National Library of Energy BETA

Sample records for hi-t reservoir geothermal

  1. Geysers Hi-T Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Hi-T Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Hi-T Reservoir Geothermal Area Contents 1 Area Overview 2 History and...

  2. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  3. Geothermal Reservoir Dynamics - TOUGHREACT

    SciTech Connect (OSTI)

    Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

    2005-03-15

    This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

  4. Precise Gravimetry and Geothermal Reservoir Management | Open...

    Open Energy Info (EERE)

    Precise Gravimetry and Geothermal Reservoir Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Precise Gravimetry and Geothermal...

  5. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  6. Characterization of Fractures in Geothermal Reservoirs Using...

    Open Energy Info (EERE)

    Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly...

  7. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity ...

  8. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

    Open Energy Info (EERE)

    of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  9. An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...

    Open Energy Info (EERE)

    Humeros Geothermal Reservoir (Mexico) Abstract An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed...

  10. Update on the Raft River Geothermal Reservoir | Open Energy Informatio...

    Open Energy Info (EERE)

    the Raft River Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Update on the Raft River Geothermal Reservoir...

  11. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  12. Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Geothermal Technology Program Peer Review Report | Department of Energy Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon reservoir_028_ghassmi.pdf More Documents & Publications Tracer Methods for Characterizing

  13. Two-dimensional simulation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    of the Raft River geothermal reservoir and wells. (SINDA-3G program) Abstract Computer models describing both the transient reservoir pressure behavior and the time...

  14. Tracer testing in geothermal reservoirs | Open Energy Information

    Open Energy Info (EERE)

    geothermal reservoirs Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Tracer testing in geothermal reservoirs Author PetroWiki Published PetroWiki,...

  15. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  16. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  17. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  18. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W.

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  19. Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report DOE 2010

  20. Sixth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.

    1980-12-18

    INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like to t

  1. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W.

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate the audiovisual equipment and to Michael Riley who coordinated the meeting arrangements for a second year. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  2. Integrated seismic studies at the Rye Patch geothermal reservoir...

    Open Energy Info (EERE)

    seismic studies at the Rye Patch geothermal reservoir Authors R. Gritto, T.M. Daley and E.L. Majer Published Journal Geothermal Resources Council Transactions, 2002 DOI Not...

  3. Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stochastic Analysis of Injection-Induced Seismicity | Department of Energy Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity presentation at the April 2013 peer review meeting held in Denver,

  4. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  5. Hydraulics and Well Testing of Engineered Geothermal Reservoirs...

    Open Energy Info (EERE)

    with downhole pumps from the reservoir than is injected. Authors Hugh Murphy, Donald W Brown, Reinhard Jung, Isao Matsunaga and Roger Parker Published Journal Geothermics, 1999...

  6. Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code...

    Office of Scientific and Technical Information (OSTI)

    Conference: Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code Comparison Study Citation Details In-Document Search Title: Flow and Thermal Behavior of an EGS...

  7. Deep Geothermal Reservoir Temperatures in the Eastern Snake River...

    Office of Scientific and Technical Information (OSTI)

    ESRP. Masking much of the deep thermal potential of the ... apply the RTEst model to water compositions measured from ... on Geothermal Reservoir Engineering,Stanford,02242014,02...

  8. Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code...

    Office of Scientific and Technical Information (OSTI)

    Conference: Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code Comparison Study Citation Details In-Document Search Title: Flow and Thermal Behavior of an EGS ...

  9. Use Of Electrical Surveys For Geothermal Reservoir Characterization...

    Open Energy Info (EERE)

    geothermal reservoir characteristics. Authors Sabodh K. Garg, John W. Pritchett, Philip E. Wannamaker and Jim Combs Published GRC, 2007 DOI Not Provided Check for DOI...

  10. Twentieth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  11. Twelfth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J.

    1987-01-22

    Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, specially Jim Lovekin. The Twelfth Workshop was supported by the Geothermal Technology Division of the U. S. Department of Energy through Contract Nos. DE-AS03-80SF11459 and DE-AS07- 84ID12529. We deeply appreciate this continued support. January 1987 Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jesus Rivera

  12. Nineteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1994-01-20

    PREFACE The Nineteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 18-20, 1994. This workshop opened on a sad note because of the death of Prof. Henry J. Ramey, Jr. on November 19, 1993. Hank had been fighting leukemia for a long time and finally lost the battle. Many of the workshop participants were present for the celebration of his life on January 21 at Stanford's Memorial Church. Hank was one of the founders of the Stanford Geothermal Program and the Geothermal Reservoir Engineering Workshop. His energy, kindness, quick wit, and knowledge will long be missed at future workshops. Following the Preface we have included a copy of the Memorial Resolution passed by the Stanford University Senate. There were one hundred and four registered participants. Participants were from ten foreign countries: Costa Rica, England, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Philippines and Turkey. Workshop papers described the performance of fourteen geothermal fields outside the United States. Roland N. Home opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a presentation about the future of geothermal development. The banquet speaker was Jesus Rivera and he spoke about Energy Sources of Central American Countries. Forty two papers were presented at the Workshop. Technical papers were organized in twelve sessions concerning: sciences, injection, production, modeling, and adsorption. Session chairmen are an important part of the workshop and our thanks go to: John Counsil, Mark Walters, Dave Duchane, David Faulder, Gudmundur Bodvarsson, Jim Lovekin, Joel Renner, and Iraj Ershaghi. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Xianfa Deng who coordinated the meeting arrangements for the Workshop. Roland N. Home Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  13. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W.

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones, Yasmin Gulamani, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, especially Jeralyn Luetkehans. The Thirteenth Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract No. DE-AS07-84ID12529. We deeply appreciate this continued support. Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jean W. Cook

  14. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain,

    Office of Scientific and Technical Information (OSTI)

    Idaho using Multicomponent Geothermometry (Conference) | SciTech Connect Conference: Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry Citation Details In-Document Search Title: Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced

  15. Analysis of Geothermal Reservoir Stimulation Using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal ... Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal ...

  16. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  17. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  18. Ninth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S.

    1983-12-15

    The attendance at the Workshop was similar to last year's with 123 registered participants of which 22 represented 8 foreign countries. A record number of technical papers (about 60) were submitted for presentation at the Workshop. The Program Committee, therefore, decided to have several parallel sessions to accommodate most of the papers. This format proved unpopular and will not be repeated. Many of the participants felt that the Workshop lost some of its unique qualities by having parallel sessions. The Workshop has always been held near the middle of December during examination week at Stanford. This timing was reviewed in an open discussion at the Workshop. The Program Committee subsequently decided to move the Workshop to January. The Tenth Workshop will be held on January 22-24, 1985. The theme of the Workshop this year was ''field developments worldwide''. The Program Committee addressed this theme by encouraging participants to submit field development papers, and by inviting several international authorities to give presentations at the Workshop. Field developments in at least twelve countries were reported: China, El Salvador, France, Greece, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, the Philippines, and the United States. There were 58 technical presentations at the Workshop, of which 4 were not made available for publication. Several authors submitted papers not presented at the Workshop. However, these are included in the 60 papers of these Proceedings. The introductory address was given by Ron Toms of the U.S. Department of Energy, and the banquet speaker was A1 Cooper of Chevron Resources Company. An important contribution was made to the Workshop by the chairmen of the technical sessions. Other than Stanford Geothermal Program faculty members, they included: Don White (Field Developments), Bill D'Olier (Hydrothermal Systems), Herman Dykstra (Well Testing), Karsten Pruess (Well Testing), John Counsil (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

  19. PROCEEDINGS SECOND WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING

    Office of Scientific and Technical Information (OSTI)

    SECOND WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING December 1-3,1976 TABLE O F CONTENTS . I Page . - - I n t r o d u c t i o n - H. J . Ramey, Jr. . . . . . . . . . . . . . . . . . . . . . . Ove r v i ews Geo t he rma F. G. Geot herma Geotherma v. w. R e s e r v o i r Eng R e s e r v o i r Eng R e s e r v o i r Eng M i l l e r . . R o b e r t s . . . n e e r i n g Research - H. J. Ramey, J r . , and . . . . . . . . . . . . . . . . . . . . . . . . . n e e r i n g i n I n d u s t r y - S. C . Lipman

  20. FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR | Open Energy...

    Open Energy Info (EERE)

    cross-sections developed using this method. Authors Dilley, L.M.; Norman, D.I.; Moore, J.; McCullouch and J. Published PROCEEDINGS, Thirty-First Workshop on Geothermal Reservoir...

  1. Exploration model for possible geothermal reservoir, Coso Hot...

    Open Energy Info (EERE)

    Abstract The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and...

  2. Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    Project objective: to develop a 3-D numerical model for simulating mode I; II; and III (tensile; shear; and tearing propagation of multiple fractures using the virtual multi-dimensional internal bond (VMIB); to predict geothermal reservoir stimulation.

  3. Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code

    Office of Scientific and Technical Information (OSTI)

    Comparison Study (Conference) | SciTech Connect Conference: Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code Comparison Study Citation Details In-Document Search Title: Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code Comparison Study Authors: Kelkar, Sharad M. [1] ; Mclure, Mark [2] ; Ghassemi, Ahmad [3] + Show Author Affiliations Los Alamos National Laboratory University of Texas Austin University of Oklahoma Publication Date: 2015-01-26 OSTI Identifier:

  4. Transient well testing in two-phase geothermal reservoirs

    SciTech Connect (OSTI)

    Aydelotte, S.R.

    1980-03-01

    A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

  5. State of Seismic Methods For Geothermal Reservoir Exploration and Assessment

    Office of Scientific and Technical Information (OSTI)

    -D Seismic Methods For Geothermal Reservoir Exploration and Assessment - Summary E.L Majer Lawrence Berkeley National Laboratory Introduction A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for

  6. Tenth workshop on geothermal reservoir engineering: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  7. Fiber-optic sensors and geothermal reservoir engineering

    SciTech Connect (OSTI)

    Angel, S.M.; Kasameyer, P.W. )

    1988-12-01

    Perhaps the first demonstrations of fiber-optic sensors in a geothermal well occurred in early 1988 on the Island of Hawaii. The first of two fiber-optic optrode tests was at the HGP-A well and 3-megawatt power plant facility managed by the Hawaii National Energy Institute at the University of Hawaii. The second test was in a nearby geothermal exploratory well, Geothermal Test Well 2. Both sites are in the Kilauea East Rift zone. A fiber-optic temperature sensor test will be undertaken soon in a deeper, hotter geothermal well. Problems will be examined that may occur with a stainless steel-sleeved, fiber-optic cable. The paper describes fiber optic technology and its use in geothermal reservoir engineering.

  8. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  9. Characterization of geothermal reservoir crack patterns using...

    Open Energy Info (EERE)

    the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Authors Lou, M.; Rial and J.A. Published Journal...

  10. Magic Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    110C383.15 K 230 F 689.67 R 1 USGS Estimated Reservoir Volume: 2 km 1 USGS Mean Capacity: 9 MW 1 Click "Edit With Form" above to add content History and...

  11. PROCEEDINGS SIXTEENTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING

    Office of Scientific and Technical Information (OSTI)

    S t e v e Enedy', Kathy 13nedy2, J o h n Maney3 1. N o r t h e r n C a l i f o r n i a Power Agency 2 . C a l p i n e C o r p o r a t i o n 3 . Unocal Geothermal A B S T R A ...

  12. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    SciTech Connect (OSTI)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

  13. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    SciTech Connect (OSTI)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  14. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    SciTech Connect (OSTI)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Palmer, Carl D.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 șC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 șC) to over 175 șC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  15. Reservoir technology - geothermal reservoir engineering research at Stanford. Fifth annual report, October 1, 1984-September 30, 1985

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

    1985-09-01

    The objective is to carry out research on geothermal reservoir engineering techniques useful to the geothermal industry. A parallel objective is the training of geothermal engineers and scientists. The research is focused toward accelerated development of hydrothermal resources through the evaluation of fluid reserves, and the forecasting of field behavior with time. Injection technology is a research area receiving special attention. The program is divided into reservoir definition research, modeling of heat extraction from fractured reservoirs, application and testing of new and proven reservoir engineering technology, and technology transfer. (ACR)

  16. Coso: example of a complex geothermal reservoir. Final report...

    Open Energy Info (EERE)

    () : . Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At Coso Geothermal Area (1985) Areas (1) Coso Geothermal Area Regions (0)...

  17. Reservoir and injection technology: Geothermal reservoir engineering research at Stanford: Third annual report for the period October 1, 1986 through September 30, 1987: (Final report)

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

    1988-02-01

    This paper discusses different aspects of geothermal reservoir engineering. General topics covered are: reinjection technology, reservoir technology, and heat extraction. (LSP)

  18. Twenty-first workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    1996-01-26

    PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

  19. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    SciTech Connect (OSTI)

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.; Jordan, O.T.; Ana, F.X.M.S.; Bodvarsson, G.S.; Doughty, C.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water front away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.

  20. Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  1. Finite-Element Simulation Of Hot-Water-Type Geothermal Reservoirs...

    Open Energy Info (EERE)

    differential equations are based upon constant physical parameters (except fluid density) and formulated for hot-water-type geothermal reservoirs. A simultaneous solution...

  2. Monitoring the Bulalo geothermal reservoir, Philippines, using precision gravity data

    SciTech Connect (OSTI)

    San Andres, R.B.; Pedersen, J.R.

    1993-10-01

    Precision gravity monitoring of the Bulalo geothermal field began in 1980 to estimate the natural mass recharge to the reservoir. Between 1980 and 1991, gravity decreases exceeding 2.5 {times} 10{sup {minus}6} N/kg (250 microgals) were observed in response to fluid withdrawals. A maximum rate of {minus}26 microgals per year was observed near the production center. Mass discharges predicted by recent reservoir simulation modeling generally match those inferred from the observed gravity data. According to simulation studies, no recharge occurred between 1980 and 1984. The mass recharge between 1984 and 1991 was estimated to be 30% of net fluid withdrawal during the same period, equivalent to an average rate of 175 kg/s (630 metric tons per hour).

