2 Enable DISABLE

131

Longitudinal discharge laser baffles  

DOE Patents (OSTI)

The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.

Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

1994-01-01T23:59:59.000Z

132

Longitudinal discharge laser baffles  

DOE Patents (OSTI)

The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

Warner, B.E.; Ault, E.R.

1994-06-07T23:59:59.000Z

133

Powerful glow discharge excilamp  

DOE Patents (OSTI)

A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

Tarasenko, Victor F. (Tomsk, RU); Panchenko, Aleksey N. (Tomsk, RU); Skakun, Victor S. (Tomsk, RU); Sosnin, Edward A. (Tomsk, RU); Wang, Francis T. (Danville, CA); Myers, Booth R. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

2002-01-01T23:59:59.000Z

134

Principles of Electrical Discharge Machining  

Science Conference Proceedings (OSTI)

...supplied to the clearance from a pulse power supply (approximately 60 to 300 V) to provide transient arc discharge (discharge retention time: 0.1 ÎĽs to 8 ms) at a high frequency so as to remove workpiece metal with a very dense energy provided by the discharge....

135

Oil and Hazardous Substance Discharge Preparedness (Minnesota...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Substance Discharge Preparedness (Minnesota) Oil and Hazardous Substance Discharge Preparedness (Minnesota) Eligibility Utility Fed. Government Commercial Agricultural...

136

Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar{sup +} laser beam  

SciTech Connect

Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar{sup +} laser beam (intensity: 9.2 x 10{sup 4} W/cm{sup 2}) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

Niry, M. D.; Khalesifard, H. R. [Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Mostafavi-Amjad, J.; Ahangary, A. [Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Azizian-Kalandaragh, Y. [Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Department of Physics, University of Mohaghegh Ardabili (UMA), P.O. Box 179, Ardabil (Iran, Islamic Republic of)

2012-02-01T23:59:59.000Z

137

Polarisation response of a gas medium in the field of a high-intensity ultrashort laser pulse: high order Kerr nonlinearities or plasma electron component?  

SciTech Connect

The polarisation response of quantum systems modelling silver and xenon atoms in the field of a high-intensity femtosecond Ti : sapphire laser (photon energy h{omega} Almost-Equal-To 1.5 eV), has been investigated by direct numerical integration of the Schroedinger equation. The applicability ranges of the perturbation theory and polarisation expansion in powers of field are determined. The contributions of excited atoms and electrons in the continuous-spectrum states to the polarisation response at the fundamental frequency, which arise as a result of excitation and photoionisation, are analysed. It is shown that specifically ionisation changes the sign of dielectric susceptibility with an increase in radiation intensity for the systems under consideration. (interaction of laser radiation with matter. laser plasmas)

Volkova, E A; Popov, Alexander M; Tikhonova, O V [D.V. Skobel'tsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

2012-08-31T23:59:59.000Z

138

X-ray polarization spectroscopy to study anisotropic velocity distribution of hot electrons produced by an ultra-high-intensity laser  

SciTech Connect

The anisotropy of the hot-electron velocity distribution in ultra-high-intensity laser produced plasma was studied with x-ray polarization spectroscopy using multilayer planar targets including x-ray emission tracer in the middle layer. This measurement serves as a diagnostic for hot-electron transport from the laser-plasma interaction region to the overdense region where drastic changes in the isotropy of the electron velocity distribution are observed. These polarization degrees are consistent with analysis of a three-dimensional polarization spectroscopy model coupled with particle-in-cell simulations. Electron velocity distribution in the underdense region is affected by the electric field of the laser and that in the overdense region becomes wider with increase in the tracer depth. A full-angular spread in the overdense region of 22.4 deg.{sub -2.4}{sup +5.4} was obtained from the measured polarization degree.

Inubushi, Y. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Okano, Y.; Nishimura, H.; Cai, H.; Nagatomo, H.; Kai, T.; Fujioka, S.; Nakamura, T.; Johzaki, T.; Mima, K. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Kawamura, T. [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Batani, D.; Morace, A.; Redaelli, R. [Dipartmento di Fisica 'G. Occhialini', University of Milano-Bicocca, Milan (Italy); Fourment, C.; Santos, J. J.; Malka, G. [CELIA, Universite de Bordeaux/CNRS/CEA, Talence (France); Boscheron, A.; Bonville, O.; Grenier, J. [CEA/CESTA, Le Barp (France)

2010-03-15T23:59:59.000Z

139

Microsoft Word - Groundwater Discharge Permit  

NLE Websites -- All DOE Office Websites (Extended Search)

State Renews Groundwater Discharge Permit for WIPP CARLSBAD, N.M., September 11, 2008 - The New Mexico Environment Department (NMED) has renewed the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) groundwater discharge permit until 2013. The permit regulates the discharge of water from WIPP facilities and operations to lined ponds, which protect groundwater resources. The permit allows WIPP to discharge domestic wastewater, non-hazardous wastewater and storm water into 13 on-site, synthetically-lined ponds. The new permit also provides for increased daily discharge volumes to allow more flexibility in plant operations. "This permit is the result of a positive year-long effort with the New Mexico Groundwater Quality Bureau," said Jody Plum, DOE Carlsbad Field Office Permitting and

140

High intensity protons in RHIC  

SciTech Connect

During the 2012 summer shutdown a pair of electron lenses will be installed in RHIC, allowing the beam-beam parameter to be increased by roughly 50 percent. To realize the corresponding luminosity increase bunch intensities have to be increased by 50 percent, to 2.5 {center_dot} 10{sup 11} protons per bunch. We list the various RHIC subsystems that are most affected by this increase, and propose beam studies to ensure their readiness. The proton luminosity in RHIC is presently limited by the beam-beam effect. To overcome this limitation, electron lenses will be installed in IR10. With the help of these devices, the headon beam-beam kick experienced during proton-proton collisions will be partially compensated, allowing for a larger beam-beam tuneshift at these collision points, and therefore increasing the luminosity. This will be accomplished by increasing the proton bunch intensity from the presently achieved 1.65 {center_dot} 10{sup 11} protons per bunch in 109 bunches per beam to 2.5 {center_dot} 10{sup 11}, thus roughly doubling the luminosity. In a further upgrade we aim for bunch intensities up to 3 {center_dot} 10{sup 11} protons per bunch. With RHIC originally being designed for a bunch intensity of 1 {center_dot} 10{sup 11} protons per bunch in 56 bunches, this six-fold increase in the total beam intensity by far exceeds the design parameters of the machine, and therefore potentially of its subsystems. In this note, we present a list of major subsystems that are of potential concern regarding this intensity upgrade, show their demonstrated performance at present intensities, and propose measures and beam experiments to study their readiness for the projected future intensities.

Montag, C.; Ahrens& #44; L.; Blaskiewicz& #44; M.; Brennan& #44; J.M.; Drees& #44; K.A.; Fischer& #44; W.; Huang& #44; H.; Minty& #44; M.; Robert-Demolaize& #44; G.; Thieberger& #44; P.; Yip& #44; K.

2012-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Harmonic generation at high intensities  

Science Conference Proceedings (OSTI)

Atomic electrons subject to intense laser fields can absorb many photons, leading either to multiphoton ionization or the emission of a single, energetic photon which can be a high multiple of the laser frequency. The latter process, high-order harmonic generation, has been observed experimentally using a range of laser wavelengths and intensities over the past several years. Harmonic generation spectra have a generic form: a steep decline for the low order harmonics, followed by a plateau extending to high harmonic order, and finally an abrupt cutoff beyond which no harmonics are discernible. During the plateau the harmonic production is a very weak function of the process order. Harmonic generation is a promising source of coherent, tunable radiation in the XUV to soft X-ray range which could have a variety of scientific and possibly technological applications. Its conversion from an interesting multiphoton phenomenon to a useful laboratory radiation source requires a complete understanding of both its microscopic and macroscopic aspects. We present some recent results on the response of single atoms at intensities relevant to the short pulse experiments. The calculations employ time-dependent methods, which we briefly review in the next section. Following that we discuss the behavior of the harmonics as a function of laser intensity. Two features are notable: the slow scaling of the harmonic intensities with laser intensity, and the rapid variation in the phase of the individual harmonics with respect to harmonic order. We then give a simple empirical formula that predicts the extent of the plateau for a given ionization potential, wavelength and intensity.

Schafer, K.J.; Krause, J.L.; Kulander, K.C.

1993-06-01T23:59:59.000Z

142

High-Intensity Proton Accelerator  

SciTech Connect

Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

Jay L. Hirshfield

2011-12-27T23:59:59.000Z

143

HIGH ENERGY GASEOUS DISCHARGE DEVICES  

DOE Patents (OSTI)

The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

Josephson, V.

1960-02-16T23:59:59.000Z

144

DISCHARGE DEVICE FOR RADIOACTIVE MATERIAL  

DOE Patents (OSTI)

A device is described fur unloading bodies of fissionable material from a neutronic reactor. It is comprised essentially of a wheeled flat car having a receptacle therein containing a liquid coolant fur receiving and cooling the fuel elements as they are discharged from the reactor, and a reciprocating plunger fur supporting the fuel element during discharge thereof prior to its being dropped into the coolant. The flat car is adapted to travel along the face of the reactor adjacent the discharge ends of the coolant tubes.

Ohlinger, L.A.

1958-09-23T23:59:59.000Z

145

Industrial Discharge Permits (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

All businesses and government agencies discharging process wastewater to the public sewer system must report their activities to DC Water's Pretreatment Center. Wastewater discharge permits are...

146

Direct Discharge Permit (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discharge Permit (Vermont) Direct Discharge Permit (Vermont) Eligibility Utility Agricultural Investor-Owned Utility Industrial MunicipalPublic Utility Rural Electric Cooperative...

147

Space charge effect of the high intensity proton beam during the resonance extraction for the Mu2e experiment at Fermilab  

SciTech Connect

The proposed Mu2e experiment to search for direct {mu} {yields} e conversion at Fermilab plans slow, resonant extraction of a beam with 3 x 10{sup 12} protons from the Debuncher ring. Space charge of this high intensity beam is a critical factor, since it induces significant betatron tune spread and consequently affects resonance extraction processes, such as spill uniformity and beam losses. This study shows the multi-particle simulation results in the early stages of resonance extraction and spill uniformity in the presence of 2D and 3D space charge effects. We have presented the results of the third-integer resonance extraction in early stage for the Mu2e experiment in the presence of space charge effects. In order to track particles and to calculate self-consistent space charge effects, Synergia2 was used, which is capable of parallel computing. The space charge tune shift was computed and was reasonable value compared with the analytical calculation. Locations of the septum and Lambertson were chosen so that particles are kicked and extracted efficiently. The spill rates for with and without space charge effects were uniform, but should be improved for the early stage after the sextupole field ramping.

Park, Chong Shik; Amundson, James; Johnstone, John; Michelotti, Leo; Nagaslaev, Vladimir; Werkema, Steve; /Fermilab

2011-03-01T23:59:59.000Z

148

Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions  

SciTech Connect

We present results from the grant entitled, ���¢��������Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions.���¢������� The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

Mori, Warren, B.

2012-12-01T23:59:59.000Z

149

Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation  

Science Conference Proceedings (OSTI)

Expressions for the yield of electron-positron pairs, their energy spectra, and production rates have been obtained in the interaction of multi-kJ pulses of high-intensity laser light interacting with solid targets. The Bethe-Heitler conversion of hard x-ray bremsstrahlung [D. A. Gryaznykh, Y. Z. Kandiev, and V. A. Lykov, JETP Lett. 67, 257 (1998); K. Nakashima and H. Takabe, Phys. Plasmas 9, 1505 (2002)] is shown to dominate over direct production (trident process) [E. P. Liang, S. C. Wilks, and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998)]. The yields and production rates have been optimized as a function of incident laser intensity by the choice of target material and dimensions, indicating that up to 5x10{sup 11} pairs can be produced on the OMEGA EP laser system [L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)]. The corresponding production rates are high enough to make possible the creation of a pair plasma.

Myatt, J.; Delettrez, J. A.; Maximov, A. V.; Meyerhofer, D. D.; Short, R. W.; Stoeckl, C.; Storm, M. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

2009-06-15T23:59:59.000Z

150

Constricted glow discharge plasma source  

SciTech Connect

A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

Anders, Andre (Albany, CA); Anders, Simone (Albany, CA); Dickinson, Michael (San Leandro, CA); Rubin, Michael (Berkeley, CA); Newman, Nathan (Winnetka, IL)

2000-01-01T23:59:59.000Z

151

Compact monolithic capacitive discharge unit  

DOE Patents (OSTI)

A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

Roesler, Alexander W. (Tijeras, NM); Vernon, George E. (Rio Rancho, NM); Hoke, Darren A. (Albuquerque, NM); De Marquis, Virginia K. (Tijeras, NM); Harris, Steven M. (Albuquerque, NM)

2007-06-26T23:59:59.000Z

152

L&E: Adopt high-efficiency lighting for your parking lot | The Better  

NLE Websites -- All DOE Office Websites (Extended Search)

lot lot Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Adopt high-efficiency lighting for your parking lot Most parking lots are illuminated by older high-intensity discharge (HID) lighting technology without any energy-saving controls. New light-emitting diode (LED) technology can cut parking lot lighting energy bills by 40%, or much more with controls, while delivering additional benefits including long life, reduced maintenance costs, and improved lighting uniformity. The Lighting & Electrical team developed a performance specification to help building owners take advantage of these improved lighting

153

Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas  

SciTech Connect

We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Bakule, Pavel [STFC, ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX (United Kingdom); Yokoyama, Koji [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Ishida, Katsuhiko; Iwasaki, Masahiko [Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

2011-09-15T23:59:59.000Z

154

Oklahoma Pollutant Discharge Elimination System Act (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Quality regulates facilities that discharge any pollutant into waters of the state. Permits must be acquired before the discharge of any pollutants into state waters...

155

Upward Electrical Discharges From Thunderstorm Tops  

Science Conference Proceedings (OSTI)

A variety of storm top electrical discharges have been observed using several types of low-light imagers, film, and the human eye. Recently, a video recorded an unprecedented, bright blue upward discharge from a tropical thunderstorm top near ...

Walter A. Lyons; Thomas E. Nelson; Russell A. Armstrong; Victor P. Pasko; Mark A. Stanley

2003-04-01T23:59:59.000Z

156

Cold cathode vacuum discharge tube  

DOE Patents (OSTI)

A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

Boettcher, Gordon E. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

157

Wastewater Discharge Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the

158

Guiding of 35 TW laser pulses in ablative capillary discharge waveguides  

Science Conference Proceedings (OSTI)

An ablatively driven capillary discharge plasma waveguide has been used to demonstrate guiding of 30 fs, 35 TW laser pulses over distances up to 3 cm with incident intensity in excess of 4x10{sup 18} W/cm{sup 2}. The plasma density range over which good guiding was observed was 1-3x10{sup 18} cm{sup -3}. The quality of the laser spot at the exit mode was observed to be similar to that at the entrance and the transmitted energy was {approx}25% at input powers of 35 TW. The transmitted laser spectrum typically showed blueshifting due to ionization of carbon and hydrogen atoms in the capillary plasma by the high intensity laser pulse. The low plasma density regime in which these capillaries operate makes these devices attractive for use in single stage electron accelerators to multi-GeV energies driven by petawatt class laser systems.

McGuffey, C.; Matsuoka, T.; Chvykov, V.; Kalintchenko, G.; Rousseau, P.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Levin, M.; Zigler, A. [Hebrew University, Jerusalem 91904 (Israel)

2009-11-15T23:59:59.000Z

159

Cold cathode vacuum discharge tube  

DOE Patents (OSTI)

A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

Boettcher, G.E.

1998-03-10T23:59:59.000Z

160

Cold cathode vacuum discharge tube  

DOE Patents (OSTI)

A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

Boettcher, G.E.

1998-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Oklahoma Pollutant Discharge Elimination System (OPDES) Standards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Pollutant Discharge Elimination System (OPDES) Standards Oklahoma Pollutant Discharge Elimination System (OPDES) Standards (Oklahoma) Oklahoma Pollutant Discharge Elimination System (OPDES) Standards (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality This program of the Water Quality Division of the Department of Environmental Quality sets the point source, biosolids (sewage sludge), and stormwater permitting standards for discharges to the waters of the State

162

Device for generation of pulsed corona discharge  

DOE Patents (OSTI)

The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

Gutsol, Alexander F. (San Ramon, CA); Fridman, Alexander (Marlton, NJ); Blank, Kenneth (Philadelphia, PA); Korobtsev, Sergey (Moscow, RU); Shiryaevsky, Valery (Moscow, RU); Medvedev, Dmitry (Moscow, RU)

2012-05-08T23:59:59.000Z

163

DISCHARGE VALVE FOR GRANULAR MATERIAL  

DOE Patents (OSTI)

A gravity-red dispenser or valve is designed for discharging the fueled spherical elements used in a pebble bed reactor. The dispenser consists of an axially movable tube terminating under a hood having side walls with openings. When the tube is moved so that its top edge is above the tops of the side openings the elements will not flow. As the tube is moved downwardly, the elements flow into the hood through the side openings and over the top edge into the tube at an increasing rate as the tube is lowered further. The tube is spaced at all times from the hood and side walls a distance greater than the diameter of the largest element to prevent damaging of the elements when the dispenser is closed to flow. (AEC)

Stoughton, L.D.; Robinson, S.T.

1962-05-15T23:59:59.000Z

164

Spontaneous discharge in nickel-zinc accumulations  

SciTech Connect

The authors have examined discharge in nickel-zinc accumulators and monitored the gas. The measurements were made at room temperature with types having two layers of hydrated cellulose separators on the zinc electrodes and capron separators on the nickel oxide ones. There was a ratio of 2.5 between the active masses of the negative and positive electrodes. After three controlled cycles the accumulators were tested for spontaneous discharge. Then they determined the spontaneous discharge after use. The hydrogen, oxygen, and nitrogen in the gas were determined by a gasometric method in combination with gas chromatography. The zinc and the nickel oxide electrodes contribute to the self-discharge, which considerably exceeds the capacity loss determined from the hydrogen production. The zinc electrode corrosion indicated by the hydrogen production increases when the accumulator is operated. When a charged battery is stored, nitrogen is produced as well as hydrogen and oxygen. The nitrate accelerates the spontaneous discharge.

Dmitrenko, V.E.; Zubov, M.S.; Kuznetsova, L.N.; Okhlobystin, N.I.; Toguzov, B.M.; Tikhomirov, Yu.V.

1988-06-20T23:59:59.000Z

165

Beam discharge excited by distributed virtual cathode  

Science Conference Proceedings (OSTI)

A new type of beam discharge, i.e., beam discharge with a distributed virtual cathode (VC) is proposed and considered by numerical simulation. The discharge is established during counter motion of high-current electron beams in a gas-filled equipotential cavity and is characterized by a state of hot dense electron plasma of primary electrons. The discharge temporal dynamics is studied. It is shown that the VC lifetime depends linearly from this sum in a wide range of the sum of beam currents, from the boundary current of two-beam instability to the critical current of Pierce instability. Generation of nonlinear electrostatic structures shaped as phase bubbles in the discharge is detected, and their dynamics is studied. The parameters are determined, at which the multiple coexistence of phase bubbles and their coalescence during collisions is observed.

Barabanov, V. N.; Dubinov, A. E.; Loiko, M. V.; Saikov, S. K.; Selemir, V. D. [All-Russia Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Tarakanov, V. P. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

2012-02-15T23:59:59.000Z

166

Discharge lamp with reflective jacket  

DOE Patents (OSTI)

A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Kipling, Kent (Gaithersburg, MD)

2001-01-01T23:59:59.000Z

167

Hydrothermal Heat Discharge In The Cascade Range, Northwestern...  

Open Energy Info (EERE)

Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than...

168

Spark-plasma Sintering vs. High Voltage Electric Discharge ...  

Science Conference Proceedings (OSTI)

High voltage electric discharge consolidation (HVEDC) includes high axial pressure and discharge of the electrical energy stored in capacitors, thus enabling a ...

169

Environmental constituents of Electrical Discharge Machining  

E-Print Network (OSTI)

Electrical Discharge Machining (EDM) is a non-traditional process that uses no mechanical forces to machine metals. It is extremely useful in machining hard materials. With the advantages EDM has to offer and its presence ...

Cho, Margaret H. (Margaret Hyunjoo), 1982-

2004-01-01T23:59:59.000Z

170

Aspects of a high intensity neutron source  

E-Print Network (OSTI)

A unique methodology for creating a neutron source model was developed for deuterons and protons incident on solid phase beryllium and lithium targets. This model was then validated against experimental results already ...

Chapman, Peter H. (Peter Henry)

2010-01-01T23:59:59.000Z

171

HIGH INTENSITY PERFORMANCE OF THE BROOKHAVEN AGS.  

SciTech Connect

The Brookhaven AGS provides 24 GeV protons for a multi-user program of fixed-target high energy physics experiments, such as the study of extremely rare Kaon decays. Up to 7 x 10{sup 13} protons are slowly extracted over 2.2 seconds each 5.1 seconds. The muon storage ring of the g-2 experiment is supplied with bunches of 7 x 10{sup 12} protons. Since the completion of the a 1.9 GeV Booster synchrotron and installation of a new high-power rf system and transition jump system in the AGS various modes of operation have been explored to overcome space charge limits and beam instabilities at these extreme beam intensities. Experiments have been done using barrier cavities to enable accumulation of debunched beam in the AGS as a potential path to significantly higher intensities. We report on the present understanding of intensity limitations and prospects for overcoming them.

AHRENS,L.A.; ALESSI,J.; BLASKIEWICZ,M.; BRENNAN,J.M.; BROWN,K.; GARDNER,C.; GLENN,J.W.; ROSER,T.; SMITH,K.S.; VAN ASSELT,W.; ZHANG,S.Y.

1999-03-29T23:59:59.000Z

172

Performances of BNL high-intensity synchrotrons  

SciTech Connect

The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 {times} 10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 {times} 10{sup 13} ppp surpassing the design goal of 1.5 {times} 10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented.

Weng, W.T.

1998-03-01T23:59:59.000Z

173

NOPM and Availability of Framework Document for HID Lamps  

NLE Websites -- All DOE Office Websites (Extended Search)

8:48 Feb 27, 2012 8:48 Feb 27, 2012 Jkt 226001 PO 00000 Frm 00008 Fmt 4702 Sfmt 4702 E:\FR\FM\28FEP1.SGM 28FEP1 mstockstill on DSK4VPTVN1PROD with PROPOSALS Federal Register / Vol. 77, No. 39 / Tuesday, February 28, 2012 / Proposed Rules 11785 collections for particular program, except where required by statute. III. Questions for Comment The list below includes the questions about these reform ideas that address issues which are of greatest interest to OMB at this stage of the process. Comments addressing any other concerns, and other types of feedback, are also welcome. In addition, as was explained at the beginning of this notice, the public comments received by OMB will be posted on OMB's Web site and at http:// www.regulations.gov. Accordingly, please do not include in your comments

174

Performance of electronic ballasts and other new lighting equipment. Final report  

SciTech Connect

This study discusses parameters for selecting the most suitable auxiliary lighting device to operate and control gas-discharge lamps. The devices tested in this study include solid-state fluorescent and high-intensity discharge (HID) ballasts; current limiters; and dynamic lighting controls. They have been evaluated in combination with the standard 40-W, F-40, T-12, rapid-start, cool-white fluorescent lamps. Solid-state ballast performance varied widely- from 68 to 79 lumens per watt (lm/W) in efficacy and from 0.83 to 0.98 in ballast factor. System efficacy was up to 26% higher than standard core-coil ballast efficacy. Current limiters used with standard core-coil ballast reduce light output and input power by 30 to 50% and may be suitable as retrofit devices to reduce light in overilluminated spaces. When operated at a constant lamp wall temperature, these devices either maintain or reduce system efficacy.

Verderber, R.R.; Morse, O.

1986-03-01T23:59:59.000Z

175

Performance of electronic ballasts and other new lighting equipment  

SciTech Connect

This study discusses parameters for selecting the most suitable auxiliary lighting device to operate and control gas-discharge lamps. The devices tested in this study include solid-state, fluorescent, and high-intensity discharge (HID) ballasts; current limiters; and dynamic lighting controls. They have been evaluated when operating the standard, 40-W, F-40, T-12, rapid-start, cool-white fluorescent lamps. Solid-state ballast performance varied widely, from 68 to 79 lumens per watt (1m/W) in efficacy, and from 0.83 to 0.98 in ballast factor. System efficacy was measured at up to 26% higher than standard core-coil ballast efficacy.

Verderber, R.R.; Morse, O.

1985-10-01T23:59:59.000Z

176

A Review of Positive and Bipolar Lightning Discharges  

Science Conference Proceedings (OSTI)

Characteristics of lightning discharges that transport either positive charge or both positive and negative charges to the ground are reviewed. These are termed positive and bipolar lightning discharges, respectively. Different types of positive ...

V. A. Rakov

2003-06-01T23:59:59.000Z

177

Seasonal Predictability of European Discharge: NAO and Hydrological Response Time  

Science Conference Proceedings (OSTI)

In this paper the skill of seasonal prediction of river discharge and how this skill varies between the branches of European rivers across Europe is assessed. A prediction system of seasonal (winter and summer) discharge is evaluated using 1) ...

M. F. P. Bierkens; L. P. H. van Beek

2009-08-01T23:59:59.000Z

178

Experimental investigation of electron multipactor discharges at very high frequency  

E-Print Network (OSTI)

Multipactor discharges are a resonant condition in which electrons impact a surface in phase with an alternating electric field. The discharge is sustained by electron multiplication from secondary emission. As motivation, ...

