National Library of Energy BETA

Sample records for hg 5-ton rps

  1. Johnston LFG (MA RPS Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LFG (MA RPS Biomass Facility Jump to: navigation, search Name Johnston LFG (MA RPS Biomass Facility Facility Johnston LFG (MA RPS Sector Biomass Facility Type Landfill Gas Location...

  2. RPS Group Plc | Open Energy Information

    Open Energy Info (EERE)

    4RY Product: RPS is a Planning and Environmental Consultancy, with Scottish offices in Glasgow, Edinburgh, Aberdeen and Thurso. Coordinates: 36.71049, -81.975194 Show Map...

  3. Webinar Presentation - Energy Storage in State RPS - Dec. 19...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery...

  4. Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery and Energy Reliability presented "Grid Energy Storage: The Big Picture" as one of four guest speakers for a webinar on energy storage and renewable portfolio standards (RPS). The webinar was hosted by the State-Federal RPS Collaborative and the Clean Energy States Alliance (CESA) to

  5. Regional REC and RPS Best Practices

    SciTech Connect (OSTI)

    Jennifer Alvarado

    2009-09-30

    The Great Lakes Renewable Energy Association conducted a program to explore the development of Renewable Energy Portfolio Standards and Renewable Energy Certificate Markets in the Midwest. The initiative represented the collaboration between the four state energy offices of Illinois, Indiana, Michigan and Ohio, the Great Lakes Renewable Energy Association (GLREA) and the Clean Energy State Alliance (CESA). The multi-state project explored the opportunities in the Midwest to expand the renewable energy market through Renewable Energy Portfolio Standards (RPS) and the trading of Renewable Energy Credits (RECs).

  6. Microsoft PowerPoint - wiser naruc rps final 304.ppt

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Energy Technologies Division * Energy Analysis Department Design Requirements For An Effective RPS Strong political support and regulatory commitment that is expected ...

  7. RPS JDC Inc formerly JD Consulting L P | Open Energy Information

    Open Energy Info (EERE)

    RPS JDC Inc formerly JD Consulting L P Jump to: navigation, search Name: RPS JDC, Inc. (formerly JD Consulting L.P.) Place: Austin, Texas Zip: 78746 Product: Austin-based...

  8. Implications of Scheduled ITC Reversion for RPS Compliance: Preliminary Results

    SciTech Connect (OSTI)

    Lowder, Travis; Miller, John; O'Shaughnessy, Eric; Heeter, Jenny

    2015-09-14

    This poster presents DRAFT initial results of a forthcoming NREL analysis. The analysis investigates the impacts of the scheduled investment tax credit (ITC) reversion from 30 percent to 10 percent for certain solar photovoltaic projects. Specifically, it considers whether the reversion will result in increased use of alternative compliance payments (ACPs) in lieu of solar renewable energy credits (SRECs) for renewable portfolio standard (RPS) compliance. The analysis models the effect of a 10 percent ITC on power purchase agreement (PPA) prices for non-residential systems in the eight states with solar carve-outs and solar ACPs. Our preliminary results suggest that states will likely install sufficient capacity to meet long-term targets through SRECs rather than ACPs following the ITC reversion. However, the analysis shows that the ITC reversion could affect project economics such that capacity shortfalls in certain states could temporarily increase the use of ACPs. NREL anticipates publishing a full report of this analysis in fall 2015. credits (SRECs) for renewable portfolio standard (RPS) compliance. The analysis models the effect of a 10 percent ITC on power purchase agreement (PPA) prices for non-residential systems in the eight states with solar carve-outs and solar ACPs. Our preliminary results suggest that states will likely install sufficient capacity to meet long-term targets through SRECs rather than ACPs following the ITC reversion. However, the analysis shows that the ITC reversion could affect project economics such that capacity shortfalls in certain states could temporarily increase the use of ACPs. NREL anticipates publishing a full report of this analysis in fall 2015.

  9. Feed-in Tariff Policy: Design, Implementation, and RPS Policy Interactions

    Broader source: Energy.gov [DOE]

    This report explores the design and implementation of feed-in tariff policies, including a policy definition, various payment structures, and payment differentiation options. The report also discusses the interaction between FIT and RPS policies.

  10. NYSERDA's RPS Customer Sited Tier Fuel Cell Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NYSERDA's RPS Customer Sited Tier Fuel Cell Program NYSERDA's RPS Customer Sited Tier Fuel Cell Program Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells and Renewable Portfolio Standards, June 9, 2011. infocalljun911_larsen.pdf (150.61 KB) More Documents & Publications Fuel Cells at Supermarkets: NYSERDA's Perspective Fuel Cells and RPSs: An Introduction NYSERDA's CHP Program Guide, 2010

  11. Memorandum of Understanding between DOE and NASA concerning RPS for space

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    missions | Department of Energy Memorandum of Understanding between DOE and NASA concerning RPS for space missions Memorandum of Understanding between DOE and NASA concerning RPS for space missions The purpose of this agreement is to delineate the authorities and responsibilities of the Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA) (the parties) in the research, technology development, design, production, delivery, space vehicle integration, and

  12. Using Supercomputers to Speed Execution of the CAISO/PLEXOS 33% RPS Study

    SciTech Connect (OSTI)

