Sample records for hhv higher heating

  1. Higher Order Mode Heating Analysis for the ILC Superconducting Linacs

    SciTech Connect (OSTI)

    Bane, K.L.F.; Nantista, C.; Adolphsen, C.; /SLAC; ,

    2010-10-27T23:59:59.000Z

    The superconducting cavities and interconnects in the 11 km long linacs of the International Linear Collider (ILC) are designed to operate at 2K, where cooling costs are very expensive. It is thus important to minimize cryogenic heat loads. In addition to an unavoidable static load and the dynamic load of the fundamental 1.3 GHz accelerating rf, a further heat source is presented by the higher order mode (HOM) power deposited by the beam. Such modes will be damped by specially designed HOM couplers attached to the cavities (for trapped modes), and by ceramic dampers at 70K that are located between the eight or nine cavity cryomodules (for propagating modes). Brute force calculation of the higher frequency modes excited in a string of cryomodules is limited by computing capacity (see, e.g. [1]). M. Liepe has calculated {approx} 400 longitudinal TM modes in 3 superconducting cavities plus absorbers, up to 8 GHz [2]. Joestingmeier, et al., have used a ray tracing calculation to find the effect at higher frequencies, specifically in the range of tens of GHz and above [3]. In this report we present a scattering matrix approach, which we apply to an rf unit comprising 26 cavities and 3 absorbers. We perform calculations at sample frequencies (up to 20 GHz) to predict the effectiveness of the ceramic dampers in limiting HOM heat deposition at 2K.

  2. Spherical collapse of a heat conducting fluid in higher dimensions without horizon

    E-Print Network [OSTI]

    A. banerjee; S. Chatterjee

    2004-06-08T23:59:59.000Z

    We consider a scenario where the interior spacetime,described by a heat conducting fluid sphere is matched to a Vaidya metric in higher dimensions.Interestingly we get a class of solutions, where following heat radiation the boundary surface collapses without the appearance of an event horizon at any stage and this happens with reasonable properties of matter field.The non-occurrence of a horizon is due to the fact that the rate of mass loss exactly counterbalanced by the fall of boundary radius.Evidently this poses a counter example to the so-called cosmic censorship hypothesis.Two explicit examples of this class of solutions are also given and it is observed that the rate of collapse is delayed with the introduction of extra dimensions.The work extends to higher dimensions our previous investigation in 4D.

  3. Guidelines for Measuring Air Infiltration Heat Exchange Effectiveness (IHEE), Submitted to the Texas Higher Education Coordination Board Energy Research Application Program Project #227

    E-Print Network [OSTI]

    Liu, M.; Claridge, D. E.

    1993-01-01T23:59:59.000Z

    ESL-TR-93/09-01 Guidelines for Measuring Air Infiltration Heat Exchange Effectiveness (IHEE) Submitted to the Texas Higher Education Coordination Board Energy Research Application Program Project #227 i Dr. Mingsheng Liu Dr. David E. Claridge... Method 3 Co-heating Method 4 STAM Method 8 Conclusions 10 Reference 12 Appendix A 14 Appendix B 15 Appendix C 21 Guidelines for Measuring IHEE, P. 1 Guidelines for Measuring Air Infiltration Heat Exchange Effectiveness (IHEE) Introduction The rate of air...

  4. anion-exchange resin-based desulfurization: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flue Gas Desulfurization GT Gas Turbine HHV Higher Heating Values HCN Hydrogen Cyanide HRSG Heat Recovery Steam Generation... ? Nuclear Power Plants ? Solar Power Plants ? Wind...

  5. Abstract--The use of structured porous media is a proposed technique to achieve higher heat transfer coefficients by

    E-Print Network [OSTI]

    Pulsifer, John

    transfer coefficients by increasing the specific surface area for heat transfer while aiming to maintain pressure drop for a given heat transfer performance. A comprehensive thermo-fluid model called MERLOT [1] was used to assess the use of porous heat transfer media for fusion plasma facing component applications

  6. Guidelines for Measuring Air Infiltration Heat Exchange Effectiveness (IHEE), Submitted to the Texas Higher Education Coordination Board Energy Research Application Program Project #227

    E-Print Network [OSTI]

    Liu, M.; Claridge, D. E.

    1993-01-01T23:59:59.000Z

    This report is presented to the Texas Higher Education Coordination Board as a deliverable under the Energy Research and Applications Program Project #227, which targeted reducing the design size of HVAC systems in houses since the actual air...

  7. The microcanonical thermodynamics of finite systems: The microscopic origin of condensation and phase separations; and the conditions for heat flow from lower to higher temperatures

    E-Print Network [OSTI]

    D. H. E. Gross; J. F. Kenney

    2005-03-24T23:59:59.000Z

    Microcanonical thermodynamics allows the application of statistical mechanics both to finite and even small systems and also to the largest, self-gravitating ones. However, one must reconsider the fundamental principles of statistical mechanics especially its key quantity, entropy. Whereas in conventional thermostatistics, the homogeneity and extensivity of the system and the concavity of its entropy are central conditions, these fail for the systems considered here. For example, at phase separation, the entropy, S(E), is necessarily convex to make exp[S(E)-E/T] bimodal in E. Particularly, as inhomogeneities and surface effects cannot be scaled away, one must be careful with the standard arguments of splitting a system into two subsystems, or bringing two systems into thermal contact with energy or particle exchange. Not only the volume part of the entropy must be considered. As will be shown here, when removing constraints in regions of a negative heat capacity, the system may even relax under a flow of heat (energy) against a temperature slope. Thus the Clausius formulation of the second law: ``Heat always flows from hot to cold'', can be violated. Temperature is not a necessary or fundamental control parameter of thermostatistics. However, the second law is still satisfied and the total Boltzmann entropy increases. In the final sections of this paper, the general microscopic mechanism leading to condensation and to the convexity of the microcanonical entropy at phase separation is sketched. Also the microscopic conditions for the existence (or non-existence) of a critical end-point of the phase-separation are discussed. This is explained for the liquid-gas and the solid-liquid transition.

  8. Accepted for publication in the INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, April 2009. Hydrogen Economy Transition in Ontario-Canada Considering the Electricity Grid

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    : Integrated Power System Plan IRR: Internal Rate of Return LMP: Locational Marginal Price MILP: Mixed and Power FCV: Fuel-Cell Vehicle HHV: Higher Heating Value HOEP: Hourly Ontario Energy Price HPP: Hydrogen

  9. Higher Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3Education » Higher Education

  10. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01T23:59:59.000Z

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  11. SUPERCONNECTIONS AND HIGHER INDEX THEORY Department of Mathematics

    E-Print Network [OSTI]

    Lott, John

    SUPERCONNECTIONS AND HIGHER INDEX THEORY John Lott Department of Mathematics University of Michigan of the "higher" index of a Dirac-type operator on M. Using superconnections, we give a heat equation proof

  12. Absorptive Recycle of Distillation Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.; Lutz, E. J., Jr.

    1982-01-01T23:59:59.000Z

    When the heat source available to a distillation process is at a significantly higher temperature than the reboiler temperature, there is unused availability (ability to perform work) in the heat supplied to the reboiler. Similarly, if the reflux...

  13. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    real-world thermostat settings and heat energy consumptionto real-world behaviours. The actual energy consumption goesworld data indicates that the houses heated during the night had higher annual heat energy consumption.

  14. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Techs new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Techs design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  15. The Deng algorithm in higher dimensions

    E-Print Network [OSTI]

    Y. Nyonyi; S. D. Maharaj; K. S. Govinder

    2014-12-28T23:59:59.000Z

    We extend an algorithm of Deng in spherically symmetric spacetimes to higher dimensions. We show that it is possible to integrate the generalised condition of pressure isotropy and generate exact solutions to the Einstein field equations for a shear-free cosmological model with heat flow in higher dimensions. Three new metrics are identified which contain results of four dimensions as special cases. We show graphically that the matter variables are well behaved and the speed of sound is causal.

  16. Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling

    E-Print Network [OSTI]

    Yu, G.; Chen, P.; Dalenback, J.

    2006-01-01T23:59:59.000Z

    For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating...

  17. Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling

    E-Print Network [OSTI]

    Yu, G.; Chen, P.; Dalenback, J.

    2006-01-01T23:59:59.000Z

    For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating...

  18. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  3. Thermal Solar Energy Systems for Space Heating of Buildings

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage...

  4. Industrial Heat Pumps--Types and Costs

    E-Print Network [OSTI]

    Chappell, R. N.; Bliem, C. J.; Mills, J. I.; Demuth, O. J.; Plaster, D. S.

    workings. from the waste heat flowing toward the cooling The three categories are: (a) electrically driven, utility. In practice, achieving. this objective (b) prime heat driven, and (c) waste heat driven. requires both proper integration of' the heat... shown in Figure 2 still holds except that the low temperature or waste heat is split, with part, Qb, going to the heat pump to be boosted to a higher temperature and part, Qd, going to the driver to drive the heat pump. The COP is defined as: COP...

  5. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  6. Higher Education Masterof Education

    E-Print Network [OSTI]

    Rock, Chris

    .ttu.edu Effective Fall 2013, Updated 12/09/13 #12;3 Higher Education Masters of Education Program Overview2 Higher Education Masterof Education (M.Ed.) Program Handbook College of Education Graduate Education and Research Texas Tech University

  7. Groundwater and geothermal: urban district heating applications

    SciTech Connect (OSTI)

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01T23:59:59.000Z

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  8. HIGHER EDUCATION OPPORTUNITY ACT REPORTING University of Delaware

    E-Print Network [OSTI]

    Firestone, Jeremy

    ;HIGHER EDUCATION OPPORTUNITY ACT REPORTING D. Policies on portable electrical appliances, smoking outages of heat). E. Use of extension cords. F. Tampering with or blocking any fire protection equipment

  9. To appear in International Journal of Hydrogen Energy 1 Sustainable Convergence of Electricity and Transport Sectors in the

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    sector based on fuel cell vehicles (FCVs). A comprehensive robust optimization planning model AFV Alternative-Fuel Vehicle. FCV Fuel Cell Vehicle. GV Gasoline Vehicle. HHV Higher Heating Value grid investments such as new power generation installations. Keywords: Hydrogen economy, fuel cell

  10. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  11. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  12. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  13. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ? behaviour; setTemp : Room ? num; heatSwitchOn, heatSwitchOff, userReset : simple

  14. Impingement cooling and heat transfer measurement using transient liquid crystal technique

    E-Print Network [OSTI]

    Huang, Yizhe

    1996-01-01T23:59:59.000Z

    is used in this study to obtain the detailed heat transfer coefficient. Results show that a higher Reynolds number increases heat transfer over the entire impingement target surface. The flow exit orientation with crossflow affects the heat transfer...

  15. The effects of airflow modulation and multi-stage defrost on the performance of an air source heat pump

    E-Print Network [OSTI]

    Payne, William Vance

    1992-01-01T23:59:59.000Z

    . This transfer of heat energy from a low temperature ambient to the high temperature conditioned space is accomplished by the input of electrical energy to the compressor. During the heating season, the heat pump transfers heat energy from the low temperature... pump refrigeration circuit includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, an expansion device, and fans to transfer heat energy from a low temperature heat energy source to a higher temperature heat energy sink...

  16. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  17. Absorptive Recycle of Distillation Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.; Lutz, E. J., Jr.

    1982-01-01T23:59:59.000Z

    ABSORPTIVE RECYCLE OF DISTILLATION WASTE HEAT Donald C. Erickson and Edward J. Lutz Jr. Energy Concepts Company Annapolis, Maryland ABSTRACT When the heat source available to a distillation process is at a significantly higher temperature... which conserve 60 to 70%. Also, there are ver sions which incorporate separate low tem perature waste heat streams and thereby conserve over 90% of the required dis tillation energy. The main limitations of the R/AHP are the need for sufficient...

  18. Advanced Fluidized Bed Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Peterson, G. R.

    ADVANCED FLUIDIZED BED WASTE HEAT RECOVERY SYSTEMS G. R. PETERSON Project Manager U.S. Department of Energy, Idaho Operations Office Idaho Falls, Idaho ABSTRACT The U.S. Department of Energy, Office of Industri al Programs, has sponsored... the development of a Fluidized Bed Waste Heat Recovery System (FBWHRS) and a higher temperature variant, the Ceramic Tubular Distributor Plate (CTOP) Fluidized Bed Heat Exchanger (FBHX) system. Both systems recover energy from high-temperature flue gases...

  19. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  20. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  1. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  2. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  3. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  4. Dead heat

    SciTech Connect (OSTI)

    Oppenheimer, M.; Boyle, R.H.

    1990-01-01T23:59:59.000Z

    This paper reports on the prospect of global warming. This paper proposes a workable solution, and a road map for getting there. The author explains how we became addicted to fossil fuels and evokes a bleak picture should this dependence continue. But the book also explores how industry can become a vehicle for solving, instead of precipitating, the global environmental crisis. The decoupling of energy from pollution can be accomplished without sacrificing prosperity by powering the economy with solar energy. Dead Heat takes us step by step to a greenhouse-friendly world fueled only by the sun.

  5. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  6. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  7. HEATING AND COOLING PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-05-10T23:59:59.000Z

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  8. Higher Education Tuition Assistance And

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    and West Virginia Higher Education Grant Recipients October 2009 Revised: November 2009 Prepared ..................................5 3. Work Participation And Wages For W.Va. Public Higher Education Graduates Receiving PROMISE........................................................................11 5. Work Participation In 2008 Of Graduates From West Virginia Public Higher Education Institutions

  9. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  10. Management and Control for Optimal Performance of the Heating Substation

    E-Print Network [OSTI]

    Yang, J.

    2006-01-01T23:59:59.000Z

    With the development of the scale of central heating, a higher managing level is needed for the heating substation. How to economize the more energy is the first factor that managers need to consider while ensuring the comfort of the heating...

  11. Management and Control for Optimal Performance of the Heating Substation

    E-Print Network [OSTI]

    Yang, J.

    2006-01-01T23:59:59.000Z

    With the development of the scale of central heating, a higher managing level is needed for the heating substation. How to economize the more energy is the first factor that managers need to consider while ensuring the comfort of the heating...

  12. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-02-28T23:59:59.000Z

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leachability indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the l

  13. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17T23:59:59.000Z

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited

  14. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02T23:59:59.000Z

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited

  15. Higher temperature power electronics for larger-scale mechatronic integration

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    temperature" means different things to different applications. In high voltage systems (such as power to hybrid or full electric cars), the cost of the electrical system is higher than the internal combustion. In hybrid vehicles, it is possible to take advantage of the ICE cooling loop to extract heat from the power

  16. SSC HHV Solar Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRT Jump to: navigation,

  17. HHV Solar Technologies Private Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou,GuizhouGuyana: EnergyHERO BXHHV Solar

  18. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01T23:59:59.000Z

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive...

  19. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  20. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  1. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  2. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  3. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  4. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  5. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  6. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  7. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12T23:59:59.000Z

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  8. Heat Pump for High School Heat Recovery

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  9. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  10. Testing and analysis of immersed heat exchangers

    SciTech Connect (OSTI)

    Farrington, R.B.; Bingham, C.E.

    1986-08-01T23:59:59.000Z

    The objectives were to determine the performance of four immersed, ''supply-side'' heat exchangers used in solar domestic-hot-water systems; to examine the effects of flow rate, temperature difference, and coil configuration on performance; and to develop a simple model to predict the performance of immersed heat exchangers. We tested four immersed heat exchangers: a smooth coil, a finned spiral, a single-wall bayonet, and a double-wall bayonet. We developed two analyticl models and a simple finite difference model. We experimentally verified that the performance of these heat exchangers depends on the flow rate through them; we also showed that the temperature difference between the heat exchanger's inlet and the storage tank can strongly affect a heat exchanger's performance. We also compared the effects of the heat exchanger's configuration and correlated Nusselt and Rayleigh numbers for each heat exchanger tested. The smooth coil had a higher effectiveness than the others, while the double-wall bayonet had a very low effectiveness. We still do not know the long-term effectiveness of heat exchangers regarding scale accumulation, nor do we know the effects of very low flow rates on a heat exchanger's performance.