Graves, Timothy P. (Timothy Paul)

2006-01-01T23:59:59.000Z

179

Magnetism in Lithium–Oxygen Discharge Product  

SciTech Connect

Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

2013-05-13T23:59:59.000Z

180

Capacitor discharge process for welding braided cable  

SciTech Connect

A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

Wilson, Rick D. (Corvallis, OR)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Generation of hydrogen-rich gas using non equilibrium plasma discharges.  

E-Print Network (OSTI)

??This dissertation investigates Non equilibrium plasma discharges, particularly gliding arc plasma discharge and dielectric barrier discharge (DBD) as alternative techniques to thermal or catalytic conversion… (more)

Odeyemi, Olufela O.

2012-01-01T23:59:59.000Z

182

General Conditions Applicable to Water Discharge Permits and Procedures and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Conditions Applicable to Water Discharge Permits and General Conditions Applicable to Water Discharge Permits and Procedures and Criteria for Issuing Water Discharge Permits (Connecticut) General Conditions Applicable to Water Discharge Permits and Procedures and Criteria for Issuing Water Discharge Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection

183

Electrochemical cell assembled in discharged state  

DOE Patents (OSTI)

A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

Yao, Neng-Ping (Hinsdale, IL); Walsh, William J. (Naperville, IL)

1976-01-01T23:59:59.000Z

184

CX-000183: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83: Categorical Exclusion Determination 83: Categorical Exclusion Determination CX-000183: Categorical Exclusion Determination Illinois County McHenry CX(s) Applied: A9, A11, B5.1 Date: 11/11/2009 Location(s): McHenry County, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Energy Efficiency and Conservation Block Grant for: Daylighting, Occupancy Sensors, Administration Building - LED (light-emitting diode) Parking Lot Lighting, Annex A - Replace Hot Water Boiler, Annex A - Window Film, Department of Transportation Building - Skylights, Department of Transporation Building - HID (high intensity discharge) to T8 Fluorescent with Occupancy Sensors, Department of Transportation Building - Solar Wall, Government Center - LED Jail Cell Fixtures, Government Center - Parking Lot

185

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 8070 of 28,905 results. 61 - 8070 of 28,905 results. Download CX-003685: Categorical Exclusion Determination Photo Reactor for Growing Algae from Municipal Waste Water for Carbon Dioxide Capture CX(s) Applied: A1, B3.6 Date: 09/01/2010 Location(s): Allentown, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-003685-categorical-exclusion-determination Download CX-003524: Categorical Exclusion Determination Energy Efficient Street Lighting Changeover - Light-Emitting Diode (LED)/High Intensity Discharge (HID) CX(s) Applied: A1, A9, B1.3, B5.1 Date: 08/26/2010 Location(s): Oak Harbor, Ohio Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-003524-categorical-exclusion-determination

186

IC-BASED CONTROLS FOR ENERGY-EFFICIENT LIGHTING  

SciTech Connect

A new approach for driving high frequency energy saving ballasts is developed and documented in this report. The developed approach utilizes an IC-based platform that provides the benefits of reduced system cost, reduced ballast size, and universal application to a wide range of lamp technologies, such as linear fluorescent lamps (LFL), compact fluorescent lamps (CFL) and high intensity discharge lamps (HID). The control IC chip set developed for the platform includes dual low voltage (LV) IC gate drive that provides gate drive for high and low side power switches in typical ballast circuits, and ballast controller IC that provides control functionalities optimal for different lamps and digital interface for future extension to more sophisticated control and communication.

Richard Zhang

2005-03-01T23:59:59.000Z

187

CX-004636: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Categorical Exclusion Determination 6: Categorical Exclusion Determination CX-004636: Categorical Exclusion Determination Texas- City- Waco CX(s) Applied: B1.32, B2.5, B5.1 Date: 11/30/2010 Location(s): Waco, Texas Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant Program. 1) Installation of new heating, ventilation, and air conditioning system in New Police Building (former Medical Tower), 2) replace windows or replace gaskets in windows of New Police Building, 3) lighting upgrades to 23 existing city buildings with energy efficient lighting, and 4) replace city of Waco high intensity discharge (HID) street lighting with light-emitting diode lighting. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-004636.pdf More Documents & Publications CX-004632: Categorical Exclusion Determination

188

Categorical Exclusion Determinations: B5.1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2010 26, 2010 CX-003526: Categorical Exclusion Determination LED (Light-Emitting Diode) Street Light Retrofit CX(s) Applied: A1, A9, B1.3, B3.6, B5.1 Date: 08/26/2010 Location(s): Lorain County, Ohio Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory August 26, 2010 CX-003525: Categorical Exclusion Determination Green Buildings Retrofit CX(s) Applied: B1.4, B5.1 Date: 08/26/2010 Location(s): Hopewell, Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 26, 2010 CX-003524: Categorical Exclusion Determination Energy Efficient Street Lighting Changeover - Light-Emitting Diode (LED)/High Intensity Discharge (HID) CX(s) Applied: A1, A9, B1.3, B5.1 Date: 08/26/2010 Location(s): Oak Harbor, Ohio

189

Highly ionized atoms in tokamak discharges  

DOE Green Energy (OSTI)

Tokamak discharges are characterized by electron densities usually approximately 0.3 to 1.0 x 10/sup 14/ cm/sup -3/ and temperatures from a few hundred eV to several keV. In addition to the working gas (H or He), the plasma normally contains some light impurities (approximately 10/sup 12/ cm/sup -3/ O or C) that are completely stripped except at the outer periphery, and heavier elements from the vacuum wall and current-aperture limiter (Fe, Cr, Ni, W, Mo and others, approximately 10/sup 10/-10/sup 11/ cm/sup -3/) that remain partly stripped, hence relatively strongly radiating, throughout the discharge. Other elements, especially noble gases, may be deliberately added for diagnostic purposes. Resonance lines of Fe and Ar in the beryllium and lithium sequences, of Fe, Kr, and Mo in the magnesium and sodium sequences, and of Mo and Xe in the zinc and copper sequences have been used for rough determination of plasma composition. Since crucial plasma characteristics such as temperature and confinement time are sensitively affected by the local composition, it is essential to improve the available atomic data necessary for more accurate analysis: wavelengths, transition probabilities, excitation, ionization and recombination rates, especially for the heavier elements.

Hinnov, E.

1976-05-01T23:59:59.000Z

190

Hydrothermal Heat Discharge In The Cascade Range, Northwestern United  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Details Activities (3) Areas (1) Regions (0) Abstract: Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge

191

Point Source Discharges to Surface Waters (North Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Point Source Discharges to Surface Waters (North Carolina) Point Source Discharges to Surface Waters (North Carolina) Point Source Discharges to Surface Waters (North Carolina) < Back Eligibility Commercial Industrial Construction Transportation Savings Category Buying & Making Electricity Program Info State North Carolina Program Type Siting and Permitting Provider Department of Environment and Natural Resources This rule requires permits for control of sources of water pollution by providing the requirements and procedures for application and issuance of state National Pollutant Discharge Elimination System (NPDES) permits for a discharge from an outlet, point source, or disposal system discharging to the surface waters of the state, and for the construction, entering a contract for construction, and operation of treatment works with such a

192

Circuit arrangement for starting and operating a gas discharge laser  

SciTech Connect

A circuit arrangement is described for starting and operating a gas discharge laser having a starting phase and an operating phase. It consists of two supply lines for supplying a direct current to the gas discharge laser, a ballast resistor connected in at least one of the supply lines, and circuit means in shunt with the ballast resistor through which a starting current flows during the starting phase of the gas discharge laser.

Bolhuis, P.J.

1989-04-25T23:59:59.000Z

193

Notice of Intent (NOI) for Storm Water Discharges Associated with  

Open Energy Info (EERE)

Intent (NOI) for Storm Water Discharges Associated with Intent (NOI) for Storm Water Discharges Associated with Construction Activities under TPDES General Permit (TXR150000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Notice of Intent (NOI) for Storm Water Discharges Associated with Construction Activities under TPDES General Permit (TXR150000) Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): Unknown Published: Texas Commission on Environmental Quality, Date Unknown Document Number: Unavailable DOI: Unavailable Source: View Original Document Retrieved from "http://en.openei.org/w/index.php?title=Notice_of_Intent_(NOI)_for_Storm_Water_Discharges_Associated_with_Construction_Activities_under_TPDES_General_Permit_(TXR150000)&oldid=598006"

194

Stress Effect on Charge and Discharge Rate and Energy Efficiency ...  

Science Conference Proceedings (OSTI)

Presentation Title, Stress Effect on Charge and Discharge Rate and Energy Efficiency of Li-alloy Electrodes. Author(s), Yifan Gao, Min Zhou. On-Site Speaker

195

High Voltage Electric Discharge Consolidation of Tantalum Powders  

Science Conference Proceedings (OSTI)

Abstract Scope, The high voltage electric discharge consolidation (HVEDC) is a promising method of the volumetric-porous body manufacturing, which can be ...

196

(SPS) and High Voltage Electric Discharge Consolidation (HVEDC  

Science Conference Proceedings (OSTI)

Presentation Title, Inter-Particle Contact Phenomena in Spark-Plasma Sintering ( SPS) and High Voltage Electric Discharge Consolidation (HVEDC). Author(s) ...

197

(SPS) and High Voltage Electric Discharge Consolidation (HVEDC)  

Science Conference Proceedings (OSTI)

Presentation Title, Local Heat Balance in Spark-plasma Sintering (SPS) and High Voltage Electric Discharge Consolidation (HVEDC). Author(s), Eugene ...

198

State Surface Water Discharge Permits (New Hampshire) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Govt Systems Integrator Transportation Tribal Government Utility Program Information New Hampshire Program Type Environmental Regulations Rules apply to the discharge of all...

199

Extreme-UV electrical discharge source  

DOE Patents (OSTI)

An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

Fornaciari, Neal R. (Tracey, CA); Nygren, Richard E. (Los Ranchos de Albuquerque, NM); Ulrickson, Michael A. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

200

Alternative Minimum Levels for Utility Aqueous Discharges: Chemical Analytical Measurement Guide for National Pollutant Discharge El imination System (NPDES) Permits  

Science Conference Proceedings (OSTI)

The Clean Water Act requires the electric utility industry to monitor their wastewater discharges to ensure compliance with discharge permit limits. EPRI developed a new definition of quantitation level appropriate to water quality compliance monitoring and used data from its previous studies on trace element analysis of utility wastewaters to calculate Alternative Minimum Levels (AMLs). The approach developed in this report will help utilities define reasonable pollutant discharge limits to meet effluen...

1997-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Model of Gamma Frequency Burst Discharge Generated by Conditional Backpropagation  

E-Print Network (OSTI)

Doiron, Brent, Andre´ Longtin, Ray W. Turner, and Leonard Maler. Model of gamma frequency burst dischargeModel of Gamma Frequency Burst Discharge Generated by Conditional Backpropagation BRENT DOIRON,1 ANDRE´ LONGTIN,1 RAY W. TURNER,2 AND LEONARD MALER3 1 Physics Department, University of Ottawa, Ottawa

Longtin, André

202

Waste not Discharged to Surface Waters (North Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste not Discharged to Surface Waters (North Carolina) Waste not Discharged to Surface Waters (North Carolina) Waste not Discharged to Surface Waters (North Carolina) < Back Eligibility Commercial Industrial Construction Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Siting and Permitting The rules in this Subchapter apply to all persons proposing to construct, alter, extend, or operate any sewer system, treatment works, disposal system, contaminates soil treatment system, animal waste management system, stormwater management system or residual disposal/utilization system which does not discharge to surface waters of the state, including systems which discharge waste onto or below land surface.

203

LANL achieves milestone on path to zero wastewater discharge  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL achieves milestone on wastewater discharge LANL achieves milestone on wastewater discharge LANL achieves milestone on path to zero wastewater discharge Industrial wastewater will be recycled as the result of a long-term strategy to treat wastewater rather than discharging it into the environment. January 20, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Colleen Curran Communications Office (505) 664-0344 Email Improved compliance while recycling millions of gallons of industrial wastewater LOS ALAMOS, New Mexico, January 20, 2012-Millions of gallons of industrial wastewater will be recycled at Los Alamos National Laboratory as the result of a long-term strategy to treat wastewater rather than discharging it into the environment. The U. S. Environmental Protection Agency, which issues permits for

204

Radio frequency discharge with control of plasma potential distribution  

Science Conference Proceedings (OSTI)

A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.

Dudnikov, Vadim [Muons, Inc., Batavia, Illinois 60510 (United States); Dudnikov, A. [BINP, Novosibirsk 63090 (Russian Federation)

2012-02-15T23:59:59.000Z

205

State Waste Discharge Permit application: 400 Area Septic System  

Science Conference Proceedings (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affects groundwater or has the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 400 Area Septic System. The influent to the system is domestic waste water. Although the 400 Area Septic System is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. Therefore, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used.

Not Available

1994-06-01T23:59:59.000Z

206

Plasma mixing glow discharge device for analytical applications  

DOE Patents (OSTI)

An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

Pinnaduwage, L.A.

1999-04-20T23:59:59.000Z

207

Plasma mixing glow discharge device for analytical applications  

DOE Patents (OSTI)

An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.

Pinnaduwage, Lal A. (Knoxville, TN)

1999-01-01T23:59:59.000Z

208

State Waste Discharge Permit application: 200-W Powerhouse Ash Pit  

Science Conference Proceedings (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

Atencio, B.P.

1994-06-01T23:59:59.000Z

209

Wastewater Regulations for National Pollutant Discharge Elimination System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Regulations for National Pollutant Discharge Elimination Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential

210

Storm Water Discharge Permits (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Water Discharge Permits (Wisconsin) Storm Water Discharge Permits (Wisconsin) Storm Water Discharge Permits (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 08/2004 State Wisconsin Program Type Siting and Permitting Provider Department of Natural Resources Wisconsin's storm water runoff regulations include permitting requirements for construction sites and industrial facilities, including those

211

Optical Emission of Dusty RF Discharges: Experiment and Simulation  

Science Conference Proceedings (OSTI)

The spectral emission of argon atoms in a dusty radio frequence (RF) discharge has been investigated experimentally and in simulations. It was observed that the spatially and temporally resolved emission of the argon atoms in the dusty discharge was increased compared to the dust-free case during sheath expansion. The corresponding simulations have revealed that the dust trapped in the sheath of the discharge leads to a small, but important, increase of the amount of high-energy electrons that in turn leads to an increased argon emission.

Melzer, A.; Lewerentz, L.; Schneider, R. [Institute of Physics, University Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Huebner, S. [Institute of Physics, University Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Department of Applied Physics, Technical University Eindhoven, NL-5600 MB Eindhoven (Netherlands); Matyash, K. [Max-Planck-Institute for Plasma Physics, EURATOM Association, D-17491 Greifswald (Germany); Ikkurthi, V. R. [Institute for Plasma Research, Bhat, Ghandinagar, Gujarat (India)

2011-11-29T23:59:59.000Z

212

Regulations for the Rhode Island Pollutant Discharge Elimination System (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations aim to protect surface water from pollutant discharges. They describe allowable discharges in the state that are subject to permits, discharges which may be made without permits,...

213

River Discharge into the Mediterranean Sea: Climatology and Aspects of the Observed Variability  

Science Conference Proceedings (OSTI)

River discharge across the Mediterranean catchment basin is investigated by means of an extensive dataset of historical monthly time series to represent at-best discharge into the sea. Results give an annual mean river discharge into the ...

Maria Vittoria Struglia; Annarita Mariotti; Angelo Filograsso

2004-12-01T23:59:59.000Z

214

Control of the UV flux of a XeCl dielectric barrier discharge excilamp through its current variation  

Science Conference Proceedings (OSTI)

The efficiency of the electrical power transfer to the gas mixture of a XeCl dielectric barrier discharge (DBD) exciplex lamp is analysed. An equivalent circuit model of the DBD is considered. It is shown that the excilamp power can be controlled by applying current to the lamp. This highly desired property is ensured by means of a specific power supply topology, whose concepts and design are discussed. The experimental prototype of a current-mode converter operating in the pulsed regime at pulse repetition rate of 50 kHz is presented and its capability to control the amount of energy transferred during each current pulse is demonstrated. The capability of this power supply to maintain specific operating conditions for the DBD lamp, with a very stable behaviour (even at a very low current, in the regime of a single discharge channel), is illustrated. The experimental results of a combined use of this converter and a XeCl excilamp are presented. The influence of the supply parameters on the 308-nm XeCl excilamp is analysed. The shape of the UV pulse of the lamp is experimentally shown to be similar to that of the current, which actually flows into the gas mixture. The UV radiation power is demonstrated to be tightly correlated to the current injected into the gas and controlled by the available degrees of freedom offered by the power supply. The measured UV output characteristics and performance of the system are discussed. Time resolved UV imaging of a XeCl DBD excilamp is used to analyse the mechanisms involved in the production of exciplexes at various power supply regimes. It is shown that a pulsed voltage source leads to formation of short high intensity UV peaks, while current pulses lead to formation of sustained discharge filaments. Based on the results of modelling of the above-mentioned operation conditions, the two power supply regimes are compared and analysed from the point of view of the UV power and radiative control.

Piquet, H; Bhosle, S; Diez, R; Cousineau, M; Djibrillah, M; Le Thanh, D; Dagang, A N; Zissis, G

2012-02-28T23:59:59.000Z

215

Permit Program Regulating Discharge of Nondomestic Wastewater into a POTW (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

Any significant industrial user is required to apply for and obtain an individual indirect discharge permit if they discharge water or waste into a publicly owned treatment works.

216

Use of microalgae to remove pollutants from power plant discharges  

DOE Patents (OSTI)

A method and system for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulogy and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinnoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinnoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge.

Wilde, Edward W. (1833 Pisgah Rd., North Augusta, SC 29841); Benemann, John R. (2741 O' Harte, San Pablo, CA 94806); Weissman, Joseph C. (2086 N. Porpoise Pt. La., Vero Beach, FL 32963); Tillett, David M. (911-3 Coquina La., Vero Beach, FL 32963)

1991-01-01T23:59:59.000Z

217

Forecasting the Anomalous Discharge of the Caroní River, Venezuela  

Science Conference Proceedings (OSTI)

This study develops methods for the extended-range forecasting of the February–March minimum of water discharge of the Caroní River in eastern Venezuela, a watershed providing more than 70% of the hydroelectric power for the country. The ...

Stefan Hastenrath; Lawrence Greischar; Esperanza Colón; Alfredo Gil

1999-08-01T23:59:59.000Z

218

Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations  

Science Conference Proceedings (OSTI)

Annual and monthly mean values of continental freshwater discharge into the oceans are estimated at 1° resolution using several methods. The most accurate estimate is based on streamflow data from the world's largest 921 rivers, supplemented with ...

Aiguo Dai; Kevin E. Trenberth

2002-12-01T23:59:59.000Z

219

Glow discharge techniques for conditioning high vacuum systems  

DOE Green Energy (OSTI)

A review is given of glow discharge techniques which are useful for conditioning vacuum vessels for high vacuum applications. Substantial development of glow discharge techniques has been done for the purpose of in-situ conditioning of the large ultrahigh vacuum systems for particle accelerators and magnetic fusion devices. In these applications the glow discharge treatments remove impurities from vessel surfaces in order to minimize particle-induced desorption coefficients. Cleaning mechanisms involve a mixture of sputtering and ion- (or neutral) induced desorption effects depending on the gas mixture (ArO/sub 2/ vs. H/sub 2/) and excitation method (DC, RF, and ECR). The author will review the methodology of glow discharge conditioning, diagnostic measurements provided by residual gas and surface composition analysis, and applications to vessel conditioning and materials processing. 76 refs., 16 figs.

Dylla, H.F.

1988-03-01T23:59:59.000Z

220

Reactor-specific spent fuel discharge projections, 1984 to 2020  

Science Conference Proceedings (OSTI)

The original spent fuel utility data base (SFDB) has been adjusted to produce agreement with the EIA nuclear energy generation forecast. The procedure developed allows the detail of the utility data base to remain intact, while the overall nuclear generation is changed to match any uniform nuclear generation forecast. This procedure adjusts the weight of the reactor discharges as reported on the SFDB and makes a minimal (less than 10%) change in the original discharge exposures in order to preserve discharges of an integral number of fuel assemblies. The procedure used in developing the reactor-specific spent fuel discharge projections, as well as the resulting data bases themselves, are described in detail in this report. Discussions of the procedure cover the following topics: a description of the data base; data base adjustment procedures; addition of generic power reactors; and accuracy of the data base adjustments. Reactor-specific discharge and storage requirements are presented. Annual and cumulative discharge projections are provided. Annual and cumulative requirements for additional storage are shown for the maximum at-reactor (AR) storage assumption, and for the maximum AR with transshipment assumption. These compare directly to the storage requirements from the utility-supplied data, as reported in the Spent Fuel Storage Requirements Report. The results presented in this report include: the disaggregated spent fuel discharge projections; and disaggregated projections of requirements for additional spent fuel storage capacity prior to 1998. Descriptions of the methodology and the results are included in this report. Details supporting the discussions in the main body of the report, including descriptions of the capacity and fuel discharge projections, are included. 3 refs., 6 figs., 12 tabs.

Heeb, C.M.; Libby, R.A.; Holter, G.M.

1985-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Pretreatment of industrial discharges to publicly owned treatment works (POTW)  

SciTech Connect

A discussion covers a brief survey of federal regulations establishing standards for the pretreatment of pollutants discharged into POTW's; the experience of the Municipality of Metropolitan Seattle (Metro) in dealing with the pretreatment of heavy metals in industrial and commercial discharges; a study and analysis by Seattle Metro of organic priority pollutants in wastewater including identification sources; and POTW treatment control technology for organic priority pollutants in Seattle Metro.

Ongerth, J.E.; Dewalle, F.B.

1980-08-01T23:59:59.000Z

222

Spent nuclear fuel discharges from U.S. reactors 1994  

Science Conference Proceedings (OSTI)

Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

NONE

1996-02-01T23:59:59.000Z

223

Drilling Waste Management Fact Sheet: Discharge to Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

Discharge to Ocean Discharge to Ocean Fact Sheet - Discharge to Ocean Past Practices In early offshore oil and gas development, drilling wastes were generally discharged from the platforms directly to the ocean. Until several decades ago, the oceans were perceived to be limitless dumping grounds. During the 1970s and 1980s, however, evidence mounted that some types of drilling waste discharges could have undesirable effects on local ecology, particularly in shallow water. When water-based muds (WBMs) were used, only limited environmental harm was likely to occur, but when operators employed oil-based muds (OBMs) on deeper sections of wells, the resulting cuttings piles created impaired zones beneath and adjacent to the platforms. At some North Sea locations, large piles of oil-based cuttings remain on the sea floor near the platforms. Piles of oil-based cuttings can affect the local ecosystem in three ways: by smothering organisms, by direct toxic effect of the drilling waste, and by anoxic conditions caused by microbial degradation of the organic components in the waste. Current regulatory controls minimize the impacts of permitted discharges of cuttings.

224

Transient Behaviour and Helium Discharge in Cryogenic Distribution Line (QRL) Headers Following Breakdown of Insulation Vacuum  

E-Print Network (OSTI)

Transient Behaviour and Helium Discharge in Cryogenic Distribution Line (QRL) Headers Following Breakdown of Insulation Vacuum

Chorowski, M

1997-01-01T23:59:59.000Z

225

Rules and Regulations Pertaining to a User Fee System for Point Source Dischargers that Discharge Pollutants into the Waters of the State (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish a user fee system for point source dischargers that discharge pollutants into the surface waters of the State. The funds from such fees are used by the Department of...

226

Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters-  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters- Lessons Learned From Mammoth Mountain, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters- Lessons Learned From Mammoth Mountain, Usa Details Activities (3) Areas (1) Regions (0) Abstract: A major campaign to quantify the magmatic carbon discharge in cold groundwaters around Mammoth Mountain volcano in eastern California was carried out from 1996 to 1999. The total water flow from all sampled cold springs was >=1.8_107 m3/yr draining an area that receives an estimated

227

Electric Discharge Machining (EDM) Projects (4584), 4/11/2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Discharge Machining (EDM) Projects (4584) Electric Discharge Machining (EDM) Projects (4584) Program or Field Office: Y -12 Site Office Location(s) (Citv/Countv/State): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit by E-mail The proposed action is to installation of oil submerged Electric Discharge Machining (EDM) for development and production use. Categorical Exclusion(s) Applied: 81.31 -Installation or relocation of machinery and equipment For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each categorical exclusion, see Subpart D of 10 CFR Part 1021. Regulatory Requirements in 10 CFR 1021.410(b): (See full text in regulation) [{Jrhe proposal fits within a class of actions that is listed in Appendix A orB to 10 CFR Part 1021, Subpart D.

228

Regulations For State Administration Of The National Pollutant Discharge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For State Administration Of The National Pollutant For State Administration Of The National Pollutant Discharge Elimination System (Arkansas) Regulations For State Administration Of The National Pollutant Discharge Elimination System (Arkansas) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Arkansas Program Type Siting and Permitting Provider Department of Environmental Quality The Regulations For State Administration Of The National Pollutant

229

Electrochemical cell with high discharge/charge rate capability  

DOE Patents (OSTI)

A fully charged positive electrode composition for an electrochemical cell includes FeS/sub 2/ and NiS/sub 2/ in about equal molar amounts along with about 2 to 20 mole % of the reaction product Li/sub 2/S. Through selection of appropriate electrolyte compositions, high power output or low operating temperatures can be obtained. The cell includes a substantially constant electrode impedance through most of its charge and discharge range. Exceptionally high discharge rates and overcharge protection are obtainable through use of the inventive electrode composition.