    Meyers, C; Streitz, F; Yao, Y; Smith, S; Lamont, A

    2011-09-19

    The study's official title is 'ISO Study of Operational Requirements and Market Impacts at 33% Renewable Portfolio Standard (RPS).' The stated objectives are twofold: (1) identifying operational requirements and resource options to reliably operate the ISO-controlled grid under a 33% RPS in 2020; and (2) inform market, planning, and policy/regulatory decisions by the ISO, state agencies, market participants, and other stakeholders. The first of these objectives requires the hourly estimates of integration requirements, measured in terms of operational ramp, load following and regulation capacity and ramp rates, as well as additional capacity to resolve operational violations. It also involves consideration of other variables that affect the results, such as the impact of different mixes of renewable technologies, and the impact of forecasting error and variability. The second objective entails supporting the CPUC to identify long-term procurement planning needs, costs, and options, as well as informing other decisions made by the CPUC and state agencies. For the ISO itself this includes informing state-wide transmission planning needs for renewables up to a 33% RPS, and informing design of wholesale markets for energy and ancillary services to facilitate provision of integration capacities. The study is designed in two phases. The first (current) phase is focused on operational requirements and addressing these requirements with existing and new conventional fossil generation; for instance, gas turbines and/or combined cycle units. The second (planned) phase will address the same operational requirements with a combination of conventional fossil generation resources, new non-generation resources, and a renewable resource dispatch. There are seven different scenarios considered in the current phase: a 20% RPS reference case; four 33% RPS cases (a reference case, a high out-of-state case, a high distributed generation case, and a low load case); an alternative 27

  13. Feed-in Tariff Policy: Design, Implementation, and RPS Policy Interactions

    SciTech Connect (OSTI)

    Cory, K.; Couture, T.; Kreycik, C.

    2009-03-01

    Feed-in tariff (FIT) policies are implemented in more than 40 countries around the world and are cited as the primary reason for the success of the German and Spanish renewable energy markets. As a result of that success, FIT policy proposals are starting to gain traction in several U.S. states and municipalities. Experience from Europe is also beginning to demonstrate that properly designed FITs may be more cost-effective than renewable portfolio standards (RPS), which make use of competitive solicitations. This article explores the design and operation of feed-in tariff policies, including a FIT policy definition, payment-structure options, and payment differentiation. The article also touches on the potential interactions between FIT policies and RPS policies at the state level.

  14. Observations on the Optimality Tolerance in the CAISO 33% RPS Model

    SciTech Connect (OSTI)

    Yao, Y; Meyers, C; Schmidt, A; Smith, S; Streitz, F

    2011-09-22

    In 2008 Governor Schwarzenegger of California issued an executive order requiring that 33 percent of all electricity in the state in the year 2020 should come from renewable resources such as wind, solar, geothermal, biomass, and small hydroelectric facilities. This 33% renewable portfolio standard (RPS) was further codified and signed into law by Governor Brown in 2011. To assess the market impacts of such a requirement, the California Public Utilities Commission (CPUC) initiated a study to quantify the cost, risk, and timing of achieving a 33% RPS by 2020. The California Independent System Operator (CAISO) was contracted to manage this study. The production simulation model used in this study was developed using the PLEXOS software package, which allows energy planners to optimize long-term system planning decisions under a wide variety of system constraints. In this note we describe our observations on varying the optimality tolerance in the CAISO 33% RPS model. In particular, we observe that changing the optimality tolerance from .05% to .5% leads to solutions over 5 times faster, on average, producing very similar solutions with a negligible difference in overall distance from optimality.

  15. Using RPS Policies to Grow the Solar Market in the United States

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H.

    2007-11-20

    The market for photovoltaics in the United States remains small relative to the nation's solar resource potential. Nonetheless, annual grid-connected PV installations have grown from just 4 MW in 2000 to over 100 MW in 2006, fast enough to the catch the attention of the global solar industry. The state of California deserves much of the credit for this growth. The State's historical rebate programs resulted in roughly 75% of the nation's grid-connected PV additions from 2000 through 2006 being located in California, and the $3 billion California Solar Initiative will ensure that the State remains a mainstay of the US solar industry for years to come. But California is not the only market for solar in the US; other states have recently developed policies that may rival those of the western state in terms of future growth potential. In particular, 25 states, as well as Washington, D.C., have established renewables portfolio standards (RPS), sometimes called quota systems in Europe, requiring electricity suppliers in those states to source a minimum portion of their need from renewable electricity. (Because a national RPS is not yet in place, my focus here is on state policies). Under many of these state policies, solar is not expected to fare particularly well: PV installations simply cannot compete on cost or scale with large wind plants in the US, at least not yet. In response, an expanding list of states have established solar or distributed generation (DG) set-asides within their RPS policies, effectively requiring that some fraction of RPS-driven supply derive from solar energy. The popularity of set-asides for solar and/or DG has increased dramatically in recent years. Already, 11 states and D.C. have developed such RPS set-asides. These include states with outstanding solar resources, such as Nevada, Arizona, Colorado, and New Mexico, as well as areas where the solar resource is less robust, including North Carolina, Maryland, Pennsylvania, New Jersey, New

  16. Analysis of Strategies for Multiple Emissions from Electric Power SO2, NOX, CO2, Mercury and RPS

    Reports and Publications (EIA)

    2001-01-01

    At the request of the Subcommittee, the Energy Information Administration prepared an initial report that focused on the impacts of reducing power sector NOx, SO2, and CO2 emissions. The current report extends the earlier analysis to add the impacts of reducing power sector mercury emissions and introducing renewable portfolio standard (RPS) requirements.

  17. Dipole Bands in {sup 196}Hg

    SciTech Connect (OSTI)

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.

    2011-10-28

    High spin states in {sup 196}Hg have been populated in the {sup 198}Pt({alpha},6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  18. Atmospheric mercury (Hg) in the Adirondacks: Concentrations and sources

    SciTech Connect (OSTI)

    Hyun-Deok Choi; Thomas M. Holsen; Philip K. Hopke

    2008-08-15

    Hourly averaged gaseous elemental Hg (GEM) concentrations and hourly integrated reactive gaseous Hg (RGM), and particulate Hg (HgP) concentrations in the ambient air were measured at Huntington Forest in the Adirondacks, New York from June 2006 to May 2007. The average concentrations of GEM, RGM, and HgP were 1.4 {+-} 0.4 ng m{sup -3}, 1.8 {+-} 2.2 pg m{sup -3}, and 3.2 {+-} 3.7 pg m{sup -3}, respectively. RGM represents <3.5% of total atmospheric Hg or total gaseous Hg (TGM: GEM + RGM) and HgP represents <3.0% of the total atmospheric Hg. The highest mean concentrations of GEM, RGM, and HgP were measured during winter and summer whereas the lowest mean concentrations were measured during spring and fall. Significant diurnal patterns were apparent in warm seasons for all species whereas diurnal patterns were weak in cold seasons. RGM was better correlated with ozone concentration and temperature in both warm than the other species. Potential source contribution function (PSCF) analysis was applied to identify possible Hg sources. This method identified areas in Pennsylvania, West Virginia, Ohio, Kentucky, Texas, Indiana, and Missouri, which coincided well with sources reported in a 2002 U.S. mercury emissions inventory. 51 refs., 7 figs., 1 tab.