  11. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  12. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  13. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  14. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  15. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    transient the heat transfer model. T h i s required the roofto develop and calibrate heat transfer models to be able toE S station, the heat transfer models described i n sections

  16. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16T23:59:59.000Z

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  17. West Virginia Higher Education Graduate

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia Higher Education Graduate Employment And Wage Trends: 2003-2010 Summary Results October 2011 Prepared for the West Virginia Higher Education Policy Commission By George W. Hammond and Economic Research College of Business and Economics West Virginia University © Copyright 2011 WVU Research

  18. West Virginia Higher Education Graduate

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia Higher Education Graduate Employment By Industry 2009 July 2010 Prepared for the West Research Assistant Bureau of Business and Economic Research College of Business and Economics West Virginia 1. Work Participation And Annualized Wages Of West Virginia Public Higher Education Graduates From

  19. Cab Heating and Cooling

    SciTech Connect (OSTI)

    Damman, Dennis

    2005-10-31T23:59:59.000Z

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  20. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  1. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  2. Joule heating and nitric oxide in the thermosphere, 2 Charles A. Barth1

    E-Print Network [OSTI]

    Bailey, Scott

    Joule heating and nitric oxide in the thermosphere, 2 Charles A. Barth1 Received 14 April 2010, gravity waves propagate from the polar regions toward the equator heating the thermosphere at 140 km and higher. These gravity waves are produced by Joule heating that occurs at latitudes of 60 and higher

  3. Optimized Control Of Steam Heating Coils

    E-Print Network [OSTI]

    Ali, Mir Muddassir

    2012-02-14T23:59:59.000Z

    cooling. II. Flooding of coils with condensate and its subsequent freezing when outside air temperature falls below 32?F. III. Increased maintenance cost due to water hammer, corrosion of coils in the presence of non-condensable gases and leaking steam... monotonically as the steam pressure increases, a higher steam pressure may lead to overheating of the air and result in simultaneous heating and cooling. In addition to energy waste due to simultaneous heating and cooling, an improper operating strategy can...

  4. Characterization of Catalysts for the Synthesis of Higher Alcohols using Transmission Electron Microscopy

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    the use of biogas to create alcohol for fuel. Higher alcohols are favorable due to their high energy. In combination with a use of a heating holder, this microscope allows catalysts to be studied using a variety

  5. Characterization of Catalysts for Synthesis of Higher Alcohols using Electron Microscopy

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    and better production paths. One of these is using biogas to create alcohol as a fuel. Higher. Together with a heating holder, it enables us to study catalysts with TEM methods while

  6. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  7. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  8. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  9. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  10. Design Development Analyses in Support of a Heat pipe-Brayton Cycle Heat Exchanger

    SciTech Connect (OSTI)

    Steeve, Brian E. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-07-01T23:59:59.000Z

    One of the power systems under consideration for future space exploration applications, including nuclear electric propulsion or as a planetary surface power source, is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heat pipes to the Brayton gas via a heat exchanger attached to the heat pipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center. An important consideration throughout the design development of the heat exchanger was its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration. (authors)

  11. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14T23:59:59.000Z

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  12. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    - 1 - MASS AND HEAT RECOVERY SYSTEM SALAH MAHMOUD HINDAWI DIRECTOR HINDAWI FOR ENGINEERING SERVICES & CONTRACTING NEW DAMIETTA , EGYPT ABSTRACT : In the last few years heat recovery was under spot . and in air conditioning fields... ) as a heat recovery . and I use the water as a mass recovery . The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines . THE BENEFIT OF THIS SYSTEM ARE : 1) Using the heat energy from...

  13. Heat Integrate Heat Engines in Process Plants

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    ~C. T min Table 3. Problem Table Algorithm Applied to Petrochemicals Process Interval GJ ltiour 'Temperatures ! C! 2 ) ? ~ Cold. Hot Aecumulated Heat Heat FJ.owa Interval Streams StrePlS Deficit. Input OUtput -OUtt!utInput. 20 30 -2... of heat which can be passed on in this manner is performed in column 2 and column 3 of Table 3. It is initially assumed that the heat input from external utilities is zero. This is represented in Table 3 by a zero input to the top interval. Having...

  14. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage

    E-Print Network [OSTI]

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01T23:59:59.000Z

    Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar...

  15. Complex higher order derivative theories

    SciTech Connect (OSTI)

    Margalli, Carlos A.; Vergara, J. David [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico 04510 DF (Mexico)

    2012-08-24T23:59:59.000Z

    In this work is considered a complex scalar field theory with higher order derivative terms and interactions. A procedure is developed to quantize consistently this system avoiding the presence of negative norm states. In order to achieve this goal the original real scalar high order field theory is extended to a complex space attaching a complex total derivative to the theory. Next, by imposing reality conditions the complex theory is mapped to a pair of interacting real scalar field theories without the presence of higher derivative terms.

  16. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report

    SciTech Connect (OSTI)

    Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

    1992-07-01T23:59:59.000Z

    Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  17. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California

    SciTech Connect (OSTI)

    Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

    1992-07-01T23:59:59.000Z

    Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  18. Deconstructing unparticles in higher dimensions

    SciTech Connect (OSTI)

    Lee, Jong-Phil [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)

    2009-04-01T23:59:59.000Z

    Unparticles are realized by deconstruction in higher extra dimensions. It is shown that in this framework when the scale invariance is broken, the corresponding spectral function of the unparticle is shifted by an amount of the breaking scale. The result strongly supports the conventional ansatz for the spectral function of the unparticle in the literature.

  19. HEATING6 verification

    SciTech Connect (OSTI)

    Bryan, C.B.; Childs, K.W.; Giles, G.E.

    1986-12-01T23:59:59.000Z

    The HEATING series of general purpose, finite-difference, conduction heat transfer codes have been in use for many years. During this time the codes have been used extensively, and a general confidence has been developed in regard to their accuracy. However, there has never been a formal verification in a published, citable document. This report documents just such a verification study for the latest code in the HEATING series, HEATING6. This study confirms that HEATING6 is capable of producing accurate results for a large class of heat transfer problems. 11 refs., 170 figs., 82 tabs.

  20. Heat Pump for High School Heat Recovery

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    ) [3] Yayun FAN. Experimental study on a heat pump technology in solar thermal utilization[J]. Acta Energiae Solaris Sinica, Oct.,2002; Vol.23,No.5 ? 581-585.(In Chinese) [4] Nengxi JIANG. Air-conditioning Heat Pump Technology and Its Applications...

  1. Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends

    E-Print Network [OSTI]

    Uggini, Hari

    2012-07-16T23:59:59.000Z

    Hydrogen Cyanide HHV Higher Heating Value LNB Low NOx Burner PRB Powder River Basin TAMU Texas A&M University CABEL Coal And Biomass Energy Laboratory ER Equivalence Ratio VM Volatile Matter FC Fixed Carbon OFA Over Fired Air (tertiary air... ......................................... 33 5.1 Numerical model algorithm ..................................................................... 47 5.2 Pure PRB NO vs. overall ER ................................................................... 49 5.3 Oxygen concentration along...

  2. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  3. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  4. DistrictHeating Nuevasaladecalderasydistribucin

    E-Print Network [OSTI]

    Fraguela, Basilio B.

    DistrictHeating Nuevasaladecalderasydistribucin decalorenelreauniversitariade AZapateira Jess, difusin. DISTRICT HEATING O CALEFACCIN DE BARRIO #12;MATERIALIZACIN INTEGRACIN VISUAL DE ELEMENTOS rendimiento global de la instalacin. - Contabilizacin de prdidas en tuberas de distribucin. #12;DISTRICT

  5. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  6. Twist operators in higher dimensions

    E-Print Network [OSTI]

    Ling-Yan Hung; Robert C. Myers; Michael Smolkin

    2014-07-24T23:59:59.000Z

    We study twist operators in higher dimensional CFT's. In particular, we express their conformal dimension in terms of the energy density for the CFT in a particular thermal ensemble. We construct an expansion of the conformal dimension in power series around n=1, with n being replica parameter. We show that the coefficients in this expansion are determined by higher point correlations of the energy-momentum tensor. In particular, the first and second terms, i.e. the first and second derivatives of the scaling dimension, have a simple universal form. We test these results using holography and free field theory computations, finding agreement in both cases. We also consider the `operator product expansion' of spherical twist operators and finally, we examine the behaviour of correlators of twist operators with other operators in the limit n ->1.

  7. Bandera Electric Cooperative- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    The Bandera Electric Cooperative offers a $200 rebate for the installation of a 15 SEER or higher heat pumps in existing homes. This program is designed to promote energy efficiency in existing...

  8. Introduction of Heat Recovery Chiller Control and Water System Design

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  9. Introduction of Heat Recovery Chiller Control and Water System Design

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  10. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  11. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23T23:59:59.000Z

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  12. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01T23:59:59.000Z

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  13. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29T23:59:59.000Z

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  14. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  15. On higher spin partition functions

    E-Print Network [OSTI]

    M. Beccaria; A. A. Tseytlin

    2015-06-05T23:59:59.000Z

    We observe that the partition function of the set of all free massless higher spins s=0,1,2,3,... in flat space is equal to one: the ghost determinants cancel against the "physical" ones or, equivalently, the (regularized) total number of degrees of freedom vanishes. This reflects large underlying gauge symmetry and suggests analogy with supersymmetric or topological theory. The Z=1 property extends also to the AdS background, i.e. the 1-loop vacuum partition function of Vasiliev theory is equal to 1 (assuming a particular regularization of the sum over spins); this was noticed earlier as a consistency requirement for the vectorial AdS/CFT duality. We find that Z=1 is also true in the conformal higher spin theory (with higher-derivative d^{2s} kinetic terms) expanded near flat or conformally flat S^4 background. We also consider the partition function of free conformal theory of symmetric traceless rank s tensor field which has 2-derivative kinetic term but only scalar gauge invariance in flat 4d space. This non-unitary theory has a Weyl-invariant action in curved background and corresponds to "partially massless" field in AdS_5. We discuss in detail the special case of s=2 (or "conformal graviton"), compute the corresponding conformal anomaly coefficients and compare them with previously found expressions for generic representations of conformal group in 4 dimensions.

  16. On higher spin partition functions

    E-Print Network [OSTI]

    Beccaria, M

    2015-01-01T23:59:59.000Z

    We observe that the partition function of the set of all free massless higher spins s=0,1,2,3,... in flat space is equal to one: the ghost determinants cancel against the "physical" ones or, equivalently, the (regularized) total number of degrees of freedom vanishes. This reflects large underlying gauge symmetry and suggests analogy with supersymmetric or topological theory. The Z=1 property extends also to the AdS background, i.e. the 1-loop vacuum partition function of Vasiliev theory is equal to 1 (assuming a particular regularization of the sum over spins); this was noticed earlier as a consistency requirement for the vectorial AdS/CFT duality. We find that Z=1 is also true in the conformal higher spin theory (with higher-derivative d^{2s} kinetic terms) expanded near flat or conformally flat S^4 background. We also consider the partition function of free conformal theory of symmetric traceless rank s tensor field which has 2-derivative kinetic term but only scalar gauge invariance in flat space. This non...

  17. Liquid metal heat exchanger for efficient heating of soils and geologic formations

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN) [Knoxville, TN; Wesolowski, David J. (Kingston, TN) [Kingston, TN

    2010-02-23T23:59:59.000Z

    Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.

  18. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10T23:59:59.000Z

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  19. Acoustic Heating Peter Ulmschneider

    E-Print Network [OSTI]

    Ulmschneider, Peter

    mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

  20. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  1. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  2. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  3. Mechanical Engineering Laboratory of Heat and Mass Transfer

    E-Print Network [OSTI]

    Diggavi, Suhas

    the prediction methods. The local condensation heat transfer behavior of two new refrigerants(R236fa and R1234ze refrigerants. Effect of different parameters was investigated for present database. Koyama method was modified. Jung E. Park Comparing refrigerant performance, the higher heat transfer coefficients (about 15

  4. Research and Development Roadmap for Water Heating Technologies

    SciTech Connect (OSTI)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01T23:59:59.000Z

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  5. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  6. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  7. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  8. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  9. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01T23:59:59.000Z

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  10. A simple quantum heat engine

    E-Print Network [OSTI]

    Jacques Arnaud; Laurent Chusseau; Fabrice Philippe

    2003-06-02T23:59:59.000Z

    Quantum heat engines employ as working agents multi-level systems instead of gas-filled cylinders. We consider particularly two-level agents such as electrons immersed in a magnetic field. Work is produced in that case when the electrons are being carried from a high-magnetic-field region into a low-magnetic-field region. In watermills, work is produced instead when some amount of fluid drops from a high-altitude reservoir to a low-altitude reservoir. We show that this purely mechanical engine may in fact be considered as a two-level quantum heat engine, provided the fluid is viewed as consisting of n molecules of weight one and N-n molecules of weight zero. Weight-one molecules are analogous to electrons in their higher energy state, while weight-zero molecules are analogous to electrons in their lower energy state. More generally, fluids consist of non-interacting molecules of various weights. It is shown that, not only the average value of the work produced per cycle, but also its fluctuations, are the same for mechanical engines and quantum (Otto) heat engines. The reversible Carnot cycles are approached through the consideration of multiple sub-reservoirs.

  11. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  12. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01T23:59:59.000Z

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  13. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  14. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  15. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect (OSTI)

    Olszewski, M.; Zaltash, A.

    1995-03-01T23:59:59.000Z

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  16. The higher spin Laplace operator

    E-Print Network [OSTI]

    Hendrik De Bie; David Eelbode; Matthias Roels

    2015-01-24T23:59:59.000Z

    This paper deals with a certain class of second-order conformally invariant operators acting on functions taking values in particular (finite-dimensional) irreducible representations of the orthogonal group. These operators can be seen as a generalisation of the Laplace operator to higher spin as well as a second order analogue of the Rarita-Schwinger operator. To construct these operators, we will use the framework of Clifford analysis, a multivariate function theory in which arbitrary irreducible representations for the orthogonal group can be realised in terms of polynomials satisfying a system of differential equations. As a consequence, the functions on which this particular class of operators act are functions taking values in the space of harmonics homogeneous of degree k. We prove the ellipticity of these operators and use this to investigate their kernel, focusing on both polynomial solutions and the fundamental solution.

  17. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06T23:59:59.000Z

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  18. Summer HeatSummer Heat Heat stress solutions

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    occur (then drink a lightly salted beverage like a sports drink). The water's temperature should be cool How should gardeners avoid becoming a safety threat to themselves and others when it's hot? Start to the heat. Become a weather watcher. Set up a small weather station (with a high/low thermom eter, rain

  19. From Higher Education To Work In West

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    From Higher Education To Work In West Virginia 2009 Summary Results For Work Participation Virginia Higher Education Policy Commission By George W. Hammond, Associate Director Adam Hoffer, Graduate Virginia Higher Education Policy Commission. Opinions expressed herein are the responsibility

  20. Global Compact for Higher Education Institutions

    E-Print Network [OSTI]

    Global Compact for Higher Education Institutions Communicating on Progress for Universit Laval Guide to the United Nations Global Compact for Higher Education Institutions: Implementing the Global to the United Nations Global Compact for Higher Education Institutions: Implementing the Global Compact

  1. Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery

    SciTech Connect (OSTI)

    Love, Norman [University of Texas, El Paso; Szybist, James P [ORNL; Sluder, Scott [ORNL

    2011-01-01T23:59:59.000Z

    This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

  2. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18T23:59:59.000Z

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  3. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  4. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  5. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18T23:59:59.000Z

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  6. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28T23:59:59.000Z

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  7. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  8. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01T23:59:59.000Z

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  9. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  10. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    E-Print Network [OSTI]

    Nielsen, Steven O.

    reproduces the isotope effect. The heat capacity in the liquid D2O has been calculated to be 10% higher than important in the liquid phase. In fact, in many systems, the heat capacity has an isotope effect, whichCalculation of heat capacities of light and heavy water by path-integral molecular dynamics

  11. Waste heat recovery steam curves with unfired HRSGs

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    A compilation of waste heat recovery steam curves for a sampling of gas turbines ranging in output from around 1 MW to more than 200 MW is presented. The gas turbine output data shown with each set of curves differs from the values given in the Performance Specifications section of the Handbook. That's because the values have been calculated to reflect the effects of a 4 inch inlet and 10 inch outlet pressure drop on power output (lower), heat rate (higher), mass flow (higher), and exhaust temperature (higher).

  12. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  13. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28T23:59:59.000Z

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  14. First university owned district heating system using biomass heat

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Highlights First university owned district heating system using biomass heat Capacity: 15 MMBtu Main Campus District Heating Performance Avoided: 3500 tonnes of CO2 Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

  15. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, W.L.; Contolini, R.J.