Redey, L.

1986-07-28T23:59:59.000Z

230

High-power pulse modulator with ignitron discharger  

SciTech Connect

The high-power pulse modulator described here is used to produce spatial gaseous discharges and has an improved, controllable charging circuit, which permits a type ITR-4 ignitron discharger to be employed in a frequency mode as the basic commutator. The modulator is utilized in two modes: at a pulse repetition frequency of 50 Hz pulses are formed that have a duration of 25 usec and energies up to 3.5 kJ and at a frequency of 200 Hz, the pulses have a duration of -2 usec and energies up to 600 J. In all conditions the modulator operated stably with a wide range of load changes.

Anisimova, T.E.; Akkuratov, E.V.; Artemov, V.A.; Gromovenko, V.M.; Kalinin, V.P.; Nikonov, V.P.

1985-10-01T23:59:59.000Z

231

Use of microalgae to remove pollutants from power plant discharges  

DOE Patents (OSTI)

A method and system are described for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulic and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge. 4 figures.

Wilde, E.W.; Benemann, J.R.; Weissman, J.C.; Tillett, D.M.

1991-04-30T23:59:59.000Z

232

Wire-chamber radiation detector with discharge control  

DOE Patents (OSTI)

A wire chamber; radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or; near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

Perez-Mendez, V.; Mulera, T.A.

1982-03-29T23:59:59.000Z

233

Literature Review: Response of Fish to Thermal Discharges  

Science Conference Proceedings (OSTI)

This review of literature on the responses of fish species to thermal discharges was prepared from information contained in the EPRI Cooling System Effects Data Base. Tables of field and laboratory data on selected temperature variables for some 60 fish species are presented. Where possible, comparisons between field and laboratory observations are made.

1981-05-01T23:59:59.000Z

234

Radioactive Liquid Waste Treatment Facility Discharges in 2011  

Science Conference Proceedings (OSTI)

This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

Del Signore, John C. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

235

Condenser for extreme-UV lithography with discharge source  

DOE Patents (OSTI)

Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

Sweatt, William C. (Albuquerque, NM); Kubiak, Glenn D. (Livermore, CA)

2001-01-01T23:59:59.000Z

236

Electron beam switched discharge for rapidly pulsed lasers  

DOE Patents (OSTI)

Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

Pleasance, Lyn D. (Livermore, CA); Murray, John R. (Danville, CA); Goldhar, Julius (Walnut Creek, CA); Bradley, Laird P. (Livermore, CA)

1981-01-01T23:59:59.000Z

237

Acoustic detection of partial discharges in insulation oil  

Science Conference Proceedings (OSTI)

In this paper, we performed an insulation diagnosis technique for oil-immersed power transformers by an acoustic detection method. Electrode system such as needle to plane electrode was fabricated to simulate a defect of power transformers. In addition, ... Keywords: acoustic detection, frequency component, insulation diagnostic, partial discharge, positioning

Dae-Won Park; Sang-Wook Cha; Gyung-Suk Kil

2011-03-01T23:59:59.000Z

238

Argumentation-based framework for industrial wastewater discharges management  

Science Conference Proceedings (OSTI)

The daily operation of wastewater treatment plants (WWTPs) in unitary sewer systems of industrialized areas is of special concern. Severe problems can occur due to the characteristics of incoming flow. In order to avoid decision that leads to hazardous ... Keywords: Agents, Argumentation, Industrial discharge management, River basin management, Urban wastewater system, Wastewater treatment plant (WWTP)

M. Aulinas; P. Tolchinsky; C. Turon; M. Poch; U. Cortés

2012-03-01T23:59:59.000Z

239

J56: Electrical Discharge Consolidation with Stud Welding Technology  

Science Conference Proceedings (OSTI)

The main characteristic of the EDC technology is its high speed, in the order of ... Two different configurations with discharge voltages of 200 and 800 V, and ... B3: Consolidation of Silica/Graphene Oxide Composite by Spark Plasma Sintering ..... J5: Phase Equilibria and Tie-line Compositions of the ? and (?, ?, ?) Phases in  ...

240

Modelling the sensitivity to various factors of shipborne pollutant discharges  

Science Conference Proceedings (OSTI)

Most of the marine pollution attributable to ship actions is associated with the illicit discharge of oily residues or ballast water, in what is commonly termed operational pollution. In the particular case of ballast water, careless disposal can lead ... Keywords: Ebro delta, Moving sources, Numerical modelling, Shipborne pollution

Marc Mestres; Joan Pau Sierra; César Mösso; Agustín Sánchez-Arcilla

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Interaction of High Intensity Electromagnetic Waves with Plasmas  

SciTech Connect

The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

G. Shvets

2008-10-03T23:59:59.000Z

242

A High Intensity Neutron Scattering Techniques for Hydrogen ...  

Science Conference Proceedings (OSTI)

Nucleation and Growth Observed by Ultrafast SAXS and WAXS · O10: Effect of Nickel on the Neutron Irradiation Sensitivity of Nuclear Reactor Pressure Vessel ...

243

HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON  

SciTech Connect

We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

2012-07-01T23:59:59.000Z

244

High-Intensity Plasma Glass Melter Final Technical Report  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the energy efficiency and reduced emissions that can be obtained with a dual torch DC plasma transferred arc-melting system. Plasmelt Glass Technologies, LLC was formed to solicit and execute the project, which utilize a full-scale test melter system. The system is similar to the one that was originally constructed by Johns Manville, but Plasmelt has added significant improvements to the torch design and melter system that has extended the original JM short torch lives. The original JM design has been shown to achieve melt rates 5 to 10 times faster than conventional gas or electric melting, with improved energy efficiency and reduced emissions. This project began on 7/28/2003 and ended 7/27/06. A laboratory scale melter was designed, constructed, and operated to conduct multiple experimental melting trials on various glass compositions. Glass quality was assessed. Although the melter design is generic and equally applicable to all sectors within the glass industry, the development of this melter has focused primarily on fiberglass with additional exploratory melting trials of frits, specialty, and minerals-melting applications. Throughput, energy efficiency, and glass quality have been shown to be heavily dependent on the selected glass composition. During this project, Plasmelt completed the proof-of-concept work in our Boulder, CO Lab to show the technical feasibility of this transferred-arc plasma melter. Late in the project, the work was focused on developing the processes and evaluating the economic viability of plasma melting aimed at the specific glasses of interest to specific client companies. Post project work is on going with client companies to address broader non-glass materials such as refractories and industrial minerals. Exploratory melting trials have been conducted on several glasses of commercial interest including: C-glass, E-glass, S-Glass, AR-Glass, B-glass, Lighting Glass, NE-Glass, and various frits. Exploratory melts of non-glassy materials, such as wollastonite, zirconium silicate, and alumino-silicate melts were successfully done indicating that plasma melting has potential application beyond glass. Experimental results were generated that show the high quality of plasma-melted fiberglass compositions, such as E-glass, can result in good fiberizing performance. Fiberizing performance and tensile strength data were achieved during the project to support this conclusion. High seed counts are a feature of the current lab scale melter and must be dealt with via other means, since fining work was outside the scope of this project.

Gonterman, J. Ronald; Weinstein, Michael A.

2006-10-27T23:59:59.000Z

245

High-Intensity Laser Diagnostics for OMEGA EP  

Science Conference Proceedings (OSTI)

OMEGA EP is a new high-energy petawatt laser system under construction at the University of Rochester’s Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP’s mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP’s off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from petawatt laser at full energy.

Bromage, J.; Zuegel, J.D.; Bahk, S.-W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Junquist, R.; Stoeckl, C.

2006-07-13T23:59:59.000Z

246

High intensity performance and upgrades at the Brookhaven AGS  

SciTech Connect

For the last two years the Brookhaven AGS has operated the slow extracted beam program at record proton intensities. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

Roser, T.

1996-12-31T23:59:59.000Z

247

HIGH INTENSITY BEAM OPERATION OF THE BROOKHAVEN AGS  

SciTech Connect

For the last few years the Brookhaven AGS has operated at record proton intensities. This high beam intensity allowed for the simultaneous operation of several high precision rare kaon decay experiments. The record beam intensities were achieved after the AGS Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. The intensity is presently limited by space charge effects at both Booster and AGS injection and transverse instabilities in the AGS.

ROSER,T.

1999-06-28T23:59:59.000Z

248

Beam experiments towards high-intensity beams in RHIC  

SciTech Connect

Proton bunch intensities in RHIC are planned to be increased from 2 {center_dot} 10{sup 11} to 3 {center_dot} 10{sup 11} protons per bunch to increase the luminosity, together with head-on beam-beam compensation using electron lenses. To study the feasibility of the intensity increase, beam experiments are being performed. Recent experimental results are presented.

Montag C.; Ahrens, L.; Brennan, J.M.; Blaskiewicz, M.; Drees, A.; Fischer, W.; Hayes, T.; Huang, H.; Mernick, K.; Robert-Demolaize, G.; Smith, K.; Than, R.; Thieberger, P.; Yip, K.; Zeno, K.; Zhang, S.Y.

2012-05-20T23:59:59.000Z

249

Electrostatic LEBTs for High-Intensity Linac-Injectors  

E-Print Network (OSTI)

R. Yourd, “Progress with the SNS Front End Sys- tems,” Proc.Results Obtained with the SNS H - Ion Source and LEBT atthe Spallation Neutron Source (SNS) front end, the presented

Keller, R.; Kahto, S.K.

2005-01-01T23:59:59.000Z

250

Rules for the Discharge of Non-Sanitary Wastewater and Other...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the Discharge of Non-Sanitary Wastewater and Other Fluids To or Below the Ground Surface (Rhode Island) Rules for the Discharge of Non-Sanitary Wastewater and Other Fluids To...

251

The Effects of Geometry on the Corona-to-Streamer Discharge Transition  

E-Print Network (OSTI)

The electric spark discharge has been studied for hundreds of years, yet many details of the phenomenon remain elusive. One particular area in the field of spark discharges that has yet to be explored in depth is the transition region between the corona and the streamer discharge. The parameters that characterize the transition region are purely geometric for a given potential difference applied between two electrodes. For the case of a point-to-plane electrode geometry, the transition between the oscillating corona discharge and the rapidly-growing streamer discharge is determined by the radius of curvature of the anode. In this contribution, the transition radius of curvature is found analytically using simplified models of each discharge and the principle of least action. For a sufficiently small anode, the corona discharge is also shown to be energetically more favorable at all radii of curvature, supporting the general claim that corona discharges are most readily produced on thin wires.

Humbird, Kelli D

2013-05-01T23:59:59.000Z

252

Carbon nanostructures production by AC arc discharge plasma process at atmospheric pressure  

Science Conference Proceedings (OSTI)

Carbon nanostructures have received much attention for a wide range of applications. In this paper, we produced carbon nanostructures by decomposition of benzene using AC arc discharge plasma process at atmospheric pressure. Discharge was carried out ...

Shenqiang Zhao; Ruoyu Hong; Zhi Luo; Haifeng Lu; Biao Yan

2011-01-01T23:59:59.000Z

253

ArcSafe® with Pulsed Arrested Spark Discharge  

NLE Websites -- All DOE Office Websites (Extended Search)

ArcSafe® ArcSafe® with Pulsed Arrested Spark Discharge  2007 R&D 100 Award Entry Form ArcSafe® with Pulsed Arrested Spark Discharge  Joint Submitters Submitting Organization Sandia National Laboratories PO Box 5800, MS 1181 Albuquerque, NM 87185-1181 USA Larry Schneider Phone: (505) 845-7135 Fax: (505) 845-7685 Email: lxschne@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate represen- tation of this product. (Signature)______________________________________ Astronics-Advanced Electronic Systems, Inc. 9845 Willows Rd NE City: Redmond State: WA Zip/Postal: 98052-2540 USA Contact Name: Michael Ballas, Program Manager Phone: (425) 895-4304 Fax: (425)702.4930 Email: michael.ballas@astronics.com

254

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Discharge Water Management for Discharge Water Management for Horizontal Shale Gas Well Development Final Report Start Date: October 1, 2009 End Date: March 31, 2012 Authors: Paul Ziemkiewicz, PhD Jennifer Hause Raymond Lovett, PhD David Locke Harry Johnson Doug Patchen, PG Report Date Issued: June 2012 DOE Award #: DE-FE0001466 Submitting Organization: West Virginia Water Research Institute West Virginia University PO Box 6064 Morgantown, WV 26506-6064 FilterSure, Inc. PO Box 1277 McLean, VA 22101 ShipShaper, LLP PO Box 2 Morgantown, WV 26507 2 | P a g e Acknowledgment "This material is based upon work supported by the Department of Energy under Award Number DE-FE0001466." Disclaimer "This report was prepared as an account of work sponsored by an agency of the United States

255

Analyses of MTI Imagery of Power Plant Thermal Discharge  

Science Conference Proceedings (OSTI)

MTI images of thermal discharge from three power plants are analyzed in this paper with the aid of a 3-D hydrodynamic code. The power plants use different methods to dissipate waste heat in the environment: a cooling lake at Comanche Peak, ocean discharge at Pilgrim and cooling canals at Turkey Point. This paper shows that it is possible to reproduce the temperature distributions captured in MTI imagery with accurate code inputs, but the key parameters change from site to site. Wind direction and speed are the most important parameters at Pilgrim, whereas air temperatures and dewpoint temperatures are most important at Comanche Peak and Turkey Point. This paper also shows how the combination of high-resolution thermal imagery and hydrodynamic simulation lead to better understanding of the mechanisms by which waste heat is dissipated in the environment.

Garrett, A.J.

2001-06-27T23:59:59.000Z

256

Focused shock spark discharge drill using multiple electrodes  

DOE Patents (OSTI)

A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

Moeny, William M. (Albuquerque, NM); Small, James G. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

257

Spent nuclear fuel discharges from US reactors 1993  

SciTech Connect

The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

Not Available

1995-02-01T23:59:59.000Z

258

Glow discharge deposition at high rates using disilane  

DOE Green Energy (OSTI)

The research program reported makes use of the fact that amorphous silicon films can be grown faster from disilane in a glow discharge than from the traditional silane. The goal is to find a method to grow films at a high rate and with sufficiently high quality to be used in an efficient solar cell. It must also be demonstrated that the appropriate device structure can be successfully fabricated under conditions which give high deposition rates. High quality intrinsic films have been deposited at 20 A/s. Efficiency of 5.6% on steel substrates and 5.3% on glass substrates were achieved using disilane i-layers deposited at 15 A/s in a basic structure, without wide-gap doped layers or light trapping. Wide gap p-layers were deposited using disilane. Results were compared with those obtained at Vactronic using high power discharges of silane-hydrogen mixtures. (LEW)

Rajeswaran, G.; Corderman, R.R.; Kampas, F.J.; Vanier, P.E.

1985-01-01T23:59:59.000Z

259

Low energy neutral spectroscopy during pulsed discharge cleaning in PLT  

DOE Green Energy (OSTI)

The efflux of neutral hydrogen from PLT during discharge cleaning has been measured using a time-of-flight spectrometer. During high ionization pulsed discharge cleaning (PDC), the flux in the energy range of 5 to 1000 eV varies from 10/sup 14/ H/sup 0//cm/sup 2/xs to 10/sup 16/ H/sup 0//cm/sup 2/xs and the average energy from 10 to 80 eV. The energy distributions are nearly single temperature Maxwellians. Low ionization PDC (Taylor-type) produces a 1000 times lower fluence in the same energy range; however, a flux of 10/sup 16/ H/sup 0//cm/sup 2/xs at energies less than 5 eV is inferred. The detailed submillisecond time variation of these parameters with the fill gas pressure and state of cleanliness of the machine is presented. Comparisons with UV spectroscopy, bolometric measurements, and residual gas analysis are made.

Ruzic, D.; Cohen, S.; Denne, B.; Schivell, J.

1983-04-01T23:59:59.000Z

260

Redox reactions with empirical potentials: Atomistic battery discharge simulations  

E-Print Network (OSTI)

Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

Dapp, Wolf B

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES  

DOE Patents (OSTI)

A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.

Bell, P.R.; Luce, J.S.

1960-01-01T23:59:59.000Z

262

Low pressure arc discharge lamp apparatus with magnetic field generating means  

DOE Patents (OSTI)

A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

Grossman, M.W.; George, W.A.; Maya, J.

1987-10-06T23:59:59.000Z

263

Negative ion source with hollow cathode discharge plasma  

SciTech Connect

A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

Hershcovitch, Ady (Mt. Sinai, NY); Prelec, Krsto (Setauket, NY)

1983-01-01T23:59:59.000Z

264

Inductively stabilized, long pulse duration transverse discharge apparatus  

DOE Patents (OSTI)

An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high energy, high efficiency, long-pulsed laser outputs to be obtained. The present apparatus has been demonstrated with rare-gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.

Sze, Robert C. (Santa Fe, NM)

1986-01-01T23:59:59.000Z

265

Method and apparatus for processing exhaust gas with corona discharge  

DOE Patents (OSTI)

The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

1999-06-22T23:59:59.000Z

266

The Use of DC Glow Discharges as Undergraduate Educational Tools  

SciTech Connect

Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

2012-10-09T23:59:59.000Z

267

Inductively stabilized, long pulse duration transverse discharge apparatus  

DOE Patents (OSTI)

An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high-energy, high-efficiency, long pulsed laser outputs to be obtained. The apparatus has been demonstrated with rare gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.

Sze, R.C.

1983-09-01T23:59:59.000Z

268

Electron beam-switched discharge for rapidly pulsed lasers  

DOE Patents (OSTI)

A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

1979-12-11T23:59:59.000Z

269

High energy XeBr electric discharge laser  

DOE Patents (OSTI)

A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

270

Observations and Inferred Physical Characteristics of Compact Intracloud Discharges  

Science Conference Proceedings (OSTI)

Compact intracloud discharges (CIDS) represent a distinct class of electrical discharges that occur within intense regions of thunderstorms. They are singular discharges that produce brief (typically 3 µs in duration) broadband RF emissions that are 20 to 30 dB more powerful than radiation from all other recorded lightning processes in the HF and VHF radio spectrum. Far field electric field change recordings of CIDS consist of a single, large-amplitude bipolar pulse that begins to rise during the RF-producing phase of the CID and typically lasts for 20 µs. During the summer of 1998 we operated a 4-station array of electric field change meters in New Mexico to support FORTE satellite observations of transient RF and optical sources and to learn more about the phenomenology and physical characteristics of CIDS. Over 800 CIDS were detected and located during the campaign. The events were identified on the basis of their unique field change waveforms. CID source heights determined using the relative delays of ionospherically reflected source emissions were typically between 4 and 11 km above ground level. Events of both positive and negative polarity were observed with events' of initially- negative polarity (indicative of discharges occurring between underlying positive and overlying negative charge) occurring at slightly higher altitudes. Within CID field change waveforms the CID pulse was often followed within a few ms by one or more smaller-amplitude pulses. We associate these subsequent pulses with the initial activity of a "normal" intracloud flash, the inference being that some fraction of the time, a CID initiates an intracloud lightning flash.

Argo, P.E.; Eack, K.B.; Holden, D.N.; Massey, R.S.; Shao, X.; Smith, D.A.; Wiens, K.C.

1999-02-01T23:59:59.000Z

271

High energy KrCl electric discharge laser  

SciTech Connect

A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

272

An ultraviolet barrier-discharge OH molecular lamp  

Science Conference Proceedings (OSTI)

The energy and spectral parameters of a barrier discharge in a mixture of argon with hydroxyl {sup .}OH are studied experimentally. A sealed lamp with the radiation intensity maximum at {lambda} = 309.2 nm, an emitting surface area of {approx}700 cm{sup 2}, and a radiant excitance of 1.5 mW cm{sup -2} has been fabricated. The radiant power of the lamp is 1.1 W. (laser applications and other topics in quantum electronics)

Sosnin, E A; Erofeev, M V; Avdeev, S M; Panchenko, Aleksei N; Panarin, V A; Skakun, V S; Tarasenko, Viktor F; Shitts, D V [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

2006-10-31T23:59:59.000Z

273

Negative ion source with hollow cathode discharge plasma  

DOE Patents (OSTI)

A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

Hershcovitch, A.; Prelec, K.

1980-12-12T23:59:59.000Z

274

Stochastic fluctuations of dust particle charge in RF discharges  

Science Conference Proceedings (OSTI)

In addition to RF oscillations, intrinsic stochastic fluctuations due to the discreteness of electrons and ions could be important to the charging of a dust particle in RF discharges. These fluctuations are studied in the present work for three cases [M. Bacharis et al., Plasma Sources Sci. Technol. 19, 025002 (2010)] relevant to RF discharges employing a recently proposed model [B. Shotorban, Phys. Rev. E 83, 066403 (2011)] valid for stochastic charging at nonstationary states. The cases are concerned with a time varying electron number density relevant to sheaths, a time varying electric field relevant to the bulk plasma, and a time-dependent bi-Maxwellian distribution of electrons in a low pressure discharge. Two dust particles with different sizes are individually studied in each case. The radius of one is ten times larger than the radius of the other. In all of the cases, for the larger dust particle, the root-mean-squre of charge stochastic fluctuations is about an order of magnitude smaller than the amplitude of RF charge oscillations, while for the smaller dust particle, they are comparable in magnitude.

Shotorban, B. [Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States)

2012-05-15T23:59:59.000Z

275

The Discharge Design of HL-2M with the Tokamak Simulation Code (TSC)  

Science Conference Proceedings (OSTI)

We present results on the discharge design of the HL-2M tokamak, which is to be an upgrade to the existing HL-2A tokamak. We present simulation results for complete 5-sec. discharges, both double null and lower single null, for both ohmic and auxiliary heated discharges. We also discuss the vertical stability properties of the device. __________________________________________________

Yudong Pan, S.C. Jardin, and C. Kes

2007-10-10T23:59:59.000Z

276

Black hole discharge in massive electrodynamics and black hole disappearance in massive gravity  

E-Print Network (OSTI)

We define and calculate the "discharge mode" for a Schwarzschild black hole in massive electrodynamics. For small photon mass, the discharge mode describes the decay of the electric field of a charged star collapsing into a black hole. We argue that a similar "discharge of mass" occurs in massive gravity and leads to a strange process of black hole disappearance.

Mirbabayi, Mehrdad

2013-01-01T23:59:59.000Z

277

Operation features of a longitudinal-capacitive-discharge-pumped CuBr laser  

Science Conference Proceedings (OSTI)

The frequency and energy characteristics of a capacitive-discharge-pumped CuBr laser are investigated. Processes proceeding in the discharge circuit of lasers pumped in this way, in particular, pumped without an external storage capacitor are analysed. It is shown that, depending on the pumping circuit, laser levels are excited either during the charge current flow or during the discharge of electrode capacitances. The differences in the influence of the active HBr addition on the characteristics of the discharge and lasing compared to the case of a usual repetitively pulsed high-current discharge with internal electrodes are established. (lasers)

Gubarev, F A; Shiyanov, D V [V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation); Evtushenko, Gennadii S [Tomsk Polytechnical University, Tomsk (Russian Federation); Sukhanov, V B

2010-01-31T23:59:59.000Z

278

GRR/Section 14-UT-b - Utah Pollutant Discharge Elimination System | Open  

Open Energy Info (EERE)

GRR/Section 14-UT-b - Utah Pollutant Discharge Elimination System GRR/Section 14-UT-b - Utah Pollutant Discharge Elimination System < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-b - Utah Pollutant Discharge Elimination System 14UTBUtahPollutantDischargeEliminationSystemPermit.pdf Click to View Fullscreen Contact Agencies Utah Division of Water Quality Utah Department of Environmental Quality United States Environmental Protection Agency Regulations & Policies R317-2-3 Antidegradation Policy R317-8 Utah Pollutant Discharge Elimination System (UPDES) Triggers None specified Click "Edit With Form" above to add content 14UTBUtahPollutantDischargeEliminationSystemPermit.pdf 14UTBUtahPollutantDischargeEliminationSystemPermit.pdf Error creating thumbnail: Page number not in range.

279

ORNL DAAC GLOBAL RIVER DISCHARGE, 1807-1991, V. 1.1 (RIVDIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Data > Regional/Global > River Discharge (RIVDIS) > Guide Data > Regional/Global > River Discharge (RIVDIS) > Guide Document GLOBAL RIVER DISCHARGE, 1807-1991, V. 1.1 (RIVDIS) Get Data Global River Discharge, 1807-1991, V. 1.1 (RivDIS) Summary: The Global Monthly River Discharge Data Set contains monthly averaged discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station with a mean of 21.5 years. The data are derived from the published UNESCO archives for river discharge and checked against information obtained from the Global Runoff Center in Koblenz, Germany, through the U.S. National Geophysical Data Center in Boulder, Colorado. Citation: Cite this data set as follows (citation revised on September 20, 2002): Vorosmarty, C. J., B. M. Fekete, and B. A. Tucker. 1998. Global River

280

Stabilization of liquid hydrocarbon fuel combustion by using a programmable microwave discharge in a subsonic airflow  

SciTech Connect

Under conditions of a programmable discharge (a surface microwave discharge combined with a dc discharge), plasma-enhanced combustion of alcohol injected into a subsonic (M = 0.3-0.9) airflow in the drop (spray) phase is stabilized. It is shown that the appearance of the discharge, its current-voltage characteristic, the emission spectrum, the total emission intensity, the heat flux, the electron density, the hydroxyl emission intensity, and the time dependences of the discharge current and especially discharge voltage change substantially during the transition from the airflow discharge to stabilized combustion of the liquid hydrocarbon fuel. After combustion stabilization, more than 80% of liquid alcohol can burn out, depending on the input power, and the flame temperature reaches {approx}2000 K.