  19. Process of [sup 196]Hg enrichment

    DOE Patents [OSTI]

    Grossman, M.W.; Mellor, C.E.

    1993-04-27

    A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of [sup 196]Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).

  20. Process of .sup.196 Hg enrichment

    DOE Patents [OSTI]

    Grossman, Mark W.; Mellor, Charles E.

    1993-01-01

    A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of .sup.196 Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).

  1. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    SciTech Connect (OSTI)

    Son, Ora; Kim, Sunghan; Shin, Yun-jeong; Kim, Woo-Young; Koh, Hee-Jong; Cheon, Choong-Ill

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  2. Lithography process for patterning HgI2 photonic devices

    DOE Patents [OSTI]

    Mescher, Mark J.; James, Ralph B.; Hermon, Haim

    2004-11-23

    A photolithographic process forms patterns on HgI.sub.2 surfaces and defines metal sublimation masks and electrodes to substantially improve device performance by increasing the realizable design space. Techniques for smoothing HgI.sub.2 surfaces and for producing trenches in HgI.sub.2 are provided. A sublimation process is described which produces etched-trench devices with enhanced electron-transport-only behavior.

  3. Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal...

    Open Energy Info (EERE)

    is not possible. Hg anomaly patterns yield information on the presence as well as the geometry of shallow geothermal circulation patterns. In conjunction with structural geologic...

  4. NNMCAB Correspondence 2013-01 (Hg SEIS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 (Hg SEIS) NNMCAB Correspondence 2013-01 (Hg SEIS) The NNMCAB submitted comments on the mercury SEIS on June 13, 2013. The comments were provided to the Department of Energy in regards to proposed sites for interim storage of excess mercury. Correspondence 2013-01 - Mercury SEIS - June 13, 2013 (34.7 KB)

  5. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jin; He, Chaoyu; Meng, Lijun; Xiao, Huaping; Tang, Chao; Wei, Xiaolin; Kim, Jinwoong; Kioussis, Nicholas; Stocks, G. Malcolm; Zhong, Jianxin

    2015-09-14

    Here, we report that two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tunedmore » up to large values (0.2 eV for HgTe and 0.05 eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature.« less

  6. Purification of HgI.sub.2 for nuclear detector fabrication

    DOE Patents [OSTI]

    Schieber, Michael M.

    1978-01-01

    A process for purification of mercuric iodide (HgI.sub.2) to be used as a source material for the growth of detector quality crystals. The high purity HgI.sub.2 raw material is produced by a combination of three stages: synthesis of HgI.sub.2 from Hg and I.sub.2, repeated sublimation, and zone refining.

  7. On-line method of determining utilization factor in Hg-196 photochemical separation process

    DOE Patents [OSTI]

    Grossman, Mark W.; Moskowitz, Philip E.

    1992-01-01

    The present invention is directed to a method for determining the utilization factor [U] in a photochemical mercury enrichment process (.sup.196 Hg) by measuring relative .sup.196 Hg densities using absorption spectroscopy.

  8. NNMCAB Correspondence 2013-05 (Response Hg SEIS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 (Response Hg SEIS) NNMCAB Correspondence 2013-05 (Response Hg SEIS) Response to NNMCAB Correspondence 2013-01. DOE provided comment responses on the Mercury Supplemental Environmental Impact Statement comments that were submitted by the NNMCAB. Correspondence 2013-05 - Response Hg Letter (713.92

  9. Manila clams from Hg polluted sediments of Marano and Grado lagoons (Italy) harbor detoxifying Hg resistant bacteria in soft tissues

    SciTech Connect (OSTI)

    Baldi, Franco; Gallo, Michele; Marchetto, Davide; Faleri, Claudia; Maida, Isabel; Fani, Renato

    2013-08-15

    A mechanism of mercury detoxification has been suggested by a previous study on Hg bioaccumulation in Manila clams (Ruditapes philippinarum) in the polluted Marano and Grado lagoons and in this study we demonstrate that this event could be partly related to the detoxifying activities of Hg-resistant bacteria (MRB) harbored in clam soft tissues. Therefore, natural clams were collected in six stations during two different periods (winter and spring) from Marano and Grado Lagoons. Siphons, gills and hepatopancreas from acclimatized clams were sterile dissected to isolate MRB. These anatomical parts were glass homogenized or used for whole, and they were lying on a solid medium containing 5 mg l{sup −1} HgCl{sub 2} and incubated at 30 °C. A total of fourteen bacterial strains were isolated and were identified by 16S rDNA sequencing and analysis, revealing that strains were representative of eight bacterial genera, four of which were Gram-positive (Enterococcus, Bacillus, Jeotgalicoccus and Staphylococcus) and other four were Gram-negative (Stenotrophomonas, Vibrio, Raoultella and Enterobacter). Plasmids and merA genes were found and their sequences determined. Fluorescence in situ hybridization (FISH) technique shows the presence of Firmicutes, Actinobacteria and Gammaproteobacteria by using different molecular probes in siphon and gills. Bacterial clumps inside clam flesh were observed and even a Gram-negative endosymbiont was disclosed by transmission electronic microscope inside clam cells. Bacteria harbored in cavities of soft tissue have mercury detoxifying activity. This feature was confirmed by the determination of mercuric reductase in glass-homogenized siphons and gills. -- Highlights: ► We isolated Gram-positive and Gram-negative Hg resistant strains from soft tissues of Ruditapes philippinarum. ► We identify 14 mercury resistant strains by 16S rRNA gene sequences. ► Bacteria in siphon and gill tissues of clams were observed by TEM and identified

  10. Synthesis and growth of HgI{sub 2} nanocrystals in a glass matrix: Heat treatment

    SciTech Connect (OSTI)

    Condeles, J. F. E-mail: ricssilva@yahoo.com.br; Silva, R. S. E-mail: ricssilva@yahoo.com.br; Silva, A. C. A.; Dantas, N. O.

