National Library of Energy BETA

Sample records for hg cn ga

  1. Cn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cn 112 113 115 118 Periodic T able o f E lements 2 014 117 Fl 114 Lv 116 Super---Heavy N uclei, T heoreAcal C hallenges Witold Nazarewicz MSU/ORNL International Symposium on Superheavy Nuclei 2015Texas A&M University, March 31-April 2, 2015 * Science drivers (why should we care?) * Overview of the current situation in SHN/SHE theory (2-year progress report) * Extrapolations * Perspectives Two years after: TAMU Workshop, March 12-13, 2013 The Nuclear Landscape and the Big Questions (NAS

  2. Ultrasensitive detection of Hg{sup 2+} using oligonucleotide-functionalized AlGaN/GaN high electron mobility transistor

    SciTech Connect (OSTI)

    Cheng, Junjie; Li, Jiadong; Miao, Bin; Wu, Dongmin; Wang, Jine; Pei, Renjun; Wu, Zhengyan

    2014-08-25

    An oligonucleotide-functionalized ion sensitive AlGaN/GaN high electron mobility transistor (HEMT) was fabricated to detect trace amounts of Hg{sup 2+}. The advantages of ion sensitive AlGaN/GaN HEMT and highly specific binding interaction between Hg{sup 2+} and thymines were combined. The current response of this Hg{sup 2+} ultrasensitive transistor was characterized. The current increased due to the accumulation of Hg{sup 2+} ions on the surface by the highly specific thymine-Hg{sup 2+}-thymine recognition. The dynamic linear range for Hg{sup 2+} detection has been determined in the concentrations from 10{sup −14} to 10{sup −8} M and a detection limit below 10{sup −14} M level was estimated, which is the best result of AlGaN/GaN HEMT biosensors for Hg{sup 2+} detection till now.

  3. SF6432-CN Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... prior to any attempts to enter a government site as shown ... SF 6432-CN Title: Standard Terms and Conditions for ... premises are subject to search. (e) Contractor will ...

  4. SF6432-CN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... prior to any attempts to enter a government site as shown ... premises are subject to search. (e) Contractor shall ... Control : SF 6432-CN Title: Standard Terms and Conditions ...

  5. SF6432-CN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Release Date: 11/17/15 Page 1 of 28 Printed copies of this document are uncontrolled. Retrieve latest version electronically. SANDIA CORPORATION SF 6432-CN (11/2015) Section II STANDARD TERMS AND CONDITIONS FOR FIRM-FIXED PRICE COMMERCIAL CONSTRUCTION CONTRACTS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE COVER PAGE OR SECTION I. (CTRL+CLICK ON A LINK BELOW

  6. SF6432-CN Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7/31/13 Page 1 of 31 Printed copies of this document are uncontrolled. Retrieve latest version electronically. SANDIA CORPORATION SF 6432-CN (07/2013) Section II STANDARD TERMS AND CONDITIONS FOR FIRM-FIXED PRICE COMMERCIAL CONSTRUCTION CONTRACTS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE COVER PAGE OR SECTION I. (CTRL+CLICK ON A LINK BELOW TO ADVANCE DIRECTLY TO

  7. CnLrJGD

    Office of Legacy Management (LM)

    l&o-1760 CnLrJGD 8CURCEN4%4UALLfCE!8SE Licenee Bo. c-3862 tnted: J. T. Baker Chemical Compfuq Phillipsburg, New Jersey Attention: Mr. Joseph L. MetcenQrf Osntlewn: Rvsunnt to the Attalc &orgy Act of 1954 au4 Section 40.21 of t& &&e of Federal Negulationr, Title 10 Control of &urea Matsrial, -Atomic !Znergy, Chapter 1, part40 - P me hereby llc need to nc lve poere of and title to up to one ld ogrem of urai~~ t t&SIG gradef for use slou R etndier on the pmparatlon of

  8. CN Solar Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    CN Solar Co Ltd Jump to: navigation, search Name: CN Solar Co Ltd Place: Sangju, North Gyeongsang, Korea (Republic) Sector: Solar Product: Korean solar project developer....

  9. The new barium zinc mercurides Ba{sub 3}ZnHg{sub 10} and BaZn{sub 0.6}Hg{sub 3.4} - Synthesis, crystal and electronic structure

    SciTech Connect (OSTI)

    Schwarz, Michael; Wendorff, Marco; Roehr, Caroline

    2012-12-15

    The title compounds Ba{sub 3}ZnHg{sub 10} and BaZn{sub 0.6}Hg{sub 3.4} were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba{sub 3}ZnHg{sub 10} (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 4{sup 4} Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl{sub 4}. The flat pyramids are connected via Hg-Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M-M distances (273-301 pm; CN 9-11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317-348 pm) to their Zn/Hg neighbours. In the structure of BaZn{sub 0.6}Hg{sub 3.4} (cubic, cI320, space group I4{sup Macron }3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba{sub 3}ZnHg{sub 10}, the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4 Multiplication-Sign 4 Multiplication-Sign 4 subcell relation to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6){sub 4} with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4){sub 2} dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb{sub 3}Hg{sub 20} applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic

  10. Production of carrier-free H.sup.11 CN

    DOE Patents [OSTI]

    Christman, David R.; Finn, Ronald D.; Wolf, Alfred P.

    1978-01-01

    A method of synthesizing H.sup.11 CN involving the proton irradiation of N.sub.2 + H.sub.2 to produce a mixture of .sup.11 CH.sub.4 and NH.sub.3 followed by the reaction of .sup.11 CH.sub.4 and NH.sub.3 to produce H.sup.11 CN and the separation of carrier free H.sup.11 CN.

  11. SF6432-CN (02-02-12) Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the SCR shall determine the extent that contract Control : SF 6432-CN Title: Standard Terms and Conditions for Firm-Fixed Price Commercial Construction Contracts Owner:...

  12. SF6432-CN (02-02-12) Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Contractor shall submit a claim for and enter into good ... SF 6432-CN Title: Standard Terms and Conditions for ... premises are subject to search. (e) Contractor will ...

  13. Identification of a potential superhard compound ReCN

    SciTech Connect (OSTI)

    Fan, Xiaofeng; Li, M. M.; Singh, David J.; Jiang, Qing; Zheng, W. T.

    2015-01-24

    Here, we identify a new ternary compound, ReCN and characterize its properties including structural stability and indicators of hardness using first principles calculations. Furthermore, we find that there are two stable structures with space groups P63mc (HI) and P3m1 (HII), in which there are no C–C and N–N bonds. Both structures, H1 and III are elastically and dynamically stable. The electronic structures show that ReCN is a semiconductor, although the parent compounds, ReC2 and ReN2 are both metallic. ReCN is found to possess the outstanding mechanical properties with the large bulk modulus, shear modulus and excellent ideal strengths. Additionally, ReCN may perhaps be synthesized relatively easily because it becomes thermodynamic stable with respect to decomposition at very low pressures.

  14. Identification of a potential superhard compound ReCN

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fan, Xiaofeng; Li, M. M.; Singh, David J.; Jiang, Qing; Zheng, W. T.

    2015-01-24

    Here, we identify a new ternary compound, ReCN and characterize its properties including structural stability and indicators of hardness using first principles calculations. Furthermore, we find that there are two stable structures with space groups P63mc (HI) and P3m1 (HII), in which there are no C–C and N–N bonds. Both structures, H1 and III are elastically and dynamically stable. The electronic structures show that ReCN is a semiconductor, although the parent compounds, ReC2 and ReN2 are both metallic. ReCN is found to possess the outstanding mechanical properties with the large bulk modulus, shear modulus and excellent ideal strengths. Additionally, ReCNmore » may perhaps be synthesized relatively easily because it becomes thermodynamic stable with respect to decomposition at very low pressures.« less

  15. Magneto-infrared study of electron-hole system in strained semimetallic HgTe quantum wells

    SciTech Connect (OSTI)

    Vasilyev, Yu. B.; Greshnov, A. A.; Mikhailov, N. N.; Suchalkin, S. D.; Tung, L.-C.; Smirnov, D.; Gouider, F.; Nachtwei, G.

    2013-12-04

    Magneto infrared absorption measurements have been performed on HgTe/CdHgTe quantum wells with different thicknesses grown on (013) GaAs substrate. Cyclotron resonance effective masses, inter-Landau-level transition energies and their dependence on magnetic field are measured. The measured intersubband energies are in good agreement with the theoretically calculated values. Strong spin-orbit interaction is responsible for cyclotron resonance splitting in asymmetric quantum wells. We demonstrate that the increase of the quantum well thickness leads to a semimetallic state, allowing for simultaneous observation of holes and electron transitions.

  16. Dipole Bands in {sup 196}Hg

    SciTech Connect (OSTI)

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.

    2011-10-28

    High spin states in {sup 196}Hg have been populated in the {sup 198}Pt({alpha},6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  17. Compositional depth profiling of TaCN thin films

    SciTech Connect (OSTI)

    Adelmann, Christoph; Conard, Thierry; Franquet, Alexis; Brijs, Bert; Munnik, Frans; Burgess, Simon; Witters, Thomas; Meersschaut, Johan; Kittl, Jorge A.; Vandervorst, Wilfried; Van Elshocht, Sven

    2012-07-15

    The composition profiling of thin TaCN films was studied. For the composition profile determination using x-ray photoemission spectrometry (XPS) in combination with Ar sputtering, preferential sputtering effects of N with respect to Ta and C were found to lead to inaccurate elemental concentrations. Sputter yield calculations for the given experimental conditions allowed for the correction of a part of the error, leading to fair accuracy by reference-free measurements. Further improvement of the accuracy was demonstrated by the calibration of the XPS compositions against elastic recoil detection analysis (ERDA) results. For Auger electron spectrometry (AES) in combination with Ar sputtering, accurate results required the calibration against ERDA. Both XPS and AES allowed for a reliable and accurate determination of the compositional profiles of TaCN-based thin films after calibration. Time-of-flight secondary-ion mass spectrometry was also used to assess the composition of the TaCN films. However, the analysis was hampered by large matrix effects due to small unintentional oxygen contents in the films. Energy-dispersive x-ray spectrometry is also discussed, and it is shown that an accurate reference-free measurement of the average film concentration can be achieved.

  18. Atmospheric mercury (Hg) in the Adirondacks: Concentrations and sources

    SciTech Connect (OSTI)

    Hyun-Deok Choi; Thomas M. Holsen; Philip K. Hopke

    2008-08-15

    Hourly averaged gaseous elemental Hg (GEM) concentrations and hourly integrated reactive gaseous Hg (RGM), and particulate Hg (HgP) concentrations in the ambient air were measured at Huntington Forest in the Adirondacks, New York from June 2006 to May 2007. The average concentrations of GEM, RGM, and HgP were 1.4 {+-} 0.4 ng m{sup -3}, 1.8 {+-} 2.2 pg m{sup -3}, and 3.2 {+-} 3.7 pg m{sup -3}, respectively. RGM represents <3.5% of total atmospheric Hg or total gaseous Hg (TGM: GEM + RGM) and HgP represents <3.0% of the total atmospheric Hg. The highest mean concentrations of GEM, RGM, and HgP were measured during winter and summer whereas the lowest mean concentrations were measured during spring and fall. Significant diurnal patterns were apparent in warm seasons for all species whereas diurnal patterns were weak in cold seasons. RGM was better correlated with ozone concentration and temperature in both warm than the other species. Potential source contribution function (PSCF) analysis was applied to identify possible Hg sources. This method identified areas in Pennsylvania, West Virginia, Ohio, Kentucky, Texas, Indiana, and Missouri, which coincided well with sources reported in a 2002 U.S. mercury emissions inventory. 51 refs., 7 figs., 1 tab.

  19. Process of [sup 196]Hg enrichment

    DOE Patents [OSTI]

    Grossman, M.W.; Mellor, C.E.

    1993-04-27

    A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of [sup 196]Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).

  20. Process of .sup.196 Hg enrichment

    DOE Patents [OSTI]

    Grossman, Mark W.; Mellor, Charles E.

    1993-01-01

    A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of .sup.196 Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).

  1. EA-257-D Emera Energy Svcs (CN).pdf

    Office of Environmental Management (EM)

    57-D Emera Energy Services, Inc. EA-257-D Emera Energy Services, Inc. Order authorizing EES to export electric energy to Canada. EA-257-D Emera Energy Svcs (CN).pdf (1.07 MB) More Documents & Publications EA-257-D Emera Energy Services, Inc. Application to Export Electric Energy OE Docket No. EA-257-D Emera Energy Services, Inc. Application to Export Electric Energy OE Docket No. EA-257-D Emera Energy Services, Inc.: Federal Register Notice, Volume 79, No. 43 - March 5, 2014

  2. Lithography process for patterning HgI2 photonic devices

    DOE Patents [OSTI]

    Mescher, Mark J.; James, Ralph B.; Hermon, Haim

    2004-11-23

    A photolithographic process forms patterns on HgI.sub.2 surfaces and defines metal sublimation masks and electrodes to substantially improve device performance by increasing the realizable design space. Techniques for smoothing HgI.sub.2 surfaces and for producing trenches in HgI.sub.2 are provided. A sublimation process is described which produces etched-trench devices with enhanced electron-transport-only behavior.

  3. Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal...

    Open Energy Info (EERE)

    is not possible. Hg anomaly patterns yield information on the presence as well as the geometry of shallow geothermal circulation patterns. In conjunction with structural geologic...

  4. NNMCAB Correspondence 2013-01 (Hg SEIS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 (Hg SEIS) NNMCAB Correspondence 2013-01 (Hg SEIS) The NNMCAB submitted comments on the mercury SEIS on June 13, 2013. The comments were provided to the Department of Energy in regards to proposed sites for interim storage of excess mercury. Correspondence 2013-01 - Mercury SEIS - June 13, 2013 (34.7 KB)

  5. Materials Data on Ga2HgSe4 (SG:82) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Ga2HgS4 (SG:82) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Dielectric functions and carrier concentrations of Hg{sub 1−x}Cd{sub x}Se films determined by spectroscopic ellipsometry

    SciTech Connect (OSTI)

    Lee, A. J.; Peiris, F. C.; Brill, G.; Doyle, K.; Myers, T. H.

    2015-08-17

    Spectroscopic ellipsometry, ranging from 35 meV to 6 eV, was used to determine the dielectric functions of a series of molecular beam epitaxy-grown Hg{sub 1−x}Cd{sub x}Se thin films deposited on both ZnTe/Si(112) and GaSb(112) substrates. The fundamental band gap as well as two higher-order electronic transitions blue-shift with increasing Cd composition in Hg{sub 1−x}Cd{sub x}Se, as expected. Representing the free carrier absorption with a Drude oscillator, we found that the effective masses of Hg{sub 1−x}Cd{sub x}Se (grown on ZnTe/Si) vary between 0.028 and 0.050 times the free electron mass, calculated using the values of carrier concentration and the mobility obtained through Hall measurements. Using these effective masses, we determined the carrier concentrations of Hg{sub 1−x}Cd{sub x}Se samples grown on GaSb, which is of significance as films grown on such doped-substrates posit ambiguous results when measured by conventional Hall experiments. These models can serve as a basis for monitoring Cd-composition during sample growth through in-situ spectroscopic ellipsometry.

  8. CN ANOMALIES IN THE HALO SYSTEM AND THE ORIGIN OF GLOBULAR CLUSTERS IN THE MILKY WAY

    SciTech Connect (OSTI)

    Carollo, Daniela; Martell, Sarah L.; Beers, Timothy C.; Freeman, Ken C. E-mail: smartell@aao.gov.au E-mail: kcf@mso.anu.edu.au

    2013-06-01

    We explore the kinematics and orbital properties of a sample of red giants in the halo system of the Milky Way that are thought to have formed in globular clusters based on their anomalously strong UV/blue CN bands. The orbital parameters of the CN-strong halo stars are compared to those of the inner- and outer-halo populations as described by Carollo et al., and to the orbital parameters of globular clusters with well-studied Galactic orbits. The CN-strong field stars and the globular clusters both exhibit kinematics and orbital properties similar to the inner-halo population, indicating that stripped or destroyed globular clusters could be a significant source of inner-halo field stars, and suggesting that both the CN-strong stars and the majority of globular clusters are primarily associated with this population.

  9. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jin; He, Chaoyu; Meng, Lijun; Xiao, Huaping; Tang, Chao; Wei, Xiaolin; Kim, Jinwoong; Kioussis, Nicholas; Stocks, G. Malcolm; Zhong, Jianxin

    2015-09-14

    Here, we report that two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tunedmore » up to large values (0.2 eV for HgTe and 0.05 eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature.« less

  10. Study on re-sputtering during CN{sub x} film deposition through spectroscopic diagnostics of plasma

    SciTech Connect (OSTI)

    Liang, Peipei; Yang, Xu; Li, Hui; Cai, Hua; Sun, Jian; Xu, Ning; Wu, Jiada

    2015-10-15

    A nitrogen-carbon plasma was generated during the deposition of carbon nitride (CN{sub x}) thin films by pulsed laser ablation of a graphite target in a discharge nitrogen plasma, and the optical emission of the generated nitrogen-carbon plasma was measured for the diagnostics of the plasma and the characterization of the process of CN{sub x} film deposition. The nitrogen-carbon plasma was recognized to contain various species including nitrogen molecules and molecular ions excited in the ambient N{sub 2} gas, carbon atoms and atomic ions ablated from the graphite target and CN radicals. The temporal evolution and spatial distribution of the CN emission and their dependence on the substrate bias voltage show two groups of CN radicals flying in opposite directions. One represents the CN radicals formed as the products of the reactions occurring in the nitrogen-carbon plasma, revealing the reactive deposition of CN{sub x} film due to the reactive expansion of the ablation carbon plasma in the discharge nitrogen plasma and the effective formation of gaseous CN radicals as precursors for CN{sub x} film growth. The other one represents the CN radicals re-sputtered from the growing CN{sub x} film by energetic plasma species, evidencing the re-sputtering of the growing film accompanying film growth. And, the re-sputtering presents ion-induced sputtering features.

  11. Purification of HgI.sub.2 for nuclear detector fabrication

    DOE Patents [OSTI]

    Schieber, Michael M.

    1978-01-01

    A process for purification of mercuric iodide (HgI.sub.2) to be used as a source material for the growth of detector quality crystals. The high purity HgI.sub.2 raw material is produced by a combination of three stages: synthesis of HgI.sub.2 from Hg and I.sub.2, repeated sublimation, and zone refining.

  12. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    SciTech Connect (OSTI)

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  13. Evolution of Electronic Properties of (Cu(In,Ga)Se2 (CIGS)-Based Solar Cells During a 3-Stage Growth Process: Preprint

    SciTech Connect (OSTI)

    AbuShama, J. A.; Johnston, S.; Ahrenkiel, R.; Crandall, R.; Young, D.; Noufi, R.

    2003-04-01

    We investigated the electronic properties of ZnO/CdS/CIGS /Mo/SLG polycrystalline thin-film solar cells with compositions ranging from Cu-rich to In(Ga)-rich by deep-level transient spectroscopy (DLTS) and capacitance-voltage (C-V) measurements. This compositional change represents the evolution of the film during growth by the 3-stage process. Two sets (four samples each) of CIGS thin films were prepared with Ga/(In+Ga) ratios of~0.3 (low Ga) and~0.6 (high Ga). The Cu/(In+Ga) ratio ranges from 1.24 (Cu-rich) to 0.88 (In(Ga)-rich). The films were treated with NaCN to remove the Cu2-xSe phase where needed. Key results include: (1) For low-Ga devices, DLTS data show that acceptor-like traps dominate in samples where CIGS grains do not go through the Cu-rich to In(Ga)-rich transition, whereas donor-like traps dominate in In(Ga)-rich samples. Therefore, we see a clear transformation of defects from acceptor-like to donor-like traps. The activation energies of these traps range from 0.12 to 0.63 eV. We also observed that NaCN treatment eliminates a deep minority trap in the In(Ga)-rich devices, (2) For high-Ga devices, only majority-carrier traps were detected. These traps again range from shallow to deep, (3) The carrier concentration around the junction and the density of traps decrease as the CIGS becomes more In(Ga)-rich.

  14. K 3 Fe(CN) 6 under External Pressure: Dimerization of CN – Coupled with Electron Transfer to Fe(III)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Kuo; Zheng, Haiyan; Wang, Lijuan; Tulk, Christopher A.; Molaison, Jamie J.; Feygenson, Mikhail; Yang, Wenge; Guthrie, Malcolm; Mao, Hokwang

    2015-09-14

    The addition polymerization of charged monomers like C≡C2– and C≡N– is scarcely seen at ambient conditions but can progress under external pressure with their conductivity significantly enhanced, which expands the research field of polymer science to inorganic salts. Moreover, the reaction pressures of transition metal cyanides like Prussian blue and K3Fe(CN)6 are much lower than that of alkali cyanides. To figure out the effect of the transition metal on the reaction, the crystal structure and electronic structure of K3Fe(CN)6 under external pressure are investigated by in situ neutron diffraction, in situ X-ray absorption fine structure (XAFS), and neutron pair distributionmore » functions (PDF) up to ~15 GPa. The cyanide anions react following a sequence of approaching–bonding–stabilizing. The Fe(III) brings the cyanides closer which makes the bonding progress at a low pressure (2–4 GPa). At ~8 GPa, an electron transfers from the CN to Fe(III), reduces the charge density on cyanide ions, and stabilizes the reaction product of cyanide. Finally, from this study we can conclude that bringing the monomers closer and reducing their charge density are two effective routes to decrease the reaction pressure, which is important for designing novel pressure induced conductor and excellent electrode materials.« less

  15. PROBING THE GASEOUS DISK OF T Tau N WITH CN 5-4 LINES

    SciTech Connect (OSTI)

    Podio, L.; Codella, C.; Kamp, I.; Meijerink, R.; Spaans, M.; Nisini, B.; Aresu, G.; Brittain, S.; Cabrit, S.; Dougados, C.; Thi, W.-F.; Sandell, G.; White, G. J.; Woitke, P.

    2014-03-10

    We present spectrally resolved observations of the young multiple system T Tau in atomic and molecular lines obtained with the Heterodyne Instrument for the Far Infrared on board Herschel. While CO, H{sub 2}O, [C II], and SO lines trace the envelope and the outflowing gas up to velocities of 33 km s{sup –1} with respect to systemic, the CN 5-4 hyperfine structure lines at 566.7, 566.9 GHz show a narrow double-peaked profile centered at systemic velocity, consistent with an origin in the outer region of the compact disk of T Tau N. Disk modeling of the T Tau N disk with the thermo-chemical code ProDiMo produces CN line fluxes and profiles consistent with the observed ones and constrain the size of the gaseous disk (R{sub out}=110{sub −20}{sup +10} AU) and its inclination (i = 25°± 5°). The model indicates that the CN lines originate in a disk upper layer at 40-110 AU from the star, which is irradiated by the stellar UV field and heated up to temperatures of 50-700 K. With respect to previously observed CN 2-1 millimeter lines, the CN 5-4 lines appear to be less affected by envelope emission, due to their larger critical density and excitation temperature. Hence, high-J CN lines are a unique confusion-free tracer of embedded disks, such as the disk of T Tau N.

  16. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    SciTech Connect (OSTI)

    Craig, A. P.; Percy, B.; Marshall, A. R. J.; Jain, M.; Wicks, G.; Hossain, K.; Golding, T.; McEwan, K.; Howle, C.

    2015-05-18

    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.

  17. On-line method of determining utilization factor in Hg-196 photochemical separation process

    DOE Patents [OSTI]

    Grossman, Mark W.; Moskowitz, Philip E.

    1992-01-01

    The present invention is directed to a method for determining the utilization factor [U] in a photochemical mercury enrichment process (.sup.196 Hg) by measuring relative .sup.196 Hg densities using absorption spectroscopy.

  18. General Atomics (GA) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Atomics (GA) Subscribe to RSS - General Atomics (GA) General Atomics Image: General Atomics (GA) The Scorpion's Strategy: "Catch and Subdue" Read more about The Scorpion's...

  19. NNMCAB Correspondence 2013-05 (Response Hg SEIS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 (Response Hg SEIS) NNMCAB Correspondence 2013-05 (Response Hg SEIS) Response to NNMCAB Correspondence 2013-01. DOE provided comment responses on the Mercury Supplemental Environmental Impact Statement comments that were submitted by the NNMCAB. Correspondence 2013-05 - Response Hg Letter (713.92

  20. Manila clams from Hg polluted sediments of Marano and Grado lagoons (Italy) harbor detoxifying Hg resistant bacteria in soft tissues

    SciTech Connect (OSTI)

    Baldi, Franco; Gallo, Michele; Marchetto, Davide; Faleri, Claudia; Maida, Isabel; Fani, Renato

    2013-08-15

    A mechanism of mercury detoxification has been suggested by a previous study on Hg bioaccumulation in Manila clams (Ruditapes philippinarum) in the polluted Marano and Grado lagoons and in this study we demonstrate that this event could be partly related to the detoxifying activities of Hg-resistant bacteria (MRB) harbored in clam soft tissues. Therefore, natural clams were collected in six stations during two different periods (winter and spring) from Marano and Grado Lagoons. Siphons, gills and hepatopancreas from acclimatized clams were sterile dissected to isolate MRB. These anatomical parts were glass homogenized or used for whole, and they were lying on a solid medium containing 5 mg l{sup −1} HgCl{sub 2} and incubated at 30 °C. A total of fourteen bacterial strains were isolated and were identified by 16S rDNA sequencing and analysis, revealing that strains were representative of eight bacterial genera, four of which were Gram-positive (Enterococcus, Bacillus, Jeotgalicoccus and Staphylococcus) and other four were Gram-negative (Stenotrophomonas, Vibrio, Raoultella and Enterobacter). Plasmids and merA genes were found and their sequences determined. Fluorescence in situ hybridization (FISH) technique shows the presence of Firmicutes, Actinobacteria and Gammaproteobacteria by using different molecular probes in siphon and gills. Bacterial clumps inside clam flesh were observed and even a Gram-negative endosymbiont was disclosed by transmission electronic microscope inside clam cells. Bacteria harbored in cavities of soft tissue have mercury detoxifying activity. This feature was confirmed by the determination of mercuric reductase in glass-homogenized siphons and gills. -- Highlights: ► We isolated Gram-positive and Gram-negative Hg resistant strains from soft tissues of Ruditapes philippinarum. ► We identify 14 mercury resistant strains by 16S rRNA gene sequences. ► Bacteria in siphon and gill tissues of clams were observed by TEM and identified

  1. Synthesis and growth of HgI{sub 2} nanocrystals in a glass matrix: Heat treatment

    SciTech Connect (OSTI)

    Condeles, J. F. E-mail: ricssilva@yahoo.com.br; Silva, R. S. E-mail: ricssilva@yahoo.com.br; Silva, A. C. A.; Dantas, N. O.

    2014-08-14

    Mercury iodide (HgI{sub 2}) nanocrystals (NCs) were successfully grown in a barium phosphate glass matrix synthesized by fusion. Growth control of HgI{sub 2} NCs was investigated by Atomic Force Microscopy (AFM), Optical Absorption (OA), Fluorescence (FL), and X-ray diffraction (XRD). AFM images reveal the formation of HgI{sub 2} nanocrystals in host glass matrix. HgI{sub 2} NCs growth was evidenced by an OA and FL band red-shift with increasing annealing time. XRD measurements revealed the β crystalline phase of the HgI{sub 2} nanocrystals.

  2. Apparatus for growing HgI.sub.2 crystals

    DOE Patents [OSTI]

    Schieber, Michael M.; Beinglass, Israel; Dishon, Giora

    1978-01-01

    A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.

  3. Dynamics of CN+alkane reactions by crossed-beam dc slice imaging

    SciTech Connect (OSTI)

    Huang Cunshun; Li Wen; Estillore, Armando D.; Suits, Arthur G.

    2008-08-21

    The hydrogen atom abstraction reactions of CN (X {sup 2}{sigma}{sup +}) with alkanes have been studied using the crossed molecular beam technique with dc slice ion imaging at collision energies of 7.5 and 10.8 kcal/mol. The product alkyl radical images were obtained via single photon ionization at 157 nm for the reactions of CN (X {sup 2}{sigma}{sup +}) with n-butane, n-pentane, n-hexane, and cyclohexane. From analysis of the images, we obtained the center-of-mass frame product angular distributions and translational energy distributions directly. The results indicate that the products are largely backscattered and that most of the available energy ({approx}80%-85%) goes to the internal energy of the products. The reaction dynamics is discussed in light of recent kinetics data, theoretical calculations, and results for related halogen and oxygen atom reactions.

  4. DETECTION OF FeCN (X {sup 4}{Delta}{sub i} ) IN IRC+10216: A NEW INTERSTELLAR MOLECULE

    SciTech Connect (OSTI)

    Zack, L. N.; Halfen, D. T.; Ziurys, L. M.

    2011-06-01

    A new interstellar molecule, FeCN (X {sup 4}{Delta}{sub i} ), has been detected in the envelope of the carbon-rich asymptotic giant branch star, IRC+10216. This work is the first definitive detection of an iron-bearing molecule in the interstellar medium and is based on newly measured rest frequencies. Eight successive rotational transitions of this linear free radical in the lowest spin ladder, {Omega} = 7/2, were observed at 2 and 3 mm using the Arizona Radio Observatory (ARO) 12 m telescope. Three transitions appear as single, unblended features at the 1-2 mK level and exhibit characteristic IRC+10216 line profiles; one had previously been observed with the IRAM 30 m telescope. Two other transitions are partially blended, but exhibit distinct emission at the FeCN frequencies. The remaining transitions are either completely contaminated, or are too high in energy. Comparison of the ARO and IRAM data suggests a source size for FeCN of {approx}30'' in IRC+10216, indicating an outer shell distribution, as expected for a free radical. The column density derived for FeCN is N{sub tot} = 8.6 x 10{sup 11} cm{sup -2} with a rotational temperature of T{sub rot} = 21 K. The fractional abundance of this molecule is [FeCN]/[H{sub 2}] {approx} 2-7 x 10{sup -10}-comparable to that of MgCN and KCN in IRC+10216. FeCN is likely formed by gas-phase reactions of Fe{sup +} or neutral iron; the latter has a significant gas-phase abundance in the outer shell. The detection of FeCN is further evidence that metal cyanides/isocyanides dominate the chemistry of refractory elements in IRC+10216.

  5. Improved Limit on the Permanent Electric Dipole Moment of {sup 199}Hg

    SciTech Connect (OSTI)

    Griffith, W. C.; Swallows, M. D.; Loftus, T. H.; Romalis, M. V.; Heckel, B. R.; Fortson, E. N.

    2009-03-13

    We report the results of a new experimental search for a permanent electric dipole moment of {sup 199}Hg utilizing a stack of four vapor cells. We find d({sup 199}Hg)=(0.49{+-}1.29{sub stat}{+-}0.76{sub syst})x10{sup -29} e cm, and interpret this as a new upper bound, |d({sup 199}Hg)|<3.1x10{sup -29} e cm (95% C.L.). This result improves our previous {sup 199}Hg limit by a factor of 7, and can be used to set new constraints on CP violation in physics beyond the standard model.

  6. Investigation of the GaN-on-GaAs interface for vertical power device applications

    SciTech Connect (OSTI)

    Mreke, Janina Uren, Michael J.; Kuball, Martin; Novikov, Sergei V.; Foxon, C. Thomas; Hosseini Vajargah, Shahrzad; Wallis, David J.; Humphreys, Colin J.; Haigh, Sarah J.; Al-Khalidi, Abdullah; Wasige, Edward; Thayne, Iain

    2014-07-07

    GaN layers were grown onto (111) GaAs by molecular beam epitaxy. Minimal band offset between the conduction bands for GaN and GaAs materials has been suggested in the literature raising the possibility of using GaN-on-GaAs for vertical power device applications. I-V and C-V measurements of the GaN/GaAs heterostructures however yielded a rectifying junction, even when both sides of the junction were heavily doped with an n-type dopant. Transmission electron microscopy analysis further confirmed the challenge in creating a GaN/GaAs Ohmic interface by showing a large density of dislocations in the GaN layer and suggesting roughening of the GaN/GaAs interface due to etching of the GaAs by the nitrogen plasma, diffusion of nitrogen or melting of Ga into the GaAs substrate.

  7. The evolution of microstructure and photoluminescence of SiCN films with annealing temperature

    SciTech Connect (OSTI)

    Du Xiwen; Fu Yang; Sun Jing; Yao Pei

    2006-05-01

    Silicon carbonitride (SiCN) films were deposited by radio-frequency magnetron sputtering and then annealed at different temperatures from 1100 to 1300 deg. C in hydrogen atmosphere. The as-deposited films and films annealed at 1100 deg. C did not show photoluminescence (PL), whereas strong PL peaks appeared at 355 and 469 nm after annealing at 1200 and 1300 deg. C. X-ray diffraction, transmission electron microscope, and Fourier transform infrared spectrometer results show that the enhancement of PL properties is due to the change of microstructure and composition.

  8. GA SNC Solar | Open Energy Information

    Open Energy Info (EERE)

    GA-SNC Solar Place: Nevada Sector: Solar Product: Nevada-based PV project developer and joint venture of GA-Solar North America and Sierra Nevada Corp. References: GA-SNC...

  9. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Haiyan; Li, Kuo; Cody, George D.; Tulk, Christopher A.; Dong, Xiao; Gao, Guoying; Molaison, Jamie J.; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; et al

    2016-08-25

    Acetonitrile (CH3CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. In this study, it is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH···N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp2 and sp3more » bonded carbon. Lastly, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.« less

  10. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOE Patents [OSTI]

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an apparatus for use in .sup.196 Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for .sup.196 Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems.

  11. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOE Patents [OSTI]

    Grossman, M.W.

    1991-10-08

    The present invention is directed to an apparatus for use in [sup 196]Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for [sup 196]Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems. 6 figures.

  12. Effects of H{sub 2}O, SO{sub 2}, and NO on homogeneous Hg oxidation...

    Office of Scientific and Technical Information (OSTI)

    Effects of Hsub 2O, SOsub 2, and NO on homogeneous Hg oxidation by Clsub 2 Citation Details In-Document Search Title: Effects of Hsub 2O, SOsub 2, and NO on homogeneous Hg ...

  13. GaInNAs laser gain

    SciTech Connect (OSTI)

    CHOW,WENG W.; JONES,ERIC D.; MODINE,NORMAND A.; KURTZ,STEVEN R.; ALLERMAN,ANDREW A.

    2000-05-23

    The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.

  14. Concurrent Collections (CnC): A new approach to parallel programming

    ScienceCinema (OSTI)

    None

    2011-10-06

    A common approach in designing parallel languages is to provide some high level handles to manipulate the use of the parallel platform. This exposes some aspects of the target platform, for example, shared vs. distributed memory. It may expose some but not all types of parallelism, for example, data parallelism but not task parallelism. This approach must find a balance between the desire to provide a simple view for the domain expert and provide sufficient power for tuning. This is hard for any given architecture and harder if the language is to apply to a range of architectures. Either simplicity or power is lost. Instead of viewing the language design problem as one of providing the programmer with high level handles, we view the problem as one of designing an interface. On one side of this interface is the programmer (domain expert) who knows the application but needs no knowledge of any aspects of the platform. On the other side of the interface is the performance expert (programmer or program) who demands maximal flexibility for optimizing the mapping to a wide range of target platforms (parallel / serial, shared / distributed, homogeneous / heterogeneous, etc.) but needs no knowledge of the domain. Concurrent Collections (CnC) is based on this separation of concerns. The talk will present CnC and its benefits. About the speaker Kathleen Knobe has focused throughout her career on parallelism especially compiler technology, runtime system design and language design. She worked at Compass (aka Massachusetts Computer Associates) from 1980 to 1991 designing compilers for a wide range of parallel platforms for Thinking Machines, MasPar, Alliant, Numerix, and several government projects. In 1991 she decided to finish her education. After graduating from MIT in 1997, she joined Digital Equipment?s Cambridge Research Lab (CRL). She stayed through the DEC/Compaq/HP mergers and when CRL was acquired and absorbed by Intel. She currently works in the Software and

  15. Examining Mechanisms of Groundwater Hg(II) Treatment by Reactive Materials: An EXAFS Study

    SciTech Connect (OSTI)

    Gibson, Blair D.; Ptacek, Carol J.; Lindsay, Matthew B.J.; Blowes, David W.

    2012-02-07

    Laboratory batch experiments were conducted to examine mechanisms of Hg(II) removal by reactive materials proposed for groundwater treatment. These materials included granular iron filings (GIF), 1:1 (w/w) mixtures of metallurgical granular Fe powder + elemental S (MGI+S) and elemental Cu + elemental S (Cu+S), granular activated carbon (GAC), attapulgite clay (ATP), ATP treated with 2-amino-5-thiol-1,3,4-thiadiazole (ATP-a), and ATP treated with 2,5-dimercapto-1,3,4-thiadiazole (ATP-d). Following treatment of simulated groundwater containing 4 mg L{sup -1} Hg for 8 or 16 days, the solution pH values ranged from 6.8 to 8.8 and Eh values ranged from +400 to -400 mV. Large decreases in aqueous Hg concentrations were observed for ATP-d (>99%), GIF (95%), MGI+S (94%), and Cu+S (90%). Treatment of Hg was less effective using ATP (29%), ATP-a (69%), and GAC (78%). Extended X-ray absorption fine structure (EXAFS) spectra of Hg on GIF, MGI+S, and GAC indicated the presence of an Hg-O bond at 2.04-2.07 {angstrom}, suggesting that Hg was bound to GIF corrosion products or to oxygen complexes associated with water sorbed to activated carbon. In contrast, bond lengths ranging from 2.35 to 2.48 {angstrom} were observed for Hg in Cu+S, ATP-a, and ATP-d treatments, suggesting the formation of Hg-S bonds.

  16. Results of Hg speciation testing on tanks 30, 32, and 37 surface samples

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2015-11-11

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.

  17. Shape coexistence in {sup 180}Hg studied through the {beta} decay of {sup 180}Tl

    SciTech Connect (OSTI)

    Elseviers, J.; Bree, N.; Diriken, J.; Huyse, M.; Ivanov, O.; Van den Bergh, P.; Van Duppen, P.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Fedorov, D.; Cocolios, T. E.; Seliverstov, M.; Comas, V. F.; Heredia, J. A.; Fedosseyev, V. N.; Marsh, B. A.; Franchoo, S.; Page, R. D.

    2011-09-15

    The {beta}{sup +}/EC decay of {sup 180}Tl and excited states in the daughter nucleus {sup 180}Hg have been investigated at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. Many new low-lying energy levels were observed in {sup 180}Hg, of which the most significant are the 0{sub 2}{sup +} at 419.6 keV and the 2{sub 2}{sup +} at 601.3 keV. The former is the bandhead of an excited band in {sup 180}Hg assumed originally to be of prolate nature. From the {beta} feeding to the different states in {sup 180}Hg, the ground-state spin of {sup 180}Tl was deduced to be (4{sup -},5{sup -}).

  18. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect (OSTI)

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  19. Temperature coefficients for GaInP/GaAs/GaInNAsSb solar cells

    SciTech Connect (OSTI)

    Aho, Arto; Isoaho, Riku; Tukiainen, Antti; Polojärvi, Ville; Aho, Timo; Raappana, Marianna; Guina, Mircea

    2015-09-28

    We report the temperature coefficients for MBE-grown GaInP/GaAs/GaInNAsSb multijunction solar cells and the corresponding single junction sub-cells. Temperature-dependent current-voltage measurements were carried out using a solar simulator equipped with a 1000 W Xenon lamp and a three-band AM1.5D simulator. The triple-junction cell exhibited an efficiency of 31% at AM1.5G illumination and an efficiency of 37–39% at 70x real sun concentration. The external quantum efficiency was also measured at different temperatures. The temperature coefficients up to 80°C, for the open circuit voltage, the short circuit current density, and the conversion efficiency were determined to be −7.5 mV/°C, 0.040 mA/cm{sup 2}/°C, and −0.09%/°C, respectively.

  20. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    SciTech Connect (OSTI)

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel; Que, Christopher T.; Yamamoto, Kohji; Tani, Masahiko

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  1. Pressure-Induced Enhanced Magnetic Anisotropy in Mn(N(CN)2)2

    SciTech Connect (OSTI)

    Quintero, P. A.; Rajan, D.; Peprah, M. K.; Brinzari, T. V.; Fishman, Randy Scott; Talham, Daniel R.; Meisel, Mark W.

    2015-01-01

    Using DC and AC magnetometry, the pressure dependence of the magnetization of the threedimensional antiferromagnetic coordination polymer Mn(N(CN)2)2 was studied up to 12 kbar and down to 8 K. The magnetic transition temperature, Tc, increases dramatically with applied pressure (P), where a change from Tc(P = ambient) = 16:0 K to Tc(P = 12:1 kbar) = 23:5 K was observed. In addition, a marked difference in the magnetic behavior is observed above and below 7.1 kbar. Specifically, for P < 7:1 kbar, the differences between the field-cooled and zero-field-cooled (fc-zfc) magnetizations, the coercive field, and the remanent magnetization decrease with increasing pressure. However, for P > 7:1 kbar, the behavior is inverted. Additionally, for P > 8:6 kbar, minor hysteresis loops are observed. All of these effects are evidence of the increase of the superexchange interaction and the appearance of an enhanced exchange anisotropy with applied pressure.

  2. In-beam conversion-electron spectroscopy of {sup 180}Hg

    SciTech Connect (OSTI)

    Page, R. D.; Wiseman, D. R.; Butler, P. A.; Herzberg, R.-D.; Jones, G. D.; Joss, D. T.; Keenan, A.; Rainovski, G. I.; Andreyev, A. N.; Grahn, T.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Kankaanpaeae, H.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Nieminen, P.

    2011-09-15

    Excited states in {sup 180}Hg were populated using the {sup 147}Sm({sup 36}Ar,3n){sup 180}Hg reaction and studied by in-beam conversion-electron spectroscopy. Conversion electrons emitted at the target position were measured using the Silicon Array for Conversion Electron Detection (SACRED) spectrometer and tagged through the characteristic {alpha} decays of {sup 180}Hg detected in a position-sensitive silicon strip detector located at the focal plane of the gas-filled recoil separator Recoil Ion Transport Unit (RITU). Electron conversion of transitions previously assigned to {sup 180}Hg through in-beam {gamma}-ray spectroscopy studies was identified up to the 10{sup +}{yields}8{sup +} transition and the intensities of the conversion-electron transitions were found to be consistent with the previous multipolarity assignments. Evidence was also found for two highly converted transitions in {sup 180}Hg: a 167 keV transition is interpreted as the transition from the newly identified 2{sub 2}{sup +} state at 601 keV to the 2{sub 1}{sup +} state at 434 keV, while a 420 keV transition is assigned as the E0 decay from the 0{sup +} bandhead of the prolate-deformed configuration to the weakly deformed ground state.

  3. The fluxes of CN neutrinos from the Sun in case of mixing in a spherical layer in the solar core

    SciTech Connect (OSTI)

    Kopylov, Anatoly; Petukhov, Valery E-mail: beril@inr.ru

    2012-03-01

    The results of the calculation are presented for the fluxes of CN neutrinos from the Sun in case of mixing in a spherical layer in the solar core, consistent with the seismic data and with the measured solar neutrino fluxes. It is shown that a substantial increase of the flux of {sup 13}N neutrinos can be gained in this case. The possible implications for experiment are discussed.

  4. Atmospheric Pressure Plasma CVD of Amorphous Hydrogenated Silicon Carbonitride (a-SiCN:H) Films Using Triethylsilane and Nitrogen

    SciTech Connect (OSTI)

    Srinivasan Guruvenket; Steven Andrie; Mark Simon; Kyle W. Johnson; Robert A. Sailer

    2011-10-04

    Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films are synthesized by atmospheric pressure plasma enhanced chemical vapor (AP-PECVD) deposition using the Surfx Atomflow{trademark} 250D APPJ source with triethylsilane (HSiEt{sub 3}, TES) and nitrogen as the precursor and the reactive gases, respectively. The effect of the substrate temperature (T{sub s}) on the growth characteristics and the properties of a-SiCN:H films was evaluated. The properties of the films were investigated via scanning electron microscopy (SEM), atomic force microscopy (AFM) for surface morphological analyses, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) for chemical and compositional analyses; spectroscopic ellipsometry for optical properties and thickness determination and nanoindentation to determine the mechanical properties of the a-SiCN:H films. Films deposited at low T{sub s} depict organic like features, while the films deposited at high T{sub s} depict ceramic like features. FTIR and XPS studies reveal that an increases in T{sub s} helps in the elimination of organic moieties and incorporation of nitrogen in the film. Films deposited at T{sub s} of 425 C have an index of refraction (n) of 1.84 and hardness (H) of 14.8 GPa. A decrease in the deposition rate between T{sub s} of 25 and 250 C and increase in deposition rate between T{sub s} of 250 and 425 C indicate that the growth of a-SiCN:H films at lower T{sub s} are surface reaction controlled, while at high temperatures film growth is mass-transport controlled. Based on the experimental results, a potential route for film growth is proposed.

  5. The new Hg-rich barium indium mercurides BaIn{sub x}Hg{sub 7−x} (x=3.1) and BaIn{sub x}Hg{sub 11−x} (x=0–2.8)

    SciTech Connect (OSTI)

    Wendorff, Marco; Schwarz, Michael; Röhr, Caroline

    2013-07-15

    The title compounds BaIn{sub x}Hg{sub 7−x} (x=3.1(1)) and BaIn{sub x}Hg{sub 11−x} (x=0–2.8) were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures have been determined using single crystal X-ray data. BaIn{sub x}Hg{sub 7−x} (x=3.1(1)) crystallizes in a new structure type (orthorhombic, oC16, space group Cmmm: a=512.02(1), b=1227.68(3), c=668.61(2) pm, Z=2, R1=0.0311). In the structure, the atoms of the three crystallographically different mixed In/Hg positions form planar nets of four-, six- and eight-membered rings. These nets are shifted against each other such that the four-membered rings form empty distorted cubes. The cubes are connected via common edges, corners and folded ladders, which are also found in BaIn{sub 2}/BaHg{sub 2} (KHg{sub 2} structure type) and BaIn (α-NaHg type). The Ba atoms are centered in the eight-membered rings and exhibit an overall coordination number of 20. The [BaM{sub 20}] polyhedra and twice as many distorted [M{sub 8}] cubes tesselate the space. BaIn{sub 2.8}Hg{sub 8.2} (cubic, cP36, space group Pm3{sup ¯}m, a=961.83(1) pm, Z=3, R1=0.0243) is the border compound of the phase width BaIn{sub x}Hg{sub 11−x} of the rare BaHg{sub 11} structure type. In the structure, ideal [M{sub 8}] cubes (at the corners of the unit cell) and BaM{sub 20} polyhedra (at the edges of the unit cell) represent the building blocks comparable to the other new In mercuride. In accordance with the increased In/Hg content, additional M-pure regions appear: the center of the unit cell contains a huge [Hg(1)M(2){sub 12}M(3,4){sub 32}] polyhedron, a Hg-centered cuboctahedron of In/Hg atoms surrounded by a capped cantellated cube of 32 additional M atoms. For both structure types, the bonding situation and the ‘coloring’, i.e. the In/Hg distribution of the polyanionic network, are discussed considering the different sizes of the atoms and the charge distribution (Bader AIM charges), which have been

  6. New GaInP/GaAs/GaInAs, Triple-Bandgap, Tandem Solar Cell for High-Efficiency Terrestrial Concentrator Systems

    SciTech Connect (OSTI)

    Kurtz, S.; Wanlass, M.; Kramer, C.; Young, M.; Geisz, J.; Ward, S.; Duda, A.; Moriarty, T.; Carapella, J.; Ahrenkiel, P.; Emery. K.; Jones, K.; Romero, M.; Kibbler, A.; Olson, J.; Friedman, D.; McMahon, W.; Ptak, A.

    2005-11-01

    GaInP/GaAs/GaInAs three-junction cells are grown in an inverted configuration on GaAs, allowing high quality growth of the lattice matched GaInP and GaAs layers before a grade is used for the 1-eV GaInAs layer. Using this approach an efficiency of 37.9% was demonstrated.

  7. Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer

    DOE Patents [OSTI]

    Grossman, M.W.; Evans, R.

    1991-11-26

    A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the [sup 196]Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of [+-]0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour. 8 figures.

  8. Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer

    DOE Patents [OSTI]

    Grossman, Mark W.; Evans, Roger

    1991-01-01

    A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the .sup.196 Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of .+-.0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour.

  9. Nonlinear terahertz response of HgTe/CdTe quantum wells

    SciTech Connect (OSTI)

    Chen, Qinjun; Sanderson, Matthew; Zhang, Chao

    2015-08-24

    Without breaking the topological order, HgTe/CdTe quantum wells can have two types of bulk band structure: direct gap type (type I) and indirect gap type (type II). We report that the strong nonlinear optical responses exist in both types of bulk states under a moderate electric field in the terahertz regime. Interestingly, for the type II band structure, the third order conductivity changes sign when chemical potentials lies below 10 meV due to the significant response of the hole excitation close to the bottom of conduction band. Negative nonlinear conductivities suggest that HgTe/CdTe quantum wells can find application in the gain medium of a laser for terahertz radiation. The thermal influences on nonlinear optical responses of HgTe/CdTe quantum wells are also studied.