Kopyl, P. V.; Surkont, O. S.; Shibkov, V. M.; Shibkova, L. V. [Moscow State University, Faculty of Physics (Russian Federation)

2012-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sub-microsecond pulsed atmospheric glow discharges with and without dielectric barrier  

Science Conference Proceedings (OSTI)

The discharge characteristics and mechanism of glow discharges in atmospheric pressure helium excited by repetitive voltage pulses with and without dielectric barriers are numerically studied using a one-dimensional self-consistent fluid model. The waveforms of discharge current density show that one discharge event occurs during the voltage pulse with bare electrodes and two distinct discharge events happen at the rising and falling phases of voltage pulse with dielectric barrier electrodes, respectively. The spatial profiles of electron and electric field at the time instant of discharge current peak reveal that the electrons are trapped in the plasma bulk with bare electrodes, while the electrons are accumulated in the region between the sheath and plasma bulk with dielectric barrier electrodes. Furthermore, the spatio-temporal evolution of electron density and mean electron energy clearly demonstrate the dynamics of discharge ignition, especially the temporal evolution of sheath above the instantaneous cathode.

Song Shutong [College of Science, Donghua University, Shanghai 201620 (China); Guo Ying; Zhang Jie; Zhang Jing; Shi, J. J. [College of Science, Donghua University, Shanghai 201620 (China); Member of Magnetic Confinement Fusion Research Center, Ministry of Education of the People's Republic of China, Shanghai 201620 (China); Choe, Wonho [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

2012-12-15T23:59:59.000Z

282

Modeling cooling water discharges from the Burrard Generating Station  

E-Print Network (OSTI)

Abstract-A three-dimensional numerical model was applied to examine the impact of the Burrard Generating Station cooling water on the circulation patterns and thermal regime in the receiving water of Port Moody Arm. A key aspect of this study involved properly incorporating the submerged cooling water buoyant jet into the 3D model. To overcome the scale and interface barriers between the near-field and far-field zones of the buoyant jet, a sub-grid scheme was applied, and the coupled system of equations of motion, heat conservation and state are solved with a single modeling procedure over the complete field. Special care was taken with the diffusion and jet entrainment by using a second order turbulence closure model for vertical diffusion and the Smagorinsky formula for horizontal diffusion as well as jet entrainment. The model was calibrated and validated in terms of buoyant jet trajectory, centerline dilution, and temperature and velocity profiles. Extensive modeling experiments without and with the Burrard Generating Station in operation were then carried out to investigate the receiving water circulations and thermal processes under the influence of the cooling water discharge. The model results reveal that under the influence of the cooling water discharge, peak ebb currents are stronger than peak flood currents in the near-surface layer, and the reverse is true in the near-bottom layer. Meanwhile, the model revealed a well-developed eddy at the southeast side of the buoyant jet in the near-surface layer. It is also found that the warmer water released from the cooling water discharge is mainly confined to the upper layer of the Arm, which is largely flushed out of the Arm through tidal mixing processes, and a corresponding inflow of colder water into the Arm occurs within the lower layer. I.

J. Jiang; D. B. Fissel; D. D. Lemon

2002-01-01T23:59:59.000Z

283

Surface charging, discharging and chemical modification at a sliding contact  

Science Conference Proceedings (OSTI)

Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X-ray photoelectron spectroscopy (XPS). The experiments were performed on the disk surface of a ball-on-rotating-disk apparatus; using a glass disk and a Teflon (polytetrafluoroethylene) ball arrangement, and a polyester disks and a diamondlike carbon (DLC) coated steel ball arrangement. The capacitive probe is designed to perform highly resolved measurements, which is sensitive to relative change in charge density on the probed surface. For glass and Teflon arrangement, electrical measurements show that the ball track acquires non-uniform charging. Here not only the increase in charge density, but interestingly, increase in number of highly charged regions on the ball track was resolved. Threefold increase in the number of such highly charged regions per cycle was detected immediately before the gas breakdown-like incidences compared to that of other charge/discharge incidences at a fixed disk rotation speed. We are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly indicate that the wear and friction (sliding without charging) on the surface can be discarded from inducing such a deoxidation effect.

Singh, S. V.; Kusano, Y. [Department of Wind Energy, Section of Composites and Materials Mechanics, Technical University of Denmark, Risoe Campus, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Morgen, P. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense (Denmark); Michelsen, P. K. [Department of Physics, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark)

2012-04-15T23:59:59.000Z

284

COMMENTS ON THE SEARCH FOR ELECTROSTATIC DISCHARGES ON MARS  

Science Conference Proceedings (OSTI)

Ruf et al. used the Deep Space Network (DSN) to search for the emission of non-thermal radiation by martian dust storms, theoretically predicted by Renno et al. They detected the emission of non-thermal radiation that they were searching for, but were surprised that it contained spectral peaks suggesting modulation at various frequencies and their harmonics. Ruf et al. hypothesized that the emission of non-thermal radiation was caused by electric discharges in a deep convective dust storm, modulated by Schumann resonances (SRs). Anderson et al. used the Allen Telescope Array (ATA) to search for similar emissions. They stated that they found only radio frequency interference (RFI) during their search for non-thermal emission by martian dust storms and implicitly suggested that the signal detected by Ruf et al. was also RFI. However, their search was not conducted during the dust storm season when deep convective storms are most likely to occur. Here, we show that the ubiquitous dust devils and small-scale dust storms that were instead likely present during their observations are too shallow to excite SRs and produce the signals detected by Ruf et al. We also show that the spectral and temporal behavior of the signals detected by Anderson et al. corroborates the idea that they originated from man-made pulse-modulated telecommunication signals rather than martian electric discharges. In contrast, an identical presentation of the signals detected by Ruf et al. demonstrates that they do not resemble man-made signals. The presentation indicates that the DSN signals were consistent with modulation by martian SRs, as originally hypothesized by Ruf et al. We propose that a more comprehensive search for electrostatic discharges be conducted with either the ATA or DSN during a future martian dust storm season to test the hypothesis proposed by Ruf et al.

Renno, Nilton O.; Ruf, Christopher S., E-mail: renno@alum.mit.edu [Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI (United States)

2012-12-20T23:59:59.000Z

285

Reducing industrial toxic wastes and discharges: The role of POTWs  

Science Conference Proceedings (OSTI)

Intended for use by elected and appointed local officials, the guidebook makes recommendations as to how publicly-owned treatment works (POTWs) can promote hazardous waste minimization. The guide suggests that POTWs can significantly reduce their toxic discharges to the sewer (without transferral of same pollutants to another media) by developing programs which combine features of three options - educational programs that provide waste minimization information to local companies; technical assistance programs that help companies identify and evaluate site-specific opportunities for waste minimization; and regulatory programs that establish indirect inducements or direct requirements to promote waste minimization.

Sherry, S.; Corbett, J.; Eulo, T.

1988-12-01T23:59:59.000Z

286

Ethanol reforming in non-equilibrium plasma of glow discharge  

E-Print Network (OSTI)

The results of a detailed kinetic study of the main plasma chemical processes in non-equilibrium ethanol/argon plasma are presented. It is shown that at the beginning of the discharge the molecular hydrogen is mainly generated in the reaction of ethanol H-abstraction. Later hydrogen is formed from active H, CH2OH and CH3CHOH and formaldehyde. Comparison with experimental data has shown that the used kinetic mechanism predicts well the concentrations of main species at the reactor outlet.

Levko, D

2012-01-01T23:59:59.000Z

287

Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable  

E-Print Network (OSTI)

Over the past decade, the water requirements for cooling industrial manufacturing processes have changed dramatically. Once-through cooling has been largely replaced by open recirculating cooling water methods. This approach reduces water consumption by increasing the use of recycled water. Simplistically, the circulating cooling water flows through heat exchanger equipment and is cooled by passing through a cooling tower. The recycled water is cooled by evaporation of some of the circulating water as it passes through the tower. As a result of the evaporation process, the dissolved solids in the water become concentrated. The evaporated water is replaced by fresh makeup water. The dissolved solids content of the water is maintained by the rate of water discharge (blowdown). As the amount of dissolved solids increases, their solubility is exceeded and the solids tend to precipitate from the cooling water. The precipitated scale adheres to heat transfer surfaces and reduces heat transfer efficiency. In order to achieve zero discharge of water, it is paramount that the potential for scale formation and deposition be minimized. This can be accomplished through physical separation of scale-forming ions and particulate matter. Two widely used mechanical methods in this category are lime-soda side stream softening and vapor compression blowdown evaporation. Another approach is chemical treatment to promote scale inhibition and dispersion.

Boffardi, B. P.

1996-04-01T23:59:59.000Z

288

A Flexible Software Architecture for Tokamak Discharge Control Systems  

E-Print Network (OSTI)

The software structure of the plasma control system in use on the DIII--D tokamak experiment is described. This system implements control functions through software executing in real time on one or more digital computers. The software is organized into a hierarchy that allows new control functions needed to support the DIII--D experimental program to be added easily without affecting previously implemented functions. This also allows the software to be portable in order to create control systems for other applications. The tokamak operator uses an X-windows based interface to specify the time evolution of a tokamak discharge. The interface provides a high level view for the operator that reduces the need for detailed knowledge of the control system operation. There is provision for an asynchronous change to an alternate discharge time evolution in response to an event that is detected in real time. Quality control is enhanced through off-line testing that can make use of software-based...

Ferron Penaflor Walker

1995-01-01T23:59:59.000Z

289

COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS  

DOE Green Energy (OSTI)

OAK A271 COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS. An investigation of the chemical composition and structure of strong glow discharge (GDP) polymer shells made for cryogenic experiments at OMEGA is described. The investigation was carried out using combustion and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The strongest coatings were observed to have the lowest hydrogen content or hydrogen/carbon H/C ratio, whereas the weakest coatings had the highest hydrogen content or H/C ratio. Chemical composition results from combustion were used to complement FTIR analysis to determine the relative hydrogen content of as-fabricated coatings. Good agreement was observed between composition results obtained from combustion and FTIR analysis. FTIR analysis of coating structures showed the strongest coatings to have less terminal methyl groups and a more double bond or olefinic structure. Strong GDP coatings that were aged in air react more with oxygen and moisture than standard GDP coatings. In addition to a more olefinic structure, there may also be more free-radial sites present in strong GDP coatings, which leads to greater oxygen uptake.

CZECHOWICZ, DG; CASTILLO, ER; NIKROO, A

2002-04-01T23:59:59.000Z

290

Battery discharge characteristics of wireless sensor nodes: An experimental analysis  

E-Print Network (OSTI)

Abstract — Battery life extension is the principal driver for energy-efficient wireless sensor network (WSN) design. However, there is growing awareness that in order to truly maximize the operating life of battery-powered systems such as sensor nodes, it is important to discharge the battery in a manner that maximizes the amount of charge extracted from it. In spite of this, there is little published data that quantitatively analyzes the effectiveness with which modern wireless sensor nodes discharge their batteries, under different operating conditions. In this paper, we report on systematic experiments that we conducted to quantify the impact of key wireless sensor network design and environmental parameters on battery performance. Our testbed consists of MICA2DOT Motes, a commercial lithiumcoin battery, and a suite of techniques for measuring battery performance. We evaluate the extent to which known electrochemical phenomena, such as rate-capacity characteristics, charge recovery and thermal effects, can play a role in governing the selection of key WSN design parameters such as power levels, packet sizes, etc. We demonstrate that battery characteristics significantly alter and complicate otherwise well-understood trade-offs in WSN design. In particular, we analyze the non-trivial implications of battery characteristics on WSN power control strategies, and find that a battery-aware approach to power level selection leads to a 52 % increase in battery efficiency. We expect our results to serve as a quantitative basis for future research in designing battery-efficient sensing applications and protocols. I.

Chulsung Park; Kanishka Lahiri

2005-01-01T23:59:59.000Z

291

GRR/Section 14-NV-e - Groundwater Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-NV-e - Groundwater Discharge Permit GRR/Section 14-NV-e - Groundwater Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-e - Groundwater Discharge Permit 14NVEGroundwaterDischargePermit.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies NAC 445A NRS 445A Triggers None specified Click "Edit With Form" above to add content 14NVEGroundwaterDischargePermit.pdf 14NVEGroundwaterDischargePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Environmental Protection (NDEP) Bureau of Water Pollution Control is responsible for protecting Nevada water quality from

292

GRR/Section 14-CO-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

CO-e - Ground Water Discharge Permit CO-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-e - Ground Water Discharge Permit 14COEGroundWaterDischargePermit.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Water Quality Control Act 5 CCR 1002-61 Colorado Discharge Permit System 5 CCR 1002-41 Basic Standards for Ground Water 5 CCR 1002-42 Site Specific Water Quality Standards for Ground Water Triggers None specified Click "Edit With Form" above to add content 14COEGroundWaterDischargePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

293

GRR/Section 14-CA-e - Waste Discharge Requirements | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-CA-e - Waste Discharge Requirements GRR/Section 14-CA-e - Waste Discharge Requirements < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-e - Waste Discharge Requirements 14CAEWasteDischargeRequirements.pdf Click to View Fullscreen Contact Agencies California Environmental Protection Agency Water Resources Control Board Regulations & Policies Title 27 CCR, Division 2 - Environmental Protection - Solid Waste SWRCB Exemptions Triggers None specified Click "Edit With Form" above to add content 14CAEWasteDischargeRequirements.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The State Water Resources Control Board (SWRCB) may require Waste discharge

294

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

295

GRR/Elements/14-CA-b.6 - Does RWQCB decide to allow discharge | Open Energy  

Open Energy Info (EERE)

RWQCB decide to allow discharge RWQCB decide to allow discharge < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-b.6 - Does RWQCB decide to allow discharge Once the RWQCB and EPA deem the application complete, the RWQCB makes an initial determination whether the application is appropriate for consideration or if it should be denied outright. If the discharge is denied outright, the process ends. If RWQCB decides to consider the application, the public process is triggered. Logic Chain No Parents \V/ GRR/Elements/14-CA-b.6 - Does RWQCB decide to allow discharge (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-b.6_-_Does_RWQCB_decide_to_allow_discharge&oldid=482583

296

GRR/Section 14-CO-b - Colorado Discharge Permit System (CDPS) | Open Energy  

Open Energy Info (EERE)

CO-b - Colorado Discharge Permit System (CDPS) CO-b - Colorado Discharge Permit System (CDPS) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-b - Colorado Discharge Permit System (CDPS) 14COBColoradoDischargePermitSystemCDPS.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Water Quality Control Act 5 CCR 1002-61 5 CCR 1002-62 Triggers None specified Click "Edit With Form" above to add content 14COBColoradoDischargePermitSystemCDPS.pdf 14COBColoradoDischargePermitSystemCDPS.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Colorado Department of Public Health and Environment (CDPHE) Water

297

Micro Electro Discharge Machining of Electrically Nonconductive Ceramics  

Science Conference Proceedings (OSTI)

EDM is a known process for machining of hard and brittle materials. Due to its noncontact and nearly forceless behaviour, it has been introduced into micro manufacturing and through constant development it is now an important means for producing high-precision micro geometries. One restriction of EDM is its limitation to electrically conducting materials.Today many applications, especially in the biomedical field, make use of the benefits of ceramic materials, such as high strength, very low wear and biocompatibility. Common ceramic materials such as Zirconium dioxide are, due to their hardness in the sintered state, difficult to machine with conventional cutting techniques. A demand for the introduction of EDM to these materials could so far not be satisfied because of their nonconductive nature.At the Chemnitz University of Technology and the Fraunhofer IWU, investigations in the applicability of micro-EDM for the machining of nonconductive ceramics are being conducted. Tests are undertaken using micro-EDM drilling with Tungsten carbide tool electrodes and ZrO{sub 2} ceramic workpieces. A starting layer, in literature often referred to as 'assisting electrode' is used to set up a closed electric circuit to start the EDM process. Combining carbon hydride based dielectric and a specially designed low-frequency vibration setup to excite the workpiece, the process environment can be held within parameters to allow for a constant EDM process even after the starting layer is machined. In the experiments a cylindrical 120 {mu}m diameter Tungsten carbide tool electrode and Y{sub 2}O{sub 3}- and MgO- stabilized ZrO{sub 2} worpieces are used. The current and voltage signals of the discharges within the different stages of the process (machining of the starting layer, machining of the base material, transition stage) are recorded and their characteristics compared to discharges in metallic material. Additionally, the electrode feed is monitored. The influences of the process parameters are analysed with regard to the discharge type, electrode wear and process speed.Using the found parameters, micro geometries can be successfully machined into nonconductive Y{sub 2}O{sub 3}- and MgO- stabilized ZrO{sub 2} ceramic by means of micro-EDM.

Schubert, A. [Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, 09107 Chemnitz (Germany); Fraunhofer Institute for Machine Tools and Forming Technology IWU, 09126 Chemnitz (Germany); Zeidler, H.; Hackert, M. [Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, 09107 Chemnitz (Germany); Wolf, N. [Fraunhofer Institute for Machine Tools and Forming Technology IWU, 09126 Chemnitz (Germany)

2011-05-04T23:59:59.000Z

298

Detection, identification and localization of partial discharges in power transformers using UHF techniques.  

E-Print Network (OSTI)

??Partial discharge (PD) detection using the ultra high frequency (UHF) method has proven viable in monitoring the insulation condition of GIS. Recently, it is being… (more)

Sinaga, Herman Halomoan

2012-01-01T23:59:59.000Z

299

Self-discharge mechanism of sealed-type nickel/metal-hydride battery  

Science Conference Proceedings (OSTI)

Factors affecting the self-discharge rate of a nickel/metal-hydride (Ni-MH) battery, generally much higher than that of nickel/cadmium (Ni-Cd) battery, are investigated, and the self-discharge mechanism is discussed. Ammonia and amine participate in the shuttle reaction like nitrate ion in the Ni-Cd battery, resulting in acceleration of the self-discharge. When nonwoven fabric made of sulfonated-polypropylene is used as a separator instead of conventional polyamide separator, the self-discharge rate of the Ni-MH battery is strongly depressed, to the same level as that of Ni-Cd battery.

Ikoma, Munehisa; Hoshina, Yasuko; Matsumoto, Isao [Matsushita Battery Industrial Co., Ltd., Osaka (Japan); Iwakura, Chiaki [Univ. of Osaka Prefecture, Sakai, Osaka (Japan). Dept. of Applied Chemistry

1996-06-01T23:59:59.000Z

300

A dielectric-barrier discharge enhanced plasma brush array at atmospheric pressure  

SciTech Connect

This study developed a large volume cold atmospheric plasma brush array, which was enhanced by a dielectric barrier discharge by integrating a pair of DC glow discharge in parallel. A platinum sheet electrode was placed in the middle of the discharge chamber, which effectively reduced the breakdown voltage and working voltage. Emission spectroscopy diagnosis indicated that many excited argon atoms were distributed almost symmetrically in the lateral direction of the plasma. The concentration variations of reactive species relative to the gas flow rate and discharge current were also examined.

Li Xuemei; Zhan Xuefang; Yuan Xin; Zhao Zhongjun; Yan Yanyue; Duan Yixiang [Research Center of Analytical Instrumentation, Analytical Testing Center, College of Chemistry, Sichuan University, Chengdu (China); Tang Jie [State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an (China)

2013-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

High Frequency Discharging Characteristics of LiFePO4 Battery.  

E-Print Network (OSTI)

??This thesis investigates the high frequency discharging characteristics of the lithium iron phosphate battery. The investigation focuses on effects of the high-frequency current on the… (more)

Tsai, Tsung-Rung

2010-01-01T23:59:59.000Z

302

GRR/Elements/18-CA-a.12 - Does the Facility Discharge Waste Water...  

Open Energy Info (EERE)

2 - Does the Facility Discharge Waste Water to Wells by Injection < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap...

303

GRR/Section 14-CA-e - Waste Discharge Permit | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit History Facebook icon Twitter icon GRRSection 14-CA-e - Waste Discharge Permit < GRR Jump to: navigation, search Retrieved from "http:...

304

Simulation benchmarks for low-pressure plasmas: capacitive discharges  

E-Print Network (OSTI)

Benchmarking is generally accepted as an important element in demonstrating the correctness of computer simulations. In the modern sense, a benchmark is a computer simulation result that has evidence of correctness, is accompanied by estimates of relevant errors, and which can thus be used as a basis for judging the accuracy and efficiency of other codes. In this paper, we present four benchmark cases related to capacitively coupled discharges. These benchmarks prescribe all relevant physical and numerical parameters. We have simulated the benchmark conditions using five independently developed particle-in-cell codes. We show that the results of these simulations are statistically indistinguishable, within bounds of uncertainty that we define. We therefore claim that the results of these simulations represent strong benchmarks, that can be used as a basis for evaluating the accuracy of other codes. These other codes could include other approaches than particle-in-cell simulations, where benchmarking could exa...

Turner, M M; Donko, Z; Eremin, D; Kelly, S J; Lafleur, T; Mussenbrock, T

2012-01-01T23:59:59.000Z

305

Shielding of mirror FERF plasma by arc discharges  

SciTech Connect

The feasibility of shielding a mirror-confined fusion plasma against erosion by incident neutrals with a plasma blanket generated by an array of hollow-cathode arc discharges was studied. Such a plasma blanket could also be used for linetying stabilization of a single mirror confined plasma as well as to provide a warm plasma stream for stabilization of microinstabilities. The requirements for the plasma blanket are dependent on the parameter ..gamma.., the ratio of the actual cross-field diffusion coefficient to the classical value. The power requirement compares favorably with power loss due to change exchange without shielding. More importantly, the blanket permits a relaxation of vacuum requirements to prevent erosion of the hot plasma by background neutrals.

Woo, J.T.

1976-12-08T23:59:59.000Z

306

Self-discharge rate of lithium thionyl-chloride cells  

DOE Green Energy (OSTI)

Our low-rate lithium/thionyl-chloride ``D`` cell is required to provide power continuously for up to 10 years. The cell was designed at Sandia National Laboratories and manufactured at Eagle-Picher Industries, Joplin, Missouri. We have conducted accelerated aging studies at elevated temperatures to predict long-term performance of cells fabricated in 1992. Cells using 1.0M LiAlCl{sub 4} electrolyte follow Arrhenius kinetics with an activation energy of 14.6 Kcal/mol. This results in an annual capacity loss to self-discharge of 0.13 Ah at 25 C. Cells using a 1.0M LiAlCl{sub 4}{sm_bullet}SO{sub 2} electrolyte do not follow Arrhenius behavior. The performance of aged cells from an earlier fabrication lot is variable.

Cieslak, W.R.

1993-12-31T23:59:59.000Z

307

Determination of Actinide Isotope Ratios Using Glow Discharge Optogalvanic Spectroscopy  

SciTech Connect

Diode-laser excited optogalvanic spectroscopy (OGS) of a glow discharge has been utilized to measure U-235/U-235 + U-238 isotope ratios. This ``optical mass spectrometric`` measurement has been demonstrated for a number of samples including uranium oxide, fluoride, and metal. Various diode-laser accessible atomic transitions in the 775 to 835 nm region have been evaluated; these transitions were chosen by considering OGS sensitivity and isotope shift. Using the 831.84 nm uranium line, for example, it was possible to measure the U-235/U-235 + U-238 isotope ratio (0.0026) of depleted uranium samples. A prototypical field instrument to make these measurements has been assembled and demonstrated. A U-236 spectral line was identified in a sample of enriched uranium, and an abundance sensitivity was measured.

Young, J.P.; Shaw, R.W.; Barshick, C.M.; Ramsey, J.M.

1997-08-01T23:59:59.000Z

308

Equilibrium and Stability of Partial Toroidal Plasma Discharges  

SciTech Connect

The equilibrium and stability of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous loop structures on the solar surface. The flux ropes studied here are magnetized arc discharges formed in the Magnetic Reconnection Experiment (MRX). It is found that these loops robustly maintain their equilibrium on time scales much longer than the Alfven time over a wide range of plasma current, guide eld strength, and angle between electrodes, even in the absence of a strapping fi eld. Additionally, the external kink stability of these flux ropes is found to be governed by the Kruskal-Shafranov limit for a flux rope with line-tied boundary conditions at both ends (q > 1).

E. Oz, C. E. Myers, M. Yamada, H. Ji, R. Kulsrud, and J. Xie

2011-01-04T23:59:59.000Z

309

Fueling Requirements for Steady State high butane current fraction discharges  

SciTech Connect

The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs.

R.Raman

2003-10-08T23:59:59.000Z

310

Electrode configuration for extreme-UV electrical discharge source  

DOE Patents (OSTI)

It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.

Spence, Paul Andrew (Pleasanton, CA); Fornaciari, Neal Robert (Tracey, CA); Chang, Jim Jihchyun (San Ramon, CA)

2002-01-01T23:59:59.000Z

311

Design and Operation Checklists for Zero Discharge Power Plant Water Systems  

Science Conference Proceedings (OSTI)

Design and operation checklists prepared by participants in the Zero Discharge Symposium identify key issues for the successful operation of a zero discharge power plant.The checklists highlight the importance of communication between utilities and architect/engineering companies, as well as within the utility industry itself.