  3. The Ahuachapan geothermal field, El Salvador: Reservoir analysis

    SciTech Connect (OSTI)

    Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A.; Icelandic National Energy Authority, Reykjavik; Geological Survey, Menlo Park, CA; Lawrence Berkeley Lab., CA )

    1989-08-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

  4. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...

    Open Energy Info (EERE)

    evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Reservoir evaluation tests on...

  5. Reservoir engineering applications for development and exploitation of geothermal fields in the Philippines

    SciTech Connect (OSTI)

    Vasquez, N.C.; Sarmiento, Z.F.

    1986-07-01

    After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.

  6. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  7. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  8. Field Studies of Geothermal Reservoirs: Rio Grande Rift, New...

    Open Energy Info (EERE)

    Abstract The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity...

  9. Statistical study of seismicity associated with geothermal reservoirs...

    Open Energy Info (EERE)

    a geothermal system. Authors Hadley, D. M.; Cavit and D. S. Published DOE Information Bridge, 111982 DOI 10.21725456535 Citation Hadley, D. M.; Cavit, D. S. . 111982....

  10. Geothermal Resource-Reservoir Investigations Based On Heat Flow...

    Open Energy Info (EERE)

    to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state,...

  11. Application of thermal depletion model to geothermal reservoirs...

    Open Energy Info (EERE)

    method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed. Authors...

  12. Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress

    SciTech Connect (OSTI)

    Lippmann, M.J.

    1988-09-01

    This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

  13. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis

    SciTech Connect (OSTI)

    Horne, Roland N.; Li, Kewen; Alaskar, Mohammed; Ames, Morgan; Co, Carla; Juliusson, Egill; Magnusdottir, Lilja

    2012-06-30

    This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

  14. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Investigations on the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  15. Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  16. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  17. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2000-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  18. Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  19. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  20. Tectonic setting of the Coso geothermal reservoir | Open Energy...

    Open Energy Info (EERE)

    eastern California Optimum development of this reservoir requires an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection...

  1. Geothermal reservoir temperatures estimated from the oxygen isotope...

    Open Energy Info (EERE)

    applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures of 360, 240, and 142C,...

  2. Nanosensors as Reservoir Engineering Tools to Map Insitu Temperature Distributions in Geothermal Reservoirs

    SciTech Connect (OSTI)

    Morgan Ames

    2011-06-15

    The feasibility of using nanosensors to measure temperature distribution and predict thermal breakthrough in geothermal reservoirs is addressed in this report. Four candidate sensors were identified: melting tin-bismuth alloy nanoparticles, silica nanoparticles with covalently-attached dye, hollow silica nanoparticles with encapsulated dye and impermeable melting shells, and dye-polymer composite time-temperature indicators. Four main challenges associated with the successful implementation of temperature nanosensors were identified: nanoparticle mobility in porous and fractured media, the collection and detection of nanoparticles at the production well, engineering temperature sensing mechanisms that are both detectable and irreversible, and inferring the spatial geolocation of temperature measurements in order to map temperature distribution. Initial experiments were carried out to investigate each of these challenges. It was demonstrated in a slim-tube injection experiment that it is possible to transport silica nanoparticles over large distances through porous media. The feasibility of magnetic collection of nanoparticles from produced fluid was evaluated experimentally, and it was estimated that 3% of the injected nanoparticles were recovered in a prototype magnetic collection device. An analysis technique was tailored to nanosensors with a dye-release mechanism to estimate temperature measurement geolocation by analyzing the return curve of the released dye. This technique was used in a hypothetical example problem, and good estimates of geolocation were achieved. Tin-bismuth alloy nanoparticles were synthesized using a sonochemical method, and a bench heating experiment was performed using these nanoparticles. Particle growth due to melting was observed, indicating that tin-bismuth nanoparticles have potential as temperature nanosensors

  3. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    SciTech Connect (OSTI)

    Buscheck, Thomas A.

    2012-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk : FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  4. An assessment of the Tongonan geothermal reservoir, Philippines, at high-pressure operating conditions

    SciTech Connect (OSTI)

    Sarmiento, Z.F.; Aquino, B.G.; Aunzo, Z.P.; Rodis, N.O.; Saw, V.S.

    1993-10-01

    An evaluation of the Tongonan geothermal reservoir was conducted to improve the power recovery through reservoir and process optimization. The performance of the existing production wells was reviewed and the response of the field based on the anticipated production levels was simulated at various operating conditions. The results indicate that the Tongonan geothermal reservoir can be exploited at a high pressure operating condition with substantial improvement in the field capacity. The authors calculate that the Upper Mahiao and the Malitbog sectors of the Tongonan field are capable of generating 395 MWe at 1.0 MPa abs., on top of the existing 112.5 MWe plant, compared with 275 MWe if the field is operated at 0.6 MPa abs. The total capacity for the proposed Leyte A 640 MWe expansion can be generated from these sectors with the additional power to be tapped from Mahanagdong and Alto Peak sectors.

  5. Mise-a-la-masse mapping of the HGP-A geothermal reservoir, Hawaii

    SciTech Connect (OSTI)

    Kauahikaua, J.; Mattice, M.; Jackson, D.

    1980-09-01

    The HGP-A well casing was used as an electrode in a mise-a-la-masse experiment to define the boundaries of the geothermal reservoir. Electric potentials were measured to distances of 2 km from the drill hole. Although cased or lined the full 1967 m, only the top 670 m of the HGP-A casing are electrically continuous; the electrode did not extend into the high-temperature part of the reservoir. Nevertheless, the data did define a compartment of dike-impounded freshwater of higher resistivity than the surrounding saltwater-saturated rock. This dike-impounded water is warm and apparently overlies the actual reservoir; however, the lateral boundaries impounding this water probably confine geothermal fluids at depth.

  6. The Bulalo geothermal field, Philippines: Reservoir characteristics and response to production

    SciTech Connect (OSTI)

    Clemente, W.C.; Villadolid-Abrigo, F.L.

    1993-10-01

    The Bulalo geothermal field has been operating since 1979, and currently has 330 MWe of installed capacity. The field is associated with a 0.5 Ma dacite dome on the southeastern flank of the Late Pliocene to Quaternary Mt. Makiling stratovolcano. The reservoir occurs within pre-Makiling andesite flows and pyroclastic rocks capped by the volcanic products of Mt. Makiling. Initially, the reservoir was liquid-dominated with a two-phase zone overlying the neutral-pH liquid. Exploitation has resulted in an enlargement of the two-phase zone, return to the reservoir of separated waste liquid that has been injected, scaling in the wellbores and rock formation, and influx of cooler groundwaters. Return of injected waters to the reservoir and scaling have been the major reservoir management concerns. These have been mitigated effectively by relocating injection wells farther away from the production area and by dissolving scale from wells with an acid treatment.

  7. Borehole geophysics evaluation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    sup 0C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot...

  8. Geothermal reservoir assessment based on slim hole drilling. Volume 1, Analytical Method: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal, resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project -- Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential ''discovery.''

  9. Geothermal reservoir assessment based on slim hole drilling. Volume 2: Application in Hawaii: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was planned, funded, and initiated in 1988 by the Hawaii Natural Energy Institute, an institute within the School of Ocean and Earth Science and Technology, at the University of Hawaii at Manoa. Initial funding for the SOH program was $3.25 million supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a/bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project-Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential discovery.

  10. Geothermal reservoir assessment case study: Northern Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Denton, J.M.; Bell, E.J.; Jodry, R.L.

    1980-11-01

    Two 1500 foot temperature gradient holes and two deep exploratory wells were drilled and tested. Hydrologic-hydrochemical, shallow temperature survey, structural-tectonic, petrologic alteration, and solid-sample geochemistry studies were completed. Eighteen miles of high resolution reflection seismic data were gathered over the area. The study indicates that a geothermal regime with temperatures greater than 400/sup 0/F may exist at a depth of approximately 7500' to 10,000' over an area more than ten miles in length.

  11. Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  12. Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 4.5.7 Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity Presentation Number: 027 Investigator: Ghassemi, Ahmad (Texas A&M University) Objectives: To develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics, finite element modeling, geostatistical concepts to establish relationships between microseismicity, reservoir flow and geomechanical characteristics. Average Overall Score:

  13. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field

    SciTech Connect (OSTI)

    Williams, Alan E.; Copp, John F.

    1991-01-01

    Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

  14. Geothermal reservoir well stimulation program. Final program summary report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Eight field experiments and the associated theoretical and laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Overall results have shown that stimulation is viable where adequate reservoirs are penetrated by wells encountering formation damage or locally tight formation zones. Seven of the eight stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments at Raft River and the two at Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or reservoir transmissivity. The Beowawe chemical stimulation treatment appears to have significantly improved the well's injectivity, but production data were not obtained because of well mechanical problems. The acid etching treatment in the well at the Geysers did not have any material effect on producing rate. Evaluations of the field experiments to date have suggested improvements in treatment design and treatment interval selection which offer substantial encouragement for future stimulation work.

  15. Effects of adsorption and capillarity on injection in vapor-dominated geothermal reservoirs

    SciTech Connect (OSTI)

    Sta. Maria, R.B.; Horne, R.N.

    1996-04-10

    One major motivation for the study of the effects of adsorption in geothermal reservoirs is the phenomenon known as {open_quotes}The Geysers Paradox{close_quotes}. Data from The Geysers field suggest that some water must be stored in the reservoir in a condensed phase even though the prevailing reservoir pressure and temperature dictate superheated conditions. Physical adsorption of steam onto rocks and the thermodynamics of curved interfaces prevailing in the pore spaces of the rock matrix can explain the apparent paradox. These mechanisms make it possible for water and steam to coexist in conditions we normally refer to as {open_quotes}superheated{close_quotes} based on our concept of flat interface thermodynamics (e.g., the Steam Table).

  16. Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field

    SciTech Connect (OSTI)

    Barton, C.A.; Zoback, M.D.; Hickman, S.; Morin, R.; Benoit, D.

    1998-08-01

    Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

  17. Geothermal Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Geothermal Tomorrow 08 Injection Well Reservoir Production Wells GTP Vision and Mission EGS: A New Strategy National Laboratory Activities Price of Geothermal Power Financing Projects International Efforts Utility Geothermal Working Group State Geothermal Policies On the cover: Calpine's 35 megawatt Sonoma Geothermal Power Plant at The Geysers field in Northern California. Courtesy of Calpine Corporation About "Geothermal Tomorrow" Geothermal power is a

  18. 3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

    SciTech Connect (OSTI)

    Majer, E.L.

    2003-07-14

    A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill drilling, but in general the passive methods lack the precision and accuracy for well siting in new or step out areas. In addition, MEQ activity is usually associated with production, after the field has been taken to a mature state, thus in most cases it is assumed that there is not enough MEQ activity in unproduced areas to accurately find the permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it possible to image the subsurface in much more detail than 15 years ago. New understanding of the effect of fractures on seismic wave propagation are now being applied to image fractures in gas and oil environments. It now may be appropriate to apply these methods, with modifications, to geothermal applications. It is assumed that to implement the appropriate methods an industry coupled program tightly linked to actual field cases, iterating between development and application will be pursued. The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

  19. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search Advanced Search All Fields: Title: Full Text: ...

  20. Geochemical Enhancement Of Enhanced Geothermal System Reservoirs: An Integrated Field And Geochemical Approach

    SciTech Connect (OSTI)

    Joseph N. Moore

    2007-12-31

    The geochemical effects of injecting fluids into geothermal reservoirs are poorly understood and may be significantly underestimated. Decreased performance of injection wells has been observed in several geothermal fields after only a few years of service, but the reasons for these declines has not been established. This study had three primary objectives: 1) determine the cause(s) of the loss of injectivity; 2) utilize these observations to constrain numerical models of water-rock interactions; and 3) develop injection strategies for mitigating and reversing the potential effects of these interactions. In this study rock samples from original and redrilled injection wells at Coso and the Salton Sea geothermal fields, CA, were used to characterize the mineral and geochemical changes that occurred as a result of injection. The study documented the presence of mineral scales and at both fields in the reservoir rocks adjacent to the injection wells. At the Salton Sea, the scales consist of alternating layers of fluorite and barite, accompanied by minor anhydrite, amorphous silica and copper arsenic sulfides. Amorphous silica and traces of calcite were deposited at Coso. The formation of silica scale at Coso provides an example of the effects of untreated (unacidified) injectate on the reservoir rocks. Scanning electron microscopy and X-ray diffractometry were used to characterize the scale deposits. The silica scale in the reservoir rocks at Coso was initially deposited as spheres of opal-A 1-2 micrometers in diameter. As the deposits matured, the spheres coalesced to form larger spheres up to 10 micrometer in diameter. Further maturation and infilling of the spaces between spheres resulted in the formation of plates and sheets that substantially reduce the original porosity and permeability of the fractures. Peripheral to the silica deposits, fluid inclusions with high water/gas ratios provide a subtle record of interactions between the injectate and reservoir rocks. In contrast, fluid inclusions trapped prior to injection are relatively gas rich. These results suggest that the rocks undergo extensive microfracturing during injection and that the composition of the fluid inclusions will be biased toward the youngest event. Interactions between the reservoir rocks and injectate were modeled using the non-isothermal reactive geochemical transport code TOUGHREACT. Changes in fluid pH, fracture porosity, fracture permeability, fluid temperature, and mineral abundances were monitored. The simulations predict that amorphous silica will precipitate primarily within a few meters of the injection well and that mineral deposition will lead to rapid declines in fracture porosity and permeability, consistent with field observations. In support of Enhanced Geothermal System development, petrologic studies of Coso well 46A-19RD were conducted to determine the regions that are most likely to fail when stimulated. These studies indicate that the most intensely brecciated and altered rocks in the zone targeted for stimulation (below 10,000 ft (3048 m)) occur between 11,200 and 11,350 ft (3414 and 3459 m). This zone is interpreted as a shear zone that initially juxtaposed quartz diorite against granodiorite. Strong pervasive alteration and veining within the brecciated quartz diorite and granodiorite suggest this shear zone was permeable in the past. This zone of weakness was subsequently exploited by a granophyre dike whose top occurs at 11,350 ft (3459 m). The dike is unaltered. We anticipate, based on analysis of the well samples that failure during stimulation will most likely occur on this shear zone.