  10. H.G. Rickover, 1964 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H.G. Rickover, 1964 The Enrico Fermi Award Fermi Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's 1950's Ceremony The Life of Enrico Fermi Contact Information The Enrico Fermi Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1960's H.G. Rickover, 1964 Print Text Size: A A A FeedbackShare Page Citation For engineering and demonstrative leadership in the

  11. InGaAsN/GaAs heterojunction for multi-junction solar cells

    DOE Patents [OSTI]

    Kurtz, Steven R.; Allerman, Andrew A.; Klem, John F.; Jones, Eric D.

    2001-01-01

    An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 0GaAs layer, with the InGaAsN and GaAs layers being lattice-matched to the substrate. The InGaAsN/GaAs p-n heterojunction can be epitaxially grown by either molecular beam epitaxy (MBE) or metalorganic chemical vapor deposition (MOCVD). The InGaAsN/GaAs p-n heterojunction provides a high open-circuit voltage of up to 0.62 volts and an internal quantum efficiency of >70%.

  12. Magnetism and transport properties of epitaxial Fe-Ga thin films on GaAs(001)

    SciTech Connect (OSTI)

    Duong Anh Tuan; Shin, Yooleemi; Cho, Sunglae; Dang Duc Dung; Vo Thanh Son

    2012-04-01

    Epitaxial Fe-Ga thin films in disordered bcc {alpha}-Fe crystal structure (A2) have been grown on GaAs(001) by molecular beam epitaxy. The saturated magnetization (M{sub S}) decreased from 1371 to 1105 kA/m with increasing Ga concentration from 10.5 to 24.3 % at room temperature. The lattice parameter increased with the increase in Ga content because of the larger atomic radius of Ga atom than that of Fe. The increase in carrier density with Ga content caused in lower resistivity.

  13. Graphene induced remote surface scattering in graphene/AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Liu, Xiwen; Li, Dan; Wang, Bobo; Liu, Bin; Chen, Famin; Jin, Guangri; Lu, Yanwu

    2014-10-20

    The mobilities of single-layer graphene combined with AlGaN/GaN heterostructures on two-dimensional electron gases in graphene/AlGaN/GaN double heterojunction are calculated. The impact of electron density in single-layer graphene is also studied. Remote surface roughness (RSR) and remote interfacial charge (RIC) scatterings are introduced into this heterostructure. The mobilities limited by RSR and RIC are an order of magnitude higher than that of interface roughness and misfit dislocation. This study contributes to designing structures for generation of higher electron mobility in graphene/AlGaN/GaN double heterojunction.

  14. Band Structure of Strain-Balanced GaAsBi/GaAsN Super-lattices on GaAs

    SciTech Connect (OSTI)

    Hwang, J.; Phillips, J. D.

    2011-05-31

    GaAs alloys with dilute content of Bi and N provide a large reduction in band-gap energy with increasing alloy composition. GaAsBi/GaAsN heterojunctions have a type-II band alignment, where superlattices based on these materials offer a wide range for designing effective band-gap energy by varying superlattice period and alloy composition. The miniband structure and effective band gap for strain-balanced GaAsBi/GaAsN superlattices with effective lattice match to GaAs are calculated for alloy compositions up to 5% Bi and N using the kp method. The effective band gap for these superlattices is found to vary between 0.89 and 1.32 eV for period thickness ranging from 10 to 100 . The joint density of states and optical absorption of a 40/40 GaAs0.96Bi0.04/GaAs0.98N0.02 superlattice are reported demonstrating a ground-state transition at 1.005 eV and first excited transition at 1.074 eV. The joint density of states is similar in magnitude to GaAs, while the optical absorption is approximately one order of magnitude lower due to the spatially indirect optical transition in the type-II structure. The GaAsBi/GaAsN system may provide a new material system with lattice match to GaAs in a spectral range of high importance for optoelectronic devices including solar cells, photodetectors, and light emitters.

  15. Optical and magnetotransport properties of InGaAs/GaAsSb/GaAs structures doped with a magnetic impurity

    SciTech Connect (OSTI)

    Kalentyeva, I. L. Zvonkov, B. N.; Vikhrova, O. V.; Danilov, Yu. A.; Demina, P. B.; Dorokhin, M. V.; Zdoroveyshchev, A. V.

    2015-11-15

    InGaAs/GaAsSb/GaAs bilayer quantum-well structures containing a magnetic-impurity δ-layer (Mn) at the GaAs/InGaAs interface are experimentally studied for the first time. The structures are fabricated by metal organic chemical-vapor deposition (MOCVD) and laser deposition on substrates of conducting (n{sup +}) and semi-insulating GaAs in a single growth cycle. The InGaAs-layer thickness is varied from 1.5 to 5 nm. The significant effect of a decrease in the InGaAs quantum-well thickness on the optical and magnetotransport properties of the structures under study is detected. Nonlinear magnetic-field dependence of the Hall resistance and negative magnetoresistance at temperatures of ≤30–40 K, circular polarization of the electroluminescence in a magnetic field, opposite behaviors of the photoluminescence and electroluminescence emission intensities in the structures, and an increase in the contribution of indirect transitions with decreasing InGaAs thickness are observed. Simulation shows that these effects can be caused by the influence of the δ-layer of acceptor impurity (Mn) on the band structure and the hole concentration distribution in the bilayer quantum well.

  16. trans-K3[TcO2(CN)4

    SciTech Connect (OSTI)

    Chatterjee, Sayandev; Del Negro, Andrew S; Edwards, Matthew K; Twamley, Brendan; Krause, Jeanette A; Bryan, Samuel A

    2010-07-14

    The dioxotetracyanotechnetate anion, [TcO2(CN)4]3-, of the title complex has octahedral symmetry. The technetium is located on a center of inversion and is bound by two oxygen atoms and four cyano ligands. The Tc=O bond distance of 1.7721 (12) Å is consistent with double bond character. The potassium cations [located on special (1/2,0,1) and general positions] reside in octahedral or tetrahedral environments; interionic K···O and K···N interactions occur in the 2.7877 (19)-2.8598 (15) Å range.

  17. Degradation mechanisms of 2 MeV proton irradiated AlGaN/GaN HEMTs...

    Office of Scientific and Technical Information (OSTI)

    irradiated AlGaNGaN HEMTs This content will become publicly available on August 26, 2016 Title: Degradation mechanisms of 2 MeV proton irradiated AlGaNGaN HEMTs Authors: ...

  18. AlGaAsSb/GaSb Distributed Bragg Reflectors Grown by Organometallic Vapor Phase Epitaxy

    SciTech Connect (OSTI)

    C.A. Wang; C.J. Vineis; D.R. Calawa

    2002-02-13

    The first AlGaAsSb/GaSb quarter-wave distributed Bragg reflectors grown by metallic vapor phase epitaxy are reported. The peak reflectance is 96% for a 10-period structure.

  19. (In,Ga)As/GaP electrical injection quantum dot laser

    SciTech Connect (OSTI)

    Heidemann, M. Höfling, S.; Kamp, M.

    2014-01-06

    The paper reports on the realization of multilayer (In,Ga)As/GaP quantum dot (QD) lasers grown by gas source molecular beam epitaxy. The QDs have been embedded in (Al,Ga)P/GaP waveguide structures. Laser operation at 710 nm is obtained for broad area laser devices with a threshold current density of 4.4 kA/cm{sup 2} at a heat-sink temperature of 80 K.

  20. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  1. Fate of nutrient enrichment on continental shelves as indicated by the C/N content of bottom sediments

    SciTech Connect (OSTI)

    Walsh, J.J.; Premuzic, E.T.; Whitledge, T.E.

    1980-01-01

    The trajectory and fate of particulate matter are poorly understood processes in a spatially heterogeneous coastal ocean. Parameterization of appropriate hydrodynamics for a quantitative description of these loss processes must thus await definition of the important biological time and space scales. Since the bottom sands tend to record the history of the water column, we have selected the C/N content of shelf sediments as a possible tracer of (1) sites of nutrient introduction to the shelf by various physical mechanisms, of (2) areas of subsequent downstream utilization by the phytoplankton, and of (3) where loss of particulate matter might occur from the water column. An analysis is made of the C/N patterns of bottom surface sediments in relation to the nitrogen sources from upwelling, river runoff, and tidal mixing on the Peruvian, west African, Amazonian, Gulf of Mexico, eastern US, Bering, and North Sea shelves in an initial attempt to proscribe the particle trajectories of organic matter on the continental shelf.

  2. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  3. Axi-symmetrical flow reactor for [sup 196]Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1991-04-30

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, [sup 196]Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired [sup 196]Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith. 10 figures.

  4. Axi-symmetrical flow reactor for .sup.196 Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, .sup.196 Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired .sup.196 Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith.

  5. A hole modulator for InGaN/GaN light-emitting diodes

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei E-mail: VOLKAN@stanfordalumni.org; Demir, Hilmi Volkan E-mail: VOLKAN@stanfordalumni.org

    2015-02-09

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ?332?meV to ?294?meV at 80?A/cm{sup 2} and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.

  6. Automated product recovery in a Hg-196 photochemical isotope separation process

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.

    1992-07-21

    A method of removing deposited product from a photochemical reactor used in the enrichment of [sup 196]Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out. 2 figs.

  7. Automated product recovery in a HG-196 photochemical isotope separation process

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

  8. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots

    SciTech Connect (OSTI)

    Guyot-Sionnest, Philippe Roberts, John Andris

    2015-12-21

    The photovoltaic response of thin films of HgTe colloidal quantum dots in the 3–5 μm range is observed. With no applied bias, internal quantum efficiency exceeding 40%, specific detectivity above 10{sup 10} Jones and microseconds response times are obtained at 140 K. The cooled devices detect the ambient thermal radiation. A detector with 5.25 μm cut-off achieves Background Limited Infrared Photodetection at 90 K.

  9. AlGaN/GaN heterostructure prepared on a Si (110) substrate via pulsed sputtering

    SciTech Connect (OSTI)

    Watanabe, T.; Ohta, J.; Kondo, T.; Ohashi, M.; Ueno, K.; Kobayashi, A.; Fujioka, H.

    2014-05-05

    GaN films were grown on Si (110) substrates using a low-temperature growth technique based on pulsed sputtering. Reduction of the growth temperature suppressed the strain in the GaN films, leading to an increase in the critical thickness for crack formation. In addition, an AlGaN/GaN heterostructure with a flat heterointerface was prepared using this technique. Furthermore, the existence of a two dimensional electron gas at the heterointerface with a mobility of 1360 cm{sup 2}/Vs and a sheet carrier density of 1.3??10{sup 13}?cm{sup ?2} was confirmed. Finally, the use of the AlGaN/GaN heterostructure in a high electron mobility transistor was demonstrated. These results indicate that low-temperature growth via pulsed sputtering is quite promising for the fabrication of GaN-based electronic devices.

  10. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    SciTech Connect (OSTI)

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  11. Evaluation of HgI[sub 2] detectors for lead detection in paint

    SciTech Connect (OSTI)

    Wang, Y.J.; Iwanczyk, J.S.; Graham, W.R. )

    1993-08-01

    The authors conducted a laboratory study of HgI[sub 2] spectrometers used for in-situ determination of lead on painted surfaces. [sup 109]Cd and [sup 57]Co isotopes have been used to excite lead characteristic x-rays from samples. The energy resolution of HgI[sub 2] detectors in the energy region corresponding to lead K x-rays has been measured. An energy resolution of 880 eV (FWHM) for the 60 keV line from an [sup 241]Am source has been obtained. Measurements using thin film standards ranging from 0.5 mg Pb/cm[sup 2] to 2 mg Pb/cm[sup 2] have been conducted. Detection limits, accuracy and precision of the measurements have been estimated. Based upon a comparison of the results that the authors have obtained with the performance of existing detector technology, the HgI[sub 2] detectors seem to be the best solution for handheld XRF lead analyzers.

  12. EIS-0476: Vogtle Electric Generating Plant in Burke County, GA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Final Environmental Impact Statement EIS-0476: ...

  13. Carrier quenching in InGaP/GaAs double heterostructures

    SciTech Connect (OSTI)

    Wells, Nathan P. Driskell, Travis U.; Hudson, Andrew I.; LaLumondiere, Stephen D.; Lotshaw, William T.; Forbes, David V.; Hubbard, Seth M.

    2015-08-14

    Photoluminescence measurements on a series of GaAs double heterostructures demonstrate a rapid quenching of carriers in the GaAs layer at irradiance levels below 0.1 W/cm{sup 2} in samples with a GaAs-on-InGaP interface. These results indicate the existence of non-radiative defect centers at or near the GaAs-on-InGaP interface, consistent with previous reports showing the intermixing of In and P when free As impinges on the InGaP surface during growth. At low irradiance, these defect centers can lead to sub-ns carrier lifetimes. The defect centers involved in the rapid carrier quenching can be saturated at higher irradiance levels and allow carrier lifetimes to reach hundreds of nanoseconds. To our knowledge, this is the first report of a nearly three orders of magnitude decrease in carrier lifetime at low irradiance in a simple double heterostructure. Carrier quenching occurs at irradiance levels near the integrated Air Mass Zero (AM0) and Air Mass 1.5 (AM1.5) solar irradiance. Additionally, a lower energy photoluminescence band is observed both at room and cryogenic temperatures. The temperature and time dependence of the lower energy luminescence is consistent with the presence of an unintentional InGaAs or InGaAsP quantum well that forms due to compositional mixing at the GaAs-on-InGaP interface. Our results are of general interest to the photovoltaic community as InGaP is commonly used as a window layer in GaAs based solar cells.

  14. Highly uniform, multi-stacked InGaAs/GaAs quantum dots embedded in a GaAs nanowire

    SciTech Connect (OSTI)

    Tatebayashi, J. Ota, Y.; Ishida, S.; Nishioka, M.; Iwamoto, S.; Arakawa, Y.

    2014-09-08

    We demonstrate a highly uniform, dense stack of In{sub 0.22}Ga{sub 0.78}As/GaAs quantum dot (QD) structures in a single GaAs nanowire (NW). The size (and hence emission energy) of individual QD is tuned by careful control of the growth conditions based on a diffusion model of morphological evolution of NWs and optical characterization. By carefully tailoring the emission energies of individual QD, dot-to-dot inhomogeneous broadening of QD stacks in a single NW can be as narrow as 9.3?meV. This method provides huge advantages over traditional QD stack using a strain-induced Stranski-Krastanow growth scheme. We show that it is possible to fabricate up to 200 uniform QDs in single GaAs NWs using this growth technique without degradation of the photoluminescence intensity.

  15. Oxidation of ultrathin GaSe

    SciTech Connect (OSTI)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  16. Oxidation of ultrathin GaSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  17. Threshold of photoelectron emission from CN{sub x} films deposited at room temperature and at 500 deg. C

    SciTech Connect (OSTI)

    Sago, Genki; Li Wanyan; Goto, Keisuke; Ichikawa, Yo; Ishida, Yoshihisa; Kohiki, Shigemi

    2004-10-15

    The threshold of photoelectron emission was measured for amorphous CN{sub x} films deposited at room temperature (RT) and at 500 deg. C. The x values of the films deposited at RT and at 500 deg. C by magnetron sputtering of a graphite target in a mixed N{sub 2}/Ar gas were 0.6 and 0.3, respectively. Ratios of the sp{sup 2}- to sp{sup 3}-hybridized components of both C and N for the film deposited at 500 deg. C were larger by {approx_equal}4 times than those for the film deposited at RT. The onsets of the electron emission by photon irradiation were 5.0 and 4.7 eV for the films deposited at RT and at 500 deg. C, respectively.

  18. Zinc blende GaAs films grown on wurtzite GaN/sapphire templates

    SciTech Connect (OSTI)

    Chaldyshev, V.V.; Nielsen, B.; Mendez, E.E.; Musikhin, Yu.G.; Bert, N.A.; Ma, Zh.; Holden, Todd

    2005-03-28

    1-{mu}m-thick zinc-blende GaAs (111) films were grown by molecular-beam epitaxy on wurtzite GaN/sapphire (0001) templates. In spite of a {approx}20% lattice mismatch, epitaxial growth was realized, so that the GaAs films showed good adhesion and their surface had a larger mirror-like area with an average surface roughness of 10 nm. Transmission electron microscopy revealed a flat and abrupt epitaxial GaAs/GaN interface with some nanocavities and a large number of dislocations. Reasonably good crystalline quality of the GaAs films was confirmed by Raman characterization. Spectroscopic ellipsometry showed sharp interference fringes and characteristic parameters in the range of 0.75-5.3 eV. Photoluminescence study revealed extended band tails and dominance of non-radiative carrier recombination.

  19. High-performance InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Tsai, J.-H. Chiu, S.-Y.; Lour, W.-S.; Guo, D.-F.

    2009-07-15

    In this article, a novel InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor is first demonstrated. Though the valence band discontinuity at InGaP/GaAs heterojunction is relatively large, the addition of a {delta}-doped sheet between two spacer layers at the emitter-base (E-B) junction effectively eliminates the potential spike and increases the confined barrier for electrons, simultaneously. Experimentally, a high current gain of 25 and a relatively low E-B offset voltage of 60 mV are achieved. The offset voltage is much smaller than the conventional InGaP/GaAs pnp HBT. The proposed device could be used for linear amplifiers and low-power complementary integrated circuit applications.

  20. Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures

    SciTech Connect (OSTI)

    Kuppulingam, B. Singh, Shubra Baskar, K.

    2014-04-24

    Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

  1. Princeton Plasma Physics Lab - General Atomics (GA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    general-atomics-ga General Atomics en The Scorpion's Strategy: "Catch and Subdue" http:www.pppl.govnode1132

  2. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    SciTech Connect (OSTI)

    Das, Palash Biswas, Dhrubes

    2014-04-24

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.

  3. GaTe semiconductor for radiation detection

    DOE Patents [OSTI]

    Payne, Stephen A.; Burger, Arnold; Mandal, Krishna C.

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  4. Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    SciTech Connect (OSTI)

    Wang, M.; Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Charlton, T. R.; Kinane, C. J.; Langridge, S.

    2015-08-07

    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields.

  5. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect (OSTI)

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  6. Quantum Hall effect in HgTe quantum wells at nitrogen temperatures

    SciTech Connect (OSTI)

    Kozlov, D. A. Kvon, Z. D.; Mikhailov, N. N.; Dvoretskii, S. A.; Weishäupl, S.; Krupko, Y.; Portal, J.-C.

    2014-09-29

    We report on the observation of quantized Hall plateaus in a system of two-dimensional Dirac fermions, implemented in a 6.6 nm HgTe quantum well at magnetic fields up to 34 T at nitrogen temperatures. The activation energies determined from the temperature dependence of the longitudinal resistivity are found to be almost equal for the filling factors ν of 1 and 2. This indicates that the large values of the g-factor (about 30–40) remain unchanged at very strong magnetic fields.

  7. Temperature cycling vapor deposition HgI.sub.2 crystal growth

    DOE Patents [OSTI]

    Schieber, Michael M.; Beinglass, Israel; Dishon, Giora

    1977-01-01

    A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.

  8. Draft Genome sequence of Frankia sp. strains CN3 , an atypical, non-infective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis

    SciTech Connect (OSTI)

    Ghodhbane-Gtari, Faten; Beauchemin, Nicholas; Bruce, David; Chain, Patrick S. G.; Chen, Amy; Davenport, Karen W.; Deshpande, Shweta; Detter, J. Chris; Furnholm, Teal; Goodwin, Lynne A.; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Ivanova, N; Kyrpides, Nikos C; Land, Miriam L; Markowitz, Victor; Mavromatis, K; Nolan, Matt; Nouioui, Imen; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Santos, Catarina; Sen, Arnab; Sur, Saubashya; Szeto, Ernest; Tavares, Fernando; Hazuki, Teshima; Thakur, Subarna; Wall, Luis; Woyke, Tanja; Tisa, Louis S.

    2013-01-01

    We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, that are unable to re-infect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date.

  9. Accelerated aging of GaAs concentrator solar cells

    SciTech Connect (OSTI)

    Gregory, P.E.

    1982-04-01

    An accelerated aging study of AlGaAs/GaAs solar cells has been completed. The purpose of the study was to identify the possible degradation mechanisms of AlGaAs/GaAs solar cells in terrestrial applications. Thermal storage tests and accelerated AlGaAs corrosion studies were performed to provide an experimental basis for a statistical analysis of the estimated lifetime. Results of this study suggest that a properly designed and fabricated AlGaAs/GaAs solar cell can be mechanically rugged and environmentally stable with projected lifetimes exceeding 100 years.

  10. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram E-mail: rajan@ece.osu.edu; Akyol, Fatih; Rajan, Siddharth E-mail: rajan@ece.osu.edu

    2014-10-06

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450?nm) light emitting diode. A voltage drop of 5.3?V at 100?mA, forward resistance of 2 10{sup ?2} ? cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5??10{sup ?4} ? cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. The depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.

  11. Report on International Collaboration Involving the FE Heater and HG-A Tests at Mont Terri

    SciTech Connect (OSTI)

    Houseworth, Jim; Rutqvist, Jonny; Asahina, Daisuke; Chen, Fei; Vilarrasa, Victor; Liu, Hui-Hai; Birkholzer, Jens

    2013-11-06

    Nuclear waste programs outside of the US have focused on different host rock types for geological disposal of high-level radioactive waste. Several countries, including France, Switzerland, Belgium, and Japan are exploring the possibility of waste disposal in shale and other clay-rich rock that fall within the general classification of argillaceous rock. This rock type is also of interest for the US program because the US has extensive sedimentary basins containing large deposits of argillaceous rock. LBNL, as part of the DOE-NE Used Fuel Disposition Campaign, is collaborating on some of the underground research laboratory (URL) activities at the Mont Terri URL near Saint-Ursanne, Switzerland. The Mont Terri project, which began in 1995, has developed a URL at a depth of about 300 m in a stiff clay formation called the Opalinus Clay. Our current collaboration efforts include two test modeling activities for the FE heater test and the HG-A leak-off test. This report documents results concerning our current modeling of these field tests. The overall objectives of these activities include an improved understanding of and advanced relevant modeling capabilities for EDZ evolution in clay repositories and the associated coupled processes, and to develop a technical basis for the maximum allowable temperature for a clay repository. The R&D activities documented in this report are part of the work package of natural system evaluation and tool development that directly supports the following Used Fuel Disposition Campaign (UFDC) objectives: ? Develop a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear-fuel-cycle alternatives through theory, simulation, testing, and experimentation. ? Develop a computational modeling capability for the performance of storage and disposal options for a range of fuel-cycle alternatives, evolving from generic models to more robust models of performance

  12. GaP ring-like nanostructures on GaAs (100) with In{sub 0.15}Ga{sub 0.85}As compensation layers

    SciTech Connect (OSTI)

    Prongjit, Patchareewan Pankaow, Naraporn Boonpeng, Poonyasiri Thainoi, Supachok Panyakeow, Somsak Ratanathammaphan, Somchai

    2013-12-04

    We present the fabrication of GaP ring-like nanostructures on GaAs (100) substrates with inserted In{sub 0.15}Ga{sub 0.85}As compensation layers. The samples are grown by droplet epitaxy using solid-source molecular beam epitaxy. The dependency of nanostructural and optical properties of GaP nanostructures on In{sub 0.15}Ga{sub 0.85}As layer thickness is investigated by ex-situ atomic force microscope (AFM) and photoluminescence (PL). It is found that the characteristics of GaP ring-like structures on GaAs strongly depend on the In{sub 0.15}Ga{sub 0.85}As layer thickness.

  13. Lattice-matched epitaxial GaInAsSb/GaSb thermophotovoltaic devices

    SciTech Connect (OSTI)

    Wang, C.A.; Choi, H.K.; Turner, G.W.; Spears, D.L.; Manfra, M.J.; Charache, G.W.

    1997-05-01

    The materials development of Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} alloys for lattice-matched thermophotovoltaic (TPV) devices is reported. Epilayers with cutoff wavelength 2--2.4 {micro}m at room temperature and lattice-matched to GaSb substrates were grown by both low-pressure organometallic vapor phase epitaxy and molecular beam epitaxy. These layers exhibit high optical and structural quality. For demonstrating lattice-matched thermophotovoltaic devices, p- and n-type doping studies were performed. Several TPV device structures were investigated, with variations in the base/emitter thicknesses and the incorporation of a high bandgap GaSb or AlGaAsSb window layer. Significant improvement in the external quantum efficiency is observed for devices with an AlGaAsSb window layer compared to those without one.

  14. Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100)

    SciTech Connect (OSTI)

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Wetzel, Christian, E-mail: wetzel@ieee.org [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Future Chips Constellation, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Lee, S. C.; Brueck, S. R. J. [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States)] [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States); Jiang, Y.-B. [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-12-02

    GaInN/GaN light-emitting diodes free of piezoelectric polarization were prepared on standard electronic-grade Si(100) substrates. Micro-stripes of GaN and GaInN/GaN quantum wells in the cubic crystal structure were grown on intersecting (111) planes of microscale V-grooved Si in metal-organic vapor phase epitaxy, covering over 50% of the wafer surface area. Crystal phases were identified in electron back-scattering diffraction. A cross-sectional analysis reveals a cubic structure virtually free of line defects. Electroluminescence over 20 to 100??A is found fixed at 487?nm (peak), 516?nm (dominant). Such structures therefore should allow higher efficiency, wavelength-stable light emitters throughout the visible spectrum.

  15. Structural and Morphological Difference Between Ti/TiN/TiCN Coatings Grown in Multilayer and Graded Form

    SciTech Connect (OSTI)

    Restrepo, E.; Baena, A.; Agudelo, C.; Castillo, H.; Devia, A.; Marino, A.

    2006-12-04

    Thin films can be grown in super-lattice, multilayers and graded form, having each one advantages and disadvantages. The difference between multilayer and graded coatings is the interface. In multilayers the interface is abrupt and in graded coatings it is diffuse. The interface influences many chemical and physical properties of the materials, and its choice depends on the application. Graded coatings have the advantage of having gradual properties such as thermal expansion coefficient and lattice parameter, avoiding adherence problems due to good match between their component materials. In this work the comparison between some properties of coatings grown as multilayer and graded is performed. The materials are produced using the sputtering DC technique because of its facility to control the deposition parameters and generate a slow growth. The target is a disc of titanium and the samples are made of stainless steel 304. The working gases are argon, nitrogen and methane, which are mixed according to the material to be produced, i.e. Ti layer is grown with argon, the TiN film is produced with a mixture of argon and nitrogen, and the TiCN material is obtained mixing argon, nitrogen and methane. These materials are characterized with AFM in order to determine grain size and with XPS studying the chemical composition and performing depth profiles.

  16. Femtosecond Measurements Of Size-Dependent Spin Crossover In FeII(pyz)Pt(CN)4 Nanocrystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sagar, D. M.; Baddour, Frederick G.; Konold, Patrick; Ullom, Joel; Ruddy, Daniel A.; Johnson, Justin C.; Jimenez, Ralph

    2016-01-07

    We report a femtosecond time-resolved spectroscopic study of size-dependent dynamics in nanocrystals (NCs) of Fe(pyz)Pt(CN)4. We observe that smaller NCs (123 or 78 nm cross section and < 25 nm thickness) exhibit signatures of spin crossover (SCO) with time constants of ~ 5-10 ps whereas larger NCs with 375 nm cross section and 43 nm thickness exhibit a weaker SCO signature accompanied by strong spectral shifting on a ~20 ps time scale. For the small NCs, the fast dynamics appear to result from thermal promotion of residual low-spin states to high-spin states following nonradiative decay, and the size dependence ismore » postulated to arise from differing high-spin vs low-spin fractions in domains residing in strained surface regions. The SCO is less efficient in larger NCs owing to their larger size and hence lower residual LS/HS fractions. Our results suggest that size-dependent dynamics can be controlled by tuning surface energy in NCs with dimensions below ~25 nm for use in energy harvesting, spin switching, and other applications.« less

  17. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    SciTech Connect (OSTI)

    Qiu, Weicheng; Hu, Weida Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei; Cheng, Xiang'ai Wang, Rui

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  18. GaAs photoconductive semiconductor switch

    DOE Patents [OSTI]

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  19. GaAs photoconductive semiconductor switch

    DOE Patents [OSTI]

    Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  20. GaN: Defect and Device Issues

    SciTech Connect (OSTI)

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  1. Fura-2 measurement of cytosolic calcium in HgCl/sub 2/-treated rabbit renal turbular cells

    SciTech Connect (OSTI)

    Trump, B.F.; Smith, M.W.

    1986-05-01

    This abstract reports the effect of HgCl/sub 2/ on cytosolic ionized calcium (Ca/sup 2 +/)/sub c/, measured by the fluorescent chelator Fura-2, in trypsinized rabbit renal tubular cells at 37/sup 0/C in Hanks salt solution, pH 7.2, containing 1.37 mM CaCl/sub 2/. Viability measured fluorometrically with propidium iodide correlated well with that determined using trypan blue. HgCl/sub 2/ (1-10 ..mu..M) induced rapid and dose-dependent increases up to 5-fold normal (Ca/sup 2 +/)/sub c/. After 1-3 min the rate of increase slowed or stopped. At higher doses of HgCl/sub 2/ (20-100 ..mu..M) an unexpected pattern of (Ca/sup 2 +/)/sub c/ changes occurred. After an initial 5-6-fold increase by 1 min, (Ca/sup 2 +/)/sub c/ decreased in the next 2-3 min to 2-3-fold normal levels. This change was followed by a second increase of (Ca/sup 2 +/)/sub c/ at a much slower rate which did appear to be dose-related. Calcium channel blockers and calmodulin inhibitors had little or no effect. Inhibitors of mitochondrial function, antimycin and 2,4-dinitrophenol, interfered with the fluorescent assay; KCN totally inhibited HgCl/sub 2/-induced (Ca/sup 2 +/)/sub c/ changes while hypoxia had no apparent effect. The -SH group binding compound N-ethyl maleimide increased (Ca/sup 2 +/)/sub c/ 4-5 fold; addition of 25 ..mu..M Hg caused faster peaking and recovery of (Ca/sup 2 +/)/sub c/. The mechanism of Ca/sup 2 +/ buffering triggered by higher HgCl/sub 2/ concentrations is as yet unknown.

  2. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less

  3. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    SciTech Connect (OSTI)

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  4. Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe

    SciTech Connect (OSTI)

    Madni, I.; Umana-Membreno, G. A.; Lei, W.; Gu, R.; Antoszewski, J.; Faraone, L.

    2015-11-02

    The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.

  5. Optical spectroscopy of quantum confined states in GaAs/AlGaAs quantum well tubes

    SciTech Connect (OSTI)

    Shi, Teng; Fickenscher, Melodie; Smith, Leigh; Jackson, Howard; Yarrison-Rice, Jan; Gao, Qiang; Tan, Hoe; Jagadish, Chennupati; Etheridge, Joanne; Wong, Bryan M.

    2013-12-04

    We have investigated the quantum confinement of electronic states in GaAs/Al{sub x}Ga{sub 1?x}As nanowire heterostructures which contain radial GaAs quantum wells of either 4nm or 8nm. Photoluminescence and photoluminescence excitation spectroscopy are performed on single nanowires. We observed emission and excitation of electron and hole confined states. Numerical calculations of the quantum confined states using the detailed structural information on the quantum well tubes show excellent agreement with these optical results.

  6. InGaAs/GaAs quantum dot interdiffiusion induced by cap layer overgrowth

    SciTech Connect (OSTI)

    Jasinski, J.; Babinski, A.; Czeczott, M.; Bozek, R.

    2000-06-28

    The effect of thermal treatment during and after growth of InGaAs/GaAs quantum dot (QD) structures was studied. Transmission electron microscopy and atomic force microscopy confirmed the presence of interacting QDs, as was expected from analysis of temperature dependence of QD photoluminescence (PL) peak. The results indicate that the effect of post-growth annealing can be similar to the effect of elevated temperature of capping layer growth. Both, these thermal treatments can lead to a similar In and Ga interdiffiusion resulting in a similar blue-shift of QD PL peak.

  7. Memorandum, CH2M HG Idaho, LLC, Request for Variance to Title 10 Code of Federal Regulations part 851, "Worker Safety and Health"

    Broader source: Energy.gov [DOE]

    CH2M HG Idaho, LLC, Request for Variance to Title 10 Code of Federal Regulations part 851, "Worker Safety and Health"

  8. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore » to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less

  9. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; Worschech, L.; Grutzmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  10. Structural and optical properties of InGaNGaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Ho?fling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmoreto higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, ?-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.less

  11. Investigation of surface-plasmon coupled red light emitting InGaN/GaN multi-quantum well with Ag nanostructures coated on GaN surface

    SciTech Connect (OSTI)

    Li, Yi; Liu, Bin E-mail: rzhang@nju.edu.cn; Zhang, Rong E-mail: rzhang@nju.edu.cn; Xie, Zili; Zhuang, Zhe; Dai, JiangPing; Tao, Tao; Zhi, Ting; Zhang, Guogang; Chen, Peng; Ren, Fangfang; Zhao, Hong; Zheng, Youdou

    2015-04-21

    Surface-plasmon (SP) coupled red light emitting InGaN/GaN multiple quantum well (MQW) structure is fabricated and investigated. The centre wavelength of 5-period InGaN/GaN MQW structure is about 620?nm. The intensity of photoluminescence (PL) for InGaN QW with naked Ag nano-structures (NS) is only slightly increased due to the oxidation of Ag NS as compared to that for the InGaN QW. However, InGaN QW with Ag NS/SiO{sub 2} structure can evidently enhance the emission efficiency due to the elimination of surface oxide layer of Ag NS. With increasing the laser excitation power, the PL intensity is enhanced by 25%53% as compared to that for the SiO{sub 2} coating InGaN QW. The steady-state electric field distribution obtained by the three-dimensional finite-difference time-domain method is different for both structures. The proportion of the field distributed in the Ag NS for the GaN/Ag NS/SiO{sub 2} structure is smaller as compared to that for the GaN/naked Ag NS structure. As a result, the energy loss of localized SP modes for the GaN/naked Ag NS structure will be larger due to the absorption of Ag layer.

  12. Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission

    SciTech Connect (OSTI)

    Lekhal, K.; Damilano, B. De Mierry, P.; Venngus, P.; Ngo, H. T.; Rosales, D.; Gil, B.; Hussain, S.

    2015-04-06

    Yellow/amber (570600?nm) emitting In{sub x}Ga{sub 1?x}N/Al{sub y}Ga{sub 1?y}N/GaN multiple quantum wells (QWs) have been grown by metal organic chemical vapor deposition on GaN-on- sapphire templates. When the (Al,Ga)N thickness of the barrier increases, the room temperature photoluminescence is red-shifted while its yield increases. This is attributed to an increase of the QW internal electric field and an improvement of the material quality due to the compensation of the compressive strain of the In{sub x}Ga{sub 1?x}N QWs by the Al{sub y}Ga{sub 1?y}N layers, respectively.

  13. The states of carbon and nitrogen atoms after photodissociation of CN, CH, CH(+), C2, C3, and CO in comets

    SciTech Connect (OSTI)

    Singh, P.D.; De almeida, A.A.; Huebner, W.F. Southwest Research Institute, San Antonio, TX )

    1991-03-01

    The photodissociation of carbon compounds by solar UV radiation at a heliocentric distance of 1 AU is examined, comparing published observational data with the predictions of theoretical models and results from laboratory experiments. It is shown that species other than CO, including CN, CH, CH(+), C2, and C3, can contribute to the observed brightness of the VUV lines of C I (156.1, 165.7, and 193.1 nm) and C II (133.5 nm) in comet comae. CN photodissociation is also found to produce metastable 2D0 and 2P0 N I atoms, possibly leading (at heliocentric distances less than 0.25 AU) to 143.9-nm emission via resonance fluorescence. 37 refs.

  14. Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wong-Ng, W.; Culp, J. T.; Chen, Y. S.; Zavalij, P.; Espinal, L.; Siderius, D. W.; Allen, A. J.; Scheins, S.; Matranga, C.

    2013-01-01

    This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN)4], (L = 1,2-bis(4-pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P21/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, β = 96.141(2)°, V = 2767.4(4) Å3, Z = 4, Dc = 1.46 g cm-1. Ni(bpene)[Ni(CN)4] assumes a pillared layer structure with layers defined by Ni[Ni(CN)4]n nets and bpene ligands acting as pillars. With the present crystallization technique which involves the use of concentrated ammonium hydroxide solution andmore » dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN)4](1/2)bpene∙DMSO2H2O, or Ni2N7C24H25SO3. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline material with a significantly improved CO2 uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO2 uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO2 per unit cell was obtained.« less

  15. Fabrication of the C-N co-doped rod-like TiO{sub 2} photocatalyst with visible-light responsive photocatalytic activity

    SciTech Connect (OSTI)

    Li, Liang-Hai; Lu, Juan; Wang, Zuo-Shan; State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 ; Yang, Lu; Zhou, Xiu-Feng; Han, Lu

    2012-06-15

    Highlights: ? Novel synthesis of C-N co-doped TiO{sub 2}. ? Self-assembly of C-N co-doped TiO{sub 2} nanorods by nanoparticles. ? Excellent photocatalytic efficiency. -- Abstract: The C-N co-doped TiO{sub 2} nanorods were synthesized by the vapor transport method of water molecules, and urea was used as the carbon and nitrogen source. The samples were characterized by X-ray diffraction and photoelectron spectroscopy analysis. The scanning electron microscope images showed that as-prepared TiO{sub 2} powders were nanorods, which were formed by the stacking of nanoparticles with a uniform size around 40 nm. The degradation of methylene blue with the prepared nanorods demonstrated the photocatalytic activities of TiO{sub 2} under visible light are improved by doping with C and N elements. The main reasons were discussed: doping with C and N elements could enhance the corresponding visible-light absorption of TiO{sub 2}. On the other hand, doping C and N could create more oxygen vacancies in the TiO{sub 2} crystals, which could capture the photogenerated electrons more effectively. Thus, more photogenerated holes could be left to improve the photocatalytic activity of TiO{sub 2}.

  16. Composition profiling of GaAs/AlGaAs quantum dots grown by droplet epitaxy

    SciTech Connect (OSTI)

    Bocquel, J.; Koenraad, P. M.; Giddings, A. D.; Prosa, T. J.; Larson, D. J.; Mano, T.

    2014-10-13

    Droplet epitaxy (DE) is a growth method which can create III-V quantum dots (QDs) whose optoelectronic properties can be accurately controlled through the crystallisation conditions. In this work, GaAs/AlGaAs DE-QDs have been analyzed with the complimentary techniques of cross-sectional scanning tunneling microscopy and atom probe tomography. Structural details and a quantitative chemical analysis of QDs of different sizes are obtained. Most QDs were found to be pure GaAs, while a small proportion exhibited high intermixing caused by a local etching process. Large QDs with a high aspect ratio were observed to have an Al-rich crown above the GaAs QD. This structure is attributed to differences in mobility of the cations during the capping phase of the DE growth.

  17. High-field quasi-ballistic transport in AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Danilchenko, B. A.; Tripachko, N. A.; Belyaev, A. E.; Vitusevich, S. A. Hardtdegen, H.; Lth, H.

    2014-02-17

    Mechanisms of electron transport formation in 2D conducting channels of AlGaN/GaN heterostructures in extremely high electric fields at 4.2?K have been studied. Devices with a narrow constriction for the current flow demonstrate high-speed electron transport with an electron velocity of 6.8??10{sup 7}?cm/s. Such a velocity is more than two times higher than values reported for conventional semiconductors and about 15% smaller than the limit value predicted for GaN. Superior velocity is attained in the channel with considerable carrier reduction. The effect is related to a carrier runaway phenomenon. The results are in good agreement with theoretical predictions for GaN-based materials.

  18. On strongly GA-convex functions and stochastic processes

    SciTech Connect (OSTI)

    Bekar, Nurgl Okur; Akdemir, Hande Gnay; ??can, ?mdat

    2014-08-20

    In this study, we introduce strongly GA-convex functions and stochastic processes. We provide related well-known Kuhn type results and Hermite-Hadamard type inequality for strongly GA-convex functions and stochastic processes.

  19. Sheet resistance under Ohmic contacts to AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Hajłasz, M.; Donkers, J. J. T. M.; Sque, S. J.; Heil, S. B. S.; Gravesteijn, D. J.; Rietveld, F. J. R.; Schmitz, J.

    2014-06-16

    For the determination of specific contact resistance in semiconductor devices, it is usually assumed that the sheet resistance under the contact is identical to that between the contacts. This generally does not hold for contacts to AlGaN/GaN structures, where an effective doping under the contact is thought to come from reactions between the contact metals and the AlGaN/GaN. As a consequence, conventional extraction of the specific contact resistance and transfer length leads to erroneous results. In this Letter, the sheet resistance under gold-free Ti/Al-based Ohmic contacts to AlGaN/GaN heterostructures on Si substrates has been investigated by means of electrical measurements, transmission electron microscopy, and technology computer-aided design simulations. It was found to be significantly lower than that outside of the contact area; temperature-dependent electrical characterization showed that it exhibits semiconductor-like behavior. The increase in conduction is attributed to n-type activity of nitrogen vacancies in the AlGaN. They are thought to form during rapid thermal annealing of the metal stack when Ti extracts nitrogen from the underlying semiconductor. The high n-type doping in the region between the metal and the 2-dimensional electron gas pulls the conduction band towards the Fermi level and enhances horizontal electron transport in the AlGaN. Using this improved understanding of the properties of the material underneath the contact, accurate values of transfer length and specific contact resistance have been extracted.

  20. On-sun concentrator performance of GaInP/GaAs tandem cells

    SciTech Connect (OSTI)

    Friedman, D.J.; Kurtz, S.R.; Sinha, K.; McMahon, W.E.; Olson, J.M.

    1996-05-01

    The GaInP/GaAs concentrator device has been adapted for and tested in a prototype {open_quotes}real-world{close_quotes} concentrator power system. The device achieved an on-sun efficiency of 28% {+-} 1% in the range of approximately 200-260 suns with device operating temperatures of 38{degrees}C to 42{degrees}C. The authors discuss ways of further improving this performance for future devices.

  1. InGaAs/GaAs (110) quantum dot formation via step meandering

    SciTech Connect (OSTI)

    Diez-Merino, Laura; Tejedor, Paloma

    2011-07-01

    InGaAs (110) semiconductor quantum dots (QDs) offer very promising prospects as a material base for a new generation of high-speed spintronic devices, such as single electron transistors for quantum computing. However, the spontaneous formation of InGaAs QDs is prevented by two-dimensional (2D) layer-by-layer growth on singular GaAs (110) substrates. In this work we have studied, by using atomic force microscopy and photoluminescence spectroscopy (PL), the growth of InGaAs/GaAs QDs on GaAs (110) stepped substrates by molecular beam epitaxy (MBE), and the modification of the adatom incorporation kinetics to surface steps in the presence of chemisorbed atomic hydrogen. The as-grown QDs exhibit lateral dimensions below 100 nm and emission peaks in the 1.35-1.37 eV range. It has been found that a step meandering instability derived from the preferential attachment of In adatoms to [110]-step edges relative to [11n]-type steps plays a key role in the destabilization of 2D growth that leads to 3D mound formation on both conventional and H-terminated vicinal substrates. In the latter case, the driving force for 3D growth via step meandering is enhanced by H-induced upward mass transport in addition to the lower energy cost associated with island formation on H-terminated substrates, which results in a high density array of InGaAs/GaAs dots selectively nucleated on the terrace apices with reduced lateral dimensions and improved PL efficiency relative to those of conventional MBE-grown samples.

  2. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation

    SciTech Connect (OSTI)

    Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav; Luque, Antonio

    2014-09-26

    AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (? = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

  3. SF6432-CN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... National Fire Protection Association (NFPA), Standard of Mechanical Engineers (ASME), ... APPLY TO CONTRACTS AT ANY VALUE FAR 52.203-99 Prohibition on Contracting with Entities ...

  4. SF6432-CN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or...

  5. SF6432-CN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or...

  6. SF6432-CN Construction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or...

  7. Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure

    SciTech Connect (OSTI)

    Chowdhury, S; Mishra, UK

    2013-10-01

    Power conversion losses are endemic in all areas of electricity consumption, including motion control, lighting, air conditioning, and information technology. Si, the workhorse of the industry, has reached its material limits. Increasingly, the lateral AlGaN/GaN HEMT based on gallium nitride (GaN-on-Si) is becoming the device of choice for medium power electronics as it enables high-power conversion efficiency and reduced form factor at attractive pricing for wide market penetration. The reduced form factor enabled by high-efficiency operation at high frequency further enables significant system price reduction because of savings in bulky extensive passive elements and heat sink costs. The high-power market, however, still remains unaddressed by lateral GaN devices. The current and voltage demand for high power conversion application makes the chip area in a lateral topology so large that it becomes more difficult to manufacture. Vertical GaN devices would play a big role alongside of silicon carbide (SiC) to address the high power conversion needs. In this paper, the development, performance, and status of lateral and vertical GaN devices are discussed.

  8. GaNPAs Solar Cells Lattice-Matched To GaP: Preprint

    SciTech Connect (OSTI)

    Geisz, J. F.; Friedman, D. J.; Kurtz, S.

    2002-05-01

    This conference paper describes the III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We propose the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct band-gaps in the range of 1.5 to 2.0 eV. We demonstrate the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and discuss the prospects for the development of monolithic high-efficiency multijunction solar cells based on silicon substrates.

  9. Lattice-Mismatched GaAs/InGaAs Two-Junction Solar Cells by Direct Wafer Bonding

    SciTech Connect (OSTI)

    Tanabe, K.; Aiken, D. J.; Wanlass, M. W.; Morral, A. F.; Atwater, H. A.

    2006-01-01

    Direct bonded interconnect between subcells of a lattice-mismatched III-V compound multijunction cell would enable dislocation-free active regions by confining the defect network needed for lattice mismatch accommodation to tunnel junction interfaces, while metamorphic growth inevitably results in less design flexibility and lower material quality than is desirable. The first direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs two-junction solar cell, is reported and demonstrates viability of direct wafer bonding for solar cell applications. The tandem cell open-circuit voltage was approximately the sum of the subcell open-circuit voltages. This achievement shows direct bonding enables us to construct lattice-mismatched III-V multijunction solar cells and is extensible to an ultrahigh efficiency InGaP/GaAs/InGaAsP/InGaAs four-junction cell by bonding a GaAs-based lattice-matched InGaP/GaAs subcell and an InP-based lattice-matched InGaAsP/InGaAs subcell. The interfacial resistance experimentally obtained for bonded GaAs/InP smaller than 0.10 Ohm-cm{sup 2} would result in a negligible decrease in overall cell efficiency of {approx}0.02%, under 1-sun illumination.

  10. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence

    SciTech Connect (OSTI)

    Ji, Hai-Ming; Liang, Baolai Simmonds, Paul J.; Juang, Bor-Chau; Yang, Tao; Young, Robert J.; Huffaker, Diana L.

    2015-03-09

    We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications.

  11. Properties of (Ga,Mn)As codoped with Li

    SciTech Connect (OSTI)

    Miyakozawa, Shohei; Chen, Lin; Matsukura, Fumihiro; Ohno, Hideo

    2014-06-02

    We grow Li codoped (Ga,Mn)As layers with nominal Mn composition up to 0.15 by molecular beam epitaxy. The layers before and after annealing are characterized by x-ray diffraction, transport, magnetization, and ferromagnetic resonance measurements. The codoping with Li reduces the lattice constant and electrical resistivity of (Ga,Mn)As after annealing. We find that (Ga,Mn)As:Li takes similar Curie temperature to that of (Ga,Mn)As, but with pronounced magnetic moments and in-plane magnetic anisotropy, indicating that the Li codoping has nontrivial effects on the magnetic properties of (Ga,Mn)As.

  12. Introduction of mercury resistant bacterial strains to Hg(II) amended soil microcosms increases the resilience of the natural microbial community to mercury stress

    SciTech Connect (OSTI)

    de Lipthay, Julia R.; Rasmussen, Lasse D.; Serensen, Soren J.

    2004-03-17

    Heavy metals are among the most important groups of pollutant compounds, and they are highly persistent in the soil environment. Techniques that can be used for the remediation of heavy metal contaminated environments thus need to be evolved. In the present study we evaluated the effect of introducing a Hg resistance plasmid in subsurface soil communities. This was done in microcosms with DOE subsurface soils amended with 5-10 ppm of HgCl2. Two microcosms were set up. In microcosm A we studied the effect of adding strain S03539 containing either the Hg resistance conjugative plasmid, pJORD 70, or the Hg resistance mobilizable plasmid, pPB117. In microcosm B we studied the effect of adding strain KT2442 with and without pJORD70. For both microcosms, the effect on the resilience of the indigenous bacterial community as well as the effect on the soil concentration of Hg was evaluated.