    1992-03-24T23:59:59.000Z

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  16. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  17. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  18. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  19. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  20. A container for heat treating materials in microwave ovens

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26T23:59:59.000Z

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  1. Some aspects of laser heating of engineering materials

    SciTech Connect (OSTI)

    Yilbas, B.S.; Al-Garni, A.Z. [KFUPM, Dhahran (Saudi Arabia). Mechanical Engineering Dept.

    1996-08-01T23:59:59.000Z

    Laser induced heating processes are important when a laser is used as a machine tool in industry, since the quality of the machining process strongly depends on the heating mechanism. The present study examines a heat transfer model that provides useful information on the laser induced interaction mechanism. Steady state and time dependent heating models are introduced and temperature profiles inside the materials are predicted. Using appropriate assumptions, the time for the surface temperature to reach 90% of its steady state value is estimated. To validate the theoretical predictions, experiments are performed to measure the surface temperature of the irradiated spot during the laser heating pulse. It is found that, during the use of a pulsed laser in the drilling process, as the heating progresses the drilling velocities rise while the liquid depth and time to reach steady state fall, in this case, the energy consumed for evaporation is higher than losses through conduction.

  2. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01T23:59:59.000Z

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  3. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru, E-mail: babac@itu.edu.tr [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey)] [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey); Reese, Jason M. [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)] [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2014-05-15T23:59:59.000Z

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  4. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16T23:59:59.000Z

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  5. Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...

    Open Energy Info (EERE)

    heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on...

  6. Economic Options for Upgrading Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  7. Economic Options for Upgrading Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  8. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations

    E-Print Network [OSTI]

    Kirol, L. D.

    for water and gas connections, and temperature variations. Recent work on heat pump cycles using complex compound reactions includes development of energy storage systems at laboratories in Europe (11) and the United States (12), and residential...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

  9. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

    2011-03-01T23:59:59.000Z

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  10. ELECTRIC CO-HEATING: A METHOD FOR EVALUATING SEASONAL HEATING EFFICIENCIES AND HEAT LOSS RATES IN DWELLINGS

    E-Print Network [OSTI]

    Modera, M.P.

    2012-01-01T23:59:59.000Z

    Effi~ ciency of Fossil~Fired Heating Systems for LabelingInfo. Division, Ext. 6782 Electric Co-heating: A Methodfor Evaluating Seasonal Heating Efficiencies and Heat Loss

  11. Workshop on Condensing Heating and Water Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop on Condensing Heating and Water Heating Equipment Thursday, October 9, 2014 List of Attendees OrganizationAttendees DOE - John Cymbalsky - Ashley Armstrong - Johanna...

  12. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls...

  13. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  14. Proceedings: Heat exchanger workshop

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

  15. Micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12T23:59:59.000Z

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  16. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16T23:59:59.000Z

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  17. Direct-Contact Process Water Heating

    E-Print Network [OSTI]

    Hamann, M. R.

    2006-01-01T23:59:59.000Z

    to the manufacturing processes utilizing direct steam injection from process boilers to a hot water storage tank. Although the boiler plant was in fair operating condition, the boilers were over 30 years old and had measured seasonal heating efficiencies of 60... water heater. Since the new system was better matched to the plant load, energy savings occurred as a result of the new systems reduced input capacity and higher efficiency. This project, which can be duplicated in other industries with facility...

  18. Optimizing PT Arun LNG main heat exchanger

    SciTech Connect (OSTI)

    Irawan, B. [PT Arun NGL Co., Sumatra (Indonesia)

    1995-12-01T23:59:59.000Z

    The capacity of a LNG liquefaction unit has been increased by upgrading the refrigeration system, without making changes to the main heat exchanger (MHE). It is interesting, that after all modifications were completed, a higher refrigerant circulation alone could not increase LNG production. However, by optimizing the refrigerant component ratio, the UA of the MHE increased and LNG production improved. This technical evaluation will provide recommendations and show how the evaluation of the internal temperature profile helped optimize the MHE operating conditions.

  19. Complex Compound Chemical Heat Pumps

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    1987-01-01T23:59:59.000Z

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  20. Energy 101: Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe ...

  1. Complex Compound Chemical Heat Pumps

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  2. Optimization of Heat Exchanger Cleaning

    E-Print Network [OSTI]

    Siegell, J. H.

    1986-01-01T23:59:59.000Z

    The performance of heat integration systems is quantified in terms of the amount of heat that is recovered. This decreases with time due to increased fouling of the heat exchange surface. Using the "Total Fouling Related Expenses (TFRE)" approach...

  3. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21T23:59:59.000Z

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  4. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11T23:59:59.000Z

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  5. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    or hydrochloric acid vapor should be mentioned upfront so the HRSG designer can take proper precauations while designing the unit.Material selection is also impacted by the presence of corrosive gases.If partial pressure of hydrogen is high in the gas stream...SPECIFYING WASTE HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants...

  6. Liquid Phase Heating Systems

    E-Print Network [OSTI]

    Mordt, E. H.

    1979-01-01T23:59:59.000Z

    Temperature Water (HTW) central district heating systems are far superior to steam systems in large, spread out installations such as airports, universities and office complexes. Water, pressurized to keep it in the liquid state, is distributed at 400o...

  7. Composite heat damage assessment

    SciTech Connect (OSTI)

    Janke, C.J.; Wachter, E.A. [Oak Ridge National Lab., TN (United States); Philpot, H.E. [Oak Ridge K-25 Site, TN (United States); Powell, G.L. [Oak Ridge Y-12 Plant, TN (United States)

    1993-12-31T23:59:59.000Z

    The effects of heat damage were determined on the residual mechanical, physical, and chemical properties of IM6/3501-6 laminates, and potential nondestructive techniques to detect and assess material heat damage were evaluated. About one thousand preconditioned specimens were exposed to elevated temperatures, then cooled to room temperature and tested in compression, flexure, interlaminar shear, shore-D hardness, weight loss, and change in thickness. Specimens experienced significant and irreversible reduction in their residual properties when exposed to temperatures exceeding the material upper service temperature of this material (350{degrees}F). The Diffuse Reflectance Infrared Fourier Transform and Laser-Pumped Fluorescence techniques were found to be capable of rapid, in-service, nondestructive detection and quantitation of heat damage in IM6/3501- 6. These techniques also have the potential applicability to detect and assess heat damage effects in other polymer matrix composites.

  8. Mechanical Compression Heat Pumps

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    1986-01-01T23:59:59.000Z

    to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical...

  9. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  10. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    under the offset unit's solar panel, the hf formula (16) wasdrop below the angle unit's solar panel at night time. D u rfor both the units, the solar panel covered roof was a heat

  11. Passive solar heating analysis

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

    1984-01-01T23:59:59.000Z

    This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

  12. States & Energy Efficiency in Higher Education

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Energy Efficiency in Higher Education.

  13. Mechanical Compression Heat Pumps

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    dampened because there is a current abundance of the basic sources of industrial energy (namely oil and natural gas). Meanwhile, Mycom used the window of the current opportunities to develop, design and test compressors built to meet the needs... requirements of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling...

  14. County Employment Of West Virginia Higher

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    County Employment Of West Virginia Higher Education Graduates 2009 December 2010 Prepared for the West Virginia Higher Education Policy Commission By George W. Hammond, Associate Director Adam Hoffer with the West Virginia Higher Education Policy Commission. Opinions expressed herein are the responsibility

  15. TWISTING COCHAINS AND HIGHER TORSION KIYOSHI IGUSA

    E-Print Network [OSTI]

    Igusa, Kiyoshi

    of them is a higher algebraic K-theory class measured by higher FR torsion. Flat superconnections are also-theory 8 4. Higher FR torsion 10 5. Flat superconnections 12 6. Forms as operators 15 7. Chen's iterated) It is a combinatorial flat Z graded superconnection. 2000 Mathematics Subject Classification. Primary 57R22, Secondary

  16. Firm Size And Higher Education Graduate

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Firm Size And Higher Education Graduate Employment In West Virginia 2010 Summary Results For Work 2012 Prepared for the West Virginia Higher Education Policy Commission By George W. Hammond, Associate Corporation Funding for this research was provided by the West Virginia Higher Education Policy Commission

  17. From Higher Education To Work In West

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    From Higher Education To Work In West Virginia 2008 Summary Results For Work Participation Achievement, Tuition Assistance, and Nearby States March 2010 Prepared for the West Virginia Higher Education Higher Education Policy Commission. Opinions expressed herein are the responsibility of the authors. #12

  18. From Higher Education To Work In West

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    From Higher Education To Work In West Virginia 2007 Summary Results For Work Participation Prepared for the West Virginia Higher Education Policy Commission By George W. Hammond, Associate Director This research was conducted under contract with the West Virginia Higher Education Policy Commission. Opinions

  19. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  20. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  1. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1984-01-01T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  2. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09T23:59:59.000Z

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  3. Radial flow heat exchanger

    DOE Patents [OSTI]

    Valenzuela, Javier (Hanover, NH)

    2001-01-01T23:59:59.000Z

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  4. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P

    2013-12-10T23:59:59.000Z

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  5. Solar air heating system for combined DHW and space heating

    E-Print Network [OSTI]

    Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Sren stergaard Jensen

  6. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (San Ramon, CA)

    2012-07-24T23:59:59.000Z

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  7. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer) which employs a natural gas fired Stirling engine to drive a Rankine cycle vapor compressor is presently by the heat pump effect. The Stirling engine/Rankine cycle refrigeration loop heat pump being developed would

  8. Waste Heat Recovery Using a Circulating Heat Medium Loop

    E-Print Network [OSTI]

    Manning, E., Jr.

    1981-01-01T23:59:59.000Z

    by a circulating heat medium loop where waste heat is recovered for useful purposes. The heat medium chosen is turbine fuel. It is pumped around the refinery to pick up heat at the crude distilling unit, the hydrocracker, the catalytic cracker...

  9. Generalized structure of higher order nonclassicality

    E-Print Network [OSTI]

    Amit Verma; Anirban Pathak

    2009-01-21T23:59:59.000Z

    A generalized notion of higher order nonclassicality (in terms of higher order moments) is introduced. Under this generalized framework of higher order nonclassicality, conditions of higher order squeezing and higher order subpoissonian photon statistics are derived. A simpler form of the Hong-Mandel higher order squeezing criterion is derived under this framework by using an operator ordering theorem introduced by us in [J. Phys. A. 33 (2000) 5607]. It is also generalized for multi-photon Bose operators of Brandt and Greenberg. Similarly, condition for higher order subpoissonian photon statistics is derived by normal ordering of higher powers of number operator. Further, with the help of simple density matrices, it is shown that the higher order antibunching (HOA) and higher order subpoissonian photon statistics (HOSPS) are not the manifestation of the same phenomenon and consequently it is incorrect to use the condition of HOA as a test of HOSPS. It is also shown that the HOA and HOSPS may exist even in absence of the corresponding lower order phenomenon. Binomial state, nonlinear first order excited squeezed state (NLESS) and nonlinear vacuum squeezed state (NLVSS) are used as examples of quantum state and it is shown that these states may show higher order nonclssical characteristics. It is observed that the Binomial state which is always antibunched, is not always higher order squeezed and NLVSS which shows higher order squeezing does not show HOSPS and HOA. The opposite is observed in NLESS and consequently it is established that the HOSPS and HOS are two independent signatures of higher order nonclassicality

  10. Toolbox Safety Talk Heat Stress

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Heat Stress Environmental Health & Safety Facilities Safety & Health Section for inducing heat stress. When the body is unable to cool itself by sweating, several heat-induced illnesses Stress Know signs/symptoms of heat-related illnesses; monitor yourself and coworkers. Block out

  11. temperature heat pumps applied to

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    losses (waste heat) 250-300C......1100C ~ 100 TWh/year Low temperature thermal losses (waste heat) 25C;Waste heat recovery (1) In a decreasing energetic interest order Achema 2012 Frankfurt June 21th 2012>>Twaste #12;Waste heat recovery (2) Achema 2012 Frankfurt June 21th 2012 There is no interesting thermal

  12. Superconducting accelerator cavity with a heat affected zone having a higher RRR

    DOE Patents [OSTI]

    Brawley, John (Grafton, VA); Phillips, H. Lawrence (Hayes, VA)

    2000-01-01T23:59:59.000Z

    An improved method for welding accelerator cavities without the need for time consuming and expensive faying surface treatments comprising electron beam welding such cavities in a vacuum welding chamber within a vacuum envelope and using the following welding parameters: a beam voltage of between about 45 KV and 55 KV; a beam current between about 38 ma and 47 ma; a weld speed of about 15 cm/min; and a sharp focus and a rhombic raster of between about 9 KHz and 10 Khz. A welded cavity made according to the method of the present invention is also described.

  13. Heat wave contributes to higher summer electricity demand in the Northeast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecoveryG -HazmatLoad ExperimentsDrop

  14. Heat wave contributes to higher summer electricity demand in the Northeast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecoveryG -HazmatLoad

  15. Heat distribution ceramic processing method

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  16. Heat and Power Systems Design

    E-Print Network [OSTI]

    Spriggs, H. D.; Shah, J. V.

    HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

  17. Overshooting by differential heating

    E-Print Network [OSTI]

    Andrssy, R

    2015-01-01T23:59:59.000Z

    On the long nuclear time scale of stellar main-sequence evolution, even weak mixing processes can become relevant for redistributing chemical species in a star. We investigate a process of "differential heating," which occurs when a temperature fluctuation propagates by radiative diffusion from the boundary of a convection zone into the adjacent radiative zone. The resulting perturbation of the hydrostatic equilibrium causes a flow that extends some distance from the convection zone. We study a simplified differential-heating problem with a static temperature fluctuation imposed on a solid boundary. The astrophysically relevant limit of a high Reynolds number and a low P\\'eclet number (high thermal diffusivity) turns out to be interestingly non-intuitive. We derive a set of scaling relations for the stationary differential heating flow. A numerical method adapted to a high dynamic range in flow amplitude needed to detect weak flows is presented. Our two-dimensional simulations show that the flow reaches a sta...

  18. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01T23:59:59.000Z

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  19. Lower Cost, Higher Performance Carbon Fiber

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Presentationname Questions for Today Materials How can the cost of carbon fiber suitable for higher performance applications (H 2 Storage) be developed? H 2...

  20. Air heating system

    DOE Patents [OSTI]

    Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

    1983-03-01T23:59:59.000Z

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  1. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  2. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  3. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  4. Heat-transfer coefficients in agitated vessels. Latent heat models

    SciTech Connect (OSTI)

    Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States)] [Ashland Chemical Co., Columbus, OH (United States)

    1996-03-01T23:59:59.000Z

    Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.

  5. Experimental Study of RF Pulsed Heating

    SciTech Connect (OSTI)

    Laurent, Lisa; Tantawi, Sami; Dolgashev, Valery; Nantista, Christopher; /SLAC; Higashi, Yasuo; /KEK, Tsukuba; Aicheler, Markus; Heikkinen, Samuli; Wuensch, Walter; /CERN

    2011-11-04T23:59:59.000Z

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop(reg. sign), copper silver, and silver plated copper. The samples were exposed to different machining and heat treatment processes prior to rf processing. Each sample was tested to a peak pulsed heating temperature of approximately 110 C and remained at this temperature for approximately 10 x 10{sup 6} rf pulses. In general, the results showed the possibility of pushing the gradient limits due to pulsed heating fatigue by the use of copper zirconium and copper chromium alloys.

  6. Emerging National Concerns for Higher Education

    E-Print Network [OSTI]

    Emerging National Concerns for Higher Education (and Welcome Back) 2014 Annual Faculty Conference old news The STEM tide has been kind to us The Energy boom plays to our strengths #12;7 Public debt capacity for campuses July 2014, Moody's "negative outlook for US Higher Education What

  7. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  8. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01T23:59:59.000Z

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  9. Thermoelectric DC conductivities with momentum dissipation from higher derivative gravity

    E-Print Network [OSTI]

    Long Cheng; Xian-Hui Ge; Zu-Yao Sun

    2015-04-28T23:59:59.000Z

    We present a mechanism of momentum relaxation in higher derivative gravity by adding linear scalar fields to the Gauss-Bonnet theory. We analytically computed all of the DC thermoelectric conductivities in this theory by adopting the method given by Donos and Gauntlett in [arXiv:1406.4742]. The results show that the DC electric conductivity is not a monotonic function of the effective impurity parameter $\\beta$: in the small $\\beta$ limit, the DC conductivity is dominated by the coherent phase, while for larger $\\beta$, pair creation contribution to the conductivity becomes dominant, signaling an incoherent phase. In addition, the DC heat conductivity is found independent of the Gauss-Bonnet coupling constant.