1985-06-13T23:59:59.000Z

312

Spatially hybrid computations for streamer discharges: II. Fully 3D simulations  

Science Conference Proceedings (OSTI)

We recently have presented first physical predictions of a spatially hybrid model that follows the evolution of a negative streamer discharge in full three spatial dimensions; our spatially hybrid model couples a particle model in the high field region ... Keywords: Hybrid model, Multiscale, Streamer discharge

Chao Li; Ute Ebert; Willem Hundsdorfer

2012-02-01T23:59:59.000Z

313

Tesla coil discharges guided by femtosecond laser filaments in air Yohann Brelet1  

E-Print Network (OSTI)

1 Tesla coil discharges guided by femtosecond laser filaments in air Yohann Brelet1 , Aurélien, Palaiseau, France A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 k experiments of laser guided discharges obtained in air by high voltage bursts delivered by a compact Tesla

314

Global Particle Balance Measurements in DIII-D H-mode Discharges  

SciTech Connect

Experiments are performed on the DIII-D tokamak to determine the retention rate in an all graphite first-wall tokamak. A time-dependent particle balance analysis shows a majority of the fuel retention occurs during the initial Ohmic and L-mode phase of discharges, with peak fuel retention rates typically similar to 2 x 10(21) D/s. The retention rate can be zero within the experimental uncertainties (<3 x 10(20) D/s) during the later stationary phase of the discharge. In general, the retention inventory can decrease in the stationary phase by similar to 20-30% from the initial start-up phase of the discharge. Particle inventories determined as a function of time in the discharge, using a 'dynamic' particle balance analysis, agree with more accurate particle inventories directly measured after the discharge, termed 'static' particle balance. Similarly, low stationary retention rates are found in discharges with heating from neutral-beams, which injects particles, and from electron cyclotron waves, which does not inject particles. Detailed analysis of the static and dynamic balance methods provide an estimate of the DIII-D global co-deposition rate of <= 0.6-1.2 x 10(20) D/s. Dynamic particle balance is also performed on discharges with resonant magnetic perturbation ELM suppression and shows no additional retention during the ELM-suppressed phase of the discharge.

Unterberg, Ezekial A [ORNL; Allen, S. L. [Lawrence Livermore National Laboratory (LLNL); Brooks, N [General Atomics, San Diego; Evans, T. E. [General Atomics, San Diego; Leonard, A. W. [General Atomics; McLean, A. [Sandia National Laboratories (SNL); Watkins, J. G. [Sandia National Laboratories (SNL); Whyte, D. G. [Massachusetts Institute of Technology (MIT)

2011-01-01T23:59:59.000Z

315

A model of plasma discharges in pre-arcing regime for water treatment  

Science Conference Proceedings (OSTI)

It is presented a simulation study of a water treatment system based upon 1 kHz frequency plasma discharges in the pre-arcing regime produced within a coaxial cylinder reactor. The proposed computational model takes into consideration the three main ... Keywords: modelling, pulsed corona discharges, simulation, streamers

B. G. Rodríguez-Méndez; R. López-Callejas; R. Peńa-Eguiluz; A. Mercado-Cabrera; R. Valencia-Alvarado; S. R. Barocio; A. de la Piedad-Beneitez; J. S. Benítez-Read; J. O. Pacheco-Sotelo

2006-02-01T23:59:59.000Z

316

Optimum Discharge Burnup for Nuclear Fuel: A Comprehensive Study of Duke Power's Reactors  

Science Conference Proceedings (OSTI)

Economic analysis of two pressurized water reactors (PWRs) shows that increasing the discharge burnup of light water reactor (LWR) fuel above current values can result in significant cost benefits. Optimum discharge burnup levels, however, may not be achievable without exceeding the current limit on enrichment.

1999-06-01T23:59:59.000Z

317

Optimal and Adaptive Battery Discharge Strategies for Cyber-Physical Fumin Zhang and Zhenwu Shi  

E-Print Network (OSTI)

Optimal and Adaptive Battery Discharge Strategies for Cyber-Physical Systems Fumin Zhang and Zhenwu Shi Abstract-- We introduce a dynamic battery model that de- scribes the variations of the capacity of a battery under time varying discharge current. This model is input-output equivalent to the Rakhmatov

Zhang, Fumin

318

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time  

E-Print Network (OSTI)

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time Yu Ru, Jan Kleissl, and Sonia Martinez Abstract-- In this paper, we study a battery sizing problem for grid-connected photovoltaic (PV) systems assuming that the battery charging/discharging limit scales linearly with its

MartĂ­nez, Sonia

319

Intelligent process modeling and optimization of die-sinking electric discharge machining  

Science Conference Proceedings (OSTI)

This paper reports an intelligent approach for process modeling and optimization of electric discharge machining (EDM). Physics based process modeling using finite element method (FEM) has been integrated with the soft computing techniques like artificial ... Keywords: Artificial neural networks (ANN), Electric discharge machining (EDM), Finite element method (FEM), Non-dominated sorting genetic algorithm (NSGA), Process modeling and optimization, Scaled conjugate gradient algorithm (SCG)

S. N. Joshi; S. S. Pande

2011-03-01T23:59:59.000Z

320

Technical Assistance to Kansas City Plant: Mitigation of Polychlorinated Biphenyl Discharges  

SciTech Connect

Soil and storm water discharges from the Department of Energy Kansas City Plant (KCP) contain polychlorinated biphenyls (PCBs) resulting from past spills and discharges. KCP has implemented a range of actions to mitigate the soil contamination and to reduce the measured PCB releases.

Looney, B.B.

2003-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Simulation of water hammer phenomenon in a pumping discharge duct protected by air  

Science Conference Proceedings (OSTI)

Air chamber and free air dispersed throughout the water are two efficient means of protection of a discharge duct from water hammer damages. The paper presents the results regarding the extreme pressures in the discharge duct of a pumping installation, ... Keywords: air chamber, dissolution, free air, pumping installation, water hammer

Anca Constantin; Claudiu Stefan Nitescu

2010-07-01T23:59:59.000Z

322

Optical Investigations of Dust Particles Distribution in RF and DC Discharges  

Science Conference Proceedings (OSTI)

Optical emission spectroscopy is used to study dust particles movement and conditions of a formation of ordered plasma-dust structures in a capacitively coupled RF discharge. 3D binocular diagnostics of plasma-dust structures in dc discharge was made.

Ramazanov, T. S.; Dosbolayev, M. K.; Jumabekov, A. N.; Amangaliyeva, R. Zh. [Al-Farabi Kazakh National University, IETP, 96a Tole Bi St., Almaty 050012 (Kazakhstan); Filatova, I. I.; Azharonok, V. V. [B. I. Stepanov Institute of Physics NAS of Belarus, Nezavisimosti Ave., 68, 220072, Minsk (Belarus)

2008-09-07T23:59:59.000Z

323

Diagnostics of a glow discharge used to produce hydrogenated amorphous silicon films. Final subcontract report  

DOE Green Energy (OSTI)

This report and recent publications cited summarize our measurements of the neutral radicals produced in pure silane discharges, our measurements of the interaction of silane with a growing amorphous silicon surface, qualitative models of discharge neutral radical chemistry, and quantitative models of dc discharge ion chemistry. All radicals of the monosilane and disilane groups have been measured and are reported as a function of discharge parameters, but not yet for the full range of parameters that must be investigated for detailed analysis. Observations of the reaction of SiH/sub 4/ with a hot amorphous silicon surface are given. These are closely related to the dominant discharge film deposition mechanism of SiH/sub 3/ reacting with a hydrogen covered amorphous silicon surface and a surface reaction model is suggested that explains some but not all of our data. The dc discharge model is used to obtain quantitative predictions of the ion species at the cathode surface of a dc discharge. This is compared to observations and used to explain the observations at our laboratory and other laboratories. We conclude that most but not all features of the ion chemistry in dc discharges of pure silane can be relatively well understood from this model.

Gallagher, A.

1984-11-01T23:59:59.000Z

324

Method of inducing differential etch rates in glow discharge produced amorphous silicon  

DOE Patents (OSTI)

A method of inducing differential etch rates in glow discharge produced amorphous silicon by heating a portion of the glow discharge produced amorphous silicon to a temperature of about 365.degree. C. higher than the deposition temperature prior to etching. The etch rate of the exposed amorphous silicon is less than the unheated amorphous silicon.

Staebler, David L. (Lawrenceville, NJ); Zanzucchi, Peter J. (Lawrenceville, NJ)

1980-01-01T23:59:59.000Z

325

Detection of partial discharges by a monopole antenna in insulation oil  

Science Conference Proceedings (OSTI)

This paper dealt with the measurement and analysis of electromagnetic waves generated by partial discharge (PD) in insulation oil to develop insulation diagnostic techniques for oil-immersed transformers. Two types of narrow-band monopole antennas with ... Keywords: electromagnetic wave, insulation diagnosis, insulation oil, monopole antenna, partial discharge (PD), resonant frequency

Chang-Hwan Jin; Jung-Yoon Lee; Dae-Won Park; Gyung-Suk Kil

2012-04-01T23:59:59.000Z

326

Study on CO2 Reforming of CH4 by Dielectric Barrier Discharge  

Science Conference Proceedings (OSTI)

In this article it is demonstrated that DBD (dielectric barrier discharge) is an effective tool to convert CH4 and CO2 to synthesis gas (syngas, H2/CO) at low temperature and ambient pressure. The DBD is performed in the co-axial quartz cube by using ... Keywords: methane, carbon dioxide, syngas, dielectric barrier discharge

Zhao Yuhan

2011-03-01T23:59:59.000Z

327

GRR/Section 15-OR-a - Air Contaminant Discharge Permit | Open Energy  

Open Energy Info (EERE)

5-OR-a - Air Contaminant Discharge Permit 5-OR-a - Air Contaminant Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-OR-a - Air Contaminant Discharge Permit 15ORAAirContaminantDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies ORS Chapter 468a OAR 340-209 OAR 340-216 340-216-0020 (Table 1) Triggers None specified Click "Edit With Form" above to add content 15ORAAirContaminantDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Oregon Department of Environmental Quality (DEQ) regulates air

328

Flow and temperature fields in a free discharge inductively coupled plasma  

SciTech Connect

Computations were made of the flow and temperature fields in an inductively coupled argon plasma at atmospheric pressure under confined and free discharge conditions. The model takes into account gravity effects and swirl in the sheath gas. Natural convection was found to have a negligible effect on the flow and temperature fields under confined discharge conditions but a significant effect for the free discharge. The back flow in the discharge was substantially reduced in the presence of swirl for swirl velocities over the range 0-50 m/s. Also with a mode-rate increase in swirl, the conduction heat flux to the wall decreased but increased with the further increase in swirl. From an overall energy balance point of view, conductive heat flux to the wall of the plasma confinement tube was substantially lower for a free plasma discharge compared to that for a confined plasma.

Gagne, R.; Boulos, M.I.; Barnes, R.M.

1979-01-01T23:59:59.000Z

329

Free-surface flow simulations for discharge-based operation of hydraulic structure gates  

E-Print Network (OSTI)

We combine non-hydrostatic flow simulations of the free surface with a discharge model based on elementary gate flow equations for decision support in operation of hydraulic structure gates. A water level-based gate control used in most of today's general practice does not take into account the fact that gate operation scenarios producing similar total discharged volumes and similar water levels may have different local flow characteristics. Accurate and timely prediction of local flow conditions around hydraulic gates is important for several aspects of structure management: ecology, scour, flow-induced gate vibrations and waterway navigation. The modelling approach is described and tested for a multi-gate sluice structure regulating discharge from a river to the sea. The number of opened gates is varied and the discharge is stabilized with automated control by varying gate openings. The free-surface model was validated for discharge showing a correlation coefficient of 0.994 compared to experimental data. A...

Erdbrink, C D; Sloot, P M A

2012-01-01T23:59:59.000Z

330

GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit  

Open Energy Info (EERE)

GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit 14AKBAlaskaPollutantDischargeEliminationSystemPermit (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 14AKBAlaskaPollutantDischargeEliminationSystemPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

331

On the streamer propagation in methane plasma discharges  

SciTech Connect

The initial stages of formation and propagation of a streamer in methane at atmospheric pressure were studied using a 2-dimensional axial symmetric hydrodynamic model. The model is based on the drift diffusion approximation and exploits electron transport parameters determined using an external Boltzmann equation solver. The resulting system of equations was solved using the finite element methods and integrated in time with an Euler backward algorithm. An approach useful to alleviate the numerical difficulties determined by the steep gradients that appear on the streamer front was developed. It is based on a proper choice of the adaptation algorithm of the integration time step. Three phases in the streamer development could be identified, in agreement with analytical and numerical models reported in the literature: ionization avalanche, streamer, and shielded plasma. The properties of the three phases have been characterized analyzing the evolution in time of the most important variables characterizing the system (ion and electron densities, potential, and electric field). Finally, the influence of some operative parameters, such as inter-electrodic gap, seed electron density, and applied potential, has been investigated in order to determine how it affects the evolution of the micro-discharge, and in particular, the transition from ionization avalanche to streamer.

Ferrara, Carlo; Preda, Marco; Cavallotti, Carlo [Dept. di Chimica, Materiali e Ingegneria chimica 'G. Natta,' Politecnico di Milano, via Mancinelli 7-20131 Milano (Italy)

2012-12-01T23:59:59.000Z

332

Mercury oxidization in dielectric barrier discharge plasma system  

SciTech Connect

The pronounced volatility of elemental mercury (Hg{sup 0}) and some of its compounds, coupled with their extreme toxicity, makes these substances extremely hazardous. Conversion of Hg{sup 0} to HgO would significantly enhance mercury removal from flue gases. This investigation is focused on studying the effect of some of the constituents such as O{sub 2}, H{sub 2}O, CO{sub 2}, and NOx present in flue gases on elemental mercury oxidation in a dielectric barrier discharge (DBD) reactor. The results show that Hg vapors (6 ppbv) in a stream of 0.1% O{sub 2} and N{sub 2} are effectively oxidized at the energy density of up to 114 J/L. Hg conversion of over 80% is achieved when present in a gas mixture of 8% O{sub 2}, 2% H{sub 2}O, and 10% CO{sub 2} in N{sub 2} balance. The presence of NOx enhanced mercury oxidation in the DBD reactor. The oxidation chemistry is discussed. Studies show that Hg can be simultaneously removed along with the other two major pollutants, NOx and SO{sub 2}, in one DBD reactor followed by a wet scrubber system. This avoids the need of three techniques for the removal of major gaseous pollutants from coal-fired power plants.

Chen, Z.Y.; Mannava, D.P.; Mathur, V.K. [University New Hampshire, Durham, NH (United States). Dept. for Chemical Engineering

2006-08-16T23:59:59.000Z

333

The Allen Telescope Array Search for Electrostatic Discharges on Mars  

E-Print Network (OSTI)

The Allen Telescope Array was used to monitor Mars between 9 March and 2 June 2010, over a total of approximately 30 hours, for radio emission indicative of electrostatic discharge. The search was motivated by the report from Ruf et al. (2009) of the detection of non-thermal microwave radiation from Mars characterized by peaks in the power spectrum of the kurtosis, or kurtstrum, at 10 Hz, coinciding with a large dust storm event on 8 June 2006. For these observations, we developed a wideband signal processor at the Center for Astronomy Signal Processing and Electronics Research (CASPER). This 1024-channel spectrometer calculates the accumulated power and power-squared, from which the spectral kurtosis is calculated post-observation. Variations in the kurtosis are indicative of non-Gaussianity in the signal, which can be used to detect variable cosmic signals as well as radio frequency interference (RFI). During the three month period of observations, dust activity occurred on Mars in the form of small-scale d...

Anderson, Marin M; Barott, William C; Bower, Geoffrey C; Delory, Gregory T; de Pater, Imke; Werthimer, Dan

2011-01-01T23:59:59.000Z

334

Zero discharge and large-scale DCS are plant highlights  

Science Conference Proceedings (OSTI)

This article reports that the Mulberry cogeneration facility has several features that make it notable in the power field. A zero-discharge wastewater system, an inlet-air chilling system, a secondary boiler, and an extensive distributed-control system (DCS) for overall plant operation are examples. Ability to meet the two-stage NO{sub x}-emission limits -- 25 ppm during the first three years and 15 ppm thereafter -- is a unique challenge. The plant design allows the lower limit to be met now, and retrofit with different burners is possible if NO{sub x}-emission limits are tightened later. The facility, near Bartow in Polk County, Fla, is owned by Polk Power Partners LP, whose members include Central and South West Energy Inc (CSW) of Dallas and ARK Energy of Laguna Hills, Calif. The operating company, CSW Operations, is a subsidiary of CSW. Heart of the plant is a single gas-turbine (GT)/HRSG/steam-turbine combined cycle, providing electric power to Tampa Electric Co and Florida Power Corp, with up to 25,000 lb/hr of process steam for an adjacent ethanol plant which was developed by the facility`s partnership. Commercial operation of Mulberry began on Sept 2, 1994.

Solar, R.

1995-04-01T23:59:59.000Z

335

510 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 2, FEBRUARY 2009 Self-Discharge Characterization and Modeling  

E-Print Network (OSTI)

capacitor, also referred to as a supercapacitor, is an important factor in de- termining the duration-discharge characterization, self-discharge modeling, supercapacitor. I. INTRODUCTION OVER years, electrochemical capacitors

Paris-Sud XI, Université de

336

Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived  

E-Print Network (OSTI)

) for Hardinge, Ganga. The blue line with plus sign is the river discharge from ENVISAT (QERS/G for 2006

Delcroix, Thierry

337

Wave modeling in a cylindrical non-uniform helicon discharge  

Science Conference Proceedings (OSTI)

A radio frequency field solver based on Maxwell's equations and a cold plasma dielectric tensor is employed to describe wave phenomena observed in a cylindrical non-uniform helicon discharge. The experiment is carried out on a recently built linear plasma-material interaction machine: The magnetized plasma interaction experiment [Blackwell et al., Plasma Sources Sci. Technol. (submitted)], in which both plasma density and static magnetic field are functions of axial position. The field strength increases by a factor of 15 from source to target plate, and the plasma density and electron temperature are radially non-uniform. With an enhancement factor of 9.5 to the electron-ion Coulomb collision frequency, a 12% reduction in the antenna radius, and the same other conditions as employed in the experiment, the solver produces axial and radial profiles of wave amplitude and phase that are consistent with measurements. A numerical study on the effects of axial gradient in plasma density and static magnetic field on wave propagations is performed, revealing that the helicon wave has weaker attenuation away from the antenna in a focused field compared to a uniform field. This may be consistent with observations of increased ionization efficiency and plasma production in a non-uniform field. We find that the relationship between plasma density, static magnetic field strength, and axial wavelength agrees well with a simple theory developed previously. A numerical scan of the enhancement factor to the electron-ion Coulomb collision frequency from 1 to 15 shows that the wave amplitude is lowered and the power deposited into the core plasma decreases as the enhancement factor increases, possibly due to the stronger edge heating for higher collision frequencies.

Chang, L.; Hole, M. J.; Caneses, J. F.; Blackwell, B. D.; Corr, C. S. [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Chen, G. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2012-08-15T23:59:59.000Z

338

Penning discharge ion source with self-cleaning aperture  

DOE Patents (OSTI)

An ion source of the Penning discharge type having a self-cleaning aperture is provided by a second dynode with an exit aperture in a position opposite a first dynode, from which the ions are sputtered, two opposing cathodes, each with an anode for accelerating electrons emitted from the cathodes into a cylindrical space defined by the first and second dynode. A support gas maintained in this space is ionized by the electrons. While the cathodes are supplied with a negative pulse to emit electrons, the first dynode is supplied with a negative pulse (e.g., -300 V) to attract atoms of the ionized gas (plasma). At the same time, the second dynode may also be supplied with a small voltage that is negative with respect to the plasma (e.g., -5 V) for tuning the position of the plasma miniscus for optimum extraction geometry. When the negative pulse to the first dynode is terminated, the second dynode is driven strongly negative (e.g., -600 V) thereby allowing heavy sputtering to take place for a short period to remove virtually all of the atoms deposited on the second dynode from material sputtered off the first dynode. An extractor immediately outside the exit aperture of the second dynode is maintained at ground potential while the anode, dynode, and cathode reference voltage is driven strongly positive (about +20 kV to +30 kV) so that ions accelerated through the aperture will be at ground potential. Material from the first dynode deposited on the second dynode will be sputtered, in time, to add to the ion beam.

Gavin, B.F.; MacGill, R.A.; Thatcher, R.K.

1980-11-10T23:59:59.000Z

339

Penning discharge ion source with self-cleaning aperture  

DOE Patents (OSTI)

An ion source of the Penning discharge type having a self-cleaning aperture is provided by a second dynode (24) with an exit aperture (12) in a position opposite a first dynode 10a, from which the ions are sputtered, two opposing cathodes (14, 16), each with an anode (18, 20) for accelerating electrons emitted from the cathodes into a cylindrical space defined by the first and second dynode. A support gas maintained in this space is ionized by the electrons. While the cathodes are supplied with a negative pulse to emit electrons, the first dynode is supplied with a negative pulse (e.g., -300 V) to attract atoms of the ionized gas (plasma). At the same time, the second dynode may also be supplied with a small voltage that is negative with respect to the plasma (e.g., -5 V) for tuning the position of the plasma miniscus for optimum extraction geometry. When the negative pulse to the first dynode is terminated, the second dynode is driven strongly negative (e.g., -600 V) thereby allowing heavy sputtering to take place for a short period to remove virtually all of the atoms deposited on the second dynode from material sputtered off the first dynode. An extractor (22) immediately outside the exit aperture of the second dynode is maintained at ground potential during this entire period of sputtering while the anode, dynode and cathode reference voltage is driven strongly positive (about +20 kV to +30 kV) so that ions accelerated through the aperture will be at ground potential. In that manner, material from the first dynode deposited on the second dynode will be sputtered, in time, to add to the ion beam. Atoms sputtered from the second dynode which do not become ionized and exit through the slit will be redeposited on the first dynode, and hence recycled for further ion beam generation during subsequent operating cycles.

Gavin, Basil F. (Berkeley, CA); MacGill, Robert A. (Richmond, CA); Thatcher, Raymond K. (El Cerrito, CA)

1982-01-01T23:59:59.000Z

340

Comment on Origin of Groundwater Discharge at Fall River Springs  

SciTech Connect

I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flank of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed that the large volume cold springs associated with the Cascade Volcanoes commonly contain dissolved CO{sub 2} that originated from the volcanoes. This volcanic CO{sub 2} component is readily identified from carbon-14 measurements of the water. Carbon-14 analyses of the Fall River samples indicate that at least 27% of the dissolved inorganic carbon in the springs was derived from a volcanic CO{sub 2} source. Such a large volcanic CO{sub 2} flux requires that the groundwater supplying flow to the Fall River Springs must originate from a volcano where magma degassing is actively occurring. Given the hydrogeologic configuration of the Fall River aquifer system, it appears that the Medicine Lake Volcano is the only likely source of the volcanic CO{sub 2}. These data independently confirm the Medicine Lake highlands as a significant recharge source for the Fall River Springs. Moreover, these data indicate that groundwater recharge occurring on Medicine Lake Volcano must interact with a CO{sub 2} volatile phase derived from the geothermal system beneath the volcano. The lack of hot springs on Medicine Lake Volcano suggests that the geothermal system underlying the volcano is relatively tightly sealed. Nevertheless, it is probable that the geothermal fluid originates from precipitation falling on the volcanic edifice. This is the same water that supplies an important fraction of the Fall River Spring discharge. The source of the geothermal fluid can be evaluated using stable isotopes. The oxygen isotope signature of the geothermal fluid may have been modified by high temperature oxygen isotope exchange with the surrounding rock, but the hydrogen isotope signature should still be diagnostic of the origin of the fluid. Although the geothermal system appears to be largely decoupled from the shallow groundwater system that supplies the Fall River Springs, it is uncertain what impact the development of the geothermal system as an energy resource would have on groundwater circulation patterns on the volcano. Given the importance of the Fall River Springs as a water resource for the

Rose, T

2006-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Comment on Origin of Groundwater Discharge at Fall River Springs  

Science Conference Proceedings (OSTI)

I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flank of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed that the large volume cold springs associated with the Cascade Volcanoes commonly contain dissolved CO{sub 2} that originated from the volcanoes. This volcanic CO{sub 2} component is readily identified from carbon-14 measurements of the water. Carbon-14 analyses of the Fall River samples indicate that at least 27% of the dissolved inorganic carbon in the springs was derived from a volcanic CO{sub 2} source. Such a large volcanic CO{sub 2} flux requires that the groundwater supplying flow to the Fall River Springs must originate from a volcano where magma degassing is actively occurring. Given the hydrogeologic configuration of the Fall River aquifer system, it appears that the Medicine Lake Volcano is the only likely source of the volcanic CO{sub 2}. These data independently confirm the Medicine Lake highlands as a significant recharge source for the Fall River Springs. Moreover, these data indicate that groundwater recharge occurring on Medicine Lake Volcano must interact with a CO{sub 2} volatile phase derived from the geothermal system beneath the volcano. The lack of hot springs on Medicine Lake Volcano suggests that the geothermal system underlying the volcano is relatively tightly sealed. Nevertheless, it is probable that the geothermal fluid originates from precipitation falling on the volcanic edifice. This is the same water that supplies an important fraction of the Fall River Spring discharge. The source of the geothermal fluid can be evaluated using stable isotopes. The oxygen isotope signature of the geothermal fluid may have been modified by high temperature oxygen isotope exchange with the surrounding rock, but the hydrogen isotope signature should still be diagnostic of the origin of the fluid. Although the geothermal system appears to be largely decoupled from the shallow groundwater system that supplies the Fall River Springs, it is uncertain what impact the development of the geothermal system as an energy resource would have on groundwater circulation patterns on the volcano. Given the importance of the Fall River Springs as a water resource for the

Rose, T

2006-10-20T23:59:59.000Z

342

XeCl avalanche discharge laser employing Ar as a diluent  

DOE Patents (OSTI)

A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: 0.2 to 0.4% chlorine donor/2.5% to 10% Xe/97.3% to 89.6% Ar) is provided. The chlorine donor normally comprises HCl but can also comprise CCl/sub 4/ BCl/sub 3/. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

Sze, R.C.