  13. Study of the effects of GaN buffer layer quality on the dc characteristics of AlGaN/GaN high electron mobility transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Le, Lingcong; Hwang, Ya-Hsi; Kim, Byung-Jae; Ren, Fan; Pearton, Stephen J.; Lind, Aaron G.; Jones, Kevin S.; et al

    2015-04-21

    Here we studied the effect of buffer layer quality on dc characteristics of AlGaN/GaN high electron mobility (HEMTs). AlGaN/GaN HEMT structures with 2 and 5 μm GaN buffer layers on sapphire substrates from two different vendors with the same Al concentration of AlGaN were used. The defect densities of HEMT structures with 2 and 5 μm GaN buffer layer were 7 × 109 and 5 × 108 cm₋2, respectively, as measured by transmission electron microscopy. There was little difference in drain saturation current or in transfer characteristics in HEMTs on these two types of buffer. However, there was no dispersionmore » observed on the nonpassivated HEMTs with 5 μm GaN buffer layer for gate-lag pulsed measurement at 100 kHz, which was in sharp contrast to the 71% drain current reduction for the HEMT with 2 μm GaN buffer layer.« less

  14. Reactive codoping of GaAlInP compound semiconductors

    DOE Patents [OSTI]

    Hanna, Mark Cooper; Reedy, Robert

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  15. Three-junction solar cells comprised of a thin-film GaInP/GaAs tandem cell mechanically stacked on a Si cell

    SciTech Connect (OSTI)

    Yazawa, Y.; Tamura, K.; Watahiki, S.; Kitatani, T.; Ohtsuka, H.; Warabisako, T.

    1997-12-31

    Three-junction tandem solar cells were fabricated by mechanical stacking of a thin-film GaInP/GaAs monolithic tandem cell and a Si cell. The epitaxial lift-off (ELO) technique was used for the thinning of GaInP/GaAs tandem cells. Both spectral responses of the GaInP top cell and the GaAs middle cell in the thin-film GaInP/GaAs monolithic tandem cell were conserved. The Si cell performance has been improved by reducing the absorption loss in the GaAs substrate.

  16. Chemical beam epitaxy growth of AlGaAs/GaAs tunnel junctions using trimethyl aluminium for multijunction solar cells

    SciTech Connect (OSTI)

    Paquette, B.; DeVita, M.; Turala, A.; Kolhatkar, G.; Boucherif, A.; Jaouad, A.; Aimez, V.; Ars, R.; Wilkins, M.; Wheeldon, J. F.; Walker, A. W.; Hinzer, K.; Fafard, S.

    2013-09-27

    AlGaAs/GaAs tunnel junctions for use in high concentration multijunction solar cells were designed and grown by chemical beam epitaxy (CBE) using trimethyl aluminium (TMA) as the p-dopant source for the AlGaAs active layer. Controlled hole concentration up to 4?10{sup 20} cm{sup ?3} was achieved through variation in growth parameters. Fabricated tunnel junctions have a peak tunneling current up to 6140 A/cm{sup 2}. These are suitable for high concentration use and outperform GaAs/GaAs tunnel junctions.

  17. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) Four-Junction Solar Cell

    SciTech Connect (OSTI)

    Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

    2006-01-01

    We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga{sub 0.5}In{sub 0.5} P/GaAs/Ga{sub 0.75}In{sub 0.25}As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga{sub 0.75}In{sub 0.25}As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap Ga{sub x}In{sub 1-x}As fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the Ga{sub x}In{sub 1-x}As fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

  18. Integrating AlGaN/GaN high electron mobility transistor with Si: A comparative study of integration schemes

    SciTech Connect (OSTI)

    Mohan, Nagaboopathy; Raghavan, Srinivasan; Manikant,; Soman, Rohith

    2015-10-07

    AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed at an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.

  19. Electron tunneling spectroscopy study of electrically active traps in AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Yang, Jie Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth

    2013-11-25

    We investigate the energy levels of electron traps in AlGaN/GaN high electron mobility transistors by the use of electron tunneling spectroscopy. Detailed analysis of a typical spectrum, obtained in a wide gate bias range and with both bias polarities, suggests the existence of electron traps both in the bulk of AlGaN and at the AlGaN/GaN interface. The energy levels of the electron traps have been determined to lie within a 0.5?eV band below the conduction band minimum of AlGaN, and there is strong evidence suggesting that these traps contribute to Frenkel-Poole conduction through the AlGaN barrier.

  20. Raman spectroscopy of InGaAs/GaAs nanoheterostructures δ-doped with Mn

    SciTech Connect (OSTI)

    Plankina, S. M.; Vikhrova, O. V.; Danilov, Yu. A.; Zvonkov, B. N.; Kalentyeva, I. L.; Nezhdanov, A. V.; Chunin, I. I.; Yunin, P. A.

    2015-01-15

    The results of complex studies of InGaAs/GaAs nanoheterostructures δ-doped with Mn are reported. The structures are grown by metal-organic vapor-phase epitaxy in combination with laser deposition. By confocal Raman spectroscopy, it is shown that the low-temperature δ-doped GaAs cap layers are of higher crystal quality compared to uniformly doped layers. Scattering of light in the coupled phonon-plasmon mode is observed. The appearance of this mode is conditioned by the diffusion of manganese from the δ-layer. The thickness of the cap layer is found to be d{sub c} ≈ 9–20 nm, optimal for attainment of the highest photoluminescence intensity of the quantum well and the highest layer concentration of holes by doping with manganese.

  1. Efficiency enhancement of InGaN/GaN solar cells with nanostructures

    SciTech Connect (OSTI)

    Bai, J.; Yang, C. C.; Athanasiou, M.; Wang, T.

    2014-02-03

    We demonstrate InGaN/GaN multi-quantum-well solar cells with nanostructures operating at a wavelength of 520?nm. Nanostructures with a periodic nanorod or nanohole array are fabricated by means of modified nanosphere lithography. Under 1 sun air-mass 1.5 global spectrum illumination, a fill factor of 50 and an open circuit voltage of 1.9?V are achieved in spite of very high indium content in InGaN alloys usually causing degradation of crystal quality. Both the nanorod array and the nanohole array significantly improve the performance of solar cells, while a larger enhancement is observed for the nanohole array, where the conversion efficiency is enhanced by 51%.

  2. Electrical compensation by Ga vacancies in Ga{sub 2}O{sub 3} thin films

    SciTech Connect (OSTI)

    Korhonen, E.; Tuomisto, F.; Gogova, D.; Wagner, G.; Baldini, M.; Galazka, Z.; Schewski, R.; Albrecht, M.

    2015-06-15

    The authors have applied positron annihilation spectroscopy to study the vacancy defects in undoped and Si-doped Ga{sub 2}O{sub 3} thin films. The results show that Ga vacancies are formed efficiently during metal-organic vapor phase epitaxy growth of Ga{sub 2}O{sub 3} thin films. Their concentrations are high enough to fully account for the electrical compensation of Si doping. This is in clear contrast to another n-type transparent semiconducting oxide In{sub 2}O{sub 3}, where recent results show that n-type conductivity is not limited by cation vacancies but by other intrinsic defects such as O{sub i}.

  3. Graphene in ohmic contact for both n-GaN and p-GaN

    SciTech Connect (OSTI)

    Zhong, Haijian; Liu, Zhenghui; Shi, Lin; Xu, Gengzhao; Fan, Yingmin; Huang, Zengli; Wang, Jianfeng; Ren, Guoqiang; Xu, Ke

    2014-05-26

    The wrinkles of single layer graphene contacted with either n-GaN or p-GaN were found both forming ohmic contacts investigated by conductive atomic force microscopy. The local IV results show that some of the graphene wrinkles act as high-conductive channels and exhibiting ohmic behaviors compared with the flat regions with Schottky characteristics. We have studied the effects of the graphene wrinkles using density-functional-theory calculations. It is found that the standing and folded wrinkles with zigzag or armchair directions have a tendency to decrease or increase the local work function, respectively, pushing the local Fermi level towards n- or p-type GaN and thus improving the transport properties. These results can benefit recent topical researches and applications for graphene as electrode material integrated in various semiconductor devices.

  4. Photocapacitance study of type-II GaSb/GaAs quantum ring solar cells

    SciTech Connect (OSTI)

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-01-07

    In this study, the density of states associated with the localization of holes in GaSb/GaAs quantum rings are determined by the energy selective charging of the quantum ring distribution. The authors show, using conventional photocapacitance measurements, that the excess charge accumulated within the type-II nanostructures increases with increasing excitation energies for photon energies above 0.9?eV. Optical excitation between the localized hole states and the conduction band is therefore not limited to the ?(k?=?0) point, with pseudo-monochromatic light charging all states lying within the photon energy selected. The energy distribution of the quantum ring states could consequently be accurately related from the excitation dependence of the integrated photocapacitance. The resulting band of localized hole states is shown to be well described by a narrow distribution centered 407?meV above the GaAs valence band maximum.

  5. A InGaN/GaN quantum dot green ({lambda}=524 nm) laser

    SciTech Connect (OSTI)

    Zhang Meng; Banerjee, Animesh; Lee, Chi-Sen; Hinckley, John M.; Bhattacharya, Pallab

    2011-05-30

    The characteristics of self-organized InGaN/GaN quantum dot lasers are reported. The laser heterostructures were grown on c-plane GaN substrates by plasma-assisted molecular beam epitaxy and the laser facets were formed by focused ion beam etching with gallium. Emission above threshold is characterized by a peak at 524 nm (green) and linewidth of 0.7 nm. The lowest measured threshold current density is 1.2 kA/cm{sup 2} at 278 K. The slope and wall plug efficiencies are 0.74 W/A and {approx}1.1%, respectively, at 1.3 kA/cm{sup 2}. The value of T{sub 0}=233 K in the temperature range of 260-300 K.

  6. Analysis of defects in GaAsN grown by chemical beam epitaxy on high index GaAs substrates

    SciTech Connect (OSTI)

    Bouzazi, Boussairi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-09-27

    The lattice defects in GaAsN grown by chemical beam epitaxy on GaAs 311B and GaAs 10A toward [110] were characterized and discussed by using deep level transient spectroscopy (DLTS) and on the basis of temperature dependence of the junction capacitances (C{sub J}). In one hand, GaAsN films grown on GaAs 311B and GaAs 10A showed n-type and p-type conductivities, respectively although the similar and simultaneous growth conditions. This result is indeed in contrast to the common known effect of N concentration on the type of conductivity, since the surface 311B showed a significant improvement in the incorporation of N. Furthermore, the temperature dependence of C{sub J} has shown that GaAs 311B limits the formation of N-H defects. In the other hand, the energy states in the forbidden gap of GaAsN were obtained. Six electron traps, E1 to E6, were observed in the DLTS spectrum of GaAsN grown on GaAs 311B, with apparent activation energies of 0.02, 0.14, 0.16, 0.33, 0.48, and 0.74 eV below the bottom edge of the conduction band, respectively. In addition, four hole traps, H1 to H4, were observed in the DLTS spectrum of GaAsN grown on GaAs 10A, with energy depths of 0.13, 0.20, 0.39, and 0.52 eV above the valence band maximum of the alloy, respectively. Hence, the surface morphology of the GaAs substrate was found to play a key factor role in clarifying the electrical properties of GaAsN grown by CBE.

  7. Refractive index of erbium doped GaN thin films

    SciTech Connect (OSTI)

    Alajlouni, S.; Sun, Z. Y.; Li, J.; Lin, J. Y.; Jiang, H. X.; Zavada, J. M.

    2014-08-25

    GaN is an excellent host for erbium (Er) to provide optical emission in the technologically important as well as eye-safe 1540 nm wavelength window. Er doped GaN (GaN:Er) epilayers were synthesized on c-plane sapphire substrates using metal organic chemical vapor deposition. By employing a pulsed growth scheme, the crystalline quality of GaN:Er epilayers was significantly improved over those obtained by conventional growth method of continuous flow of reaction precursors. X-ray diffraction rocking curve linewidths of less than 300 arc sec were achieved for the GaN (0002) diffraction peak, which is comparable to the typical results of undoped high quality GaN epilayers and represents a major improvement over previously reported results for GaN:Er. Spectroscopic ellipsometry was used to determine the refractive index of the GaN:Er epilayers in the 1540 nm wavelength window and a linear dependence on Er concentration was found. The observed refractive index increase with Er incorporation and the improved crystalline quality of the GaN:Er epilayers indicate that low loss GaN:Er optical waveguiding structures are feasible.

  8. Application of the ASME code in the design of the GA-4 and GA-9 casks

    SciTech Connect (OSTI)

    Mings, W.J. ); Koploy, M.A. )

    1992-01-01

    General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption.

  9. Application of the ASME code in the design of the GA-4 and GA-9 casks

    SciTech Connect (OSTI)

    Mings, W.J.; Koploy, M.A.

    1992-08-01

    General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption.

  10. Photoluminescence studies of individual and few GaSb/GaAs quantum rings

    SciTech Connect (OSTI)

    Young, M. P.; Woodhead, C. S.; Roberts, J.; Noori, Y. J.; Noble, M. T.; Krier, A.; Hayne, M.; Young, R. J.; Smakman, E. P.; Koenraad, P. M.

    2014-11-15

    We present optical studies of individual and few GaSb quantum rings embedded in a GaAs matrix. Contrary to expectation for type-II confinement, we measure rich spectra containing sharp lines. These lines originate from excitonic recombination and are observed to have resolution-limited full-width at half maximum of 200 ?eV. The detail provided by these measurements allows the characteristic type-II blueshift, observed with increasing excitation power, to be studied at the level of individual nanostructures. These findings are in agreement with hole-charging being the origin of the observed blueshift.

  11. Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots

    SciTech Connect (OSTI)

    Braun, T.; Schneider, C.; Maier, S.; Forchel, A.; Höfling, S.; Kamp, M.; Igusa, R.; Iwamoto, S.; Arakawa, Y.

    2014-09-15

    In this letter we study the influence of temperature and excitation power on the emission linewidth from site-controlled InGaAs/GaAs quantum dots grown on nanoholes defined by electron beam lithography and wet chemical etching. We identify thermal electron activation as well as direct exciton loss as the dominant intensity quenching channels. Additionally, we carefully analyze the effects of optical and acoustic phonons as well as close-by defects on the emission linewidth by means of temperature and power dependent micro-photoluminescence on single quantum dots with large pitches.

  12. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    SciTech Connect (OSTI)

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Sofferman, D. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Adelphi University, Garden City, New York 11530-0701 (United States); Beskin, I. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2013-08-12

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport.

  13. Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4

    SciTech Connect (OSTI)

    Wong-Ng, W.; Culp, J. T.; Chen, Y. S.; Zavalij, P.; Espinal, L.; Siderius, D. W.; Allen, A. J.; Scheins, S.; Matranga, C.

    2013-01-01

    This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN)4], (L = 1,2-bis(4-pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P21/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, β = 96.141(2)°, V = 2767.4(4) Å3, Z = 4, Dc = 1.46 g cm-1. Ni(bpene)[Ni(CN)4] assumes a pillared layer structure with layers defined by Ni[Ni(CN)4]n nets and bpene ligands acting as pillars. With the present crystallization technique which involves the use of concentrated ammonium hydroxide solution and dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN)4](1/2)bpene∙DMSO2H2O, or Ni2N7C24H25SO3. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline material with a significantly improved CO2 uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO2 uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO2 per unit cell was obtained.

  14. Exchange enhancement of the electron g-factor in a two-dimensional semimetal in HgTe quantum wells

    SciTech Connect (OSTI)

    Bovkun, L. S. Krishtopenko, S. S.; Zholudev, M. S.; Ikonnikov, A. V.; Spirin, K. E.; Dvoretsky, S. A.; Mikhailov, N. N.; Teppe, F.; Knap, W.; Gavrilenko, V. I.

    2015-12-15

    The exchange enhancement of the electron g-factor in perpendicular magnetic fields to 12 T in HgTe/CdHgTe quantum wells 20 nm wide with a semimetal band structure is studied. The electron effective mass and g-factor at the Fermi level are determined by analyzing the temperature dependence of the amplitude of Shubnikov–de Haas oscillation in weak fields and near odd Landau-level filling factors ν ≤ 9. The experimental values are compared with theoretical calculations performed in the one-electron approximation using the eight-band kp Hamiltonian. The found dependence of g-factor enhancement on the electron concentration is explained by changes in the contributions of hole- and electron-like states to exchange corrections to the Landau-level energies in the conduction band.

  15. Neurotoxicological effects of cinnabar (a Chinese mineral medicine, HgS) in mice

    SciTech Connect (OSTI)

    Huang, C.-F.; Liu, S.-H.; Lin-Shiau, S.-Y.

    2007-10-15

    Cinnabar, a naturally occurring mercuric sulfide (HgS), has long been used in combination with traditional Chinese medicine as a sedative for more than 2000 years. Up to date, its pharmacological and toxicological effects are still unclear, especially in clinical low-dose and long-term use. In this study, we attempted to elucidate the effects of cinnabar on the time course of changes in locomotor activities, pentobarbital-induced sleeping time, motor equilibrium performance and neurobiochemical activities in mice during 3- to 11-week administration at a clinical dose of 10 mg/kg/day. The results showed that cinnabar was significantly absorbed by gastrointestinal (G-I) tract and transported to brain tissues. The spontaneous locomotor activities of male mice but not female mice were preferentially suppressed. Moreover, frequencies of jump and stereotype-1 episodes were progressively decreased after 3-week oral administration in male and female mice. Pentobarbital-induced sleeping time was prolonged and the retention time on a rotating rod (60 rpm) was reduced after treatment with cinnabar for 6 weeks and then progressively to a greater extent until the 11-week experiment. In addition, the biochemical changes in blood and brain tissues were studied; the inhibition of Na{sup +}/K{sup +}-ATPase activities, increased production of lipid peroxidation (LPO) and nitric oxide (NO) were found with a greater extent in male mice than those in female mice, which were apparently correlated with their differences in the neurological responses observed. In conclusion, these findings, for the first time, provide evidence of the pharmacological and toxicological basis for understanding the sedative and neurotoxic effects of cinnabar used as a Chinese mineral medicine for more than 2000 years.

  16. Results of Hg speciation testing on tanks 30, 32, and 37 depth samples

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2015-11-30

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The twelfth shipment of samples was designated to include 3H evaporator system Tank 30, 32, and 37 depth samples. The Tank 30 depth sample (HTF-30-15-70) was taken at 190 inches from the tank bottom and the Tank 32 depth sample (HTF-32-15-68) was taken at 89 inches from the tank bottom and both were shipped to SRNL on June 29, 2015 in an 80 mL stainless steel dip bottles. The Tank 37 surface sample (HTF-37-15-94) was taken around 253.4 inches from the tank bottom and shipped to SRNL on July 21, 2015 in an 80 mL stainless steel dip bottle. All samples were placed in the SRNL Shielded Cells and left unopened until intermediate dilutions were made on July 24, 2015 using 1.00 mL of sample diluted to 100.00 mL with deionized H2O. A 30 mL Teflon® bottle was rinsed twice with the diluted tank sample and then filled leaving as little headspace as possible. It was immediately removed from the Shielded Cells and transferred to refrigerated storage where it remained at 4 °C until final dilutions were made on October 20. A second portion of the cells diluted tank sample was poured into a shielded polyethylene bottle and transferred to Analytical Development for radiochemical analysis data needed for Hazardous Material Transportation calculations.

  17. Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wright, C.; Gupta, C. N.; Chen, J.; Patel, V.; Calhoun, V. D.; Ehrlich, S.; Wang, L.; Bustillo, J. R.; Perrone-Bizzozero, N. I.; Turner, J. A.

    2016-02-02

    Evidence suggests that microRNA-137 (miR-137) is involved in the genetic basis of schizophrenia. Risk variants within the miR-137 host gene (MIR137HG) influence structural and functional brain-imaging measures, and miR-137 itself is predicted to regulate hundreds of genes. We evaluated the influence of a MIR137HG risk variant (rs1625579) in combination with variants in miR-137- regulated genes TCF4, PTGS2, MAPK1 and MAPK3 on gray matter concentration (GMC). These genes were selected based on our previous work assessing schizophrenia risk within possible miR-137-regulated gene sets using the same cohort of subjects. A genetic risk score (GRS) was determined based on genotypes of thesemore » four schizophrenia risk-associated genes in 221 Caucasian subjects (89 schizophrenia patients and 132 controls). The effects of the rs1625579 genotype with the GRS of miR-137-regulated genes in a three-way interaction with diagnosis on GMC patterns were assessed using a multivariate analysis. We found that schizophrenia subjects homozygous for the MIR137HG risk allele show significant decreases in occipital, parietal and temporal lobe GMC with increasing miR-137-regulated GRS, whereas those carrying the protective minor allele show significant increases in GMC with GRS. No correlations of GMC and GRS were found in control subjects. Variants within or upstream of genes regulated by miR-137 in combination with the MIR137HG risk variant may influence GMC in schizophrenia-related regions in patients. Furthermore, given that the genes evaluated here are involved in protein kinase A signaling, dysregulation of this pathway through alterations in miR-137 biogenesis may underlie the gray matter loss seen in the disease.« less

  18. GaP/Si heterojunction Solar Cells

    SciTech Connect (OSTI)

    Saive, R.; Chen, C.; Emmer, H.; Atwater, H.

    2015-05-11

    Improving the efficiency of solar cells requires the introduction of novel device concepts. Recent developments have shown that in Si solar cell technology there is still room for tremendous improvement. Using the heterojunction with intrinsic thin layer (HIT) approach 25.6 % power conversion efficiency was achieved. However, a-Si as a window and passivation layer comes with disadvantages as a-Si shows low conductivity and high parasitic absorption. Therefore, it is likely that using a crystalline material as window layer with high band gab and high mobility can further improve efficiency. We have studied GaP grown by MOCVD on Si with (001) and (112) orientation. We obtained crystalline layers with carrier mobility around 100 cm2/Vs and which passivate Si as confirmed by carrier lifetime measurements. We performed band alignment studies by X-ray photoelectron spectroscopy yielding a valence band offset of 0.3 eV. Comparing this value with the Schottky-model leads to an interface dipole of 0.59 eV. The open circuit voltage increases with increasing doping and is consistent with the theoretical open circuit voltage deduced from work function difference and interface dipole. We obtain an open circuit voltage of 0.38 V for n-doped GaP with doping levels in the order of 10^17 1/cm^3. In our next steps we will increase the doping level further in order to gain higher open circuit voltage. We will discuss the implications of these findings for GaP/Si heterojunction solar cells.

  19. Temperature scaling in the quantum-Hall-effect regime in a HgTe quantum well with an inverted energy spectrum

    SciTech Connect (OSTI)

    Arapov, Yu. G.; Gudina, S. V.; Neverov, V. N.; Podgornykh, S. M.; Popov, M. R. Harus, G. I.; Shelushinina, N. G.; Yakunin, M. V.; Mikhailov, N. N.; Dvoretsky, S. A.

    2015-12-15

    The longitudinal and Hall magnetoresistances of HgTe/HgCdTe heterostructures with an inverted energy spectrum (the HgTe quantum well width is d = 20.3 nm) are measured in the quantum-Hall-effect regime at T = 2–50 K in magnetic fields up to B = 9 T. Analysis of the temperature dependences of conductivity in the transition region between the first and second plateaus of the quantum Hall effect shows the feasibility of the scaling regime for a plateau–plateau quantum phase transition in 2D-structures on the basis of mercury telluride.

  20. Distributed bragg reflector using AIGaN/GaN

    DOE Patents [OSTI]

    Waldrip, Karen E.; Lee, Stephen R.; Han, Jung

    2004-08-10

    A supported distributed Bragg reflector or superlattice structure formed from a substrate, a nucleation layer deposited on the substrate, and an interlayer deposited on the nucleation layer, followed by deposition of (Al,Ga,B)N layers or multiple pairs of (Al,Ga,B)N/(Al,Ga,B)N layers, where the interlayer is a material selected from AlN, Al.sub.x Ga.sub.1-x N, and AlBN with a thickness of approximately 20 to 1000 angstroms. The interlayer functions to reduce or eliminate the initial tensile growth stress, thereby reducing cracking in the structure. Multiple interlayers utilized in an AlGaN/GaN DBR structure can eliminate cracking and produce a structure with a reflectivity value greater than 0.99.

  1. High-Efficiency GaInP/GaAs Tandem Solar Cells

    SciTech Connect (OSTI)

    Bertness, K. A.; Friedman, D. J.; Kurtz, S. R.; Kibbler, A. E.; Cramer, C.; Olson, J. M.

    1996-09-01

    GaInP/GaAs tandem solar cells have achieved efficiencies between 25.7-30.2%, depending on illumination conditions. The efficiencies are the highest confirmed two-terminal values measured for any solar cell within each standard illumination category. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance.

  2. High-efficiency GaInP/GaAs tandem solar cells

    SciTech Connect (OSTI)

    Bertness, K.A.; Friedman, D.J.; Kurtz, S.R.; Kibbler, A.E.; Kramer, C.; Olson, J.M.

    1994-12-01

    GaInP/GaAs tandem solar cells have achieved new record efficiencies, specifically 25.7% under air-mass 0 (AM0) illumination, 29.5% under AM 1.5 global (AM1.5G) illumination, and 30.2% at 140-180x concentration under AM 1.5 direct (AM1.5D) illumination. These values are the highest two-terminal efficiencies achieved by any solar cell under these illumination conditions. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance. 31 refs.

  3. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

    SciTech Connect (OSTI)

    SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

  4. TJ Solar Cell (GaInP/GaAs/Ge Ultrahigh-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Friedman, Daniel

    2002-04-17

    This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

  5. Multijunction GaInP/GaInAs/Ge solar cells with Bragg reflectors

    SciTech Connect (OSTI)

    Emelyanov, V. M. Kalyuzhniy, N. A.; Mintairov, S. A.; Shvarts, M. Z.; Lantratov, V. M.

    2010-12-15

    Effect of subcell parameters on the efficiency of GaInP/Ga(In)As/Ge tandem solar cells irradiated with 1-MeV electrons at fluences of up to 3 x 10{sup 15} cm{sup -2} has been theoretically studied. The optimal thicknesses of GaInP and GaInAs subcells, which provide the best photocurrent matching at various irradiation doses in solar cells with and without built-in Bragg reflectors, were determined. The dependences of the photoconverter efficiency on the fluence of 1-MeV electrons and on the time of residence in the geostationary orbit were calculated for structures optimized to the beginning and end of their service lives. It is shown that the optimization of the subcell heterostructures for a rated irradiation dose and the introduction of Bragg reflectors into the structure provide a 5% overall increase in efficiency for solar cells operating in the orbit compared with unoptimized cells having no Bragg reflector.

  6. Localized corrosion of GaAs surfaces and formation of porous GaAs

    SciTech Connect (OSTI)

    Schmuki, P.; Vitus, C.M.; Isaacs, H.S.; Fraser, J.; Graham, M.J.

    1995-12-01

    The present work deals with pitting corrosion of p- and n-type GaAs (100). Pit growth can be electrochemically initiated on both conduction types in chloride-containing solutions and leads after extended periods of time to the formation of a porous GaAs structure. In the case of p-type material, localized corrosion is only observed if a passivating film is present on the surface, otherwise -- e.g. in acidic solutions -- the material suffers from a uniform attack (electropolishing) which is independent of the anion present. In contrast, pitting corrosion of n-type material can be triggered independent of the presence of an oxide film. This is explained in terms of the different current limiting factor for the differently doped materials (oxide film in the case of the p- and a space charge layer in the case of the n-GaAs). The porous structure was characterized by SEM, EDX and AES, and consists mainly of GaAs. From scratch experiments it is clear that the pit initiation process is strongly influenced by surface defects. For n-type material, AFM investigations show that light induced roughening of the order of several hundred nm occurs under non-passivating conditions. This nm- scale roughening however does not affect the pitting process.

  7. fe0013961-GaTech | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performer Georgia Tech Research Corporation, Atlanta GA 30332 Background While earlier research focused on the properties of the hydrate mass per se (Sloan Jr and Koh 2007), ...

  8. Photoluminescence from GaAs nanodisks fabricated by using combination...

    Office of Scientific and Technical Information (OSTI)

    GaAs nanodisks fabricated by using combination of neutral beam etching and atomic hydrogen-assisted molecular beam epitaxy regrowth Citation Details In-Document Search Title:...

  9. Inverse spin Hall effect in Pt/(Ga,Mn)As

    SciTech Connect (OSTI)

    Nakayama, H.; Chen, L.; Chang, H. W.; Ohno, H.; Matsukura, F.

    2015-06-01

    We investigate dc voltages under ferromagnetic resonance in a Pt/(Ga,Mn)As bilayer structure. A part of the observed dc voltage is shown to originate from the inverse spin Hall effect. The sign of the inverse spin Hall voltage is the same as that in Py/Pt bilayer structure, even though the stacking order of ferromagnetic and nonmagnetic layers is opposite to each other. The spin mixing conductance at the Pt/(Ga,Mn)As interface is determined to be of the order of 10{sup 19 }m{sup −2}, which is about ten times greater than that of (Ga,Mn)As/p-GaAs.

  10. Atomic structure of defects in GaN:Mg grown with Ga polarity

    SciTech Connect (OSTI)

    Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; Jasinski, J.; O'Keefe, M.A.; Hautakangas, S.; Laakso, A.; Saarinen, K.

    2003-11-25

    Electron microscope phase images, produced by direct reconstruction of the scattered electron wave from a focal series of high-resolution images, were used to determine the nature of defects formed in GaN:Mg crystals. We studied bulk crystals grown from dilute solutions of atomic nitrogen in liquid gallium at high pressure and thin films grown by the MOCVD method. All the crystals were grown with Ga-polarity. In both types of samples the majority of defects were three dimensional Mg-rich hexagonal pyramids with bases on the (0001) plane and six walls on {l_brace}11{und 2}3{r_brace} planes seen in cross-section as triangulars. Some other defects appear in cross-section as trapezoidal (rectangular) defects as a result of presence of truncated pyramids. Both type of defects have hollow centers. They are decorated by Mg on all six side walls and a base. The GaN which grows inside on the defect walls shows polarity inversion. It is shown that change of polarity starts from the defect tip and propagates to the base, and that the stacking sequence changes from ab in the matrix to bc inside the defect. Exchange of the Ga sublattice with the N sublattice within the defect leads to 0.6 {+-} 0.2{angstrom} displacement between Ga sublattices outside and inside the defects. It is proposed that lateral overgrowth of the cavities formed within the defect takes place to restore matrix polarity on the defect base.

  11. Deep level defects in n-type GaAsBi and GaAs grown at low temperatures

    SciTech Connect (OSTI)

    Mooney, P. M.; Watkins, K. P.; Jiang, Zenan; Basile, A. F.; Lewis, R. B.; Bahrami-Yekta, V.; Masnadi-Shirazi, M.; Beaton, D. A.; Tiedje, T.

    2013-04-07

    Deep level defects in n-type GaAs{sub 1-x}Bi{sub x} having 0 < x < 0.012 and GaAs grown by molecular beam epitaxy (MBE) at substrate temperatures between 300 and 400 Degree-Sign C have been investigated by Deep Level Capacitance Spectroscopy. Incorporating Bi suppresses the formation of an electron trap with activation energy 0.40 eV, thus reducing the total trap concentration in dilute GaAsBi layers by more than a factor of 20 compared to GaAs grown under the same conditions. We find that the dominant traps in dilute GaAsBi layers are defect complexes involving As{sub Ga}, as expected for MBE growth at these temperatures.

  12. Au impact on GaAs epitaxial growth on GaAs (111){sub B} substrates in molecular beam epitaxy

    SciTech Connect (OSTI)

    Liao, Zhi-Ming; Chen, Zhi-Gang; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Lu, Zhen-Yu; Chen, Ping-Ping; Lu, Wei; Zou, Jin; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072

    2013-02-11

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {l_brace}111{r_brace}{sub B} substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {l_brace}113{r_brace}{sub B} faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  13. Deep level centers and their role in photoconductivity transients of InGaAs/GaAs quantum dot chains

    SciTech Connect (OSTI)

    Kondratenko, S. V. Vakulenko, O. V.; Mazur, Yu. I. Dorogan, V. G.; Marega, E.; Benamara, M.; Ware, M. E.; Salamo, G. J.

    2014-11-21

    The in-plane photoconductivity and photoluminescence are investigated in quantum dot-chain InGaAs/GaAs heterostructures. Different photoconductivity transients resulting from spectrally selecting photoexcitation of InGaAs QDs, GaAs spacers, or EL2 centers were observed. Persistent photoconductivity was observed at 80?K after excitation of electron-hole pairs due to interband transitions in both the InGaAs QDs and the GaAs matrix. Giant optically induced quenching of in-plane conductivity driven by recharging of EL2 centers is observed in the spectral range from 0.83?eV to 1.0?eV. Conductivity loss under photoexcitation is discussed in terms of carrier localization by analogy with carrier distribution in disordered media.

  14. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy

    SciTech Connect (OSTI)

    Kasanaboina, Pavan Kumar; Ahmad, Estiak; Li, Jia; Iyer, Shanthi; Reynolds, C. Lewis; Liu, Yang

    2015-09-07

    Bandgap tuning up to 1.3 μm in GaAsSb based nanowires by incorporation of dilute amount of N is reported. Highly vertical GaAs/GaAsSbN/GaAs core-shell configured nanowires were grown for different N contents on Si (111) substrates using plasma assisted molecular beam epitaxy. X-ray diffraction analysis revealed close lattice matching of GaAsSbN with GaAs. Micro-photoluminescence (μ-PL) revealed red shift as well as broadening of the spectra attesting to N incorporation in the nanowires. Replication of the 4K PL spectra for several different single nanowires compared to the corresponding nanowire array suggests good compositional homogeneity amongst the nanowires. A large red shift of the Raman spectrum and associated symmetric line shape in these nanowires have been attributed to phonon localization at point defects. Transmission electron microscopy reveals the dominance of stacking faults and twins in these nanowires. The lower strain present in these dilute nitride nanowires, as opposed to GaAsSb nanowires having the same PL emission wavelength, and the observation of room temperature PL demonstrate the advantage of the dilute nitride system offers in the nanowire configuration, providing a pathway for realizing nanoscale optoelectronic devices in the telecommunication wavelength region.

  15. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell

    SciTech Connect (OSTI)

    Venkatasubramanian, R. )

    1993-01-01

    This report describes work to develop inverted-grown Al[sub 0.34]Ga[sub 0.66]As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al[sub 0.34]Ga[sub 0.66]As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The cycled'' organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

  16. DC characteristics of OMVPE-grown N-p-n InGaP/InGaAsN DHBTs

    SciTech Connect (OSTI)

    Li, N.Y.; Chang, P.C.; Baca, A.G.; Xie, X.M.; Sharps, P.R.; Hou, H.Q.

    2000-01-04

    The authors demonstrate, for the first time, a functional N-p-n heterojunction bipolar transistor using a novel material, InGaAsN, with a bandgap energy of 1.2eV as the p-type base layer. A 300{angstrom}-thick In{sub x}Ga{sub 1-x}As graded layer was introduced to reduce the conduction band offset at the p-type InGaAsN base and n-type GaAs collector junction. For an emitter size of 500 {mu}m{sup 2}, a peak current gain of 5.3 has been achieved.

  17. Reliability of AlGaN/GaN high electron mobility transistors on low dislocation density bulk GaN substrate: Implications of surface step edges

    SciTech Connect (OSTI)

    Killat, N. E-mail: Martin.Kuball@bristol.ac.uk; Montes Bajo, M.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk; Paskova, T.; Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695 ; Evans, K. R.; Leach, J.; Electrical and Computer Engineering Department, Virginia Commonwealth University, Richmond, Virginia 23284 ; Li, X.; Özgür, Ü.; Morkoç, H.; Chabak, K. D.; Crespo, A.; Gillespie, J. K.; Fitch, R.; Kossler, M.; Walker, D. E.; Trejo, M.; Via, G. D.; Blevins, J. D.

    2013-11-04

    To enable gaining insight into degradation mechanisms of AlGaN/GaN high electron mobility transistors, devices grown on a low-dislocation-density bulk-GaN substrate were studied. Gate leakage current and electroluminescence (EL) monitoring revealed a progressive appearance of EL spots during off-state stress which signify the generation of gate current leakage paths. Atomic force microscopy evidenced the formation of semiconductor surface pits at the failure location, which corresponds to the interaction region of the gate contact edge and the edges of surface steps.

  18. A monolithic white LED with an active region based on InGaN QWs separated by short-period InGaN/GaN superlattices

    SciTech Connect (OSTI)

    Tsatsulnikov, A. F. Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Usov, S. O.; Nikolaev, A. E.; Kryzhanovskaya, N. V.; Synitsin, M. A.; Sizov, V. S.; Zakgeim, A. L.; Mizerov, M. N.

    2010-06-15

    A new approach to development of effective monolithic white-light emitters is described based on using a short-period InGaN/GaN superlattice as a barrier layer in the active region of LED structures between InGaN quantum wells emitting in the blue and yellow-green spectral ranges. The optical properties of structures of this kind have been studied, and it is demonstrated that the use of such a superlattice makes it possible to obtain effective emission from the active region.

  19. Photoeffects in WO{sub 3}/GaAs electrode

    SciTech Connect (OSTI)

    Yoon, K.H.; Lee, J.W.; Cho, Y.S.; Kang, D.H.

    1996-12-01

    Photoeffects of a {ital p}-type GaAs coated with WO{sub 3} thin film have been investigated as a function of film thickness and photoresponse transients of the WO{sub 3}/GaAs electrode were studied. Also, these results were compared to those for a single {ital p}-type GaAs electrode. The photocurrent of the WO{sub 3}/GaAs electrode depended on the film thickness of the WO{sub 3}, showing an optimum photon efficiency for specimens of 800 A thickness. This is due to the existence of an effective interface state within the band gap which reduces trapping of carriers and facilitates carrier movement. For an 800-A-thick WO{sub 3} thin film deposited {ital p}-GaAs photoelectrode, the photogenerated electrons were found to move to an electrolyte at a higher positive onset potential compared with that of single {ital p}-type GaAs, which was confirmed as a result of transient behavior. {ital I}{endash}{ital V} and {ital C}{endash}{ital V} characteristics of the WO{sub 3}/GaAs electrode were also compared with those of a single {ital p}-type GaAs electrode. {copyright} {ital 1996 American Institute of Physics.}

  20. Long-wavelength shift and enhanced room temperature photoluminescence efficiency in GaAsSb/InGaAs/GaAs-based heterostructures emitting in the spectral range of 1.01.2??m due to increased charge carrier's localization

    SciTech Connect (OSTI)

    Kryzhkov, D. I. Yablonsky, A. N.; Morozov, S. V.; Aleshkin, V. Ya.; Krasilnik, Z. F.; Zvonkov, B. N.; Vikhrova, O. V.

    2014-11-28

    In this work, a study of the photoluminescence (PL) temperature dependence in quantum well GaAs/GaAsSb and double quantum well InGaAs/GaAsSb/GaAs heterostructures grown by metalorganic chemical vapor deposition with different parameters of GaAsSb and InGaAs layers has been performed. It has been demonstrated that in double quantum well InGaAs/GaAsSb/GaAs heterostructures, a significant shift of the PL peak to a longer-wavelength region (up to 1.2??m) and a considerable reduction in the PL thermal quenching in comparison with GaAs/GaAsSb structures can be obtained due to better localization of charge carriers in the double quantum well. For InGaAs/GaAsSb/GaAs heterostructures, an additional channel of radiative recombination with participation of the excited energy states in the quantum well, competing with the main ground-state radiative transition, has been revealed.

  1. Growth of GaN@InGaN Core-Shell and Au-GaN Hybrid Nanostructures for Energy Applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuykendall, Tevye; Aloni, Shaul; Jen-La Plante, Ilan; Mokari, Taleb

    2009-01-01

    We demonstrated a method to control the bandgap energy of GaN nanowires by forming GaN@InGaN core-shell hybrid structures using metal organic chemical vapor deposition (MOCVD). Furthermore, we show the growth of Au nanoparticles on the surface of GaN nanowires in solution at room temperature. The work shown here is a first step toward engineering properties that are crucial for the rational design and synthesis of a new class of photocatalytic materials. The hybrid structures were characterized by various techniques, including photoluminescence (PL), energy dispersive x-ray spectroscopy (EDS), transmission and scanning electron microscopy (TEM and SEM), and x-ray diffraction (XRD).

  2. Raman spectroscopy of GaP/GaNP core/shell nanowires

    SciTech Connect (OSTI)

    Dobrovolsky, A.; Chen, W. M.; Buyanova, I. A.; Sukrittanon, S.; Kuang, Y. J.; Tu, C. W.

    2014-11-10

    Raman spectroscopy is employed to characterize structural and phonon properties of GaP/GaNP core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. According to polarization-dependent measurements performed on single NWs, the dominant Raman modes associated with zone-center optical phonons obey selection rules in a zinc-blende lattice, confirming high crystalline quality of the NWs. Two additional modes at 360 and 397 cm{sup −1} that are specific to the NW architecture are also detected in resonant Raman spectra and are attributed to defect-activated scattering involving zone-edge transverse optical phonons and surface optical phonons, respectively. It is concluded that the formation of the involved defect states are mainly promoted during the NW growth with a high V/III ratio.

  3. Room temperature spin transport in undoped (110) GaAs/AlGaAs quantum wells

    SciTech Connect (OSTI)

    Yokota, Nobuhide Aoshima, Yohei; Ikeda, Kazuhiro; Kawaguchi, Hitoshi

    2014-02-17

    We are reporting on our first observation of a micrometer-order electron spin transport in a (110) GaAs/AlGaAs multiple quantum well (QW) at room temperature using a space- and time-resolved Kerr rotation technique. A 37-μm transport was observed within an electron spin lifetime of 1.2 ns at room temperature when using an in-plane electric field of 1.75 kV/cm. The spatio-temporal profiles of electron spins were well reproduced by the spin drift-diffusion equations coupled with the Poisson equation, supporting the validity of the measurement. The results suggest that (110) QWs are useful as a spin transport layer for semiconductor spintronic devices operating at room temperature.

  4. Large linear magnetoresistance in a GaAs/AlGaAs heterostructure

    SciTech Connect (OSTI)

    Aamir, Mohammed Ali Goswami, Srijit Ghosh, Arindam; Baenninger, Matthias; Farrer, Ian; Ritchie, David A.; Tripathi, Vikram; Pepper, Michael

    2013-12-04

    We report non-saturating linear magnetoresistance (MR) in a two-dimensional electron system (2DES) at a GaAs/AlGaAs heterointerface in the strongly insulating regime. We achieve this by driving the gate voltage below the pinch-off point of the device and operating it in the non-equilibrium regime with high source-drain bias. Remarkably, the magnitude of MR is as large as 500% per Tesla with respect to resistance at zero magnetic field, thus dwarfing most non-magnetic materials which exhibit this linearity. Its primary advantage over most other materials is that both linearity and the enormous magnitude are retained over a broad temperature range (0.3 K to 10 K), thus making it an attractive candidate for cryogenic sensor applications.

  5. Evaluation of the two-photon absorption characteristics of GaSb/GaAs quantum rings

    SciTech Connect (OSTI)

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-07-28

    The optical parameters describing the sub-bandgap response of GaSb/GaAs quantum rings solar cells have been obtained from photocurrent measurements using a modulated pseudo-monochromatic light source in combination with a second, continuous photo-filling source. By controlling the charge state of the quantum rings, the photoemission cross-sections describing the two-photon sub-bandgap transitions could be determined independently. Temperature dependent photo-response measurements also revealed that the barrier for thermal hole emission from the quantum rings is significantly below the quantum ring localisation energy. The temperature dependence of the sub-bandgap photo-response of the solar cell is also described in terms of the photo- and thermal-emission characteristics of the quantum rings.

  6. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    SciTech Connect (OSTI)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); You, Guanjun; Liu, Jie; Wang, Li; Xu, Jian, E-mail: jianxu@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage current and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.

  7. Ultrafast dynamics of type-II GaSb/GaAs quantum dots

    SciTech Connect (OSTI)

    Komolibus, K.; Piwonski, T.; Gradkowski, K.; Reyner, C. J.; Liang, B.; Huffaker, D. L.; Huyet, G.; Houlihan, J.

    2015-01-19

    In this paper, room temperature two-colour pump-probe spectroscopy is employed to study ultrafast carrier dynamics in type-II GaSb/GaAs quantum dots. Our results demonstrate a strong dependency of carrier capture/escape processes on applied reverse bias voltage, probing wavelength and number of injected carriers. The extracted timescales as a function of both forward and reverse bias may provide important information for the design of efficient solar cells and quantum dot memories based on this material. The first few picoseconds of the dynamics reveal a complex behaviour with an interesting feature, which does not appear in devices based on type-I materials, and hence is linked to the unique carrier capture/escape processes possible in type-II structures.

  8. Elastic properties of Pu metal and Pu-Ga alloys

    SciTech Connect (OSTI)

    Soderlind, P; Landa, A; Klepeis, J E; Suzuki, Y; Migliori, A

    2010-01-05

    We present elastic properties, theoretical and experimental, of Pu metal and Pu-Ga ({delta}) alloys together with ab initio equilibrium equation-of-state for these systems. For the theoretical treatment we employ density-functional theory in conjunction with spin-orbit coupling and orbital polarization for the metal and coherent-potential approximation for the alloys. Pu and Pu-Ga alloys are also investigated experimentally using resonant ultrasound spectroscopy. We show that orbital correlations become more important proceeding from {alpha} {yields} {beta} {yields} {gamma} plutonium, thus suggesting increasing f-electron correlation (localization). For the {delta}-Pu-Ga alloys we find a softening with larger Ga content, i.e., atomic volume, bulk modulus, and elastic constants, suggest a weakened chemical bonding with addition of Ga. Our measurements confirm qualitatively the theory but uncertainties remain when comparing the model with experiments.

  9. Nuclear structure ''southeast'' of {sup 208}Pb: Isomeric states in {sup 208}Hg and {sup 209}Tl

    SciTech Connect (OSTI)

    Al-Dahan, N.; Podolyak, Zs.; Regan, P. H.; Alkhomashi, N.; Deo, A. Y.; Farrelly, G.; Steer, S. J.; Cullen, I. J.; Gelletly, W.; Swan, T.; Thomas, J. S.; Walker, P. M.; Gorska, M.; Grawe, H.; Gerl, J.; Pietri, S. B.; Wollersheim, H. J.; Boutachkov, P.; Domingo-Pardo, C.; Farinon, F.

    2009-12-15

    The nuclear structure of neutron-rich N>126 nuclei has been investigated following their production via relativistic projectile fragmentation of a E/A=1 GeV {sup 238}U beam. Metastable states in the N=128 isotones {sup 208}Hg and {sup 209}Tl have been identified. Delayed {gamma}-ray transitions are interpreted as arising from the decay of I{sup {pi}}=(8{sup +}) and (17/2{sup +}) isomers, respectively. The data allow for the so far most comprehensive verification of the shell-model approach in the region determined by magic numbers Z<82 and N>126.

  10. Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic

    SciTech Connect (OSTI)

    Izhnin, I. I.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Mynbaev, K. D.; Fitsych, O. I.; Pociask-Bialy, M.; Sheregii, E.; Voitsekhovskii, A. V.

    2014-04-28

    A defect study was performed on molecular beam epitaxy-grown HgCdTe films in situ doped with arsenic. Doping was performed from either effusion cell or cracker cell, and studied were both as-grown samples and samples subjected to arsenic activation annealing. Electrical properties of the films were investigated with the use of ion milling as a means of stirring defects in the material. As a result of the study, it was confirmed that the most efficient incorporation of electrically active arsenic occurs at the cracking zone temperature of 700?C. Interaction between arsenic and tellurium during the growth was observed and is discussed in the paper.

  11. Germanium subcells for multijunction GaInP/GaInAs/Ge solar cells

    SciTech Connect (OSTI)

    Kalyuzhnyy, N. A.; Gudovskikh, A. S.; Evstropov, V. V.; Lantratov, V. M.; Mintairov, S. A.; Timoshina, N. Kh.; Shvarts, M. Z.; Andreev, V. M.

    2010-11-15

    Photovoltaic converters based on n-GaInP/n-p-Ge heterostructures grown by the OMVPE under different conditions of formation of the p-n junction are studied. The heterostructures are intended for use as narrow-gap subcells of the GaInP/GaInAs/Ge three-junction solar cells. It is shown that, in Ge p-tn junctions, along with the diffusion mechanism, the tunneling mechanism of the current flow exists; therefore, the two-diode electrical equivalent circuit of the Ge p-n junction is used. The diode parameters are determined for both mechanisms from the analysis of both dark and 'light' current-voltage dependences. It is shown that the elimination of the component of the tunneling current allows one to increase the efficiency of the Ge subcell by {approx}1% with conversion of nonconcentrated solar radiation. The influence of the tunneling current on the efficiency of the Ge-based devices can be in practice reduced to zero at photogenerated current density of {approx}1.5 A/cm{sup 2} due to the use of the concentrated solar radiation.