  1. Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hunt, Jonathan

    2013-01-31

    In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent for subsurface applications. Colloidal silica solutions exist as low-viscosity fluids during their “induction period” but then undergo a rapid increase in viscosity (gelation) to form a solid gel. The length of the induction period can be manipulated by varying the properties of the solution, such as silica concentration and colloid size. We believe it is possible to produce colloidal silica gels suitable for use as diverting agents for blocking undesirable fast-paths which result in short-circuiting the EGS once hydraulic fracturing has been deployed. In addition, the gels could be used in conventional geothermal fields to increase overall energy recovery by modifying flow.

  2. Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hunt, Jonathan

    In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent for subsurface applications. Colloidal silica solutions exist as low-viscosity fluids during their “induction period” but then undergo a rapid increase in viscosity (gelation) to form a solid gel. The length of the induction period can be manipulated by varying the properties of the solution, such as silica concentration and colloid size. We believe it is possible to produce colloidal silica gels suitable for use as diverting agents for blocking undesirable fast-paths which result in short-circuiting the EGS once hydraulic fracturing has been deployed. In addition, the gels could be used in conventional geothermal fields to increase overall energy recovery by modifying flow.

  3. Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hunt, Jonathan

    2013-01-31

    In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent for subsurface applications. Colloidal silica solutions exist as low-viscosity fluids during their “induction period” but then undergo a rapid increase in viscosity (gelation) to form a solid gel. The length of the induction period can be manipulated by varying the properties of the solution, such as silica concentration and colloid size. We believe it is possible to produce colloidal silica gels suitable for use as diverting agents for blocking undesirable fast-paths which result in short-circuiting the EGS once hydraulic fracturing has been deployed. In addition, the gels could be used in conventional geothermal fields to increase overall energy recovery by modifying flow.

  4. A History of Geothermal Energy Research and Development in the United States. Reservoir Engineering 1976-2006

    SciTech Connect (OSTI)

    Kennedy, B. Mack; Pruess, Karsten; Lippmann, Marcelo J.; Majer, Ernest L.; Rose, Peter E.; Adams, Michael; Roberston-Tait, Ann; Moller, Nancy; Weare, John; Clutter, Ted; Brown, Donald W.

    2010-09-01

    This report, the third in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in reservoir engineering and to make generation of electricity from geothermal resources more cost-competitive.

  5. Tectonic controls on fracture permeability in a geothermal reservoir at Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Hickman, S.; Zoback, M.

    1998-08-01

    To help determine the nature and origins of permeability variations within a fault-hosted geothermal reservoir at Dixie Valley, Nevada, the authors conducted borehole televiewer logging and hydraulic fracturing stress measurements in six wells drilled into the Stillwater fault zone at depths of 2--3 km. Televiewer logs from wells penetrating the highly permeable portion of the fault zone revealed extensive drilling-induced tensile fractures. As the Stillwater fault at this location dips S45{degree}E at {approximately} 53{degree} it is nearly at the optimal orientation for normal faulting in the current stress field. Hydraulic fracturing tests from these permeable wells show that the magnitude of S{sub hmin} is very low relative to the vertical stress S{sub v}. Similar measurements conducted in two wells penetrating a relatively impermeable segment of the Stillwater fault zone 8 and 20 km southwest of the producing geothermal reservoir indicate that the orientation of S{sub hmin} is S20{degree}E and S41{degree}E, respectively, with S{sub hmin}/S{sub v} ranging from 0.55--0.64 at depths of 1.9--2.2 km. This stress orientation is near optimal for normal faulting on the Stillwater fault in the northernmost non-producing well, but {approximately} 40{degree} rotated from the optimal orientation for normal faulting in the southernmost well. The observation that borehole breakouts were present in these nonproducing wells, but absent in wells drilled into the permeable main reservoir, indicates a significant increase in the magnitude of maximum horizontal principal stress, S{sub Hmax}, in going from the producing to non-producing segments of the fault. The increase in S{sub Hmaz}, coupled with elevated S{sub hmin}/S{sub v} values and a misorientation of the Stillwater fault zone with respect to the principal stress directions, leads to a decrease in the proximity of the fault zone to Coulomb failure. This suggests that a necessary condition for high reservoir permeability is that the Stillwater fault zone be critically stressed for frictional failure in the current stress field.

  6. Geothermal reservoir assessment, Roosevelt Hot Springs. Final report, October 1, 1977-June 30, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The geology, geophysics, and geothermal potential of the northern Mineral Mountains, located in Beaver and Millard Counties, Utah, are studied. More specifically, the commercial geothermal potential of lease holdings of the Geothermal Power Corporation is addressed.

  7. Mise-A-La-Masse Mapping of the HGP-A Geothermal Reservoir, Hawaii...

    Open Energy Info (EERE)

    confine geothermal fluids at depth. Authors James Kauahikaua, Mark Mattice and Dallas Jackson Conference GRC Annual Meeting; unknown; 19800901 Published Geothermal Resources...

  8. Summer 2012 National Geothermal Academy: Applications Due February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Geology and Geochemistry Geothermal Field Trips Geothermal Geophysics Drilling Engineering Reservoir Engineering Power Plant Design and Construction Environmental Policy ...

  9. National Geothermal Academy Underway at University of Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aspects of geothermal energy development and utilization. Modules include Geothermal Geology and Geochemistry, Geothermal Geophysics, Reservoir Engineering, and more. The...

  10. Fracture Permeability and in Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir

    SciTech Connect (OSTI)

    M. D. Zoback

    1999-03-08

    We have collected and analyzed fracture and fluid flow data from wells both within and outside the producing geothermal reservoir at Dixie Valley. Data from wellbore imaging and flow tests in wells outside the producing field that are not sufficiently hydraulically connected to the reservoir to be of commercial value provide both the necessary control group of fracture populations and an opportunity to test the concepts proposed in this study on a regional, whole-reservoir scale. Results of our analysis indicate that fracture zones with high measured permeabilities within the producing segment of the fault are parallel to the local trend of the Stillwater fault and are optimally oriented and critically stressed for frictional failure in the overall east-southeast extensional stress regime measured at the site. In contrast, in the non-producing (i.e., relatively impermeable:) well 66-21 the higher ratio of S{sub hmin} to S{sub v} acts to decrease the shear stress available to drive fault slip. Thus, although many of the fractures at this site (like the Stillwater fault itself) are optimally oriented for normal faulting they are not critically stressed for frictional failure. Although some of the fractures observed in the non-producing well 45-14 are critically stressed for frictional failure, the Stillwater fault zone itself is frictionally stable. Thus, the high horizontal differential stress (i.e., S{sub Hmax}-S{sub hmin}) together with the severe misorientation of the Stillwater fault zone for normal faulting at this location appear to dominate the overall potential for fluid flow.

  11. An evaluation of the deep reservoir conditions of the Bacon-Manito geothermal field, Philippines using well gas chemistry

    SciTech Connect (OSTI)

    D'Amore, Franco; Maniquis-Buenviaje, Marinela; Solis, Ramonito P.

    1993-01-28

    Gas chemistry from 28 wells complement water chemistry and physical data in developing a reservoir model for the Bacon-Manito geothermal project (BMGP), Philippines. Reservoir temperature, THSH, and steam fraction, y, are calculated or extrapolated from the grid defined by the Fischer-Tropsch (FT) and H2-H2S (HSH) gas equilibria reactions. A correction is made for H2 that is lost due to preferential partitioning into the vapor phase and the reequilibration of H2S after steam loss.

  12. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Geothermal - GeothermalTara Camacho-Lopez2015-04-29T22:15:16+00:00 geothermal_leamstest Sandia's work in drilling technology is aimed at reducing the cost and risk associated with drilling in harsh, subterranean environments. The historical focus of the drilling research has been directed at significantly expanding the nation's utilization of geothermal energy. This focus in geothermal related drilling research is the search for practical solutions

  13. Three-dimensional Modeling of Fracture Clusters in Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs;...

  14. Session: Geopressured-Geothermal

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  15. Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir

    Broader source: Energy.gov [DOE]

    Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

  16. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search × Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Publication Date: to Update Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest to oldest) Legacy/Non-Legacy: All Legacy Non-Legacy Close Clear All

  17. Zunil Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. 3.0 3.1 Francisco Asturias. 2003. Reservoir assessment...

  18. Geothermal FAQs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Basics » Geothermal FAQs Geothermal FAQs Read our frequently asked questions and their answers to learn more about the use of geothermal energy. What are the benefits of using geothermal energy? Why is geothermal energy a renewable resource? Where is geothermal energy available? What are the environmental impacts of using geothermal energy? What is the visual impact of geothermal technologies? Is it possible to deplete geothermal reservoirs? How much does

  19. Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity

    Broader source: Energy.gov [DOE]

    This project will develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics; finite element modeling; geo-statistical concepts to establish relationships between micro-seismicity; reservoir flow and geomechanical characteristics.

  20. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  1. Evaluation of potential geothermal reservoirs in central and western New York state. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    Computer processes geophysical well logs from central and western New York State were analyzed to evaluate the potential of subsurface formations as a source for low-temperature geothermal water. The analysis indicated that porous sandstone sections at the top of the Ordovician Theresa Formation and at the base of the Cambrian Potsdam Formation have the required depth, porosity, and permeability to act as a source for geothermal fluids over a relatively large area in the central part of the state. The fluid potential plus an advantageous geothermal gradient and the results of the test well drilled in the city of Auburn in Cayuga County suggest that low temperature geothermal energy may be a viable alternative to other more conventional forms of energy that are not indigenous to New York State.

  2. Evaluation of potential geothermal reservoirs in central and western New York State. Volume 3. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    Computer processed geophysical well logs from central and western New York State were analysed to evaluate the potential of subsurface formations as a source for low-temperature geothermal water. The analysis indicated that porous sandstone sections at the top of the Ordovician Theresa Formation and at the base of the Cambrian Potsdam Formation have the required depth, porosity, and permeability to act as a source for geothermal fluids over a relatively large area in the central part of the state. The fluid potential plus an advantageous geothermal gradient and the results of the test well drilled in the city of Auburn in Cayuga County suggest that low temperature geothermal energy may ba a viable alternative to other more conventional forms of energy that not indigenous to New York State.

  3. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal - Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). Permalink Gallery Australian Renewable-Energy Official Visits Sandia Concentrating Solar Power, EC, Energy, Geothermal, News, News & Events, Photovoltaic, Renewable Energy, Solar, Water Power, Wind Energy Australian Renewable-Energy Official Visits Sandia Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). At the end of June,

  4. Application of geochemical techniques to deduce the reservoir performance of the Palinpinon Geothermal Field, Philippines - an update

    SciTech Connect (OSTI)

    Ramos-Candelaria, M.N.; Garcia, S.E.; Hermoso, D.Z.

    1997-12-31

    Regular monitoring of various geochemical parameters in the water and vapor phases of the production wells at the Palinpinon I and II sectors of the Southern Negros Geothermal Field have been useful in the identification of the dominant reservoir processes occurring related to the present exploitation strategy. Observed geochemical and physical changes in the output of production wells have dictated production and injection strategies adopted to maximize production to meet the steam requirements of the power plant. Correlation of both physical and chemical data have identified the following reservoir processes: (1) Injection breakthrough via the Ticala Fault of the highly mineralized (Cl {approximately}8,000-10,500 mg/kg), isotopically enriched ({delta}{sup 18}O = -3.00{per_thousand}, {delta}{sup 2} H = -39{per_thousand}), and gas depleted brine for wells in the SW and central Puhagan. Injection breakthrough is also occurring in Palinpinon II and has resulted in temperature drops of 5-10{degrees}C.2. Pressure drawdown enhanced boiling in the liquid reservoir with steam separation of 220-240{degrees}C, feeding wells tapping the natural steam zone. However, enhanced drawdown has induced the entry of shallow acid steam condensate fluids in some wells (e.g. OK-7, PN-29D, PN-18D), which if not arrested could reduce production.

  5. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect (OSTI)

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  6. Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir

    SciTech Connect (OSTI)

    Einstein, Herbert; Vecchiarelli, Alessandra

    2014-05-01

    GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, GEOFRAC was further developed into GEOFRAC-FLOW as has been reported in the reports, “Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for Geothermal Systems - Fracture Flow Modeling”. GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.

  7. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  8. Simulation and resistivity modeling of a geothermal reservoir with waters of different salinity

    SciTech Connect (OSTI)

    Pruess, K.; Wilt, M.; Bodvarsson, G.S.; Goldstein, N.E.