  10. Holographic Representation of Higher Spin Gauge Fields

    E-Print Network [OSTI]

    Debajyoti Sarkar; Xiao Xiao

    2014-11-17T23:59:59.000Z

    Extending the results of \\cite{Heem}, \\cite{KLRS} on the holographic representation of local gauge field operators in anti de Sitter space, here we construct the bulk operators for higher spin gauge fields in the leading order of $\\frac{1}{N}$ expansion. Working in holographic gauge for higher spin gauge fields, we show that gauge field operators with integer spin $s>1$ can be represented by an integration over a ball region, which is the interior region of the spacelike bulk lightcone on the boundary. The construction is shown to be AdS-covariant up to gauge transformations, and the two-point function between higher spin gauge fields and boundary higher spin current exhibit singularities on both bulk and boundary lightcones. We also comment on possible extension to the level of three-point functions and carry out a causal construction for higher spin fields in de Sitter spacetime.

  11. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect (OSTI)

    White-Newsome, Jalonne L., E-mail: jalonne@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 109 S. Observatory, SPH II, Rm. M6314, Ann Arbor, MI 48109 (United States); Sanchez, Brisa N., E-mail: brisa@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Jolliet, Olivier, E-mail: ojolliet@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Zhang, Zhenzhen, E-mail: zhzh@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Parker, Edith A., E-mail: Edith-Parker@uiowa.edu [University of Michigan School of Public Health, Health Behavior and Health Education Department, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Timothy Dvonch, J., E-mail: dvonch@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 1415 Washington Heights, 6642 SPH Tower, Ann Arbor, MI 48109 (United States); O'Neill, Marie S., E-mail: marieo@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6631 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2012-01-15T23:59:59.000Z

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  12. Heat exchange assembly

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08T23:59:59.000Z

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  13. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    of each approach as a function of the source and sink temperatures and magnitude of heat flow. Generic heat pumps and vapor recompression designs are explained, costed, estimated in performance, and evaluated as a function of the economic parameters...

  14. Modeling of Heat Transfer in Geothermal Heat Exchangers

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01T23:59:59.000Z

    Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

  15. HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    Session on Heat Transfer in Nuclear Waste Disposal, C'.heat transfer processes associated with underground nuclear wasteheat transfer and related processes in an un derground environment similar to that expected in a mined nuclear waste

  16. TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS

    E-Print Network [OSTI]

    Selkowitz, S.

    2011-01-01T23:59:59.000Z

    heating purposes. BACKGROUND The reduction of heat transfer rates by the use of thermal infraredheating applications should become available on the marketplace. Due to their high reflectivity to thermal infrared

  17. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

  18. Heat Transfer Derivation of differential equations for heat transfer conduction

    E-Print Network [OSTI]

    Veress, Alexander

    ) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative

  19. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  20. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  1. Design of Heat Exchanger for Heat Recovery in CHP Systems

    E-Print Network [OSTI]

    Kozman, T. A.; Kaur, B.; Lee, J.

    with a heat exchanger to work as a Combined Heat and Power system for the University which will supplement the chilled water supply and electricity. The design constraints of the heat recovery unit are the specifications of the turbine and the chiller...

  2. Heat-transfer coefficients in agitated vessels. Sensible heat models

    SciTech Connect (OSTI)

    Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States). Research and Development Dept.

    1995-12-01T23:59:59.000Z

    Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.

  3. Heat Recovery from Coal Gasifiers

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1981-01-01T23:59:59.000Z

    This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant...

  4. Central Multifamily Water Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  5. Heat Pumps - Theory and Applications

    E-Print Network [OSTI]

    Altin, M.

    1982-01-01T23:59:59.000Z

    compressors (heat pumps) with actual applications in Monsanto. Guidelines for possible application areas are drawn from the analysis, and conclusions are drawn both about the usefulness of exergy analysis and about the heat pump application areas....

  6. Residential Solar Water Heating Rebates

    Broader source: Energy.gov [DOE]

    New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

  7. Geothermal Heat Pump Grant Program

    Broader source: Energy.gov [DOE]

    The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

  8. Heat Pipes: An Industrial Application

    E-Print Network [OSTI]

    Murray, F.

    1984-01-01T23:59:59.000Z

    This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

  9. Challenges in Industrial Heat Recovery

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  10. Faculty Positions Heat Transfer and

    E-Print Network [OSTI]

    Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

  11. Heat Pipes: An Industrial Application

    E-Print Network [OSTI]

    Murray, F.

    1984-01-01T23:59:59.000Z

    This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

  12. Challenges in Industrial Heat Recovery

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  13. Low Level Heat Recovery Technology

    E-Print Network [OSTI]

    O'Brien, W. J.

    1982-01-01T23:59:59.000Z

    level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

  14. Near-wall reaction effects on film-cooled surface heat transfer

    E-Print Network [OSTI]

    Kirk, Daniel Robert, 1975-

    2003-01-01T23:59:59.000Z

    As commercial and military aircraft engines approach higher total temperatures and increasing overall fuel-to-air ratios, there exists a potential for significant heat release to occur in the turbine if energetic species ...

  15. Group classification of heat conductivity equations with a nonlinear source

    E-Print Network [OSTI]

    Zhdanov, Renat

    Group classification of heat conductivity equations with a nonlinear source R.Z. Zhdanov Institute. It is shown that there are three, seven, twenty eight and twelve inequivalent classes of partial differential to the class under study and admitting symmetry group of the dimension higher than four is locally equivalent

  16. HEAT THAT GROWS ON TREES Short description of timber energy

    E-Print Network [OSTI]

    with higher quality wood use. Energy wood data for 2001 Consumption of energy wood in 2001 2500000 m3 wood.3 % of total energy consumption in Switzerland or around 5% of the country's heating requirements% Switzerland 48% 25% 12% Abroad 0% 59% 74% Total 100% 100% 100% 0 1 2 3 4 5 6 7 8 Consumption of energy wood

  17. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    for the solar-heated hot water. This heater can be seen inwater (solar heated, boosted, or heated entirely in the auxiliary heater)

  18. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heating and cooling systems covering a wide range ofpractical heating and cooling system configurations andexperimental heating and cooling system, the main purpose of

  19. Research & Development Roadmap: Emerging Water Heating Technologies...

    Energy Savers [EERE]

    Emerging Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating...

  20. HEAT AND MOISTURE TRANSFER THROUGH CLOTHING

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for

  1. Heat and moisture transfer through clothing

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer

  2. Heat Waves, Global Warming, and Mitigation

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01T23:59:59.000Z

    Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

  3. Unmasking online reflective practices in higher education

    E-Print Network [OSTI]

    Ross, Jennifer

    2012-06-29T23:59:59.000Z

    Online reflective practices that are high-stakes summatively assessed, or used as evidence for progression or membership in a professional body are increasingly prevalent in higher education, especially in professional ...

  4. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10T23:59:59.000Z

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  5. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali . C. Hardal; zgr E. Mstecapl?oglu

    2015-04-22T23:59:59.000Z

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  6. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09T23:59:59.000Z

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  7. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  8. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  9. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01T23:59:59.000Z

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  10. Organic rankine cycle waste heat applications

    DOE Patents [OSTI]

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13T23:59:59.000Z

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  11. Holographic Superconductors and Higher Curvature Corrections

    E-Print Network [OSTI]

    Massimo Siani

    2011-11-14T23:59:59.000Z

    We study a fully backreacted holographic model of a four-dimensional superconductor by including a higher curvature interaction in the bulk action. We study how the critical temperature and the field theory condensate vary in this model and conclude that positive higher curvature couplings make the condensation harder. We also compute the conductivity, finding significant deviations from the conjectured universal frequency gap to critical temperature ratio.

  12. Heat Pump Strategies and Payoffs

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01T23:59:59.000Z

    After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

  13. Industrial Heat Pump Case Study

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    with operating the evaporator. The open-cycle heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. (Steam was the original heat source but is now only needed for start...

  14. Heat Pump Strategies and Payoffs

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01T23:59:59.000Z

    After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

  15. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  16. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  17. Industrial Heat Recovery - 1982

    E-Print Network [OSTI]

    Csathy, D.

    1982-01-01T23:59:59.000Z

    like: "Vertical, natural circulation boilers are intrinsically mbre reliable than horizontal, forced circula tion boilers.",4 and " it will be seen that horizontal tubes have much lower heat fluxes at burnout than do vertical ones, though...-steam density difference dia gram (Figure 1) has been presented repeat edly in order to indicate a significant density difference between the two phases (even close to the critical pressure) which induces natural circulation. However, this diagra...

  18. Thermally Activated Desiccant Technology for Heat Recovery and Comfort

    SciTech Connect (OSTI)

    Jalalzadeh, A. A.

    2005-11-01T23:59:59.000Z

    Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

  19. Mathematical and experimental modelling of heat pump assisted microwave drying

    SciTech Connect (OSTI)

    Xiguo Jia (Univ. of Queensland (Australia))

    1993-01-01T23:59:59.000Z

    Drying is one of the most energy intensive operations in industry and agriculture. In the quest to increase drying efficiency and product quality, new technologies and methods are constantly being sought. Of these technologies, heat pump assisted drying and microwave drying have proved to be the most promising contenders. In order to achieve a better understanding and provide a computer design tool for heat pump assisted convective and microwave drying, both mathematical modelling and experimental investigations of heat pump assisted microwave dryers have been undertaken in this study. A mathematical model has been developed to predict the steady-state performance of a heat pump assisted continuous microwave dryer, with emphasis on the simulation of heat and mass transfer processes in the evaporator and drying chamber. The model is intend to serve as a design tool in the study of heat pump dryers. To achieve the optimum design, the influences of the key design and operating parameters, as well as the comparison of different drying configurations, have been examined. Based on investigation results, several methods have been proposed to improve the performance of heat pump assisted microwave drying, such as the use of a recuperator. To validate the above mathematical model, extensive drying tests using foam rubber as the test material have been conducted on a prototype heat pump assisted microwave dryer. The prototype heat pump input power was 5 kW with a maximum microwave input power of 10 kW. The experimental performance data confirmed the veracity of the simulation model. The experimental results on drying test materials indicate that with careful design heat pump assisted microwave drying is comparable to convective drying in energy consumption while with a much higher drying speed.

  20. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  1. Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Cousineau, J.; Lustbader, J.; Narumanchi, S.

    2014-08-01T23:59:59.000Z

    Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents, which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.

  2. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOE Patents [OSTI]

    Meisner, Gregory P

    2013-10-08T23:59:59.000Z

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  3. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

  4. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  5. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  6. Development of a Heat Transfer Model for the Integrated Facade Heating

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  7. Development of a Heat Transfer Model for the Integrated Facade Heating

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  8. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen insolar heating and cooling system, showing plumbing runs containing solenoid valves, auxiliary heater (

  9. Visual Simulation of Heat Shimmering and Mirage

    E-Print Network [OSTI]

    Mueller, Klaus

    and the surrounding air. We introduce a heat transfer model between the heat source objects and the ambient flow the heat sources to the ambient flow. Although heat transfer modeling has been used before in computer

  10. Heat Supply Who What Where and -Why

    E-Print Network [OSTI]

    Columbia University

    ................................................. 6 District-heating (DH) supply: key figures .............................. 6 What is biomass Geothermics ..........................................................................11 Waste for heat supplyHeat Supply in Denmark Who What Where and - Why #12;Title: Heat Supply in Denmark - Who What Where

  11. absorption heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat... Erickson, D. C. 1983-01-01 26...

  12. apparent molal heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: efficient use of renewable energy in district heating individual heat pumps solar heating and wood pellets individual heat pumps, solar heating and...

  13. apparent molar heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: efficient use of renewable energy in district heating individual heat pumps solar heating and wood pellets individual heat pumps, solar heating and...

  14. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    SciTech Connect (OSTI)

    Harbour, J; Vickie Williams, V

    2008-09-29T23:59:59.000Z

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were {approx} 55% higher than the previous measurement of specific heat capacity on a reference Saltstone mix in 1997. Values of mixes prepared using Deliquification, Dissolution and Adjustment (DDA), Modular Caustic Side Solvent Extraction Unit (MCU) and Salt Waste Processing Facility (SWPF) simulants and premix at 0.60 w/cm ratio were {approx} 1.95 J/g/{sup o}C and were equivalent within experimental error. The simple law of mixtures was used to predict the heat capacities of the Saltstone and the results were in excellent agreement with experimental data. This simple law of mixtures can therefore be used to predict the heat capacities of Saltstone mixes in those cases where measurements have not been made. The time dependence of the heat capacity is important as an input to the modeling of temperature increase in Saltstone vaults. The heat capacity of a mix of MCU and premix at 0.60 w/cm ratio was measured immediately after initial mixing and then periodically up to times greater than 100 days. Within experimental error, the heat capacity did not change with time. Therefore, the modeling is not complicated by requiring a time dependent function for specific heat capacity. The water to cementitious material (w/cm) ratio plays a key role in determining the value of the heat capacity. Both experimental and predictive values for SWPF mixes as function of the w/cm ratio were obtained and presented in this report. Predictions of the maximum temperatures of the Saltstone mixes were made using the heat of hydration data from previous isothermal measurements and the newly measured heat capacities for DDA, MCU and SWPF mixes. The maximum temperature increase ranged from 37 to 48 C for these mixes. The presence of aluminate at 0.33 M produced a temperature increase of 68 C which is close to the adiabatic temperature rise of 74 C observed by Steimke and Fowler in 1997 for a mix containing 0.35 M aluminate. Aluminum dissolution of the sludge will increase the aluminate in the DSS which in turn will result in a larger temperature increase in the Saltstone vaults during the curing p

  15. Group manifold approach to higher spin theory

    E-Print Network [OSTI]

    Hu, Shan

    2015-01-01T23:59:59.000Z

    We consider the group manifold approach to higher spin theory. The deformed higher spin transformation is realized as the diffeomorphism transformation on group manifold $\\textbf{M}$. With the suitable rheonomy condition and the torsion constraint imposed, the unfolded equation can be obtained from the Bianchi identity, by solving which, fields on $\\textbf{M}$ is determined by the multiplet at one point, or equivalently, by $(W^{[a(s-1),b(0)]}_{\\mu},H)$ on $AdS_{4}\\subset \\textbf{M}$. Although the space is extended to $\\textbf{M}$ to get the geometrical formulation, the dynamical degrees of freedom is still in $AdS_{4}$. We also discuss the theory with the global higher spin symmetry, which is in parallel with the WZ model in supersymmetry.

  16. Spinning particles and higher spin field equations

    E-Print Network [OSTI]

    Bastianelli, Fiorenzo; Corradini, Olindo; Latini, Emanuele

    2015-01-01T23:59:59.000Z

    Relativistic particles with higher spin can be described in first quantization using actions with local supersymmetry on the worldline. First, we present a brief review of these actions and their use in first quantization. In a Dirac quantization scheme the field equations emerge as Dirac constraints on the Hilbert space, and we outline how they lead to the description of higher spin fields in terms of the more standard Fronsdal-Labastida equations. Then, we describe how these actions can be extended so that the propagating particle is allowed to take different values of the spin, i.e. carry a reducible representation of the Poincar\\'e group. This way one may identify a four dimensional model that carries the same degrees of freedom of the minimal Vasiliev's interacting higher spin field theory. Extensions to massive particles and to propagation on (A)dS spaces are also briefly commented upon.

  17. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

  18. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  19. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  20. Solar heated rotary kiln

    DOE Patents [OSTI]

    Shell, Pamela K. (Tracy, CA)

    1984-01-01T23:59:59.000Z

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  1. Gelling by Heating

    E-Print Network [OSTI]

    Sandalo Roldan-Vargas; Frank Smallenburg; Walter Kob; Francesco Sciortino

    2013-03-11T23:59:59.000Z

    We introduce a simple model, a binary mixture of patchy particles, which has been designed to form a gel upon heating. Due to the specific nature of the particle interactions, notably the number and geometry of the patches as well as their interaction energies, the system is a fluid both at high and at low temperatures, whereas at intermediate temperatures the system forms a solid-like disordered open network structure, i.e. a gel. Using molecular dynamics we investigate the static and dynamic properties of this system.

  2. Heat Transfer Technology

    E-Print Network [OSTI]

    Lefevre, M. R.

    1984-01-01T23:59:59.000Z

    crossflow and counterflow plume. 3) COMBINATION OF HET AND DRY TOWERS When there is not enough water available to provide the makeup for a conventional wet cooling tower, the only solution is to use "DRY" cooling to dissipate part of the heat load. a... 11. The water is cooled first in the DRY section because DRY cooling is much more expensive than WET cooling and this arrangement leads to the smallest DRY tower. It must also be kept in mind that the DRY tower has a physical cooling limit equal...