  12. Thermal Design and Characterization of Heterogeneously Integrated InGaP/GaAs HBTs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Choi, Sukwon; Peake, Gregory M.; Keeler, Gordon A.; Geib, Kent M.; Briggs, Ronald D.; Beechem, Thomas E.; Shaffer, Ryan A.; Clevenger, Jascinda; Patrizi, Gary A.; Klem, John F.; et al

    2016-04-21

    Flip-chip heterogeneously integrated n-p-n InGaP/GaAs heterojunction bipolar transistors (HBTs) with integrated thermal management on wide-bandgap AlN substrates followed by GaAs substrate removal are demonstrated. Without thermal management, substrate removal after integration significantly aggravates self-heating effects, causing poor I–V characteristics due to excessive device self-heating. An electrothermal codesign scheme is demonstrated that involves simulation (design), thermal characterization, fabrication, and evaluation. Thermoreflectance thermal imaging, electrical-temperature sensitive parameter-based thermometry, and infrared thermography were utilized to assess the junction temperature rise in HBTs under diverse configurations. In order to reduce the thermal resistance of integrated devices, passive cooling schemes assisted by structural modification, i.e.,more » positioning indium bump heat sinks between the devices and the carrier, were employed. By implementing thermal heat sinks in close proximity to the active region of flip-chip integrated HBTs, the junction-to-baseplate thermal resistance was reduced over a factor of two, as revealed by junction temperature measurements and improvement of electrical performance. In conclusion, the suggested heterogeneous integration method accounts for not only electrical but also thermal requirements providing insight into realization of advanced and robust III–V/Si heterogeneously integrated electronics.« less

  13. Transport properties of InGaAs/GaAs Heterostructures with {delta}-doped quantum wells

    SciTech Connect (OSTI)

    Baidus, N. V.; Vainberg, V. V.; Zvonkov, B. N.; Pylypchuk, A. S. Poroshin, V. N.; Sarbey, O. G.

    2012-05-15

    The lateral transport of electrons in single- and double-well pseudomorphic GaAs/n-InGaAs/GaAs heterostructures with quantum wells 50-100 meV deep and impurity {delta}-layers in the wells, with concentrations in the range 10{sup 11} < N{sub s} < 10{sup 12} cm{sup -2}, has been investigated. Single-well structures with a doped well at the center exhibit a nonmonotonic temperature dependence of the Hall coefficient and an increase in low-temperature electron mobility with an increase in the impurity concentration. The results obtained indicate that the impurity-band electron states play an important role in the conductivity of these structures. Involvement of the impurity band also allows to explain adequately the characteristics of the conductivity of double-well structures; in contrast to single-well structures, band bending caused by asymmetric doping is of great importance. The numerical calculations of conductivity within the model under consideration confirm these suggestions.

  14. Optical properties of multi-stacked InGaAs/GaNAs quantum dot solar cell fabricated on GaAs (311)B substrate

    SciTech Connect (OSTI)

    Shoji, Yasushi; Akimoto, Katsuhiro; Okada, Yoshitaka

    2012-09-15

    Quantum dot solar cells (QDSCs) comprised of 10 stacked pairs of strain-compensated InGaAs/GaNAs QD structure have been fabricated by atomic hydrogen-assisted molecular beam epitaxy. A homogeneous and high-density QD array structure with improved in-plane ordering and total density of {approx}10{sup 12} cm{sup -2} has been achieved on GaAs (311)B grown at 460 Degree-Sign C after stacking. The external quantum efficiency (EQE) of InGaAs/GaNAs QDSC increases in the longer wavelength range due to additive contribution from QD layers inserted in the intrinsic region. The short-circuit current density measured for QDSC is 17.2 mA/cm{sup 2} compared to 14.8 mA/cm{sup 2} of GaAs reference cell. Further, an increase in EQE due to photocurrent production by 2-step photon absorption has been observed at room temperature though it is still small at around 0.1%.

  15. Reactive codoping of GaAlInP compound semiconductors (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Reactive codoping of GaAlInP compound semiconductors Citation Details In-Document Search Title: Reactive codoping of GaAlInP compound semiconductors A GaAlInP compound ...

  16. Growth and Band Offsets of Epitaxial Lanthanide Oxides on GaN...

    Office of Scientific and Technical Information (OSTI)

    M.T.T., 60 (6) (2012) 3 Jon Ihlefeld, Sandia National Laboratories Electronic Materials ... Undoped GaN Undoped AlGaN Doped AlGaN 2D Electron Gas Enhancement Mode (nominally ...

  17. General Atomics (GA) Fusion News: A New Spin on Understanding Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Confinement | Princeton Plasma Physics Lab General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement American Fusion News Category: General Atomics (GA) Link: General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement

  18. Gaseous CN, C2, and C3 jets in the inner coma of Comet P/Halley observed from the Vega 2 spacecraft

    SciTech Connect (OSTI)

    Clairemidi, J.; Moreels, G.; Krasnopol'skii, V.A. Institut Kosmicheskikh Issledovanii, Moscow )

    1990-07-01

    A superposition of the monochromatic charts transmitted by Vega 2's three-channel spectrometer during its approach of Comet P/Halley in March, 1986, has yielded composite images of the inner coma with moderate spatial resolution which cover a sector of angle 50 deg converging to the nucleus. Images of the CN, C3, C2 Delta-v = 1 and C2 Delta-v = 0 emissions show evidence of two well-contrasted jets, one of which is in the direction of the sun while the other lies in the perpendicular direction; they are separated by a valley-shaped low-intensity zone. Radial and transverse profiles of the emissions are presented. 28 refs.

  19. Local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6] probed with implanted muons

    SciTech Connect (OSTI)

    Lancaster, T.; Pratt, F. L.; Blundell, S. J.; Steele, Andrew J.; Baker, Peter J.; Wright, Jack D.; Fishman, Randy Scott; Miller, Joel S.

    2011-01-01

    We present a muon-spin relaxation study of local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6]. We observe magnetic order with TN = 33 K, although above 25 K the sublattice spins become less rigid and a degree of static magnetic disorder is observed. The comparison of measurements in applied magnetic field with simulations allows us to understand the origin of the muon response across the metamagnetic transition and to map out the phase diagram of the material. Applied hydrostatic pressures of up to 6 kbar lead to an increase in the local magnetic field along with a complex change in the internal magnetic field distribution.

  20. Intermolecular interactions involving C-H bonds, 3, Structure and energetics of the interaction between CH{sub 4} and CN{sup {minus}}

    SciTech Connect (OSTI)

    Novoa, J.J.; Whangbo, Myung-Hwan; Williams, J.M.

    1991-12-31

    On the basis of SCF and single reference MP2 calculations, the full potential energy surface of the interaction between CH{sub 4} and CN{sup {minus}} was studied using extended basis sets of up to near Hartree-Fock limit quality. Colinear arrangements C-N{sup {minus}}{hor_ellipsis}H-CH{sub 3} and N-C{sup {minus}}{hor_ellipsis}H-CH{sub 3} are found to be the only two energy minima. The binding energies of these two structures are calculated to be 2.5 and 2.1 kcal/mol, respectively, at the MP2 level. The full vibrational analyses of two structures show a red shift of about 30 cm{sup {minus}1} for the v{sub s} C-H stretching.

  1. Defect reduction in epitaxial GaSb grown on nanopatterned GaAs substrates using full wafer block copolymer lithography

    SciTech Connect (OSTI)

    Jha, Smita; Liu, C.-C.; Nealey, P. F.; Kuech, T. F.; Kuan, T. S.; Babcock, S. E.; Park, J. H.; Mawst, L. J.

    2009-08-10

    Defect reduction in the large lattice mismatched system of GaSb on GaAs, {approx}7%, was accomplished using full wafer block copolymer (BCP) lithography. A self-assembled BCP mask layer was used to generate a hexagonal pattern of {approx}20 nm holes on {approx}40 nm centers in a 20 nm SiO{sub 2} layer. GaSb growth initially takes place selectively within these holes leading to a dense array of small, strain-relaxed epitaxial GaSb islands. The GaSb grown on the patterned SiO{sub 2} layer exhibits a reduction in the x-ray linewidth attributed to a decrease in the threading dislocation density when compared to blanket pseudomorphic film growth.

  2. Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3??m

    SciTech Connect (OSTI)

    Goldmann, Elias Jahnke, Frank; Paul, Matthias; Kettler, Jan; Jetter, Michael; Michler, Peter; Krause, Florian F.; Mller, Knut; Mehrtens, Thorsten; Rosenauer, Andreas

    2014-10-13

    A combined experimental and theoretical study of InGaAs/GaAs quantum dots (QDs) emitting at 1.3??m under the influence of a strain-reducing InGaAs quantum well is presented. We demonstrate a red shift of 2040?nm observed in photoluminescence spectra due to the quantum well. The InGaAs/GaAs QDs grown by metal organic vapor phase epitaxy show a bimodal height distribution (1?nm and 5?nm) and indium concentrations up to 90%. The emission properties are explained with combined tight-binding and configuration-interaction calculations of the emission wavelengths in conjunction with high-resolution scanning transmission electron microscopy investigations of QD geometry and indium concentrations in the QDs, which directly enter the calculations. QD geometries and concentration gradients representative for the ensemble are identified.

  3. Progress toward technology transition of GaInP{sub 2}/GaAs/Ge multijunction solar cells

    SciTech Connect (OSTI)

    Keener, D.N.; Marvin, D.C.; Brinker, D.J.; Curtis, H.B.; Price, P.M.

    1997-12-31

    The objective of the joint WL/PL/NASA Multijunction Solar Cell Manufacturing Technology (ManTech) Program is to scale up high efficiency GaInP{sub 2}/GaAs/Ge multijunction solar cells to production size, quantity, and yield while limiting the production cost/Watt ($/W) to 15% over GaAs cells. Progress made by the program contractors, Spectrolab and TECSTAR, include, respectively, best cell efficiencies of 25.76% and 24.7% and establishment of 24.2% and 23.8% lot average efficiency baseline designs. The paper also presents side-by-side testing results collected by Phillips Laboratory and NASA Lewis on Phase 1 deliverable cells, which shows compliance with program objectives. Cell performance, pre- and post-radiation, and temperature coefficient results on initial production GaInP{sub 2}/GaAs/Ge solar cells will be presented.

  4. Effect of InGaAs interlayer on the properties of GaAs grown on Si (111) substrate by molecular beam epitaxy

    SciTech Connect (OSTI)

    Wen, Lei; Gao, Fangliang; Li, Jingling; Guan, Yunfang; Wang, Wenliang; Zhou, Shizhong; Lin, Zhiting; Zhang, Xiaona; Zhang, Shuguang E-mail: mssgzhang@scut.edu.cn; Li, Guoqiang E-mail: mssgzhang@scut.edu.cn

    2014-11-21

    High-quality GaAs films have been epitaxially grown on Si (111) substrates by inserting an In{sub x}Ga{sub 1−x}As interlayer with proper In composition by molecular beam epitaxy (MBE). The effect of In{sub x}Ga{sub 1−x}As (0 < x < 0.2) interlayers on the properties of GaAs films grown on Si (111) substrates by MBE has been studied in detailed. Due to the high compressive strain between InGaAs and Si, InGaAs undergoes partial strain relaxation. Unstrained InGaAs has a larger lattice constant than GaAs. Therefore, a thin InGaAs layer with proper In composition may adopt a close lattice constant with that of GaAs, which is beneficial to the growth of high-quality GaAs epilayer on top. It is found that the proper In composition in In{sub x}Ga{sub 1−x}As interlayer of 10% is beneficial to obtaining high-quality GaAs films, which, on the one hand, greatly compensates the misfit stress between GaAs film and Si substrate, and on the other hand, suppresses the formation of multiple twin during the heteroepitaxial growth of GaAs film. However, when the In composition does not reach the proper value (∼10%), the In{sub x}Ga{sub 1−x}As adopts a lower strain relaxation and undergoes a lattice constant smaller than unstrained GaAs, and therefore introduces compressive stress to GaAs grown on top. When In composition exceeds the proper value, the In{sub x}Ga{sub 1−x}As will adopt a higher strain relaxation and undergoes a lattice constant larger than unstrained GaAs, and therefore introduces tensile stress to GaAs grown on top. As a result, In{sub x}Ga{sub 1−x}As interlayers with improper In composition introduces enlarged misfit stress to GaAs epilayers grown on top, and deteriorates the quality of GaAs epilayers. This work demonstrates a simple but effective method to grow high-quality GaAs epilayers and brings up a broad prospect for the application of GaAs-based optoelectronic devices on Si substrates.

  5. Ferromagnetism in undoped One-dimensional GaN Nanowires

    SciTech Connect (OSTI)

    Jeganathan, K. E-mail: jagan@physics.bdu.ac.in; Purushothaman, V.; Debnath, R.; Arumugam, S.

    2014-05-15

    We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW) fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ?0.75 emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 10{sup ?8} mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

  6. Characterization of Zns-GaP Naon-composites

    SciTech Connect (OSTI)

    Todd, V.

    1993-12-09

    It proved possible to produce consistent, high-quality nanocrystalline ZnS powders with grain sizes as small as 8 nm. These powders are nano-porous and are readily impregnated with GaP precursor, although inconsistently. Both crystal structure and small grain size of the ZnS can be maintained through the use of GaP. Heat treatment of the impregnated powders results in a ZnS-GaP composite structure where the grain sizes of the phases are on the order of 10--20 nm. Conventional powder processing should be able to produce optically dense ceramic compacts with improved mechanical properties and suitable IR transmission.

  7. High Voltage GaN Schottky Rectifiers

    SciTech Connect (OSTI)

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  8. Making it pay in Athens, GA

    SciTech Connect (OSTI)

    Malloy, M.G.

    1997-04-01

    The materials recovery facility (MRF) in Athens, GA, is a well-fed recycling facility. But, if the local government has its way, it will be even better fed in the near future. The Athens-Clarke County (ACC) regional municipality in which the facility resides has a put-or-pay contract with the plant`s owner/operator, under which the more it feeds the MRF, the more money it receives in return, through the sale of recycled end products. The ACC Solid Waste Department uses a volume-based waste collection system that encourages residents to recycle--the more they recycle, the less trash they have to put out, and the less they pay each month. The Athens facility, which will be a featured site tour at next month`s WasteExpo `97 in nearby Atlanta, had its ground-breaking two years ago, in April 1995. ACC is responsible for delivering material--or seeing that recyclables are delivered--to the MRF, which is owned and operated by Resource Recovery Systems (RRS, Centerbrook, Conn.). Over the past year, ACC has stepped up various incentives for businesses to recycle and send their recyclables to the facility, including instituting pilot programs for commercial interests that offer them versions of volume-based collection similar to that done by residents.

  9. Outdoor Testing of GaInP2/GaAs Tandem Cells with Top Cell Thickness Varied

    SciTech Connect (OSTI)

    McMahon, W. E.; Emergy, K. E.; Friedman, D. J.; Ottoson, L.; Young, M. S.; Ward, J. S.; Kramer, C. M.; Duda, A.; Kurtz, S.

    2005-08-01

    In this study, we measure the performance of GaInP2/GaAs tandem cells under direct beam sunlight outdoors in order to quantify their sensitivity to both spectral variation and GaInP2 top-cell thickness. A set of cells with five different top-cell thicknesses was mounted on a two-axis tracker with the incident sunlight collimated to exclude all except the direct beam. Current-voltage (I-V) curves were taken throughout the course of several days, along with measurements of the direct solar spectrum. Our two major conclusions are: (1) GaInP2/GaAs tandem cells designed for either the ASTM G-173 direct (G-173D) spectrum or the "air mass 1.5 global" (AM1.5G) spectrum perform the best, and (2) cells can be characterized indoors and modeled using outdoor spectra with the same result. These results are equally valid for GaInP2/GaAs/Ge triple-junction cells.

  10. Local Structures and Interface Morphology of InGaAsN Thin Films Grown on GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Chen, J.G.; Geisz, J.F.; Huang, S.; Hulbert, S.L.; Jones, E.D.; Kao, Y.H.; Kurtz, S.; Kurtz, S.R.; Olson, J.M.; Soo, Y.L.

    1999-02-23

    The compound semiconductor system InGaAsN exhibits many intriguing properties which are particularly useful for the development of innovative high efficiency thin film solar cells and long wavelength lasers. The bandgap in these semiconductors can be varied by controlling the content of N and In and the thin films can yet be lattice-matched to GaAs. In the present work, x-ray absorption fine structure (XAFS) and grazing incidence x-ray scattering (GIXS) techniques have been employed to probe the local environment surrounding both N and In atoms as well as the interface morphology of InGaAsN thin films epitaxially grown on GaAs. The soft x-ray XAFS results around nitrogen K-edge reveal that N is in the sp{sup 3} hybridized bonding configuration in InGaAsN and GaAsN, suggesting that N impurities most likely substitute for As sites in these two compounds. The results of In K-edge XAFS suggest a possible trend of a slightly larger coordination number of As nearest neighbors around In atoms in InGaAsN samples with a narrower bandgap whereas the In-As interatomic distance remains practically the same as in InAs within the experimental uncertainties. These results combined suggest that N-substitution of the As sites plays an important role of bandgap-narrowing while in the meantime counteracting the compressive strain caused by In-doping. Grazing incidence x-ray scattering (GIXS) experiments verify that InGaAsN thin films can indeed form very smooth interfaces with GaAs yielding an average interfacial roughness of 5-20{angstrom}.

  11. Electrical spin injection using GaCrN in a GaN based spin light emitting diode

    SciTech Connect (OSTI)

    Banerjee, D.; Ganguly, S.; Saha, D.; Adari, R.; Sankaranarayan, S.; Kumar, A.; Aldhaheri, R. W.; Hussain, M. A.; Balamesh, A. S.

    2013-12-09

    We have demonstrated electrical spin-injection from GaCrN dilute magnetic semiconductor (DMS) in a GaN-based spin light emitting diode (spin-LED). The remanent in-plane magnetization of the thin-film semiconducting ferromagnet has been used for introducing the spin polarized electrons into the non-magnetic InGaN quantum well. The output circular polarization obtained from the spin-LED closely follows the normalized in-plane magnetization curve of the DMS. A saturation circular polarization of ?2.5% is obtained at 200?K.

  12. Microscopic, electrical and optical studies on InGaN/GaN quantum wells based LED devices

    SciTech Connect (OSTI)

    Mutta, Geeta Rani; Venturi, Giulia; Castaldini, Antonio; Cavallini, Anna

    2014-02-21

    We report here on the micro structural, electronic and optical properties of a GaN-based InGaN/GaN MQW LED grown by the MOVPE method. The present study shows that the threading dislocations present in these LED structures are terminated as V pits at the surface and have an impact on the electrical and optical activity of these devices. It has been pointed that these dislocations were of edge, screw and mixed types. EBIC maps suggest that the electrically active defects are screw and mixed dislocations and behave as nonradiative recombinant centres.

  13. Effects of light illumination on electron velocity of AlGaN/GaN heterostructures under high electric field

    SciTech Connect (OSTI)

    Guo, Lei; Yang, Xuelin Cheng, Jianpeng; Sang, Ling; Xu, Fujun; Tang, Ning; Feng, Zhihong; Lv, Yuanjie; Wang, Xinqiang; Shen, B.; Ge, Weikun

    2014-12-15

    We have investigated the variation of electron velocity in AlGaN/GaN heterostructures depending on illuminating light intensity and wavelength. It is shown that the electron velocity at high electric field increases under above-band light illumination. This electron velocity enhancement is found to be related to the photo-generated cold holes which interact with hot electrons and thus accelerate the energy relaxation at high electric field. The results suggest an alternative way to improve the electron energy relaxation rate and hence the electron velocity in GaN based heterostructures.

  14. High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission

    SciTech Connect (OSTI)

    Wang, Huolei; Yu, Hongyan; Zhou, Xuliang; Kan, Qiang; Yuan, Lijun; Wang, Wei; Pan, Jiaoqing; Chen, Weixi; Ding, Ying

    2014-10-06

    We report the demonstration of an InGaAs/GaAs quantum well (QW) broadband stimulated emission laser with a structure that integrated a GaAs tunnel junction with two QW active regions. The laser exhibits ultrabroad lasing spectral coverage of ?51?nm at a center wavelength of 1060?nm with a total emission power of 790 mW, corresponding to a high average spectral power density of 15.5 mW/nm, under pulsed current conditions. Compared to traditional lasers, this laser with an asymmetric separate-confinement heterostructure shows broader lasing bandwidth and higher spectral power density.

  15. Elba Island, GA Liquefied Natural Gas Imports from Qatar (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Elba Island, GA Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  16. Elba Island, GA Natural Gas Liquefied Natural Gas Imports from...

    U.S. Energy Information Administration (EIA) Indexed Site

    Egypt (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,780 ...

  17. Linear and nonlinear optical properties of GaAs/Al{sub x}Ga{sub 1?x}As/GaAs/Al{sub y}Ga{sub 1?y}As multi-shell spherical quantum dot

    SciTech Connect (OSTI)

    Emre Kavruk, Ahmet E-mail: aekavruk@gmail.com; Koc, Fatih; Sahin, Mehmet E-mail: mehsahin@gmail.com

    2013-11-14

    In this work, the optical properties of GaAs/Al{sub x}Ga{sub 1?x}As/GaAs/Al{sub y}Ga{sub 1?y}As multi-shell quantum dot heterostructure have been studied as a function of Al doping concentrations for cases with and without a hydrogenic donor atom. It has been observed that the absorption coefficient strength and/or resonant absorption wavelength can be adjusted by changing the Al content of inner-barrier and/or outer-barrier regions. Besides, it has been shown that the donor atom has an important effect on the control of the electronic and optical properties of the structure. The results have been presented as a function of the Al contents of the inner-barrier x and outer-barrier y regions and probable physical reasons have been discussed.

  18. Evaporation-based Ge/.sup.68 Ga Separation

    DOE Patents [OSTI]

    Mirzadeh, Saed; Whipple, Richard E.; Grant, Patrick M.; O'Brien, Jr., Harold A.

    1981-01-01

    Micro concentrations of .sup.68 Ga in secular equilibrium with .sup.68 Ge in strong aqueous HCl solution may readily be separated in ionic form from the .sup.68 Ge for biomedical use by evaporating the solution to dryness and then leaching the .sup.68 Ga from the container walls with dilute aqueous solutions of HCl or NaCl. The chloro-germanide produced during the evaporation may be quantitatively recovered to be used again as a source of .sup.68 Ga. If the solution is distilled to remove any oxidizing agents which may be present as impurities, the separation factor may easily exceed 10.sup.5. The separation is easily completed and the .sup.68 Ga made available in ionic form in 30 minutes or less.

  19. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    SciTech Connect (OSTI)

    Qiu, W. C.; Wang, R.; Xu, Z. J.; Jiang, T.; Cheng, X. A.

    2014-05-28

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scale array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.

  20. High Quantum Efficiency AlGaN/InGaN Photodetectors

    SciTech Connect (OSTI)

    Buckley, James H; Leopold, Daniel

    2009-11-24

    High efficiency photon counting detectors in use today for high energy particle detection applications have a significant spectral mismatch with typical sources and have a number of practical problems compared with conventional bialkali photomultiplier tubes. Numerous high energy physics experiments that employ scintillation light detectors or Cherenkov detectors would benefit greatly from photomultipliers with higher quantum efficiencies. The need for extending the sensitivity of photon detectors to the blue and UV wavebands comes from the fact that both Cherenkov light and some scintillators have an emission spectrum which is peaked at short wavelengths. This research involves the development of high quantum efficiency, high gain, UV/blue photon counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy (MBE). The work could eventually lead to nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, very low radioactive background levels for deep underground experiments and high detection efficiency of individual UV-visible photons. We are also working on the development of photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices, and eventually leading to an all-solid-state photomultiplier device.

  1. Enhanced optical property in quaternary GaInAsSb/AlGaAsSb quantum wells

    SciTech Connect (OSTI)

    Lin, Chien-Hung Lee, Chien-Ping

    2014-10-21

    High quality GaInAsSb/AlGaAsSb quantum wells (QWs) have been grown by molecular beam epitaxy using proper interface treatments. By controlling the group-V elements at interfaces, we obtained excellent optical quality QWs, which were free from undesired localized trap states, which may otherwise severely affect the exciton recombination. Strong and highly efficient exciton emissions up to room temperature with a wavelength of 2.2 μm were observed. A comprehensive investigation on the QW quality was carried out using temperature dependent and power dependent photoluminescence (PL) measurements. The PL emission intensity remains nearly constant at low temperatures and is free from the PL quenching from the defect induced localized states. The temperature dependent emission energy had a bulk-like behavior, indicating high quality well/barrier interfaces. Because of the uniformity of the QWs and smooth interfaces, the low temperature limit of inhomogeneous line width broadening is as small as 5 meV.

  2. Mismatch relaxation by stacking fault formation of AlN islands in AlGaN/GaN structures on m-plane GaN substrates

    SciTech Connect (OSTI)

    Smalc-Koziorowska, Julita; Sawicka, Marta; Skierbiszewski, Czeslaw; Grzegory, Izabella

    2011-08-08

    We study the mismatch relaxation of 2-5 nm thin elongated AlN islands formed during growth of AlGaN on bulk m-plane GaN by molecular beam epitaxy. The relaxation of these m-plane AlN layers is anisotropic and occurs through the introduction of stacking faults in [0001] planes during island coalescence, while no relaxation is observed along the perpendicular [1120] direction. This anisotropy in the mismatch relaxation and the formation of stacking faults in the AlN islands are explained by the growth mode of the AlN platelets and their coalescence along the [0001] direction.

  3. Identification and decay of the 0.48 ms 13/2{sup +} isomer in {sup 181}Hg

    SciTech Connect (OSTI)

    Andreyev, A. N.; Antalic, S.; Saro, S.; Ackermann, D.; Comas, V. F.; Heinz, S.; Heredia, J. A.; Hessberger, F. P.; Khuyagbaatar, J.; Kojouharov, I.; Kindler, B.; Lommel, B.; Mann, R.; Cocolios, T. E.; Elseviers, J.; Huyse, M.; Duppen, P. Van; Venhart, M.; Franchoo, S.; Hofmann, S.

    2009-10-15

    A new isomer with a half-life of 0.48(2) ms was identified in the nuclide {sup 181}Hg, which was produced in the complete fusion reaction {sup 40}Ca+{sup 144}Sm{yields}{sup 184}Pb* at the velocity filter SHIP (GSI, Darmstadt). The isomeric state was tentatively assigned a spin-parity of 13/2{sup +}. We propose that this isomer de-excites by a yet unobserved low-energy, strongly converted {gamma}-ray transition, followed by a newly identified cascade composed of a 90.3 keV M1 and a 71.4 keV E2 {gamma}-ray transition.

  4. Effects of embryonic pre-exposure to methylmercury and Hg/sup 2 +/ on larval tolerance in Fundulus heteroclitus

    SciTech Connect (OSTI)

    Weis, P.; Weis, J.S.

    1983-11-01

    Many reports demonstrate enhanced metal tolerance as a result of previous exposure to low concentrations. Pretreatment of rainbow trout (Salmo gairdneri) eggs with cadmium made the larvae more resistant to subsequent Cd treatment. Larvae of the flagfish, Jordanella floridae, initially exposed as embryos to Zn and to mixtures of Zn and Cd were much more tolerant than those not previously exposed, indicating acclimation during embryonic exposure. Acclimation to metals after pre-exposure was attributed to stimulation of the synthesis of metal-binding proteins, or metallothioneins, in the liver, which form a nontoxic complex with the metal. In this paper we report on the effects of embryonic pre-exposure to methylmercury(meHf) and Hg/sup 2 +/ on larval susceptibility to these toxicants in the killifish, Fundulus heteroclitus.

  5. Dynamic conductivity of the bulk states of n-type HgTe/CdTe quantum well topological insulator

    SciTech Connect (OSTI)

    Chen, Qinjun; Sanderson, Matthew; Cao, J. C.; Zhang, Chao

    2014-11-17

    We theoretically studied the frequency-dependent current response of the bulk state of topological insulator HgTe/CdTe quantum well. The optical conductivity is mainly due to the inter-band process at high frequencies. At low frequencies, intra-band process dominates with a dramatic drop to near zero before the inter-band contribution takes over. The conductivity decreases with temperature at low temperature and increases with temperature at high temperature. The transport scattering rate has an opposite frequency dependence in the low and high temperature regime. The different frequency dependence is due to the interplay of the carrier-impurity scattering and carrier population near the Fermi surface.

  6. A new InGaP/GaAs tunneling heterostructure-emitter bipolar transistor (T-HEBT)

    SciTech Connect (OSTI)

    Tsai, Jung-Hui; Lee, Ching-Sung; Lour, Wen-Shiung; Ma, Yung-Chun; Ye, Sheng-Shiun

    2011-05-15

    Excellent characteristics of an InGaP/GaAs tunneling heterostructure-emitter bipolar transistor (T-HEBT) are first demonstrated. The insertion of a thin n-GaAs emitter layer between tynneling confinement and base layers effectivelty eliminates the potential spike at base-emitter junction and reduces the collector-emitter offset voltage, while the thin InGaP tunneling confinement layer is employed to reduce the transporting time across emitter region for electrons and maintain the good confinement effect for holes. Experimentally, the studied T-HEBN exhibits a maximum current gain of 285, a relatively low offset voltage of 40 mW, and a current-gain cutoff frequency of 26.4 GHz.

  7. Characterization of Cu(In,Ga)Se2 (CIGS) films with varying gallium ratios

    SciTech Connect (OSTI)

    Claypoole, Jesse; Peace, Bernadette; Sun, Neville; Dwyer, Dan; Eisaman, Matthew D.; Haldar, Pradeep; Efstathiadis, Harry

    2015-09-05

    Cu(In1-x,Gax)Se2 (CIGS) absorber layers were deposited on molybdenum (Mo) coated soda-lime glass substrates with varying Ga content (described as Ga/(In+Ga) ratios) with respect to depth. As the responsible mechanisms for the limitation of the performance of the CIGS solar cells with high Ga contents are not well understood, the goal of this work was to investigate different properties of CIGS absorber films with Ga/(In+Ga) ratios varied between 0.29 and 0.41 (as determined by X-ray florescence spectroscopy (XRF)) in order to better understand the role that the Ga content has on film quality. The Ga grading in the CIGS layer has the effect causing a higher bandgap toward the surface and Mo contact while the band gap in the middle of the CIGS layer is lower. Also, a wider and larger Ga/(In+Ga) grading dip located deeper in the CIGS absorber layers tend to produce larger grains in the regions of the films that have lower Ga/(In+Ga) ratios. It was found that surface roughness decreases from 51.2 nm to 41.0 nm with increasing Ga/(In+Ga) ratios. However, the surface roughness generally decreases if the Ga grading occurs deeper in the absorber layer.

  8. Quaternary AlInGaN/InGaN quantum well on vicinal c-plane substrate for high emission intensity of green wavelengths

    SciTech Connect (OSTI)

    Park, Seoung-Hwan; Pak, Y. Eugene; Park, Chang Young; Mishra, Dhaneshwar; Yoo, Seung-Hyun; Cho, Yong-Hee Shim, Mun-Bo; Kim, Sungjin

    2015-05-14

    Electronic and optical properties of non-trivial semipolar AlInGaN/InGaN quantum well (QW) structures are investigated by using the multiband effective-mass theory and non-Markovian optical model. On vicinal c-plane GaN substrate miscut by a small angle (??GaN/InGaN system is shown to have ?3 times larger spontaneous emission peak intensity than the conventional InGaN/GaN system at green wavelength. It is attributed to much larger optical matrix element of the quaternary AlInGaN/InGaN system, derived from the reduction of internal electric field induced by polarizations. This effect exceeds the performance-degrading factor of smaller quasi-Fermi-level separation for the quaternary AlInGaN/InGaN system than that for the conventional InGaN/GaN system. Results indicate that the use of quaternary III-nitride QWs on vicinal substrates may be beneficial in improving the performance of optical devices emitting green light.

  9. The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa

    SciTech Connect (OSTI)

    zduran, Mustafa; Turgut, Kemal; Arikan, Nihat; ?yigr, Ahmet; Candan, Abdullah

    2014-10-06

    We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso program package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.

  10. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    SciTech Connect (OSTI)

    Feng, Shih-Wei Liao, Po-Hsun; Leung, Benjamin; Han, Jung; Yang, Fann-Wei; Wang, Hsiang-Chen

    2015-07-28

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.

  11. Effects of high-temperature AIN buffer on the microstructure of AlGaN/GaN HEMTs

    SciTech Connect (OSTI)

    Coerekci, S.; Oeztuerk, M. K.; Yu, Hongbo; Cakmak, M.; Oezcelik, S.; Oezbay, E.

    2013-06-15

    Effects on AlGaN/GaN high-electron-mobility transistor structure of a high-temperature AlN buffer on sapphire substrate have been studied by high-resolution x-ray diffraction and atomic force microscopy techniques. The buffer improves the microstructural quality of GaN epilayer and reduces approximately one order of magnitude the edge-type threading dislocation density. As expected, the buffer also leads an atomically flat surface with a low root-mean-square of 0.25 nm and a step termination density in the range of 10{sup 8} cm{sup -2}. Due to the high-temperature buffer layer, no change on the strain character of the GaN and AlGaN epitaxial layers has been observed. Both epilayers exhibit compressive strain in parallel to the growth direction and tensile strain in perpendicular to the growth direction. However, an high-temperature AlN buffer layer on sapphire substrate in the HEMT structure reduces the tensile stress in the AlGaN layer.

  12. p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Tiam Tan, Swee; Kyaw, Zabu; Liu, Wei; Ji, Yun; Ju, Zhengang; Zhang, Xueliang [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore) [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wei Sun, Xiao, E-mail: EXWSUN@ntu.edu.sg [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electronics and Electrical Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Volkan Demir, Hilmi, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey); Department of Physics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey)

    2013-12-23

    Here, GaN/Al{sub x}Ga{sub 1-x}N heterostructures with a graded AlN composition, completely lacking external p-doping, are designed and grown using metal-organic-chemical-vapour deposition (MOCVD) system to realize three-dimensional hole gas (3DHG). The existence of the 3DHG is confirmed by capacitance-voltage measurements. Based on this design, a p-doping-free InGaN/GaN light-emitting diode (LED) driven by the 3DHG is proposed and grown using MOCVD. The electroluminescence, which is attributed to the radiative recombination of injected electrons and holes in InGaN/GaN quantum wells, is observed from the fabricated p-doping-free devices. These results suggest that the 3DHG can be an alternative hole source for InGaN/GaN LEDs besides common Mg dopants.

  13. Intermixing of InGaAs/GaAs Quantum Well Using Multiple Cycles Annealing Cu-doped SiO2

    SciTech Connect (OSTI)

    Hongpinyo, V; Ding, Y H; Dimas, C E; Wang, Y; Ooi, B S; Qiu, W; Goddard, L L; Behymer, E M; Cole, G D; Bond, T C

    2008-06-11

    The authors investigate the effect of intermixing in InGaAs/GaAs quantum well structure using Cu-doped SiO{sub 2}. The incorporation of Cu into the silica film yields larger bandgap shift than typical impurity-free vacancy diffusion (IFVD) method at a lower activation temperature. We also observe enhancement of the photoluminescence (PL) signal from the intermixed InGaAs/GaAs quantum well structure after being cycle-annealed at 850 C.

  14. Characterization of Cu(In,Ga)Se2 (CIGS) films with varying gallium ratios

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Claypoole, Jesse; Peace, Bernadette; Sun, Neville; Dwyer, Dan; Eisaman, Matthew D.; Haldar, Pradeep; Efstathiadis, Harry

    2015-09-05

    Cu(In1-x,Gax)Se2 (CIGS) absorber layers were deposited on molybdenum (Mo) coated soda-lime glass substrates with varying Ga content (described as Ga/(In+Ga) ratios) with respect to depth. As the responsible mechanisms for the limitation of the performance of the CIGS solar cells with high Ga contents are not well understood, the goal of this work was to investigate different properties of CIGS absorber films with Ga/(In+Ga) ratios varied between 0.29 and 0.41 (as determined by X-ray florescence spectroscopy (XRF)) in order to better understand the role that the Ga content has on film quality. The Ga grading in the CIGS layer hasmore » the effect causing a higher bandgap toward the surface and Mo contact while the band gap in the middle of the CIGS layer is lower. Also, a wider and larger Ga/(In+Ga) grading dip located deeper in the CIGS absorber layers tend to produce larger grains in the regions of the films that have lower Ga/(In+Ga) ratios. It was found that surface roughness decreases from 51.2 nm to 41.0 nm with increasing Ga/(In+Ga) ratios. However, the surface roughness generally decreases if the Ga grading occurs deeper in the absorber layer.« less

  15. Radiation damage of GaAs thin-film solar cells on Si substrates

    SciTech Connect (OSTI)

    Itoh, Y.; Yamaguchi, M.; Nishioka, T.; Yamamoto, A.

    1987-01-15

    1-MeV electron irradiation damages in GaAs thin-film solar cells on Si substrates are examined for the first time. Damage constant for minority-carrier diffusion length in GaAs heteroepitaxial films on Si substrates is found to be the same as that in GaAs homoepitaxial films on GaAs substrates. This agreement suggests that GaAs/Si has the same defect introduction rate with radiation as GaAs/GaAs. The degradation of GaAs solar cells on Si with electron irradiation is less than that of GaAs solar cells on GaAs, because in the present, GaAs films on Si substrates have lower minority-carrier diffusion length compared to GaAs films on GaAs and these films are insensitive to radiation. The p/sup +/-p/sup +/-n AlGaAs-GaAs heteroface solar cell with junction depth of about 0.3 ..mu..m is concluded to be useful for a high-efficiency and radiation-resistant solar cell fabricated on a Si substrate.

  16. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence

    SciTech Connect (OSTI)

    Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia; Samuelson, Lars; Monemar, Bo

    2015-12-21

    Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increase of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.

  17. Radiation resistance of GaAs-GaAlAs vertical cavity surface emitting lasers

    SciTech Connect (OSTI)

    Jabbour, J.; Zazoui, M.; Sun, G.C.; Bourgoin, J.C.; Gilard, O.

    2005-02-15

    The variations of the optical and electrical characteristics of a vertical cavity surface emitting laser based on GaAs quantum wells have been monitored versus irradiation with 1 MeV electrons. The results are understood by the introduction of nonradiative recombination centers in the wells whose characteristics, capture cross section for minority carriers times their introduction rate, can be determined. A similar study performed for proton irradiation shows that the results can be explained in the same way when the introduction rate of the defects is replaced by the proton energy loss into atomic collisions. These results allow us to deduce the equivalence between electron and proton irradiations: A flux of 1 proton cm{sup -2} which loses an energy E{sub nl} (eV) into atomic collisions is equivalent to a fluence of about 9x10{sup -2} E{sub nl} cm{sup -2}, 1 MeV electrons.

  18. Laser Gain and Threshold Properties in Compressive-Strained and Lattice-Matched GaInNAs/GaAs Quantum Wells

    SciTech Connect (OSTI)

    Chow, W.W.; Jones, E.D.; Modine, N.A.; Allerman, A.A.; Kurtz, S.R.

    1999-08-04

    The optical gain spectra for compressive-strained and lattice-matched GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of lasing threshold current density for different GAInNAs/GaAs laser structures.

  19. Results of Hg speciation testing on 3Q15 tank 50, salt solution feed tank (SSFT), and solvent hold tank (SHT) materials

    SciTech Connect (OSTI)

    Bannochie, C.

    2015-08-13

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The results are documented in this report.

  20. Synthesis, crystal structure and optical property of a novel metal chalcohalide: ZnHg{sub 3}Se{sub 2}Cl{sub 4}

    SciTech Connect (OSTI)

    Zhang, Guodong; Xiong, Wei-Wei; Nie, Lina; Zhang, Qichun

    2015-10-15

    A novel chalcohalide ZnHg{sub 3}Se{sub 2}Cl{sub 4} has been synthesized through a solid state method and structurally characterized by single-crystal X-ray diffraction. It crystallizes in the acentric space group Cmc2{sub 1} (No. 36) with cell parameters a=7.3262(8) Å, b=12.518(2) Å, c=11.3324(14) Å. The compound consists of 12-membered Hg{sub 6}Se{sub 6} rings edge-sharing with six neighbored rings to construct a 2D layered network and the ZnCl{sub 4} tetrahedra are sandwiched between layers. TG-DTA measurement shows that the compound is thermally stable up to 300 °C. The band gap of the crystal is about 2.23 eV, and the crystal exhibits a broad transparent range from 0.56 to 13.8 µm. - Highlights: • A novel chalcohalide ZnHg{sub 3}Se{sub 2}Cl{sub 4} was synthesized by a solid state method. • The structure contains 12-membered Hg{sub 6}Se{sub 6} rings and ZnCl{sub 4} tetrahedra. • The band gap of the as-prepared compound is about 2.23 eV.

  1. Vertical zone melt growth of GaAs

    SciTech Connect (OSTI)

    Henry, R.L.; Nordquist, P.E.R.; Gorman, R.J.

    1993-12-31

    A Vertical Zone Melt (VZM) technique has been applied to the single crystal growth of GaAs. A pyrolytic boron nitride crucible and a (100) oriented seed were used along with liquid encapsulation by boric oxide. In the case of GaAs, the ampoule was pressurized with either argon or argensic vapor from elemental arsenic at pressures ranging from 1 to 2 atmospheres. A molten zone length of 22 mm gave a growth interface which is nearly flat and resulted in routine single crystal growth. Temperature gradients of 4{degrees}C/cm. and 9{degrees}C/cm. have produced dislocation densities of <1000/cm{sup 2} and 2000-5000/cm{sup 2} respectively for 34 mm diameter crystals of GaAs. Post growth cooling rates for GaAs have been 35, 160 and 500{degrees}C/hr. The cooling rate has been found to affect the number and size of arsenic precipitates and the EL2 concentration in the GaAs crystal. The effects of these and other growth parameters on the crystalline perfection and electrical properties of the crystals will be discussed.

  2. Long-term stable water vapor permeation barrier properties of SiN/SiCN/SiN nanolaminated multilayers grown by plasma-enhanced chemical vapor deposition at extremely low pressures

    SciTech Connect (OSTI)

    Choi, Bum Ho Lee, Jong Ho

    2014-08-04

    We investigated the water vapor permeation barrier properties of 30-nm-thick SiN/SiCN/SiN nanolaminated multilayer structures grown by plasma enhanced chemical vapor deposition at 7 mTorr. The derived water vapor transmission rate was 1.12 × 10{sup −6} g/(m{sup 2} day) at 85 °C and 85% relative humidity, and this value was maintained up to 15 000 h of aging time. The X-ray diffraction patterns revealed that the nanolaminated film was composed of an amorphous phase. A mixed phase was observed upon performing high resolution transmission electron microscope analysis, which indicated that a thermodynamically stable structure was formed. It was revealed amorphous SiN/SiCN/SiN multilayer structures that are free from intermixed interface defects effectively block water vapor permeation into active layer.

  3. Systematic investigation of electronic structure in BEDT-TTF based organic superconductors with Tc above 10 K; [kappa]-(BEDT-TTF)[sub 2]X (X = Cu(NCS)[sub 2], Cu[N(CN)[sub 2

    SciTech Connect (OSTI)

    Nakamura, Toshikazu; Nobutoki, Tomoko; Miyamoto, Masao; Tsubokura, Yuichi; Tsuchiya, Ryota; Takahashi, Toshihiro ); Kanoda, Kazushi ); Saito, Gunzi )

    1994-06-01

    The electronic structure of the title superconductors has been investigated by electrical resistivity, complex susceptibility, and electron paramagnetic resonance (EPR) measurements. The superconducting properties (pressure dependence of Tc, magnetic penetration depth, upper critical field, and so on) of these three salts are similar to each other, while transport properties in the normal state have shown a large variety in the temperature dependence. In order to clarify the electronic structure in the normal state, the EPR parameters, the spin susceptibility ([Chi][sub spin]), and the linewidth ([Delta]H[sub pp]), are compared. An anomalous temperature dependence of the g-value has been observed below 150 K in the Cu(NCS)[sub 2] and Cu(CN)[N(CN)[sub 2

  4. Quaternary InGaAsSb Thermophotovoltaic Diode Technology

    SciTech Connect (OSTI)

    M Dashiell; J Beausang; H Ehsani; G Nichols; D DePoy; L Danielson; P Talamo; K Rahner; E Brown; S Burger; P Fourspring; W Topper; P Baldasaro; C Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryl

    2005-01-26

    Thermophotovoltaic (TPV) diodes fabricated from InGaAsSb alloys lattice-matched to GaSb substrates are grown by Metal Organic Vapor Phase Epitaxy (MOVPE). 0.53eV InGaAsSb TPV diodes utilizing front-surface spectral control filters have been tested in a vacuum cavity and a TPV thermal-to-electric conversion efficiency ({eta}{sub TPV}) and a power density (PD) of {eta}{sub TPV} = 19% and PD=0.58 W/cm{sup 2} were measured for T{sub radiator} = 950 C and T{sub diode} = 27 C. Recombination coefficients deduced from minority carrier measurements and the theory reviewed in this article predict a practical limit to the maximum achievable conversion efficiency and power density for 0.53eV InGaAsSb TPV. The limits for the above operating temperatures are projected to be {eta}{sub TPV} = 26% and PD = 0.75 W/cm{sup 2}. These limits are extended to {eta}{sub TPV} = 30% and PD = 0.85W/cm{sup 2} if the diode active region is bounded by a reflective back surface to enable photon recycling and a two-pass optical path length. The internal quantum efficiency of the InGaAsSb TPV diode is close to the theoretically predicted limits, with the exception of short wavelength absorption in GaSb contact layers. Experiments show that the open circuit voltage of the 0.53eV InGaAsSb TPV diodes is not strongly dependent on the device architectures studied in this work where both N/P and P/N double heterostructure diodes have been grown with various acceptor and donor doping levels, having GaSb and AlGaAsSb confinement, and also partial back surface reflectors. Lattice matched InGaAsSb TPV diodes were fabricated with bandgaps ranging from 0.6 to 0.5eV without significant degradation of the open circuit voltage factor, quantum efficiency, or fill factor as the composition approached the miscibility gap. The key diode performance parameter which is limiting efficiency and power density below the theoretical limits in InGaAsSb TPV devices is the open circuit voltage. The open circuit voltages of

  5. Structural transformations in amorphous ↔ crystalline phase change of Ga-Sb alloys

    SciTech Connect (OSTI)

    Edwards, T. G.; Sen, S.; Hung, I.; Gan, Z.; Kalkan, B.; Raoux, S.

    2013-12-21

    Ga-Sb alloys with compositions ranging between ∼12 and 50 at. % Ga are promising materials for phase change random access memory applications. The short-range structures of two such alloys with compositions Ga{sub 14}Sb{sub 86} and Ga{sub 46}Sb{sub 54} are investigated, in their amorphous and crystalline states, using {sup 71}Ga and {sup 121}Sb nuclear magnetic resonance spectroscopy and synchrotron x-ray diffraction. The Ga and Sb atoms are fourfold coordinated in the as-deposited amorphous Ga{sub 46}Sb{sub 54} with nearly 40% of the constituent atoms being involved in Ga-Ga and Sb-Sb homopolar bonding. This necessitates extensive bond switching and elimination of homopolar bonds during crystallization. On the other hand, Ga and Sb atoms are all threefold coordinated in the as-deposited amorphous Ga{sub 14}Sb{sub 86}. Crystallization of this material involves phase separation of GaSb domains in Sb matrix and a concomitant increase in the Ga coordination number from 3 to 4. Results from crystallization kinetics experiments suggest that the melt-quenching results in the elimination of structural “defects” such as the homopolar bonds and threefold coordinated Ga atoms in the amorphous phases of these alloys, thereby rendering them structurally more similar to the corresponding crystalline states compared to the as-deposited amorphous phases.

  6. Nano-scale luminescence characterization of individual InGaN/GaN quantum wells stacked in a microcavity using scanning transmission electron microscope cathodoluminescence

    SciTech Connect (OSTI)

    Schmidt, Gordon Mller, Marcus; Veit, Peter; Bertram, Frank; Christen, Jrgen; Glauser, Marlene; Carlin, Jean-Franois; Cosendey, Gatien; Butt, Raphal; Grandjean, Nicolas

    2014-07-21

    Using cathodoluminescence spectroscopy directly performed in a scanning transmission electron microscope at liquid helium temperatures, the optical and structural properties of a 62 InGaN/GaN multiple quantum well embedded in an AlInN/GaN based microcavity are investigated at the nanometer scale. We are able to spatially resolve a spectral redshift between the individual quantum wells towards the surface. Cathodoluminescence spectral linescans allow directly visualizing the critical layer thickness in the quantum well stack resulting in the onset of plastic relaxation of the strained InGaN/GaN system.

  7. Highly transparent ammonothermal bulk GaN substrates

    SciTech Connect (OSTI)

    Jiang, WK; Ehrentraut, D; Downey, BC; Kamber, DS; Pakalapati, RT; Do Yoo, H; D'Evelyn, MP

    2014-10-01

    A novel apparatus has been employed to grow ammonothermal (0001) gallium nitride (GaN) with diameters up to 2 in The crystals have been characterized by x-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), and optical spectroscopy. High crystallinity GaN with FWHM values about 20-50 arcsec and dislocation densities below 1 x 10(5) cm(-2) have been obtained. High optical transmission was achieved with an optical absorption coefficient below 1 cm(-1) at a wavelength of 450 nm. (C) 2014 Elsevier B.V. All rights reserved.

  8. Graphene/GaN diodes for ultraviolet and visible photodetectors

    SciTech Connect (OSTI)

    Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Shen, Bo; Liao, Zhi-Min, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn; Yu, Da-Peng, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-08-18

    The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ?mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

  9. Simple intrinsic defects in GaAs : numerical supplement.

    SciTech Connect (OSTI)

    Schultz, Peter Andrew

    2012-04-01

    This Report presents numerical tables summarizing properties of intrinsic defects in gallium arsenide, GaAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz and O.A. von Lilienfeld, 'Simple intrinsic defects in GaAs', Modelling Simul. Mater. Sci Eng., Vol. 17, 084007 (2009), and intended for use as reference tables for a defect physics package in device models. The numerical results for density functional theory calculations of properties of simple intrinsic defects in gallium arsenide are presented.