1979-10-10T23:59:59.000Z

343

XeCl Avalanche discharge laser employing Ar as a diluent  

DOE Patents (OSTI)

A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

Sze, Robert C. (Santa Fe, NM)

1981-01-01T23:59:59.000Z

344

Application of self organizing map approach to partial discharge pattern recognition of cast-resin current transformers  

Science Conference Proceedings (OSTI)

Partial discharge (PD) measurement and recognition is a significant tool for potential failure diagnosis of a power transformer. This paper proposes the application of self organizing map (SOM) approach to recognize partial discharge patterns of cast-resin ... Keywords: cast-resin current transformer, partial discharge, pattern recognition, self organizing map

Wen-Yeau Chang; Hong-Tzer Yang

2008-03-01T23:59:59.000Z

345

Incan-  

Gasoline and Diesel Fuel Update (EIA)

Area Only Floorspace (million square feet) Incan- descent Standard Fluor- escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings* ......

346

The Sensitivity of Simulated River Discharge to Land Surface Representation and Meteorological Forcings  

Science Conference Proceedings (OSTI)

The discharge of freshwater into oceans represents a fundamental process in the global climate system, and this flux is taken into account in simulations with general circulation models (GCMs). Moreover, the availability of realistic river ...

Stefano Materia; Paul A. Dirmeyer; Zhichang Guo; Andrea Alessandri; Antonio Navarra

2010-04-01T23:59:59.000Z

347

Discharge characteristics and dynamics of compressive plasma streams generated by a compact magnetoplasma compressor  

SciTech Connect

Results from experimental studies of a compact magnetoplasma compressor designed for operation with heavy gases are presented. The integral characteristics of the discharge and the energy contents and other parameters of the generated xenon plasma streams are determined.

Garkusha, I. E.; Tereshin, V. I.; Chebotarev, V. V.; Solyakov, D. G.; Petrov, Yu. V.; Ladygina, M. S.; Marchenko, A. K.; Staltsov, V. V.; Yelisyeyev, D. V. [National Academy of Sciences of Ukraine, Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology,' (Ukraine)

2011-11-15T23:59:59.000Z

348

Seasonal dynamics in costal aquifers : investigation of submarine groundwater discharge through field measurements and numerical models  

E-Print Network (OSTI)

The fresh and saline groundwater flowing from coastal aquifers into the ocean comprise submarine groundwater discharge (SGD). This outflow is an important pathway for the transport of nutrients and contaminants, and has ...

Michael, Holly Anne, 1976-

2005-01-01T23:59:59.000Z

349

Constructed Wetland Treatment Systems for the Remediation of Metal-Bearing Aqueous Discharges  

Science Conference Proceedings (OSTI)

Constructed wetland treatment systems potentially offer utilities an effective, relatively low-cost option for treating aqueous discharges that contain metals. This report provides a ready source of information on these systems and their use within the electric utility industry.

1995-10-05T23:59:59.000Z

350

Suppression of Phase Separation in LiFePO 4 Nanoparticles During Battery Discharge  

E-Print Network (OSTI)

Using a novel electrochemical phase-field model, we question the common belief that LiXFePO? nanoparticles always separate into Li-rich and Li-poor phases during battery discharge. For small currents, spinodal decomposition ...

Bai, Peng

351

Produced water discharges to the Gulf of Mexico: Background information for ecological risk assessments  

Science Conference Proceedings (OSTI)

This report reviews ecological risk assessment concepts and methods; describes important biological resources in the Gulf of Mexico of potential concern for produced water impacts; and summarizes data available to estimate exposure and effects of produced water discharges. The emphasis is on data relating to produced water discharges in the central and western Gulf of Mexico, especially in Louisiana. Much of the summarized data and cited literature are relevant to assessments of impacts in other regions. Data describing effects on marine and estuarine fishes, mollusks, crustaceans and benthic invertebrates are emphasized. This review is part of a series of studies of the health and ecological risks from discharges of produced water to the Gulf of Mexico. These assessments will provide input to regulators in the development of guidelines and permits, and to industry in the use of appropriate discharge practices.

Meinhold, A.F.; Holtzman, S.; DePhillips, M.P.

1996-06-01T23:59:59.000Z

352

A radiocarbon method and multi-tracer approach to quantifying groundwater discharge to coastal waters  

E-Print Network (OSTI)

Groundwater discharge into estuaries and the coastal ocean is an important mechanism for the transport of dissolved chemical species to coastal waters. Because many dissolved species are present in groundwater in concentrations ...

Gramling, Carolyn M

2003-01-01T23:59:59.000Z

353

Forecasting Annual Discharge of River Murray, Australia, from a Geophysical Model of ENSO  

Science Conference Proceedings (OSTI)

Annual discharge (Q) in the largest river system in Australia, the River Murray (including the extensive tributary network of the Darling River), is often inversely related to sea surface temperature (SST) anomalies in the eastern equatorial ...

H. J. Simpson; M. A. Cane; S. K. Lin; S. E. Zebiak; A. L. Herczeg

1993-02-01T23:59:59.000Z

354

Climate–Carbon Cycle Model Response to Freshwater Discharge into the North Atlantic  

Science Conference Proceedings (OSTI)

The response of a coupled climate–carbon cycle model to discharge of freshwater into the North Atlantic is investigated with regard to cold reversals caused by meltwater from northern continental ice sheets such as the Younger Dryas during the ...

Atsushi Obata

2007-12-01T23:59:59.000Z

355

Effect of energetic electrons on dust charging in hot cathode filament discharge  

Science Conference Proceedings (OSTI)

The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur 782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

2011-03-15T23:59:59.000Z

356

Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations  

SciTech Connect

The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of three terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. The products of the effort will be a series of technical reports detailing the study procedures, results, and conclusions which contribute to the transfer of technology to the scientific community, petroleum industry, and state and federal agencies.

Gettleson, David A

1999-10-28T23:59:59.000Z

357

GRR/Elements/18-CA-c.10 - Draft Waste Discharge Permit | Open...  

Open Energy Info (EERE)

0 - Draft Waste Discharge Permit < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 18-CA-c.10 -...

358

The corollary discharge in humans is related to synchronous neural oscillations  

Science Conference Proceedings (OSTI)

How do animals distinguish between sensations coming from external sources and those resulting from their own actions? A corollary discharge system has evolved that involves the transmission of a copy of motor commands to sensory cortex, where the expected ...

Chi-Ming A. Chen; Daniel H. Mathalon; Brian J. Roach; Idil Cavus; Dennis D. Spencer; Judith M. Ford

2011-10-01T23:59:59.000Z

359

Discharge Characteristics and Changes over the Ob River Watershed in Siberia  

Science Conference Proceedings (OSTI)

This study analyzes long-term (1936–90) monthly streamflow records for the major subbasins within the Ob River watershed in order to examine discharge changes induced by human activities (particularly reservoirs and agricultural activities) and ...

Daqing Yang; Baisheng Ye; Alexander Shiklomanov

2004-08-01T23:59:59.000Z

360

Why Does the Amazon Water Flow to the North after Its Discharge?  

Science Conference Proceedings (OSTI)

Through a simple model, it is demonstrated that earth's sphericity (the beta effect) imposes a severe constraint on the discharge pattern near the equator. Using either bottom or lateral friction to counter the beta effect in the vorticity ...

Hsien Wang Ou

1989-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Binary and ternary gas mixtures for use in glow discharge closing switches  

SciTech Connect

Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

Hunter, Scott R. (Oak Ridge, TN); Christophorou, Loucas G. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

362

Dissociative excitation as the source of neutral atoms in hydrogen discharges  

DOE Green Energy (OSTI)

Electron impact dissociative excitation of H/sub 2/ molecules is identified as the origin of the narrow width and structure of Balmer lines observed in various low density hydrogen discharges. On the basis of this data and estimates of the rates of competing processes in plasmas, dissociative excitation, together with other molecular reactions, is proposed as the source of neutral atoms and protons in these discharges.

McNeill, D.H.

1980-01-01T23:59:59.000Z

363

Generator On-Line Monitoring and Condition Assessment, Partial Discharge and Electromagnetic Interference  

Science Conference Proceedings (OSTI)

On-line partial discharge (PD) and electromagnetic interference (EMI) analysis systems have been promoted as a means to assess the condition of turbine-driven generator stator winding insulation systems. Although PD is a time-domain measurement and EMI measures activity with a frequency scan, both techniques still evaluate the same phenomenon -- high-frequency currents that flow as a result of electrical (partial) discharges occurring within the structure. This report documents EPRI's ongoing initiative ...

2004-09-10T23:59:59.000Z

364

Field Guide: Daytime Discharge Inspection of Transmission and Distribution Overhead Lines and Substations – Guide with Video  

Science Conference Proceedings (OSTI)

This EPRI visual guide, one of a series of field guides designed to support inspection and assessment of transmission components, is devoted to the subject of daytime discharge inspection. Although technology for viewing corona and arcing discharges during the day has been available for a number of years, it can be rather difficult to interpret the images produced by this technology. This systematically organized document was prepared to help overcome some of these difficulties. It is intended for ...

2013-01-31T23:59:59.000Z

365

Development of quantitative techniques for the study of discharge events during plasma electrolytic oxidation processes  

E-Print Network (OSTI)

of the substrate thickens by a process similar to conventional anodising. The voltage rises rapidly as the oxide layer thickens, and once the applied potential difference has reached several hundred volts, electrical breakdowns of the growing oxide begin... . Probability distributions of apparent discharge lifetimes were presented for three values of the applied volt- age, each corresponding to a later time during processing. The discharge apparent lifetimes were reported as ? 35? 100 ms at 300 V, ? 35? 260 ms...

Dunleavy, Christopher Squire

2010-10-12T23:59:59.000Z

366

Estimating Total Discharge in the Yangtze River Basin Using Satellite-Based Observations  

E-Print Network (OSTI)

Abstract: The measurement of total basin discharge along coastal regions is necessary for understanding the hydrological and oceanographic issues related to the water and energy cycles. However, only the observed streamflow (gauge-based observation) is used to estimate the total fluxes from the river basin to the ocean, neglecting the portion of discharge that infiltrates to underground and directly discharges into the ocean. Hence, the aim of this study is to assess the total discharge of the Yangtze River (Chang Jiang) basin. In this study, we explore the potential response of total discharge to changes in precipitation (from the Tropical Rainfall Measuring Mission—TRMM), evaporation (from four versions of the Global Land Data Assimilation—GLDAS, namely, CLM, Mosaic, Noah and VIC), and water-storage changes (from the Gravity Recovery and Climate Experiment—GRACE) by using the terrestrial water budget method. This method has been validated by comparison with the observed streamflow, and shows an agreement with a root mean square error (RMSE) of 14.30 mm/month for GRACE-based discharge and 20.98 mm/month for that derived from precipitation minus evaporation (P ? E). This improvement of approximately 32 % indicates that monthly terrestrial water-storage

Vagner G. Ferreira; Zheng Gong; Xiufeng He; Yonglei Zhang; Samuel A. Andam-akorful

2013-01-01T23:59:59.000Z

367

Studies on the Electrical Characteristics of a DC Glow Discharge by Using Langmuir Probe  

Science Conference Proceedings (OSTI)

Electrical characteristics of a DC glow discharge are studied with the aim of determining the suitable parameters for stable operation of the dusty plasma system. The presence of dust particles in plasma significantly alters the charged particle equilibrium in the plasma and leads to various phenomena. Argon plasma produced by DC glow discharge is investigated with a further goal of studying dusty plasma phenomena. The discharge system has two disc?shaped parallel plate electrodes. The electrodes are enclosed in a large cylindrical stainless steel chamber filled with argon gas. Two important physical parameters affecting the condition of the discharge are the gas pressure and the inter?electrode distance. A single Langmuir probe based on the Keithley source meter is used to determine the electron temperature of the positive column. A custom designed probe is employed to determine the potential distribution between the electrodes during the discharge. The I–V characteristic curve and the Langmuir probe measurement are then used to determine the electron energy distribution of the glow discharge plasma.

S. S. Safaai; Physics Department, Faculty of Science, University Technology Malaysia; S. L. Yap; P. W. Smith; University of Oxford, UK; C. S. Wong; S. V. Muniandy

2010-01-01T23:59:59.000Z

368

GRR/Elements/18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge Waste to  

Open Energy Info (EERE)

GRR/Elements/18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge Waste to GRR/Elements/18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge Waste to Land in a Diffused Manner or Affect Groundwater Quality < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge Waste to Land in a Diffused Manner or Affect Groundwater Quality If waste is discharged to land in a diffused manner, such as that it causes soil erosion or the discharge affects groundwater, the developer must file a Report of Waste Discharge application (Form 200) and the necessary supplemental information with the appropriate Regional Water Quality Control Board (RWQCB) at least 120 days before beginning to discharge waste. Logic Chain No Parents

369

PROJECT: Piezoelectric Igniter for s-2008-088 / p-2008-082  

E-Print Network (OSTI)

in many places such as stadiums and sport arenas, large parks cars headlights and many more. The structure of a HID lamp is of an electric arch passing between two electrodes housed inside a transparent quartz tube that can be filled with various gas compounds. A discharge of an electric current through the arch causes

370

The time dependent resistance and inductance of the electric discharges in pulsed gas lasers  

SciTech Connect

A method of finding the time dependent resistances and inductances in the discharges in pulsed gas lasers is described in this work. According to this method the waveforms of the laser circuit voltages are digitized and their first and second derivatives are calculated. There are substituted into the differential equations governing the behavior of the system and relationships among the resistances and inductances are formed for every time. Using relationships from a sequence of four very closed adjacent time instants and considering that during this short time interval the resistances and inductances are varied linearly, their values can be found for this particular time interval. Repeating the same procedure for other time intervals and scanning the entire time region of the discharge, the time histories of the resistances and inductances of the discharges are revealed. These show strong variations in the formation phase of the discharge (first 50 nsec). Specifically the resistances drop rapidly (first 10 nsec) from very high values to low values, while the inductances increase to high values and subsequently decrease, forming an abrupt high peak. The steep drop of the resistances is due to the electron avalanche multiplication, while the peak of the inductances is due to the centripetal magnetic forces (Laplace forces), which cause a temporary constriction of the plasma. In the main phase of the discharge the resistances present a damping oscillation with the same frequency as the voltages, while the inductances present light fluctuations around constant values.

Persephonis, P.; Giannetas, V.; Ioannou, A.; Parthenios, J.; Georgiades, C. [Univ. of Patras, Patra (Greece). Dept. of Physics

1995-10-01T23:59:59.000Z

371

Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures  

Science Conference Proceedings (OSTI)

A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to H{alpha} at 656.3 nm implied an electron density and gas temperature of 2 x 10{sup 14} cm{sup -3} and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and H{alpha} intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e{sup -}{yields} O + H + e{sup -}.

Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K. [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan)

2011-10-01T23:59:59.000Z

372

Development of large volume double ring penning plasma discharge source for efficient light emissions  

Science Conference Proceedings (OSTI)

In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd{sub 2}Fe{sub 14}B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of {approx}0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is {approx}2 Multiplication-Sign 10{sup 11} cm{sup -3}, which is around one order of magnitude larger than that of single ring arrangement.

Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan [Microwave Tubes Division, CSIR-Central Electronics and Engineering Research Institute, Pilani-333031 (India); Chowdhuri, Malay Bikas; Manchanda, Ranjana [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)

2012-12-15T23:59:59.000Z

373

A Catalyst Wire-feed Arc Discharge for Synthesis of Carbon Nanotubes and  

NLE Websites -- All DOE Office Websites (Extended Search)

A Catalyst Wire-feed Arc Discharge for Synthesis of Carbon Nanotubes and A Catalyst Wire-feed Arc Discharge for Synthesis of Carbon Nanotubes and Graphene Particles This invention pertains to a highly effective arc-based synthesis of single wall carbon nanotubes and graphene particles using catalysts in the form of wires made from ion group alloys instead of commonly used catalyst powders. The catalyst wire can be introduced into the discharge either from the anode or cathode regions or into the inter-electrode gap. The catalyst introduction can be done automatically and controlled using feedback based on the ablation of the graphite electrode. To maintain simplicity and attractiveness for industrial applications, it is desirable that the catalyst composition be contained in a single wire alloy. No.: M-808 Inventor(s): Yevgeny Raitses

374

Effects of the roughness characteristics on the wire tool surface for the electrical discharge machining properties  

Science Conference Proceedings (OSTI)

Wire electrical discharge machining (WEDM) has been investigated to obtain the better discharge machining properties of the removal rate and the surface roughness in a few decades. Recently, it revealed that the rough tool electrodes can improve the WEDM properties for some sort of materials. In this study, the rough wire electrodes using a wet blasting method was developed and evaluated the machining performance for the insulated Si{sub 3}N{sub 4} in the WEDM processes. As the results, it could not recognize the advantage of roughness wire electrode under the high-energy condition, but it found that the electro-conductive layer thickness became thinner in comparison with those of normal wires. On the contrary, it could be obtained the better surface roughness in the low energy condition. It was supposed that the roughed wire surface generates the homogeneous dispersion discharges on the workpiece.

Fukuzawa, Yasushi; Yamashita, Masahide; Mamuro, Hiroaki; Yamashita, Ken [Nagaoka University of Technology, Department of Mechanical Engineering, 1603-1 Kamitomioka-machi, Nagaoka, Niigata, 940-2188 (Japan); Ogata, Masayoshi [Macoho Co., Ltd. 525 Kanawa, Isurugi-machi, Nagaoka, Niigata 940-2032 JAPAN (Japan)

2011-01-17T23:59:59.000Z

375

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents (OSTI)

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2003-04-08T23:59:59.000Z

376

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents (OSTI)

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2002-01-01T23:59:59.000Z

377

Lasing in nitrogen pumped by a runaway-electron-preionised diffuse discharge  

SciTech Connect

UV lasing is studied in nitrogen and the N{sub 2} - SF{sub 6} mixture pumped by a volume discharge initiated by a runaway-electron preionised diffuse discharge (REPDD) produced in an inhomogeneous electric field. It is shown that lasing at a wavelength of 337.1 nm is observed at pressures up to 2.5 atm without any preionisation source. At a pressure of 0.5 atm with the use of blade electrodes and the N{sub 2}:SF{sub 6}=10:1 active medium of length {approx} 6 cm, the output laser energy of {approx} 2 mJ was achieved for the pulse power of 0.55 MW. The REP DD pumping regime is compared with the regime of pumping by a volume discharge produced by a preionisation source. (lasers)

Baksht, E Kh; Burachenko, A G; Tarasenko, Viktor F [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

2009-12-31T23:59:59.000Z

378

Characteristics of produced water discharged to the Gulf of Mexico hypoxiczone.  

Science Conference Proceedings (OSTI)

Each summer, an area of low dissolved oxygen (the hypoxic zone) forms in the shallow nearshore Gulf of Mexico waters from the Mississippi River Delta westward to near the Texas/Louisiana border. Most scientists believe that the leading contributor to the hypoxic zone is input of nutrients (primarily nitrogen and phosphorus compounds) from the Mississippi and Atchafalaya Rivers. The nutrients stimulate growth of phytoplankton. As the phytoplankton subsequently die, they fall to the bottom waters where they are decomposed by microorganisms. The decomposition process consumes oxygen in the bottom waters to create hypoxic conditions. Sources other than the two rivers mentioned above may also contribute significant quantities of oxygen-demanding pollutants. One very visible potential source is the hundreds of offshore oil and gas platforms located within or near the hypoxic zone. Many of these platforms discharge varying volumes of produced water. However, only limited data characterizing oxygen demand and nutrient concentration and loading from offshore produced water discharges have been collected. No comprehensive and coordinated oxygen demand data exist for produced water discharges in the Gulf of Mexico. This report describes the results of a program to sample 50 offshore oil and gas platforms located within the Gulf of Mexico hypoxic zone. The program was conducted in response to a requirement in the U.S. Environmental Protection Agency (EPA) general National Pollutant Discharge Elimination System (NPDES) permit for offshore oil and gas discharges. EPA requested information on the amount of oxygen-demanding substances contained in the produced water discharges. This information is needed as inputs to several water quality models that EPA intends to run to estimate the relative contributions of the produced water discharges to the occurrence of the hypoxic zone. Sixteen platforms were sampled 3 times each at approximately one-month intervals to give an estimate of temporal variability. An additional 34 platforms were sampled one time. The 50 sampled platforms were scattered throughout the hypoxic zone to give an estimate of spatial variability. Each platform was sampled for biochemical oxygen demand (BOD), total organic carbon (TOC), nitrogen (ammonia, nitrate, nitrite, and total Kjeldahl nitrogen [TKN]), and phosphorus (total phosphorus and orthophosphate). In addition to these parameters, each sample was monitored for pH, conductivity, salinity, and temperature. The sampling provided average platform concentrations for each parameter. Table ES-1 shows the mean, median, maximum, and minimum for the sampled parameters. For some of the parameters, the mean is considerably larger than the median, suggesting that one or a few data points are much higher than the rest of the points (outliers). Chapter 4 contains an extensive discussion of outliers and shows how the sample results change if outliers are deleted from consideration. A primary goal of this study is to estimate the mass loading (lb/day) of each of the oxygen-demanding pollutants from the 50 platforms sampled in the study. Loading is calculated by multiplying concentrations by the discharge volume and then by a conversion factor to allow units to match. The loadings calculated in this study of 50 platforms represent a produced water discharge volume of about 176,000 bbl/day. The total amount of produced water generated in the hypoxic zone during the year 2003 was estimated as 508,000 bbl/day. This volume is based on reports by operators to the Minerals Management Service each year. It reflects the volume of produced water that is generated from each lease, not the volume that is discharged from each platform. The mass loadings from offshore oil and gas discharges to the entire hypoxic zone were estimated by multiplying the 50-platform loadings by the ratio of total water generated to 50-platform discharge volume. The loadings estimated for the 50 platforms and for the entire hypoxic zone are shown in Table ES-2. These estimates and the sampling data from 50 platfo

Veil, J. A.; Kimmell, T. A.; Rechner, A. C.

2005-08-24T23:59:59.000Z

379

Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge  

Science Conference Proceedings (OSTI)

Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generated by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.

Nishihara, M.; Takashima, K.; Rich, J. W.; Adamovich, I. V. [Michael A. Chaszeyka Nonequilibrium Thermodynamics Laboratories, Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

2011-06-15T23:59:59.000Z

380

Plasma Kinetics in Electrical Discharge in Mixture of Air, Water and Ethanol Vapors for Hydrogen Enriched Syngas Production  

E-Print Network (OSTI)

The complex theoretical and experimental investigation of plasma kinetics of the electric discharge in the mixture of air and ethanol-water vapors is carried out. The discharge was burning in the cavity, formed by air jets pumping between electrodes, placed in aqueous ethanol solution. It is found out that the hydrogen yield from the discharge is maximal in the case when ethanol and water in the solution are in equal amounts. It is shown that the hydrogen production increases with the discharge power and reaches the saturation at high value. The concentrations of the main stable gas-phase components, measured experimentally and calculated numerically, agree well in the most cases.

Shchedrin, A I; Ryabtsev, A V; Chernyak, V Ya; Yukhymenko, V V; Olszewski, S V; Naumov, V V; Prysiazhnevych, I V; Solomenko, E V; Demchina, V P; Kudryavtsev, V S

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Binary and ternary gas mixtures for use in glow discharge closing switches  

Science Conference Proceedings (OSTI)

Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

Hunter, S.R.; Christophorou, L.G.

1988-04-27T23:59:59.000Z

382

Transverse-type laser assembly using induced electrical discharge excitation and method  

DOE Patents (OSTI)

A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase.

Ault, Earl R. (Livermore, CA)

1994-01-01T23:59:59.000Z

383

Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use  

SciTech Connect

This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. Anthropogenic heat discharge was estimated based on a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. Building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/ Energy Information Administration survey data, Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data.

Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

2012-01-01T23:59:59.000Z

384

Transverse-type laser assembly using induced electrical discharge excitation and method  

DOE Patents (OSTI)

A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase. 3 figures.

Ault, E.R.

1994-04-19T23:59:59.000Z

385

Method and apparatus for debris mitigation for an electrical discharge source  

DOE Patents (OSTI)

Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.

Klebanoff, Leonard E. (San Clemente, CA); Rader, Daniel J. (Albuquerque, NM); Silfvast, William T. (Helena, CA)

2006-01-24T23:59:59.000Z

386

Metod And Apparatus For Debris Mitigation For An Electrical Discharge Source  

DOE Patents (OSTI)

Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.

Klebanoff, Leonard E. (San Clemente, CA); Silfvast, William T. (St. Helena, CA); Rader, Daniel J. (Albuquerque, NM)

2005-05-03T23:59:59.000Z

387

Anomalous Discharge Product Distribution in Lithium-Air Cathodes: A Three Dimensional View  

SciTech Connect

Using neutron tomographic imaging we report for the first time three dimensional spatial distribution of lithium product distribution in electrochemically discharged Lithium-Air cathodes. Neutron imaging finds a non-uniform lithium product distribution across the electrode thickness; the lithium species concentration being higher near the edges of the Li-air electrode and relatively uniform in the center of the electrode. The experimental neutron images were analyzed in context of results obtained from 3D modeling of the spatial lithium product distribution using a kinetically coupled diffusion based transport model that accounts for the dynamical reaction rate dependence on the discharge product formation, porosity changes and mass transfer.