    1982-10-01

    Apparent resistivities measured by means of repetitive dipole-dipole surveys show significant changes within the Cerro Prieto reservoir. The changes are attributed to production and natural recharge. To better understand the observed geophysical phenomena a simple reservoir simulation study combined with the appropriate DC resistivity calculations to determine the expected magnitude of apparent resistivity change. We consider production from a liquid-dominated reservoir with dimensions and parameters of the Cerro Prieto A reservoir and assume lateral and vertical recharge of colder and less saline waters. Based on rather schematic one- and two-dimensional reservoir simulations, we calculate changes in formation resistivity which we then transform into changes in apparent resistivity that would be observed at the surface. Simulated changes in apparent resistivities over the production zone show increases of 10 to 20% over a 3 year period at the current rate of fluid extraction. Changes of this magnitude are not only within our ability to discern using proper field techniques, but are consistent in magnitude with some of the observed effects. However, the patterns of apparent resistivity changes in the simulated dipole-dipole pseudosection only partially resemble the observed field data. This is explained by the fact that the actual fluid recharge into the A reservoir is more complicated than assumed in our simple, schematic recharge models.

  9. Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems.

  10. Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal System ...

  11. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  12. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Sites at McGee Mountain, Nevada

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: To evaluate the cost-effectiveness of two innovative technologies in early-stage geothermal exploration:a) shallow (2m) survey; b) hydroprobe; and Identify a geothermal resource at the project site.

  13. Geothermal Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Basics Geothermal Basics Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal energy-geo (earth) + thermal (heat)-is heat energy from the earth. What is a geothermal resource? Geothermal resources are reservoirs of hot water

  14. Geothermal Technologies Office 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | US DOE Geothermal Office eere.energy.gov Geothermal Technologies Office 2015 Peer Review Sustainability of Shear-Induced Permeability for EGS Reservoirs - A Laboratory...

  15. Enhanced Geothermal Systems Roadmap Workshops | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Workshops Enhanced Geothermal Systems Roadmap Workshops June 21, 2011 - 2:50pm Addthis Enhanced Geothermal Systems (EGS) are engineered or enhanced reservoirs created to...

  16. Redfield Campus Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  17. Rhodes Marsh Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  18. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  19. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980

    SciTech Connect (OSTI)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1980-07-01

    Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greater proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.

  20. Lahaina-Kaanapali Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Exploration Region: Hawaii Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp:...

  1. Dead Horse Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Transition Zone Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS...

  2. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon reservoir_031_horne.pdf More Documents &

  3. Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon seismic_025_fehler.pdf More Documents & Publications Analysis of Geothermal

  4. What is an Enhanced Geothermal System (EGS)? Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-14

    This Geothermal Technologies Office fact sheet explains how engineered geothermal reservoirs called Enhanced Geothermal Systems are used to produce energy from geothermal resources that are otherwise not economical due to a lack of fluid and/or permeability.

  5. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  6. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for ...

  7. Shakes Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Region: Alaska Geothermal Region GEA Development Phase: Coordinates: 56.71765648, -132.0025034 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean...

  8. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect (OSTI)

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

  9. Classification of Geothermal Systems: A Possible Scheme | Open...

    Open Energy Info (EERE)

    of Geothermal Systems: A Possible Scheme Abstract Abstract unavailable. Author Subir K. Sanyal Conference Thirtieth Workshop on Geothermal Reservoir Engineering; Stanford,...

  10. Oregon: DOE Advances Game-Changing EGS Geothermal Technology...

    Energy Savers [EERE]

    demonstration project, at Newberry Volcano near Bend, Oregon, represents a key step in geothermal energy development, demonstrating that an engineered geothermal reservoir can...

  11. Property:Geothermal/TargetsMilestones | Open Energy Information

    Open Energy Info (EERE)

    reservoir models and define drilling targets. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Mine waters will...

  12. Fracture Characterization in Enhanced Geothermal Systems by Wellbore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced Geothermal Systems by Wellbore and...

  13. Enthalpy and mass flowrate measurements for two-phase geothermal...

    Open Energy Info (EERE)

    distribution which exists in most geothermal areas. Authors Hirtz, P.; Lovekin, J.; Copp, J.; Buck, C.; Adams and M. Published Eighteenth workshop on geothermal reservoir...

  14. An investigation of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    geothermal field, Nevada, using temporal moment analysis of tracer tests Author Marshall J. Reed Conference Proceedings, 32nd Workshop on Geothermal Reservoir Engineering;...

  15. Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal...

    Open Energy Info (EERE)

    natural fractures at low pressures, and to create a geothermal reservoir. Authors Albert Genter and Herve Traineau Published Journal Journal of Volcanology and Geothermal...

  16. Geothermal Direct-Use — Minimizing Land Use and Impact

    Broader source: Energy.gov [DOE]

    With geothermal direct-use applications, land use issues usually only arise during exploration and development when geothermal reservoirs are located in or near urbanized areas, critical habitat...

  17. Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: to characterize the geothermal reservoir using novel technologies and integrating this information into a 3D geologic and reservoir model numerical model to determine the efficacy of future geothermal production.

  18. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect (OSTI)

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  19. Testing geopressured geothermal reservoirs in existing wells. Final report P. R. Girouard Well No. 1, Lafayette Parish, Louisiana. Volume I. Completion and testing

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The P.R. Girouard No. 1 Well, located approximately 10 miles southeast of Lafayette, Louisiana, was the fourth successful test of a geopressured-geothermal aquifer under the Wells of Opportunity program. The well was tested through 3-1/2 inch tubing set on a packer at 14,570 feet without major problems. The geological section tested was the Oligocene Marginulina Texana No. 1 sand of upper Frio age. The interval tested was from 14,744 to 14,819 feet. Produced water was piped down a disposal well perforated from 2870 to 3000 feet in a Miocene saltwater sand. Four flow tests were conducted for sustained production rates of approximately 4000 BWPD to approximately 15,000 BWPD. The highest achieved, during a fifth short test, was 18,460 BWPD. The test equipment was capable of handling higher rates. The gas-to-water ratio was relatively uniform at approximately 40 SCF/bbl. The heating value of the gas is 970 Btu/SCF. The reservoir tests show that is is doubtful that this well would sustain production rates over 10,000 BWPD for any lengthy period from the sand zone in which it was completed. This limited flow capacity is due to the well's poor location in the reservoir and is not a result of any production deficiencies of the Marginulina Texana sand.

  20. Property:USGSMeanReservoirTemp | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Property Name USGSMeanReservoirTemp Property Type Temperature Description Mean estimated reservoir temperature at location based on the USGS 2008 Geothermal...

  1. IPGT Reservoir Modeling Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPGT Reservoir Modeling Working Group Summary of recommendations and geothermal reservoir benchmarking workshop PDF icon gtp2012peerreviewreservoirmodeling.pdf More Documents & ...

  2. Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...

    Open Energy Info (EERE)

    Reservoirs- an Analysis of Tracer-Determined Residence Time Distributions Abstract A methodology for analyzing the internal flow characteristics of a fractured geothermal reservoir...

  3. Towards the Understanding of Induced Seismicity in Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the reservoir and the surrounding country rock * To investigate relationship between ... crack opening due to cooling of reservoir rock from slip events 15 | US DOE Geothermal ...

  4. Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) Exploration Activity...

  5. Pueblo of Jemez Geothermal Feasibility Study

    Energy Savers [EERE]

    Geothermal Feasibility Study Presented by Steve Blodgett Director Pueblo of Jemez Department of Resource Protection POJ Geothermal Feasibility Study 2 Background Project funded by DOE under contract DE-FC36-02G012104 Previous studies in 1988, 1990, 1991, 1992 Evaluating geothermal potential of Red Rocks area on northern Jemez Reservation (this study) POJ Geothermal Feasibility Study 3 Study Organization Phase I- Geothermal Reservoirs and Geothermal Drilling at Jemez Pueblo by Jim Witcher,

  6. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  7. California Division of Oil, Gas, and Geothermal Resources | Open...

    Open Energy Info (EERE)

    reservoirs. Division requirements encourage wise development of California's oil, gas, and geothermal resources while protecting the environment.2 References "CDOGGR...

  8. Geothermal Today - 2001

    SciTech Connect (OSTI)

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  9. Appendix F - GPRA06 geothermal technologies program documentation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The primary goal of the Geothermal Technologies Program is to reduce the cost of geothermal generation technologies, including both conventional and enhanced geothermal systems (EGS). EGS are defined as geothermal systems where the reservoir requires substantial engineering manipulation to make using the reservoir economically feasible.

  10. Australia's Geothermal Developments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Australia's Geothermal Developments Australia's Geothermal Developments Australia presentation at the 2012 Annual Peer Review Meeting. PDF icon gtp_2012peerreview_australia.pdf More Documents & Publications 2008 Geothermal Technologies Market Report IPGT Reservoir Modeling Working Group International Partnership for Geothermal Technology - 2012 Peer Review Presentation

  11. Geothermal Direct Use | Open Energy Information

    Open Energy Info (EERE)

    Utah, is one of the many greenhouses nationwide that benefit from the direct use of geothermal energy. Geothermal reservoirs of hot water, which are found a few miles or more...

  12. Geothermal Electricity Production Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep within the Earth and produces minimal emissions. Photo credit: Pacific Gas & Electric Heat from the earth-geothermal energy-heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of

  13. How an Enhanced Geothermal System Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Enhanced Geothermal System Works How an Enhanced Geothermal System Works The Potential Enhanced Geothermal Systems (EGS), also sometimes called engineered geothermal systems, offer great potential for dramatically expanding the use of geothermal energy. Present geothermal power generation comes from hydrothermal reservoirs, and is somewhat limited in geographic application to specific ideal places in the western U.S. This represents the 'low-hanging fruit' of geothermal energy potential. EGS

  14. Well Log Data At Dixie Valley Geothermal Area (Mallan, Et Al...

    Open Energy Info (EERE)

    conducted to help characterize the geothermal reservoir by employing electromagnetic induction logging. The goal was to discern subsurface features that are useful in geothermal...

  15. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  16. Geothermal Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth....

  17. Geothermal/Well Field | Open Energy Information

    Open Energy Info (EERE)

    Reservoirs General Techniques Tree Techniques Table Regulations & Permitting NEPA (47) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's...

  18. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  19. Updating the Classification of Geothermal Resources - Presentation...

    Open Energy Info (EERE)

    - Presentation Abstract Abstract unavailable. Authors Colin F. Williams and Marshall J. Reed and Arlene F. Anderson Conference Thirty-Sixth Workshop on Geothermal Reservoir...

  20. Innovative Exploration Techniques for Geothermal Assessment at...

    Open Energy Info (EERE)

    This collaborative project will perform the following tasks to fully define the nature and extent of the geothermal reservoir underlying the Jemez Reservation: - Conduct...

  1. Stanford Geothermal Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Geothermal Workshop Stanford Geothermal Workshop February 22, 2016 8:00AM EST to February 24, 2016 6:00PM EST The goals of the conference are to bring together engineers, scientists and managers involved in geothermal reservoir studies and developments; provide a forum for the exchange of ideas on the exploration, development and use of geothermal resources; and to enable prompt and open reporting of progress. We strongly encourage all scientists and engineers involved in geothermal

  2. NREL: Learning - Geothermal Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal energy-escapes as steam at a hot springs in Nevada. Many technologies have been developed to take advantage of geothermal energy-the heat from the earth. This heat can be drawn from several sources: hot water or steam reservoirs deep in the earth that are accessed by drilling; geothermal reservoirs located near the earth's surface, mostly located in the western U.S., Alaska, and Hawaii; and the shallow ground near

  3. Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity ...

  4. Geothermal well log interpretation state of the art. Final report

    SciTech Connect (OSTI)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  5. Geothermal Technologies Offce

    Broader source: Energy.gov (indexed) [DOE]

    near-term 8 cutting-edge 8 clean hydrothermal 8 innovative exploration 8 economically attractive 8 cascading systems 8 coproduced low-temperature 8 synergies 8 strategic minerals initiative 8 play fairway analysis 8 increase value stream 8 reservoir maintenance 30 GWe potential 8 advanced tools 2013 Annual Report Geothermal Technologies Offce February 2014 8 transformative science 8 enhanced geothermal systems demonstration 8 deployment 8 technical solutions 8 tracers 3D imaging 8 reduce cost

  6. Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon reservoir_033_rose.pdf More Documents & Publications Tracer Methods

  7. track 1: systems analysis | geothermal 2015 peer review | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy At the 2015 Peer Review in May, the Energy Department's Geothermal Technologies Office (GTO) introduced nine Energy Department-funded Systems Analysis projects for review. Research teams pursue and evaluate vital geothermal technical data that can help to locate geothermal reservoirs, target drilling, and tap geothermal systems for energy production. Innovative geothermal tools and applications under development through this portfolio can help reduce the cost and risk of geothermal

  8. NREL: Geothermal Technologies Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technologies Photo of a red-hot pool of molten lava within a broad lava bed and with snow-capped peaks in the distance. Geothermal energy taps the heat from beneath the earth's surface to generate electricity. Existing reservoirs of steam or hot water are brought to the surface to power electrical generators throughout the Western United States. In the future, the intense heat deep below the surface will be accessed for electricity generation by the advanced engineering of reservoirs

  9. National Geothermal Academy Underway at University of Nevada, Reno

    Broader source: Energy.gov [DOE]

    The National Geothermal Academy is an eight-week intensive summer course in all aspects of geothermal energy development and utilization. Modules include Geothermal Geology and Geochemistry, Geothermal Geophysics, Reservoir Engineering, and more. The schedule for this summer is June 18 to August 10, 2012.

  10. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Office of Environmental Management (EM)

    Fact Sheet Enhanced Geothermal System (EGS) Fact Sheet Overview of Enhanced Geothermal Systems. PDF icon egs_calpine_peer2013.pdf More Documents & Publications Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California EA-1733: Final Environmental Assessment Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

  11. Recovery act. Characterizing structural controls of EGS-candidate and conventional geothermal reservoirs in the Great Basin. Developing successful exploration strategies in extended terranes

    SciTech Connect (OSTI)

    Faulds, James

    2015-06-25

    We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells, and selecting the best EGS sites.