  10. Electronic contribution to friction on GaAs

    SciTech Connect (OSTI)

    Applied Science and Technology Graduate Group, UC Berkeley; Dept. of Materials Sciences and Engineering, UC Berkeley; Salmeron, Miquel; Qi, Yabing; Park, J.Y.; Hendriksen, B.L.M.; Ogletree, D.F.; Salmeron, Miquel

    2008-04-15

    The electronic contribution to friction at semiconductor surfaces was investigated by using a Pt-coated tip with 50nm radius in an atomic force microscope sliding against an n-type GaAs(100) substrate. The GaAs surface was covered by an approximately 1 nm thick oxide layer. Charge accumulation or depletion was induced by the application of forward or reverse bias voltages. We observed a substantial increase in friction force in accumulation (forward bias) with respect to depletion (reverse bias). We propose a model based on the force exerted by the trapped charges that quantitatively explains the experimental observations of excess friction.

  11. Polycrystalline MBE-grown GaAs for solar cells

    SciTech Connect (OSTI)

    Friedman, D.J.; Kurtz, S.R.; Kibbler, A.E.; Al-Jassim, M.; Jones, K.; Keyes, B.; Matson, R.

    1997-02-01

    This paper will discuss initial studies of thin-film GaAs grown by molecular-beam epitaxy for use in developing a thin-film GaAs solar cell. Photocurrent and photoluminescence intensity are related to the material morphology as a function of growth conditions. Growth temperature and V/III ratio have a dramatic effect on the photocurrent. However, it seems likely that even after optimizing such growth parameters, it will be necessary to provide substrates that can provide templates to enhance grain size from the start of thin-film growth. {copyright} {ital 1997 American Institute of Physics.}

  12. Polycrystalline MBE-grown GaAs for solar cells

    SciTech Connect (OSTI)

    Friedman, D. J.; Kurtz, Sarah R.; Kibbler, A. E.; Al-Jassim, M.; Jones, K.; Keyes, B.; Matson, R.

    1997-02-15

    This paper will discuss initial studies of thin-film GaAs grown by molecular-beam epitaxy for use in developing a thin-film GaAs solar cell. Photocurrent and photoluminescence intensity are related to the material morphology as a function of growth conditions. Growth temperature and V/III ratio have a dramatic effect on the photocurrent. However, it seems likely that even after optimizing such growth parameters, it will be necessary to provide substrates that can provide templates to enhance grain size from the start of thin-film growth.

  13. Enhanced sheet carrier densities in polarization controlled AlInN/AlN/GaN/InGaN field-effect transistor on Si (111)

    SciTech Connect (OSTI)

    Hennig, J. Dadgar, A.; Witte, H.; Bläsing, J.; Lesnik, A.; Strittmatter, A.; Krost, A.

    2015-07-15

    We report on GaN based field-effect transistor (FET) structures exhibiting sheet carrier densities of n = 2.9 10{sup 13} cm{sup −2} for high-power transistor applications. By grading the indium-content of InGaN layers grown prior to a conventional GaN/AlN/AlInN FET structure control of the channel width at the GaN/AlN interface is obtained. The composition of the InGaN layer was graded from nominally x{sub In} = 30 % to pure GaN just below the AlN/AlInN interface. Simulations reveal the impact of the additional InGaN layer on the potential well width which controls the sheet carrier density within the channel region of the devices. Benchmarking the In{sub x}Ga{sub 1−x}N/GaN/AlN/Al{sub 0.87}In{sub 0.13}N based FETs against GaN/AlN/AlInN FET reference structures we found increased maximum current densities of I{sub SD} = 1300 mA/mm (560 mA/mm). In addition, the InGaN layer helps to achieve broader transconductance profiles as well as reduced leakage currents.

  14. Strain relaxation in GaN/Al{sub x}Ga{sub 1-x}N superlattices grown by plasma-assisted molecular-beam epitaxy

    SciTech Connect (OSTI)

    Kotsar, Y.; Bellet-Amalric, E.; Das, A.; Monroy, E.; Sarigiannidou, E.

    2011-08-01

    We have investigated the misfit relaxation process in GaN/Al{sub x}Ga{sub 1-x}N (x = 0.1, 0.3, 0.44) superlattices (SL) deposited by plasma-assisted molecular beam epitaxy. The SLs under consideration were designed to achieve intersubband absorption in the mid-infrared spectral range. We have considered the case of growth on GaN (tensile stress) and on AlGaN (compressive stress) buffer layers, both deposited on GaN-on-sapphire templates. Using GaN buffer layers, the SL remains almost pseudomorphic for x = 0.1, 0.3, with edge-type threading dislocation densities below 9 x 10{sup 8} cm{sup -2} to 2 x 10{sup 9} cm{sup -2}. Increasing the Al mole fraction to 0.44, we observe an enhancement of misfit relaxation resulting in dislocation densities above 10{sup 10} cm{sup -2}. In the case of growth on AlGaN, strain relaxation is systematically stronger, with the corresponding increase in the dislocation density. In addition to the average relaxation trend of the SL, in situ measurements indicate a periodic fluctuation of the in-plane lattice parameter, which is explained by the different elastic response of the GaN and AlGaN surfaces to the Ga excess at the growth front. The results are compared with GaN/AlN SLs designed for near-infrared intersubband absorption.

  15. DETECTIONS OF C{sub 2}H, CYCLIC-C{sub 3}H{sub 2}, AND H{sup 13}CN IN NGC 1068

    SciTech Connect (OSTI)

    Nakajima, T.; Takano, S.; Kohno, K.; Inoue, H.

    2011-02-20

    We used the Nobeyama 45 m telescope to conduct a spectral line survey in the 3 mm band (85.1-98.4 GHz) toward one of the nearest galaxies with an active galactic nucleus (AGN), NGC 1068, and the prototypical starburst galaxy NGC 253. The beam size of this telescope is {approx} 18'', which was sufficient to spatially separate the nuclear molecular emission from the emission of the circumnuclear starburst region in NGC 1068. We detected rotational transitions of C{sub 2}H, cyclic-C{sub 3}H{sub 2}, and H{sup 13}CN in NGC 1068. These are detections of carbon-chain and carbon-ring molecules in NGC 1068. In addition, the C{sub 2}H N = 1-0 lines were detected in NGC 253. The column densities of C{sub 2}H were determined to be 3.4 x 10{sup 15} cm{sup -2} in NGC 1068 and 1.8 x 10{sup 15} cm{sup -2} in NGC 253. The column densities of cyclic-C{sub 3}H{sub 2} were determined to be 1.7 x 10{sup 13} cm{sup -2} in NGC 1068 and 4.4 x 10{sup 13} cm{sup -2} in NGC 253. We calculated the abundances of these molecules relative to CS for both NGC 1068 and NGC 253, and found that there were no significant differences in the abundances between the two galaxies. This result suggests that the basic carbon-containing molecules are either insusceptible to AGN or are tracing cold (T{sub rot} {approx} 10 K) molecular gas rather than X-ray irradiated hot gas.

  16. Molecular dynamics study of the effect of alkyl chain length on melting points of [CnMIM][PF6] ionic liquids

    SciTech Connect (OSTI)

    Zhang, Y; Maginn, EJ

    2014-01-01

    Based on molecular dynamics simulations, the melting points T-m of a series of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids [CnMIM][PF6] with n = 2, 4, 10, 12, and 14 were studied using the free energy-based pseudosupercritical path (PSCP) method. The experimental trend that the Tm decreases with increasing alkyl chain length for ILs with short alkyl chains and increases for the ones with long alkyl chains was correctly captured. Further analysis revealed that the different trends are the results of the balance between fusion enthalpy and fusion entropy. For the ILs with short alkyl chains (ethyl and butyl groups), fusion entropy plays the dominant role so that [C4MIM][PF6], which has a larger fusion entropy due to its higher liquid phase entropy has the lower melting temperature. As for the ILs with long alkyl chains, due to the enhanced van der Waals interactions brought about by the long non-polar alkyl chains, enthalpy becomes the deciding factor and the melting points increase when the alkyl chain goes from C10 to C14. While the melting points for [C2MIM][PF6] and [C4MIM][PF6] were quantitatively predicted and the trends for the long chain ILs were captured correctly, the absolute melting points for [C10MIM][PF6], [C12MIM][PF6] and [C14MIM][PF6] were systematically overestimated in the simulations. Three possible reasons for the overestimation were studied but all ruled out. Further simulation or experimental studies are needed to explain the difference.

  17. Alloy inhomogeneity and carrier localization in AlGaN sections and AlGaN/AlN nanodisks in nanowires with 240350?nm emission

    SciTech Connect (OSTI)

    Himwas, C.; Hertog, M. den; Dang, Le Si; Songmuang, R.; Monroy, E.

    2014-12-15

    We present structural and optical studies of AlGaN sections and AlGaN/AlN nanodisks (NDs) in nanowires grown by plasma-assisted molecular beam epitaxy. The Al-Ga intermixing at Al(Ga)N/GaN interfaces and the chemical inhomogeneity in AlGaN NDs evidenced by scanning transmission electron microscopy are attributed to the strain relaxation process. This interpretation is supported by the three-dimensional strain distribution calculated by minimizing the elastic energy in the structure. The alloy inhomogeneity increases with the Al content, leading to enhanced carrier localization signatures in the luminescence characteristics, i.e., red shift of the emission, s-shaped temperature dependence, and linewidth broadening. Despite these effects, the emission energy of AlGaN/AlN NDs can be tuned in the 240350?nm range with internal quantum efficiencies around 30%.

  18. Characteristics of InGaP/InGaAs pseudomorphic high electron mobility transistors with triple delta-doped sheets

    SciTech Connect (OSTI)

    Chu, Kuei-Yi; Chiang, Meng-Hsueh Cheng, Shiou-Ying; Liu, Wen-Chau

    2012-02-15

    Fundamental and insightful characteristics of InGaP/InGaAs double channel pseudomorphic high electron mobility transistors (DCPHEMTs) with graded and uniform triple {delta}-doped sheets are coomprehensively studied and demonstrated. To gain physical insight, band diagrams, carrier densities, and direct current characteristics of devices are compared and investigated based on the 2D semiconductor simulator, Atlas. Due to uniform carrier distribution and high electron density in the double InGaAs channel, the DCPHEMT with graded triple {delta}-doped sheets exhibits better transport properties, higher and linear transconductance, and better drain current capability as compared with the uniformly triple {delta}-doped counterpart. The DCPHEMT with graded triple {delta}-doped structure is fabricated and tested, and the experimental data are found to be in good agreement with simulated results.

  19. High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration

    SciTech Connect (OSTI)

    Young, N. G. Farrell, R. M.; Iza, M.; Speck, J. S.; Perl, E. E.; Keller, S.; Bowers, J. E.; Nakamura, S.; DenBaars, S. P.

    2014-04-21

    We demonstrate InGaN/GaN multiple quantum well solar cells grown by metalorganic chemical vapor deposition on a bulk (0001) substrate with high-performance broadband optical coatings to improve light absorption. A front-side anti-reflective coating and a back-side dichroic mirror were designed to minimize front surface reflections across a broad spectral range and maximize rear surface reflections only in the spectral range absorbed by the InGaN, making the cells suitable for multijunction solar cell integration. Application of optical coatings increased the peak external quantum efficiency by 56% (relative) and conversion efficiency by 37.5% (relative) under 1 sun AM0 equivalent illumination.

  20. Fabrication and Characterization of a Single Hole Transistor in p-type GaAs/AlGaAs Heterostructures

    SciTech Connect (OSTI)

    Tracy, Lisa A; Reno, John L.; Hargett, Terry W.

    2015-09-01

    Most spin qubit research to date has focused on manipulating single electron spins in quantum dots. However, hole spins are predicted to have some advantages over electron spins, such as reduced coupling to host semiconductor nuclear spins and the ability to control hole spins electrically using the large spin-orbit interaction. Building on recent advances in fabricating high-mobility 2D hole systems in GaAs/AlGaAs heterostructures at Sandia, we fabricate and characterize single hole transistors in GaAs. We demonstrate p-type double quantum dot devices with few-hole occupation, which could be used to study the physics of individual hole spins and control over coupling between hole spins, looking towards eventual applications in quantum computing. Intentionally left blank

  1. Terahertz intersubband absorption in non-polar m-plane AlGaN/GaN quantum wells

    SciTech Connect (OSTI)

    Edmunds, C.; Malis, O.; Shao, J.; Shirazi-HD, M.; Manfra, M. J.

    2014-07-14

    We demonstrate THz intersubband absorption (15.6–26.1 meV) in m-plane AlGaN/GaN quantum wells. We find a trend of decreasing peak energy with increasing quantum well width, in agreement with theoretical expectations. However, a blue-shift of the transition energy of up to 14 meV was observed relative to the calculated values. This blue-shift is shown to decrease with decreasing charge density and is, therefore, attributed to many-body effects. Furthermore, a ∼40% reduction in the linewidth (from roughly 8 to 5 meV) was obtained by reducing the total sheet density and inserting undoped AlGaN layers that separate the wavefunctions from the ionized impurities in the barriers.

  2. Inversion-mode GaAs wave-shaped field-effect transistor on GaAs (100) substrate

    SciTech Connect (OSTI)

    Zhang, Jingyun; Si, Mengwei; Wu, Heng; Ye, Peide D.; Lou, Xiabing; Gordon, Roy G.; Shao, Jiayi; Manfra, Michael J.

    2015-02-16

    Inversion-mode GaAs wave-shaped metal-oxide-semiconductor field-effect transistors (WaveFETs) are demonstrated using atomic-layer epitaxy of La{sub 2}O{sub 3} as gate dielectric on (111)A nano-facets formed on a GaAs (100) substrate. The wave-shaped nano-facets, which are desirable for the device on-state and off-state performance, are realized by lithographic patterning and anisotropic wet etching with optimized geometry. A well-behaved 1 μm gate length GaAs WaveFET shows a maximum drain current of 64 mA/mm, a subthreshold swing of 135 mV/dec, and an I{sub ON}/I{sub OFF} ratio of greater than 10{sup 7}.

  3. Degradation of InGaN/GaN laser diodes investigated by micro-cathodoluminescence and micro-photoluminescence

    SciTech Connect (OSTI)

    Meneghini, M. Carraro, S.; Meneghesso, G.; Trivellin, N.; Zanoni, E.; Rossi, F.; Salviati, G.; Schade, L.; Karunakaran, M. A.; Schwarz, U. T.

    2013-12-02

    We present an investigation of the degradation of InGaN/GaN laser diodes grown on a GaN substrate. The results indicate that: (i) Ageing induces a significant increase in the threshold current (Ith) of the lasers, which is attributed to an increase in non-radiative recombination; (ii) Ith increase is correlated to a decrease in the micro-cathodoluminescence signal measured (after the removal of the top metallization) in the region under the ridge; (iii) micro-photoluminescence measurements indicate that constant current stress increases non-radiative recombination within the quantum wells (and not only within the barriers), and induces an increase in the emission wavelength of the degraded region.

  4. Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures

    SciTech Connect (OSTI)

    Estacio, Elmer; Pham, Minh Hong; Takatori, Satoru; Cadatal-Raduban, Marilou; Nakazato, Tomoharu; Shimizu, Toshihiko; Sarukura, Nobuhiko; Somintac, Armando; Defensor, Michael; Awitan, Fritz Christian B.; Jaculbia, Rafael B.; Salvador, Arnel; Garcia, Alipio

    2009-06-08

    We report on the intense terahertz emission from InAs/GaAs quantum dot (QD) structures grown by molecular beam epitaxy. Results reveal that the QD sample emission was as high as 70% of that of a p-type InAs wafer, the most intense semiconductor emitter to date. Excitation wavelength studies showed that the emission was due to absorption in strained undoped GaAs, and corresponds to a two order-of-magnitude enhancement. Moreover, it was found that multilayer QDs emit more strongly compared with a single layer QD sample. At present, we ascribe the intense radiation to huge strain fields at the InAs/GaAs interface.

  5. Results of Hg speciation testing on MCU strip effluent hold tank (SEHT) and decontaminated salt solution hold tank (DSSHT) materials

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2015-09-17

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The tenth shipment of samples was designated to include Modular Caustic Side Solvent Extraction Unit (MCU) Strip Effluent Hold Tank (SEHT) and MCU Decontaminated Salt Solution Hold Tank (DSSHT) materials from processing Salt Batch 7b. The MCU SEHT (MCU-15-722) and DSSHT (MCU-15-709) samples were pulled on June 15, 2015. All MCU samples were received at SRNL on June 16, 2015. The DSSHT sample was moved the same day to refrigeration, while the SEHT sample was placed in the Shielded Cells. On July 9, 2015 it was opened and an aliquot diluted 1:100 with Eurofins deionized water and a portion of the diluted sample transferred to a Teflon® bottle prior to moving it to refrigeration that same day. All samples were kept in the dark and refrigerated until final dilutions were prepared for shipment to Eurofins.

  6. Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode

    SciTech Connect (OSTI)

    Hu, J. Groeseneken, G.; Stoffels, S.; Lenci, S.; Venegas, R.; Decoutere, S.; Bakeroot, B.

    2015-02-23

    This paper presents a combined technique of high voltage off-state stress and current transient measurements to investigate the trapping/de-trapping characteristics of Au-free AlGaN/GaN Schottky barrier diodes. The device features a symmetric three-terminal structure with a central anode contact surrounded by two separate cathodes. Under the diode off-state stress conditions, the two separate cathodes were electrically shorted. The de-trapping dynamics was studied by monitoring the recovery of the two-dimensional electron gas (2DEG) current at different temperatures by applying 0.5?V at cathode 2 while grounding cathode 1. During the recovery, the anode contact acts as a sensor of changes in diode leakage current. This leakage variation was found to be mainly due to the barrier height variation. With this method, the energy level and capture cross section of different traps in the AlGaN/GaN Schottky barrier diode can be extracted. Furthermore, the physical location of different trapping phenomena is indicated by studying the variation of the diode leakage current during the recovery. We have identified two distinct trapping mechanisms: (i) electron trapping at the AlGaN surface in the vicinity of the Schottky contact which results in the leakage reduction (barrier height ?{sub B} increase) together with R{sub ON} degradation; (ii) the electron trapping in the GaN channel layer which partially depletes the 2DEG. The physical origin of the two different traps is discussed in the text.

  7. Emission spectra of a laser based on an In(Ga)As/GaAs quantum-dot superlattice

    SciTech Connect (OSTI)

    Sobolev, M. M. Buyalo, M. S.; Nevedomskiy, V. N.; Zadiranov, Yu. M.; Zolotareva, R. V.; Vasil’ev, A. P.; Ustinov, V. M.; Portnoi, E. L.

    2015-10-15

    The spectral characteristics of a laser with an active region based on a ten-layer system of In(Ga)As/GaAs vertically correlated quantum dots with 4.5-nm GaAs spacer layers between InAs quantum dots are studied under the conditions of spontaneous and stimulated emission, depending on the current and the duration of pump pulses. Data obtained by transmission electron microscopy and electroluminescence and absorption polarization anisotropy measurements make it possible to demonstrate that the investigated system of tunnel-coupled InAs quantum dots separated by thin GaAs barriers represents a quantum-dot superlattice. With an increase in the laser pump current, the electroluminescence intensity increases linearly and the spectral position of the electroluminescence maximum shifts to higher energies, which is caused by the dependence of the miniband density-of-states distribution on the pump current. Upon exceeding the threshold current, multimode lasing via the miniband ground state is observed. One of the lasing modes can be attributed to the zero-phonon line, and the other is determined by the longitudinal-optical phonon replica of quantum-dot emission. The results obtained give evidence that, under conditions of the laser pumping of an In(Ga)As/GaAs quantum-dot superlattice, strong coupling between the discrete electron states in the miniband and optical phonons takes place. This leads to the formation of quantum-dot polarons, resulting from the resonant mixing of electronic states whose energy separation is comparable to the optical-phonon energy.

  8. InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells

    SciTech Connect (OSTI)

    Alonso-lvarez, D.; Thomas, T.; Fhrer, M.; Hylton, N. P.; Ekins-Daukes, N. J.; Lackner, D.; Philipps, S. P.; Bett, A. W.; Sodabanlu, H.; Fujii, H.; Watanabe, K.; Sugiyama, M.; Nasi, L.; Campanini, M.

    2014-08-25

    Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6 misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1??s, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.

  9. Defect-Reduction Mechanism for Improving Radiative Efficiency in InGaN/GaN Light-Emitting Diodes using InGaN Underlayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Armstrong, Andrew M.; Bryant, Benjamin N.; Crawford, Mary H.; Koleske, Daniel D.; Lee, Stephen R.; Wierer, Jr., Jonathan J.

    2015-04-01

    The influence of a dilute InxGa1-xN (x~0.03) underlayer (UL) grown below a single In0.16Ga0.84N quantum well (SQW), within a light-emitting diode(LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than theLED without an UL, while the radiative recombination rates were nearly identical. This, then, suggests that the improved radiative efficiency resultedmore » from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Furthermore, quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.« less

  10. Excitonic transitions in highly efficient (GaIn)As/Ga(AsSb) type-II quantum-well structures

    SciTech Connect (OSTI)

    Gies, S.; Kruska, C.; Berger, C.; Hens, P.; Fuchs, C.; Rosemann, N. W.; Veletas, J.; Stolz, W.; Koch, S. W.; Heimbrodt, W.; Ruiz Perez, A.; Hader, J.; Moloney, J. V.

    2015-11-02

    The excitonic transitions of the type-II (GaIn)As/Ga(AsSb) gain medium of a “W”-laser structure are characterized experimentally by modulation spectroscopy and analyzed using microscopic quantum theory. On the basis of the very good agreement between the measured and calculated photoreflectivity, the type-I or type-II character of the observable excitonic transitions is identified. Whereas the energetically lowest three transitions exhibit type-II character, the subsequent energetically higher transitions possess type-I character with much stronger dipole moments. Despite the type-II character, the quantum-well structure exhibits a bright luminescence.

  11. Properties of H, O and C in GaN

    SciTech Connect (OSTI)

    Pearton, S.J.; Abernathy, C.R.; Lee, J.W.

    1996-04-01

    The electrical properties of the light ion impurities H, O and C in GaN have been examined in both as-grown and implanted material. H is found to efficiently passivate acceptors such as Mg, Ca and C. Reactivation occurs at {ge} 450 C and is enhanced by minority carrier injection. The hydrogen does not leave the GaN crystal until > 800 C, and its diffusivity is relatively high ({approximately} 10{sup {minus}11} cm{sup 2}/s) even at low temperatures (< 200 C) during injection by wet etching, boiling in water or plasma exposure. Oxygen shows a low donor activation efficiency when implanted into GaN, with an ionization level of 30--40 meV. It is essentially immobile up to 1,100 C. Carbon can produce low p-type levels (3 {times} 10{sup 17} cm{sup {minus}3}) in GaN during MOMBE, although there is some evidence it may also create n-type conduction in other nitrides.

  12. Testing a GaAs cathode in SRF gun

    SciTech Connect (OSTI)

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-03-28

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10{sup -12} Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to {approx}10{sup -9} Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high

  13. Quaternary InGaAsSb Thermophotovoltaic Diodes

    SciTech Connect (OSTI)

    MW Dashiell; JF Beausang; H Ehsani; GJ Nichols; DM Depoy; LR Danielson; P Talamo; KD Rahner; EJ Brown; SR Burger; PM Foruspring; WF Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; J Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryi

    2006-03-09

    In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y} thermophotovoltaic (TPV) diodes were grown lattice-matched to GaSb substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) in the bandgap range of E{sub G} = 0.5 to 0.6eV. InGaAsSb TPV diodes, utilizing front-surface spectral control filters, are measured with thermal-to-electric conversion efficiency and power density of {eta}{sub TPV} = 19.7% and PD =0.58 W/cm{sup 2} respectively for a radiator temperature of T{sub radiator} = 950 C, diode temperature of T{sub diode} = 27 C, and diode bandgap of E{sub G} = 0.53eV. Practical limits to TPV energy conversion efficiency are established using measured recombination coefficients and optical properties of front surface spectral control filters, which for 0.53eV InGaAsSb TPV energy conversion is {eta}{sub TPV} = 28% and PD = 0.85W/cm{sup 2} at the above operating temperatures. The most severe performance limits are imposed by (1) diode open-circuit voltage (VOC) limits due to intrinsic Auger recombination and (2) parasitic photon absorption in the inactive regions of the module. Experimentally, the diode V{sub OC} is 15% below the practical limit imposed by intrinsic Auger recombination processes. Analysis of InGaAsSb diode electrical performance vs. diode architecture indicate that the V{sub OC} and thus efficiency is limited by extrinsic recombination processes such as through bulk defects.

  14. Ge doped GaN with controllable high carrier concentration for...

    Office of Scientific and Technical Information (OSTI)

    Ge doped GaN with controllable high carrier concentration for plasmonic applications Citation Details In-Document Search Title: Ge doped GaN with controllable high carrier...

  15. Correlation of DLTS and Performance of GaInNAs Cells

    SciTech Connect (OSTI)

    Kurtz, S.; Johnston, S.; Friedman, D.; Ptak, A.; Geisz, J.; McMahon, W.; Olson, J.; Kibbler, A.; Crandall, R.; Ahrenkiel, R.; Kramer, C.; Young, M.

    2005-01-01

    A four-junction GaInP/GaAs/GaInAsN/Ge solar cell should be able to reach 40% efficiency if each of the junctions can be made with a quality similar to that demonstrated for GaAs. However, the GaInAsN subcell has shown poor performance. Deep-level transient spectroscopy (DLTS) can elucidate recombination centers in a material and could help identify the problem with the GaInAsN. So far, DLTS studies of GaInAsN have shown many peaks. In this paper we compare the performance of the GaInAsN solar cells with the DLTS spectra to identify which DLTS peak is correlated with the device performance.

  16. Bismuth-induced phase control of GaAs nanowires grown by molecular...

    Office of Scientific and Technical Information (OSTI)

    Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy Citation Details In-Document Search Title: Bismuth-induced phase control of GaAs nanowires grown by ...

  17. Site-controlled fabrication of Ga nanodroplets by focused ion beam

    SciTech Connect (OSTI)

    Xu, Xingliang; Wang, Zhiming M.; Wu, Jiang; Li, Handong; Zhou, Zhihua; Wang, Xiaodong

    2014-03-31

    Ga droplets are created by focused ion beam irradiation of GaAs surface. We report that ordered Ga droplets can be formed on the GaAs surface without any implantation damage. The droplets are characterized with bigger sizes than those droplets formed on damaged area. These aligned Ga droplets are formed via the migration of Ga atoms from ion irradiation area to the edge of undamaged GaAs surface and further nucleation into droplets. The morphological evolution and size distribution of these nanodroplets are investigated systematically with different beam irradiation time and incident angles. Based on this method, well positioned Ga nanodroplets, such as chains, are achieved by using focus ion beam patterning. The controllable assembly of droplets on undamaged semiconductor surface can be used to fabricate templates, to fabricate quantum structures and quantum devices by droplet epitaxy technique.

  18. Surface Chemistry of GaP(001) and InP(001) in Contact with Water...

    Office of Scientific and Technical Information (OSTI)

    Surface Chemistry of GaP(001) and InP(001) in Contact with Water Citation Details In-Document Search Title: Surface Chemistry of GaP(001) and InP(001) in Contact with Water ...

  19. Reactive codoping of GaAlInP compound semiconductors (Patent...

    Office of Scientific and Technical Information (OSTI)

    This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ... A GaAlInP compound semiconductor and a method of producing a GaAlInP compound ...

  20. High-Efficiency GaAs Thin-Film Solar Cell Reliability | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GaAs Thin-Film Solar Cell Reliability High-Efficiency GaAs Thin-Film Solar Cell Reliability Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado ...

  1. Contrasting Behavior of GaP(001) and InP(001) at the Interface...

    Office of Scientific and Technical Information (OSTI)

    Contrasting Behavior of GaP(001) and InP(001) at the Interface with Water Citation Details In-Document Search Title: Contrasting Behavior of GaP(001) and InP(001) at the Interface ...

  2. Structure and magnetic properties of Ce₃(Ni/Al/Ga)₁₁-A...

    Office of Scientific and Technical Information (OSTI)

    ...AlGa)-A new phase with the LaAl structure type Prev Next Title: Structure and magnetic properties of Ce(NiAlGa)-A new phase with the ...

  3. Dislocation confinement in the growth of Na flux GaN on metalorganic...

    Office of Scientific and Technical Information (OSTI)

    Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN Citation Details In-Document Search Title: Dislocation confinement in the growth ...

  4. Electron-limiting defect complex in hyperdoped GaAs: The D D...

    Office of Scientific and Technical Information (OSTI)

    Electron-limiting defect complex in hyperdoped GaAs: The D D X center Prev Next Title: Electron-limiting defect complex in hyperdoped GaAs: The D D X center Authors: Ma, Jie ...

  5. Coexistence of charge-density wave and ferromagnetism in Ni2MnGa...

    Office of Scientific and Technical Information (OSTI)

    Coexistence of charge-density wave and ferromagnetism in Ni2MnGa Citation Details In-Document Search Title: Coexistence of charge-density wave and ferromagnetism in Ni2MnGa ...

  6. Influence of Ga content on the structure and anomalous Hall effect of Fe{sub 1−x}Ga{sub x} thin films on GaSb(100)

    SciTech Connect (OSTI)

    Anh Tuan, Duong; Shin, Yooleemi; Viet Cuong, Tran; Cho, Sunglae; Phan, The-Long

    2014-05-07

    The Fe{sub 1−x}Ga{sub x} thin films (x = 0.4, 0.5) have been grown on GaSb(100) substrate using molecular beam epitaxy. An epitaxial film with bcc α-Fe crystal structure (A2) is observed in Fe{sub 0.6}Ga{sub 0.4} film, while an impure Fe{sub 3}Ga phase with DO{sub 3} structure is appeared in Fe{sub 0.5}Ga{sub 0.5} film. The saturated magnetizations at room temperature are observed to be 570 emu/cm{sup 3} and 180 emu/cm{sup 3} and the coercivities to be 170 and 364 Oe for Fe{sub 0.6}Ga{sub 0.4} and Fe{sub 0.5}Ga{sub 0.5}, respectively. A hysteresis trend in Hall resistance vs. magnetic field is observed for Fe{sub 0.5}Ga{sub 0.5} film. However, there is a weak hysteresis noticed in Fe{sub 0.4}Ga{sub 0.6} thin film.

  7. Commensurate antiferromagnetic excitations as a signature of the pseudogap in the tetragonal high-Tc cuprate HgBa2CuO4+δ

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chan, M. K.; Dorow, C. J.; Mangin-Thro, L.; Tang, Y.; Ge, Y.; Veit, M. J.; Yu, G.; Zhao, X.; Christianson, A. D.; Park, J. T.; et al

    2016-03-04

    We report that antiferromagnetic correlations have been argued to be the cause of the d-wave superconductivity and the pseudogap phenomena exhibited by the cuprates. Although the antiferromagnetic response in the pseudogap state has been reported for a number of compounds, there exists no information for structurally simple HgBa2CuO4+δ. We report neutron-scattering results for HgBa2CuO4+δ (superconducting transition temperature Tc≈71 K, pseudogap temperature T*≈305 K) that demonstrate the absence of the two most prominent features of the magnetic excitation spectrum of the cuprates: the X-shaped ‘hourglass’ response and the resonance mode in the superconducting state. Instead, the response is Y-shaped, gapped andmore » significantly enhanced below T*, and hence a prominent signature of the pseudogap state.« less

  8. Plasmonic terahertz detectors based on a high-electron mobility GaAs/AlGaAs heterostructure

    SciTech Connect (OSTI)

    Bia?ek, M. Witowski, A. M.; Grynberg, M.; ?usakowski, J.; Orlita, M.; Potemski, M.; Czapkiewicz, M.; Umansky, V.

    2014-06-07

    In order to characterize magnetic field (B) tunable THz plasmonic detectors, spectroscopy experiments were carried out at liquid helium temperatures and high magnetic fields on devices fabricated on a high electron mobility GaAs/AlGaAs heterostructure. The samples were either gated (the gate of a meander shape) or ungated. Spectra of a photovoltage generated by THz radiation were obtained as a function of B at a fixed THz excitation from a THz laser or as a function of THz photon frequency at a fixed B with a Fourier spectrometer. In the first type of measurements, the wave vector of magnetoplasmons excited was defined by geometrical features of samples. It was also found that the magnetoplasmon spectrum depended on the gate geometry which gives an additional parameter to control plasma excitations in THz detectors. Fourier spectra showed a strong dependence of the magnetoplasmon resonance amplitude on the conduction-band electron filling factor which was explained within a model of the electron gas heating with THz radiation. The study allows to define both the advantages and limitations of plasmonic devices based on high-mobility GaAs/AlGaAs heterostructures for THz detection at low temperatures and high magnetic fields.

  9. On the redox origin of surface trapping in AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Gao, Feng; Chen, Di; Tuller, Harry L.; Thompson, Carl V.; Palacios, Toms

    2014-03-28

    Water-related redox couples in ambient air are identified as an important source of the surface trapping states, dynamic on-resistance, and drain current collapse in AlGaN/GaN high electron mobility transistors (HEMTs). Through in-situ X-ray photoelectron spectroscopy (XPS), direct signature of the water-related specieshydroxyl groups (OH) was found at the AlGaN surface at room temperature. It was also found that these species, as well as the current collapse, can be thermally removed above 200?C in vacuum conditions. An electron trapping mechanism based on the H{sub 2}O/H{sub 2} and H{sub 2}O/O{sub 2} redox couples is proposed to explain the 0.5?eV energy level commonly attributed to the surface trapping states. Finally, the role of silicon nitride passivation in successfully removing current collapse in these devices is explained by blocking the water molecules away from the AlGaN surface.

  10. High 400?C operation temperature blue spectrum concentration solar junction in GaInN/GaN

    SciTech Connect (OSTI)

    Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian

    2014-12-15

    Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1?V is achieved. Of the photons absorbed in the limited spectral range of <450?nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49?mW/cm{sup 2} to 0.51?mW/cm{sup 2} at 40?suns and then falls 0.42?mW/cm{sup 2} at 150?suns. Under external heating, a maximum of 0.59?mW/cm{sup 2} is reached at 250?C. Even at 400?C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.

  11. Degradation mechanisms of 2 MeV proton irradiated AlGaN/GaN HEMTs

    SciTech Connect (OSTI)

    Greenlee, Jordan D. Anderson, Travis J.; Koehler, Andrew D.; Weaver, Bradley D.; Kub, Francis J.; Hobart, Karl D.; Specht, Petra; Dubon, Oscar D.; Luysberg, Martina; Weatherford, Todd R.

    2015-08-24

    Proton-induced damage in AlGaN/GaN HEMTs was investigated using energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM), and simulated using a Monte Carlo technique. The results were correlated to electrical degradation using Hall measurements. It was determined by EDS that the interface between GaN and AlGaN in the irradiated HEMT was broadened by 2.2 nm, as estimated by the width of the Al EDS signal compared to the as-grown interface. The simulation results show a similar Al broadening effect. The extent of interfacial roughening was examined using high resolution TEM. At a 2 MeV proton fluence of 6 × 10{sup 14} H{sup +}/cm{sup 2}, the electrical effects associated with the Al broadening and surface roughening include a degradation of the ON-resistance and a decrease in the electron mobility and 2DEG sheet carrier density by 28.9% and 12.1%, respectively.

  12. Effect of proton irradiation energy on AlGaN/GaN metal-oxide semiconductor high electron mobility transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahn, S.; Dong, C.; Zhu, W.; Kim, B. -j.; Hwang, Ya-Hsi; Ren, F.; Pearton, S. J.; Yang, Gwangseok; Kim, J.; Patrick, Erin; et al

    2015-08-18

    The effects of proton irradiation energy on dc characteristics of AlGaN/GaN metal-oxide semiconductor high electron mobility transistors (MOSHEMTs) using Al2O3 as the gate dielectric were studied. Al2O3/AlGaN/GaN MOSHEMTs were irradiated with a fixed proton dose of 5 × 1015 cm-2 at different energies of 5, 10, or 15 MeV. More degradation of the device dc characteristics was observed for lower irradiation energy due to the larger amount of nonionizing energy loss in the active region of the MOSHEMTs under these conditions. The reductions in saturation current were 95.3%, 68.3%, and 59.8% and reductions in maximum transconductance were 88%, 54.4%, andmore » 40.7% after 5, 10, and 15 MeV proton irradiation, respectively. Both forward and reverse gate leakage current were reduced more than one order of magnitude after irradiation. The carrier removal rates for the irradiation energies employed in this study were in the range of 127–289 cm-1. These are similar to the values reported for conventional metal-gate high-electron mobility transistors under the same conditions and show that the gate dielectric does not affect the response to proton irradiation for these energies.« less

  13. EIS-0476: Vogtle Electric Generating Plant in Burke County, GA | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 6: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Vogtle Electric Generating Plant in Burke County, GA February 8, 2012 EIS-0476: Final Environmental Impact Statement Department of Energy Loan Guarantees for Proposed Units 3 and 4 at the Vogtle Electric Generating Plant, Burke County, GA February 25, 2014 EIS-0476: Record of Decision Department of Energy Loan Guarantees for Proposed Units 3 and 4 at the Vogtle Electric Generating Plant, Burke County, GA

  14. Relationship between textural properties, fly ash carbons, and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends

    SciTech Connect (OSTI)

    Isabel Surez-Ruiz; Jose B. Parra

    2007-08-15

    In this work, the textural properties of a series of whole anthracitic-derived fly ashes sampled in eight hoppers from the electrostatic precipitators and their sized fractions (from {gt}150 to {lt}25 {mu}m) are investigated. Data from N{sub 2} adsorption isotherms at 77 K, helium density, and mercury porosimetry have contributed to establish a relationship between the Brunauer-Emmett-Teller (BET) surface areas, VTOT, porosity, carbon content (the type of fly ash carbons), and Hg retention in these fly ashes. The unburned carbons in these ashes are macroporous materials, and they are different from the carbons in fly ashes from classes C and F (the latter derived from the combustion of bituminous coals) and show different textural properties. These ashes represent the end member of the fly ash classes C and F with respect to certain textural properties. Although the BET surface area and VTOT values for the studied samples are the lowest reported, they increase with the increase in carbon content, anisotropic carbon content, and particle size of the ashes. Thus, a positive relationship between all these parameters and Hg capture by the coarser ash fractions was found. The finest fraction of carbons ({lt}25 {mu}m) represented an exception. Although it makes a significant contribution to the total carbon of the whole fly ashes and shows relatively higher surface areas and VTOT values, its Hg concentration was found to be the lowest. This suggests that the type of unburned carbons in the finest fraction and/or other adsorption mechanisms may play a role in Hg concentration. Because the textural properties of anisotropic carbons depend on their subtype and on their origin, the need for its differentiation has been evidenced. 54 refs., 8 figs., 3 tabs.

  15. GaN Initiative for Grid Applications (GIGA)

    SciTech Connect (OSTI)

    Turner, George

    2015-07-03

    For nearly 4 ½ years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -even for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 μm, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New “Normally-Off” device architectures were demonstrated – for safe operation of power electronics circuits. The trade-offs between lateral and

  16. Stellar (n,{gamma}) cross sections of p-process isotopes. II. {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg

    SciTech Connect (OSTI)

    Marganiec, J.; Dillmann, I.; Pardo, C. Domingo; Kaeppeler, F.; Walter, S.

    2010-09-15

    The neutron-capture cross sections of {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg have been measured by means of the activation technique. The samples were irradiated in a quasistellar neutron spectrum of kT=25 keV, which was produced at the Karlsruhe 3.7-MV Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. Systematic uncertainties were investigated in repeated activations with different samples and by variation of the experimental parameters, that is, irradiation times, neutron fluxes, and {gamma}-ray counting conditions. The measured data were converted into Maxwellian-averaged cross sections at kT=30 keV, yielding 1214{+-}61, 624{+-}54, 590{+-}43, 511{+-}46, and 201{+-}11 mb for {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg, respectively. The present results either represent first experimental data ({sup 168}Yb, {sup 184}Os, and {sup 196}Hg) or could be determined with significantly reduced uncertainties ({sup 180}W and {sup 190}Pt). These measurements are part of a systematic study of stellar (n,{gamma}) cross sections of the stable p isotopes.

  17. Cationic coordination compound Cs{sub 2}Hg{sub 3}I{sub 8} for IR NLO material: Synthesis, crystal growth and characterizations

    SciTech Connect (OSTI)

    Sathiskumar, S.; Kathiravan, P.; Balakrishnan, T.

    2015-06-24

    Single crystals Cs{sub 2}Hg{sub 3}I{sub 8} of dimensions 5 × 3 × 4   mm{sup 3} were grown by solution growth method at room temperature and structurally characterized by single crystal X – ray diffraction. Cs{sub 2}Hg{sub 3}I{sub 8} compound crystallizes in a noncentrosymmetric space group Cm with the crystal data of a = 7.4415 Å, b = 21.6629 Å, c = 7.6726 Å, α, β = 90°, γ = 108.05° and Z = 2. The grown crystals were characterized by powder X – ray diffraction analysis and the various diffraction planes are indexed. The presence of functional groups was identified qualitatively by Fourier transform infrared and FT – Raman spectral analyses. Ultraviolet – visible spectral analyses shows that the crystal has low UV cut off at 388 nm combined with very good transparency of 98 % in a wide range. The optical band gap was estimated to be 3 eV. Mechanical hardness of the grown crystal Cs{sub 2}Hg{sub 3}I{sub 8} was determined. The dielectric response of the crystal with varying frequencies was studied. Differential scanning calorimetry (DSC) analysis shows that the grown crystal has very good thermal stability up to 97.5°C.

  18. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell. Final subcontract report, 1 January 1991--31 August 1992

    SciTech Connect (OSTI)

    Venkatasubramanian, R.

    1993-01-01

    This report describes work to develop inverted-grown Al{sub 0.34}Ga{sub 0.66}As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al{sub 0.34}Ga{sub 0.66}As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The ``cycled`` organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al{sub 0.34}Ga{sub 0.66}As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

  19. Influence of strain induced by AlN nucleation layer on the electrical properties of AlGaN/GaN heterostructures on Si(111) substrate

    SciTech Connect (OSTI)

    Christy, Dennis; Watanabe, Arata; Egawa, Takashi

    2014-10-15

    The crack-free metal-organic chemical vapor deposition (MOCVD) grown AlGaN/GaN heterostructures on Si substrate with modified growth conditions of AlN nucleation layer (NL) and its influence on the electrical and structural properties of conductive GaN layer are presented. From the Hall electrical measurements, a gradual decrease of two-dimensional electron gas (2DEG) concentration near heterointerface as the function of NL thickness is observed possibly due to the reduction in difference of piezoelectric polarization charge densities between AlGaN and GaN layers. It also indicates that the minimum tensile stress and a relatively less total dislocation density for high pressure grown NL can ensure a 20 % increment in mobility at room temperature irrespective of the interface roughness. The thickness and pressure variations in NL and the subsequent changes in growth mode of AlN contributing to the post growth residual tensile stress are investigated using X-ray diffraction and Raman scattering experiments, respectively. The post growth intrinsic residual stress in top layers of heterostructures arises from lattice mismatches, NL parameters and defect densities in GaN. Hence, efforts to reduce the intrinsic residual stress in current conducting GaN layer give an opportunity to further improve the electrical characteristics of AlGaN/GaN device structures on Si.

  20. Absorption enhancement through Fabry-Prot resonant modes in a 430?nm thick InGaAs/GaAsP multiple quantum wells solar cell

    SciTech Connect (OSTI)

    Behaghel, B.; Tamaki, R.; Watanabe, K.; Sodabanlu, H.; Vandamme, N.; Dupuis, C.; Bardou, N.; Cattoni, A.; Okada, Y.; Sugiyama, M.; Collin, S.; Guillemoles, J.-F.

    2015-02-23

    We study light management in a 430?nm-thick GaAs p-i-n single junction solar cell with 10 pairs of InGaAs/GaAsP multiple quantum wells (MQWs). The epitaxial layer transfer on a gold mirror improves light absorption and increases the external quantum efficiency below GaAs bandgap by a factor of four through the excitation of Fabry-Perot resonances. We show a good agreement with optical simulation and achieve around 10% conversion efficiency. We demonstrate numerically that this promising result can be further improved by anti-reflection layers. This study paves the way to very thin MQWs solar cells.

  1. In-plane tunneling anisotropic magnetoresistance in (Ga,Mn)As/GaAs Esaki diodes in the regime of the excess current

    SciTech Connect (OSTI)

    Shiogai, J.; Ciorga, M. Utz, M.; Schuh, D.; Bougeard, D.; Weiss, D.; Kohda, M.; Nitta, J.; Nojima, T.

    2015-06-29

    We investigate the angular dependence of the tunneling anisotropic magnetoresistance in (Ga,Mn)As/n-GaAs spin Esaki diodes in the regime where the tunneling process is dominated by the excess current through midgap states in (Ga,Mn)As. We compare it to similar measurements performed in the regime of band-to-band tunneling. Whereas the latter show biaxial symmetry typical for magnetic anisotropy observed in (Ga,Mn)As samples, the former is dominated by uniaxial anisotropy along the 〈110〉 axes.

  2. Crystal Growth And Characterization of the Model High-Temperature Superconductor HgBa{sub 2}CuO{sub 4+{delta}}

    SciTech Connect (OSTI)

    Zhao, Xudong; Yu, Guichuan; Cho, Yong-Chan; Chabot-Couture, Guillaume; Barisic, Neven; Bourges, Philippe; Kaneko, Nobuhisa; Li, Yuan; Lu, Li; Motoyama, Eugene M.; Vajk, Owen P.; Greven, Martin; /Stanford U., Appl. Phys. Dept. /SLAC, SSRL /Jilin U. /Stanford U., Phys. Dept. /Saclay /NIST, Wash., D.C.

    2007-03-16

    Since the discovery of high-transition-temperature (T{sub c}) superconductivity in La{sub 2-x}Ba{sub x}CuO{sub 4} in 1986, the study of the lamellar copper oxides has remained at the forefront of condensed matter physics. Apart from their unusually high values of T{sub c}, these materials also exhibit a variety of complex phenomena and phases. This rich behavior is a consequence of the lamellar crystal structures, formed of copper-oxygen sheets separated by charge reservoir layers, and of the strong electron-electron correlations in the copper-oxygen sheets. After two decades of intensive research, which has stimulated many valuable new insights into correlated electron systems in general, there remains a lack of consensus regarding the correct theory for high-T{sub c} superconductivity. The ultimate technological goal of room-temperature superconductivity might only be attained after the development of a deeper understanding of the mercury-based compounds HgBa{sub 2}Ca{sub n-1}Cu{sub n}OI{sub 2n+2+{delta}}, which currently exhibit the highest T{sub c}values. One very important issue in this regard is the role of electronic versus chemical and structural inhomogeneities in these materials, and the associated need to separate material-specific properties from those that are essential to superconductivity. Unfortunately, there has been remarkably little scientific work on the mercury-based compounds because sizable crystals have not been available; quantitative measurements of any kind would be invaluable benchmarks for testing the theories of high-T{sub c} superconductivity. The compounds HgBa{sub 2}Ca{sub n-1}Cu{sub n}OI{sub 2n+2+{delta}} can be viewed as model systems not only because of their record high-T{sub c} values, but also because of their high-symmetry crystal structures. Of particular interest is the simplest member of this materials family, HgBa{sub 2}CuO{sub 4+{delta}} (Hg1201), which possesses only one copper-oxygen sheet per unit cell (n = 1), as

  3. Selective saturation of paramagnetic defects in electron- and neutron-irradiated GaAs

    SciTech Connect (OSTI)

    Goltzene, A.; Meyer, B.; Schwab, C.; Beall, R.B.; Newman, R.C.; Whitehouse, J.E.; Woodhead, J.

    1985-06-15

    A comparison of the electron paramagnetic resonance spectra obtained in fast neutron- and electron-irradiated GaAs crystals has confirmed the simultaneous presence of the quadruplet and singlet spectra, ascribed previously to As/sup 4 +//sub Ga/ and V/sup 2 -//sub Ga/ centers. Only in electron-irradiated material, however, are both signals separated by the selective microwave power saturation of the quadruplet. This apparent disparity is ascribed to a difference in the coupling between the two partners in the As/sup 4 +//sub Ga/-V/sup 2 -//sub Ga/ associated complexes.

  4. Ultra High p-doping Material Research for GaN Based Light Emitters

    SciTech Connect (OSTI)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing

  5. Conductivity based on selective etch for GaN devices and applications thereof

    DOE Patents [OSTI]

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  6. Method of plasma etching Ga-based compound semiconductors

    SciTech Connect (OSTI)

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  7. Method of plasma etching GA-based compound semiconductors

    DOE Patents [OSTI]

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  8. AlGaAs diode pumped tunable chromium lasers

    DOE Patents [OSTI]

    Krupke, William F.; Payne, Stephen A.

    1992-01-01

    An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.

  9. Average Structure Evolution of ?-phase Pu-Ga Alloys

    SciTech Connect (OSTI)

    Smith, Alice Iulia; Page, Katharine L.; Gourdon, Olivier; Siewenie, Joan E.; Richmond, Scott; Saleh, Tarik A.; Ramos, Michael; Schwartz, Daniel S.