  3. Combined Heat and Power

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEANSprings Gets anColoring andCombined Heat

  4. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric Heat

  5. Heat Pump Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of EnergyHearingsWater Heating »

  6. Heat Source Lire,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of EnergyHearingsWater Heating

  7. Anisotropic higher derivative gravity and inflationary universe

    E-Print Network [OSTI]

    W. F. Kao

    2006-05-21T23:59:59.000Z

    Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in details. The non-redundant generalized Friedmann equation of the system is derived by introducing a reduced one dimensional generalized KS type action. This method greatly reduces the labor in deriving field equations of any complicate models. Existence and stability of inflationary solution in the presence of higher derivative terms are also studied in details. Implications to the choice of physical theories are discussed in details in this paper.

  8. Heat Pump Markets UK in Europe

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Heat Pump Markets UK in Europe IEA Heat Pump Workshop 13. November 2012 Zoltan Karpathy #12;2 Excellence in Market Intelligence Agenda About BSRIA WMI UK in the European Heat Pump Market Heating BSRIA WMI UK in the European Heat Pump Market Heating Technologies in New and Existing Buildings Hybrid

  9. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  10. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  11. Heat pump with freeze-up prevention

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1981-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  12. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali . C. Hardal; zgr E. Mstecapl?oglu

    2015-03-12T23:59:59.000Z

    Quantum physics has revolutionized the classical disciplines of mechanics, statistical physics, and electrodynamics. It modernized our society with many advances such as lasers and transistors. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to the quantum regimes. Inevitably, development of quantum heat engines (QHEs) requires investigations of thermodynamical principles from quantum mechanical perspective, and motivates the emerging field of quantum thermodynamics. Studies of QHEs debate on whether quantum coherence can be used as a resource. We explore an alternative that quantum coherence can be a catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work capability of the QHE becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up a QHE, our results reveal a fundamental difference of a quantum fuel from its classical counterpart.

  13. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01T23:59:59.000Z

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  14. Combined Heat and Power, Waste Heat, and District Energy

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingcovers combined heat and power (CHP) technologies and their applications.

  15. Dashboards in Higher UMACRAO/WACRAO Joint

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Dashboards in Higher Education UMACRAO/WACRAO Joint Conference November 1-3, 2006 Phil Hull charts, pie charts and gauges are usually set in a portal-like environment that is often role for Short Term Decision Making Transactional Current, Unit Record Level Data Used for Daily Operational

  16. Higher Derivative D-brane Couplings

    E-Print Network [OSTI]

    Guo, Guangyu

    2012-10-19T23:59:59.000Z

    supersymmetry. In the third part, we obtain the higher derivative D-brane action by using both linearized T-duality and string disc amplitude computation. We evaluate disc amplitude of one R-R field C^(p-3) and two NS-NS fields in the presence of a single Dp...

  17. Regulation XVIII: GENERAL REGULATIONS FOR HIGHER DEGREES,

    E-Print Network [OSTI]

    Regulation XVIII: GENERAL REGULATIONS FOR HIGHER DEGREES, POSTGRADUATE DIPLOMAS AND POSTGRADUATE CERTIFICATES SCOPE OF THESE REGULATIONS 1. These Regulations apply to the Degree of PhD in all Faculties in all Faculties Postgraduate Certificates in all Faculties. 2. These Regulations are subject

  18. HIGHER EDUCATION FACILITIES MANAGEMENT: READY FOR INTERNATIONALIZATION?

    E-Print Network [OSTI]

    Aizuddin, N.; Yahya, M.

    and it equipment, furniture and fixtures to improve the organizations ability to compete successfully in a fast changing world. The facilities of a Higher Education Institution (HEI) like Universiti Teknologi Malaysia are one of its most valuable assets and must...

  19. Construction of Higher Order Finite Element with

    E-Print Network [OSTI]

    Kern, Michel

    ' & $ % Construction of Higher Order Finite Element with Mass Lumping Using Computer Algebra. (3D, combinatorial analysis, new third order element) 2 #12; ' & $ % Guidelines for the construction of nodes must be ~ P k unisolvent. 2. Finite element must be continuous. 3. Quadrature formula must satisfy

  20. Broadband, Higher Education and Rural New Mexico

    E-Print Network [OSTI]

    Maccabe, Barney

    Broadband, Higher Education and Rural New Mexico Gil Gonzales, Ph.D., Chief Information Officer University of New Mexico, Albuquerque, NM 87131 E mail: gonzgil@unm.edu Background UNM students enjoy the country do. New Mexico is also home to two national laboratories in Los Alamos (Los Alamos National

  1. Energy-efficient water heating

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

  2. Heat sinking for printed circuitry

    DOE Patents [OSTI]

    Wilson, S.K.; Richardson, G.; Pinkerton, A.L.

    1984-09-11T23:59:59.000Z

    A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.

  3. Spring 2014 Heat Transfer -2

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted

  4. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01T23:59:59.000Z

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  5. Lower hybrid heating and current drive on PLT

    SciTech Connect (OSTI)

    Stevens, J.E.; Bernabei, S.; Bitter, M.

    1983-03-01T23:59:59.000Z

    800 MHz lower hybrid waves have been launched into PLT with a six waveguide coupler. Recent improvements have allowed powers up to 400 kW to be launched with good coupling (R approx. 10 to 25%). Experiments at low density (anti n/sub e/ < 7 x 10/sup 12/ cm/sup -3/, i.e., ..omega../..omega../sub LH/ > 2) have demonstrated current drive and plasma heating. Experiments at higher densities have produced hot-ion tails, but so far have shown inefficient body heating. To date, only a limited parameters space has been investigated at high power.

  6. Rapid heating and cooling in two-dimensional Yukawa systems

    E-Print Network [OSTI]

    Yan Feng; Bin Liu; J. Goree

    2011-04-19T23:59:59.000Z

    Simulations are reported to investigate solid superheating and liquid supercooling of two-dimensional (2D) systems with a Yukawa interparticle potential. Motivated by experiments where a dusty plasma is heated and then cooled suddenly, we track particle motion using a simulation with Langevin dynamics. Hysteresis is observed when the temperature is varied rapidly in a heating and cooling cycle. As in the experiment, transient solid superheating, but not liquid supercooling, is observed. Solid superheating, which is characterized by solid structure above the melting point, is found to be promoted by a higher rate of temperature increase.

  7. Sodium heat engine electrical feedthrough

    DOE Patents [OSTI]

    Weber, Neill (Dearborn, MI)

    1985-01-01T23:59:59.000Z

    A thermoelectric generator device which converts heat energy to electrical energy. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure.

  8. Cyclotron subharmonics resonant (CSR) heating

    SciTech Connect (OSTI)

    Abe, H.

    1994-01-01T23:59:59.000Z

    The cyclotron subharmonics resonant (CSR) heating mechanism is studied using particle simulation codes with an emphasis on the relationship between CSR and the nonlinear Landua damping.

  9. High Heat Flux Components Program

    SciTech Connect (OSTI)

    Whitley, J.B.

    1983-01-01T23:59:59.000Z

    Purpose is the development of the technologies necessary to design, build and operate high heat flux components such as actively cooled limiters, divertor collector plates, R.F. antennas, mirror end cells, mirror halo collectors, direct convertor collectors, and neutral beam dumps. These components require an integrated design that considers the plasma-materials interaction (PMI) issues, heat removal problems and materials issues (including possible low Z coatings and claddings). As a general definition, high heat flux components see heat fluxes ranging from 1 to 100 MW/m/sup 2/. Suitable materials include copper and copper alloys.

  10. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

  11. International Lige Colloquium on Ocean Dynamics, GAS TRANSFER AT WATER SURFACES, May 2 -6 2005 Estimation of air-sea gas and heat fluxes from infrared imagery and

    E-Print Network [OSTI]

    Jaehne, Bernd

    2005 Estimation of air-sea gas and heat fluxes from infrared imagery and surface wave measurements and much higher heat fluxes. In addition, the infrared imagery analysis reveals potentially significant the infrared images. It is also shown that the difference in the surface boundary conditions for heat and gas

  12. Climate, extreme heat, and electricity demand in California

    SciTech Connect (OSTI)

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01T23:59:59.000Z

    Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

  13. Holographic Heat Engines

    E-Print Network [OSTI]

    Clifford V. Johnson

    2014-09-04T23:59:59.000Z

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  14. Cooling by heating

    E-Print Network [OSTI]

    A. Mari; J. Eisert

    2011-04-01T23:59:59.000Z

    We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counter-intuitive mechanism of "cooling by heating". In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the opto-mechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counter-intuitive effect in opto-mechanical systems with present technology is sketched.

  15. Ceramic heat exchanger

    DOE Patents [OSTI]

    LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

    1998-06-16T23:59:59.000Z

    A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

  16. IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES

    SciTech Connect (OSTI)

    Gupta, N

    2007-03-06T23:59:59.000Z

    This paper presents a feasibility study to improve thermal loading of existing radioactive material packages by using heat pipes. The concept could be used to channel heat in certain directions and dissipate to the environment. The concept is applied to a drum type package because the drum type packages are stored and transported in an upright position. This orientation is suitable for heat pipe operation that could facilitate the heat pipe implementation in the existing well proven package designs or in new designs where thermal loading is high. In this position, heat pipes utilize gravity very effectively to enhance heat flow in the upward direction Heat pipes have extremely high effective thermal conductivity that is several magnitudes higher than the most heat conducting metals. In addition, heat pipes are highly unidirectional so that the effective conductivity for heat transfer in the reverse direction is greatly reduced. The concept is applied to the 9977 package that is currently going through the DOE certification review. The paper presents computer simulations using typical off-the-shelf heat pipe available configurations and performance data for the 9977 package. A path forward is outlined for implementing the concepts for further study and prototype testing.

  17. ABJ Theory in the Higher Spin Limit

    E-Print Network [OSTI]

    Shinji Hirano; Masazumi Honda; Kazumi Okuyama; Masaki Shigemori

    2015-04-27T23:59:59.000Z

    We study the conjecture made by Chang, Minwalla, Sharma, and Yin on the duality between the N=6 Vasiliev higher spin theory on AdS_4 and the N=6 Chern-Simons-matter theory, so-called ABJ theory, with gauge group U(N) x U(N+M). Building on our earlier results on the ABJ partition function, we develop the systematic 1/M expansion, corresponding to the weak coupling expansion in the higher spin theory, and compare the leading 1/M correction, with our proposed prescription, to the one-loop free energy of the N=6 Vasiliev theory. We find an agreement between the two sides up to an ambiguity that appears in the bulk one-loop calculation.

  18. Higher modulus compositions incorporating particulate rubber

    DOE Patents [OSTI]

    Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA); Bagheri, Reza (Bethlehem, PA)

    1997-12-02T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

  19. Higher modulus compositions incorporating particulate rubber

    DOE Patents [OSTI]

    McInnis, E.L.; Scharff, R.P.; Bauman, B.D.; Williams, M.A.

    1995-01-17T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figures.

  20. Higher modulus compositions incorporating particulate rubber

    SciTech Connect (OSTI)

    McInnis, Edwin L. (Allentown, PA); Scharff, Robert P. (Louisville, KY); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

    1995-01-01T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

  1. Higher modulus compositions incorporating particulate rubber

    SciTech Connect (OSTI)

    Bauman, B.D.; Williams, M.A.; Bagheri, R.

    1997-12-02T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

  2. Higher modulus compositions incorporating particulate rubber

    SciTech Connect (OSTI)

    McInnis, Edwin L. (Allentown, PA); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

    1996-04-09T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

  3. Higher modulus compositions incorporating particulate rubber

    DOE Patents [OSTI]

    McInnis, E.L.; Bauman, B.D.; Williams, M.A.

    1996-04-09T23:59:59.000Z

    Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

  4. Heat Transfer Characteristics of a Generalized Divided Flow Heat Exchanger

    E-Print Network [OSTI]

    Singh, K. P.

    1979-01-01T23:59:59.000Z

    The concept of a "Divided-flow" heat exchanger is generalized by locating the shell inlet (or outlet) nozzle off-center such that the two shell sub-streams are unequal and traverse unequal flow paths. The governing equations for heat transfer...

  5. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  6. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  7. Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy

    E-Print Network [OSTI]

    the supply and the demand side · An eye-opener for the Danish politicians · Could be a model for otherHeat Plan DenmarkHeat Plan Denmark Anders Dyrelundy Market Manager for Energy and Climate Rambøll Möller · The first study in Denmark, really to integrate the energy and building sectors ­ to combine

  8. Enhanced Coset Symmetries and Higher Derivative Corrections

    E-Print Network [OSTI]

    Neil Lambert; Peter West

    2006-08-17T23:59:59.000Z

    After dimensional reduction to three dimensions, the lowest order effective actions for pure gravity, M-theory and the Bosonic string admit an enhanced symmetry group. In this paper we initiate study of how this enhancement is affected by the inclusion of higher derivative terms. In particular we show that the coefficients of the scalar fields associated to the Cartan subalgebra are given by weights of the enhanced symmetry group.

  9. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect (OSTI)

    Koplow, Jeffrey P.

    2010-01-01T23:59:59.000Z

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  10. PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS

    E-Print Network [OSTI]

    Warren, Mashuri L.

    2013-01-01T23:59:59.000Z

    Solar Energy Systems for Heating and Cooling. May, 1978. (Washington:Hemisphere heating, Publishing Corp. , 1978),INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS Mashuri L.

  11. NEW HIGHER PERFORMANCE LOW COST SELECTIVE SOLAR RADIATION CONTROL COATINGS

    SciTech Connect (OSTI)

    Timothy Ellison; Buddie Dotter; David Tsu

    2003-10-28T23:59:59.000Z

    Energy Conversion Devices, Inc., ECD, has developed a new high-speed low-cost process for depositing high quality dielectric optical coatings--Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD). This process can deposit SiO{sub x} about 10 times faster than the state-of-the-art conventional technology, magnetron sputtering, at about 1/10th the cost. This process is also being optimized for depositing higher refractive index materials such as Si{sub 3}N{sub 4} and TiO{sub 2}. In this program ECD, in collaboration with Southwall Technologies, Inc. (STI), demonstrated that this process can be used to fabricate high performance low cost Selective Solar Radiation Control (SSRC) films for use in the automotive industry. These coatings were produced on thin (2 mil thick) PET substrates in ECD's pilot roll-to-roll pilot MPECVD deposition machine. Such film can be laminated with PVB in a vehicle's windows. This process can also be used to deposit the films directly onto the glass. Such highly selective films, with a visible transmission (T{sub vis}) of > 70% and a shading coefficient of < 60% can significantly reduce the heat entering a car from solar radiation. Consequently, passenger comfort is increased and the energy needed to operate air conditioning (a/c) systems is reduced; consequently smaller a/c systems can be employed resulting in improved vehicle fuel efficiency.

  12. HEATING THE ATMOSPHERE ABOVE SUNSPOTS

    E-Print Network [OSTI]

    Rucklidge, Alastair

    become fragmented and twisted, and where they generate the necessary energy to heat the solar coronaHEATING THE ATMOSPHERE ABOVE SUNSPOTS David Alexander and Neal E. Hurlburt Lockheed Martin Solar, University of Cambridge, Cambridge, CB3 9EW, UK Abstract We present our results of a hybrid model of sunspots

  13. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect (OSTI)

    Obot, N.T.; Esen, E.B.

    1992-06-01T23:59:59.000Z

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  14. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect (OSTI)

    Obot, N.T.; Esen, E.B.

    1992-06-01T23:59:59.000Z

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  15. Influences of electrical field on boiling-condensation heat transfer system

    SciTech Connect (OSTI)

    Yang Jiaxiang; Ding Lijian; Chi Xiaochun; Liu Ji [Harbin Inst. of Electrical Technology (China). Dept. of Electrical Materials Engineering; Yang He [Harbin Inst. of Tech. (China). Dept. of Thermal Energy Engineering

    1996-12-31T23:59:59.000Z

    In this paper, the influences of electrical field on boiling-condensation heat transfer system have been investigated using a cylinder heat transfer model. Freon-11 is selected as working fluid. The condensation heat transfer coefficient, the boiling heat flux and the saturation pressure are measured in this investigation. According to the experimental results, it is found that the electrical field can influence heat transfer system. The boiling heat transfer is enhanced by the applied voltage, and the saturate vapor of working fluid is condensed on the high voltage electrode directly when the applied voltage is higher than 6 kv. The experimental results have been discussed, and it is considered that the high electrical field strength change the thermal properties of working fluid.