  12. Chemistry, Reservoir, and Integrated Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry, Reservoir, and Integrated Models Chemistry, Reservoir, and Integrated Models Below are the project presentations and respective peer review results for Chemistry, Reservoir and Integrated Models. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems (EGS), Marte Gutierrez and Masami Nakagawa, Colorado School of Mines Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal

  13. Three-dimensional Modeling of Fracture Clusters in Geeothermal Reservoirs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Geeothermal Reservoirs Three-dimensional Modeling of Fracture Clusters in Geeothermal Reservoirs Three-dimensional Modeling of Fracture Clusters in Geeothermal Reservoirs presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon ghassemi_factures_peer2013.pdf More Documents & Publications Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs; 2010

  14. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Project Summary. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate quantitative characterization of temperature distributions and surface area available for heat transfer in EGS.

  15. Characterizing Structural Controls of EGS Candidate and Conventional Geothermal Reservoirs in the Great Basin: Developing Successful Exploration Strategies in Extended Terranes

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop catalogue of favorable structural environments and models; improve site-specific targeting of resources through detailed studies of representative sites; and compare structural controls and models in different tectonic settings.

  16. Assessing geothermal energy potential in upstate New York. Final report

    SciTech Connect (OSTI)

    Hodge, D.S.

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  17. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    br Brophy br Model br Moeck br Beardsmore br Type br Volume br Geothermal br Region Mean br Reservoir br Temp br Mean br Capacity Abraham Hot Springs Geothermal Area Northern Basin...

  18. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    of at least 150C for the inferred geothermal reservoir. References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain,...

  19. Geothermal reservoir well stimulation symposium

    SciTech Connect (OSTI)

    Crichlow, H.B.

    1980-02-07

    Ten papers are included. One was abstracted previuosly. Separate abstracts were prepared for nine. (MHR)

  20. NREL: Learning - Geothermal Electricity Production Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Production Basics Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry Steam Dry steam

  1. GETEM-Geothermal Electricity Technology Evaluation Model

    Broader source: Energy.gov [DOE]

    A guide to providing input to GETEM, the Geothermal Electricity Technology Evaluation Model. GETEM is designed to help the Geothermal Technologies Program of the U.S. Department of Energy in estimating some of the technical and economic values of its research projects and subprograms. The tool is intended to estimate and summarize the performance and cost of various geothermal electric power systems at geothermal reservoirs with a wide variety of physical characteristics.

  2. Geothermal program review 16: Proceedings. A strategic plan for geothermal research

    SciTech Connect (OSTI)

    1998-12-31

    The proceedings contain 21 papers arranged under the following topical sections: Exploration technology (4 papers); Reservoir technology (5 papers); Energy conversion technology (8 papers); Drilling technology (2 papers); and Direct use and geothermal heat pump technology (2 papers). An additional section contains a report on a workshop on dual-use technologies for hydrothermal and advanced geothermal reservoirs.

  3. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  4. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (OSTI)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  5. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  6. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  7. A Simple, Fast Method of Estimating Fractured Reservoir Geometry...

    Open Energy Info (EERE)

    Fractured Reservoir Geometry from Tracer Tests Abstract A simple method of estimating flow geometry and pore geometry from conservative tracer tests in single phase geothermal...

  8. Cuttings Analysis At Imperial Valley Geothermal Area (1976) ...

    Open Energy Info (EERE)

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  9. Cuttings Analysis At Marysville Mountain Geothermal Area (1976...

    Open Energy Info (EERE)

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  10. Cuttings Analysis At Jemez Mountain Geothermal Area (1976) |...

    Open Energy Info (EERE)

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  11. Cuttings Analysis At Geysers Geothermal Area (1976) | Open Energy...

    Open Energy Info (EERE)

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  12. Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976...

    Open Energy Info (EERE)

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  13. Cuttings Analysis At Bacca Ranch Geothermal Area (1976) | Open...

    Open Energy Info (EERE)

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  14. Analytical Modeling At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    fluid data from 10 wells were used to better understand the fluid compostion and thermal history of the Redonodo (Baca) geothermal reservoir. Notes Results indicate the presence...

  15. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    fluid data from 10 wells were used to better understand the fluid compostion and thermal history of the Redonodo (Baca) geothermal reservoir. Notes Results indicate the presence...

  16. Temporal Velocity Variations beneath the Coso Geothermal Field...

    Open Energy Info (EERE)

    Double Difference Tomography of Compressional and Shear Wave Arrival Times Abstract Microseismic imaging can be an important tool for characterizing geothermal reservoirs....

  17. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal...

    Open Energy Info (EERE)

    Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Jump to: navigation, search OpenEI Reference...

  18. Energy Department Announces $10 Million to Speed Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    characterization for enhanced geothermal systems (EGS) by developing state-of-the-art methods that quantify critical underground reservoir properties as they change over time. ...

  19. Exploration Guides For Active High-Temperature Geothermal Systems...

    Open Energy Info (EERE)

    field (or ore deposit), iv) hydrothermal fluids and their surface expression, and v) geothermal reservoirs as against epithermal orebodies, have enabled us to formulate...

  20. Micro-Earthquake At Coso Geothermal Area (2005) | Open Energy...

    Open Energy Info (EERE)

    at The Geysers and Coso Geothermal Reservoirs by Shear-wave Splitting, Rial, Elkibbi, Yang and Pereyra. The raw data for the project consists of seismographic recordings of...

  1. Colorado Firm Develops Innovative Materials for Geothermal Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The company developed materials designed to create and conserve geothermal reservoirs in harsh down-hole environments to produce energy. Composite used an innovative polymer ...

  2. Advances In The Past 20 Years- Geochemistry In Geothermal Exploration...

    Open Energy Info (EERE)

    The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  3. Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...

    Open Energy Info (EERE)

    R. G. Allis, P. Gettings, D. S. Chapman (2000) Precise Gravimetry and Geothermal Reservoir Management Additional References Retrieved from "http:en.openei.orgw...

  4. Conceptual Model At Dixie Valley Geothermal Area (Bell, Et Al...

    Open Energy Info (EERE)

    to interpret the subsurface down to 20 km. References Elaine J. Bell, Lawrence T. Larson, Russell W. Juncal (1980) Geothermal Reservoir Assessment Case Study, Northern Basin...

  5. Conceptual Model At Salton Sea Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    of thermal depletion model to geothermal reservoirs with fracture and pore permeability Additional References Retrieved from "http:en.openei.orgwindex.php?titleConcep...

  6. Active Faulting in the Coso Geothermal Field, Eastern California...

    Open Energy Info (EERE)

    and seismogenic deformation above the shallow BDT may contribute to development of permeability in the geothermal reservoir, and provide pathways for upward circulation of...

  7. Field Mapping At Coso Geothermal Area (2006) | Open Energy Information

    Open Energy Info (EERE)

    Basis Determine impact of brittle faulting and seismogenic deformation on permeability in geothermal reservoir Notes New mapping documents a series of late Quaternary...

  8. Active Faulting in the Coso Geothermal Field- Eastern California...

    Open Energy Info (EERE)

    and seismogenic deformation above the shallow BDT may contribute to development of permeability in the geothermal reservoir, and provide pathways for upward circulation of...

  9. Fluid Imaging of Enhanced Geothermal Systems through Joint 3D...

    Open Energy Info (EERE)

    reservoirs that have been created to extract economical amounts of heat from low permeability andor porosity geothermal resources. Critical to the success of EGS is the...

  10. Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    purpose of this research activity was to determine the fluid and heat source, Identify flow paths, and evaluate the possibility of a more extensive deep geothermal reservoir...

  11. Property:Geothermal/Partner4Website | Open Energy Information

    Open Energy Info (EERE)

    + C Complete FiberCopper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http:...

  12. Property:Geothermal/Partner6Website | Open Energy Information

    Open Energy Info (EERE)

    property. C Complete FiberCopper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http:...

  13. Structural Analysis of the Desert Peak-Brady Geothermal Fields...

    Open Energy Info (EERE)

    Structures and Geothermal Reservoirs in the Humboldt Structural Zone Citation James E. Faulds,Larry J. Garside,Gary L. Oppliger. 2003. Structural Analysis of the Desert...

  14. track 2: hydrothermal | geothermal 2015 peer review | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Inability to accurately predict temperature and permeability of the geothermal reservoir from the surface is a major cost and exploration risk for geothermal systems. While the majority of known geothermal resources across America have been identified, the USGS predicts that more than 30 gigawatts of geothermal energy potential - enough to power about 30 million homes - resides deep in the earth in "blind" geothermal systems, without any manifestation on the surface. Research

  15. Reservoir Modeling Working Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting Reservoir Modeling Working Group Meeting Reservoir Modeling working group meeting presentation on May 10, 2012 at the 2012 Peer Review Meeting. PDF icon gtp_2012peerreview_reservoir_modeling_wg.pdf More Documents & Publications Welcome to the Geothermal Technologies Program 2012 Annual Peer Review Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions Stanford Geothermal Workshop 2012 Annual Meeting

  16. About Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About About Geothermal The Geothermal Technologies Legacy Collection is available to the geothermal community and interested members of the public who may use this site and its search and knowledge tools to stay better informed of developments in geothermal technology and to gain insights learned from studies in the field since the 1970s. By searching the Geothermal Technologies Legacy Collection, users can expect to find a wealth of geothermal citations and reports from various resources

  17. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005)...

  18. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, New Zealand (Ranalli & Rybach, 2005)...

  19. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration...

  20. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Environmental Management (EM)

    More Documents & Publications Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Iceland Geothermal Conference 2013 - Geothermal...

  1. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  2. Geothermal energy production with supercritical fluids

    DOE Patents [OSTI]

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  3. Final Scientific - Technical Report, Geothermal Resource Exploration...

    Open Energy Info (EERE)

    lower part of this sedimentary section is sand-rich, suggesting good potential for a sediment-hosted geothermal reservoir in porous sands, similar to other fields in the region...

  4. EMPLOYMENT IMPACTS OF GEOTHERMAL ELECTRIC PROJECTS

    Office of Scientific and Technical Information (OSTI)

    ... It did not include estimates for the costs or jobs associated with the geothermal field. The plant cost was estimated for a 400 degree-F reservoir with minimal brine chemistry ...

  5. GPFA-AB_Phase1ReservoirTask2DataUpload

    SciTech Connect (OSTI)

    Teresa E. Jordan

    2015-10-22

    This submission to the Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) in support of Phase 1 Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. The files included in this zip file contain all data pertinent to the methods and results of this task’s output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified using a new metric, Reservoir Productivity Index, as explained in the Reservoirs Methodology Memo (included in zip file). Shapefile and images of the Reservoir Productivity and Reservoir Uncertainty are included as well.

  6. Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric...

    Open Energy Info (EERE)

    Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric Power-Station Abstract Man-made, hot dry rock (HDR) geothermal energy reservoirs have been investigated for over...

  7. High-Temperature Circuit Boards for use in Geothermal Well Monitoring...

    Open Energy Info (EERE)

    these deep wells to create geothermal reservoirs is referred to as Enhanced Geothermal System (EGS). An important near-term need for the EGS community is data-logging tools that...

  8. California: Next-Generation Geothermal Demonstration Launched | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Next-Generation Geothermal Demonstration Launched California: Next-Generation Geothermal Demonstration Launched August 21, 2013 - 12:00am Addthis At the outer edges of the largest operating geothermal field in the world, the Energy Department and project partner Calpine Corporation achieved the nation's first sustained enhanced geothermal system (EGS) demonstration success in 2012. The Geysers EGS Demonstration project successfully created a new and distinct reservoir, yielding

  9. Colorado Firm Develops Innovative Materials for Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Firm Develops Innovative Materials for Geothermal Systems Colorado Firm Develops Innovative Materials for Geothermal Systems April 18, 2013 - 12:00am Addthis With support from EERE, Composite Technology Development, Inc. advanced several technologies related to geothermal energy extraction. The company developed materials designed to create and conserve geothermal reservoirs in harsh down-hole environments to produce energy. Composite used an innovative polymer material

  10. Energy 101: Geothermal Energy | Department of Energy

    Office of Environmental Management (EM)

    Geothermal Energy Energy 101: Geothermal Energy

  11. Geothermal Tomorrow

    Broader source: Energy.gov [DOE]

    This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of technologies and economics of the U.S. geothermal industry.

  12. Performance testing the Phase 2 HDR reservoir

    SciTech Connect (OSTI)

    Ponden, R.F.; Dreesen, D.S. ); Thomson, J.C. )

    1991-01-01

    The geothermal energy program at the Los Alamos National Laboratory is directed toward developing the Hot Dry Rock (HDR) technology as an alternate energy source. Positive results have been obtained in previous circulation tests of HDR reservoirs at the Laboratory's test site in Fenton Hill, New Mexico. There still remains however, the need to demonstrate that adequate geothermal energy can be extracted in an efficient manner to support commercial power production. This year, the Laboratory will begin a circulation test of its Phase 2, reservoir. The objectives of this test are to characterize steady-state power production and long-term reservoir performance. 6 refs., 2 figs., 3 tabs.

  13. Corrosion reference for geothermal downhole materials selection

    SciTech Connect (OSTI)

    Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

    1983-03-01

    Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

  14. The US Hot Dry Rock Program-20 Years of Experience in Reservoir...

    Open Energy Info (EERE)

    The US Hot Dry Rock Program-20 Years of Experience in Reservoir Testing Author Donald Brown Conference World Geothermal Congress; Florence, Italy; 19950101 Published...

  15. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  16. GEOTHERMAL A N D HEAVY-OIL RESOURCES I N TEXAS TOPICAL REPORT

    Office of Scientific and Technical Information (OSTI)

    about the size and productivity of individual geothermal reservoirs, low prices for natural gas, flat demand for electricity, higher rate of return from competing energy...