    2015-03-30

    [Full Text] Plutonium metal is a highly unusual element, exhibiting six allotropes at ambient pressure, from room temperature to its melting point. Many phases of plutonium metal are unstable with temperature, pressure, chemical additions, and time. This strongly affects structure and properties, and becomes of high importance, particularly when considering effects on structural integrity over long time periods. The fcc ?-phase deserves additional attention, not only in the context of understanding the electronic structure of Pu, but also as one of the few high-symmetry actinide phases that can be stabilized down to ambient pressure and room temperature by alloying it with trivalent elements. We will present results on recent work on aging of Pu-2at.%Ga and Pu-7at.%Ga alloys

  10. Photosensitivity of the Ni-n-GaAs Schottky barriers

    SciTech Connect (OSTI)

    Melebaev, D.; Melebaeva, G. D.; Rud', V. Yu. Rud', Yu. V.

    2009-01-15

    The method of chemical deposition is used to form the structures with the Ni-n-GaAs Schottky barrier. The thickness of the Ni layers with a specular outer surface was varied within the range of 150-220 A. It was experimentally observed for the first time that photosensitivity of the obtained barriers with the semitransparent Ni layers illuminated is practically absent in the Fowler region of the spectrum at hv = 0.9-1.5 eV. This circumstance is related mainly to the fact that, in this case, the Ni layer side of the structure was illuminated, and radiation with the photon energy hv < 1.3 eV was effectively reflected from the nickel surface. It is established that the developed Ni-n-GaAs structures can be used as high-efficiency wide-band photoconverters of both visible and ultraviolet radiation.

  11. Formation and properties of porous GaAs

    SciTech Connect (OSTI)

    Schmuki, P.; Lockwood, D.J.; Fraser, J.W.; Graham, M.J.; Isaacs, H.S.

    1996-06-01

    Porous structures on n-type GaAs (100) can be grown electrochemically in chloride-containing solutions. Crystallographic etching of the sample is a precursor stage of the attack. Polarization curves reveal the existanece of a critical onset potential for por formation (PFP). PFP is strongly dependent on the doping level of the sample and presence of surface defects. Good agreement between PFP and breakdown voltage of the space charge layer is found. Surface analysis by EDX, AES, and XPS show that the porous structure consists mainly of GaAs and that anion uptake in the structure can only observed after attackhas been initiated. Photoluminescence measurements reveal (under certain conditions) visible light emission from the porous structure.

  12. The transputer based GA. SP data acquisition system

    SciTech Connect (OSTI)

    Colombo, D.; Avano, B.; DePoli, M.; Maron, G. ); Negro, A.; Parlati, G. )

    1992-04-01

    In this paper, the new data acquisition for the GA.SP detector is presented. It is a distributed system based on a network of 40 T800 and T222 transputers linked to a VME system used for histogram storage. A 100 MBit/s FDDI ring connects the system to UNIX workstations used for the experiment control, histogram display and second level data analysis.

  13. Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions

    SciTech Connect (OSTI)

    Michael L. Fenger; Richard A. Winschel

    2005-08-31

    A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and

  14. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    SciTech Connect (OSTI)

    Grachev, V.; Meyer, M.; Malovichko, G.; Hunt, A. W.

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20?MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystalsionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and ?-radiation.

  15. Characterization and device performance of (AgCu)(InGa)Se2 absorber layers

    SciTech Connect (OSTI)

    Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.

    2009-06-08

    The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only control samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and ? = 13.0%.

  16. Location of gap nodes in the organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and {kappa}-(ET){sub 2}Cu[N(CN){sub 2}Br determined by magnetocalorimetry.

    SciTech Connect (OSTI)

    Malone, L.; Taylor, O. J.; Schlueter, J. A.; Carrington, A.; Materials Science Division; Univ. Bristol

    2010-07-16

    We report specific-heat measurements of the organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br. When the magnetic field is rotated in the highly conducting planes at low temperature (T = 0.4 K), we observe clear oscillations of specific heat which have a strong fourfold component. The observed strong field and temperature dependence of this fourfold component identifies it as originating from nodes in the superconducting energy gap which point along the in-plane crystal axes (d{sub xy} symmetry).

  17. Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; Monson, Todd C.

    2014-08-18

    This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic techniquemore » is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.« less

  18. Ga lithography in sputtered niobium for superconductive micro and nanowires

    SciTech Connect (OSTI)

    Henry, M. David; Wolfley, Steve; Monson, Todd; Lewis, Rupert

    2014-08-18

    This work demonstrates the use of focused ion beam (FIB) implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12?nm deep with a 14?nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10??m by 10??m and 100??m by 100??m, demonstrate that doses above than 7.5??10{sup 15?}cm{sup ?2} at 30?kV provide adequate mask protection for a 205?nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75?nm wide by 10??m long connected to 50??m wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature (T{sub c})?=?7.7?K was measured using a magnetic properties measurement system. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.

  19. Crystallographically uniform arrays of ordered (In)GaN nanocolumns

    SciTech Connect (OSTI)

    Gačević, Ž. Bengoechea-Encabo, A.; Albert, S.; Calleja, E.

    2015-01-21

    In this work, through a comparative study of self-assembled (SA) and selective area grown (SAG) (In)GaN nanocolumn (NC) ensembles, we first give a detailed insight into improved crystallographic uniformity (homogeneity of crystallographic tilts and twists) of the latter ones. The study, performed making use of: reflective high energy electron diffraction, X-ray diffraction and scanning electron microscopy, reveals that unlike their SA counterparts, the ensembles of SAG NCs show single epitaxial relationship to both sapphire(0001) and Si(111) underlying substrates. In the second part of the article, making use of X-ray diffraction, we directly show that the selective area growth leads to improved compositional uniformity of InGaN NC ensembles. This further leads to improved spectral purity of their luminescence, as confirmed by comparative macro-photoluminescence measurements performed on SA and SAG InGaN NC ensembles. An improved crystallographic uniformity of NC ensembles facilitates their integration into optoelectronic devices, whereas their improved compositional uniformity allows for their employment in single-color optoelectronic applications.

  20. Optical and quantum efficiency analysis of (Ag,Cu)(In,Ga)Se2 absorber layers

    SciTech Connect (OSTI)

    Boyle, Jonathan; Hanket, Gregory; Shafarman, William

    2009-06-09

    (Ag,Cu)(In,Ga)Se2 thin films have been deposited by elemental co-evaporation over a wide range of compositions and their optical properties characterized by transmission and reflection measurements and by relative shift analysis of quantum efficiency device measurements. The optical bandgaps were determined by performing linear fits of (?h?)2 vs. h?, and the quantum efficiency bandgaps were determined by relative shift analysis of device curves with fixed Ga/(In+Ga) composition, but varying Ag/(Cu+Ag) composition. The determined experimental optical bandgap ranges of the Ga/(In+Ga) = 0.31, 0.52, and 0.82 groups, with Ag/(Cu+Ag) ranging from 0 to 1, were 1.19-1.45 eV, 1.32-1.56 eV, and 1.52-1.76 eV, respectively. The optical bowing parameter of the different Ga/(In+Ga) groups was also determined.

  1. Efficiency calculations of thin-film GaAs solar cells on Si substrates

    SciTech Connect (OSTI)

    Yamaguchi, M.; Amano, C.

    1985-11-01

    Dislocation effect upon the efficiency of single-crystal thin-film AlGaAs-GaAs heteroface solar cells on Si substrates is analyzed. Solar-cell properties are calculated based on a simple model; in the model, dislocations act as recombination centers to reduce the minority-carrier diffusion length in each layer and increase the space-charge layer recombination current. Numerical analysis is also carried out to optimize thin-film AlGaAs-GaAs heteroface solar-cell structures. The fabrication of thin-film AlGaAs-GaAs heteroface solar cells with a practical efficiency larger than 18% on Si substrates appears possible if the dislocation density in the thin-film GaAs layer is less than 10/sup 6/ cm/sup -2/.

  2. Comparative investigation of InGaP/GaAs pseudomorphic field-effect transistors with triple doped-channel profiles

    SciTech Connect (OSTI)

    Tsai, Jung-Hui; Guo, Der-Feng; Lour, Wen-Shiung

    2011-09-15

    In this article, the comparison of DC performance on InGaP/GaAs pseudomorphic field-effect transistors with tripe doped-channel profiles is demonstrated. As compared to the uniform and high-medium-low doped-channel devices, the low-medium-high doped-channel device exhibits the broadest gate voltage swing and the best device linearity because more twodimensional electron gases are formed in the heaviest doped channel to enhance the magnitude of negative threshold voltage. Experimentally, the transconductance within 50% of its maximum value for gate voltage swing is 4.62 V in the low-medium-high doped-channel device, which is greater than 3.58 (3.30) V in the uniform (high-medium-low) doped-channel device.

  3. 1.9 kV AlGaN/GaN Lateral Schottky Barrier Diodes on Silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Mingda; Song, Bo; Qi, Meng; Hu, Zongyang; Nomoto, Kazuki; Yan, Xiaodong; Cao, Yu; Johnson, Wayne; Kohn, Erhard; Jena, Debdeep; et al

    2015-02-16

    In this letter, we present AlGaN/GaN lateral Schottky barrier diodes on silicon with recessed anodes and dual field plates. A low specific on-resistance RON,SP (5.12 mΩ · cm2), a low turn-on voltage (<0.7 V) and a high reverse breakdown voltage BV (>1.9 kV), were simultaneously achieved in devices with a 25 μm anode/cathode separation, resulting in a power figure-of-merit (FOM) BV2/RON,SP of 727 MW·cm2. The record high breakdown voltage of 1.9 kV is attributed to the dual field plate structure.

  4. Electron heating due to microwave photoexcitation in the high mobility GaAs/AlGaAs two dimensional electron system

    SciTech Connect (OSTI)

    Ramanayaka, A. N.; Mani, R. G.; Wegscheider, W.

    2013-12-04

    We extract the electron temperature in the microwave photo-excited high mobility GaAs/AlGaAs two dimensional electron system (2DES) by studying the influence of microwave radiation on the amplitude of Shubnikov-de Haas oscillations (SdHOs) in a regime where the cyclotron frequency, ?{sub c}, and the microwave angular frequency, ?, satisfy 2? ? ?{sub c} ? 3.5? The results indicate that increasing the incident microwave power has a weak effect on the amplitude of the SdHOs and therefore the electron temperature, in comparison to the influence of modest temperature changes on the dark-specimen SdH effect. The results indicate negligible electron heating under modest microwave photo-excitation, in good agreement with theoretical predictions.

  5. Origin of radiative recombination and manifestations of localization effects in GaAs/GaNAs core/shell nanowires

    SciTech Connect (OSTI)

    Chen, S. L.; Filippov, S.; Chen, W. M.; Buyanova, I. A.; Ishikawa, Fumitaro

    2014-12-22

    Radiative carrier recombination processes in GaAs/GaNAs core/shell nanowires grown by molecular beam epitaxy on a Si substrate are systematically investigated by employing micro-photoluminescence (?-PL) and ?-PL excitation (?-PLE) measurements complemented by time-resolved PL spectroscopy. At low temperatures, alloy disorder is found to cause localization of photo-excited carriers leading to predominance of optical transitions from localized excitons (LE). Some of the local fluctuations in N composition are suggested to lead to strongly localized three-dimensional confining potential equivalent to that for quantum dots, based on the observation of sharp and discrete PL lines within the LE contour. The localization effects are found to have minor influence on PL spectra at room temperature due to thermal activation of the localized excitons to extended states. Under these conditions, photo-excited carrier lifetime is found to be governed by non-radiative recombination via surface states which is somewhat suppressed upon N incorporation.

  6. Terrestrial Concentrator PV Modules Based on GaInP/GaAs/Ge TJ Cells and Minilens Panels

    SciTech Connect (OSTI)

    Rumyantsev, V. D.; Sadchikov, N. A.; Chalov, A. E.; Ionova, E. A.; Friedman, D. J.; Glenn, G.

    2006-01-01

    This paper is a description of research activity in the field of cost-effective modules realizing the concept of very high solar concentration with small-aperture area Fresnel lenses and multijunction III-V cells. Structural simplicity and 'all-glass' design are the guiding principles of the corresponding development. The advanced concentrator modules are made with silicone Fresnel lens panels (from 8 up to 144 lenses, each lens is 4 times 4 cm{sup 2} in aperture area) with composite structure. GaInP/GaAs/Ge triple-junction cells with average efficiencies of 31.1 and 34.7% at 1000 suns were used for the modules. Conversion efficiency as high as 26.3% has been measured indoors in a test module using a newly developed large-area solar simulator.

  7. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; Zhu, Weidi; Kim, Byung-Jae; Le, Lingcong; Ren, Fan; Lind, Aaron G.; Dahl, James; Jones, Kevin S.; et al

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and aftermore » BOE exposure.« less

  8. Passivation of deep level states caused by misfit dislocations in InGaAs on patterned GaAs

    SciTech Connect (OSTI)

    Matragrano, M.J.; Watson, G.P.; Ast, D.G. ); Anderson, T.J.; Pathangey, B. )

    1993-03-22

    Deep level transient spectroscopy (DLTS) and cathodoluminescence (CL) were used to study the hydrogen passivation of misfit dislocations in In[sub 0.06]Ga[sub 0.94]As/GaAs heterostructures. The CL observations indicate that hydrogen plasma exposure passivates most, but not all, of the dark line defects existing in the specimen prior to hydrogenation. The concentration of deep level defect states that cannot be passivated is below the detection limit of the DLTS instrument (approximately 4[times]10[sup 12] cm[sup [minus]3]). We find the passivation is stable after anneals at temperatures as high as 600 [degree]C, indicating that hydrogen passivation of misfit dislocations is at least as stable as that of the isolated point defect studied previously with DLTS [W. C. Dautremont-Smith, J. C. Nabity, V. Swaminathan, M. Stavola, J. Chevalier, C. W. Tu, and S. J. Pearton, Appl. Phys. Lett. [bold 49] 1098 (1986)].

  9. Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission

    SciTech Connect (OSTI)

    Young, Erin C.; Wu Feng; Haeger, Daniel A.; Nakamura, Shuji; Denbaars, Steven P.; Cohen, Daniel A.; Speck, James S.; Romanov, Alexey E.

    2012-10-01

    In this Letter, we report on the growth and properties of relaxed, compositionally graded Al{sub x}Ga{sub 1-x}N buffer layers on freestanding semipolar (2021) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 10{sup 6}/cm{sup 2} as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.

  10. Study of the one dimensional electron gas arrays confined by steps in vicinal GaN/AlGaN heterointerfaces

    SciTech Connect (OSTI)

    Li, Huijie E-mail: sh-yyang@semi.ac.cn; Zhao, Guijuan; Liu, Guipeng; Wei, Hongyuan; Jiao, Chunmei; Yang, Shaoyan E-mail: sh-yyang@semi.ac.cn; Wang, Lianshan; Zhu, Qinsheng

    2014-05-21

    One dimensional electron gas (1DEG) arrays in vicinal GaN/AlGaN heterostructures have been studied. The steps at the interface would lead to the lateral barriers and limit the electron movement perpendicular to such steps. Through a self-consistent Schrdinger-Poisson approach, the electron energy levels and wave functions were calculated. It was found that when the total electron density was increased, the lateral barriers were lowered due to the screening effects by the electrons, and the electron gas became more two-dimension like. The calculated 1DEG densities were compared to the experimental values and good agreements were found. Moreover, we found that a higher doping density is more beneficial to form 1-D like electron gas arrays.

  11. Microstructure of V-based ohmic contacts to AlGaN/GaN heterostructures at a reduced annealing temperature

    SciTech Connect (OSTI)

    Schmid, A. Schroeter, Ch.; Otto, R.; Heitmann, J.; Schuster, M.; Klemm, V.; Rafaja, D.

    2015-02-02

    Ohmic contacts with V/Al/Ni/Au and V/Ni/Au metalization schemes were deposited on AlGaN/GaN heterostructures. The dependence of the specific contact resistance on the annealing conditions and the V:Al thickness ratio was shown. For an optimized electrode stack, a low specific contact resistance of 8.9??10{sup ?6} ? cm{sup 2} was achieved at an annealing temperature of 650?C. Compared to the conventional Ti/Al/Ni/Au contact, this is a reduction of 150?K. The microstructure and contact formation at the AlGaN/metal interface were investigated by transmission electron microscopy including high-resolution micrographs and energy dispersive X-ray analysis. It was shown that for low-resistive contacts, the resistivity of the metalization has to be taken into account. The V:Al thickness ratio has an impact on the formation of different intermetallic phases and thus is crucial for establishing ohmic contacts at reduced annealing temperatures.

  12. Demonstration of isotype GaN/AlN/GaN heterobarrier diodes by NH{sub 3}-molecular beam epitaxy

    SciTech Connect (OSTI)

    Fireman, Micha N.; Browne, David A.; Mazumder, Baishakhi; Speck, James S.; Mishra, Umesh K.

    2015-05-18

    The results of vertical transport through nitride heterobarrier structures grown by ammonia molecular beam epitaxy are presented. Structures are designed with binary layers to avoid the effects of random alloy fluctuations in ternary nitride barriers. The unintentional incorporation of Ga in the AlN growth is investigated by atom probe tomography and is shown to be strongly dependent on both the NH{sub 3} flowrate and substrate temperature growth parameters. Once nominally pure AlN layer growth conditions are achieved, structures consisting of unintentionally doped (UID) GaN spacer layers adjacent to a nominally pure AlN are grown between two layers of n+ GaN, from which isotype diodes are fabricated. Varying the design parameters of AlN layer thickness, UID spacer layer thickness, and threading dislocation density show marked effects on the vertical transport characteristics of these structures. The lack of significant temperature dependence, coupled with Fowler-Nordheim and/or Milliken-Lauritsen analysis, point to a prevalently tunneling field emission mechanism through the AlN barrier. Once flatband conditions in the UID layer are achieved, electrons leave the barrier with significant energy. This transport mechanism is of great interest for applications in hot electron structures.

  13. Enhanced internal quantum efficiency and light extraction efficiency from textured GaN/AlGaN quantum wells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Cabalu, J.S.; Thomidis, C.; Moustakas, T.D.; Riyopoulos, S.; Zhou Lin; Smith, David J.

    2006-03-15

    GaN/Al{sub 0.2}Ga{sub 0.8}N multiple quantum wells (MQWs) were grown by molecular beam epitaxy on randomly textured and atomically smooth (0001) GaN templates. Smooth and textured GaN templates were deposited on (0001) sapphire substrates by varying the III/V ratio and the substrate temperature during growth by the hydride vapor-phase epitaxy method. We find that the MQWs replicate the texture of the GaN template, which was found to have a Gaussian distribution. The peak photoluminescence intensity from the textured MQWs is always higher than from the smooth MQWs and for GaN (7 nm)/Al{sub 0.2}Ga{sub 0.8}N (8 nm) MQWs, it is 700 times higher than that from similarly produced MQWs on smooth GaN templates. This result is attributed partly to the enhancement in light extraction efficiency and partly to the enhancement in internal quantum efficiency. The origin of the increase in internal quantum efficiency is partly due to the reduction of the quantum-confined Stark effect, since the polarization vector intersects the quantum well (QW) planes at angles smaller than 90 deg. , and partly due to the charge redistribution in the QWs caused by the polarization component parallel to the planes of the QWs.

  14. Selective area epitaxy of monolithic white-light InGaN/GaN quantum well microstripes with dual color emission

    SciTech Connect (OSTI)

    Li, Yuejing; Tong, Yuying; Yang, Guofeng Yao, Chujun; Sun, Rui; Cai, Lesheng; Xu, Guiting; Wang, Jin; Zhang, Qing; Ye, Xuanchao; Wu, Mengting; Wen, Zhiqin

    2015-09-15

    Monolithic color synthesis is demonstrated using InGaN/GaN multiple quantum wells (QWs) grown on GaN microstripes formed by selective area epitaxy on SiO{sub 2} mask patterns. The striped microfacet structure is composed of (0001) and (11-22) planes, attributed to favorable surface polarity and surface energy. InGaN/GaN QWs on different microfacets contain spatially inhomogeneous compositions owing to the diffusion of adatoms among the facets. This unique property allows the microfacet QWs to emit blue light from the (11-22) plane and yellow light from the top (0001) plane, the mixing of which leads to the perception of white light emission.

  15. Temporally and spatially resolved photoluminescence investigation of (112{sup }2) semi-polar InGaN/GaN multiple quantum wells grown on nanorod templates

    SciTech Connect (OSTI)

    Liu, B.; Smith, R.; Athanasiou, M.; Yu, X.; Bai, J.; Wang, T.

    2014-12-29

    By means of time-resolved photoluminescence (PL) and confocal PL measurements, temporally and spatially resolved optical properties have been investigated on a number of In{sub x}Ga{sub 1?x}N/GaN multiple-quantum-well (MQW) structures with a wide range of indium content alloys from 13% to 35% on (112{sup }2) semi-polar GaN with high crystal quality, obtained through overgrowth on nanorod templates. With increasing indium content, the radiative recombination lifetime initially increases as expected, but decreases if the indium content further increases to 35%, corresponding to emission in the green spectral region. The reduced radiative recombination lifetime leads to enhanced optical performance for the high indium content MQWs as a result of strong exciton localization, which is different from the behaviour of c-plane InGaN/GaN MQWs, where quantum confined Stark effect plays a dominating role in emission process.

  16. Temperature measurement of an atmospheric pressure arc discharge plasma jet using the diatomic CN (B {sup 2}{sigma}{sup +}-X {sup 2}{sigma}{sup +}, violet system) molecular spectra

    SciTech Connect (OSTI)

    Moon, Se Youn; Kim, D. B.; Gweon, B.; Choe, W.

    2009-03-01

    The CN (B {sup 2}{sigma}{sup +}-X {sup 2}{sigma}{sup +}) molecular emission spectrum is used to measure both the vibrational and rotational temperatures in atmospheric pressure arc jet discharges. The vibrational and rotational temperature effects on the synthetic diatomic molecular spectra were investigated from the (v{sup '},v{sup ''})=(0,0) band to the (5,5) band. The temperatures obtained from the synthetic spectra compared with the experimental result of a low-frequency arc discharge show a vibrational temperature of (4250-5010) K and a rotational temperature of (3760-3980) K for the input power in the range of (80-280) W. As the (0,0) band is isolated from other vibrational transition bands, determination of the rotational temperature is possible based only on the (0,0) band, which simplifies the temperature measurement. From the result, it was found that the CN molecular spectrum can be used as a thermometer for atmospheric pressure plasmas containing carbon and nitrogen.

  17. H irradiation effects on the GaAs-like Raman modes in GaAs{sub 1-x}N{sub x}/GaAs{sub 1-x}N{sub x}:H planar heterostructures

    SciTech Connect (OSTI)

    Giulotto, E. Geddo, M.; Patrini, M.; Guizzetti, G.; Felici, M.; Capizzi, M.; Polimeni, A.; Martelli, F.; Rubini, S.

    2014-12-28

    The GaAs-like longitudinal optical phonon frequency in two hydrogenated GaAs{sub 1-x}N{sub x}/GaAs{sub 1-x}N{sub x}:H microwire heterostructureswith similar N concentration, but different H dose and implantation conditionshas been investigated by micro-Raman mapping. In the case of GaAs{sub 0.991}N{sub 0.009} wires embedded in barriers where GaAs-like properties are recovered through H irradiation, the phonon frequency in the barriers undergoes a blue shift with respect to the wires. In GaAs{sub 0.992}N{sub 0.008} wires embedded in less hydrogenated barriers, the phonon frequency exhibits an opposite behavior (red shift). Strain, disorder, phonon localization effects induced by H-irradiation on the GaAs-like phonon frequency are discussed and related to different types of N-H complexes formed in the hydrogenated barriers. It is shown that the red (blue) character of the frequency shift is related to the dominant N-2H (N-3H) type of complexes. Moreover, for specific experimental conditions, an all-optical determination of the uniaxial strain field is obtained. This may improve the design of recently presented devices that exploit the correlation between uniaxial stress and the degree of polarization of photoluminescence.

  18. GaSb substrates with extended IR wavelength for advanced space based applications

    SciTech Connect (OSTI)

    Allen, Lisa P.; Flint, Patrick; Dallas, Gordon; Bakken, Daniel; Blanchat, Kevin; Brown, Gail J.; Vangala, Shivashankar R.; Goodhue, William D.; Krishnaswami, Kannan

    2009-05-01

    GaSb substrates have advantages that make them attractive for implementation of a wide range of infrared (IR) detectors with higher operating temperatures for stealth and space based applications. A significant aspect that would enable widespread commercial application of GaSb wafers for very long wavelength IR (VLWIR) applications is the capability for transmissivity beyond 15 m. Due largely to the GaSb (antisite) defect and other point defects in undoped GaSb substrates, intrinsic GaSb is still slightly p-type and strongly absorbs in the VLWIR. This requires backside thinning of the GaSb substrate for IR transmissivity. An extremely low n-type GaSb substrate is preferred to eliminate thinning and provide a substrate solution for backside illuminated VLWIR devices. By providing a more homogeneous radial distribution of the melt solute to suppress GaSb formation and controlling the cooling rate, ultra low doped n:GaSb has been achieved. This study examines the surface properties and IR transmission spectra of ultra low doped GaSb substrates at both room and low temperatures. Atomic force microscopy (AFM), homoepitaxy by MBE, and infrared Fourier transform (FTIR) analysis was implemented to examine material quality. As compared with standard low doped GaSb, the ultra low doped substrates show over 50% transmission and consistent wavelength transparency past 23 m with improved %T at low temperature. Homoepitaxy and AFM results indicate the ultra low doped GaSb has a low thermal desorbtion character and qualified morphology. In summary, improvements in room temperature IR transmission and extended wavelength characteristics have been shown consistently for ultra low doped n:GaSb substrates.

  19. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment

    DOE Patents [OSTI]

    Grossman, Mark W.

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  20. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1993-02-16

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  1. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Masuda, T; Tomasulo, S; Lang, JR; Lee, ML

    2015-03-07

    We have investigated similar to 2.0 eV (AlxGa1-x)(0.51)In0.49P and similar to 1.9 eV Ga0.51In0.49P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (AlxGa1-x)(0.51)In0.49P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V-oc) ranging from 1.29 to 1.30 V for Ga0.51In0.49P cells, and 1.35-1.37 V for (AlxGa1-x)(0.51)In0.49P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W-oc = E-g/q - V-oc) of Ga0.51In0.49P cells to decrease from similar to 575 mV to similar to 565 mV, while that of (AlxGa1-x)(0.51)In0.49P cells remained nearly constant at 620 mV. The constant Woc as a function of substrate offcut for (AlxGa1-x)(0.51)In0.49P implies greater losses from non-radiative recombination compared with the Ga0.51In0.49P devices. In addition to larger Woc values, the (AlxGa1-x)(0.51)In0.49P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga0.51In0.49P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (AlxGa1-x)(0.51)In0.49P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells. (C) 2015 AIP Publishing LLC.

  2. Method of making V.sub.3 Ga superconductors

    DOE Patents [OSTI]

    Dew-Hughes, David

    1980-01-01

    An improved method for producing a vanadium-gallium superconductor wire having aluminum as a component thereof is disclosed, said wire being encased in a gallium bearing copper sheath. The superconductors disclosed herein may be fabricated under normal atmospheres and room temperatures by forming a tubular shaped billet having a core composed of an alloy of vanadium and aluminum and an outer sheath composed of an alloy of copper, gallium and aluminum. Thereafter the entire billet is swage reduced to form a wire therefrom and heat treated to form a layer of V.sub.3 Ga in the interior of the wire.

  3. Structure, transport and thermal properties of UCoGa

    SciTech Connect (OSTI)

    Purwanto, A.; Robinson, R.A.; Prokes, K.

    1994-04-01

    By means of neutron powder diffraction, we find that UCoGa crystallizes in the hexagonal ZrNiAl structure and orders ferromagnetically at low temperatures with magnetic moments stacked along the c axis. The magnetic-ordering temperature is reflected in anomalies in the temperature dependencies of the electrical resistivity and the specific heat at Tc = 47 K. Furthermore, the strong anisotropy in the electrical resistivity for i {parallel} c and i {perpendicular} c indicates a significant contribution of the magnetic anisotropy to the electrical resistivity.

  4. Quantum effects in electron beam pumped GaAs

    SciTech Connect (OSTI)

    Yahia, M. E.; National Institute of Laser Enhanced Sciences , Cairo University ; Azzouz, I. M.; Moslem, W. M.

    2013-08-19

    Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.

  5. Low dimensional GaAs/air vertical microcavity lasers

    SciTech Connect (OSTI)

    Gessler, J.; Steinl, T.; Fischer, J.; Hfling, S.; Schneider, C.; Kamp, M.; Mika, A.; S?k, G.; Misiewicz, J.

    2014-02-24

    We report on the fabrication of gallium arsenide (GaAs)/air distributed Bragg reflector microresonators with indium gallium arsenide quantum wells. The structures are studied via momentum resolved photoluminescence spectroscopy which allows us to investigate a pronounced optical mode quantization of the photonic dispersion. We can extract a length parameter from these quantized states whose upper limit can be connected to the lateral physical extension of the microcavity via analytical calculations. Laser emission from our microcavity under optical pumping is observed in power dependent investigations.

  6. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology

    SciTech Connect (OSTI)

    Vernon, S.M. )

    1993-04-01

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  7. GaInP semiconductor compounds doped with the Sb isovalent impurity

    SciTech Connect (OSTI)

    Skachkov, A. F.

    2015-05-15

    GaInP{sub 1−x}Sb{sub x} layers containing different Sb fractions are produced by metal-organic vaporphase epitaxy on GaAs and Ge substrates. The charge-carrier mobilities in the GaInP{sub 1−x}Sb{sub x} layers are measured at room temperature and 77 K. The room-temperature charge-carrier mobilities in the GaInP{sub 1−x}Sb{sub x} layers additionally doped with donor and acceptor impurities are measured. The photoluminescence peaks of GaInP{sub 1−x}Sb{sub x} are detected. The influence of the Sb impurity on the band gap and charge-carrier mobility in GaInP is determined.

  8. Improving p-type doping efficiency in Al{sub 0.83}Ga{sub 0.17}N alloy substituted by nanoscale (AlN){sub 5}/(GaN){sub 1} superlattice with Mg{sub Ga}-O{sub N} δ-codoping: Role of O-atom in GaN monolayer

    SciTech Connect (OSTI)

    Zhong, Hong-xia; Shi, Jun-jie Jiang, Xin-he; Huang, Pu; Ding, Yi-min; Zhang, Min

    2015-01-15

    We calculate Mg-acceptor activation energy E{sub A} and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on E{sub A} in nanoscale (AlN){sub 5}/(GaN){sub 1} superlattice (SL), a substitution for Al{sub 0.83}Ga{sub 0.17}N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMg{sub Ga}-O{sub N} (n = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing E{sub A}. The shorter the Mg-O bond is, the smaller the E{sub A} is. The Mg-acceptor activation energy can be reduced significantly by nMg{sub Ga}-O{sub N} δ-codoping. Our calculated E{sub A} for 2Mg{sub Ga}-O{sub N} is 0.21 eV, and can be further reduced to 0.13 eV for 3Mg{sub Ga}-O{sub N}, which results in a high hole concentration in the order of 10{sup 20} cm{sup −3} at room temperature in (AlN){sub 5}/(GaN){sub 1} SL. Our results prove that nMg{sub Ga}-O{sub N} (n = 2,3) δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  9. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    SciTech Connect (OSTI)

    Liu, Dong; Sun, Huarui; Pomeroy, James W.; Kuball, Martin; Francis, Daniel; Faili, Firooz; Twitchen, Daniel J.

    2015-12-21

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  10. GaAsSb/GaAsN short-period superlattices as a capping layer for improved InAs quantum dot-based optoelectronics

    SciTech Connect (OSTI)

    Utrilla, A. D.; Ulloa, J. M. Guzman, A.; Hierro, A.

    2014-07-28

    The application of a GaAsSb/GaAsN short-period superlattice capping layer (CL) on InAs/GaAs quantum dots (QDs) is shown to be an option for providing improved luminescence properties to this system. Separating both GaAsSb and GaAsN ternaries during the growth in 2 monolayer-thick phases solves the GaAsSbN immiscibility-related problems. Strong fluctuations in the CL composition and strain field as well as in the QD size distribution are significantly reduced, and a more regular CL interface is also obtained. Room-temperature (RT) photoluminescence (PL) is obtained for overall N contents as high as 3%, yielding PL peak wavelengths beyond 1.4 μm in samples with a type-II band alignment. High external quantum efficiency electroluminescence and photocurrent from the QD ground state are also demonstrated at RT in a single QD-layer p-i-n device. Thus, it becomes possible to combine and transfer the complementary benefits of Sb- and N-containing GaAs alloys to InAs QD-based optoelectronics.

  11. Electron and hole gas in modulation-doped GaAs/Al{sub 1-x}Ga{sub x}As radial heterojunctions

    SciTech Connect (OSTI)

    Bertoni, Andrea; Royo, Miquel; Mahawish, Farah; Goldoni, Guido

    2011-11-15

    We perform self-consistent Schroedinger-Poisson calculations with exchange and correlation corrections to determine the electron and hole gas in a radial heterojunction formed in a GaAs/AlGaAs core-multi-shell nanowire, which is either n- or p-doped. We show that the electron and hole gases can be tuned to different localizations and symmetries inside the core as a function of the doping density/gate potential. Contrary to planar heterojunctions, conduction electrons do not form a uniform 2D electron gas (2DEG) localized at the GaAs/AlGaAs interface, but rather show a transition between an isotropic, cylindrical distribution deep in the GaAs core (low doping) and a set of six tunnel-coupled quasi-1D channels at the edges of the interface (high doping). Holes, on the other hand, are much more localized at the GaAs/AlGaAs interface. At low doping, they present an additional localization pattern with six separated 2DEGs strips. The field generated by a back-gate may easily deform the electron or hole gas, breaking the sixfold symmetry. Single 2DEGs at one interface or multiple quasi-1D channels are shown to form as a function of voltage intensity, polarity, and carrier type.

  12. Analysis of the GaInP/GaAs/1-eV/Ge Cell and Related Structures for Terrestrial Concentrator Application: Preprint

    SciTech Connect (OSTI)

    Friedman, D. J.; Kurtz, S. R.; Geisz, J. F.

    2002-05-01

    This conference paper describes the analysis of the potential of GaInP/GaAs/1-eV/Ge four-junction solar cell to improve on the efficiency of the state-of-the-art GaInP/GaAs/Ge benchmark. We emphasize three factors: (1) The newly proposed terrestrial concentrator spectrum has a lower ratio of red to blue light than does the old AM1.5 direct standard spectrum. (2) Standard two-layer antireflection coatings do not provide near-zero reflectance over the full spectral range of interest for these devices. (3) GaInNAs junctions used to date for the 1-eV junction have quantum efficiencies less than {approx}75%. These factors all limit the device current, adversely affecting the four-junction efficiency. We discuss strategies for ameliorating this problem, including going to alternate structures such as a GaInP/GaAs/0.9-eV three-junction device.

  13. Relaxation and critical strain for maximum In incorporation in AlInGaN on GaN grown by metal organic vapour phase epitaxy

    SciTech Connect (OSTI)

    Reuters, Benjamin; Finken, M.; Wille, A.; Kalisch, H.; Vescan, A.; Hollaender, B.; Heuken, M.

    2012-11-01

    Quaternary AlInGaN layers were grown on conventional GaN buffer layers on sapphire by metal organic vapour phase epitaxy at different surface temperatures and different reactor pressures with constant precursor flow conditions. A wide range in compositions within 30-62% Al, 5-29% In, and 23-53% Ga was covered, which leads to different strain states from high tensile to high compressive. From high-resolution x-ray diffraction and Rutherford backscattering spectrometry, we determined the compositions, strain states, and crystal quality of the AlInGaN layers. Atomic force microscopy measurements were performed to characterize the surface morphology. A critical strain value for maximum In incorporation near the AlInGaN/GaN interface is presented. For compressively strained layers, In incorporation is limited at the interface as residual strain cannot exceed an empirical critical value of about 1.1%. Relaxation occurs at about 15 nm thickness accompanied by strong In pulling. Tensile strained layers can be grown pseudomorphically up to 70 nm at a strain state of 0.96%. A model for relaxation in compressively strained AlInGaN with virtual discrete sub-layers, which illustrates the gradually changing lattice constant during stress reduction is presented.

  14. D{sub 3h} [A-CE{sub 3}-A]{sup −} (E = Al and Ga, A = Si, Ge, Sn, and Pb): A new class of hexatomic mono-anionic species with trigonal bipyramidal carbon

    SciTech Connect (OSTI)

    Wu, Yan-Bo E-mail: zxwang@ucas.ac.cn; Li, Yan-Qin; Bai, Hui; Lu, Hai-Gang; Li, Si-Dian; Zhai, Hua-Jin; Wang, Zhi-Xiang E-mail: zxwang@ucas.ac.cn

    2014-03-14

    The non-classical trigonal bipyramidal carbon (TBPC) arrangement generally exists as transition states (TSs) in nucleophilic bimolecular substitution (S{sub N}2) reactions. Nevertheless, chemists have been curious about whether such a carbon bonding could be stable in equilibrium structures for decades. As the TBPC arrangement was normally realized as cationic species theoretically and experimentally, only one anionic example ([At-C(CN){sub 3}-At]{sup −}) was computationally devised. Herein, we report the design of a new class of anionic TBPC species by using the strategy similar to that for stabilizing the non-classical planar hypercoordinate carbon. When electron deficient Al and Ga were used as the equatorial ligands, eight D{sub 3h} [A-CE{sub 3}-A]{sup −} (E = Al and Ga, A = Si, Ge, Sn, and Pb) TBPC structures were found to be the energy minima rather than TSs at both the B3LYP and MP2 levels. Remarkably, the energetic results at the CCSD(T) optimization level further identify [Ge-CAl{sub 3}-Ge]{sup −} and [Sn-CGa{sub 3}-Sn]{sup −} even to be the global minima and [Si-CAl{sub 3}-Si]{sup −} and [Ge-CGa{sub 3}-Ge]{sup −} to be the local minima, only slightly higher than their global minima. The electronic structure analyses reveal that the substantial ionic C–E bonding, the peripheral E–A covalent bonding, and the axial mc-2e (multi center-two electrons) bonding play roles in stabilizing these TBPC structures. The structural simplicity and the high thermodynamic stability suggest that some of these species may be generated and captured in the gas phase. Furthermore, as mono-anionic species, their first vertical detachment energies are differentiable from those of their nearest isomers, which would facilitate their characterization via experiments such as the negative ion photoelectron spectroscopy.

  15. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  16. ALD TiO2-Al2O3 Stack: An Improved Gate Dielectrics on Ga-polar GaN MOSCAPs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Meyer, III, Harry M.

    2014-10-15

    This research focuses on the benefits and properties of TiO2-Al2O3 nano-stack thin films deposited on Ga2O3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO2, 7.1 nm Al2O3 and 2 nm Ga2O3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectron spectroscopy (XPS) depth profile, was negligible for GaN pretreated bymore » thermal oxidation in O2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO2-Al2O3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al2O3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 1011 cm-2. The gate leakage current density (J=2.81× 10-8 A/cm2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO2/Al2O3 for serving as the gate oxide on Ga2O3/GaN based MOS devices.« less

  17. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    SciTech Connect (OSTI)

    Iida, Daisuke; Fadil, Ahmed Ou, Yiyu; Kopylov, Oleksii; Ou, Haiyan; Chen, Yuntian; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2015-09-15

    We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm{sup 2}, and a factor of 8.1 at 1 W/cm{sup 2}. A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor.

  18. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    SciTech Connect (OSTI)

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; Pan, Janet L.; Jungjohann, Katherine Leigh; Tu, Charles W.; Dayeh, Shadi A.

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.

  19. Antimonide-Based Long-Wavelength Lasers on GaAs Substrates

    SciTech Connect (OSTI)

    KLEM,JOHN F.; Blum, O.

    2000-08-17

    We have investigated the use of GaAsSb in edge-emitting laser active regions, in order to obtain lasing near 1.3 {micro}m. Single quantum well GaAsSb devices display electroluminescence at wavelengths as long as 1.34 {micro}m, but substantial blueshifts occur under high injection conditions. GaAsSb single quantum well edge emitters have been obtained which lase at 1.275 {micro}m with a room-temperature threshold current density as low as 535 A/cm{sup 2}. Modification of the basic GaAsSb/GaAs structure with the addition of InGaAs layers results in a strongly type-II band alignment which can be used to further extend the emission wavelength of these devices. Using GaAsSb/InGaAs active regions, lasers emitting at 1.17 {micro}m have been obtained with room-temperature threshold current densities of 120 A/cm{sup 2}, and devices operating at 1.29 {micro}m have displayed thresholds as low as 375 A/cm{sup 2}. Characteristic temperatures for devices employing various GaAsSb-based active regions have been measured to be 60-73 K.

  20. In-situ crystallization of GeTe\\GaSb phase change memory stacked films

    SciTech Connect (OSTI)

    Velea, A.; Borca, C. N.; Grolimund, D.; Socol, G.; Galca, A. C.; Popescu, M.; Bokhoven, J. A. van

    2014-12-21

    Single and double layer phase change memory structures based on GeTe and GaSb thin films were deposited by pulsed laser deposition (PLD). Their crystallization behavior was studied using in-situ synchrotron techniques. Electrical resistance vs. temperature investigations, using the four points probe method, showed transition temperatures of 138 °C and 198 °C for GeTe and GaSb single films, respectively. It was found that after GeTe crystallization in the stacked films, Ga atoms from the GaSb layer diffused in the vacancies of the GeTe crystalline structure. Therefore, the crystallization temperature of the Sb-rich GaSb layer is decreased by more than 30 °C. Furthermore, at 210 °C, the antimony excess from GaSb films crystallizes as a secondary phase. At higher annealing temperatures, the crystalline Sb phase increased on the expense of GaSb crystalline phase which was reduced. Extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges revealed changes in their local atomic environments as a function of the annealing temperature. Simulations unveil a tetrahedral configuration in the amorphous state and octahedral configuration in the crystalline state for Ge atoms, while Ga is four-fold coordinated in both as-deposited and annealed samples.

  1. Interface Reactions and Electrical Characteristics of Au/GaSb Contacts

    SciTech Connect (OSTI)

    H. Ehsani; R.J. Gutmann; G.W. Charache

    2000-07-07

    The reaction of Au with GaSb occurs at a relatively low temperature (100 C). Upon annealing, a AuSb{sub 2} compound and several Au-Ga phases are produced. Phase transitions occur toward higher Ga concentration with increasing annealing temperatures. Furthermore, the depth of the contact also increases with increased annealing temperature. They found that the AuSb{sub 2} compound forms on the GaSb surface, with the compound crystal partially ordered with respect to the substrate. The transition of Schottky- to ohmic-contact behavior in Au/n-type GaSb occurs simultaneously with the formation of the AuGa compound at about a 250 C annealing temperature. This ohmic contact forms without the segregation of dopants at the metallic compound/GaSb interface. Therefore it is postulated that transition from Schottky- to ohmic-contact behavior is obtained through a series of tunneling transitions of electrons through defects in the depletion region in the Au/n-type GaSb contacts. Contact resistivities of 6-7 x 10{sup -6} {Omega}-cm{sup 2} were obtained with the annealing temperature between 300 and 350 C for 30 seconds. In Au/p-type GaSb contacts, the resistivity was independent of the annealing temperature. This suggested that the carrier transport in p-type contact dominated by thermionic emission.

  2. Structural defects in GaN revealed by Transmission Electron Microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liliental-Weber, Zuzanna

    2014-09-08

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  3. Double Power Output for GaAs Solar Cells Embedded in Luminescent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Double power output of bifacial thin-film GaAs microscale solar cells is achieved by embedding in luminescent waveguides (LSCs) with light- trapping backside reflectors (BSRs). ...

  4. Vacancy defects in as-grown and neutron irradiated GaP studied by positrons

    SciTech Connect (OSTI)

    Dlubek, G.; Bruemmer, O.; Polity, A.

    1986-08-18

    Positron lifetime and Doppler-broadening measurements have been used to study vacancy defects in n-italic-type GaP. Vacancies in the P sublattice with a concentration of some 10/sup 17/ cm/sup -3/ were observed in as-grwon GaP. The vacancies disappear during annealing at 500--800 /sup 0/C. In neutron-irradiated GaP positrons are trapped by Ga vacancies which anneal out in two stages situated at 300--550 /sup 0/C and 550--700 /sup 0/C.

  5. Influence of Growth Temperature on AlGaN Multi-Quantum Well Point...

    Office of Scientific and Technical Information (OSTI)

    Influence of Growth Temperature on AlGaN Multi-Quantum Well Point Defect Incorporation and Photoluminescence Efficiency. Citation Details In-Document Search Title: Influence of ...

  6. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; Pan, Janet L.; Jungjohann, Katherine Leigh; Tu, Charles W.; Dayeh, Shadi A.

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than othermore » solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.« less

  7. Structural defects in GaN revealed by Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Liliental-Weber, Zuzanna

    2014-04-18

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  8. Investigation of new approaches for InGaN growth with high indium...

    Office of Scientific and Technical Information (OSTI)

    issues of phase separation and high dislocation density in InGaN-based PIN solar cells. ... Language: English Subject: 36 MATERIALS SCIENCE; 14 SOLAR ENERGY; COMPARATIVE EVALUATIONS; ...

  9. Relaxation of compressively strained AlGaN by inclined threading...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Relaxation of compressively strained AlGaN by inclined threading dislocations. Citation Details ... Publication Date: 2005-06-01 OSTI Identifier: 973648 Report ...

  10. High-temperature luminescence in an n-GaSb/n-InGaAsSb/p-AlGaAsSb light-emitting heterostructure with a high potential barrier

    SciTech Connect (OSTI)

    Petukhov, A. A., E-mail: andrey-rus29@rambler.ru; Zhurtanov, B. E.; Kalinina, K. V.; Stoyanov, N. D.; Salikhov, H. M.; Mikhailova, M. P.; Yakovlev, Yu. P. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-09-15

    The electroluminescent properties of an n-GaSb/n-InGaAsSb/p-AlGaAsSb heterostructure with a high potential barrier in the conduction band (large conduction-band offset) at the n-GaSb/n-InGaAsSb type-II heterointerface ({Delta}E{sub c} = 0.79 eV) are studied. Two bands with peaks at 0.28 and 0.64 eV at 300 K, associated with radiative recombination in n-InGaAsSb and n-GaSb, respectively, are observed in the electroluminescence (EL) spectrum. In the entire temperature range under study, T = 290-480 K, additional electron-hole pairs are formed in the n-InGaAsSb active region by impact ionization with hot electrons heated as a result of the conduction-band offset. These pairs contribute to radiative recombination, which leads to a nonlinear increase in the EL intensity and output optical power with increasing pump current. A superlinear increase in the emission power of the long-wavelength band is observed upon heating in the temperature range T = 290-345 K, and a linear increase is observed at T > 345 K. This work for the first time reports an increase in the emission power of a light-emitting diode structure with increasing temperature. It is shown that this rise is caused by a decrease in the threshold energy of the impact ionization due to narrowing of the band gap of the active region.

  11. GaAs quantum dot solar cell under concentrated radiation

    SciTech Connect (OSTI)

    Sablon, K.; Little, J. W.; Hier, H.; Li, Y.; Mitin, V.; Vagidov, N.; Sergeev, A.

    2015-08-17

    Effects of concentrated solar radiation on photovoltaic performance are investigated in well-developed GaAs quantum dot (QD) solar cells with 1-Sun efficiencies of 18%–19%. In these devices, the conversion processes are enhanced by nanoscale potential barriers and/or AlGaAs atomically thin barriers around QDs, which prevent photoelectron capture to QDs. Under concentrated radiation, the short circuit current increases proportionally to the concentration and the open circuit voltage shows the logarithmic increase. In the range up to hundred Suns, the contributions of QDs to the photocurrent are proportional to the light concentration. The ideality factors of 1.1–1.3 found from the V{sub OC}-Sun characteristics demonstrate effective suppression of recombination processes in barrier-separated QDs. The conversion efficiency shows the wide maximum in the range of 40–90 Suns and reaches 21.6%. Detailed analysis of I-V-Sun characteristics shows that at low intensities, the series resistance decreases inversely proportional to the concentration and, at ∼40 Suns, reaches the plateau determined mainly by the front contact resistance. Improvement of contact resistance would increase efficiency to above 24% at thousand Suns.

  12. Theoretical model of the polarization Coulomb field scattering in strained AlGaN/AlN/GaN heterostructure field-effect transistors

    SciTech Connect (OSTI)

    Luan, Chongbiao; Lin, Zhaojun Zhao, Jingtao; Wang, Yutang; Lv, Yuanjie; Chen, Hong; Wang, Zhanguo

    2014-07-28

    The theoretical model of the polarization Coulomb field scattering (PCF) caused by the polarization charge density variation at the AlGaN/AlN interface in strained AlGaN/AlN/GaN heterostructure field-effect transistors has been developed. And the theoretical values for the electron drift mobility, which were calculated using the Matthiessen's rule that includes PCF, piezoelectric scattering, polar optical-phonon scattering, and interface roughness scattering, are in good agreement with our experimental values. Therefore, the theoretical model for PCF has been confirmed.