    2014-08-14

    Mercury iodide (HgI{sub 2}) nanocrystals (NCs) were successfully grown in a barium phosphate glass matrix synthesized by fusion. Growth control of HgI{sub 2} NCs was investigated by Atomic Force Microscopy (AFM), Optical Absorption (OA), Fluorescence (FL), and X-ray diffraction (XRD). AFM images reveal the formation of HgI{sub 2} nanocrystals in host glass matrix. HgI{sub 2} NCs growth was evidenced by an OA and FL band red-shift with increasing annealing time. XRD measurements revealed the β crystalline phase of the HgI{sub 2} nanocrystals.

  11. Apparatus for growing HgI.sub.2 crystals

    DOE Patents [OSTI]

    Schieber, Michael M.; Beinglass, Israel; Dishon, Giora

    1978-01-01

    A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.

  12. Improved Limit on the Permanent Electric Dipole Moment of {sup 199}Hg

    SciTech Connect (OSTI)

    Griffith, W. C.; Swallows, M. D.; Loftus, T. H.; Romalis, M. V.; Heckel, B. R.; Fortson, E. N.

    2009-03-13

    We report the results of a new experimental search for a permanent electric dipole moment of {sup 199}Hg utilizing a stack of four vapor cells. We find d({sup 199}Hg)=(0.49{+-}1.29{sub stat}{+-}0.76{sub syst})x10{sup -29} e cm, and interpret this as a new upper bound, |d({sup 199}Hg)|<3.1x10{sup -29} e cm (95% C.L.). This result improves our previous {sup 199}Hg limit by a factor of 7, and can be used to set new constraints on CP violation in physics beyond the standard model.

  13. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOE Patents [OSTI]

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an apparatus for use in .sup.196 Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for .sup.196 Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems.

  14. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOE Patents [OSTI]

    Grossman, M.W.

    1991-10-08

    The present invention is directed to an apparatus for use in [sup 196]Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for [sup 196]Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems. 6 figures.

  15. Effects of H{sub 2}O, SO{sub 2}, and NO on homogeneous Hg oxidation...

    Office of Scientific and Technical Information (OSTI)

    Effects of Hsub 2O, SOsub 2, and NO on homogeneous Hg oxidation by Clsub 2 Citation Details In-Document Search Title: Effects of Hsub 2O, SOsub 2, and NO on homogeneous Hg ...

  16. Examining Mechanisms of Groundwater Hg(II) Treatment by Reactive Materials: An EXAFS Study

    SciTech Connect (OSTI)

    Gibson, Blair D.; Ptacek, Carol J.; Lindsay, Matthew B.J.; Blowes, David W.

    2012-02-07

    Laboratory batch experiments were conducted to examine mechanisms of Hg(II) removal by reactive materials proposed for groundwater treatment. These materials included granular iron filings (GIF), 1:1 (w/w) mixtures of metallurgical granular Fe powder + elemental S (MGI+S) and elemental Cu + elemental S (Cu+S), granular activated carbon (GAC), attapulgite clay (ATP), ATP treated with 2-amino-5-thiol-1,3,4-thiadiazole (ATP-a), and ATP treated with 2,5-dimercapto-1,3,4-thiadiazole (ATP-d). Following treatment of simulated groundwater containing 4 mg L{sup -1} Hg for 8 or 16 days, the solution pH values ranged from 6.8 to 8.8 and Eh values ranged from +400 to -400 mV. Large decreases in aqueous Hg concentrations were observed for ATP-d (>99%), GIF (95%), MGI+S (94%), and Cu+S (90%). Treatment of Hg was less effective using ATP (29%), ATP-a (69%), and GAC (78%). Extended X-ray absorption fine structure (EXAFS) spectra of Hg on GIF, MGI+S, and GAC indicated the presence of an Hg-O bond at 2.04-2.07 {angstrom}, suggesting that Hg was bound to GIF corrosion products or to oxygen complexes associated with water sorbed to activated carbon. In contrast, bond lengths ranging from 2.35 to 2.48 {angstrom} were observed for Hg in Cu+S, ATP-a, and ATP-d treatments, suggesting the formation of Hg-S bonds.

  17. Results of Hg speciation testing on tanks 30, 32, and 37 surface samples

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2015-11-11

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.

  18. Shape coexistence in {sup 180}Hg studied through the {beta} decay of {sup 180}Tl

    SciTech Connect (OSTI)

    Elseviers, J.; Bree, N.; Diriken, J.; Huyse, M.; Ivanov, O.; Van den Bergh, P.; Van Duppen, P.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Fedorov, D.; Cocolios, T. E.; Seliverstov, M.; Comas, V. F.; Heredia, J. A.; Fedosseyev, V. N.; Marsh, B. A.; Franchoo, S.; Page, R. D.

    2011-09-15

    The {beta}{sup +}/EC decay of {sup 180}Tl and excited states in the daughter nucleus {sup 180}Hg have been investigated at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. Many new low-lying energy levels were observed in {sup 180}Hg, of which the most significant are the 0{sub 2}{sup +} at 419.6 keV and the 2{sub 2}{sup +} at 601.3 keV. The former is the bandhead of an excited band in {sup 180}Hg assumed originally to be of prolate nature. From the {beta} feeding to the different states in {sup 180}Hg, the ground-state spin of {sup 180}Tl was deduced to be (4{sup -},5{sup -}).