  17. An Integrated Model For The Geothermal Field Of Milos From Geophysical...

    Open Energy Info (EERE)

    that other similar geothermal reservoirs may be found in the island. Authors M. Fytikas, J. D. Garnish, V. R. S. Hutton, E. Staroste and J. Wohlenberg Published Journal...

  18. Mise-A-La-Masse At Kilauea East Rift Geothermal Area (Kauahikaua...

    Open Energy Info (EERE)

    likely consist of dike complexes. References James Kauahikaua, Mark Mattice, Dallas Jackson (1980) Mise-A-La-Masse Mapping of the HGP-A Geothermal Reservoir, Hawaii Additional...

  19. Well Log Data At Dixie Valley Geothermal Area (Barton, Et Al...

    Open Energy Info (EERE)

    Exploration Basis Well log data was used to investigate the relationship between permeability and the contemporary in situ stress field in the Dixie Valley Geothermal Reservoir....

  20. Stanford Geothermal Workshop - Geothermal Technologies Office | Department

    Energy Savers [EERE]

    of Energy - Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013. PDF icon stanford_2013_hollett.pdf More Documents & Publications Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Geothermal Technologies Program GRC

  1. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy (Redirected from Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  2. U.S. and Australian Advanced Geothermal Projects Face Setbacks | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy U.S. and Australian Advanced Geothermal Projects Face Setbacks U.S. and Australian Advanced Geothermal Projects Face Setbacks September 9, 2009 - 2:15pm Addthis Efforts to develop and commercialize a new type of geothermal energy, called Enhanced Geothermal Systems (EGS), are facing technical setbacks in both the United States and Australia. EGS involves injecting water at high pressure into deep, hot rock formations to fracture the rock, creating either a new geothermal reservoir

  3. Oregon: DOE Advances Game-Changing EGS Geothermal Technology at the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newberry Volcano | Department of Energy DOE Advances Game-Changing EGS Geothermal Technology at the Newberry Volcano Oregon: DOE Advances Game-Changing EGS Geothermal Technology at the Newberry Volcano April 9, 2013 - 12:00am Addthis The AltaRock Enhanced Geothermal Systems (EGS) demonstration project, at Newberry Volcano near Bend, Oregon, represents a key step in geothermal energy development, demonstrating that an engineered geothermal reservoir can be developed at a greenfield site.

  4. DOE Offers Loan Guarantees to Geothermal Projects in Nevada and Oregon |

    Office of Environmental Management (EM)

    Department of Energy Loan Guarantees to Geothermal Projects in Nevada and Oregon DOE Offers Loan Guarantees to Geothermal Projects in Nevada and Oregon June 16, 2010 - 2:19pm Addthis Photo of a geothermal power plant. DOE recently offered loan guarantees for geothermal power projects located in northwestern Nevada and southeastern Oregon, drawing on funds from the American Reinvestment and Recovery Act. Geothermal power plants generally draw on underground reservoirs of hot water or steam,

  5. A History of Geothermal Energy Research and Development in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States: Reservoir Engineering 1976-2006 | Department of Energy Reservoir Engineering 1976-2006 A History of Geothermal Energy Research and Development in the United States: Reservoir Engineering 1976-2006 This report summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in reservoir engineering and to make generation of electricity from geothermal resources more cost-competitive. PDF icon

  6. Neutron imaging for geothermal energy systems

    SciTech Connect (OSTI)

    Bingham, Philip R; Anovitz, Lawrence {Larry} M; Polsky, Yarom

    2013-01-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  7. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy...

  8. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  9. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  10. Geothermal hydrothermal

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal hydrothermal section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  11. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    Office of Scientific and Technical Information (OSTI)

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-84 SG P-TR-- 8 4 DE85 011582 PROCEEDINGS OF THE TENTH WORKSHOP ON GEOTHERMAL RESERVOIR ENGINEERING Stanford Un iver s i t y Stanford, California January 22-24, 1985 p$'/ 5 c u d DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or

  12. Small geothermal electric systems for remote powering

    SciTech Connect (OSTI)

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  13. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project will provide the first ever formal evaluation of fracture and fracture flow evolution in an EGS reservoir following a hydraulic stimulation.

  14. Flint Geothermal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  15. Flint Geothermal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  16. Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation

    Broader source: Energy.gov [DOE]

    Project objectives: Develop advanced sensor technology for the direct monitoring of geothermal reservoirs. Engineer sensors to survive and operate in H2O pressures up to 220 bar and temperatures as high as 374o C.

  17. Quantum Dot Tracers for Use in Engineered Geothermal Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To develop and demonstrate a new class of tracers„semiconductor nanoparticles(quantum dots)„that offer great promise for use in characterizing fracture networks in EGS reservoirs.

  18. Three dimensional seismic imaging of the Rye Patch geothermal...

    Open Energy Info (EERE)

    Patch geothermal reservoir Authors M.A. Feighner, R. Gritto, T.M. Daley, H. Keers and E.L. Majer Published Lawrence Berkeley National Laboratory, 1999 Report Number LBNL-44119...

  19. GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD:...

    Open Energy Info (EERE)

    relationships imply the system is currently being reheated... Authors Kovac, K.M.; Moore, J.N.; Lutz and S.J. Published PROCEEDINGS, Thirtieth Workshop on Geothermal Reservoir...

  20. A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal...

    Open Energy Info (EERE)

    on the fluid flow distribution in an HDR geothermal reservoir. Authors T. W. Hicks, R. J. Pine, J. Willis-Richards, S. Xu, A. J. Jupe and N. E. V. Rodrigues Published Journal...

  1. Geothermal Energy Research and Development Program; Project Summaries

    SciTech Connect (OSTI)

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  2. Hydrologic Properties of the Dixie Valley, Nevada, Geothermal...

    Open Energy Info (EERE)

    Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  3. U.S. and Australian Advanced Geothermal Projects Face Setbacks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS involves injecting water at high pressure into deep, hot rock formations to fracture the rock, creating either a new geothermal reservoir of hot water embedded in hot rock or ...

  4. Brady Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    The Brady's geothermal field, in the hot spring mountains of northwestern Nevada, has a reservoir temperature of 180-193C at 1- 2 km depth and supports a combined dual flash...

  5. Seismic Velocity And Attenuation Structure Of The Geysers Geothermal...

    Open Energy Info (EERE)

    of the world's largest producers of electricity from geothermal energy. A key resource management issue at this field is the distribution of fluid in the matrix of the reservoir...

  6. NREL: Geothermal Technologies - Henry (Bud) Johnston

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Henry (Bud) Johnston Photo of Bud Johnston Laboratory Program Manager (Geothermal) On staff since 2015 Phone number: 303-275-4999 E-mail: Henry.Johnston@nrel.gov General Profile Henry (Bud) Johnston joined NREL on October 12 as the new Laboratory Program Manager (LPM) for the NREL Geothermal Technologies Program. Previously, Bud worked with Shell for 30 years, most recently serving as reservoir engineering discipline lead within international unconventionals at Shell's headquarters in the

  7. NREL: Geothermal Technologies - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 August 1, 2011 Geothermal Electricity Technology Evaluation Model Webinar Materials Now Available This webinar provided an overview of the model and its use with an emphasis on how the model calculates the generation costs associated with exploration and confirmation activities, well field development, and reservoir definition. August 1, 2011 Blue Ribbon Panel Recommendations Report Available Earlier this spring, the U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP)

  8. Development of Enhanced Geothermal Systems Technologies Workshops |

    Office of Environmental Management (EM)

    Department of Energy Development of Enhanced Geothermal Systems Technologies Workshops Development of Enhanced Geothermal Systems Technologies Workshops The following documents are from a series of four workshops held in 2007 that were intended to motivate facilitated discussion on technology gaps related to reservoir management and operations. The first presentation evaluated the assumptions set forth in the report by the Massachusetts Institute of Technology (MIT) titled The Future of

  9. Reservoir Claddings

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet explains how to properly decouple reservoir claddings from water sensitive materials of the wall assembly.

  10. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  11. SMU Geothermal Conference 2011 - Geothermal Technologies Program |

    Energy Savers [EERE]

    Department of Energy SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. PDF icon gtp_smu_conference_reinhardt_2011.pdf More Documents & Publications Low Temperature/Coproduced/Geopressured Subprogram Overview AAPG Low-Temperature Webinar Geothermal Technologies Program Peer Review Program June 6 - 10, 2011

  12. Geothermal Energy News

    Broader source: Energy.gov (indexed) [DOE]

    geothermal900546 Geothermal Energy News en EERE Announces Up to 4 Million for Critical Materials Recovery from Geothermal Fluids http:energy.goveerearticles...

  13. A Roadmap for Strategic Development of Geothermal Exploration Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 A ROADMAP FOR STRATEGIC DEVELOPMENT OF GEOTHERMAL EXPLORATION TECHNOLOGIES Benjamin R. Phillips 1,2 , John Ziagos 3 , Hildigunnur Thorsteinsson 2 *, and Eric Hass 4 1 SRA International, Inc. 2 Geothermal Technologies Office, U.S. Department of Energy 1000 Independence Ave. SW, Washington, DC 20585, USA e-mail: benjamin.phillips@ee.doe.gov 3 Lawrence Livermore National

  14. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 A TECHNOLOGY ROADMAP FOR STRATEGIC DEVELOPMENT OF ENHANCED GEOTHERMAL SYSTEMS John Ziagos 1 , Benjamin R. Phillips 2,3 , Lauren Boyd 3 , Allan Jelacic 2 , Greg Stillman 3 , and Eric Hass 4 1 Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 2 SRA International, Inc. 3 Geothermal Technologies Office, U.S. DOE, 1000

  15. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN MAJOR U.S. SEDIMENTARY BASINS Colleen Porro and Chad Augustine April 24, 2012 National Renewable Energy Lab, Golden, CO NREL/PR-6A20-55017 NATIONAL RENEWABLE ENERGY LABORATORY Sedimentary Basin Geothermal WHAT IS SEDIMENTARY BASIN GEOTHERMAL? 2 Geothermal Energy from Sedimentary Rock - Using hot" geothermal fluids (>100 o C) produced from sedimentary basins to generate electricity - Advantages: * Reservoirs are porous, permeable, and well

  16. Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Electrical Power from Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources Timothy Reinhardt, Lyle A. Johnson and Neil Popovich Thirty Thirty-Sixth Workshop on Geothermal Reservoir Engineering Sixth Workshop on Geothermal Reservoir Engineering Stanford University Stanford, CA Jan ar 31 Febr ar 2 2011 January 31 - February 2, 2011 Energy Efficiency & Renewable Energy eere.energy.gov Outline * * Background Background * Results and Discussion *

  17. NREL: Geothermal Technologies - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal News Below are news stories involving geothermal research. March 10, 2016 NREL's Geothermal Experts Present at the 41st Annual Stanford Geothermal Workshop NREL geothermal experts attend the 41st Annual Stanford Geothermal Workshop--one of the world's longest-running technical meetings on the topic of geothermal energy. March 2, 2016 U.S. Bureau of Land Management Looks to NREL for Geothermal Technical Support The National Renewable Energy Laboratory (NREL) has entered into an

  18. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  19. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984)...

  20. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2008) Exploration Activity...

  1. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Spiegel, 1957) Exploration Activity...

  2. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  3. Geothermal Literature Review At Coso Geothermal Area (1985) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1985) Exploration Activity Details Location Coso...

  4. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Farhar, 2002) Exploration Activity Details...

  5. Geothermal Literature Review At Geysers Geothermal Area (1984...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Fleischman, 2006) Exploration Activity...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details...

  8. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Summers, 1976) Exploration Activity...

  9. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Clemons, Et Al., 1988) Exploration...

  10. Geothermal Literature Review At Salton Trough Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location...

  11. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details...

  12. Geothermal Literature Review At Medicine Lake Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location...

  13. Geothermal Literature Review At Coso Geothermal Area (1984) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso...

  14. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration...

  15. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Exploration...

  16. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Callender, 1981) Exploration Activity...

  17. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  18. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The following are included: review of available data from previous fracturing stimulation operations, stimulation process variables, fracturing fluid design, hydraulic fracture design, stimulation case histories, and selected bibliography. (MHR)

  19. PROCEEDINGS ELEVENTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING

    Office of Scientific and Technical Information (OSTI)

    Technologies Division of the U.S. Department of Energy, Stanford-DOE Contract No. ... ZWOLOSKI, ZORA DASH E a r t h and Space S c i e n c e D i v i s i o n L o s Alamos N a ...

  20. PROCEEDINGS THIRD WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING

    Office of Scientific and Technical Information (OSTI)

    ... Energy Research and Development A d m i n i s t r a t i o n (ERDA), r e c e n t l y ... Recommendations f o r uniform t e r m i n o l o g y and methodology were p r e s e n t e d ...

  1. Concept Testing and Development at the Raft River Geothermal Field, Idaho

    Broader source: Energy.gov [DOE]

    Geothermal Technologies Program 2010 Peer Review Concept Testing and Development at the Raft River Geothermal Field, Idaho, for the Engineered Geothermal Systems Demonstration Projects and Low Temperature Exploration and Demonstrations Project Track. Objective to Develop and demonstrate the techniques required to form and sustain EGS reservoirs including combined thermal and hydraulic stimulation and numerical modeling and Improve the performance and output of the Raft River geothermal field by increasing production or injectivity.

  2. National Geothermal Data System - DOE Geothermal Data Repository...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS)...

  3. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting &...

  4. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Show Map Loading map... "minzoom":false,"mappingservice"...

  5. Geopressured geothermal bibliography. Volume I. Citation extracts. Second edition

    SciTech Connect (OSTI)

    Sepehrnoori, K.; Carter, F.; Schneider, R.; Street, S.; McGill, K.