  16. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    instrumented tubes, are ;i 0 W Q. presented in Figures 5, 6, and 7. Figure 5 shows 2 w .. -100 the response of the tube to header weld joint which .. ~ TIC 89- TIC 93 w ?200 Q results from the thermal isolation design. Note the SHEll INLET TEMPERATURE... low thermal gradient across the weld joints, thermo DECREASES TO AMBIENT ?300 couples 65 and 81 and thermocouples 82 and 90. How -400 0 1.0 2.0 3.0 4.0 TIME (MINUTES) ever, the tube which was directly welded to the hot header had a much higher...

  17. Critical heat flux test apparatus

    DOE Patents [OSTI]

    Welsh, Robert E. (West Mifflin, PA); Doman, Marvin J. (McKeesport, PA); Wilson, Edward C. (West Mifflin, PA)

    1992-01-01T23:59:59.000Z

    An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

  18. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30T23:59:59.000Z

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  19. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1999-01-01T23:59:59.000Z

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  20. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1998-01-01T23:59:59.000Z

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  1. IEA HPP Annex 41 Cold Climate Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    of Air-Source Heat Pumps Van D. Baxter Oak Ridge National Laboratory European Heat Pump Summit Nuremberg ­ Cold Climate Heat Pumps Improving low ambient temperature performance of air-source heat pumps as having large number of hours with OD temperature -7 °C (19 °F). Air-source heat pumps (ASHP

  2. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  3. On conformal higher spin wave operators

    E-Print Network [OSTI]

    Teake Nutma; Massimo Taronna

    2014-07-08T23:59:59.000Z

    We analyze free conformal higher spin actions and the corresponding wave operators in arbitrary even dimensions and backgrounds. We show that the wave operators do not factorize in general, and identify the Weyl tensor and its derivatives as the obstruction to factorization. We give a manifestly factorized form for them on (A)dS backgrounds for arbitrary spin and on Einstein backgrounds for spin 2. We are also able to fix the conformal wave operator in d=4 for s=3 up to linear order in the Riemann tensor on generic Bach-flat backgrounds.

  4. Inflationary Universe in Higher Derivative Induced Gravity

    E-Print Network [OSTI]

    W. F. Kao

    2000-06-27T23:59:59.000Z

    In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be $\\phi_0 \\partial_{\\phi_0}V(\\phi_0)=4V(\\phi_0)$. The presence of higher derivative terms will, however, act against the stability of this expanding solution unless further constraints on the field parameters are imposed. We find that these models will acquire a non-vanishing cosmological constant at the end of inflation. Some models are analyzed for their implication to the early universe.

  5. Department of Energy Idaho - Higher Education Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavid Turner David3 |AProgramLinks > Local Higher

  6. Higher Efficiency HVAC Motors | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs,Assessment HazleDepartment of EnergyHigher

  7. Self-heating in kinematically complex magnetohydrodynamic flows

    E-Print Network [OSTI]

    Osmanov, Zaza; Poedts, Stefaan

    2012-01-01T23:59:59.000Z

    The non-modal self-heating mechanism driven by the velocity shear in kinematically complex magnetohydrodynamic (MHD) plasma flows is considered. The study is based on the full set of MHD equations including dissipative terms. The equations are linearized and unstable modes in the flow are looked for. Two different cases are specified and studied: (a) the instability related to an exponential evolution of the wave vector; and (b) the parametric instability, which takes place when the components of the wave vector evolve in time periodically. By examining the dissipative terms, it is shown that the self-heating rate provided by viscous damping is of the same order of magnitude as that due to the magnetic resistivity. It is found that the heating efficiency of the exponential instability is higher than that of the parametric instability.

  8. Near-field heat transfer between gold nanoparticle arrays

    SciTech Connect (OSTI)

    Phan, Anh D., E-mail: anhphan@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 10000 (Viet Nam); Phan, The-Long, E-mail: ptlong2512@yahoo.com [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Woods, Lilia M. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2013-12-07T23:59:59.000Z

    The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-order multipoles is implemented in the expression of electric polarizability to calculate the interactions at short distances. Our findings show that the near-field radiation reduces as the radius of the nanoparticles is increased. Also, the magnetic dipole contribution to the heat exchange becomes more important for larger particles. When one layer is displayed in parallel with respect to the other layer, the near-field heat transfer exhibits oscillatory-like features due to the influence of the individual nanostructures. Further details about the effect of the nanoparticles size are also discussed.

  9. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI); Marsala, Joseph (Glen Ellyn, IL)

    1994-11-29T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  10. Modeling of Heat Transfer in Geothermal Heat Exchangers

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01T23:59:59.000Z

    , University of Lund, Sweden, [7] Fang, Z., Diao, N., and Cui, P., Discontinuous operation of geothermal heat exchangers [J], Tsinghua Science and Technology. , 2002, 7 194?197. [8] Hellstrom, G., Ground heat storage -- Thermal analysis of duct storage... systems [D], Department of Mathem Sweden, 1991. [9] Mei, V. C. and Baxter, V. D., Performance of a ground-coupled heat pump with multiple dissimilar U-tu Transactions, 1986, 92 Part 2, 22-25. [10] Yavuzturk, C., Spitler, J. D. and Rees, S. J., A...

  11. Quantum Optomechanical Heat Engine

    E-Print Network [OSTI]

    Keye Zhang; Francesco Bariani; Pierre Meystre

    2014-04-17T23:59:59.000Z

    We investigate theoretically a quantum optomechanical realization of a heat engine. In a generic optomechanical arrangement the optomechanical coupling between the cavity field and the oscillating end-mirror results in polariton normal mode excitations whose character depends on the pump detuning and the coupling strength. By varying that detuning it is possible to transform their character from phonon-like to photon-like, so that they are predominantly coupled to the thermal reservoir of phonons or photons, respectively. We exploit the fact that the effective temperatures of these two reservoirs are different to produce a Otto cycle along one of the polariton branches. We discuss the basic properties of the system in two different regimes: in the optical domain it is possible to extract work from the thermal energy of a mechanical resonator at finite temperature, while in the microwave range one can in principle exploit the cycle to extract work from the blackbody radiation background coupled to an ultra-cold atomic ensemble.

  12. Brief review on higher spin black holes

    E-Print Network [OSTI]

    Alfredo Perez; David Tempo; Ricardo Troncoso

    2014-05-12T23:59:59.000Z

    We review some relevant results in the context of higher spin black holes in three-dimensional spacetimes, focusing on their asymptotic behaviour and thermodynamic properties. For simplicity, we mainly discuss the case of gravity nonminimally coupled to spin-3 fields, being nonperturbatively described by a Chern-Simons theory of two independent sl(3,R) gauge fields. Since the analysis is particularly transparent in the Hamiltonian formalism, we provide a concise discussion of their basic aspects in this context; and as a warming up exercise, we briefly analyze the asymptotic behaviour of pure gravity, as well as the BTZ black hole and its thermodynamics, exclusively in terms of gauge fields. The discussion is then extended to the case of black holes endowed with higher spin fields, briefly signaling the agreements and discrepancies found through different approaches. We conclude explaining how the puzzles become resolved once the fall off of the fields is precisely specified and extended to include chemical potentials, in a way that it is compatible with the asymptotic symmetries. Hence, the global charges become completely identified in an unambiguous way, so that different sets of asymptotic conditions turn out to contain inequivalent classes of black hole solutions being characterized by a different set of global charges.

  13. Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique

    SciTech Connect (OSTI)

    Sabelstrm, N., E-mail: sabelstrom.n.aa@m.titech.ac.jp; Hayashi, M. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Watanabe, T. [Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Nagata, K. [Department of Conservation Science, Tokyo University of the Arts, 12-8 Ueno Park, Taito-ku, Tokyo (Japan)

    2014-10-28T23:59:59.000Z

    In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100?C could be observed.

  14. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Callahan, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000315498916); Hurricane, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinkel, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. -S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios Garcia, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berzak Hopkins, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000291875667); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerjan, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000251686845); Dewald, E. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dittrich, T. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000184045131); Hamza, A. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kline, J. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Knauer, J. P. [Univ. of Rochester, NY (United States); Kritcher, A. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacPhee, A. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000341604479); Milovich, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikroo, A. [General Atomics, San Diego, CA (United States)] (ORCID:0000000288550378); Pak, A. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salmonson, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spears, B. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Springer, P. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tommasini, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benedetti, L. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bionta, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bond, E. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Field, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fittinghoff, D. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Gatu Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Grim, G. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hatarik, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Merrill, F. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000277686819); Izumi, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khan, S. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-01T23:59:59.000Z

    By increasing the velocity in high foot implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v???. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v???) and is additional evidence that these experiments have significant alpha heating.

  15. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Dppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; et al

    2015-05-01T23:59:59.000Z

    By increasing the velocity in high foot implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmorethe capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v???. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v???) and is additional evidence that these experiments have significant alpha heating.less

  16. Heating 7. 2 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1993-02-01T23:59:59.000Z

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  17. Heat Pump Cycle with Solution Circuit and Internal Heat Exchange

    E-Print Network [OSTI]

    Radermacher, R.

    Vapor compression heat pumps which employ working fluid mixtures rather than pure substances offer significant advantages leading to larger temperature lifts at low pressure ratios or to completely new applications. The main feature of such cycles...

  18. Active heat transfer enhancement in integrated fan heat sinks

    E-Print Network [OSTI]

    Staats, Wayne Lawrence

    2012-01-01T23:59:59.000Z

    Modern computer processors require significant cooling to achieve their full performance. The "efficiency" of heat sinks is also becoming more important: cooling of electronics consumes 1% of worldwide electricity use by ...

  19. Solar steam generation by heat localization

    E-Print Network [OSTI]

    Ghasemi, Hadi

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated ...

  20. Design Considerations for Industrial Heat Recovery Systems

    E-Print Network [OSTI]

    Bywaters, R. P.

    1979-01-01T23:59:59.000Z

    recovery design considerations as well as a summary of typical "waste heat" sources and application sites. A procedure for conducting industrial waste heat surveys is presented. Thermodynamic and heat transfer factors are discussed. Problems associated...

  1. Stochastic Ion Heating by Lower Hybrid Turbulence

    E-Print Network [OSTI]

    Candy, J.

    2010-01-01T23:59:59.000Z

    of Tur b ulent S jpectrum Heating S imulations. Run 1A 2A 3ADivision Stochastic Ion Heating by Lower Hybrid Turbulenceweb development in this heating process is also discussed. I

  2. Heating Energy Meter Validation for Apartments

    E-Print Network [OSTI]

    Cai, B.; Li, D.; Hao, B.

    2006-01-01T23:59:59.000Z

    Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

  3. Ice Heating Up Cold Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Heating Up Cold Clouds Ice Heating Up Cold Clouds Released: October 04, 2011 In a heated battle, ice crystals win the competition for cloud water vapor The mighty cloud ice...

  4. Heating Energy Meter Validation for Apartments

    E-Print Network [OSTI]

    Cai, B.; Li, D.; Hao, B.

    2006-01-01T23:59:59.000Z

    Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

  5. Development Requirements for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    1985-01-01T23:59:59.000Z

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  6. Electrolyte injection with electrical resistance heating

    E-Print Network [OSTI]

    Jaimes Gomez, Olmedo

    1992-01-01T23:59:59.000Z

    reservoir to extract hydrocarbons. These processes include the Radio-Frequency Heating of oil shales and tar sands , the Microwave Heating of oil shales ", the Induction Heating , the Electrocarbonization , the Selective ERH and the Electric Preheat...

  7. Heat-Traced Fluid Transfer Lines

    E-Print Network [OSTI]

    Schilling, R. E.

    1984-01-01T23:59:59.000Z

    HEAT-TRACED FLUID TRANSFER LINES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio This paper discusses basic considerations in designing a heat tracing system using either steam or electrical tracing. Four basic reasons to heat...

  8. Development Requirements for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  9. Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as...

  10. Design Considerations for Industrial Heat Recovery Systems

    E-Print Network [OSTI]

    Bywaters, R. P.

    1979-01-01T23:59:59.000Z

    recovery design considerations as well as a summary of typical "waste heat" sources and application sites. A procedure for conducting industrial waste heat surveys is presented. Thermodynamic and heat transfer factors are discussed. Problems associated...

  11. Surface heating effect on local heat transfer in a rotating two-pass square channel with 60 deg angled rib turbulators

    SciTech Connect (OSTI)

    Zhang, Y.M.; Han, J.C.; Parsons, J.A. [Texas A and M Univ., College Station, TX (United States); Lee, C.P. [General Electric Co., Cincinnati, OH (United States)

    1995-04-01T23:59:59.000Z

    The influence of uneven wall temperature on the local heat transfer coefficient in a rotating, two-pass, square channel with 60 deg ribs on the leading and trailing walls was investigated for Reynolds number from 2,500 to 25,000 and rotation numbers from 0 to 0.352. Each pass, composed of six isolated copper sections, had a length-to-hydraulic diameter ratio of 12. The mean rotating radius-to-hydraulic diameter ratio was 30. Three thermal boundary condition cases were studied: (A) all four walls at the same temperature, (B) all four walls at the same heat flux, and (C) trailing wall hotter than leading with side walls unheated and insulated. Results indicate that rotating ribbed wall heat transfer coefficients increase by a factor of 2 to 3 over the rotating smooth wall data and at reduced coefficient variation from inlet to exit. As rotation number (or buoyancy parameter) increases, the first pass (outflow) trailing heat transfer coefficients increase and the first pass leading heat transfer coefficients decrease, whereas the reverse is true for the second pass (inflow). The direction of the Coriolis force reverse from the outflow trailing wall to the inflow leading wall. Differences between the first pass leading and trailing heat transfer coefficients increase with rotation number. A similar behavior is seen for the second pass leading and trailing heat transfer coefficients, but the differences are reduced due to buoyancy changing from aiding to opposing the inertia force. The results suggest that uneven wall temperature has a significant impact on the local heat transfer coefficients. The heat transfer coefficients on the first pass leading wall for cases B and C are up to 70--100% higher than that for case A, while the heat transfer coefficients on the second pass trailing wall for cases B and C are up to 20--50% higher.

  12. A heat-driven monochromatic light source

    SciTech Connect (OSTI)

    Stefani, F.; Lawless, J.L.

    1989-04-01T23:59:59.000Z

    This work investigates theoretically the efficiency with which heat may be converted into resonance radiation in a cesium thermionic diode. An analytical model of a thermionic converter is employed which combines the coupled effects of line radiation transport, excited-state kinetics, and plasma diffusion. Operating regimes are established for various degrees of optical density in the plasma. The results indicate that monochromatic radiation can be produced with efficiencies on the order of 30 percent provided there is an adequate voltage drop across the plasma. In this study, a drop of one volt was used since it can be maintained without any electrical power input to the device. It is found that high efficiencies come by virtue of the higher interelectrode distances which the solutions will accommodate, and that radiation can be generated efficiently, even with optically dense gases.

  13. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    SciTech Connect (OSTI)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21T23:59:59.000Z

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  14. Modelling and simulation of a heat pump for simultaneous heating and cooling

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    production and space cooling at the same time. An answer to a dual energy demand is the heat pump, sinceModelling and simulation of a heat pump for simultaneous heating and cooling Paul Byrne1 *, Jacques-012-0089-0 #12;1. ABSTRACT The heat pump for simultaneous heating and cooling (HPS) carries out space heating

  15. Solar heat storages in district heating Klaus Ellehauge Thomas Engberg Pedersen

    E-Print Network [OSTI]

    References 45 Appendix 1 Danish companies 48 #12;6/50 Solar heat storages in district heating networksJuly 2007 . #12;#12;Solar heat storages in district heating networks July 2007 Klaus Ellehauge 97 22 11 tep@cowi.dk www.cowi.com #12;#12;Solar heat storages in district heating networks 5

  16. Value of electrical heat boilers and heat pumps for wind power integration

    E-Print Network [OSTI]

    Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link\\ZRUGV wind power, integration, heat pumps, electric heat boilers ,QWURGXFWLRQ 3UREOHP RYHUYLHZ The Danish

  17. Heat exchanger using graphite foam

    DOE Patents [OSTI]

    Campagna, Michael Joseph; Callas, James John

    2012-09-25T23:59:59.000Z

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  18. Heat exchanger with ceramic elements

    DOE Patents [OSTI]

    Corey, John A. (North Troy, NY)

    1986-01-01T23:59:59.000Z

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  19. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24T23:59:59.000Z

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  20. absorption heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating capacity k jet nozzle Closed Cycles: AbsorptionAdsorption heat pump thermal compressor driven by waste heat1 Industrial heat pumps in Germany - potentials,...