Nanda, Jagjit [ORNL; Allu, Srikanth [ORNL; Bilheux, Hassina Z [ORNL; Dudney, Nancy J [ORNL; Pannala, Sreekanth [ORNL; Veith, Gabriel M [ORNL; Voisin, Sophie [ORNL; Walker, Lakeisha MH [ORNL; Archibald, Richard K [ORNL

2012-01-01T23:59:59.000Z

388

Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges  

Science Conference Proceedings (OSTI)

We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V{sub dc}/V{sub pp} ratio becomes a minimum.

Kwon, Deuk-Chul; Yoon, Jung-Sik [Convergence Plasma Research Center, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

2011-07-15T23:59:59.000Z

389

Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters  

Science Conference Proceedings (OSTI)

This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

Continental Shelf Associates, Inc.

1999-08-16T23:59:59.000Z

390

The discharge condition to enhance electron density of capacitively coupled plasma with multi-holed electrode  

Science Conference Proceedings (OSTI)

The multi-holed electrode that has been reported to enhance the electron density of the capacitively coupled plasma is now being adopted to speed up the processes. However, the discharge condition when the multi-holed electrode enhances the electron density of the discharge at fixed power is not studied. At low pressure, the multi-holed electrode increased the electron density of the plasma at fixed power. However, the multi-holed electrode is experimentally revealed to lower the electron density at high pressure. In this paper, the different roles of the multi-holed electrode are experimentally studied.

Lee, Hun Su [Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do, 565-902 (Korea, Republic of); Lee, Yun Seong; Chang, Hong Young [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

2012-09-15T23:59:59.000Z

391

The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries  

E-Print Network (OSTI)

This study revealed the strong influence of carbon, Au/C, and Pt/C catalysts on the charge and discharge voltages of rechargeable Li–O[subscript 2] batteries. Li–O[subscript 2] single-cell measurements showed that Au/C had ...

Gasteiger, Hubert A.

392

Spatially hybrid computations for streamer discharges with generic features of pulled fronts: I. Planar fronts  

Science Conference Proceedings (OSTI)

Streamers are the first stage of sparks and lightning; they grow due to a strongly enhanced electric field at their tips; this field is created by a thin curved space charge layer. These multiple scales are already challenging when the electrons are ... Keywords: 52.65.Kj, 52.80.Pi, Hybrid model, Large deviations, Pulled fronts, Streamer discharge

Chao Li; Ute Ebert; Willem Hundsdorfer

2010-01-01T23:59:59.000Z

393

Stream Discharge in Tropical Headwater Catchments as a Result of Forest Clearing and Soil Degradation  

Science Conference Proceedings (OSTI)

Tropical Africa is affected by intense land-use change, particularly forest conversion to agricultural land. In this study, the stream discharge of four small headwater catchments located within an area of 6 km2 in western Kenya was examined for 2 ...

John W. Recha; Johannes Lehmann; M. Todd Walter; Alice Pell; Louis Verchot; Mark Johnson

2012-12-01T23:59:59.000Z

394

Optimization of Construction Discharge Rate and Proppant Slugs for Preventing Complex Fractures  

Science Conference Proceedings (OSTI)

For volcanic rock and fracture type reservoir, etc, steering fractures, branching fractures and their combined herringbone fractures are usually caused by hydraulic fracturing. The generation of these complex fractures is one of the crucial factors that ... Keywords: hydraulic fracturing, construction discharge rate, complex fractures, proppant slug, optimization

Dali Guo; Yang Lin; Yong Ji; Jiangwen Xu; Guobin Wang

2011-10-01T23:59:59.000Z

395

Formation of Self-Organized Anode Patterns in Arc Discharge Simulations  

E-Print Network (OSTI)

Pattern formation and self-organization are phenomena commonly observed experimentally in diverse types of plasma systems, including atmospheric-pressure electric arc discharges. However, numerical simulations reproducing anode pattern formation in arc discharges have proven exceedingly elusive. Time-dependent three-dimensional thermodynamic nonequilibrium simulations reveal the spontaneous formation of self-organized patterns of anode attachment spots in the free-burning arc, a canonical thermal plasma flow established by a constant DC current between an axi-symmetric electrodes configuration in the absence of external forcing. The number of spots, their size, and distribution within the pattern depend on the applied total current and on the resolution of the spatial discretization, whereas the main properties of the plasma flow, such as maximum temperatures, velocity, and voltage drop, depend only on the former. The sensibility of the solution to the spatial discretization stresses the computational requirements for comprehensive arc discharge simulations. The obtained anode patterns qualitatively agree with experimental observations and confirm that the spots originate at the fringes of the arc - anode attachment. The results imply that heavy-species - electron energy equilibration, in addition to thermal instability, has a dominant role in the formation of anode spots in arc discharges.

Juan Pablo Trelles

2012-12-31T23:59:59.000Z

396

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problemSynthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K

Mallinson, Richard

397

Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor  

E-Print Network (OSTI)

Significant amounts of these reserves are located in remote areas. Steam reforming to synthesis gasProduction of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge, Room T 335, Norman, Oklahoma 73019 This study on the partial oxidation of methane in a silent electric

Mallinson, Richard

398

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge  

E-Print Network (OSTI)

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge and steam reforming has a benefit in terms of balancing the heat load. Methane conversions can be achieved

Mallinson, Richard

399

Dynamics of the ion flow in a discharge with crossed E and H fields  

SciTech Connect

The experimental and theoretical results of the investigation of an ion flow in a low-pressure discharge in crossed E and H fields are presented. It is shown that two quasi-stationary current states can be realized in a transonic collisionless flow of ions in a cold plasma.

Movsesyants, Yu. B., E-mail: yumovsesyants@gmail.com; Tyuryukanov, P. M. [All-Russian Electrotechnical Institute (Russian Federation)

2011-12-15T23:59:59.000Z

400

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge  

E-Print Network (OSTI)

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

Suo, Zhigang

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Feasibility of cleaning PCB contaminated surfaces using pulsed corona discharges. Final report, FY1997--FY1998  

Science Conference Proceedings (OSTI)

The objective of this study was to investigate the feasibility of using pulsed corona discharges to destroy organic contaminants on surfaces. Pulsed corona discharge technology uses brief pulses of high voltage to generate strong oxidizing chemicals such as hydroxyl radical and ozone. These chemical species, in aqueous solution, can mineralize organic contaminants in solution or on the surface of solids. The target organic contaminants for this study were polychlorinated biphenyls (PCB) found on parts removed from Navy ships being recycled. Initial studies were performed using phenol as a surrogate for PCBs. Following successful degradation of phenol, degradation of a chlorinated phenol, and finally a chlorinated biphenyl would be studied. The author found no conclusive evidence that pulsed streaming corona discharges significantly degrade phenol. The reason for this is that the experimental procedure did not generate significant amounts of either ozone or hydrogen peroxide. Other investigators have found that up to 25 percent of phenol can be converted into catechol and resorcinol by the pulsed streaming corona discharge process. Catechol and resorcinol are classified as hazardous substances. It was recommended that the project be terminated.

Kirts, R.E.

1999-03-01T23:59:59.000Z

402

Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.  

SciTech Connect

BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, which is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.

Veil, J. A.; Elcock, D.; Gasper, J. R.; Environmental Science Division

2008-06-30T23:59:59.000Z

403

Improving Battery-Efficiency of Embedded Devices by Favorably Discharging only towards  

E-Print Network (OSTI)

Improving Battery-Efficiency of Embedded Devices by Favorably Discharging only towards End always been a major issue for battery- powered mobile or embedded devices such as smart-phones or wireless sensor nodes. Interestingly enough the amount of energy which can be drawn out of a given battery

Wichmann, Felix

404

Summary of Zero Liquid Discharge (ZLD) Water Management Installations at U.S. Power Plants  

Science Conference Proceedings (OSTI)

This report presents an inventory of zero liquid discharge (ZLD) water management systems currently operating at U.S. power generating stations. A total of 146 ZLD operations were identified and described. The report discusses the numerous treatment methods used at these ZLD facilities along with their merits and detractions of each method.

2008-12-12T23:59:59.000Z

405

Characteristics and Trends of River Discharge into Hudson, James, and Ungava Bays, 1964–2000  

Science Conference Proceedings (OSTI)

The characteristics and trends of observed river discharge into the Hudson, James, and Ungava Bays (HJUBs) for the period 1964–2000 are investigated. Forty-two rivers with outlets into these bays contribute on average 714 km3 yr?1 [= 0.023 Sv (1 ...

Stephen J. Déry; Marc Stieglitz; Edward C. McKenna; Eric F. Wood

2005-07-01T23:59:59.000Z

406

Structural properties of dusty plasma in direct current and radio frequency gas discharges  

Science Conference Proceedings (OSTI)

This paper presents radial distribution functions of dust particles obtained experimentally in dc and rf discharges. Pressure and interaction energy of dusty particles were calculated on the basis of these functions. The Langevin dynamics computer simulation for each experiment was performed. The comparisons with computer simulations are made.

Ramazanov, T. S.; Dzhumagulova, K. N.; Jumabekov, A. N.; Dosbolayev, M. K. [Al Farabi Kazakh National University, IETP, Tole bi 96a, Almaty, 050012 (Kazakhstan)

2008-05-15T23:59:59.000Z

407

Electric field measurement in microwave discharge ion thruster with electro-optic probe  

Science Conference Proceedings (OSTI)

In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

Ise, Toshiyuki; Tsukizaki, Ryudo; Koizumi, Hiroyuki [The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Togo, Hiroyoshi [Microsystem Integration Laboratories, Nippon Telegraph and Telephone, Morinosato, Atsugi-shi, Kanagawa 243-0198 (Japan); Kuninaka, Hitoshi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan)

2012-12-15T23:59:59.000Z

408

Impact of Climate Change on River Discharge Projected by Multimodel Ensemble  

Science Conference Proceedings (OSTI)

This study investigates the projections of river discharge for 24 major rivers in the world during the twenty-first century simulated by 19 coupled atmosphere–ocean general circulation models based on the Special Report on Emissions Scenarios A1B ...

Daisuke Nohara; Akio Kitoh; Masahiro Hosaka; Taikan Oki

2006-10-01T23:59:59.000Z

409

The relationship between tibetan snow depth, ENSO, river discharge and the monsoons of Bangladesh  

E-Print Network (OSTI)

The relationship between tibetan snow depth, ENSO, river discharge and the monsoons of Bangladesh, we examine the interannual variability of the monsoon rains of Bangladesh, an area greatly affected of Bengal storm surge. For the twentieth century, we found Bangladesh monsoon rainfall (BMR

410

Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma  

Science Conference Proceedings (OSTI)

Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H. [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Ave. Vicuna Mackenna 4860, Santiago 22 (Chile); Kakati, M. [Thermal Plasma Processed Materials Laboratory, Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402, Assam (India)

2011-10-15T23:59:59.000Z

411

Understanding Controls on Historical River Discharge in the World’s Largest Drainage Basins  

Science Conference Proceedings (OSTI)

Long-term (20 yr) river discharge records from 30 of the world’s largest river basins have been used to characterize surface hydrologic flows in relation to net precipitation inputs, ocean climate teleconnections, and human land/water use ...

Christopher Potter; Pusheng Zhang; Steven Klooster; Vanessa Genovese; Shashi Shekhar; Vipin Kumar

2004-01-01T23:59:59.000Z

412

International Journal of Machine Tools & Manufacture 47 (2007) 22732281 Near dry electrical discharge machining  

E-Print Network (OSTI)

discharge machining C.C. Kao, Jia Tao, Albert J. ShihĂ? Mechanical Engineering, University of Michigan, Ann. The dielectric strength, defined as the maximum electric field strength that the dielectric fluid can withstand and kerosene-based oil are two commonly used dielectric fluids in conventional wet EDM. Dry EDM uses gas

Shih, Albert J.

413

Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.  

SciTech Connect

BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, which is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.

Veil, J. A.; Elcock, D.; Gasper, J. R.; Environmental Science Division

2008-06-30T23:59:59.000Z

414

Field Partial Discharge Measurements on Extruded Dielectric Transmission Cable Systems - State of the Art  

Science Conference Proceedings (OSTI)

This report describes a review of technical literature, Electric Power Research Institute (EPRI) technical reports, and industry guides to determine the current state of the art for field partial discharge (PD) measurements on extruded dielectric transmission cable systems. Emphasis is placed on the interpretation of field PD measurement test results.

2008-03-26T23:59:59.000Z

415

An Accurate Measure of the Instantaneous Discharge Probability, with Application to Unitary Joint-Event Analysis  

Science Conference Proceedings (OSTI)

We present an estimate for the instantaneous discharge probability of a neurone, based on single-trial spike-train analysis. By detecting points where the neurone abruptly changes its firing rate and treating them specially, the method is able to achieve ...

Quentin Pauluis; Stuart N. Baker

2000-03-01T23:59:59.000Z

416

Pulsed operation of a segmented longitudinal discharge CO/sub 2/ laser without ballast impedance  

SciTech Connect

It is shown that a longitudinal CO/sub 2/ laser with two discharge tubes electrically coupled in parallel can be operated in pulsed mode without ballast impedance. This scheme not only yields much higher efficiency (up to 13% at the maximum output energy) and eliminates component failure at high pulse repetition frequency (prf) but also facilitates short pulse availability. In the absence of ballast, current and laser pulse width decrease on increasing the voltage applied to the discharge tubes but these quantities remain unaffected on varying the value of the energy storage capacitor. This enables an independent control of the laser pulse duration and energy. Threshold energy for the onset of nonuniformities in the glow discharge reduces almost exponentially on increasing the discharge current pulse duration but rises on decreasing the operating value of E/N, the electric field to neutral gas density ratio. The maximum output laser energy of about 1 J/pulse, adjustable pulse duration from 30 ..mu..s to about 2 ms, and prf up to 50 Hz have been obtained.

Kukreja, L.M.; Sehgal, S.K.; Chatterjee, U.K.

1985-11-01T23:59:59.000Z

417

Study of Methane Reforming in Warm Non-Equilibrium Plasma Discharges  

E-Print Network (OSTI)

Utilization of natural gas in remote locations necessitates on-site conversion of methane into liquid fuels or high value products. The first step in forming high value products is the production of ethylene and acetylene. Non-thermal plasmas, due to their unique nonequilibrium characteristics, offer advantages over traditional methods of methane reforming. Different kinds of non-thermal plasmas are being investigated for methane reforming. Parameters of these processes like flow rate, discharge size, temperature and other variables determine efficiency of conversion. An efficient process is identified by a high yield and low specific energy of production for the desired product. A study of previous work reveals that higher energy density systems are more efficient for methane conversion to higher hydrocarbons as compared to low energy density systems. Some of the best results were found to be in the regime of warm discharges. Thermal equilibrium studies indicate that higher yields of ethylene are possible with an optimal control of reaction kinetics and fast quenching. With this idea, two different glow discharge reactor systems are designed and constructed for investigation of methane reforming. A counter flow micro plasma discharge system was used to investigate the trends of methane reforming products and the control parameters were optimized to get best possible ethylene yields while minimizing its specific energy. Later a magnetic glow discharge system is used and better results are obtained. Energy costs lower than thermal equilibrium calculations were achieved with magnetic glow discharge systems for both ethylene and acetylene. Yields are obtained from measurements of product concentrations using gas chromatography and power measurements are done using oscilloscope. Energy balance and mass balances are performed for product measurement accuracy and carbon deposition calculations. Carbon deposition is minimized through control of the temperature and residence time conditions in magnetic glow discharges. Ethylene production is observed to have lower specific energies at higher powers and lower flow rates in both reactors. An ethylene selectivity of 40 percent is achieved at an energy cost of 458MJ/Kg and an input energy cost of 5 MJ/Kg of methane.

Parimi, Sreekar

2010-12-01T23:59:59.000Z

418

Robust Heteroscedastic Probabilistic Neural Network for multiple source partial discharge pattern recognition - Significance of outliers on classification capability  

Science Conference Proceedings (OSTI)

Among various insulation diagnostic techniques utilized by researchers and personnel handling power equipment, partial discharge (PD) recognition and analysis has emerged as a vital methodology since it is inherently a non-intrusive testing strategy. ... Keywords: Heteroscedastic Probabilistic Neural Network (HRPNN), Neural network (NN), Partial discharge (PD), Probabilistic Neural Network (PNN), Robust Heteroscedastic Neural Network (RHRPNN)

S. Venkatesh; S. Gopal

2011-09-01T23:59:59.000Z

419

A novel extension neural network based partial discharge pattern recognition method for high-voltage power apparatus  

Science Conference Proceedings (OSTI)

This paper proposes a novel partial discharge (PD) pattern recognition method based on extension neural network (ENN) using fractal features. Five types of defect models are well-designed on the base of investigation of power apparatus failures. A PD ... Keywords: Extension distance, Extension neural network, Fractal feature, Partial discharge, Pattern recognition

Hung-Cheng Chen; Feng-Chang Gu; Meng-Hui Wang

2012-02-01T23:59:59.000Z

420

X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure  

Science Conference Proceedings (OSTI)

This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor; Kostyrya, Igor D. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); Ma Hao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China)

2012-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches  

DOE Patents (OSTI)

An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

Christophorou, L.G.; Hunter, S.R.

1988-06-28T23:59:59.000Z

422

Development of an artificial neural network-based software for prediction of power plant canal water discharge temperature  

Science Conference Proceedings (OSTI)

Power plant cooling water systems that interact with nearby effluents are complex non-linear, large-time-delay systems. A neural network-based software tool was developed for prediction of the canal water discharge temperature at a coal-fired power plant ... Keywords: Canal water thermal discharge, Neural networks, Power plants

Carlos E. Romero; Jiefeng Shan

2005-11-01T23:59:59.000Z

423

The Design of a RapidDischarge Varistor System for the MICE Magnet Circuits  

SciTech Connect

The need for a magnet circuit discharge system, in order to protect the magnet HTS leads during a power failure, has been discussed in recent MICE reports [1], [2]. In order to rapidly discharge a magnet, one has to put enough resistance across the lead. The resistance in this case is varistor that is put across the magnet in the event of a power outage. The resistance consists of several diodes, which act as constant voltage resistors and the resistance of the cables connecting the magnets in the circuit to each other and to the power supply. In order for the rapid discharge system to work without quenching the magnets, the voltage across the magnets must be low enough so that the diodes in the quench protection circuit don't fire and cause the magnet current to bypass the superconducting coils. It is proposed that six rapid discharge varistors be installed across the three magnet circuits the power the tracker solenoids, which are connected in series. The focusing magnets, which are also connected in series would have three varistors (one for each magnet). The coupling magnets would have a varistor for each magnet. The peak voltage that is allowed per varistor depends on the number of quench protection diodes that make up the quench protection circuit for each magnet coil circuit. It is proposed that the varistors be water cooled as the magnet circuits are being discharged through them. The water cooling circuit can be supplied with tap water. The tap water flows only when the varistor temperature reaches a temperature of 45 C.

Green, Michael A.

2008-07-23T23:59:59.000Z

424

Investigation of spark discharge processes and ignition systems for spark-ignited internal combustion engines  

E-Print Network (OSTI)

Spark ignition of the air-fuel mixture at the appropriate time is important for successful flame initiation and complete combustion thereafter without unnecessary emissions. The physical and chemical reactions taking place between the spark plug electrodes during spark delivery determine the intensity of the spark and subsequent flame initiation. The energy of spark and the duration of its delivery are dependent on the ignition system design. The characteristics of the spark plug determine the interaction of the spark with the air-fuel mixture. The compression pressure, combustion chamber temperature and mixture motion at the time of spark generation play a significant role in the flame initiation process. All of these parameters are responsible for the resulting spark discharge and flame initiation process. The objectives of this research include investigation of the different phases of spark discharge and development of a thermodynamic analysis to determine the rate of change of the spark kernel temperature with time during the initial phases of the spark discharge. The effect of spark energy delivery rate, heat transfer losses and mass entrainment on the spark kernel temperature was determined through the thermodynamic analysis. This research also includes an evaluation of the various types of conventional as well as high-energy ignition systems for lean burn engines. An experimental ignition system was constructed to determine the effect of ignition energy, spark plug electrode geometry and gas pressure on the characteristics of the spark discharge. Images of spark discharge were captured through photography using three different types of electrode geometries and also by varying the pressure and by changing the ignition energy using different condensers in the ignition system. Finally, the results of the thermodynamic analysis were compared with the results from the experiment.

Khare, Yogesh Jayant

2000-01-01T23:59:59.000Z

425

Diagnostics of a glow discharge used to produce hydrogenated amorphous silicon films. Final report, April 15, 1982-April 14, 1983  

DOE Green Energy (OSTI)

The amount of silane reacted in a discharge is studied. The dependence of the fraction of reacted silane and the product forms on discharge conditions is studied. Results indicate the criteria for rapid, efficient film deposition, and the discharge and flow conditions that induce major modifications of the gas and probably of the depositing species. The discharge energy efficiency is also obtained as well as silane-use efficiency in pure silane and silane-noble gas mixtures. In-situ film-deposition rate monitors have been developed and used to study deposition as a function of discharge conditions. Further study has concentrated on the discharge ion species and the collisional processes which control the mixture of ion species. It is confirmed that the ion deposition is a relatively small fraction of all silicon deposition in dc discharges. Total electron collisional ionization of silane and disilane were measured, as well as the partial cross sections for producing various product ions. Ion-molecule reactions are also measured. (LEW)

Gallagher, A.; Scott, J.

1982-01-01T23:59:59.000Z

426

PLASMA TREATMENT OF BULK Nb SURFACE IN THE Ar/Cl2 DISCHARGE  

DOE Green Energy (OSTI)

The preparation of the cavity walls has been one of the major challenges in the superconducting radio-frequency (SRF) accelerator technology. Therefore, constant research and development effort is devoted to develop surface preparation processes that will improve roughness and lower the level of impurities, like hydrogen or oxygen, embedded in bulk Nb, having in the same time reasonable etching rates. Plasma based surface modification provides an excellent opportunity to achieve these goals. We present Ar/Cl2 discharge treatment of bulk Nb where we achieved etching rates comparable to the rates obtained with the electropolishing method without introducing impurities in Nb. The current experiments were performed on disk shaped Nb samples, exposed to plasma produced in a microwave discharge system. Surface composition and topology measurements were carried out before and after plasma treatment. Upon determining optimal experimental conditions on disk shaped samples, we will apply the same procedure on the single cell cavities, pursuing improvement of their RF performance.

Marija Raskovic; H. Phillips; Anne-Marie Valente

2008-02-12T23:59:59.000Z

427

Environmental and economic assessment of discharges from Gulf of Mexico Region Oil and Gas Operations  

Science Conference Proceedings (OSTI)

Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) and 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved continued data analysis and report writing. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) was issued as a final report during the previous reporting period. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) activities included the preparation of the final report. There were no Task 7 (Technology Transfer Plan) activities to report. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1997-11-24T23:59:59.000Z

428

Plasma Treatment of Polyethylene Powder Particles in Hollow Cathode Glow Discharge  

Science Conference Proceedings (OSTI)

Polyethylen (PE) is widely used in the production of foils, insulators, packaging materials, plastic bottles etc. Untreated PE is hydrophobic due to its unpolar surface. Therefore, it is hard to print or glue PE and the surface has to be modified before converting.In the present experiments a hollow cathode glow discharge is used as plasma source which is mounted in a spiral conveyor in order to ensure a combines transport of PE powder particles. With this set-up a homogeneous surface treatment of the powder is possible while passing the glow discharge. The plasma treatment causes a remarkable enhancement of the hydrophilicity of the PE powder which can be verified by contact angle measurements and X-ray photoelectron spectroscopy.

Wolter, Matthias; Quitzau, Meike; Bornholdt, Sven; Kersten, Holger [IEAP, University Kiel, Kiel (Germany)

2008-09-07T23:59:59.000Z

429

Plasma Kinetics in the Ethanol/Water/Air Mixture in "Tornado" Type Electrical Discharge  

E-Print Network (OSTI)

This paper presents the results of a theoretical and experimental study of plasma-assisted reforming of ethanol into molecular hydrogen in a new modification of the "tornado" type electrical discharge. Numerical modeling clarifies the nature of the non-thermal conversion and explains the kinetic mechanism of nonequilibrium plasma-chemical transformations in the gas-liquid system and the evolution of hydrogen during the reforming as a function of discharge parameters and ethanol-to-water ratio in the mixture. We also propose a scheme of chemical reactions for plasma kinetics description. It is shown that some characteristics of the investigated reactor are at least not inferior to characteristics of other plasma chemical reactors.

Levko, D; Chernyak, V; Olszewski, S; Nedybaliuk, O

2011-01-01T23:59:59.000Z

430

System and method for altering the tack of materials using an electrohydraulic discharge  

DOE Patents (OSTI)

A system and method for altering the tack of a material, namely a polymer used as an adhesive, also known as stickies, or pitch. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater.

Banerjee, Sujit (Marietta, GA); Corcoran, Howard (Atlanta, GA)

2007-11-13T23:59:59.000Z

431

System and method for altering the tack of materials using an electrohydraulic discharge  

DOE Patents (OSTI)

A system and method for altering the tack of a material, namely a polymer used as an adhesive, also known as stickies, or pitch. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater.