    1983-05-01

    This annoted bibliography contains 1131 citations. It represents reports, papers, and articles appearing over the past eighteen years covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources. Six indexes include: author, conference title, descriptor, journal title, report number, and sponsor. (MHR)

  6. Geothermal Technologies | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Technologies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating...

  7. CE Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Jump to: navigation, search Name: CE Geothermal Place: California Sector: Geothermal energy Product: CE Geothermal previously owned the assets of Western States...

  8. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy (Redirected from Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  9. Federal Geothermal Research Program Update Fiscal Year 1998

    SciTech Connect (OSTI)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  10. Pueblo of Jemez Geothermal Feasibility Study Fianl Report

    SciTech Connect (OSTI)

    S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

    2005-03-31

    This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

  11. Geothermal research at the Puna Facility

    SciTech Connect (OSTI)

    Chen, B.

    1987-06-01

    This report consists of two research papers: (1) Isotopic and Mineralogical Analyses of Samples from the HGP-A Well; (2) Report on Kapoho Geothermal Reservoir Study at the Puna Facility. These papers contain results of recent research and outline future activities.

  12. Geopressured geothermal bibliography. Volume 1 (citation extracts)

    SciTech Connect (OSTI)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This bibliography was compiled by the Center for Energy Studies at The University of Texas at Austin to serve as a tool for researchers in the field of geopressured geothermal energy resources. The bibliography represents citations of papers on geopressured geothermal energy resources over the past eighteen years. Topics covered in the bibliography range from the technical aspects of geopressured geothermal reservoirs to social, environmental, and legal aspects of tapping those reservoirs for their energy resources. The bibliography currently contains more than 750 entries. For quick reference to a given topic, the citations are indexed into five divisions: author, category, conference title, descriptor, and sponsor. These indexes are arranged alphabetically and cross-referenced by page number.

  13. Federal Geothermal Research Program Update Fiscal Year 2000

    SciTech Connect (OSTI)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  14. Frequently Asked Questions | Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions Frequently Asked Questions What is the Geothermal Legacy Collection? The Geothermal Legacy Collection (Geothermal) is available to the geothermal community and interested members of the public. They and others may use this site to stay better informed of developments in geothermal technology and to gain insights learned from studies in the field since the 1970s. By searching Geothermal, users can expect to find a wealth of geothermal citations and reports from various

  15. Okeanskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Okeanskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Okeanskaya Geothermal Power Plant General Information Name Okeanskaya Geothermal...

  16. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  17. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  18. Gulf Coast geopressured-geothermal program summary report compilation. Volume 4: Bibliography (annotated only for all major reports)

    SciTech Connect (OSTI)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    This bibliography contains US Department of Energy sponsored Geopressured-Geothermal reports published after 1984. Reports published prior to 1984 are documented in the Geopressured Geothermal bibliography Volumes 1, 2, and 3 that the Center for Energy Studies at the University of Texas at Austin compiled in May 1985. It represents reports, papers and articles covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources.

  19. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  20. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  1. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  2. Updated U.S. Geothermal Supply Curve

    SciTech Connect (OSTI)

    Augustine, C.; Young, K. R.; Anderson, A.

    2010-02-01

    This paper documents the approach used to update the U.S. geothermal supply curve. The analysis undertaken in this study estimates the supply of electricity generation potential from geothermal resources in the United States and the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs associated with developing these geothermal resources. Supply curves were developed for four categories of geothermal resources: identified hydrothermal (6.4 GWe), undiscovered hydrothermal (30.0 GWe), near-hydrothermal field enhanced geothermal systems (EGS) (7.0 GWe) and deep EGS (15,900 GWe). Two cases were considered: a base case and a target case. Supply curves were generated for each of the four geothermal resource categories for both cases. For both cases, hydrothermal resources dominate the lower cost range of the combined geothermal supply curve. The supply curves indicate that the reservoir performance improvements assumed in the target case could significantly lower EGS costs and greatly increase EGS deployment over the base case.

  3. Geothermal tomorrow 2008

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  4. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  5. Steamboat Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Facility Steamboat Hills Geothermal Facility Steamboat I Geothermal Facility Steamboat IA Geothermal Facility Steamboat II Geothermal Facility Steamboat III Geothermal Facility...

  6. Nagqu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name Nagqu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Geothermal Region Plant Information...

  7. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  8. Geothermal Technologies Office: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technologies Office Details Bookmark & Share View Related Welcome to the Energy Department's Geothermal Technologies Office Publication and Product Library. Here...

  9. Geothermal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National...

  10. Geothermal Regulatory Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Regulatory Roadmap Katherine Young National Renewable Energy Laboratory Track: ... Objectives * To develop the permitting roadmap for geothermal power projects at the ...

  11. Imperial Valley Geothermal Area

    Broader source: Energy.gov [DOE]

    The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial...

  12. Geothermal Resources Council's ...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Geothermal Systems (EGS) applications recommend lifting 300C geothermal water ... Therefore artificial lift techniques must be employed to return the high temperature water ...

  13. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    SciTech Connect (OSTI)

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  14. Nuova Sasso Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  15. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon monitoring_egs_insar_meq_peer2013.pdf More Documents & Publications Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems

  16. Fairbanks Geothermal Energy Project Final Report

    SciTech Connect (OSTI)

    Karl, Bernie

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  17. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    SciTech Connect (OSTI)

    Patten, Kim

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing data are insufficient for promoting geothermal exploration. Authors of this paper are Arlene Anderson, US DOE Geothermal Technologies Office, David Blackwell, Southern Methodist University (SMU), Cathy Chickering (SMU), Toni Boyd, Oregon Institute of Technology’s GeoHeat Center, Roland Horne, Stanford University, Matthew MacKenzie, Uberity, Joe Moore, University of Utah, Duane Nickull, Uberity, Stephen Richard, Arizona Geological Survey, and Lisa Shevenell, University of Nevada, Reno. “NGDS User Centered Design: Meeting the Needs of the Geothermal Community,” discusses the user- centered design approach taken in the development of a user interface solution for the NGDS. The development process is research based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user interface for the widest and greatest utility. Authors of this paper are Harold Blackman, Boise State University, Suzanne Boyd, Anthro-Tech, Kim Patten, Arizona Geological Survey, and Sam Zheng, Siemens Corporate Research. “Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Node on the National Geothermal Data System,” describes the motivation behind the development of the Geothermal Data Repository (GDR) and its role in the NGDS. This includes the benefits of using the GDR to share geothermal data of all types and DOE’s data submission process. Authors of this paper are Jon Weers, National Renewable Energy Laboratory and Arlene Anderson, US DOE Geothermal Technologies Office. Finally, “Developing the NGDS Adoption of CKAN for Domestic & International Data Deployment,” provides an overview of the “Node-In-A-Box” software package designed to provide data consumers with a highly functional interface to access the system, and to ease the burden on data providers who wish to publish data in the system. It is important to note that this software package constitutes a reference implementation and that the NGDS architecture is based on open standards, which means other server software can make resources available, and other client applications can utilize NGDS data. Authors of this paper are Ryan Clark, Arizona Geological Survey (AZGS), Christoph Kuhmuench, Siemens Corporate Research, and Stephen Richard, AZGS.

  18. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. PDF icon...

  19. Waveguide-based Ultrasonic and Far-field Electromagnetic Sensors for Downhole Reservoir Characterization

    Broader source: Energy.gov [DOE]

    Project objective: To develop waveguide-based ultrasonic and farfield electromagnetic sensors to measure key Enhanced Geothermal Systems (EGS) reservoir parameters, including directional temperature, pressure, fluidflow, fracture imaging, and flow/rock interaction.

  20. SMU Geothermal Conference 2011 - Geothermal Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eere.energy.gov Timothy Reinhardt Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy timothy.reinhardt@ee.doe.gov Geothermal Technologies Program 2011 SMU Geothermal Conference Energy Efficiency & Renewable Energy eere.energy.gov * Program's past * Present status of ARRA projects * Program's near future Presentation Outline Energy Efficiency & Renewable Energy eere.energy.gov The Geothermal Technologies Program annual budget peaked

  1. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  2. Solubility and Reaction Rates of Aluminum Solid Phases Under Geothermal Conditions

    SciTech Connect (OSTI)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.; Anovitz, L.M.

    2000-05-28

    Experimental studies involving equilibrium solubility and dissolution/precipitation rates were initiated on aluminum hydroxide phases prevalent under geothermal reservoir conditions. A large capacity, hydrogen-electrode concentration cell (HECC) was constructed specifically for this purpose.

  3. Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Combine geophysical methods for reservoir and fracture characterization with rock physics measurements made under in-situ conditions (up to 350⁰C) for development of geothermal systems.

  4. Micro-Earthquake At Coso Geothermal Area (1992-1997) | Open Energy...

    Open Energy Info (EERE)

    processed. From the delay time of split shear waves, it was estimated that the crack density in the most active geothermal reservoir area (above 3 km depth) ranges between 0.030...

  5. Micro-Earthquake At Coso Geothermal Area (2002-2005) | Open Energy...

    Open Energy Info (EERE)

    reservoir crack characterization: the Coso geothermal field Rial, J.A.; Elkibbi, M.; Yang, M. (1 January 2005) Shear-wave splitting as a tool for the characterization of...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Elston, Et Al., 1983) Exploration Activity...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Dahal, Et Al., 2012) Exploration Activity...

  8. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Stone, Et Al., 1977) Exploration Activity...

  9. Geothermal Literature Review At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity...

  10. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  11. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Lightning Dock Geothermal Area (Witcher, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning...

  12. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Witcher, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2002)...

  13. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Parker & Icerman, 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Parker &...

  14. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Sammel, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Sammel, 1978)...

  15. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997)...

  16. Geothermal Literature Review At Coso Geothermal Area (1987) ...

    Open Energy Info (EERE)

    7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1987) Exploration Activity Details...

  17. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  18. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Smith, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978)...

  19. Economics of Developing Hot Stratigraphic Reservoirs

    SciTech Connect (OSTI)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  20. DOE Geothermal Data Repository … Tethering Data to Information: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Geothermal Data Repository - Tethering Data to Information Preprint Jon Weers National Renewable Energy Laboratory Arlene Anderson U.S. Department of Energy To be presented at the Thirty-Ninth Workshop of Geothermal Reservoir Engineering Stanford, California February 24-26, 2014 Conference Paper NREL/CP-6A20-61403 February 2014 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under

  1. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  2. Towards the Understanding of Induced Seismicity in Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Project objectives: To develop a combination of techniques to evaluate the relationship between EGS operations and the induced stress changes throughout the reservoir and the surrounding country rock. PDF icon seismicity_gritto_induced_seismicity.pdf More Documents & Publications Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS)

  3. Renewable Energy Technologies - Geothermal Energy

    Energy Savers [EERE]

    Technologies Geothermal Energy Geothermal Energy Bruce Green, 303-275-3621, bruce_green@nrel.gov Geothermal Energy is Heat Geothermal Energy is Heat from the Earth. from the Earth. How Geothermal Energy is Used: *Electricity Generation *Direct Thermal Use *Geothermal Heat Pumps, also called Geoexchange Units or Ground-Coupled Heat Pumps. Courtesy of Geothermal Education Association Tectonic Plate Boundaries Tectonic Plate Boundaries Hottest Known Geothermal Hottest Known Geothermal Regions

  4. Geothermal Technologies Program - Washington

    SciTech Connect (OSTI)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State.

  5. Geothermal Prospects in Colorado

    Broader source: Energy.gov [DOE]

    Geothermal Prospects in Colorado presentation at the April 2013 peer review meeting held in Denver, Colorado.

  6. Geothermal Tomorrow 2008

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

  7. Fairbanks Geothermal Energy Project

    Broader source: Energy.gov [DOE]

    Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

  8. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  9. OHm Geothermal | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: OHm Geothermal Place: Fernley, Nevada Zip: 89408 Sector: Geothermal energy Product: A Nevada-based geothermal energy development company....

  10. Geothermal Generation | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions...

  11. Geothermal Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way....

  12. Geothermal energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal energy Jump to: navigation, search Dictionary.png Geothermal energy: Geothermal energy is heat extracted from the Earth ( Geo (Earth) + thermal (heat) ) Other...

  13. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  14. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy

    SciTech Connect (OSTI)

    Aminzadeh, Fred; Sammis, Charles; Sahimi, Mohammad; Okaya, David

    2015-04-30

    The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.

  15. Helium isotope study of geothermal features in Chile with field and laboratory data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dobson, Patrick

    2013-02-11

    Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013

  16. Helium isotope study of geothermal features in Chile with field and laboratory data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dobson, Patrick

    Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013

  17. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small

  18. Next generation geothermal power plants. Draft final report

    SciTech Connect (OSTI)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  19. HDR Geothermal Energy: Important Lessons From Fenton Hill

    National Nuclear Security Administration (NNSA)

    PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 HOT DRY ROCK GEOTHERMAL ENERGY: IMPORTANT LESSONS FROM FENTON HILL Donald W. Brown Los Alamos National Laboratory P.O. Box 1663, MS-D443 Los Alamos, New Mexico 87545 USA e-mail: dwb@lanl.gov ABSTRACT The concept of Hot Dry Rock (HDR) geothermal energy originated at Los Alamos National Laboratory in the early 1970s, to exploit the heat contained in

  20. Geothermal Loop Experimental Facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Research at the Geothermal Loop Experimental Facility was successfully concluded in September 1979. In 13,000 hours of operation over a three and one half year period, the nominal 10 megawatt electrical equivalent GLEF provided the opportunity to identify problems in working with highly saline geothermal fluids and to develop solutions that could be applied to a commercial geothermal power plant producing electricity. A seven and one half year period beginning in April 1972, with early well flow testing and ending in September 1979, with the completion of extensive facility and reservoir operations is covered. During this period, the facility was designed, constructed and operated in several configurations. A comprehensive reference document, addressing or referencing documentation of all the key areas investigated is presented.