  19. The new barium zinc mercurides Ba{sub 3}ZnHg{sub 10} and BaZn{sub 0.6}Hg{sub 3.4} - Synthesis, crystal and electronic structure

    SciTech Connect (OSTI)

    Schwarz, Michael; Wendorff, Marco; Roehr, Caroline

    2012-12-15

    The title compounds Ba{sub 3}ZnHg{sub 10} and BaZn{sub 0.6}Hg{sub 3.4} were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba{sub 3}ZnHg{sub 10} (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 4{sup 4} Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl{sub 4}. The flat pyramids are connected via Hg-Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M-M distances (273-301 pm; CN 9-11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317-348 pm) to their Zn/Hg neighbours. In the structure of BaZn{sub 0.6}Hg{sub 3.4} (cubic, cI320, space group I4{sup Macron }3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba{sub 3}ZnHg{sub 10}, the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4 Multiplication-Sign 4 Multiplication-Sign 4 subcell relation to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6){sub 4} with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4){sub 2} dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb{sub 3}Hg{sub 20} applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic

  20. In-beam conversion-electron spectroscopy of {sup 180}Hg

    SciTech Connect (OSTI)

    Page, R. D.; Wiseman, D. R.; Butler, P. A.; Herzberg, R.-D.; Jones, G. D.; Joss, D. T.; Keenan, A.; Rainovski, G. I.; Andreyev, A. N.; Grahn, T.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Kankaanpaeae, H.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Nieminen, P.

    2011-09-15

    Excited states in {sup 180}Hg were populated using the {sup 147}Sm({sup 36}Ar,3n){sup 180}Hg reaction and studied by in-beam conversion-electron spectroscopy. Conversion electrons emitted at the target position were measured using the Silicon Array for Conversion Electron Detection (SACRED) spectrometer and tagged through the characteristic {alpha} decays of {sup 180}Hg detected in a position-sensitive silicon strip detector located at the focal plane of the gas-filled recoil separator Recoil Ion Transport Unit (RITU). Electron conversion of transitions previously assigned to {sup 180}Hg through in-beam {gamma}-ray spectroscopy studies was identified up to the 10{sup +}{yields}8{sup +} transition and the intensities of the conversion-electron transitions were found to be consistent with the previous multipolarity assignments. Evidence was also found for two highly converted transitions in {sup 180}Hg: a 167 keV transition is interpreted as the transition from the newly identified 2{sub 2}{sup +} state at 601 keV to the 2{sub 1}{sup +} state at 434 keV, while a 420 keV transition is assigned as the E0 decay from the 0{sup +} bandhead of the prolate-deformed configuration to the weakly deformed ground state.

  1. The new Hg-rich barium indium mercurides BaIn{sub x}Hg{sub 7−x} (x=3.1) and BaIn{sub x}Hg{sub 11−x} (x=0–2.8)

    SciTech Connect (OSTI)

    Wendorff, Marco; Schwarz, Michael; Röhr, Caroline

    2013-07-15

    The title compounds BaIn{sub x}Hg{sub 7−x} (x=3.1(1)) and BaIn{sub x}Hg{sub 11−x} (x=0–2.8) were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures have been determined using single crystal X-ray data. BaIn{sub x}Hg{sub 7−x} (x=3.1(1)) crystallizes in a new structure type (orthorhombic, oC16, space group Cmmm: a=512.02(1), b=1227.68(3), c=668.61(2) pm, Z=2, R1=0.0311). In the structure, the atoms of the three crystallographically different mixed In/Hg positions form planar nets of four-, six- and eight-membered rings. These nets are shifted against each other such that the four-membered rings form empty distorted cubes. The cubes are connected via common edges, corners and folded ladders, which are also found in BaIn{sub 2}/BaHg{sub 2} (KHg{sub 2} structure type) and BaIn (α-NaHg type). The Ba atoms are centered in the eight-membered rings and exhibit an overall coordination number of 20. The [BaM{sub 20}] polyhedra and twice as many distorted [M{sub 8}] cubes tesselate the space. BaIn{sub 2.8}Hg{sub 8.2} (cubic, cP36, space group Pm3{sup ¯}m, a=961.83(1) pm, Z=3, R1=0.0243) is the border compound of the phase width BaIn{sub x}Hg{sub 11−x} of the rare BaHg{sub 11} structure type. In the structure, ideal [M{sub 8}] cubes (at the corners of the unit cell) and BaM{sub 20} polyhedra (at the edges of the unit cell) represent the building blocks comparable to the other new In mercuride. In accordance with the increased In/Hg content, additional M-pure regions appear: the center of the unit cell contains a huge [Hg(1)M(2){sub 12}M(3,4){sub 32}] polyhedron, a Hg-centered cuboctahedron of In/Hg atoms surrounded by a capped cantellated cube of 32 additional M atoms. For both structure types, the bonding situation and the ‘coloring’, i.e. the In/Hg distribution of the polyanionic network, are discussed considering the different sizes of the atoms and the charge distribution (Bader AIM charges), which have been

  2. Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer

    DOE Patents [OSTI]

    Grossman, M.W.; Evans, R.

    1991-11-26

    A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the [sup 196]Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of [+-]0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour. 8 figures.

  3. Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer

    DOE Patents [OSTI]

    Grossman, Mark W.; Evans, Roger

    1991-01-01

    A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the .sup.196 Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of .+-.0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour.