  13. A comparison of the structure and localized magnetism in Ce{sub 2}PdGa{sub 12} with the heavy fermion CePdGa{sub 6}

    SciTech Connect (OSTI)

    Macaluso, Robin T. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Millican, Jasmine N. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Nakatsuji, Satoru [Department of Physics, Kyoto University, Kyoto, Japan 606-8502 (Japan); Lee, Han-Oh [Department of Physics, University of California, Davis, CA 95616 (United States); Carter, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Moreno, Nelson O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fisk, Zachary [Department of Physics, University of California, Davis, CA 95616 (United States); Chan, Julia Y. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States)]. E-mail: jchan@lsu.edu

    2005-11-15

    Single crystals of Ce{sub 2}PdGa{sub 12} have been synthesized in Ga flux and characterized by X-ray diffraction. This compound crystallizes in the tetragonal P4/nbm space group, Z=2 with lattice parameters of a=6.1040(2)A and c=15.5490(6)A. It shows strongly anisotropic magnetism and orders antiferromagnetically at T{sub N}{approx}11K. A field-induced metamagnetic transition to the ferromagnetic state is observed below T{sub N}. Structure-property relationships with the related heavy-fermion antiferromagnet CePdGa{sub 6} are discussed.

  14. Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions

    SciTech Connect (OSTI)

    Piprek, Joachim

    2014-02-03

    This Letter investigates the efficiency enhancement achieved by tunnel junction insertion into the InGaN/GaN multi-quantum well (MQW) active region of blue light emitting diodes (LEDs). The peak quantum efficiency of such LED exceeds 100%, but the maximum wall-plug efficiency (WPE) hardly changes. However, due to the increased bias, the WPE peaks at much higher input power, i.e., the WPE droop is significantly delayed, and the output power is strongly enhanced. The main physical reason for this improvement lies in the non-uniform vertical carrier distribution typically observed within InGaN MQWs.

  15. InGaP/GaAs Inverted Dual Junction Solar Cells For CPV Applications Using Metal-Backed Epitaxial Lift-Off

    SciTech Connect (OSTI)

    Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey

    2010-10-14

    The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.

  16. InGaAsN Solar Cells with 1.0eV Bandgap, Lattice Matched to GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Banas, J.J.; Gee, J.M.; Hammons, B.E.; Jones, E.D.; Kurtz, S.R.

    1998-11-24

    The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar Al, with 1.0 ev bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies > 70% arc obwined. Optical studies indicate that defects or impurities, from InGAsN doping and nitrogen incorporation, limit solar cell performance.

  17. Explanations of the unusual photoluminescence observed in annealed InGaN/GaN multi quantum well

    SciTech Connect (OSTI)

    Biswas, Dipankar Bera, Partha Pratim Mistry, Apu

    2015-05-15

    During growth and fabrication of devices, InGaN/GaN QWs undergo several thermal cyclings which causes redistribution of the elements, particularly In in the QW structures. This causes significant changes in the optical properties of the QWs. The thermal cyclings are often accompanied by alloy clustering and phase separation. So in order to have a deep knowledge of how the nano structures behave with thermal cyclings the process is simulated through successive annealing at high temperatures which are accompanied by photoluminescence (PL) measurements to obtain the optical properties at each stage. III-V nanostructures, in most usual cases, on annealing lead to a monotonic blue shift of the PL peak energy and goes into saturation. Recently there were reports in which the PL peak initially had a red shift which was followed by an increase in energy, a blue shift i.e. the PL peak goes through an inflexion. These unusual observations have been explained in this paper through quantum mechanical models and computations, which remained unexplained.

  18. A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes

    SciTech Connect (OSTI)

    Moslehi Milani, N.; Mohadesi, V.; Asgari, A.

    2015-02-07

    A broadband superluminescent light emitting diode with In{sub 0.2}Ga{sub 0.8}N/GaN multiple quantum wells (MQWs) active region is investigated. The investigation is based on a theoretical model which includes the calculation of electronic states of the structure, rate equations, and the spectral radiation power. Two rate equations corresponding to MQW active region and separate confinement heterostructures layer are solved self-consistently with no-k selection wavelength dependent gain and quasi-Fermi level functions. Our results show that the superluminescence started in a current of ∼120 mA (∼7.5 kA/Cm{sup 2}) at 300 K. The range of peak emission wavelengths for different currents is 423–426 nm and the emission bandwidth is ∼5 nm in the superluminescence regime. A maximum light output power of 7.59 mW is obtained at 600 mA and the peak modal gain as a function of current indicates logarithmic behavior. Also, the comparison of our calculated results with published experimental data is shown to be in good agreement.

  19. Optical reflection and contactless electroreflection from GaAlAs layers with periodically arranged GaAs quantum wells

    SciTech Connect (OSTI)

    Chaldyshev, V. V. Shkol'nik, A. S.; Evtikhiev, V. P.; Holden, T.

    2006-12-15

    Optical reflection and electroreflection for the AlGaAs layers containing the periodically arranged GaAs quantum wells of different thickness are studied at photon energies ranging from 1 to 2 eV. It is established that the spectral dependence of the reflectance involves three different contributions made by (i) the reflection from the medium-air interface; (ii) the interference reflection due to the periodically modulated refractive index, since the materials of the wells and barriers have different refractive indices; and (iii) the reflection produced by the interaction of electromagnetic waves with the excition states in the quantum wells. Analysis of the reflection spectra shows that these contributions are characterized by different behavior with variations in temperature, angle of incidence of light, and polarization; however, quantitative separation of the spectra into individual contributions presents a rather difficult problem. To separate the contribution originating from the interaction of light with the exciton states from the optical spectra, a special approach based on contactless measurements of the optical electroreflectance over a certain spectral region is developed. It is shown that this method provides a means for determining the parameters of the exciton states in the quantum wells.

  20. Ga-doped ZnO grown by pulsed laser deposition in H2: the roles of Ga and H

    SciTech Connect (OSTI)

    Look, David; Droubay, Timothy C.; McCloy, John S.; Zhu, Zihua; Chambers, Scott A.

    2011-01-11

    Highly conductive thin films of ZnO doped with Ga were grown by pulsed-laser deposition (PLD) with 10 mTorr of H2 in the growth chamber. Compared with a more conventional method of producing conductive films of ZnO, i.e., growth in O2 followed by annealing in forming gas (5% H2 in Ar), the H2 method requires no post-growth anneal and also produces higher carrier concentrations and lower resistivities with better depth uniformity. As an example, a 65-nm-thick sample had a room-temperature mobility of 32 cm2/V-s, a concentration of 6.8 x 1020 cm-3, and a resistivity of 2.9 x 10^-4 ohm-cm. From a scattering model, the donor and acceptor concentrations were calculated as 8.9 x 1020 and 2.1 x 10^20 cm-3, respectively, as compared to the Ga and H concentrations of 11 x 10^20 and 1 x 10^20 cm-3. Thus, H does not play a significant role as a donor in this type of ZnO

  1. Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Zaidi, Z. H. Lee, K. B.; Qian, H.; Jiang, S.; Houston, P. A.; Guiney, I.; Wallis, D. J.; Humphreys, C. J.

    2014-12-28

    In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1??A/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ?215 to 90?mV/decade) is achieved. The sulfuric acid is believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90??10{sup 12?}cm{sup ?2} eV{sup ?1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.

  2. The use of short-period InGaN/GaN superlattices in blue-region light-emitting diodes

    SciTech Connect (OSTI)

    Sizov, V. S., E-mail: vsizov@mail.ioffe.ru; Tsatsulnikov, A. F.; Sakharov, A. V.; Lundin, W. V.; Zavarin, E. E.; Cherkashin, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Hytch, M. J. [National Center for Scientific Research (CNRS), Center for Material Elaboration and Structural Studies (CEMES) (France); Nikolaev, A. E. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Mintairov, A. M.; He Yan; Merz, J. L. [University of Notre Dame, EE Department (United States)

    2010-07-15

    Optical and light-emitting diode structures with an active InGaN region containing short-period InGaN/GaN superlattices are studied. It is shown that short-period superlattices are thin two-dimensional layers with a relatively low In content that contain inclusions with a high In content 1-3 nm thick. Inclusions manifest themselves from the point of view of optical properties as a nonuniform array of quantum dots involved in a residual quantum well. The use of short-period superlattices in light-emitting diode structures allows one to decrease the concentration of nonradiative centers, as well as to increase the injection of carriers in the active region due to an increase in the effective height of the AlGaN barrier, which in general leads to an increase in the quantum efficiency of light-emitting diodes.

  3. Effect of Spin-Crossover-Induced Pore Contraction on CO2–Host Interactions in the Porous Coordination Polymers [Fe(pyrazine)M(CN)4] (M = Ni, Pt)

    SciTech Connect (OSTI)

    Culp, Jeffrey T; Chen, De-Li; Liu, Jinchen; Chirdon, Danielle; Kauffman, Kristi; Goodman, Angela; Johnson, J Karl

    2013-02-01

    Variable-temperature in situ ATR-FTIR spectra are presented for the porous spin-crossover compounds [Fe(pyrazine)Ni(CN)4] and [Fe(pyrazine)Pt(CN)4] under CO2 pressures of up to 8 bar. Significant shifts in the ν3 and ν2 IR absorption bands of adsorbed CO2 are observed as the host materials undergo transition between low- and high-spin states. Computational models used to determine the packing arrangement of CO2 within the pore structures show a preferred orientation of one of the adsorbed CO2 molecules with close O=C=O···H contacts with the pyrazine pillar ligands. The interaction is a consequence of the commensurate distance of the inter-pyrazine separations and the length of the CO2 molecule, which allows the adsorbed CO2 to effectively bridge the pyrazine pillars in the structure. The models were used to assign the distinct shifts in the IR absorption bands of the adsorbed CO2 that arise from changes in the O=C=O···H contacts that strengthen and weaken in correlation with changes in the Fe–N bond lengths as the spin state of Fe changes. The results indicate that spin-crossover compounds can function as a unique type of flexible sorbent in which the pore contractions associated with spin transition can affect the strength of CO2–host interactions.

  4. Atomistic modeling and HAADF investigations of misfit and threading dislocations in GaSb/GaAs hetero-structures for applications in high electron mobility transistors

    SciTech Connect (OSTI)

    Ruterana, Pierre Wang, Yi Chen, Jun Chauvat, Marie-Pierre; El Kazzi, S.; Deplanque, L.; Wallart, X.

    2014-10-06

    A detailed investigation on the misfit and threading dislocations at GaSb/GaAs interface has been carried out using molecular dynamics simulation and quantitative electron microscopy techniques. The sources and propagation of misfit dislocations have been elucidated. The nature and formation mechanisms of the misfit dislocations as well as the role of Sb on the stability of the Lomer configuration have been explained.

  5. Effect of the band structure of InGaN/GaN quantum well on the surface plasmon enhanced light-emitting diodes

    SciTech Connect (OSTI)

    Li, Yi; Zhang, Rong E-mail: bliu@nju.edu.cn; Liu, Bin E-mail: bliu@nju.edu.cn; Xie, Zili; Zhang, Guogang; Tao, Tao; Zhuang, Zhe; Zhi, Ting; Zheng, Youdou

    2014-07-07

    The spontaneous emission (SE) of InGaN/GaN quantum well (QW) structure with silver(Ag) coated on the n-GaN layer has been investigated by using six-by-six K-P method taking into account the electron-hole band structures, the photon density of states of surface plasmon polariton (SPP), and the evanescent fields of SPP. The SE into SPP mode can be remarkably enhanced due to the increase of electron-hole pairs near the Ag by modulating the InGaN/GaN QW structure or increasing the carrier injection. However, the ratio between the total SE rates into SPP mode and free space will approach to saturation or slightly decrease for the optimized structures with various distances between Ag film and QW layer at a high injection carrier density. Furthermore, the Ga-face QW structure has a higher SE rate than the N-face QW structure due to the overlap region of electron-hole pairs nearer to the Ag film.

  6. Determining the band alignment of TbAs:GaAs and TbAs:In0.53Ga0.47As

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bomberger, Cory C.; Vanderhoef, Laura R.; Rahman, Abdur; Shah, Deesha; Chase, D. Bruce; Taylor, Antoinette J.; Azad, Abul K.; Doty, Matthew F.; Zide, Joshua M. O.

    2015-09-10

    Here, we propose and systematically justify a band structure for TbAs nanoparticles in GaAs and In0.53Ga0.47As host matrices. Moreover, fluence-dependent optical-pump terahertz-probe measurements suggest the TbAs nanoparticles have a band gap and provide information on the carrier dynamics, which are determined by the band alignment. Spectrophotometry measurements provide the energy of optical transitions in the nanocomposite systems and reveal a large blue shift in the absorption energy when the host matrix is changed from In0.53Ga0.47As to GaAs. Finally, Hall data provides the approximate Fermi level in each system. From this data, we deduce that the TbAs:GaAs system forms a typemore » I (straddling) heterojunction and the TbAs:In0.53Ga0.47As system forms a type II (staggered) heterojunction.« less

  7. Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios

    SciTech Connect (OSTI)

    Khan, Aurangzeb; Yamaguchi, Masafumi; Takamoto, Tatsuya

    2004-10-11

    A study of the performance of single-junction InGaP/GaAs and dual-junction InGaP/GaAs tandem cells under low concentration ratios (up to 15 suns), before and after 1 MeV electron irradiation is presented. Analysis of the tunnel junction parameters under different concentrated light illuminations reveals that the peak current (J{sub P}) and valley current (J{sub V}) densities should be greater than the short-circuit current density (J{sub sc}) for better performance. The tunnel junction behavior against light intensity improved after irradiation. This led to the suggestion that the peak current density (J{sub P}) and valley current density (J{sub V}) of the tunnel junction were enhanced after irradiation or the peak current was shifted to higher concentration. The recovery of the radiation damage under concentrated light illumination conditions suggests that the performance of the InGaP/GaAs tandem solar cell can be enhanced even under low concentration ratios.

  8. Intrinsic polarization control in rectangular GaN nanowire lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Changyi; Liu, Sheng; Luk, Ting S.; Figiel, Jeffrey J.; Brener, Igal; Brueck, S. R. J.; Wang, George T.

    2016-02-01

    In this study, we demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444kW/cm2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control overmore » the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.« less

  9. Ferromagnetic (Ga,Mn)As nanostructures for spintronic applications

    SciTech Connect (OSTI)

    Wosinski, Tadeusz; Andrearczyk, Tomasz; Figielski, Tadeusz; Makosa, Andrzej; Wrobel, Jerzy; Sadowski, Janusz

    2013-12-04

    Magneto-resistive, cross-like nanostructures have been designed and fabricated by electron-beam lithography patterning and chemical etching from thin epitaxial layers of the ferromagnetic semiconductor (Ga,Mn)As. The nanostructures, composed of two perpendicular nanostripes crossing in the middle of their length, represent four-terminal devices, in which an electric current can be driven through any of the two nanostripes. In these devices, a novel magneto-resistive memory effect, related to a rearrangement of magnetic domain walls in the central part of the device, has been demonstrated. It consists in that the zero-field resistance of a nanostripe depends on the direction of previously applied magnetic field. The nanostructures can thus work as two-state devices providing basic elements of nonvolatile memory cells.

  10. Surface modification of multilayer graphene using Ga ion irradiation

    SciTech Connect (OSTI)

    Wang, Quan; Shao, Ying; Ge, Daohan; Ren, Naifei; Yang, Qizhi

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  11. Activation of small alkanes in Ga-exchanged zeolites: A quantum chemical study of ethane dehydrogenation

    SciTech Connect (OSTI)

    Frash, M.V.; Santen, R.A. van

    2000-03-23

    Quantum chemical calculations on the mechanism of ethane dehydrogenation catalyzed by Ga-exchanged zeolites have been undertaken. Two forms of gallium, adsorbed dihydride gallium ion GaH{sub 2}+Z{sup {minus}} and adsorbed gallyl ion [Ga=O]{sup +}Z{sup {minus}}, were considered. It was found that GaH{sub 2}{sup +}Z{sup {minus}} is the likely active catalyst. On the contrary, [Ga=O]{sup +}Z{sup {minus}} cannot be a working catalyst in nonoxidative conditions, because regeneration of this form is very difficult. Activation of ethane by GaH{sub 2}{sup +}Z{sup {minus}} occurs via an alkyl mechanism and the gallium atom acts as an acceptor of the ethyl group. The carbenium activation of ethane, with gallium abstracting a hydride ion, is much (ca. 51 kcal/mol) more difficult. The catalytic cycle for the alkyl activation consists of three elementary steps: (1) rupture of the ethane C-H bond; (2) formation of dihydrogen from the Bronsted proton and hydrogen bound to Ga; and (3) formation of ethene from the ethyl group bound to Ga. The best estimates (MP2/6--311++G(2df,p)//B3LYP/6--31G*) for the activation energies of these three steps are 36.9, ca. 0, and 57.9 kcal/mol, respectively.

  12. Deep-level transient spectroscopy of InAs/GaAs quantum dot superlattices

    SciTech Connect (OSTI)

    Sobolev, M. M.; Nevedomskii, V. N.; Zolotareva, R. V.; Vasil'ev, A. P.; Ustinov, V. M.

    2014-02-21

    Deep level transient spectroscopy (DLTS) has been applied to study the carrier emission from states of a 10-layer system of tunnel-coupled vertically correlated quantum dots (VCQDs) in p-n InAs/GaAs heterostructures with different widths of GaAs spacers under varied reverse bias (U{sub r}) and filling voltage pulse U{sub f}.

  13. Variation of lattice constant and cluster formation in GaAsBi

    SciTech Connect (OSTI)

    Puustinen, J.; Schramm, A.; Guina, M.; Wu, M.; Luna, E.; Laukkanen, P.; Laitinen, M.; Sajavaara, T.

    2013-12-28

    We investigate the structural properties of GaAsBi layers grown by molecular beam epitaxy on GaAs at substrate temperatures between 220315 C. Irrespective of the growth temperature, the structures exhibited similar Bi compositions, and good overall crystal quality as deduced from X-Ray diffraction measurements. After thermal annealing at temperatures as low as 500 C, the GaAsBi layers grown at the lowest temperatures exhibited a significant reduction of the lattice constant. The lattice variation was significantly larger for Bi-containing samples than for Bi-free low-temperature GaAs samples grown as a reference. Rutherford backscattering spectrometry gave no evidence of Bi diffusing out of the layer during annealing. However, dark-field and Z-contrast transmission electron microscopy analyses revealed the formation of GaAsBi clusters with a Bi content higher than in the surrounding matrix, as well as the presence of metallic As clusters. The apparent reduction of the lattice constant can be explained by a two-fold process: the diffusion of the excess As incorporated within As{sub Ga} antisites to As clusters, and the reduction of the Bi content in the GaAs matrix due to diffusion of Bi to GaAsBi clusters. Diffusion of both As and Bi are believed to be assisted by the native point defects, which are present in the low-temperature as-grown material.

  14. Development of a Low Cost Insulated Foil Substrate for Cu(InGaSe)2 Photovoltaics

    SciTech Connect (OSTI)

    ERTEN ESER

    2012-01-22

    The project validated the use of stainless steel flexible substrate coated with silicone-based resin dielectric, developed by Dow Corning Corporation, for Cu(InGa)Se2 based photovoltaics. The projects driving force was the high performance of Cu(InGa)Se2 based photovoltaics coupled with potential cost reduction that could be achieved with dielectric coated SS web substrate.

  15. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    SciTech Connect (OSTI)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-14

    In{sub x}Ga{sub 1−x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18 }cm{sup −3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  16. In-situ surface composition measurements of CuGaSe{sub 2} thin films

    SciTech Connect (OSTI)

    Fons, P.; Yamada, A.; Niki, S.; Oyanagi, H.

    1998-12-31

    Two CuGaSe{sub 2} films were grown by molecular beam epitaxy onto GaAs (001) substrates with varying Cu/Ga flux ratios under Se overpressure conditions. Growth was interrupted at predetermined times and the surface composition was measured using Auger electron spectroscopy after which growth was continued. After growth, the film composition was analyzed using voltage dependent electron microprobe spectroscopy. Film structure and morphology were also analyzed using x-ray diffraction and atomic force microscopy. The film with a Cu/Ga ratio larger than unity showed evidence of surface segregation of a second Cu-rich phase with a Cu/Se composition ratio slightly greater than unity. A second CuGaSe{sub 2} film with a Cu/Ga ratio of less than unity showed no change in surface composition with time and was also consistent with bulk composition measurements. Diffraction measurements indicated a high concentration of twins as well as the presence of domains with mixed c and a axes in the Ga-rich film. The Cu-rich films by contrast were single domain and had a narrower mosaics. High sensitivity scans along the [001] reciprocal axis did not exhibit any new peaks not attributable to either the substrate or the CuGaSe{sub 2} thin film.

  17. Electrical properties of p-type GaInP2. Master's thesis

    SciTech Connect (OSTI)

    Calfas, R.S.

    1993-12-01

    The GaInP2 n(+)-p junction diode has recently become important to the development of high efficiency GaInP2/GaAs dual junction solar cells, which have a demonstrated air mass 1.5 conversion efficiencies in excess of 27%. In order to study the effects of long term exposure to the space environment, the GaInP2 n(+)-p junction diodes were irradiated with a 1 MeV electron beam with a fluence of 10(exp 16) electrons/sq cm. Since little is known about deep level defects (traps) in GaInP2, a deep level transient spectroscopy (DLTS) study was made to characterize the traps that are thought to dominate the dark current in GaInP2 solar cells. The measurements indicated that there are a number of majority carrier traps in the p-type base of the GaInP2 n+-p junction diode. Traps that are identified are located 0.12 to 0.55 eV above the valence band and are attributed to phosphorous vacancies in the lattice. Deep level transient spectroscopy, GaInP2, Electron irradiation effects, N-P junction diode.

  18. InGaAs monolithic interconnected modules (MIM)

    SciTech Connect (OSTI)

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.; Hoffman, R.W. Jr.; Wilt, D.M.; Scheiman, D.; Brinker, D.; Murray, C.S.; Riley, D.

    1997-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs with an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.

  19. Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping

    SciTech Connect (OSTI)

    Ahn, Kwang-Soon; Yan, Yanfa; Shet, Sudhakar; Deutsch, Todd; Turner, John; Al-Jassim, Mowafak

    2007-12-03

    We report on the crystallinity and photoelectrochemical (PEC) response of ZnO thin films codoped by Ga and N. The ZnO:(Ga,N) thin films were deposited by cosputtering at room temperature and followed by postannealing at 500 deg. C in air for 2 h. We found that ZnO:(Ga,N) thin films exhibited significantly enhanced crystallinity compared to ZnO doped solely with N at the same growth conditions. Furthermore, ZnO:(Ga,N) thin films exhibited enhanced N incorporation over ZnO doped solely with N at high temperatures. As a result, ZnO:(Ga,N) thin films achieved dramatically improved PEC response, compared to ZnO thin films doped solely with N at any conditions. Our results suggest a general way to improve PEC response for wide-band-gap oxides.

  20. Electron Traps Detected in p-type GaAsN Using Deep Level Transient Spectroscopy

    SciTech Connect (OSTI)

    Johnston, S.; Kurtz, S.; Friedman, D.; Ptak, A.; Ahrenkiel, R.; Crandall, R.

    2005-01-01

    The GaAsN alloy can have a band gap as small as 1.0 eV when the nitrogen composition is about 2%. Indium can also be added to the alloy to increase lattice matching to GaAs and Ge. These properties are advantageous for developing a highly-efficient, multi-junction solar cell. However, poor GaAsN cell properties, such as low open-circuit voltage, have led to inadequate performance. Deep-level transient spectroscopy of p-type GaAsN has identified an electron trap having an activation energy near 0.2 eV and a trap density of at least 1016 cm-3. This trap level appears with the addition of small amounts of nitrogen to GaAs, which also corresponds to an increased drop in open-circuit voltage.

  1. Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Lu, Zhenyu; Chen, Pingping E-mail: luwei@mail.sitp.ac.cn; Shi, Suixing; Yao, Luchi; Zhou, Xiaohao; Lu, Wei E-mail: luwei@mail.sitp.ac.cn; Zhang, Zhi; Zhou, Chen; Zou, Jin

    2014-10-20

    In this work, the crystal structure of GaAs nanowires grown by molecular beam epitaxy has been tailored only by bismuth without changing the growth temperature and V/III flux ratio. The introduction of bismuth can lead to the formation of zinc-blende GaAs nanowires, while the removal of bismuth changes the structure into a 4H polytypism before it turns back to the wurtzite phase eventually. The theoretical calculation shows that it is the steadiest for bismuth to adsorb on the GaAs(111){sub B} surface compared to the liquid gold catalyst surface and the interface between the gold catalyst droplet and the nanowire, and these adsorbed bismuth could decrease the diffusion length of adsorbed Ga and hence the supersaturation of Ga in the gold catalyst droplet.

  2. Polycrystalline GaAs solar cells on low-cost Silicon-Film{trademark} substrates

    SciTech Connect (OSTI)

    Mauk, M.G.; Feyock, B.W.; Hall, R.B.; Cavanaugh, K.D.; Cotter, J.E.

    1997-12-31

    The authors assess the potential of a low-cost, large-area Silicon-Film{trademark} sheet as a substrate for thin-film polycrystalline GaAs solar cells. Silicon-Film is a relatively inexpensive material on which large-grain (>2 mm) polycrystalline GaAs films can be formed. The GaAs epitaxial layers are grown by a simple close-spaced vapor transport (CSVT) technique using water vapor as a transport agent. A recrystallized Ge{sub 1{minus}x}Si{sub x} buffer layer between the GaAs epilayer and Silicon-Film substrate can facilitate growth of the GaAs. Selective epitaxy on patterned, oxide-masked substrates is effective in reducing thermal stress effects.

  3. MOCVD growth of GaAs solar cells on silicon substrates

    SciTech Connect (OSTI)

    Vernon, S.M.; Haven, V.E.; Geoffroy, L.M.; Sanfacon, M.M.; Mastrovito, A.L. )

    1992-12-01

    This paper reports advances in the development of solar cells made from GaAs-on-Si structures prepared by metalorganic chemical vapor deposition (MOCVD). The use of concentrator cells, operating at [similar to]200 suns, has led to the efficiency achievements of 21.3% (AM1.5D) for a GaAs-on-Si solar cell, and 27.6 (AM1.5D) for a homoepitaxial GaAs cell. The development of epitaxial multilayer dielectric mirrors (Bragg reflectors), as back-surface reflectors in thin-film GaAs cells, on both Si and GaAs substrates, is shown to lead to modest efficiency increases, over that of conventional designs.

  4. Doping of GaN{sub 1-x}As{sub x} with high As content

    SciTech Connect (OSTI)

    Levander, A.X.; Novikov, S.V.; Liliental-Weber, Z.; dos Reis, R.; Dubon, O.D.; Wu, J.; Foxon, C.T.; Yu, K.M.; Walukiewicz, W.

    2011-09-22

    Recent work has shown that GaN{sub 1-x}As{sub x} can be grown across the entire composition range by low temperature molecular beam epitaxy with intermediate compositions being amorphous, but control of the electrical properties through doping is critical for functionalizing this material. Here we report the bipolar doping of GaN{sub 1-x}As{sub x} with high As content to conductivities above 4 S/cm at room temperature using Mg or Te. The carrier type was confirmed by thermopower measurements. Doping requires an increase in Ga flux during growth resulting in a mixed phase material of polycrystalline GaAs:N embedded in amorphous GaN{sub 1-x}As{sub x}.

  5. Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates

    SciTech Connect (OSTI)

    Yamaguchi, M.; Amano, C.; Itoh, Y.

    1989-07-15

    This paper describes some recent developments in GaAs thin-film solar cells fabricated on Si substrates by metalorganic chemical vapor deposition and numerically analyzes them.GaAs solar cells with efficiency of more than 18% are successfully fabricated on Si substrates by reducing the dislocation density. Photovoltaic properties of GaAs/Si cells are analyzed by considering the effect of nonuniform dislocation distribution on recombination properties of GaAs thin films on Si substrates. Numerical analysis shows that the effect of majority-carrier trapping must be considered. High efficiency GaAs solar cells with total-area efficiency of over 20% on Si substrates can be realized if dislocation density can be reduced to less than 5/times/10/sup 5/ cm/sup /minus/2/.

  6. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from {sub 55}Cs to {sub 80}Hg

    SciTech Connect (OSTI)

    Tatewaki, Hiroshi; Hatano, Yasuyo; Noro, Takeshi; Yamamoto, Shigeyoshi

    2015-06-15

    We consider, for atoms from {sub 55}Cs to {sub 80}Hg, the effective atomic radius (r{sub ear}), which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He{sub 2}. The values of r{sub ear} are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of r{sub ear} decreases from {sub 55}Cs to {sub 56}Ba and undergoes increases and decreases with rising nuclear charge from {sub 57}La to {sub 70}Y b. In fact r{sub ear} is understood as comprising two interlaced sequences; one consists of {sub 57}La, {sub 58}Ce, and {sub 64}Gd, which have electronic configuration (4f{sup n−1})(5d{sup 1})(6s{sup 2}), and the remaining atoms have configuration (4f{sup n})(6s{sup 2}). The sphere defined by r{sub ear} contains 85%–90% of the 6s electrons. From {sub 71}Lu to {sub 80}Hg the radius r{sub ear} also involves two sequences, corresponding to the two configurations 5d{sup n+1}6s{sup 1} and 5d{sup n}6s{sup 2}. The radius r{sub ear} according to the present methodology is considerably larger than r{sub vdW} obtained by other investigators, some of who have found values of r{sub vdW} close to .

  7. Ground-state energy trends in single and multilayered coupled InAs/GaAs quantum dots capped with InGaAs layers: Effects of InGaAs layer thickness and annealing temperature

    SciTech Connect (OSTI)

    Shah, S.; Ghosh, K.; Jejurikar, S.; Mishra, A.; Chakrabarti, S.

    2013-08-01

    Graphical abstract: - Highlights: Investigation of ground state energy in single and multi-layered InAs/GaAs QD. Strain reducing layer (InGaAs) prevents the formation of non-radiative. Strain reducing layer (InGaAs) is responsible for high activation energy. Significant deviation from the Varshni model, E(T) = E ? ?T{sup 2}/T + ?. - Abstract: Vertically coupled, multilayered InAs/GaAs quantum dots (QDs) covered with thin InGaAs strain-reducing layers (SRLs) are in demand for various technological applications. We investigated low temperature photoluminescence of single and multilayered structures in which the SRL thickness was varied. The SRL layer was responsible for high activation energies. Deviation of experimental data from the Varshni (1967) model, E(T) = E ? ? T{sup 2}/T + ?, suggests that the InAs-layered QDs have properties different from those in bulk material. Anomalous ground-state peak linewidths (FWHM), especially for annealed multilayer structures, were observed. A ground-state peak blue-shift with a broadened linewidth was also observed. Loss of intensity was detected in samples annealed at 800 C. Presence of SRLs prevents formation of non-radiative centers under high temperature annealing. The results indicate the potential importance of such structures in optoelectronic applications.

  8. Effects of phase transformation on the microstructures and magnetostriction of Fe-Ga and Fe-Ga-Zn ferromagnetic shape memory alloys

    SciTech Connect (OSTI)

    Lin, Yin-Chih Lin, Chien-Feng

    2015-05-07

    The phase transformation and magnetostriction of bulk Fe{sub 73}Ga{sub 27} and Fe{sub 73}Ga{sub 18}Zn{sub 9} (at.?%) ferromagnetic shape memory alloys (FSMs) were investigated by transmission electron microscopy (TEM), x-ray diffraction (XRD), and a magnetostrictive-meter setup. For the Fe{sub 73}Ga{sub 27} FSM alloy solution treated at 1100?C for 4?h and quenched in ice brine, the antiphase boundary segments of the D0{sub 3} domain were observed in the A2 (disordered) matrix, and the Fe{sub 73}Ga{sub 27} FSM alloy had an optimal magnetostriction (?{sub ?}{sup s?}=?71??10{sup ?6} and ?{sub ?}{sup s?}=??31??10{sup ?6}). In Fe{sub 73}Ga{sub 27} FSM alloy as-quenched, aged at 700?C for 24?h, and furnace cooled, D0{sub 3} nanoclusters underwent phase transformation to an intermediate tetragonal phase (i.e., L1{sub 0}-like martensite) via Bain distortion, and finally L1{sub 2} (Fe{sub 3}Ga) structures precipitated, as observed by TEM and XRD. The L1{sub 0}-like martensite and L1{sub 2} phases in the aged Fe{sub 73}Ga{sub 27} FSM alloy drastically decreased the magnetostriction from positive to negative (?{sub ?}{sup s?}=??20??10{sup ?6} and ?{sub ?}{sup s?}=??8??10{sup ?6}). However, in Fe{sub 73}Ga{sub 18}Zn{sub 9} FSM alloy as-quenched and aged, the phase transformation of D0{sub 3} to an intermediate tetragonal martensite phase and precipitation of L1{sub 2} structures were not found. The results indicate that the aged Fe{sub 73}Ga{sub 18}Zn{sub 9} FSM alloy maintained stable magnetostriction (?{sub ?}{sup s?}=?36??10{sup ?6} and ?{sub ?}{sup s?}=??31??10{sup ?6}). Adding Zn can improve the ferromagnetic shape memory effect of aged Fe{sub 73}Ga{sub 18}Zn{sub 9} alloy, which may be useful in application of the alloy in high temperature environments.

  9. Development of an IR-transparent, inverted-grown, thin-film, Al[sub 0. 34]Ga[sub 0. 66]As/GaAs cascade solar cell

    SciTech Connect (OSTI)

    Venkatasubramanian, R.; Timmons, M.L.; Sharps, P.R.; Colpitts, T.S.; Hills, J.S.; Hancock, J.; Hutchby, J.A. )

    1992-12-01

    Inverted growth and the development of associated cell processing, are likely to offer a significant degree of freedom for improving the performance of many III-V multijunction cascades and open new avenues for advanced multijunction concepts. This is especially true for the development of high-efficiency Al[sub 0.37]Ga[sub 0.63]As/GaAs cascades where the high growth temperatures required for the AlGaAs top cell growth can cause the deterioration of the tunnel junction interconnect. In the approach of inverted-grown AlGaAs/GaAs cascade cells, the AlGaAs top cell is grown first at 780 [degree]C and the GaAs tunnel junction and bottom cell are grown at 675 [degree]C. After the inverted growth, the AlGaAs/GaAs cascade structure is selectively removed from the parent substrate. The feasibility of inverted growth is demonstrated by a fully-processed, inverted-grown, thin film GaAs cell with a 1-sun AM1.5 efficiency of 20.3%. Also, an inverted-grown, thin-film, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiencies of 19.9% and 21% at 1-sun and 7-suns, respectively, has been obtained.

  10. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1-eV)/GaInAs(0.7-eV) Four-Junction Solar Cell: Preprint

    SciTech Connect (OSTI)

    Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

    2006-05-01

    We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga0.5In0.5P/GaAs/Ga0.75In0.25As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga0.75In0.25As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap GaxIn1-xAs fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the GaxIn1-xAs fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

  11. Intersubband transitions in In{sub x}Ga{sub 1?x}N/In{sub y}Ga{sub 1?y}N/GaN staggered quantum wells

    SciTech Connect (OSTI)

    Y?ld?r?m, Hasan; Aslan, Bulent

    2014-04-28

    Intersubband transition energies and absorption lineshape in staggered InGaN/GaN quantum wells surrounded by GaN barriers are computed as functions of structural parameters such as well width, In concentrations, and the doping level in the well. Schrdinger and Poisson equations are solved self-consistently by taking the free and bound surface charge concentrations into account. Many-body effects, namely, depolarization and excitonic shifts are also included in the calculations. Results for transition energies, oscillator strength, and the absorption lineshape up to nonlinear regime are represented as functions of the parameters mentioned. The well width (total and constituent layers separately) and In concentration dependence of the built-in electric field are exploited to tune the intersubband transition energies.

  12. The initial vibrational level distribution and relaxation of HCN[{tilde {ital X}}{sup 1}{Sigma}{sup +}({ital v}{sub 1},0,{ital v}{sub 3})] in the CN({ital X}{sup 2}{Sigma}{sup +})+CH{sub 4}{r_arrow}HCN+CH{sub 3} reaction system

    SciTech Connect (OSTI)

    Bethardy, G.A.; Northrup, F.J.; Macdonald, R.G.

    1996-09-01

    The reaction of the cyano radical (CN) with methane was studied by time-resolved infrared absorption spectroscopy by monitoring individual rovibrational states of the HCN and CH{sub 3} products. The initial vibrational level distribution of the bendless vibrational levels of HCN({ital v}{sub 1},0,{ital v}{sub 3}) was determined by plotting the time dependence of the fractional population of a vibrational level and extrapolating these curves to the origin of time. About 20{percent} of the HCN products were observed to be initially produced in the HCN({ital v}{sub 1},0,{ital v}{sub 3}) vibrational levels, with {ital v}{sub 1} and {ital v}{sub 3}=0,1,2. The CN radical was created by laser photolysis of three different precursors. Each photolyte provided a different initial vibrational level distribution of CN; however, similar initial HCN({ital v}{sub 1},0,{ital v}{sub 3}) vibrational level distributions were obtained independent of the CN radical precursor. This may indicate that the CN radical does not act as a spectator bond during the course of a reactive encounter for this system. The time dependence of the CH{sub 3} (000{sup 0}0) ground state was also followed using time-resolved infrared absorption spectroscopy. Preliminary data indicates that a large fraction, if not all, the CH{sub 3} radicals are produced in their ground state in the title reaction. {copyright} {ital 1996 American Institute of Physics.}

  13. Ab initio structural and vibrational properties of GaAs diamondoids and nanocrystals

    SciTech Connect (OSTI)

    Abdulsattar, Mudar Ahmed; Hussein, Mohammed T.; Hameed, Hadeel Ali

    2014-12-15

    Gallium arsenide diamondoids structural and vibrational properties are investigated using density functional theory at the PBE/6-31(d) level and basis including polarization functions. Variation of energy gap as these diamondoids increase in size is seen to follow confinement theory for diamondoids having nearly equiaxed dimensions. Density of energy states transforms from nearly single levels to band structure as we reach larger diamondoids. Bonds of surface hydrogen with As atoms are relatively localized and shorter than that bonded to Ga atoms. Ga-As bonds have a distribution range of values due to surface reconstruction and effect of bonding to hydrogen atoms. Experimental bulk Ga-As bond length (2.45 Å) is within this distribution range. Tetrahedral and dihedral angles approach values of bulk as we go to higher diamondoids. Optical-phonon energy of larger diamondoids stabilizes at 0.037 eV (297 cm{sup -1}) compared to experimental 0.035 eV (285.2 cm{sup -1}). Ga-As force constant reaches 1.7 mDyne/Å which is comparable to Ga-Ge force constant (1.74 mDyne/Å). Hydrogen related vibrations are nearly constant and serve as a fingerprint of GaAs diamondoids while Ga-As vibrations vary with size of diamondoids.

  14. Effects of Zn additions to highly magnetoelastic FeGa alloys

    SciTech Connect (OSTI)

    Lograsso, Thomas A.; Jones, Nicholas J.; Wun-Fogle, Marilyn; Restorff, James B.; Schlagel, Deborah L.; Petculescu, Gabriela; Clark, Arthur E.; Hathaway, Kristl B.

    2015-05-07

    Fe{sub 1−x}M{sub x} (M = Ga, Ge, Si, Al, Mo and x ∼ 0.18) alloys offer an extraordinary combination of magnetoelasticity and mechanical properties. They are rare-earth-free, can be processed using conventional deformation techniques, have high magnetic permeability, low hysteresis, and low magnetic saturation fields, making them attractive for device applications such as actuators and energy harvesters. Starting with Fe-Ga as a reference and using a rigid-band-filling argument, Zhang et al. predicted that lowering the Fermi level by reducing the total number of electrons could enhance magnetoelasticity. To provide a direct experimental validation for Zhang's hypothesis, elemental additions with lower-than-Ga valence are needed. Of the possible candidates, only Be and Zn have sufficient solubility. Single crystals of bcc Fe-Ga-Zn have been grown with up to 4.6 at. % Zn in a Bridgman furnace under elevated pressure (15 bars) in order to overcome the high vapor pressure of Zn and obtain homogeneous crystals. Single-crystal measurements of magnetostriction and elastic constants allow for the direct comparison of the magnetoelastic coupling constants of Fe-Ga-Zn with those of other magnetoelastic alloys in its class. The partial substitution of Ga with Zn yields values for the magnetoelastic coupling factor, −b{sub 1}, comparable to those of the binary Fe-Ga alloy.

  15. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    SciTech Connect (OSTI)

    Feng, Wuwei Wang, Weihua; Zhao, Chenglong; Van Quang, Nguyen; Cho, Sunglae; Dung, Dang Duc

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  16. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Masuda, Taizo Tomasulo, Stephanie; Lang, Jordan R.; Lee, Minjoo Larry

    2015-03-07

    We have investigated ∼2.0 eV (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P and ∼1.9 eV Ga{sub 0.51}In{sub 0.49}P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V{sub oc}) ranging from 1.29 to 1.30 V for Ga{sub 0.51}In{sub 0.49}P cells, and 1.35–1.37 V for (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W{sub oc} = E{sub g}/q − V{sub oc}) of Ga{sub 0.51}In{sub 0.49}P cells to decrease from ∼575 mV to ∼565 mV, while that of (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P cells remained nearly constant at 620 mV. The constant W{sub oc} as a function of substrate offcut for (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P implies greater losses from non-radiative recombination compared with the Ga{sub 0.51}In{sub 0.49}P devices. In addition to larger W{sub oc} values, the (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga{sub 0.51}In{sub 0.49}P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells.

  17. Experimental and theoretical studies of band gap alignment in GaAs{sub 1?x}Bi{sub x}/GaAs quantum wells

    SciTech Connect (OSTI)

    Kudrawiec, R. Kopaczek, J.; Polak, M. P.; Scharoch, P.; Gladysiewicz, M.; Misiewicz, J.; Richards, R. D.; Bastiman, F.; David, J. P. R.

    2014-12-21

    Band gap alignment in GaAs{sub 1?x}Bi{sub x}/GaAs quantum wells (QWs) was studied experimentally by photoreflectance (PR) and theoretically, ab initio, within the density functional theory in which the supercell based calculations are combined with the alchemical mixing approximation applied to a single atom in a supercell. In PR spectra, the optical transitions related to the excited states in the QW (i.e., the transition between the second heavy-hole and the second electron subband) were clearly observed in addition to the ground state QW transition and the GaAs barrier transition. This observation is clear experimental evidence that this is a type I QW with a deep quantum confinement in the conduction and valence bands. From the comparison of PR data with calculations of optical transitions in GaAs{sub 1?x}Bi{sub x}/GaAs QW performed for various band gap alignments, the best agreement between experimental data and theoretical calculations has been found for the valence band offset of 52??5%. A very similar valence band offset was obtained from ab initio calculations. These calculations show that the incorporation of Bi atoms into GaAs host modifies both the conduction and the valence band. For GaAs{sub 1?x}Bi{sub x} with 0?GaAs{sub 1?x}Bi{sub x} and GaAs in the range of ?60%40% (?40%60%), which is in good

  18. Suppression of metastable-phase inclusion in N-polar (0001{sup }) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    SciTech Connect (OSTI)

    Shojiki, Kanako Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-06-01

    The metastable zincblende (ZB) phase in N-polar (0001{sup }) (?c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the ?c-plane and Ga-polar (0001) (+c-plane), the ?c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the ?c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated.

  19. Sulfur-mediated palladium catalyst immobilized on a GaAs surface

    SciTech Connect (OSTI)

    Shimoda, M. [Surface Physics and Structure Unit, Surface Physics Group, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Konishi, T. [Anan National College of Technology, 265 Aoki, Minobayashi-cho, Anan, Tokushima 774-0017 (Japan); Nishiwaki, N. [School of Environmental and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502 (Japan); Yamashita, Y.; Yoshikawa, H. [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2012-06-15

    We present a hard x-ray photoelectron spectroscopy study on the preparation process of palladium catalyst immobilized on an S-terminated GaAs(100) surface. It is revealed that Pd(II) species are reduced on the GaAs surface and yield Pd nanoparticles during the process of Pd immobilization and the subsequent heat treatment. A comparison with the results on GaAs without S-termination suggests that the reduction of Pd is promoted by hydroxy groups during the Pd immobilization and by S during the heat treatment.

  20. Enhanced photocatalytic performance of Ga{sup 3+}-doped ZnO

    SciTech Connect (OSTI)

    Zhong, Jun Bo; Li, Jian Zhang; Zeng, Jun; He, Xi Yang; Hu, Wei; Shen, Yue Cheng

    2012-11-15

    Graphical abstract: In general, the strong SPS response corresponds to the high separation rate of photoinduced charge carriers on the basis of the SPS principle. The photovoltage of Ga{sup 3+}-doped ZnO is higher than that of ZnO, thus it can be confirmed that the Ga{sup 3+}-doped ZnO has a higher charge separation rate than the ZnO sample. Among these samples, 1%Ga has highest charge separation rate. Display Omitted Highlights: ► Ga{sup 3+} has been employed to dope ZnO photocatalyst. ► Ga{sup 3+} increases the BET surface area and changes the morphology of ZnO. ► The photoinduced charge separation rate has been enhanced. ► The photocatalytic activity has been greatly promoted. -- Abstract: ZnO and Ga{sup 3+}-doped ZnO with different molar ratio of Ga/Zn (1%, 2% and 3%) were prepared by a parallel flow precipitation method. The photocatalysts prepared were characterized by BET surface area, X-ray diffraction (XRD), UV/vis diffuse reflectance spectroscopy (DRS), scanning electron microscope (SEM) and surface photovoltage spectroscopy (SPS), respectively. The results show that doping Ga{sup 3+} into ZnO increases the BET surface area. The XRD spectra of the photocatalysts calcined at 573 K show only the characteristic peaks of wurtzite-type. Ga{sup 3+}-doped ZnO absorbs much more light than ZnO in the visible light region. Doping Ga{sup 3+} into ZnO greatly changes the morphology of ZnO and enhances the photoinduced charge separation rate. The photocatalytic activity of ZnO and Ga{sup 3+}-doped ZnO for decolorization of methyl orange (MO) solution was evaluated, of all the photocatalysts prepared, the Ga{sup 3+}-doped ZnO with 1% possesses the best photocatalytic activity and the possible reason was discussed.

  1. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band

    SciTech Connect (OSTI)

    Zhao, S.; Liu, X.; Kang, J.; Mi, Z.; Woo, S. Y.; Botton, G. A.

    2015-07-27

    We have investigated the molecular beam epitaxial growth and characterization of nearly defect-free AlGaN nanowire heterostructures grown directly on Si substrate. By exploiting the Anderson localization of light, we have demonstrated electrically injected AlGaN nanowire lasers that can operate at 262.1 nm. The threshold current density is 200 A/cm{sup 2} at 77 K. The relatively low threshold current is attributed to the high Q-factor of the random cavity and the three-dimensional quantum confinement offered by the atomic-scale composition modulation in self-organized AlGaN nanowires.

  2. AlGaAs converters and arrays for laser power beaming

    SciTech Connect (OSTI)

    Khvostikov, Vladimir Sorokina, Svetlana; Potapovich, Nataliia; Khvostikova, Olga; Shvarts, Maxim; Timoshina, Nailya; Andreev, Viacheslav

    2015-09-28

    This study reports on the development of AlGaAs/GaAs-based laser power photovoltaic (PV) converters fabricated by LPE. The monochromatic (λ = 809 nm) conversion efficiency up to 58% is measured for cells with p-n junction in Al{sub 0.07}Ga{sub 0.93}As and low (x = 0.25-0.3) Al concentration ‘window’. Modules, which have converters of low and high power laser radiation and the voltage of 4V, have been designed and fabricated. Comparison of output parameters measured at two different conditions (i.e., under flash lamp and laser beam) has been performed.

  3. Plasmon-induced enhancement of yellow-red luminescence in InGaN/Au nanocomposites

    SciTech Connect (OSTI)

    Belyaev, K. G. Usikova, A. A.; Jmerik, V. N.; Kop’ev, P. S.; Ivanov, S. V.; Toropov, A. A.; Brunkov, P. N.

    2015-02-15

    A significant (by up to a factor of 7) increase in the internal quantum efficiency of luminescence is achieved at room temperature in semiconductor-metal-insulator hybrid structures fabricated by the successive deposition of gold and Si{sub 3}N{sub 4} over an array of InGaN nanoblocks, grown by molecular-beam epitaxy. The observed effect can be accounted for by the resonant interaction of excitons localized in InGaN nanoblocks with localized surface-plasmon modes in gold intrusions embedded into InGaN and Si{sub 3}N{sub 4}.