  1. absorption heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating capacity k jet nozzle Closed Cycles: AbsorptionAdsorption heat pump thermal compressor driven by waste heat1 Industrial heat pumps in Germany - potentials,...

  2. advanced heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  3. advanced heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  4. agency heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  5. automotive heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  6. Waste Heat Management Options for Improving Industrial Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers...

  7. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    the indirect increase in home heating (and the decrease inincrease the homes heating load in the heating season (Heaters, Direct Heating Equipment, Mobile Home Furnaces,

  8. Ashland puts emphasis on higher technology

    SciTech Connect (OSTI)

    Not Available

    1980-12-03T23:59:59.000Z

    It is reported that Ashland will be switching away from commodity-type petroleum projects, such as gasoline, and toward high-technology items, such as synthetic fuels, lubricants and speciality petrochemicals. New projects involved in the shift toward higher technology include a 5,000 bbl/day lubricating-oil plant at Rabigh, Saudi Arabia, the startup of the big new ethanol plant at South Point, Ohio, and the proposed $260 million acquisition of U.S. Filter. Ashland plans to sell some of the ethanol to be produced in the 3,500 bbl/day corn-based plant in Ohio, but will use the ethanol as an octane-boosting component in premium unleaded gasoline.

  9. Naked Singularities in Higher Dimensional Gravitational Collapse

    E-Print Network [OSTI]

    Asit Banerjee; Ujjal Debnath; Subenoy Chakraborty

    2003-02-28T23:59:59.000Z

    Spherically symmetric inhomogeneous dust collapse has been studied in higher dimensional space-time and the factors responsible for the appearance of a naked singularity are analyzed in the region close to the centre for the marginally bound case. It is clearly demonstrated that in the former case naked singularities do not appear in the space-time having more than five dimension, which appears to a strong result. The non-marginally bound collapse is also examined in five dimensions and the role of shear in developing naked singularities in this space-time is discussed in details. The five dimensional space-time is chosen in the later case because we have exact solution in closed form only in five dimension and not in any other case.

  10. Entanglement entropy in higher derivative holography

    E-Print Network [OSTI]

    Arpan Bhattacharyya; Apratim Kaviraj; Aninda Sinha

    2013-08-16T23:59:59.000Z

    We consider holographic entanglement entropy in higher derivative gravity theories. Recently Lewkowycz and Maldacena arXiv:1304.4926 have provided a method to derive the equations for the entangling surface from first principles. We use this method to compute the entangling surface in four derivative gravity. Certain interesting differences compared to the two derivative case are pointed out. For Gauss-Bonnet gravity, we show that in the regime where this method is applicable, the resulting equations coincide with proposals in the literature as well as with what follows from considerations of the stress tensor on the entangling surface. Finally we demonstrate that the area functional in Gauss-Bonnet holography arises as a counterterm needed to make the Euclidean action free of power law divergences.

  11. Phase Structure of Higher Spin Black Holes

    E-Print Network [OSTI]

    Abhishek Chowdhury; Arunabha Saha

    2015-02-12T23:59:59.000Z

    We revisit the study of the phase structure of higher spin black holes carried out in arXiv$:1210.0284$ using the "canonical formalism". In particular we study the low as well as high temperature regimes. We show that the Hawking-Page transition takes place in the low temperature regime. The thermodynamically favoured phase changes from conical surplus to black holes and then again to conical surplus as we increase temperature. We then show that in the high temperature regime the diagonal embedding gives the appropriate description. We also give a map between the parameters of the theory near the IR and UV fixed points. This makes the "good" solutions near one end map to the "bad" solutions near the other end and vice versa.

  12. Generalized Holographic Superconductors with Higher Derivative Couplings

    E-Print Network [OSTI]

    Anshuman Dey; Subhash Mahapatra; Tapobrata Sarkar

    2014-06-13T23:59:59.000Z

    We introduce and study generalized holographic superconductors with higher derivative couplings between the field strength tensor and a complex scalar field, in four dimensional AdS black hole backgrounds. We study this theory in the probe limit, as well as with backreaction. There are multiple tuning parameters in the theory, and with two non-zero parameters, we show that the theory has a rich phase structure, and in particular, the transition from the normal to the superconducting phase can be tuned to be of first order or of second order within a window of one of these. This is established numerically as well as by computing the free energy of the boundary theory. We further present analytical results for the critical temperature of the model, and compare these with numerical analysis. Optical properties of this system are also studied numerically in the probe limit, and our results show evidence for negative refraction at low frequencies.

  13. Efficiency bounds for nonequilibrium heat engines

    E-Print Network [OSTI]

    Pankaj Mehta; Anatoli Polkovnikov

    2013-01-22T23:59:59.000Z

    We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like atmosphere. The engine first gets an energy intake, which can be done in arbitrary non-equilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodic engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the non-equilibrium and initial equilibrium distributions.These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples.

  14. Internal Heat Transfer Coefficient Determination in a Packed Bed From the Transient Response Due to Solid Phase Induction Heating

    E-Print Network [OSTI]

    Geb, David; Zhou, Feng; Catton, Ivan

    2012-01-01T23:59:59.000Z

    to Solid Phase Induction Heating Nonintrusive measurementsgeneration rate via induction heating. The fluid temperaturetechnique, induction heating, bypass effect, channeling

  15. Emerging Water Heating Technologies Research & Development Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heating Technologies Research & Development Roadmap Emerging Water Heating Technologies Research & Development Roadmap The Research and Development (R&D) Roadmap for Emerging...

  16. Solar Water Heating Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL)...

  17. THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS

    E-Print Network [OSTI]

    Mertol, Atila

    2012-01-01T23:59:59.000Z

    The Performance of Solar Water Heater With Natural Ci rcul2-6, 1980 THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERSJune 1980 THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS*

  18. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

  19. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

  20. Reduce Radiation Losses from Heating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

  1. Water Heating Technologies Research and Development Roadmap ...

    Energy Savers [EERE]

    Water Heating Technologies Research and Development Roadmap Water Heating Technologies Research and Development Roadmap This roadmap establishes a set of high-priority RD&D...

  2. Low-Cost Microchannel Heat Exchanger

    Energy Savers [EERE]

    process Produce prototype heat exchangers for electronics cooling and high pressure waste heat recovery power system applications Test integrity and confirm high...

  3. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  4. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25T23:59:59.000Z

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  5. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Prenger, Jr., F. Coyne (Madison, WI)

    1987-01-01T23:59:59.000Z

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  6. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov (indexed) [DOE]

    HUMAN HEALTH SCIENCE BLDG GEO HEAT PUMP SYSTEMS Principal Investigator Source Heat Pumps Demo Projects May 20, 2010 This presentation does not contain any proprietary confidential,...

  7. Heat Controller: Noncompliance Determination (2014-SE-15004)...

    Office of Environmental Management (EM)

    a Notice of Noncompliance Determination to Heat Controller, Inc. finding that the room air conditioner distributed in commerce by Heat Controller as Comfort Aire brand models...

  8. The Evolution of the U.S. Heat Pump Market

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL] [ORNL; Khowailed, Gannate [Sentech, Inc.] [Sentech, Inc.

    2011-01-01T23:59:59.000Z

    The heating and cooling equipment market in the United States (U.S.) evolved in the last two decades affected by the housing market and external market conditions. The average home size increased by 25% since 1999, contributing to increased average equipment size of heat pumps (HPs) and air conditioners (ACs). The home size increase did not correlate with higher residential energy used. The last decade is recognized for improved home insulation and equipment efficiency, which has made up for the larger home size and still yielded lower residential energy use. The lower energy use coincides with more homes using HPs. HP growth was supported by the price stability and affordability of electricity. The heating and cooling equipment market also seems to be rebounding faster than the housing market after the economic crises. In 2009 only 22% of HPs were sold to new homes, reflecting increased heat pump sales for add-on and replacement applications. HPs are growing in popularity and becoming an established economic technology. The increased usage of HPs will result in reduced residential heating energy use and carbon dioxide emissions.

  9. Harvesting Electricity From Wasted Heat

    SciTech Connect (OSTI)

    Schwede, Jared

    2014-06-30T23:59:59.000Z

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  10. Sodium heat engine electrical feedthrough

    DOE Patents [OSTI]

    Weber, N.

    1985-03-19T23:59:59.000Z

    A thermoelectric generator device which converts heat energy to electrical energy is disclosed. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure. 4 figs.

  11. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, S.R.

    1999-07-27T23:59:59.000Z

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  12. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, Steven R. (Berkeley, CA)

    1999-01-01T23:59:59.000Z

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  13. Industrial Heat Pump Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  14. Harvesting Electricity From Wasted Heat

    ScienceCinema (OSTI)

    Schwede, Jared

    2014-07-16T23:59:59.000Z

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  15. Industrial Heat Pump Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    1985-01-01T23:59:59.000Z

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  16. Mass Save- HEAT Loan Program

    Broader source: Energy.gov [DOE]

    Note: For a limited time, expanded HEAT loan offerings are available. These are being funded by a $3.8 million grant from the U.S. Department of Energy.

  17. Utility solar water heating workshops

    SciTech Connect (OSTI)

    Barrett, L.B. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

    1992-01-01T23:59:59.000Z

    The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

  18. Solar Water Heating Incentive Program

    Broader source: Energy.gov [DOE]

    Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who...

  19. Waste Heat Recovery from Refrigeration

    E-Print Network [OSTI]

    Jackson, H. Z.

    1982-01-01T23:59:59.000Z

    heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

  20. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    Natural convection can provide adequate heat distribution in many situations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others. Natural convection can also be used to reduce the number of auxiliary heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures are predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Experimental results are summarized based on the monitoring of 15 passive solar buildings which employ a wide variety of geometrical configurations including natural convective loops.

  1. Designing Flexible Heat Exchanger Networks

    E-Print Network [OSTI]

    Gautam, R.; Chen, H. S.; Wareck, J. S.

    Procedures and methods used for designing flexible heat exchanger networks are described. The general approach consists of defining the flexibility problem as a set of cases. Pinch Technology is then used to develop an initial network design...

  2. The mechanisms of electron heating and acceleration during magnetic reconnection

    SciTech Connect (OSTI)

    Dahlin, J. T., E-mail: jdahlin@umd.edu; Swisdak, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Drake, J. F. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); Space Science Laboratory, University of California, Berkeley, California 94720 (United States)

    2014-09-15T23:59:59.000Z

    The heating of electrons in collisionless magnetic reconnection is explored in particle-in-cell simulations with non-zero guide fields so that electrons remain magnetized. In this regime, electric fields parallel to B accelerate particles directly, while those perpendicular to B do so through gradient-B and curvature drifts. The curvature drift drives parallel heating through Fermi reflection, while the gradient B drift changes the perpendicular energy through betatron acceleration. We present simulations in which we evaluate each of these mechanisms in space and time in order to quantify their role in electron heating. For a case with a small guide field (20% of the magnitude of the reconnecting component), the curvature drift is the dominant source of electron heating. However, for a larger guide field (equal to the magnitude of the reconnecting component) electron acceleration by the curvature drift is comparable to that of the parallel electric field. In both cases, the heating by the gradient B drift is negligible in magnitude. It produces net cooling because the conservation of the magnetic moment and the drop of B during reconnection produce a decrease in the perpendicular electron energy. Heating by the curvature drift dominates in the outflow exhausts where bent field lines expand to relax their tension and is therefore distributed over a large area. In contrast, the parallel electric field is localized near X-lines. This suggests that acceleration by parallel electric fields may play a smaller role in large systems where the X-line occupies a vanishing fraction of the system. The curvature drift and the parallel electric field dominate the dynamics and drive parallel heating. A consequence is that the electron energy spectrum becomes extremely anisotropic at late time, which has important implications for quantifying the limits of electron acceleration due to synchrotron emission. An upper limit on electron energy gain that is substantially higher than earlier estimates is obtained by balancing reconnection drive with radiative loss.

  3. actual higher education: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    counterfactual Danforth, Bryan Nicholas 126 Application for Higher Education Internship City: Zip Code Mathematics Websites Summary: Application for Higher Education Internship...

  4. african higher education: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    counterfactual Danforth, Bryan Nicholas 134 Application for Higher Education Internship City: Zip Code Mathematics Websites Summary: Application for Higher Education Internship...

  5. ashe higher education: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    counterfactual Danforth, Bryan Nicholas 126 Application for Higher Education Internship City: Zip Code Mathematics Websites Summary: Application for Higher Education Internship...

  6. attending higher education: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizations in Higher Education Education TechQual+ Project 4 Project Coordinators for Texas A&M University 5 Higher Education Tech 138 A knowledge management approach for...

  7. Recovery Act: Wind Energy Consortia between Institutions of Higher...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry A...

  8. Optimization of Heat Exchanger Cleaning

    E-Print Network [OSTI]

    Siegell, J. H.

    yiven in equations (7) and (8) results in the TFRE curves shown in Figure 6. In performing the calculations to compare chemical and mechanical cleaning, it is important to remember to include the value of the 20 MBtu/Hr heat lost between... MBtu/hr/day 20 Data From Operating Unit 10 20 30 40 50 60 70 ...., ........ ...................... ~.... ---- Time (Days) Figure 4. Comparison of Models for Heat Recovery ~ecay to Simulated Operating Data. MECHANICAL CLEANING W 100 MBtu...

  9. Geothermal heating for Caliente, Nevada

    SciTech Connect (OSTI)

    Wallis, F.; Schaper, J.

    1981-02-01T23:59:59.000Z

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  10. Time-delayed apparent excess heat generation in electrolysis fusion experiments

    SciTech Connect (OSTI)

    Kim, Y.E. (Purdue Univ., Lafayette, IN (United States). Dept. of Physics)

    1991-04-10T23:59:59.000Z

    This paper reports that in many recent electrolysis fusion experiments, excess heat, tritium, and neutron production have been reported as intermittent bursts. These burst phenomena are described in terms of a surface reaction mechanism involving hysteresis of deuterium solubility in palladium as a function of the metal temperature. Excess heat generation is shown to be attributable to a hitherto neglected time-delayed chemical process due to the solubility hysteresis of deuterium in palladium. Negative results of no apparent excess heat generation from light-water electrolysis experiments is attributed to the fact that the solubility hysteresis of hydrogen occurs at a higher temperature range than that for deuterium. Apparent excess heat generation is expected to be also observable in blank electrolysis experiments with light water at higher pressures.

  11. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-12-03T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  12. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    SciTech Connect (OSTI)

    Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

    2010-03-01T23:59:59.000Z

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  13. Promotion of efficient heat pumps for heating (ProHeatPump)

    E-Print Network [OSTI]

    .444283 Supplementary report: Heat pumps in Norway May 2009 Work Package 4: Policy context and measures Authors: Nils ............................................................................................................................1 2 Norway's energy sector .........................................................................................................1 3 HP industry and market in Norway

  14. Gas heat transfer in a heated vertical channel under deteriorated turbulent heat transfer regime

    E-Print Network [OSTI]

    Lee, Jeongik

    2007-01-01T23:59:59.000Z

    Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

  15. Gas Heat Transfer in a Heated Vertical Channel under Deteriorated Turbulent Heat Transfer Regime

    E-Print Network [OSTI]

    Lee, Jeongik

    Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

  16. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water

    E-Print Network [OSTI]

    Cawley, R.

    heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks. INTRODUCTION A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several... added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements. DESCRIPTION OF EQUIPMENT The system considered for this study is best described by U.S. Patent No. 4...

  17. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-06-10T23:59:59.000Z

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJthmoreof residual heat in 2012, 4% of which was discharged at temperatures greater than 90 C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.less

  18. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-06-10T23:59:59.000Z

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJth of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  19. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants

    SciTech Connect (OSTI)

    Adrados, A., E-mail: aitziber.adrados@ehu.es [Chemical and Environmental Engineering Department, School of Engineering of Bilbao, Alameda. Urquijo s/n, 48013 Bilbao (Spain); De Marco, I.; Lopez-Urionabarrenechea, A.; Caballero, B.M.; Laresgoiti, M.F. [Chemical and Environmental Engineering Department, School of Engineering of Bilbao, Alameda. Urquijo s/n, 48013 Bilbao (Spain)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Study of the influence of materials in the pyrolysis of real plastic waste samples. Black-Right-Pointing-Pointer Inorganic compounds remain unaltered. Black-Right-Pointing-Pointer Cellulosic components give rise to an increase in char formation. Black-Right-Pointing-Pointer Cellulosic components promote the production of aqueous phase. Black-Right-Pointing-Pointer Cellulosic components increase CO and CO{sub 2} contents in the gases. - Abstract: In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm{sup 3} reactor, swept with 1 L min{sup -1} N{sub 2}, at 500 Degree-Sign C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg{sup -1}). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO{sub 2}; their HHV is in the range of 18-46 MJ kg{sup -1}. The amount of CO-CO{sub 2} increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.