  4. Nonlinear terahertz response of HgTe/CdTe quantum wells

    SciTech Connect (OSTI)

    Chen, Qinjun; Sanderson, Matthew; Zhang, Chao

    2015-08-24

    Without breaking the topological order, HgTe/CdTe quantum wells can have two types of bulk band structure: direct gap type (type I) and indirect gap type (type II). We report that the strong nonlinear optical responses exist in both types of bulk states under a moderate electric field in the terahertz regime. Interestingly, for the type II band structure, the third order conductivity changes sign when chemical potentials lies below 10 meV due to the significant response of the hole excitation close to the bottom of conduction band. Negative nonlinear conductivities suggest that HgTe/CdTe quantum wells can find application in the gain medium of a laser for terahertz radiation. The thermal influences on nonlinear optical responses of HgTe/CdTe quantum wells are also studied.

  5. H.G. Rickover, 1964 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H.G. Rickover, 1964 The Enrico Fermi Award Fermi Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's 1950's Ceremony The Life of Enrico Fermi Contact Information The Enrico Fermi Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1960's H.G. Rickover, 1964 Print Text Size: A A A FeedbackShare Page Citation For engineering and demonstrative leadership in the

  6. Preliminary Inputs for Wisconsin RPS Analysis

    U.S. Energy Information Administration (EIA) Indexed Site

    Cashing in on Clean Energy: A National Renewable Electricity Standard will Benefit the Environment and the Economy Renewable Energy & Economic Development Session EIA 30 th Anniversary conference Washington DC April 7, 2008 Alan Nogee Director, Clean Energy Program Union of Concerned Scientists www.ucsusa.org Renewable electricity standards: a primary driver of new renewables Ø The #1 driver of renewable energy development. Goldman Sachs Ø"... the most important driver for new

  7. Axi-symmetrical flow reactor for [sup 196]Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1991-04-30

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, [sup 196]Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired [sup 196]Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith. 10 figures.

  8. Axi-symmetrical flow reactor for .sup.196 Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, .sup.196 Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired .sup.196 Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith.

  9. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots

    SciTech Connect (OSTI)

    Guyot-Sionnest, Philippe Roberts, John Andris

    2015-12-21

    The photovoltaic response of thin films of HgTe colloidal quantum dots in the 3–5 μm range is observed. With no applied bias, internal quantum efficiency exceeding 40%, specific detectivity above 10{sup 10} Jones and microseconds response times are obtained at 140 K. The cooled devices detect the ambient thermal radiation. A detector with 5.25 μm cut-off achieves Background Limited Infrared Photodetection at 90 K.

  10. Automated product recovery in a Hg-196 photochemical isotope separation process

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.

    1992-07-21

    A method of removing deposited product from a photochemical reactor used in the enrichment of [sup 196]Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out. 2 figs.

  11. Automated product recovery in a HG-196 photochemical isotope separation process

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

  12. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    SciTech Connect (OSTI)

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  13. Evaluation of HgI[sub 2] detectors for lead detection in paint

    SciTech Connect (OSTI)

    Wang, Y.J.; Iwanczyk, J.S.; Graham, W.R. )

    1993-08-01

    The authors conducted a laboratory study of HgI[sub 2] spectrometers used for in-situ determination of lead on painted surfaces. [sup 109]Cd and [sup 57]Co isotopes have been used to excite lead characteristic x-rays from samples. The energy resolution of HgI[sub 2] detectors in the energy region corresponding to lead K x-rays has been measured. An energy resolution of 880 eV (FWHM) for the 60 keV line from an [sup 241]Am source has been obtained. Measurements using thin film standards ranging from 0.5 mg Pb/cm[sup 2] to 2 mg Pb/cm[sup 2] have been conducted. Detection limits, accuracy and precision of the measurements have been estimated. Based upon a comparison of the results that the authors have obtained with the performance of existing detector technology, the HgI[sub 2] detectors seem to be the best solution for handheld XRF lead analyzers.

  14. Ultrasensitive detection of Hg{sup 2+} using oligonucleotide-functionalized AlGaN/GaN high electron mobility transistor

    SciTech Connect (OSTI)

    Cheng, Junjie; Li, Jiadong; Miao, Bin; Wu, Dongmin; Wang, Jine; Pei, Renjun; Wu, Zhengyan

    2014-08-25

    An oligonucleotide-functionalized ion sensitive AlGaN/GaN high electron mobility transistor (HEMT) was fabricated to detect trace amounts of Hg{sup 2+}. The advantages of ion sensitive AlGaN/GaN HEMT and highly specific binding interaction between Hg{sup 2+} and thymines were combined. The current response of this Hg{sup 2+} ultrasensitive transistor was characterized. The current increased due to the accumulation of Hg{sup 2+} ions on the surface by the highly specific thymine-Hg{sup 2+}-thymine recognition. The dynamic linear range for Hg{sup 2+} detection has been determined in the concentrations from 10{sup −14} to 10{sup −8} M and a detection limit below 10{sup −14} M level was estimated, which is the best result of AlGaN/GaN HEMT biosensors for Hg{sup 2+} detection till now.

  15. Temperature cycling vapor deposition HgI.sub.2 crystal growth

    DOE Patents [OSTI]

    Schieber, Michael M.; Beinglass, Israel; Dishon, Giora

    1977-01-01

    A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.

  16. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect (OSTI)

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  17. Quantum Hall effect in HgTe quantum wells at nitrogen temperatures

    SciTech Connect (OSTI)

    Kozlov, D. A. Kvon, Z. D.; Mikhailov, N. N.; Dvoretskii, S. A.; Weishäupl, S.; Krupko, Y.; Portal, J.-C.

    2014-09-29

    We report on the observation of quantized Hall plateaus in a system of two-dimensional Dirac fermions, implemented in a 6.6 nm HgTe quantum well at magnetic fields up to 34 T at nitrogen temperatures. The activation energies determined from the temperature dependence of the longitudinal resistivity are found to be almost equal for the filling factors ν of 1 and 2. This indicates that the large values of the g-factor (about 30–40) remain unchanged at very strong magnetic fields.