Banerjee, Sujit (Marietta, GA); Corcoran, Howard (Atlanta, GA)

2003-01-01T23:59:59.000Z

432

Modeling discharge requirements for deep geothermal wells at the Cerro Prieto geothermal field, MX  

DOE Green Energy (OSTI)

During the mid-l980's, Comision Federal de Electricidad (CFE) drilled a number of deep wells (M-200 series) at the Cerro Prieto geothermal field, Baja California, Mexico to investigate the continuation of the geothermal reservoir to the east of the Cerro Prieto-II and III production areas. The wells encountered permeability at depths ranging from 2,800 to 4,400 m but due to the reservoir depth and the relatively cold temperatures encountered in the upper 1,000 to 2,000 m of the wells, it was not possible to discharge some of the wells. The wells at Cerro Prieto are generally discharged by injecting compressed air below the water level using 2-3/8-inch tubing installed with either a crane or workover rig. The objective of this technique is to lift sufficient water out of the well to stimulate flow from the reservoir into the wellbore. However, in the case of the M-200 series wells, the temperatures in the upper 1,000 to 2,000 m are generally below 50 C and the heat loss to the formation is therefore significant. The impact of heat loss on the stimulation process was evaluated using both a numerical model of the reservoir/wellbore system and steady-state wellbore modeling. The results from the study indicate that if a flow rate of at least 300 liters/minute can be sustained, the well can probably be successfully stimulated. This is consistent with the flow rates obtained during the successful stimulations of wells M-202 and M-203. If the flow rate is closer to 60 liters/minute, the heat loss is significant and it is unlikely that the well can be successfully discharged. These results are consistent with the unsuccessful discharge attempts in wells M-201 and M-205.

Menzies, Anthony J.; Granados, Eduardo E.; Puente, Hector Gutierrez; Pierres, Luis Ortega

1995-01-26T23:59:59.000Z

433

Surface-discharging hydrothermal systems at Yucca Mountain: Examining the evidence  

DOE Green Energy (OSTI)

This paper discusses exposures of altered rock that have been thought to form by recent discharge of water from depth. They were examined to address a concern that hydrothermal processes could compromise the isolation capability of a potential high-level nuclear waste repository at Yucca Mountain. Suspected hot-spring and hydrothermal-vent deposits are more likely the products of infiltration of meteoric water into newly deposited and still-hot pyroclastic flows >12 Myr ago.

Levy, S.S.

1992-12-01T23:59:59.000Z

434

Thermal Flue Gas Desulfurization Wastewater Treatment Processes for Zero Liquid Discharge Operations  

Science Conference Proceedings (OSTI)

This report presents a worldwide inventory of power plant flue gas desulfurization (FGD) blowdown treatment systems using thermal technologies to achieve zero liquid discharge (ZLD) water management. The number of thermal treatment systems presently operating is very few, with the majority using chemical pretreatment followed by evaporation in a brine concentrator and crystallizer and finally dewatering of the residual salts. Of the operating thermal ZLD systems identified, six are located in Italy and o...

2010-12-31T23:59:59.000Z

435

Evaluation of Thermal Zero Liquid Discharge Treatment Technologies for Combined Cycle Gas Turbine Power Plants  

Science Conference Proceedings (OSTI)

A study was conducted to identify and update key details of zero liquid discharge (ZLD) water management systems currently operating at U.S. gas-fired combined cycle generating stations (CC). The study focused on not only the technologies applied, but also on the advantages and shortcomings of the various processes and summarized the lessons learned from the operating systems. Most ZLD's were found to employ one of four different types of water pretreatment process assemblies consisting of the following:...

2011-12-19T23:59:59.000Z

436

Generator On-Line Monitoring and Condition Assessment: Partial Discharge and Electromagnetic Interference  

Science Conference Proceedings (OSTI)

Partial discharge (PD) and electromagnetic interference (EMI) on-line testing have been promoted as means to assess the condition of turbine-driven generator stator winding insulation systems. This fourth interim report traces the stator insulation condition of various selected utility machines in service in an ongoing effort to provide an objective comparison of methods of assessing the "health" of a variety of large generator types using PD and EMI analysis.

2005-05-12T23:59:59.000Z

437

Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge  

E-Print Network (OSTI)

Using a novel electrochemical phase-field model, we question the common belief that LixFePO4 nanoparticles separate into Li-rich and Li-poor phases during battery discharge. For small currents, spinodal decomposition or nucleation leads to moving phase boundaries. Above a critical current density (in the Tafel regime), the spinodal disappears, and particles fill homogeneously, which may explain the superior rate capability and long cycle life of nano-LiFePO4 cathodes.

Bai, Peng; Bazant, Martin Z

2011-01-01T23:59:59.000Z

438

Two-phase flow structure in dual discharges - Stereo PIV measurements  

SciTech Connect

The discharge of two-phase flow from a stratified region through single or multiple branches is an important process in many industrial applications including the pumping of fluid from storage tanks, shell-and-tube heat exchangers, and the fluid flow through header to the cooling channels, feeder's tube, of nuclear reactors during loss-of-coolant accidents (LOCA). Knowledge of the flow phenomena involved along with the quality and mass flow rate of the discharging stream(s) is necessary to adequately predict the different phenomena associated with the process. Stereoscopic Particle Image Velocimetry (SPIV) was used to provide detailed measurements of the flow patterns involving distributions of mean velocity, vorticity field, and flow structure. The experimental investigation was carried out to simulate two-phase discharge from a stratified region through branches located on a quarter-circular wall configuration exposed to a stratified gas-liquid environment. The quarter-circular test section is in close dimensional resemblance with that of a CANDU header-feeder system, with branches mounted at orientation angles of zero, 45 and 90 degrees from the horizontal. The experimental data for the phase development (mean velocity, flow structure, etc.) was collected during dual discharge through the horizontal branch and the 45 or 90 branch from an air-water stratified region over two selected Froude numbers in the horizontal branch while maintaining the Froude number in the other branch constant. These measurements were used to describe the effect of outlet flow conditions on phase redistribution in headers and understand the entrainment phenomena. (author)

Saleh, W.; Bowden, R.C.; Hassan, I.G.; Kadem, L. [Department of Mechanical and Industrial Engineering, Concordia University Montreal, QC (Canada)

2010-11-15T23:59:59.000Z

439

VLF and LF signatures of mesospheric/lower ionospheric response to lightning discharges  

SciTech Connect

New evidence is presented of disturbances of the electrical conductivity of the nighttime mesosphere and the lower ionosphere in association with lightning discharges. In addition to extensive documentation of the characteristics of a class of event heretofore referred to as early/fast VLF events [Inan et al.], this data reveal a new feature of these events, consisting of a postonset peak that typically lasts for 1-2 s. The authors also report the observation of short-duration VLF or LF perturbation, in which the amplitude of the subionospheric signal exhibits a sudden change within 20 ms of the causative lightning discharge, and recovers back to its original level in < 3 s. These short-duration events have characteristics similiar to the previously observed rapid onset, rapid decay VLF signatures [Dowden et al.]. Both the typical and rapidly recovering events are observed primarily when the causative lightning discharge is within {+-}50 km of the VLF or LF great circle propagation path, indicating that the scattering from the localized disturbance is highly collimated in the forward direction. The latter in turn implies that for the parameters in hand, the transverse extent of the disturbance must be at least {approximately} 100-150 km. The measured VLF signatures are compared with the predictions of a three-dimensional model of subionospheric VLF propogation and scattering in the presence of localized ionospheric disturbances produced by electromagnetic impulses and quasi-electrostatic (QE) fields produced by lightning discharges. The rapidly recovering or short-duration events are consistent with the heating of the ambient electrons by quasi-static electric fields, in cases when heating is not intense enough to exceed the attachment or ionization thresholds. When no significant electron density changes occur, the conductivity changes due to heating alone last only as long as the QE fields, typically less than a few seconds. 29 refs., 12 figs.

Inan, U.S.; Slingeland, A.; Pasko, V.P. [Stanford Univ., Stanford, CA (United States); Rodriguez, J.V. [Phillips Laboratory, Hanscom Air Force Base, MA (United States)

1996-03-01T23:59:59.000Z

440

VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas  

Science Conference Proceedings (OSTI)

We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T. [Laser, Non linear and Quantum Optics Labs, Physics Department University of Patras, Patras, Greece 26500 (Greece); Merlemis, N. [Laser, Non linear and Quantum Optics Labs, Physics Department University of Patras, Patras, Greece 26500 (Greece); TEI of Athens, Phys. Chem. and Mater. Tech. Department, Athens, Greece, 12 210 (Greece); Giannetas, V. [Physics Department, University of Patras, Patras, Greece 26500 (Greece)

2010-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "hid high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Current Practices: Solid Waste Management from Zero Liquid Discharge (ZLD) Wastewater Treatment  

Science Conference Proceedings (OSTI)

A study was conducted to identify current practices used by power plants to manage their solid waste residuals from zero liquid discharge (ZLD) operations treating flue gas desulfurization (FGD) wastewater. Because there are such few FGD ZLD systems in operation not only in the United States but also worldwide, the study scope was expanded to include non-FGD ZLD operations, as well. Only two of the seven facilities interviewed in this study operate ZLDs on FGD water; therefore, much of the current ...

2012-12-31T23:59:59.000Z

442

Context: Discharge  

Science Conference Proceedings (OSTI)

... Modification of the Characteristics of the Condensed Fire Extinguishing Aerosol During Its Distribution Through the Pipelines.. ...

2011-12-30T23:59:59.000Z

443

File:Texas NOI for Storm Water Discharges Associated with Construction  

Open Energy Info (EERE)

Texas NOI for Storm Water Discharges Associated with Construction Texas NOI for Storm Water Discharges Associated with Construction Activities (TXR150000).pdf Jump to: navigation, search File File history File usage Metadata File:Texas NOI for Storm Water Discharges Associated with Construction Activities (TXR150000).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 363 KB, MIME type: application/pdf, 20 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:39, 10 April 2013 Thumbnail for version as of 16:39, 10 April 2013 1,275 × 1,650, 20 pages (363 KB) Alevine (Talk | contribs)

444

Anomalous kinetic energy of a system of dust particles in a gas discharge plasma  

SciTech Connect

The system of equations of motion of dust particles in a near-electrode layer of a gas discharge has been formulated taking into account fluctuations of the charge of a dust particle and the features of the nearelectrode layer of the discharge. The molecular dynamics simulation of the system of dust particles has been carried out. Performing a theoretical analysis of the simulation results, a mechanism of increasing the average kinetic energy of dust particles in the gas discharge plasma has been proposed. According to this mechanism, the heating of the vertical oscillations of dust particles is initiated by induced oscillations generated by fluctuations of the charge of dust particles, and the energy transfer from vertical to horizontal oscillations can be based on the parametric resonance phenomenon. The combination of the parametric and induced resonances makes it possible to explain an anomalously high kinetic energy of dust particles. The estimate of the frequency, amplitude, and kinetic energy of dust particles are close to the respective experimental values.

Norman, G. E., E-mail: norman@ihed.ras.ru; Stegailov, V. V., E-mail: stegailov@gmail.com; Timofeev, A. V., E-mail: timofeevalvl@gmail.com [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

2011-11-15T23:59:59.000Z

445

Analysis of the topochemical effects of dielectric-barrier discharge on cellulosic fibers  

E-Print Network (OSTI)

This study investigates the fundamental topochemical effects of dielectric-barrier discharge treatment on bleached chemical pulp and unbleached mechanical pulp fiber surfaces. Fibers were treated with various levels of dielectric-barrier discharge treatment ranging from 0 to 9.27 kw/m2/min. Changes to the fiber surface topochemistry were investigated by atomic force microscopy (AFM). The AFM studies were complemented by inverse gas chromatography (IGC), contact angle evaluation, poly-electrolyte titration, viscosity testing and determination of water retention value (WRV). The static coefficient of friction and zero-span tensile index of sheets were also evaluated. Low dielectric-barrier discharge treatment levels resulted in increased surface energy and roughness. Fibers treated at high applied power levels showed surface energies and roughness levels near that of reference samples as well as evidence of degradation and decreased fiber swelling. Abbreviations: AFM- atomic force microscopy; BKP- bleached kraft pulp; IGC- inverse gas chromatography; TMP- thermomechanical pulp; WRV- water retention value.

Lorraine C. V; Thomas Lder; Arthur J. A~auskas

2004-01-01T23:59:59.000Z

446

Characteristics of the high-rate discharge capability of a nickel/metal hydride battery electrode  

Science Conference Proceedings (OSTI)

The high rate discharge capability of the negative electrode in a Ni/MH battery is mainly determined by the charge transfer process at the interface between the metal hydride (MH) alloy powder and the electrolyte, and the mass transfer process in the bulk MH alloy powder. In this study, the anodic polarization curves of a MH electrode were measured and analyzed. An alloy of nominal composition Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{sub 0.35}Al{sub 0.35} was used as the negative electrode material. With increasing number of charge/discharge cycles, the MH alloy powders microcrack into particles several micrometers in diameter. The decrease in the MH alloy particle size results in an increase in both the activation surface area and the exchange current density of the MH alloy electrode. The electrode overpotentials of the MH electrode decreases with increasing number of cycles at a large value of anodic polarization current. The decrease in electrode overpotential leads to an increase in the high rate discharge capability of the MH electrode. By using the limiting current, the hydrogen diffusion coefficient in the MH alloy was estimated to be 1.2 x 10{sup {minus}11}cm{sup 2}s{sup {minus}1} assuming an average particle radius of 5 {micro}m.

Geng, M.; Han, J.; Feng, F.; Northwood, D.O.

1999-10-01T23:59:59.000Z

447

Interaction of Plasma Discharges with a Flame: Experimental and Numerical Study  

Science Conference Proceedings (OSTI)

This paper presents experimental results and numerical simulations of methane/air non-premixed flame under plasma assistance. Without plasma assistance, the flame blows off at a 28-30 m{center_dot}s{sup -1} bulk velocity (power around 3 kW). When the discharge is on, the flame can be maintained up to a bulk velocity of 53 m{center_dot}s{sup -1}(power around 6 kW), corresponding to +90% gain in power with only a few watt of plasma power. The plasma discharges present short duration current pulses (between 100 ns and 200 ns) and occur non-monotonically (delay between two pulses from 6x10{sup -5} s to 0.1 s). The probability density function of this occurrence is significantly influenced by the mass flow rate or the absence of flame, revealing the strong coupling of the plasma with hydrodynamic and combustion. For the numerical section of this work, we simulated the flame using a Computational Fluid Dynamics code based on Direct Numerical Simulation (direct solving of Navier-Stokes equations), and investigated the thermal and/or chemical effects of discharges on the flame stability.

Vincent-Randonnier, Axel [ONERA, French Aerospace Lab, Palaiseau, F-91761 (France); Teixeira, David [IFP, Rueil-Malmaison, F-92852 (France)

2010-10-13T23:59:59.000Z

448

Electrical double layers at shock fronts in glow discharges and afterglows  

Science Conference Proceedings (OSTI)

This paper examines the propagation of spark-generated shockwaves (1.0discharges and their afterglow. Diagnostic methods were employed and expanded in order to capture the dynamics of the shock front in these weakly-ionized, nonmagnetized, collisional plasmas. We used a microwave hairpin resonator to measure the electron number density, and, for all cases, we measured an increase in the electron number density at the shock front. By comparing the increase in electron number density at the shock front in the active discharge and in the afterglow, we conclude that electrons with a temperature much greater than room temperature can be compressed at the shock front. The ratio of electron number density before and after the shock front can be approximately predicted using the Rankine-Hugoniot relationship. The large gradient in electron density, and hence a large gradient in the flux of charged species, created a region of space-charge separation, i.e., a double layer, at the shock front. The double layer balances the flux of charged particles on both sides of the shock front. The double layer voltage drop was measured in the current-carrying discharge using floating probes and compared with previous models. As well, we measured argon 1s{sup 5} metastable-state density and demonstrate that metastable-state neutral species can be compressed across a shock front and approximately predicted using the Rankine-Hugoniot relationship.

Siefert, Nicholas S. [Air Force Research Laboratory, Wright Patterson, Ohio 45433 (United States)

2010-12-15T23:59:59.000Z

449

Mechanism of Synthesis of Ultra-Long Single Wall Carbon Nanotubes in Arc Discharge Plasma  

SciTech Connect

In this project fundamental issues related to synthesis of single wall carbon nanotubes (SWNTs), which is relationship between plasma parameters and SWNT characteristics were investigated. Given that among plasma-based techniques arc discharge stands out as very advantageous in several ways (fewer defects, high flexibility, longer lifetime) this techniques warrants attention from the plasma physics and plasma technology standpoint. Both experimental and theoretical investigations of the plasma and SWNTs synthesis were conducted. Experimental efforts focused on plasma diagnostics, measurements of nanostructures parameters, and nanoparticle characterization. Theoretical efforts focused to focus on multi-dimensional modeling of the arc discharge and single wall nanotube synthesis in arc plasmas. It was demonstrated in experiment and theoretically that controlling plasma parameters can affect nanostucture synthesis altering SWNT properties (length and diameter) and leading to synthesis of new structures such as a few-layer graphene. Among clearly identified parameters affecting synthesis are magnetic and electric fields. Knowledge of the plasma parameters and discharge characteristics is crucial for ability to control synthesis process by virtue of both magnetic and electric fields. New graduate course on plasma engineering was introduced into curriculum. 3 undergraduate students were attracted to the project and 3 graduate students (two are female) were involved in the project. Undergraduate student from Historically Black University was attracted and participated in the project during Summer 2010.

Keidar, Michael [George Washington University] [George Washington University

2013-06-23T23:59:59.000Z

450

Proof-of-principle measurements for an NDA-based core discharge monitor  

Science Conference Proceedings (OSTI)

The feasibility of using nondestructive assay instruments as a core discharge monitor for CANDU reactors was investigated at the Ontario Hydro Bruce Nuclear Generating Station A, Unit 3, in Ontario, Canada. The measurements were made to determine if radiation signatures from discharged irradiated fuel could be measured unambiguously and used to count the number of fuel pushes from a reactor face. Detectors using the ({gamma},n) reaction thresholds of beryllium and deuterium collected the data, but data from shielded and unshielded ion chambers were collected as well. The detectors were placed on a fueling trolley that carried the fueling machine between the reactors and the central service area. A microprocessor-based electronics system (the GRAND-I, which also resided on the trolley) provided detector biases and preamplifier power and acquired and transferred the data. It was connected by an RS-232 serial link to a lap-top computer adjacent to the fueling control console in the main-reactor control room. The lap-top computer collected and archived the data on a 3.5-in. floppy disk. The results clearly showed such an approach to be a adaptable as a core discharge monitor. 4 refs., 8 figs.

Halbig, J.K. (Los Alamos National Lab., NM (USA)); Monticone, A.C. (International Atomic Energy Agency, Vienna (Austria))

1990-01-01T23:59:59.000Z

451

Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity  

SciTech Connect

We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminants are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.

J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

2012-07-01T23:59:59.000Z

452

Force interaction of high pressure glow discharge with fluid flow for active separation control  

SciTech Connect

Radio frequency based discharges at atmospheric pressures are the focus of increased interest in aerodynamics because of the wide range of potential applications including, specifically, actuation in flows at moderate speeds. Recent literature describing promising experimental observations, especially on separation control, has spurred efforts in the development of parallel theoretical modeling to lift limitations in the current understanding of the actuation mechanism. The present effort demonstrates higher fidelity first-principle models in a multidimensional finite-element framework to predict surface discharge-induced momentum exchange. The complete problem of a dielectric barrier discharge at high pressure with axially displaced electrodes is simulated in a self-consistent manner. Model predictions for charge densities, the electric field, and gas velocity distributions are shown to mimic trends reported in the experimental literature. Results show that a residual of electrons remains deposited on the dielectric surface downstream of the exposed powered electrode for the entire duration of the cycle and causes a net electric force in the direction from the electrode to the downstream surface. For the first time, results document the mitigation process of a separation bubble formed due to flow past a flat plate inclined at 12 degree sign angle of attack. This effort sets the basis for extending the formulation further to include polyphase power input in multidimensional settings, and to apply the simulation method to flows past common aerodynamic configurations.

Roy, Subrata; Gaitonde, Datta V. [Computational Plasma Dynamics Laboratory, Mechanical Engineering, Kettering University, Flint, Michigan 48504 (United States); Computational Sciences Branch, Air Vehicles Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433 (United States)

2006-02-15T23:59:59.000Z

453

Investigation on plasma parameters and step ionization from discharge characteristics of an atmospheric pressure Ar microplasma jet  

Science Conference Proceedings (OSTI)

In this communication, we report a technique to estimate the plasma parameters from the discharge characteristics of a microplasma device, operated in atmospheric pressure on the basis of homogeneous discharge model. By this technique, we investigate the plasma parameters of a microplasma jet produced by microplasma device consisting of coaxial capillary electrodes surrounded by dielectric tube. Our results suggest that the complex dependence of electrical discharge characteristics observed for microplasma device operated with Ar or it admixtures probably signify the existence of step ionization, which is well known in inductively coupled plasma.

Bora, B.; Bhuyan, H.; Favre, M.; Chuaqui, H.; Wyndham, E. [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Ave. Vicuna Mackenna 4860, Santiago (Chile); Kakati, M. [Thermal Plasma Processed Materials Laboratory, Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402, Assam (India)

2012-06-15T23:59:59.000Z

454

Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge  

Science Conference Proceedings (OSTI)

Experimental study of a glow discharge with electrostatic confinement of electrons is carried out in the vacuum chamber volume V {approx} 0.12 m{sup 3} of a technological system 'Bulat-6' in argon pressure range 0.005-5 Pa. The chamber is used as a hollow cathode of the discharge with the inner surface area S {approx} 1.5 m{sup 2}. It is equipped with two feedthroughs, which make it possible to immerse in the discharge plasma interchangeable anodes with surface area S{sub a} ranging from {approx}0.001 to {approx}0.1 m{sup 2}, as well as floating electrodes isolated from both the chamber and the anode. Dependences of the cathode fall U{sub c} = 0.4-3 kV on the pressure p at a constant discharge current in the range I = 0.2-2 A proved that aperture of the electron escape out of the electrostatic trap is equal to the sum S{sub o} = S{sub a} + S{sub f} of the anode surface S{sub a} and the floating electrode surface S{sub f}. The sum S{sub o} defines the lower limit p{sub o} of the pressure range, in which U{sub c} is independent of p. At p fall U{sub c} grows up dramatically, when the pressure decreases, and the pressure p tends to the limit p{sup ex}, which is in fact the discharge extinction pressure. At p {approx} p{sup ex} electrons emitted by the cathode and the first generation of fast electrons produced in the cathode sheath spend almost all their energy up to 3 keV on heating the anode and the floating electrode up to 600-800{sup o}C and higher. In this case the gas in the chamber is being ionized by the next generations of electrons produced in the cathode sheath, their energy being one order of magnitude lower. When S{sub a} fall of potential U{sub a} up to 0.5 kV.

Metel, A. S., E-mail: ametel@stankin.ru; Grigoriev, S. N.; Melnik, Yu. A.; Panin, V. V. [Moscow State University of Technology 'Stankin' (Russian Federation)

2009-12-15T23:59:59.000Z

455

Experimental and theoretical investigations on the warm-up of a high-pressure mercury discharge lamp  

SciTech Connect

Modern high-pressure discharge lamps are forced to provide instant light and hot relight capabilities - if possible at lower power units. A detailed understanding of the warm-up of high-pressure discharge lamps is therefore required. Complex fluid model codes were developed for the past years including more and more processes like two-dimensional treatment of convection trying to provide a more comprehensive and consistent description of high-pressure discharge lamps. However, there is a lack of experimental data to examine the performance of these models. This work provides a very complete set of geometrical, electrical, spectroscopic, and thermographic data according to the warm-up of a high-pressure mercury discharge lamp that is compared to the results of a state of the art fluid code. Quantitative agreement is achieved for single parameters like wall temperatures. But the paper also reveals the need for further investigations and improvements of the code.

Zalach, J.; Franke, St.; Schoepp, H. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Araoud, Z.; Charrada, K. [Unite d'Etude des Milieux Ionises et Reactifs, IPEIM, rte de Kairouan, 5019 Monastir (Tunisia); Zissis, G. [Laboratoire Plasma et Conversion d'Energie, 118 rte Narbonne, Bat3R2, 31062 Toulouse (France)

2011-03-15T23:59:59.000Z

456

Atmospheric Water Vapor Transport in NCEP–NCAR Reanalyses: Comparison with River Discharge in the Central United States  

Science Conference Proceedings (OSTI)

The authors extract the water transport produced by the National Centers for Environmental Prediction reanalysis for a 10-yr period, 1984–93, and compare its convergence into two river basins with an independent dataset, river discharge (...

William J. Gutowski Jr.; Yibin Chen; Zekai Ötles

1997-09-01T23:59:59.000Z

457

Point-Discharge-Current Observations in the Thunderstorm Environment of the Years 1987 and 1988 at Pune  

Science Conference Proceedings (OSTI)

Observations of point-discharge current through an artificially erected single point in the thunderstorm environment at Pune during the years 1987 and 1988 were made and studied for the monthly net charge received by the earth through this ...

G. K. Manohar; S. S. Kandalgaonkar; S. M. Sholapurkar

1991-12-01T23:59:59.000Z

458

GRR/Elements/18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge...  

Open Energy Info (EERE)

icon Twitter icon GRRElements18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge Waste to Land in a Diffused Manner or Affect Groundwater Quality < GRR | Elements Jump...

459

GRR/Elements/18-CA-a.10 to 18-CA-a.11 - Does the Facility Discharge...  

Open Energy Info (EERE)

GRRElements18-CA-a.10 to 18-CA-a.11 - Does the Facility Discharge Waste Water or Drilling Waste to Land < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL...

460

Rules for the Discharge of Non-Sanitary Wastewater and Other Fluids To or Below the Ground Surface (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of these rules to protect and preserve the quality of the groundwater of the State of Rhode Island (the “State”) and to prevent contamination of groundwater resources from the discharge...