  4. Low Cost Production of InGaN for Next-Generation Photovoltaic Devices

    SciTech Connect (OSTI)

    Nick M. Sbrockey, Shangzhu Sun, Gary S. Tompa,

    2012-07-09

    The goal of this project is to develop a low-cost and low-energy technology for production of photovoltaic devices based on InGaN materials. This project builds on the ongoing development by Structured Materials Industries (SMI), of novel thin film deposition technology for Group III-Nitride materials, which is capable of depositing Group-III nitride materials at significantly lower costs and significantly lower energy usage compared to conventional deposition techniques. During this project, SMI demonstrated deposition of GaN and InGaN films using metalorganic sources, and demonstrated compatibility of the process with standard substrate materials and hardware components.

  5. Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light

    SciTech Connect (OSTI)

    Kibria, M. G.; Chowdhury, F. A.; Zhao, S.; Mi, Z.; Trudeau, M. L.; Guo, H.

    2015-03-16

    We report that by engineering the intra-gap defect related energy states in GaN nanowire arrays using Mg dopants, efficient and stable overall neutral water splitting can be achieved under violet light. Overall neutral water splitting on Rh/Cr{sub 2}O{sub 3} co-catalyst decorated Mg doped GaN nanowires is demonstrated with intra-gap excitation up to 450?nm. Through optimized Mg doping, the absorbed photon conversion efficiency of GaN nanowires reaches ?43% at 375450?nm, providing a viable approach to extend the solar absorption of oxide and non-oxide photocatalysts.

  6. Carrier localization and in-situ annealing effect on quaternary Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y}/GaAs quantum wells grown by Sb pre-deposition

    SciTech Connect (OSTI)

    Thoma, Jiri; Huyet, Guillaume; Tyndall National Institute, UCC, Lee Maltings, Cork ; Liang, Baolai; Huffaker, Diana L.; Lewis, Liam; Hegarty, Stephen P.

    2013-03-18

    Using temperature-dependent photoluminescence spectroscopy, we have investigated and compared intrinsic InGaAs, intrinsic GaInAsSb, and p-i-n junction GaInAsSb quantum wells (QWs) embedded in GaAs barriers. Strong carrier localization inside the intrinsic GaInAsSb/GaAs QW has been observed together with its decrease inside the p-i-n sample. This is attributed to the effect of an in-situ annealing during the top p-doped AlGaAs layer growth at an elevated temperature of 580 Degree-Sign C, leading to Sb-atom diffusion and even atomic redistribution. High-resolution X-ray diffraction measurements and the decrease of both maximum localization energy and full delocalization temperature in the p-i-n QW sample further corroborated this conclusion.

  7. Correlating electroluminescence characterization and physics-based models of InGaN/GaN LEDs: Pitfalls and open issues

    SciTech Connect (OSTI)

    Calciati, Marco; Vallone, Marco; Zhou, Xiangyu; Ghione, Giovanni; Goano, Michele Bertazzi, Francesco; Meneghini, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico; Verzellesi, Giovanni; Zhu, Dandan; Humphreys, Colin

    2014-06-15

    Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10{sup −30} cm{sup 6}/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary

  8. Strain dependence on polarization properties of AlGaN and AlGaN-based ultraviolet lasers grown on AlN substrates

    SciTech Connect (OSTI)

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramn; Mita, Seiji; Tweedie, James

    2015-06-08

    Since the band ordering in AlGaN has a profound effect on the performance of UVC light emitting diodes (LEDs) and even determines the feasibility of surface emitting lasers, the polarization properties of emitted light from c-oriented AlGaN and AlGaN-based laser structures were studied over the whole composition range, as well as various strain states, quantum confinements, and carrier densities. A quantitative relationship between the theoretical valence band separation, determined using kp theory, and the experimentally measured degree of polarization is presented. Next to composition, strain was found to have the largest influence on the degree of polarization while all other factors were practically insignificant. The lowest crossover point from the transverse electric to transverse magnetic polarized emission of 245?nm was found for structures pseudomorphically grown on AlN substrates. This finding has significant implications toward the efficiency and feasibility of surface emitting devices below this wavelength.

  9. Improved Ga grading of sequentially produced Cu(In,Ga)Se{sub 2} solar cells studied by high resolution X-ray fluorescence

    SciTech Connect (OSTI)

    Schöppe, Philipp; Schnohr, Claudia S.; Oertel, Michael; Kusch, Alexander; Johannes, Andreas; Eckner, Stefanie; Reislöhner, Udo; Ronning, Carsten; Burghammer, Manfred; Martínez-Criado, Gema

    2015-01-05

    There is particular interest to investigate compositional inhomogeneity of Cu(In,Ga)Se{sub 2} solar cell absorbers. We introduce an approach in which focused ion beam prepared thin lamellas of complete solar cell devices are scanned with a highly focused synchrotron X-ray beam. Analyzing the resulting fluorescence radiation ensures high resolution compositional analysis combined with high spatial resolution. Thus, we are able to detect subtle variations of the Ga/(Ga + In) ratio down to 0.01 on a submicrometer scale. We observed that for sequentially processed solar cells a higher selenization temperature leads to absorbers with almost homogenous Ga/(Ga + In) ratio, which significantly improved the conversion efficiency.

  10. Highly tunable quantum Hall far-infrared photodetector by use of GaAs/Al{sub x}Ga{sub 1?x}As-graphene composite material

    SciTech Connect (OSTI)

    Tang, Chiu-Chun [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-11-03

    We have developed a highly tunable, narrow band far-infrared (FIR) photodetector which utilizes the characteristic merits of graphene and two-dimensional electron gas (2DEG) in GaAs/Al{sub x}Ga{sub 1?x}As heterostructure in the Quantum Hall states (QHS). The heterostructure surface is covered with chemical vapor-deposited graphene, which functions as a transparent top-gate to vary the electron density of the 2DEG. FIR response observed in the vicinity of integer QH regime can be effectively tuned in a wide range of 27102?cm{sup ?1} with a bias voltage less than ?1?V. In addition, we have found that the presence of graphene can genuinely modulate the photoresponse. Our results demonstrate a promising direction for realizing a tunable long-wavelength FIR detector using QHS in GaAs 2DEG/ graphene composite material.

  11. Bias dependence and correlation of the cathodoluminescence and electron beam induced current from an InGaN/GaN light emitting diode

    SciTech Connect (OSTI)

    Wallace, M. J.; Edwards, P. R.; Martin, R. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Kappers, M. J.; Oehler, F.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom); Hopkins, M. A.; Sivaraya, S.; Allsopp, D. W. E. [Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-07-21

    Micron-scale mapping has been employed to study a contacted InGaN/GaN LED using combined electroluminescence (EL), cathodoluminescence (CL), and electron beam induced current (EBIC). Correlations between parameters, such as the EBIC and CL intensity, were studied as a function of applied bias. The CL and EBIC maps reveal small areas, 210??m in size, which have increased nonradiative recombination rate and/or a lower conductivity. The CL emission from these spots is blue shifted, by 3040?meV. Increasing the reverse bias causes the size of the spots to decrease, due to competition between in-plane diffusion and drift in the growth direction. EL mapping shows large bright areas (?100??m) which also have increased EBIC, indicating domains of increased conductivity in the p and/or n-GaN.

  12. Mid-infrared electro-luminescence and absorption from AlGaN/GaN-based multi-quantum well inter-subband structures

    SciTech Connect (OSTI)

    Hofstetter, Daniel; Bour, David P.; Kirste, Lutz

    2014-06-16

    We present electro-modulated absorption and electro-luminescence measurements on chirped AlGaN/GaN-based multi-quantum well inter-subband structures grown by metal-organic vapour phase epitaxy. The absorption signal is a TM-polarized, 70?meV wide feature centred at 230?meV. At medium injection current, a 58?meV wide luminescence peak corresponding to an inter-subband transition at 1450?cm{sup ?1} (180?meV) is observed. Under high injection current, we measured a 4?meV wide structure peaking at 92.5?meV in the luminescence spectrum. The energy location of this peak is exactly at the longitudinal optical phonon of GaN.

  13. Temperature-dependent modulated reflectance of InAs/InGaAs/GaAs quantum dots-in-a-well infrared photodetectors

    SciTech Connect (OSTI)

    Nedzinskas, R. ?echavi?ius, B.; Rimkus, A.; Pozingyt?, E.; Kavaliauskas, J.; Valuis, G.; Li, L. H.; Linfield, E. H.

    2015-04-14

    We present a photoreflectance (PR) study of multi-layer InAs quantum dot (QD) photodetector structures, incorporating InGaAs overgrown layers and positioned asymmetrically within GaAs/AlAs quantum wells (QWs). The influence of the back-surface reflections on the QD PR spectra is explained and a temperature-dependent photomodulation mechanism is discussed. The optical interband transitions originating from the QD/QW ground- and excited-states are revealed and their temperature behaviour in the range of 3300?K is established. In particular, we estimated the activation energy (?320?meV) of exciton thermal escape from QD to QW bound-states at high temperatures. Furthermore, from the obtained Varshni parameters, a strain-driven partial decomposition of the InGaAs cap layer is determined.

  14. Green, red and infrared Er-related emission in implanted GaN:Er and GaN:Er,O samples

    SciTech Connect (OSTI)

    Monteiro, T.; Soares, J.; Correia, M. R.; Alves, E.

    2001-06-01

    Er-related luminescence near 1.54 {mu}m ({similar_to}805 meV) is observed under below band gap excitation at 4.2 K in GaN:Er and GaN:Er,O implanted samples. The spectrum of the recovered damage samples is a multiline structure. So far, these lines are the sharpest ones reported for GaN. Well-resolved green and red luminescences are observed in implanted samples. The dependence of luminescence on the excitation energy as well as the influence of different nominal fluence and annealing conditions is discussed. Combining the results obtained from photoluminescence and Rutherford backscattering spectrometry, different lattice sites for the optical active Er-related centers are identified. {copyright} 2001 American Institute of Physics.

  15. Current flow and potential efficiency of solar cells based on GaAs and GaSb p-n junctions

    SciTech Connect (OSTI)

    Andreev, V. M.; Evstropov, V. V.; Kalinovsky, V. S. Lantratov, V. M.; Khvostikov, V. P.

    2009-05-15

    Dependence of the efficiency of single-junction and multijunction solar cells on the mechanisms of current flow in photoactive p-n junctions, specifically on the form of the dark current-voltage characteristic J-V, has been studied. The resistanceless J-V{sub j} characteristic (with the series resistance disregarded) of a multijunction solar cell has the same shape as the characteristic of a single-junction cell: both feature a set of exponential portions. This made it possible to develop a unified analytical method for calculating the efficiency of singlejunction and multijunction solar cells. The equation relating the efficiency to the photogenerated current at each portion of the J-V{sub j} characteristic is derived. For p-n junctions in GaAs and GaSb, the following characteristics were measured: the dark J-V characteristic, the dependence of the open-circuit voltage on the illumination intensity P-V{sub OC}, and the dependence of the luminescence intensity on the forward current L-J. Calculated dependences of potential efficiency (under idealized condition for equality to unity of external quantum yield) on the photogenerated current for single-junction GaAs and GaSb solar cells and a GaAs/GaSb tandem are plotted. The form of these dependences corresponds to the shape of J-V{sub j} characteristics: there are the diffusion- and recombination-related portions; in some cases, the tunneling-trapping portion is also observed. At low degrees of concentration of solar radiation (C < 10), an appreciable contribution to photogenerated current is made by recombination component. It is an increase in this component in the case of irradiation with 6.78-MeV protons or 1-MeV electrons that brings about a decrease in the efficiency of conversion of unconcentrated solar radiation.

  16. Enhanced quality thin film Cu(In,Ga)Se[sub 2] for semiconductor device applications by vapor-phase recrystallization

    DOE Patents [OSTI]

    Tuttle, J.R.; Contreras, M.A.; Noufi, R.; Albin, D.S.

    1994-10-18

    Enhanced quality thin films of Cu[sub w](In,Ga[sub y])Se[sub z] for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu[sub x]Se on a substrate to form a large-grain precursor and then converting the excess Cu[sub x]Se to Cu(In,Ga)Se[sub 2] by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga)[sub y]Se[sub z]. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300--600 C, where the Cu(In,Ga)Se[sub 2] remains solid, while the excess Cu[sub x]Se is in a liquid flux. The characteristic of the resulting Cu[sub w](In,Ga)[sub y]Se[sub z] can be controlled by the temperature. Higher temperatures, such as 500--600 C, result in a nearly stoichiometric Cu(In,Ga)Se[sub 2], whereas lower temperatures, such as 300--400 C, result in a more Cu-poor compound, such as the Cu[sub z](In,Ga)[sub 4]Se[sub 7] phase. 7 figs.

  17. Enhanced quality thin film Cu(In,Ga)Se.sub.2 for semiconductor device applications by vapor-phase recrystallization

    DOE Patents [OSTI]

    Tuttle, John R.; Contreras, Miguel A.; Noufi, Rommel; Albin, David S.

    1994-01-01

    Enhanced quality thin films of Cu.sub.w (In,Ga.sub.y)Se.sub.z for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu.sub.x Se on a substrate to form a large-grain precursor and then converting the excess Cu.sub.x Se to Cu(In,Ga)Se.sub.2 by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga).sub.y Se.sub.z. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300.degree.-600.degree. C., where the Cu(In,Ga)Se.sub.2 remains solid, while the excess Cu.sub.x Se is in a liquid flux. The characteristic of the resulting Cu.sub.w (In,Ga).sub.y Se.sub.z can be controlled by the temperature. Higher temperatures, such as 500.degree.-600.degree. C., result in a nearly stoichiometric Cu(In,Ga)Se.sub.2, whereas lower temperatures, such as 300.degree.-400.degree. C., result in a more Cu-poor compound, such as the Cu.sub.z (In,Ga).sub.4 Se.sub.7 phase.

  18. Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001)

    SciTech Connect (OSTI)

    Bremner, S. P.; Ban, K.-Y.; Faleev, N. N.; Honsberg, C. B.; Smith, D. J.

    2013-09-14

    We describe InAs quantum dot creation in InAs/GaAsSb barrier structures grown on GaAs (001) wafers by molecular beam epitaxy. The structures consist of 20-nm-thick GaAsSb barrier layers with Sb content of 8%, 13%, 15%, 16%, and 37% enclosing 2 monolayers of self-assembled InAs quantum dots. Transmission electron microscopy and X-ray diffraction results indicate the onset of relaxation of the GaAsSb layers at around 15% Sb content with intersected 60° dislocation semi-loops, and edge segments created within the volume of the epitaxial structures. 38% relaxation of initial elastic stress is seen for 37% Sb content, accompanied by the creation of a dense net of dislocations. The degradation of In surface migration by these dislocation trenches is so severe that quantum dot formation is completely suppressed. The results highlight the importance of understanding defect formation during stress relaxation for quantum dot structures particularly those with larger numbers of InAs quantum-dot layers, such as those proposed for realizing an intermediate band material.

  19. Defect chalcopyrite Cu(In{sub 1-x}Ga{sub x}){sub 3}Se{sub 5} (0Ga-content Cu(In,Ga) Se{sub 2}-based solar cells

    SciTech Connect (OSTI)

    Contreras, M.A.; Wiesner, H.; Niles, D.; Ramanathan, K.; Matson, R.

    1996-05-01

    Crystallographic, optical, and electrical properties of defect chalcopyrite Cu(In{sub 1{minus}x}Ga{sub x}){sub 3}Se{sub 5} (0Ga{sub x}Se{sub 2} absorber materials is presented. Considering the chalcopyrite/defect chalcopyrite junction model, the authors postulate that the traditionally poor device performance of uniform high-Ga-content absorbers (x>0.3) is due to a relatively inferior character - both structural and electrical - at the very chalcopyrite/defect chalcopyrite interface. They demonstrate that this situation can be circumvented (for absorbers with x>0.3) by properly engineering such an interface by reducing Ga content in the region near the surface of the absorber.

  20. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors

    SciTech Connect (OSTI)

    Mitchel, W. C. Haugan, H. J.; Mou, Shin; Brown, G. J.; Elhamri, S.; Berney, R.

    2015-09-15

    Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.

  1. Impacts of SiN passivation on the degradation modes of AlGaN/GaN high electron mobility transistors under reverse-bias stress

    SciTech Connect (OSTI)

    Chen, Wei-Wei; Ma, Xiao-Hua E-mail: yhao@xidian.edu.cn; Hou, Bin; Zhu, Jie-Jie; Chen, Yong-He; Zheng, Xue-Feng; Zhang, Jin-Cheng; Hao, Yue E-mail: yhao@xidian.edu.cn

    2014-10-27

    Impacts of SiN passivation on the degradation modes of AlGaN/GaN high electron mobility transistors are investigated. The gate leakage current decreases significantly upon removing the SiN layer and no clear critical voltage for the sudden degradation of the gate leakage current can be observed in the reverse-bias step-stress experiments. Gate-lag measurements reveal the decrease of the fast-state surface traps and the increase of slow-state traps after the passivation layer removal. It is postulated that consistent surface charging relieves the electric field peak on the gate edge, thus the inverse piezoelectric effect is shielded.

  2. Lasing action and extraordinary reduction in long radiative lifetime of type-II GaSb/GaAs quantum dots using circular photonic crystal nanocavity

    SciTech Connect (OSTI)

    Hsu, Kung-Shu; Chang, Shu-Wei; Hung, Wei-Chun; Chang, Chih-Chi; Lin, Wei-Hsun; Lin, Shih-Yen; Shih, Min-Hsiung; Lee, Po-Tsung; Chang, Yia-Chung

    2015-08-31

    We demonstrated the lasing action and remarkable reduction in long radiative lifetimes of type-II GaSb/GaAs quantum dots using a circular photonic-crystal nano-cavity with high Purcell factors. The associated enhancement in carrier recombination was surprisingly high and could even surpass type-I counterparts in similar conditions. These phenomena reveal that the type-II sample exhibited extremely low nonradiative recombination so that weak radiative transitions were more dominant than expected. The results indicate that type-II nanostructures may be advantageous for applications which require controllable radiative transitions but low nonradiative depletions.

  3. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Quan, Zhijue Wang, Li Zheng, Changda; Liu, Junlin; Jiang, Fengyi

    2014-11-14

    The roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well (MQW) light-emitting diodes are investigated by numerical simulation. The simulation results show that V-shaped pits cannot only screen dislocations, but also play an important role on promoting hole injection into the MQWs. It is revealed that the injection of holes into the MQW via the sidewalls of the V-shaped pits is easier than via the flat region, due to the lower polarization charge densities in the sidewall structure with lower In concentration and (1011)-oriented semi-polar facets.

  4. Hydrogen passivation of nitrogen in GaNAs and GaNP alloys: How many H atoms are required for each N atom?

    SciTech Connect (OSTI)

    Buyanova, I. A.; Chen, W. M.; Izadifard, M.; Pearton, S. J.; Bihler, C.; Brandt, M. S.; Hong, Y. G.; Tu, C. W.

    2007-01-08

    Secondary ion mass spectrometry and photoluminescence are employed to evaluate the origin and efficiency of hydrogen passivation of nitrogen in GaNAs and GaNP. The hydrogen profiles are found to closely follow the N distributions, providing unambiguous evidence for their preferential binding as the dominant mechanism for neutralization of N-induced modifications in the electronic structure of the materials. Though the exact number of H atoms involved in passivation may depend on the conditions of the H treatment and the host matrixes, it is generally found that more than three H atoms are required to bind to a N atom to achieve full passivation for both alloys.

  5. How much better are InGaN/GaN nanodisks than quantum wellsOscillator strength enhancement and changes in optical properties

    SciTech Connect (OSTI)

    Zhang, Lei; Hill, Tyler A.; Deng, Hui E-mail: peicheng@umich.edu; Lee, Leung-Kway; Teng, Chu-Hsiang; Ku, Pei-Cheng E-mail: peicheng@umich.edu

    2014-02-03

    We show over 100-fold enhancement of the exciton oscillator strength as the diameter of an InGaN nanodisk in a GaN nanopillar is reduced from a few micrometers to less than 40?nm, corresponding to the quantum dot limit. The enhancement results from significant strain relaxation in nanodisks less than 100?nm in diameter. Meanwhile, the radiative decay rate is only improved by 10 folds due to strong reduction of the local density of photon states in small nanodisks. Further increase in the radiative decay rate can be achieved by engineering the local density of photon states, such as adding a dielectric coating.

  6. Measurement of Cross Sections for the 63Cu(alpha,gamma)67Ga Reaction...

    Office of Scientific and Technical Information (OSTI)

    Title: Measurement of Cross Sections for the 63Cu(alpha,gamma)67Ga Reaction from 5.9-8.7 MeV Authors: Basunia, M S ; Norman, E B ; Shugart, H A ; Smith, A R ; Dolinski, M J ; ...

  7. GaAs high temperature optical constants and application to optical monitoring within the MOVPE environment

    SciTech Connect (OSTI)

    Allwood, D.A.; Klipstein, P.C.; Mason, N.J.; Nicholas, R.J.; Walker, P.J.

    2000-01-01

    The real and imaginary components of the GaAs refractive index at temperatures between 20--700 C have been obtained. Measurements were made by comparing the variable angle reflectivity of p-polarized and s-polarized 633 nm wavelength light from a deoxidized GaAs surface. By using these temperature-dependent optical constants for GaAs, modeling has allowed the behavior of surface photoabsorption (SPA) signals with temperature and oxide layers present to be predicted for different angles of incidence. The experimentally observed SPA signals during deoxidization of GaAs show strong qualitative agreement with these calculations at each of the angles of incidence considered. The measurement of data and application to modeling provides a platform for the measurement of temperature-dependent optical data for other III-V materials and for the investigation of deoxidation mechanisms.

  8. File:USDA-CE-Production-GIFmaps-GA.pdf | Open Energy Information

    Open Energy Info (EERE)

    GA.pdf Jump to: navigation, search File File history File usage Georgia Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  9. Mechanism of lateral ordering of InP dots grown on InGaP layers

    SciTech Connect (OSTI)

    Bortoleto, J.R.R.; Gutierrez, H.R.; Cotta, M.A.; Bettini, J.

    2005-07-04

    The mechanisms leading to the spontaneous formation of a two-dimensional array of InP/InGaP dots grown by chemical-beam epitaxy are discussed. Samples where the InGaP buffer layer was grown at different conditions were characterized by transmission electron microscopy. Our results indicate that a periodic strain field related to lateral two-dimensional compositional modulation in the InGaP buffer layer determines the dot nucleation positions during InP growth. Although the periodic strain field in the InGaP is large enough to align the InP dots, both their shape and optical properties are effectively unaltered. This result shows that compositional modulation can be used as a tool for in situ dot positioning.

  10. Unoccupied electronic structure of Ni2MnGa ferromagnetic shape...

    Office of Scientific and Technical Information (OSTI)

    shape memory alloy This content will become publicly available on August 20, 2016 Prev Next Title: Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy ...

  11. Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth

    SciTech Connect (OSTI)

    Harmand, J.C.; Patriarche, G.; Pere-Laperne, N.; Merat-Combes, M-N.; Travers, L.; Glas, F.

    2005-11-14

    GaAs nanowires were grown by molecular-beam epitaxy on (111)B oriented surfaces, after the deposition of Au nanoparticles. Different growth durations and different growth terminations were tested. After the growth of the nanowires, the structure and the composition of the metallic particles were analyzed by transmission electron microscopy and energy dispersive x-ray spectroscopy. We identified three different metallic compounds: the hexagonal {beta}{sup '}Au{sub 7}Ga{sub 2} structure, the orthorhombic AuGa structure, and an almost pure Au face centered cubic structure. We explain how these different solid phases are related to the growth history of the samples. It is concluded that during the wire growth, the metallic particles are liquid, in agreement with the generally accepted vapor-liquid-solid mechanism. In addition, the analysis of the wire morphology indicates that Ga adatoms migrate along the wire sidewalls with a mean length of about 3 {mu}m.

  12. Sandia Energy - Optical performance of top-down fabricated InGaN...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance of top-down fabricated InGaNGaN nanorod light emitting diode arrays" in Optics Express. This paper details the development of a two-step top-down process for...

  13. Epitaxial growth of aluminum nitride on AlGaN by reactive sputtering at low temperature

    SciTech Connect (OSTI)

    Duquenne, C.; Djouadi, M. A.; Tessier, P. Y.; Jouan, P. Y.; Besland, M. P.; Brylinski, C.; Aubry, R.; Delage, S.

    2008-08-04

    We report the synthesis of 1 {mu}m thick single crystalline aluminum nitride films by dc magnetron sputtering on AlGaN/GaN layer grown on sapphire substrate at low temperature (substrate temperature <250 deg. C). The microstructure of c-axis oriented AlN films deposited on Si (100) and AlGaN <0001> substrates was studied by x-ray diffraction, selected area electron diffraction, and transmission electron microscopy. The optimization of process parameters, involving low energetic ion bombardment on film surface (20-30 eV) during the growth, leads to an increase in the surface mobility and thus promotes AlN epitaxial growth on AlGaN substrate at 250 deg. C.

  14. Surface electronic structure of GaAs(110) studied by Auger photoelectron coincidence spectroscopy

    SciTech Connect (OSTI)

    Bartynski, R.A.; Garrison, K.; Jensen, E.; Hulbert, S.L.; Weinert, M.

    1990-12-31

    We have used Auger photoelectron coincidence spectroscopy to study the M{sub 4,5}VV Auger spectra of GaAs(110). Using this technique, the Ga and As spectra can be separated and studied independently. The lineshape of the As-M{sub 4,5}VV measured in coincidence with the As 3d photoemission line differs significantly from the conventional Auger spectrum. We attribute this to the surface electronic properties of the system. In addition, we have found that the ss-component of the As spectrum is more intense than expected based on calculations using atomic matrix elements. The Ga-M{sub 4,5}VV spectrum, of which only the pp-component is observed, agrees well with that expected from an independent electron model. A first principles electronic structure calculation of a 5-layer GaAs(110) slab has been performed to aid in the interpretation of the Auger spectra.

  15. Surface electronic structure of GaAs(110) studied by Auger photoelectron coincidence spectroscopy

    SciTech Connect (OSTI)

    Bartynski, R.A.; Garrison, K. ); Jensen, E. . Dept. of Physics); Hulbert, S.L.; Weinert, M. )

    1990-01-01

    We have used Auger photoelectron coincidence spectroscopy to study the M{sub 4,5}VV Auger spectra of GaAs(110). Using this technique, the Ga and As spectra can be separated and studied independently. The lineshape of the As-M{sub 4,5}VV measured in coincidence with the As 3d photoemission line differs significantly from the conventional Auger spectrum. We attribute this to the surface electronic properties of the system. In addition, we have found that the ss-component of the As spectrum is more intense than expected based on calculations using atomic matrix elements. The Ga-M{sub 4,5}VV spectrum, of which only the pp-component is observed, agrees well with that expected from an independent electron model. A first principles electronic structure calculation of a 5-layer GaAs(110) slab has been performed to aid in the interpretation of the Auger spectra.

  16. Demonstration of forward inter-band tunneling in GaN by polarization engineering

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram; Park, Pil Sung; Rajan, Siddharth

    2011-12-05

    We report on the design, fabrication, and characterization of GaN interband tunnel junction showing forward tunneling characteristics. We have achieved very high forward tunneling currents (153 mA/cm{sup 2} at 10 mV, and 17.7 A/cm{sup 2} peak current) in polarization-engineered GaN/InGaN/GaN heterojunction diodes grown by plasma assisted molecular beam epitaxy. We also report the observation of repeatable negative differential resistance in interband III-Nitride tunnel junctions, with peak-valley current ratio of 4 at room temperature. The forward current density achieved in this work meets the typical current drive requirements of a multi-junction solar cell.

  17. OMVPE Growth of Quaternary (Al,Ga,In)N for UV Optoelectronics (title change from A)

    SciTech Connect (OSTI)

    HAN,JUNG; FIGIEL,JEFFREY J.; PETERSEN,GARY A.; MYERS JR.,SAMUEL M.; CRAWFORD,MARY H.; BANAS,MICHAEL ANTHONY; HEARNE,SEAN JOSEPH

    2000-01-18

    We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GrdnN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.

  18. Contrasting Behavior of GaP(001) and InP(001) at the Interface...

    Office of Scientific and Technical Information (OSTI)

    at the Interface with Water Citation Details In-Document Search Title: Contrasting Behavior of GaP(001) and InP(001) at the Interface with Water Authors: Wood, B C ; ...

  19. Measurement of cross sections for the Cu-63(alpha,gamma)Ga-67...

    Office of Scientific and Technical Information (OSTI)

    Title: Measurement of cross sections for the Cu-63(alpha,gamma)Ga-67 reaction from 5.9-8.7 MeV Authors: Basunia, M S ; Norman, E B ; Shugart, H A ; Smith, A R ; Dolinski, M J ; ...

  20. MULTIPLE-WINDOW SPECTROMETRY FOR $sup 67$Ga. Ross, D A; McClain...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR sup 67Ga. Ross, D A; McClain, W J; East, J K; Bell, P R N26110* --Instrumentation--Radiation Detection Instruments-- General Detectors & Monitors; N28530 --Life...

  1. Large area, low capacitance, GaAs nanowire photodetector with a transparent Schottky collecting junction

    SciTech Connect (OSTI)

    Seyedi, M. A. Yao, M.; O'Brien, J.; Dapkus, P. D.; Wang, S. Y.; Nanostructured Energy Conversion Technology and Research , Advanced Studies Laboratories, University of California, Santa Cruz, California 95064, USA and NASA Ames Research Center, Moffett Field, California 94035

    2013-12-16

    We present experimental results on a GaAs/Indium-Tin-Oxide Schottky-like heterojunction photodetector based on a nanowire device geometry. By distributing the active detecting area over an array of nanowires, it is possible to achieve large area detection with low capacitance. Devices with bare GaAs and passivated AlGaAs/GaAs nanowires are fabricated to compare the responsivity with and without surface passivation. We are able to achieve responsivity of >0.5A/W and Signal-Noise-Ratio in excess of 7?dB for 2?V applied reverse bias with passivated nanowire devices. Capacitance-voltage measurement yields <5?nF/cm{sup 2}, which shows a strong possibility for high-speed applications with a broad area device.

  2. Modeling and Characterization of the Magnetocaloric Effect in Ni2MnGa Materials

    SciTech Connect (OSTI)

    Nicholson, Don M; Odbadrakh, Khorgolkhuu; Rios, Orlando; Hodges, Jason P; Ludtka, Gerard Michael; Porter, Wallace D; Sefat, A. S.; Rusanu, Aurelian; Evans III, Boyd Mccutchen

    2012-01-01

    Magnetic shape memory alloys have great promise as magneto-caloric effect refrigerant materials due to their combined magnetic and structural transitions. Computational and experimental research is reported on the Ni2MnGa material system. The magnetic states of this system have been explored using the Wang-Landau statistical approach in conjunction with the Locally Self-consistent Multiple-Scattering (LSMS) method to explore the magnetic states responsible for the magnet-caloric effect in this material. The effects of alloying agents on the transition temperatures of the Ni2MnGa alloy were investigated using differential scanning calorimetry (DSC) and superconducting quantum interference device (SQUID). Neutron scattering experiments were performed to observe the structural and magnetic phase transformations at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on alloys of Ni-Mn-Ga and Ni-Mn-Ga-Cu-Fe. Data from the observations are discussed in comparison with the computational studies.

  3. Suppression of low-frequency charge noise in gates-defined GaAs quantum dots

    SciTech Connect (OSTI)

    You, Jie; Li, Hai-Ou E-mail: gpguo@ustc.edu.cn; Wang, Ke; Cao, Gang; Song, Xiang-Xiang; Xiao, Ming; Guo, Guo-Ping E-mail: gpguo@ustc.edu.cn

    2015-12-07

    To reduce the charge noise of a modulation-doped GaAs/AlGaAs quantum dot, we have fabricated shallow-etched GaAs/AlGaAs quantum dots using the wet-etching method to study the effects of two-dimensional electron gas (2DEG) underneath the metallic gates. The low-frequency 1/f noise in the Coulomb blockade region of the shallow-etched quantum dot is compared with a non-etched quantum dot on the same wafer. The average values of the gate noise are approximately 0.5 μeV in the shallow-etched quantum dot and 3 μeV in the regular quantum dot. Our results show the quantum dot low-frequency charge noise can be suppressed by the removal of the 2DEG underneath the metallic gates, which provides an architecture for noise reduction.

  4. Enhanced conversion efficiency in wide-bandgap GaNP solar cells...

    Office of Scientific and Technical Information (OSTI)

    Enhanced conversion efficiency in wide-bandgap GaNP solar cells Citation Details In-Document Search This content will become publicly available on October 12, 2016 Title: Enhanced...

  5. The Band Gap of AlGaN Alloys (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The Band Gap of AlGaN Alloys Citation Details In-Document Search Title: The Band ... Publication Date: 1999-01-29 OSTI Identifier: 3336 Report Number(s): ...

  6. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    McSkimming, Brian M. Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  7. Properties of radio-frequency-sputter-deposited GaN films in a nitrogen/hydrogen mixed gas

    SciTech Connect (OSTI)

    Miyazaki, Takayuki; Takada, Kouhei; Adachi, Sadao; Ohtsuka, Kohji

    2005-05-01

    GaN films have been deposited by reactive sputtering in nitrogen gas at pressures from 0.08 to 2.70 Pa with and without the addition of hydrogen gas. X-ray diffraction (XRD), Fourier transform infrared (FTIR), optical absorption, and photoluminescence (PL) spectroscopy have been used to characterize the sputter-deposited GaN films. The XRD pattern reveals that the GaN films deposited in nitrogen gas at pressures lower than 0.53 Pa are polycrystals with the (0001) texture ({alpha}-GaN), while those deposited at or above 1.07 Pa display mixed crystalline orientations or an amorphous-like nature. The GaN:H films deposited in nitrogen/hydrogen mixed gas, on the other hand, show an amorphous or amorphous-like nature. The FTIR spectra indicate that the GaN:H films show peaks arising from hydrogen-related bonds at {approx}1000 and {approx}3200 cm{sup -1}, in addition to the GaN absorption band at {approx}555 cm{sup -1}. The optical absorption spectra at 300 K indicate the fundamental absorption edges at {approx}3.38 and {approx}3.7 eV for the highly oriented {alpha}-GaN and amorphous GaN:H films, respectively. PL emission has been observed from sputter-deposited {alpha}-GaN films at temperatures below 100 K. The GaN:H films also show strong band-edge and donor-acceptor pair emissions. The PL emission in the GaN:H film may arise from crystalline GaN particles embedded in the amorphous GaN matrix.

  8. Gallium Pnictides of the Alkaline Earth Metals, Synthesized by Means of the Flux Method: Crystal Structures and Properties of CaGa[subscript 2]Pn[subscript 2], SrGa[subscript 2]As[subscript 2], Ba[subscript 2]Ga[subscript 5]As[subscript 5], and Ba[subscript 4]Ga[subscript 5]Pn[subscript 8] (Pn = P or As)

    SciTech Connect (OSTI)

    He, Hua; Stearrett, Ryan; Nowak, Edmund R.; Bobev, Svilen

    2014-05-28

    The focus of this paper is on the structural characterization of the new Zintl phases CaGa{sub 2}P{sub 2}, CaGa{sub 2}As{sub 2}, SrGa{sub 2}As{sub 2}, and Ba{sub 2}Ga{sub 5}As{sub 5}, and the solid solution (Ba{sub 0.85(1)}Sr{sub 0.15}){sub 2}Ga{sub 5}As{sub 5}, all of which were synthesized from molten metal fluxes.CaGa{sub 2}P{sub 2}, CaGa{sub 2}As{sub 2}, and SrGa{sub 2}As{sub 2} have layered structures with polyanionic layers made of ethane-like Ga{sub 2}P6 and Ga{sub 2}As6 motifs fused through common edges; the polyanionic substructure in Ba{sub 2}Ga{sub 5}As{sub 5} consists of condensed Ga{sub 2}As6 units and GaAs{sub 4} tetrahedra. Ba{sub 4}Ga{sub 5}P{sub 8} and Ba{sub 4}Ga{sub 5}As{sub 8}, another pair of new compounds with channel-like 3D structures, were also synthesized from metal fluxes, and their structures were established from single-crystal X-ray and synchrotron powder diffraction. They are based on GaP{sub 4} and GaAs{sub 4} tetrahedra, with parts of their structures being heavily disordered. The electronic structures computed with the linear muffin-tin orbital (LMTO) method are discussed as well, alongside the thermopower and the electrical conductivity, measured on single crystals of Ba{sub 2}Ga{sub 5}As{sub 5} and the solid solution (Ba{sub 0.85(1)}Sr{sub 0.15}){sub 2} Ga{sub 5}As{sub 5}. They demonstrate that such an approach would be an effective way to fine-tune the transport properties.

  9. GaInNAs Junctions for Next-Generation Concentrators: Progress and Prospects

    SciTech Connect (OSTI)

    Friedman, D. J.; Ptak, A. J.; Kurtz, S. R.; Geisz, J. F.; Kiehl, J.

    2005-08-01

    We discuss progress in the development of GaInNAs junctions for application in next-generation multijunction concentrator cells. A significant development is the demonstration of near-100% internal quantum efficiencies in junctions grown by molecular-beam epitaxy. Testing at high currents validates the compatibility of these devices with concentrator operation. The efficiencies of several next-generation multijunction structures incorporating these state-of-the-art GaInNAs junctions are projected.

  10. 1.3??m photoluminescence of Ge/GaAs multi-quantum-well structure

    SciTech Connect (OSTI)

    Aleshkin, V. Ya.; Dubinov, A. A. Kudryavtsev, K. E.; Rumyantsev, V. V.; Tonkikh, A. A.; Zakharov, N. D.; Zvonkov, B. N.

    2014-01-28

    In this paper, we report on photoluminescence studies of a multiple quantum well Ge/GaAs heterostructure grown by laser-assisted sputtering. A broad luminescence peak is found at about 1.3??m at room temperature. We attribute this peak to the direct band gap transitions between ?-valley electrons in the GaAs matrix and valence band heavy holes in Ge quantum wells.

  11. Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer

    SciTech Connect (OSTI)

    Shin, Min Jeong; Gwon, Dong-Oh; Lee, Chan-Mi; Lee, Gang Seok; Jeon, In-Jun; Ahn, Hyung Soo; Yi, Sam Nyung; Ha, Dong Han

    2015-08-15

    Highlights: • A hybrid device was demonstrated by using MEH-PPV, PEDOT:PSS, and GaN nanoneedles. • I–V curve of the hybrid device showed its rectification behaviour, similar to a diode. • EL peak originated by the different potential barriers at MEH-PPV and GaN interface. - Abstract: A hybrid device that combines the properties of organic and inorganic semiconductors was fabricated and studied. It incorporated poly[2-methoxy-5-(2-ethylhexyloxy)- 1,4-phenylenevinylene] (MEH-PPV) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as organic polymers and GaN nanoneedles as an inorganic semiconductor. Layers of the two polymers were spin coated on to the GaN nanoneedles. The one peak in the electroluminescence spectrum originated from the MEH-PPV layer owing to the different potential barriers of electrons and holes at its interface with the GaN nanoneedles. However, the photoluminescence spectrum showed peaks due to both GaN nanoneedles and MEH-PPV. Such hybrid structures, suitably developed, might be able to improve the efficiency of optoelectronic devices.

  12. GaNPAs Solar Cells that Can Be Lattice-Matched to Silicon

    SciTech Connect (OSTI)

    Geisz, J. F.; Friedman, D. J.; McMahon, W. E.; Ptak, A. J.; Kibbler, A. E.; Olson, J. M.; Kurtz, S.; Kramer, C.; Young, M.; Duda, A.; Reedy, R. C.; Keyes, B. M.; Dippo, P.; Metzger, W. K.

    2003-05-01

    III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We have proposed the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct bandgaps in the range of 1.5 to 2.0 eV. We have demonstrated the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and shown improvements in material quality by reducing carbon and hydrogen impurities through optimization of growth conditions. We have achieved quantum efficiencies (QE) in these cells as high as 60% and PL lifetimes as high as 3.0 ns.

  13. 1-MeV-Electron Irradiation of GaInAsN Cells: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; King, R. R.; Edmondson, K. M.; Friedman, D. J.; Karam, N. H.

    2002-05-01

    This conference paper describes the GaInAsN cells that are measured to retain 933% and 894% of their original efficiency after exposure to 5 X 1014 and 1 X 1015 cm-2 1-MeV electrons, respectively. The rate of degradation is not correlated with the performance at beginning of life (BOL). The depletion width remains essentially unchanged, increasing by< 1%. Temperature-coefficient data for GaInAsN cells are also presented. These numbers are used to project the efficiency of GaInAsN-containing multijunction cells. The GaInAsN junction is not currently predicted to increase the efficiencies of the multijunction cells. Nevertheless, GaInAsN-containing multijunction cell efficiencies are predicted to be comparable to those of the conventional structures, and even small improvements in the GaInAsN cell may lead to higher multijunction cell efficiencies, especially for high-radiation applications and when cell operating temperature is low.

  14. Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis

    SciTech Connect (OSTI)

    Dahal, R.; Pantha, B. N.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-04-07

    InGaN alloys are very promising for solar water splitting because they have direct bandgaps that cover almost the whole solar spectrum. The demonstration of direct solar-to-fuel conversion without external bias with the sunlight being the only energy input would pave the way for realizing photoelectrochemical (PEC) production of hydrogen by using InGaN. A monolithic solar-PEC cell based on InGaN/GaN multiple quantum wells capable to directly generate hydrogen gas under zero bias via solar water splitting is reported. Under the irradiation by a simulated sunlight (1-sun with 100 mW/cm{sup 2}), a 1.5% solar-to-fuel conversion efficiency has been achieved under zero bias, setting a fresh benchmark of employing III-nitrides for artificial photosynthesis. Time dependent hydrogen gas production photocurrent measured over a prolonged period (measured for 7 days) revealed an excellent chemical stability of InGaN in aqueous solution of hydrobromic acid. The results provide insights into the architecture design of using InGaN for artificial photosynthesis to provide usable clean fuel (hydrogen gas) with the sunlight being the only energy input.

  15. Electrophilic surface sites as precondition for the chemisorption of pyrrole on GaAs(001) surfaces

    SciTech Connect (OSTI)

    Bruhn, Thomas; Fimland, Bjørn-Ove; Vogt, Patrick

    2015-03-14

    We report how the presence of electrophilic surface sites influences the adsorption mechanism of pyrrole on GaAs(001) surfaces. For this purpose, we have investigated the adsorption behavior of pyrrole on different GaAs(001) reconstructions with different stoichiometries and thus different surface chemistries. The interfaces were characterized by x-ray photoelectron spectroscopy, scanning tunneling microscopy, and by reflectance anisotropy spectroscopy in a spectral range between 1.5 and 5 eV. On the As-rich c(4 × 4) reconstruction that exhibits only nucleophilic surface sites, pyrrole was found to physisorb on the surface without any significant modification of the structural and electronic properties of the surface. On the Ga-rich GaAs(001)-(4 × 2)/(6 × 6) reconstructions which exhibit nucleophilic as well as electrophilic surface sites, pyrrole was found to form stable covalent bonds mainly to the electrophilic (charge deficient) Ga atoms of the surface. These results clearly demonstrate that the existence of electrophilic surface sites is a crucial precondition for the chemisorption of pyrrole on GaAs(001) surfaces.

  16. Mutual Passivation in Dilulte GaNxAs1-x Alloys

    SciTech Connect (OSTI)

    Yu, K.M.; Walukiewicz, W.; Wu, J.; Mars, D.E.; Scarpulla, M.A.; Dubon, O.D.; Ridgway, M.C.; Geisz, J.F.

    2005-03-21

    The dilute GaN{sub x}As{sub 1-x} alloys (with x up to 0.05) have exhibited many unusual properties as compared to the conventional binary and ternary semiconductor alloys. We report on a new effect in the GaN{sub x}As{sub 1-x} alloy system in which electrically active substitutional group IV donors and isoelectronic N atoms passivate each other's activity. This mutual passivation occurs in dilute GaN{sub x}As{sub 1-x} doped with group IV donors through the formation of nearest neighbor IV{sub Ga-}N{sub As} pairs when the samples are annealed under conditions such that the diffusion length of the donors is greater than or equal to the average distance between donor and N atoms. The passivation of the shallow donors and the N{sub As} atoms is manifested in a drastic reduction in the free electron concentration and, simultaneously, an increase in the fundamental band gap. This mutual passivation effect is demonstrated in both Si and Ge doped GaN{sub x}As{sub 1-x} alloys. Analytical calculations of the passivation process based on Ga vacancies mediated diffusion show good agreement with the experimental results.

  17. Temperature dependence of the carrier lifetime in narrow-gap Cd{sub x}Hg{sub 1–x}Te solid solutions: Radiative recombination

    SciTech Connect (OSTI)

    Bazhenov, N. L. Mynbaev, K. D.; Zegrya, G. G.

    2015-09-15

    The probability of the radiative recombination of carriers in narrow-gap semiconductors is analyzed for the example of Cd{sub x}Hg{sub 1–x}Te solid solutions. Expressions are derived for the imaginary part of the dielectric permittivity in terms of the three-band Kane’s model with consideration for the nonparabolic dependence of the carrier energy on the wave vector. It is shown that taking into account this nonparabolicity of the energy spectrum of carriers modifies the dependence of the imaginary part of the dielectric permittivity on frequency. Expressions for the probability of radiative recombination, derived in terms of the simple parabolic model and Kane’s model with and without the nonparabolicity effect taken into account, are compared. It is shown that the contributions to recombination from electron transitions to heavy- and light-hole bands are close and the contribution from light holes cannot be neglected when calculating the radiative-recombination probability.

  18. Energy release, beam attenuation radiation damage, gas production and accumulation of long-lived activity in Pb, Pb-Bi and Hg targets

    SciTech Connect (OSTI)

    Shubin, Yu.N.

    1996-06-01

    The calculation and analysis of the nuclei concentrations and long-lived residual radioactivity accumulated in Pb, Pb-Bi and Hg targets irradiated by 800 MeV, 30 mA proton beam have been performed. The dominating components to the total radioactivity of radionuclides resulting from fission and spallation reactions and radiative capture by both target nuclei and accumulated radioactive nuclei for various irradiation and cooling times were analyzed. The estimations of spectral component contributions of neutron and proton fluxes to the accumulated activity were carried out. The contributions of fission products to the targets activity and partial activities of main long-lived fission products to the targets activity and partial activities of main long-lived fission products were evaluated. The accumulation of Po isotopes due to reactions induced by secondary alpha-particles were found to be important for the Pb target as compared with two-step radiative capture. The production of Tritium in the targets and its contribution to the total targets activity was considered in detail. It is found that total activities of both targets are close to one another.

  19. Electrical and optical properties of Mn-doped Hg{sub 3}In{sub 2}Te{sub 6} crystals

    SciTech Connect (OSTI)

    Grushka, O. G. Chupyra, S. M.; Mysliuk, O. M.; Bilichuk, S. V.; Koziarskyi, D. P.

    2013-09-15

    The effect of Mn impurities on the properties of Hg{sub 3}In{sub 2}Te{sub 6} crystals is studied by electrical and optical measurements. It is shown that, despite the high dopant concentration (1 Multiplication-Sign 10{sup 19} cm{sup -3}), the electron concentration remains the same as that in an undoped crystal ({approx}10{sup 13} cm{sup -3} at 300 K). At the same time, narrowing of the band gap from 0.74 to 0.7 eV is observed. From an analysis of the absorption spectra, it is found that the absorption edge is formed by optical transitions involving density-of-states (DoS) tails and that two acceptor- and donor-type impurity bands are formed in the band gap. The two bands are described by a Gaussian distribution of the DoS, with an energy gap between the peaks of E{sub 0} = E{sub d}{sup 0} - E{sub a}{sup 0} = 0.4 eV. The total donor and acceptor concentration N{sub d} + N{sub a} and the degree of compensation K = N{sub a}/N{sub d} {yields} 1 are determined. Such compensation is responsible for pinning of the Fermi level near the middle of the band gap and for quasi-intrinsic conductivity at temperatures T {>=} 300 K.

  20. Emission color-tuned light-emitting diode microarrays of nonpolar InxGa1–xN/GaN multishell nanotube heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hong, Young Joon; Lee, Chul -Ho; Yoo, Jinkyoung; Kim, Yong -Jin; Jeong, Junseok; Kim, Miyoung; Yi, Gyu -Chul

    2015-12-09

    Integration of nanostructure lighting source arrays with well-defined emission wavelengths is of great importance for optoelectronic integrated monolithic circuitry. We report on the fabrication and optical properties of GaN-based p–n junction multishell nanotube microarrays with composition-modulated nonpolar m-plane InxGa1–xN/GaN multiple quantum wells (MQWs) integrated on c-sapphire or Si substrates. The emission wavelengths were controlled in the visible spectral range of green to violet by varying the indium mole fraction of the InxGa1–xN MQWs in the range 0.13 ≤ x ≤ 0.36. Homogeneous emission from the entire area of the nanotube LED arrays was achieved via the formation of MQWs withmore » uniform QW widths and composition by heteroepitaxy on the well-ordered nanotube arrays. Importantly, the wavelength-invariant electroluminescence emission was observed above a turn-on of 3.0 V because both the quantum-confinement Stark effect and band filling were suppressed due to the lack of spontaneous inherent electric field in the m-plane nanotube nonpolar MQWs. Lastly, the method of fabricating the multishell nanotube LED microarrays with controlled emission colors has potential applications in monolithic nonpolar photonic and optoelectronic devices on commonly used c-sapphire and Si substrates.« less