  18. Report on International Collaboration Involving the FE Heater and HG-A Tests at Mont Terri

    SciTech Connect (OSTI)

    Houseworth, Jim; Rutqvist, Jonny; Asahina, Daisuke; Chen, Fei; Vilarrasa, Victor; Liu, Hui-Hai; Birkholzer, Jens

    2013-11-06

    Nuclear waste programs outside of the US have focused on different host rock types for geological disposal of high-level radioactive waste. Several countries, including France, Switzerland, Belgium, and Japan are exploring the possibility of waste disposal in shale and other clay-rich rock that fall within the general classification of argillaceous rock. This rock type is also of interest for the US program because the US has extensive sedimentary basins containing large deposits of argillaceous rock. LBNL, as part of the DOE-NE Used Fuel Disposition Campaign, is collaborating on some of the underground research laboratory (URL) activities at the Mont Terri URL near Saint-Ursanne, Switzerland. The Mont Terri project, which began in 1995, has developed a URL at a depth of about 300 m in a stiff clay formation called the Opalinus Clay. Our current collaboration efforts include two test modeling activities for the FE heater test and the HG-A leak-off test. This report documents results concerning our current modeling of these field tests. The overall objectives of these activities include an improved understanding of and advanced relevant modeling capabilities for EDZ evolution in clay repositories and the associated coupled processes, and to develop a technical basis for the maximum allowable temperature for a clay repository. The R&D activities documented in this report are part of the work package of natural system evaluation and tool development that directly supports the following Used Fuel Disposition Campaign (UFDC) objectives: ? Develop a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear-fuel-cycle alternatives through theory, simulation, testing, and experimentation. ? Develop a computational modeling capability for the performance of storage and disposal options for a range of fuel-cycle alternatives, evolving from generic models to more robust models of performance

  19. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    SciTech Connect (OSTI)

    Qiu, Weicheng; Hu, Weida Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei; Cheng, Xiang'ai Wang, Rui

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  20. Fura-2 measurement of cytosolic calcium in HgCl/sub 2/-treated rabbit renal turbular cells

    SciTech Connect (OSTI)

    Trump, B.F.; Smith, M.W.

    1986-05-01

    This abstract reports the effect of HgCl/sub 2/ on cytosolic ionized calcium (Ca/sup 2 +/)/sub c/, measured by the fluorescent chelator Fura-2, in trypsinized rabbit renal tubular cells at 37/sup 0/C in Hanks salt solution, pH 7.2, containing 1.37 mM CaCl/sub 2/. Viability measured fluorometrically with propidium iodide correlated well with that determined using trypan blue. HgCl/sub 2/ (1-10 ..mu..M) induced rapid and dose-dependent increases up to 5-fold normal (Ca/sup 2 +/)/sub c/. After 1-3 min the rate of increase slowed or stopped. At higher doses of HgCl/sub 2/ (20-100 ..mu..M) an unexpected pattern of (Ca/sup 2 +/)/sub c/ changes occurred. After an initial 5-6-fold increase by 1 min, (Ca/sup 2 +/)/sub c/ decreased in the next 2-3 min to 2-3-fold normal levels. This change was followed by a second increase of (Ca/sup 2 +/)/sub c/ at a much slower rate which did appear to be dose-related. Calcium channel blockers and calmodulin inhibitors had little or no effect. Inhibitors of mitochondrial function, antimycin and 2,4-dinitrophenol, interfered with the fluorescent assay; KCN totally inhibited HgCl/sub 2/-induced (Ca/sup 2 +/)/sub c/ changes while hypoxia had no apparent effect. The -SH group binding compound N-ethyl maleimide increased (Ca/sup 2 +/)/sub c/ 4-5 fold; addition of 25 ..mu..M Hg caused faster peaking and recovery of (Ca/sup 2 +/)/sub c/. The mechanism of Ca/sup 2 +/ buffering triggered by higher HgCl/sub 2/ concentrations is as yet unknown.

  1. Magneto-infrared study of electron-hole system in strained semimetallic HgTe quantum wells

    SciTech Connect (OSTI)

    Vasilyev, Yu. B.; Greshnov, A. A.; Mikhailov, N. N.; Suchalkin, S. D.; Tung, L.-C.; Smirnov, D.; Gouider, F.; Nachtwei, G.

    2013-12-04

    Magneto infrared absorption measurements have been performed on HgTe/CdHgTe quantum wells with different thicknesses grown on (013) GaAs substrate. Cyclotron resonance effective masses, inter-Landau-level transition energies and their dependence on magnetic field are measured. The measured intersubband energies are in good agreement with the theoretically calculated values. Strong spin-orbit interaction is responsible for cyclotron resonance splitting in asymmetric quantum wells. We demonstrate that the increase of the quantum well thickness leads to a semimetallic state, allowing for simultaneous observation of holes and electron transitions.

  2. Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe

    SciTech Connect (OSTI)

    Madni, I.; Umana-Membreno, G. A.; Lei, W.; Gu, R.; Antoszewski, J.; Faraone, L.

    2015-11-02

    The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.

  3. Memorandum, CH2M HG Idaho, LLC, Request for Variance to Title 10 Code of Federal Regulations part 851, "Worker Safety and Health"

    Broader source: Energy.gov [DOE]

    CH2M HG Idaho, LLC, Request for Variance to Title 10 Code of Federal Regulations part 851, "Worker Safety and Health"

  4. Introduction of mercury resistant bacterial strains to Hg(II) amended soil microcosms increases the resilience of the natural microbial community to mercury stress

    SciTech Connect (OSTI)

    de Lipthay, Julia R.; Rasmussen, Lasse D.; Serensen, Soren J.