  20. Algebra+Homotopy=Higher structures Operadic homotopical algebra

    E-Print Network [OSTI]

    Vallette, Bruno

    Algebra+Homotopy=Higher structures Operadic homotopical algebra Rewriting method Higher Algebra via-Louis Curien (Venezia, September 10, 2013) Bruno Vallette (Universit´e Nice Sophia-Antipolis) Higher Algebra via Rewriting of Trees #12;Algebra+Homotopy=Higher structures Operadic homotopical algebra Rewriting

  1. Combined Retrieval, Microphysical Retrievals and Heating Rates

    SciTech Connect (OSTI)

    Feng, Zhe

    2013-02-22T23:59:59.000Z

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  2. Communication Hsp56: A Novel Heat Shock

    E-Print Network [OSTI]

    Abraham, Nader G.

    have speculated that p56 may itself be a heat shock protein. In this paper, the effect of heat stress. However, immune-purification of p56 from normal and heat- stressed cytosols with the EC1 monoclonal in response to heat stress. The results of two-dimensional gel Western blots employing the EC1 antibody

  3. Heat pump market and statistics report 2013

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Heat pump market and statistics report 2013 Thomas Nowak Secretary General European Heat Pump Summit 15.10./16.10.2013 | Nuremberg #12;European Heat Pump Association (EHPA) 107 members from 22 countries (status 08/2013) Heat pump manufacturers Component manufacturers National associations

  4. Multifunctional composites : healing, heating and electromagnetic integration

    E-Print Network [OSTI]

    Plaisted, Thomas Anthony John

    2007-01-01T23:59:59.000Z

    laser machining, which may introduce a greater heat affected zone than traditional milling and drilling.

  5. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    Research Applied to National Needs. EXPERIMENTAL SYSTEM A generalized system for solar heating and cooling

  6. Combined Retrieval, Microphysical Retrievals and Heating Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feng, Zhe

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  7. Nanoscale heat transfer - from computation to experiment

    E-Print Network [OSTI]

    Luo, Tengfei

    2013-04-09T23:59:59.000Z

    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

  8. Heat treated 9 Cr-1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21T23:59:59.000Z

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  9. Flow-Induced Deformation of a Flexible Thin Structure as Manifestation of Heat Transfer Enhancement

    E-Print Network [OSTI]

    Soti, Atul Kumar; Sheridan, John

    2015-01-01T23:59:59.000Z

    Flow-induced deformation of thin structures coupled with convective heat transfer has potential applications in energy harvesting and is important for understanding functioning of several biological systems. We numerically demonstrate large-scale flow-induced deformation as an effective passive heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. In the present work, we validate convective heat transfer module of the in-house FSI solver against several benchmark examples of conduction and convective heat transfer including moving structure boundaries. The thermal augmentation is investigated as well as quantified for the flow-induced deformation of an elastic thin plate attached to lee side of a rigid cylinder in a heated channel laminar flow. We show that the wake vortices past the plate sweep higher sources of vorticity...

  10. DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)

    SciTech Connect (OSTI)

    Culver, G.

    1990-11-01T23:59:59.000Z

    The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or injection wells. Initial cost of pumps and installation are eliminated or reduced along with pumping power costs and maintenance costs associated with pumping often corrosive geothermal fluids. Many residential and small commercial systems do not require circulating pumps because the density difference in the incoming and outgoing sides of the loop are sufficient to overcome circulating friction losses in the entire system. The major disadvantage of DHEs is their dependence on natural heat flow. In areas where geological conditions provide high permeability and a natural hydraulic gradient, DHEs can provide a substantial quantity of heat. A single 500-ft (152 m) well in Klamath Falls, Oregon, supplies over one megawatt thermal and output is apparently limited by the surface area of pipe that can be installed in the well bore. In contrast, DHEs used in conjunction with heat pumps may supply less than 8 KW from a well of similar depth. Here output is limited by conductive heat flow with perhaps a small contribution from convection near the well bore. The highest capacity DHE reported to date, in Turkey, supplies 6 MW thermal from an 820-ft (250 m) well. There were two main goals for this project. The first was to gather, disseminate and exchange internationally information on DHES. The second was to perform experiments that would provide insight into well bore/aquifer interaction and thereby provide more information on which to base DHE designs. 27 refs., 31 figs., 3 tabs.

  11. Comparison of ICRF and NBI heated plasmas performances in the JET ITER-like wall

    SciTech Connect (OSTI)

    Mayoral, M.-L. [EFDA Close Support Unit, Garching, Germany and Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Ptterich, T.; Bobkov, V. [Max-Planck-Institut fr Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Jacquet, P. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Lerche, E.; Van-Eester, D.; Bourdelle, C.; Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Mlynar, J. [Association Euratom-IPP.CR, Institute of Plasma Physics AS CR, 18200 Prague (Czech Republic); Neu, R. [EFDA Close Support Unit, Garching, Germany and Max-Planck-Institut fr Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Collaboration: JET-EFDA Contributors

    2014-02-12T23:59:59.000Z

    During the initial operation of the JET ITER-like wall, particular attention was given to the characterization of the Ion Cyclotron Resonance Frequency (ICRF) heating in this new metallic environment. In this contribution we compare L-modes plasmas heated by ICRF or by Neutral Beam Injection (NBI). ICRF heating as expected led to a much higher centrally peaked power deposition on the electrons and due to the central fast ion population to stronger sawtooth activity. Surprisingly, although a higher bulk radiation was observed during the ICRF phase, the thermal plasma energy was found similar for both cases, showing that a higher radiation inside the separatrix was not incompatible with an efficient central heating scheme. The higher radiation was attributed to the presence Tungsten (W). Tomographic inversion of SXR emissions allowed a precise observation of the sawtooth effect on the radiation pattern. W concentration profiles deconvolved from SXR emission showed the flattening of the profiles due to sawtooth for both heating and the peaking of the profiles in the NBI case only hinting for extra transport effect in the ICRF case.

  12. Effectiveness of heating patterns for electrical resistance heating

    E-Print Network [OSTI]

    Maggard, James Bryan

    1990-01-01T23:59:59.000Z

    power, P, to make it dimensionless and scaled from zero to 1. 0. Power dissipation profiles for the radial power model and r-z power model are compared in Fig 6. For the r-z power model, the value of P(r)/P does not reach a value of 1. 0 because some... due to conduction, convection and ERH heating are accounted for. Heat flow in the overburden and underburden assumes no convection (Qs = 0. ) A a?d T - ? 6 [ p r Cz] + 0 + Q? At t z e (6) Mass Balances: The final equations solved by the r-z ERH...

  13. Frostless heat pump having thermal expansion valves

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN)

    2002-10-22T23:59:59.000Z

    A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

  14. Building wall heat flux calculations

    SciTech Connect (OSTI)

    Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.

    1987-06-01T23:59:59.000Z

    Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall. All of the other model elements (conduction through wall board, sheathing, and siding; convection from siding and wallboard to ambients; and radiation across the wall cavity) are required to accurately predict the heat transfer through a wall. Addition of a foil liner on one inner surface of the wall cavity reduces the total heat transferred by almost 50%.

  15. Analysis of heat transfer in unlooped and looped pulsating

    E-Print Network [OSTI]

    Zhang, Yuwen

    , Tubing Abstract An advanced heat transfer model for both unlooped and looped Pulsating Heat Pipes (PHPs

  16. Mist/steam cooling in a heated horizontal tube -- Part 2: Results and modeling

    SciTech Connect (OSTI)

    Guo, T.; Wang, T.; Gaddis, J.L.

    2000-04-01T23:59:59.000Z

    Experimental studies on mist/steam cooling in a heated horizontal tube have been performed. Wall temperature distributions have been measured under various main steam flow rates, droplet mass ratios, and wall heat fluxes. Generally, the heat transfer performance of steam can be significantly improved by adding mist into the main flow. An average enhancement of 100% with the highest local heat transfer enhancement of 200% is achieved with 5% mist. When the test section is mildly heated, an interesting wall temperature distribution is observed: the wall temperature increases first, then decreases, and finally increases again. A three-stage heat transfer model with transition boiling, unstable liquid fragment evaporation, and dry-wall mist cooling has been proposed and has shown some success in predicting the wall temperature of the mist/steam flow. The PDPA measurements have facilitated better understanding and interpreting of the droplet dynamics and heat transfer mechanisms. Furthermore, this study has shed light on how to generate appropriate droplet sizes to achieve effective droplet transportation, and has shown that it is promising to extend present results to a higher temperature and higher pressure environment.

  17. Process Integration of Industrial Heat Pumps

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    PROCESS INTEGRATION OF INDUSTRIAL HEAT PUMPS* S. J. Priebe EG&G Idaho, Inc. Idaho Falls, Idaho ABSTRACT The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated... properly relative to the process pinch and the unit operations in the process. The shape of the grand composite curve, the type of heat ?pump drive, and the kind of heat pump cycle were examined to determine their effects on the placement of industrial...

  18. Design and analysis of megawatt-class heat-pipe reactor concepts

    SciTech Connect (OSTI)

    Poston, D.; Kapernick, R. [Los Alamos National Laboratory, MS C921, Los Alamos, NM 87545 (United States)

    2012-07-01T23:59:59.000Z

    There is growing interest in finding an alternative to diesel-powered systems at locations removed from a reliable electrical grid. One promising option is a 1- to 10-MW mobile reactor system, that could provide robust, self-contained, and long-term ({>=} 5 years) power in any environment. The reactor and required infrastructure could be transported to any location within one or a few standard transport containers. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than 'traditional' reactors that rely on pumped coolant through the core. This paper examines a heat pipe reactor that is fabricated and shipped as six identical core segments. Each core segment includes a heat-pipe-to-gas heat exchanger that is coupled to the condenser end of the heat pipes. The reference power conversion system is a CO{sub 2}-Brayton system. The segments by themselves are deeply subcritical during transport, and they would be locked into an operating configuration (with control inserted) at the final destination. Two design options are considered: a near-term option and an advanced option. The near-term option is a 5-MWt concept that uses uranium-dioxide fuel, a stainless-steel structure, and potassium as the heat-pipe working fluid. The advanced option is a 15-MWt concept that uses uranium-nitride fuel, a molybdenum/TZM structure, and sodium as the heat-pipe working fluid. The materials used in the advanced option allow for higher temperatures and power densities, and enhanced power throughput in the heat pipes. Higher powers can be obtained from both concepts by increasing the core size and the number of heat pipes. (authors)

  19. Agonist-Activated Glucocorticoid Receptor Inhibits Binding of Heat Shock Factor 1 to the Heat Shock

    E-Print Network [OSTI]

    Abraham, Nader G.

    Agonist-Activated Glucocorticoid Receptor Inhibits Binding of Heat Shock Factor 1 to the Heat Shock- cocorticoid receptor (GR) signaling in stressed cells will cause inhibition of the heat shock re- sponse as mediated by heat shock transcription factor 1 (HSF1). In that work, a full-length human heat shock protein

  20. Woodfuel community heating at Kielder A wood-fired district heating

    E-Print Network [OSTI]

    Woodfuel community heating at Kielder A wood-fired district heating system, one of the first of its kind in Britain, provides a low- carbon source of heating to the Kielder village community Kielder-fired district heating system was installed in 2004 as a practical low-carbon solution to providing heat and hot

  1. Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air A further essential component of Gas Heat Pump air conditioning

  2. Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings Redouane) 141-149" DOI : 10.1016/j.enbuild.2013.12.047 #12;ABSTRACT In several situations, a heat pump occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates

  3. In situ heat treatment process utilizing a closed loop heating system

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

    2010-12-07T23:59:59.000Z

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  4. CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER

    E-Print Network [OSTI]

    Kandlikar, Satish

    1 CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER for evaporation heat transfer coefficient of refrigerant R-134a flowing in a plate heat exchanger. Correlation schemes proposed by Yan and Lin (1999b) for modeling the heat transfer coefficient in both a single- phase

  5. Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio.

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio. M-la-Vallee cedex 2, France (Dated: October 23, 2008) Abstract Fully developed turbulent flow and heat transfer square (rms) of temperature fluctuations, turbulent heat fluxes, heat transfer, ...). To validate

  6. Author's personal copy Pyroelectric waste heat energy harvesting using heat conduction

    E-Print Network [OSTI]

    Pilon, Laurent

    Author's personal copy Pyroelectric waste heat energy harvesting using heat conduction Felix Y. Lee heat harvesting Olsen cycle a b s t r a c t Waste heat can be directly converted into electrical energy Ltd. All rights reserved. 1. Introduction Large amounts of waste heat are released as a by

  7. Performance of Horizontal Field Earth-Coupled Heat Pumps

    E-Print Network [OSTI]

    Abbott, C. A.

    1986-01-01T23:59:59.000Z

    An alternative to traditional methods of residential heating and cooling is the heat pump. However, heat pumps which use the outside air as a heat source/sink become inefficient during the periods of highest demand. Another possible heat source...

  8. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions

    E-Print Network [OSTI]

    Kirol, L.

    1987-01-01T23:59:59.000Z

    Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place...

  9. absorption cycle heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat... Erickson, D. C. 1983-01-01 First Page...

  10. Performance of Horizontal Field Earth-Coupled Heat Pumps

    E-Print Network [OSTI]

    Abbott, C. A.

    1986-01-01T23:59:59.000Z

    An alternative to traditional methods of residential heating and cooling is the heat pump. However, heat pumps which use the outside air as a heat source/sink become inefficient during the periods of highest demand. Another possible heat source...

  11. Industrial heat pumps in Germany -potentials, technological development

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    jet nozzle Closed Cycles: Absorption/Adsorption heat pump thermal compressor driven by waste heat, waste heat, waste water/air (heat recovery) Refrigerant R134a, R407C, R410A, R717 Heating capacity [k

  12. Acoustically Enhanced Boiling Heat Transfer

    E-Print Network [OSTI]

    Z. W. Douglas; M. K. Smith; A. Glezer

    2008-01-07T23:59:59.000Z

    An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

  13. Building wall heat flux calculations

    SciTech Connect (OSTI)

    Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.

    1987-01-01T23:59:59.000Z

    Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall.

  14. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10T23:59:59.000Z

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  15. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect (OSTI)

    PROJECT STAFF

    2011-10-31T23:59:59.000Z

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

  16. Higher Order Squeezing and Higher Order Subpoissonian Photon Statistics in Intermediate States

    E-Print Network [OSTI]

    Amit Verma; Anirban Pathak

    2010-04-10T23:59:59.000Z

    Recently simpler criteria for the Hong-Mandel higher order squeezing (HOS) and higher order subpossonian photon statistics (HOSPS) are provided by us [Phys. Lett. A 374 (2010) 1009]. Here we have used these simplified criteria to study the possibilities of observing HOSPS and HOS in different intermediate states, such as generalized binomial state, hypergeometric state, negative binomial state and photon added coherent state. It is shown that these states may satisfy the condition of HOS and HOSPS. It is also shown that the depth and region of nonclassicality can be controlled by controlling various parameters related to intermediate states. Further, we have analyzed the mutual relationship between different signatures of higher order nonclassicality with reference to these intermediate states. We have observed that the generalized binomial state may show signature of HOSPS in absence of HOS. Earlier we have shown that NLVSS shows HOS in absence of HOSPS. Consequently it is established that the HOSPS and HOS of same order are independent phenomenon.

  17. HEATING 7. 1 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1991-07-01T23:59:59.000Z

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  18. Field Performance of Heat Pump Water Heaters in the Northeast

    SciTech Connect (OSTI)

    Shapiro, C.; Puttagunta, S.

    2013-08-01T23:59:59.000Z

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  19. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect (OSTI)

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22T23:59:59.000Z

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  20. PreHeat: Controlling Home Heating Using Occupancy Prediction

    E-Print Network [OSTI]

    Krumm, John

    with a static program over an average 61 days per house, alternating days between these conditions time that the house was occupied but not warm). In US homes, PreHeat decreased MissTime by a factor goal for saving money and reducing our ecological footprint. Although programmable thermostats provide