  1. NREL: Geothermal Technologies - NREL's Geothermal Experts Present at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    41st Annual Stanford Geothermal Workshop NREL's Geothermal Experts Present at the 41st Annual Stanford Geothermal Workshop March 10, 2016 Six members of our geothermal community, accompanied by Bud Johnston, NREL's new geothermal laboratory program manager, attended the 41st Annual Stanford Geothermal Workshop--one of the world's longest-running technical meetings on the topic of geothermal energy. The Stanford Geothermal Workshop brings together engineers, scientists, and managers involved

  2. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the

    Office of Environmental Management (EM)

    U.S. | Department of Energy Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. PDF icon iceland_geothermal_conf2013_nathwani.pdf More Documents & Publications Geothermal Technologies Program Overview Presentation at

  3. Water Efficient Energy Production for Geothermal Resources

    SciTech Connect (OSTI)

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  4. Induced seismicity associated with enhanced geothermal system

    SciTech Connect (OSTI)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

  5. Energy geothermal; San Emidio Geothermal Area; 3D Model geothermal...

    Office of Scientific and Technical Information (OSTI)

    description: Trainor-Guitton, Hoversten,Nordquist, Intani, Value of information analysis using geothermal field data: accounting for multiple interpretations & determining...

  6. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    SciTech Connect (OSTI)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna; Martino, Louis

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly depending on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.

  7. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  8. Pauzhetskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Pauzhetskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pauzhetskaya Geothermal Power Plant General Information Name Pauzhetskaya...

  9. Rural Cooperative Geothermal Development Electric & Agriculture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rural Cooperative Geothermal Development Electric & Agriculture Rural Cooperative Geothermal Development Electric & Agriculture DOE 2010 Geothermal Program Peer Review; Low ...

  10. Silver State Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    State Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Silver State Geothermal Project Project Location Information Coordinates...

  11. Ulumbu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Information Name Ulumbu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Kupang Location Indonesia Coordinates...

  12. Orita 3 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    3 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 3 Geothermal Project Project Location Information Coordinates...

  13. Panther Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Panther Canyon Geothermal Project Project Location Information...

  14. Kelsey North Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    North Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kelsey North Geothermal Project Project Location Information...

  15. Devil's Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information...

  16. Dead Horse Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Horse Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dead Horse Geothermal Project Project Location Information...

  17. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Butte Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Delcer Butte Geothermal Project Project Location Information...

  18. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information...

  19. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  20. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Venture) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  1. Reese River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Reese River Geothermal Project Project Location Information...

  2. Baltazor Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Baltazor Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location...

  3. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  4. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  5. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  6. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  7. Stanford Geothermal Workshop - Geothermal Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Geothermal Workshop February 11-13, 2013 Doug Hollett, Director Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Desert Peak (Source: Ormat Nevada, Inc) 2 Energy Efficiency & Renewable Energy eere.energy.gov Geothermal Program: Key Goals and Objectives Creating Impact Increased Focus * Identify New Geothermal Opportunities * Lowered risk and cost * New prospecting workflow * EGS R&D and Underground Field Observatory * New techniques and technologies *

  8. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Office of Environmental Management (EM)

    & Publications Low TemperatureCoproducedGeopressured Subprogram Overview AAPG Low-Temperature Webinar Geothermal Technologies Program Peer Review Program June 6 - 10, 2011...

  9. Eburru Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Eburru Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eburru Geothermal Power Plant General Information Name Eburru Geothermal Power Plant...

  10. Ndunga Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ndunga Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ndunga Geothermal Power Plant General Information Name Ndunga Geothermal Power Plant...

  11. Irem Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Irem Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Irem Geothermal Power Plant General Information Name Irem Geothermal Power Plant Facility...

  12. Tuzla Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Tuzla Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Tuzla Geothermal Power Plant General Information Name Tuzla Geothermal Power Plant...

  13. Sibayak Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Sibayak Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sibayak Geothermal Power Plant General Information Name Sibayak Geothermal Power Plant...

  14. Category:Geothermal Regions | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal...

  15. Blind Geothermal System | Open Energy Information

    Open Energy Info (EERE)

    Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a...

  16. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area...

  17. Lightning Dock Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Review At Lightning Dock Geothermal Area (Rafferty, 1997) Geothermal Literature Review Fossil Fuel-fired Peak Heating for Geothermal Greenhouses Geothermal Literature Review At...

  18. Alaska Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Springs Geothermal Area Sitka Hot Spring Geothermal Area South Geothermal Area Tolovana Geothermal Area ... further results Energy Generation Facilities within the Alaska...

  19. Italy Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Region Larderello Geothermal Area Mount Amiata Geothermal Area Travale-Radicondoli Geothermal Area Energy Generation Facilities within the Italy Geothermal Region Bagnore 3...

  20. Hawaii Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Area Mokapu Penninsula Geothermal Area Molokai Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area Energy Generation Facilities within the Hawaii Geothermal Region Puna...

  1. Steamboat IA Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    IA Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat IA Geothermal Facility General Information Name Steamboat IA Geothermal Facility...

  2. Property:GeothermalArea | Open Energy Information

    Open Energy Info (EERE)

    Area + Babadere Geothermal Project + Tuzla Geothermal Area + Bacman 1 GEPP + Bac-Man Laguna Geothermal Area + Bacman 2 GEPP + Bac-Man Laguna Geothermal Area + Bacman...

  3. Takigami Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area Oita Geothermal Area Geothermal Region Ryuku Arc Plant Information Facility Type Single Flash Owner Idemitsu Oita Geothermal CoKyushu...

  4. Lahendong Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  5. Mindanao Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  6. Mount Amiata Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  7. Amatitlan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  8. Mori Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  9. Fukushima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  10. Rotokawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  11. Pauzhetskaya Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  12. Miyagi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  13. Kagoshima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  14. San Jacinto Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Benjamin Matek. Geo-energy Internet. Geothermal...

  15. Tiwi / Albay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  16. Ogiri Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  17. North Negros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Benjamin Matek. Geo-energy Internet. Geothermal...

  18. Ngawha Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  19. Bouillante Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  20. Leyte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  1. Svartsengi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  2. South Negros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  3. Heber II Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Heber II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber II Geothermal Facility General Information Name Heber II Geothermal Facility...

  4. Transition Zone Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Unknown Planned Capacity 1 Geothermal Areas within the Transition Zone Geothermal Region Energy Generation Facilities within the Transition Zone Geothermal Region Geothermal Power...

  5. Geothermal Technologies Office - Webmaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office - Webmaster Geothermal Technologies Office - Webmaster

  6. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  7. National Geothermal Student Competition

    Broader source: Energy.gov [DOE]

    The National Geothermal Student Competition will be an intercollegiate competition where student teams compete to advance the understanding of the potential for geothermal energy to supply a major component of the nations energy needs in the coming decades.

  8. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  9. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  10. Stanford Geothermal Workshop

    Broader source: Energy.gov [DOE]

    Now in its 40th year, the Stanford Geothermal Workshop is one of the world's longest running technical meetings on geothermal energy. The conference brings together engineers, scientists and...

  11. Geothermal Technologies Newsletter Archives

    Broader source: Energy.gov [DOE]

    Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

  12. Honey Lake Geothermal Area

    Broader source: Energy.gov [DOE]

    The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

  13. The National Energy Strategy - The role of geothermal technology development: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

  14. NREL: Geothermal Technologies - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Office website or search the NREL Publications Database. Learn more about how research at NREL is accelerating

  15. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  16. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  17. Geothermal Photo Gallery

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Office invests in 150 projects nationwide, leveraging more than $500 million in combined investments.

  18. Geothermal Government Programs

    Broader source: Energy.gov [DOE]

    Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

  19. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions What kinds of data should I submit? The DOE Geothermal Data Repository was established to receive, manage and make available all geothermal-relevant data generated from projects funded by the DOE Geothermal Technologies Office. This includes data from GTO-funded projects associated with any portion of the geothermal project life-cycle (exploration, development, operation), as well as data produced by GTO-funded research. What data formats are preferred? Preferred

  20. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy the GDR logo, a blue wave opposed over an orange flame Geothermal Data Repository The Geothermal Data Repository (GDR) is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies Office. More Information. Search Submit data The Geothermal Data Repository (GDR) has been established to securely house data based on individual timelines, some of which have identified a specific release date. Please note:

  1. Geothermal Technologies Office March

    Office of Environmental Management (EM)

    Annual Report Geothermal Technologies Office March 2015 The 2014 Annual Report of the Geothermal Technologies Office is a product of the United States Department of Energy, Office of Energy Efficiency and Renewable Energy. DOE/EERE-1160 * March 2015 This report spans calendar year 2014 achievements. Photographs are accredited herein. back cover photo: Geothermal heat at Pilgrim Hot Springs, Alaska. Source: C. Pike at the Alaska Center for Energy and Power 2014 Annual Report Geothermal

  2. Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment

    SciTech Connect (OSTI)

    Entingh, Dan; McLarty, Lynn

    2000-11-30

    The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

  3. Geothermal Technologies Office Home Page | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Office Home Page Geothermal Technologies Office Home Page

  4. Geothermal Maps | Department of Energy

    Office of Environmental Management (EM)

    Maps Geothermal Maps The Geothermal Technologies Office (GTO) carries out R&D and demonstration efforts to deploy 12 GWe of clean geothermal energy by 2020 and expand geothermal into new U.S. regions. Locating and developing resources is an important part of that mission. GTO works with national laboratories to develop maps and data that identify renewable, geothermal resources, possible locations for implementation of various geothermal technologies, and actual and potential geothermal

  5. Geothermal Energy Projects | Department of Energy

    Energy Savers [EERE]

    Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects GEOTHERMAL POWER 3 PROJECTS in 5 LOCATIONS 158 MW GENERATION CAPACITY 946,000 MWh PROJECTED ANNUAL GENERATION * 517,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's

  6. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    SciTech Connect (OSTI)

    Wood, Thomas R.; Worthing, Wade; Cannon, Cody; Palmer, Carl; Neupane, Ghanashyam; McLing, Travis L; Mattson, Earl; Dobson, Patric; Conrad, Mark

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84° C. Traditional geothermometry models estimated reservoir temperatures of approximately 125° C in the 1970’s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104° C (217° F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227° C (440° F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need to be investigated using improved geothermal exploration methods.

  7. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  8. Nevada Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately 30% of the total Nevada geothermal power output. Photo of Nevada power plant

  9. National Geothermal Data System - DOE Geothermal Data Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation | Department of Energy - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS) and DOE's node on the NGDS. PDF icon ngds_gdr_general_presentation.pdf More Documents & Publications How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" National Geothermal Data System (NGDS) Fact

  10. Analysis of Low-Temperature Utilization of Geothermal Resources

    SciTech Connect (OSTI)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford Geothermal Workshop. We also have incorporated our wellbore model into TOUGH2-EGS and began coding TOUGH2-EGS with the wellbore model into GEOPHIRES as a reservoir thermal drawdown option. Additionally, case studies for the WVU and Cornell campuses were performed to assess the potential for district heating and cooling at these two eastern U.S. sites.

  11. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  12. National Geothermal Data System - DOE Geothermal Data Repository...

    Broader source: Energy.gov (indexed) [DOE]

    National Geothermal Data System (NGDS) and DOE's node on the NGDS. ngdsgdrgeneralpresentation.pdf More Documents & Publications How to Utilize the National Geothermal Data...

  13. Geothermal Technologies Program: Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

  14. Northern Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Geothermal Area Raft River Geothermal Area Railroad Valley Geothermal Area Red River Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Sharkey Hot...

  15. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  16. Bouillante 2 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant General Information Name Bouillante 2 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  17. Bouillante 1 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant General Information Name Bouillante 1 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  18. Dixie Meadows Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    of Geofluid: Sanyal Classification (Wellhead): Reservoir Temp (Geothermometry): Reservoir Temp (Measured): Sanyal Classification (Reservoir): Depth to Top of Reservoir:...

  19. Drum Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    of Geofluid: Sanyal Classification (Wellhead): Reservoir Temp (Geothermometry): Reservoir Temp (Measured): Sanyal Classification (Reservoir): Depth to Top of Reservoir:...

  20. Beneficial effects of groundwater entry into liquid-dominated geothermal systems

    SciTech Connect (OSTI)

    Lippmann, M.J. ); Truesdell, A.H. )

    1990-04-01

    In all active liquid-dominated geothermal systems there is continuous circulation of mass and transfer of heat, otherwise they would slowly cool and fade away. In the natural state these systems are in dynamic equilibrium with the surrounding colder groundwater aquifers. The ascending geothermal fluids cool conductively, boil, or mix with groundwaters, and ultimately may discharge at the surface as fumaroles or hot springs. With the start of fluid production and the lowering of reservoir pressure, the natural equilibrium is disrupted and cooler groundwater tends to enter the reservoir. Improperly constructed or damaged wells, and wells located near the margins of the geothermal system, exhibit temperature reductions (and possibly scaling from mixing of chemically distinct fluids) as the cooler-water moves into the reservoir. These negative effects, especially in peripheral wells are, however, compensated by the maintenance of reservoir pressure and a reduction in reservoir boiling that might result in mineral precipitation in the formation pores and fractures. The positive effect of cold groundwater entry on the behavior of liquid-dominated system is illustrated by using simple reservoir models. The simulation results show that even though groundwater influx into the reservoir causes cooling of fluids produced from wells located near the cold-water recharge area, it also reduces pressure drawdown and boiling in the exploited zone, and sweeps the heat stored in the reservoir rocks toward production wells, thus increasing the productive life of the wells and field. 9 refs.