    2004-03-17

    Heavy metals are among the most important groups of pollutant compounds, and they are highly persistent in the soil environment. Techniques that can be used for the remediation of heavy metal contaminated environments thus need to be evolved. In the present study we evaluated the effect of introducing a Hg resistance plasmid in subsurface soil communities. This was done in microcosms with DOE subsurface soils amended with 5-10 ppm of HgCl2. Two microcosms were set up. In microcosm A we studied the effect of adding strain S03539 containing either the Hg resistance conjugative plasmid, pJORD 70, or the Hg resistance mobilizable plasmid, pPB117. In microcosm B we studied the effect of adding strain KT2442 with and without pJORD70. For both microcosms, the effect on the resilience of the indigenous bacterial community as well as the effect on the soil concentration of Hg was evaluated.

  5. Exchange enhancement of the electron g-factor in a two-dimensional semimetal in HgTe quantum wells

    SciTech Connect (OSTI)

    Bovkun, L. S. Krishtopenko, S. S.; Zholudev, M. S.; Ikonnikov, A. V.; Spirin, K. E.; Dvoretsky, S. A.; Mikhailov, N. N.; Teppe, F.; Knap, W.; Gavrilenko, V. I.

    2015-12-15

    The exchange enhancement of the electron g-factor in perpendicular magnetic fields to 12 T in HgTe/CdHgTe quantum wells 20 nm wide with a semimetal band structure is studied. The electron effective mass and g-factor at the Fermi level are determined by analyzing the temperature dependence of the amplitude of Shubnikov–de Haas oscillation in weak fields and near odd Landau-level filling factors ν ≤ 9. The experimental values are compared with theoretical calculations performed in the one-electron approximation using the eight-band kp Hamiltonian. The found dependence of g-factor enhancement on the electron concentration is explained by changes in the contributions of hole- and electron-like states to exchange corrections to the Landau-level energies in the conduction band.

  6. Neurotoxicological effects of cinnabar (a Chinese mineral medicine, HgS) in mice

    SciTech Connect (OSTI)

    Huang, C.-F.; Liu, S.-H.; Lin-Shiau, S.-Y.

    2007-10-15

    Cinnabar, a naturally occurring mercuric sulfide (HgS), has long been used in combination with traditional Chinese medicine as a sedative for more than 2000 years. Up to date, its pharmacological and toxicological effects are still unclear, especially in clinical low-dose and long-term use. In this study, we attempted to elucidate the effects of cinnabar on the time course of changes in locomotor activities, pentobarbital-induced sleeping time, motor equilibrium performance and neurobiochemical activities in mice during 3- to 11-week administration at a clinical dose of 10 mg/kg/day. The results showed that cinnabar was significantly absorbed by gastrointestinal (G-I) tract and transported to brain tissues. The spontaneous locomotor activities of male mice but not female mice were preferentially suppressed. Moreover, frequencies of jump and stereotype-1 episodes were progressively decreased after 3-week oral administration in male and female mice. Pentobarbital-induced sleeping time was prolonged and the retention time on a rotating rod (60 rpm) was reduced after treatment with cinnabar for 6 weeks and then progressively to a greater extent until the 11-week experiment. In addition, the biochemical changes in blood and brain tissues were studied; the inhibition of Na{sup +}/K{sup +}-ATPase activities, increased production of lipid peroxidation (LPO) and nitric oxide (NO) were found with a greater extent in male mice than those in female mice, which were apparently correlated with their differences in the neurological responses observed. In conclusion, these findings, for the first time, provide evidence of the pharmacological and toxicological basis for understanding the sedative and neurotoxic effects of cinnabar used as a Chinese mineral medicine for more than 2000 years.

  7. Results of Hg speciation testing on tanks 30, 32, and 37 depth samples

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2015-11-30

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The twelfth shipment of samples was designated to include 3H evaporator system Tank 30, 32, and 37 depth samples. The Tank 30 depth sample (HTF-30-15-70) was taken at 190 inches from the tank bottom and the Tank 32 depth sample (HTF-32-15-68) was taken at 89 inches from the tank bottom and both were shipped to SRNL on June 29, 2015 in an 80 mL stainless steel dip bottles. The Tank 37 surface sample (HTF-37-15-94) was taken around 253.4 inches from the tank bottom and shipped to SRNL on July 21, 2015 in an 80 mL stainless steel dip bottle. All samples were placed in the SRNL Shielded Cells and left unopened until intermediate dilutions were made on July 24, 2015 using 1.00 mL of sample diluted to 100.00 mL with deionized H2O. A 30 mL Teflon® bottle was rinsed twice with the diluted tank sample and then filled leaving as little headspace as possible. It was immediately removed from the Shielded Cells and transferred to refrigerated storage where it remained at 4 °C until final dilutions were made on October 20. A second portion of the cells diluted tank sample was poured into a shielded polyethylene bottle and transferred to Analytical Development for radiochemical analysis data needed for Hazardous Material Transportation calculations.

  8. Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wright, C.; Gupta, C. N.; Chen, J.; Patel, V.; Calhoun, V. D.; Ehrlich, S.; Wang, L.; Bustillo, J. R.; Perrone-Bizzozero, N. I.; Turner, J. A.

    2016-02-02

    Evidence suggests that microRNA-137 (miR-137) is involved in the genetic basis of schizophrenia. Risk variants within the miR-137 host gene (MIR137HG) influence structural and functional brain-imaging measures, and miR-137 itself is predicted to regulate hundreds of genes. We evaluated the influence of a MIR137HG risk variant (rs1625579) in combination with variants in miR-137- regulated genes TCF4, PTGS2, MAPK1 and MAPK3 on gray matter concentration (GMC). These genes were selected based on our previous work assessing schizophrenia risk within possible miR-137-regulated gene sets using the same cohort of subjects. A genetic risk score (GRS) was determined based on genotypes of thesemore » four schizophrenia risk-associated genes in 221 Caucasian subjects (89 schizophrenia patients and 132 controls). The effects of the rs1625579 genotype with the GRS of miR-137-regulated genes in a three-way interaction with diagnosis on GMC patterns were assessed using a multivariate analysis. We found that schizophrenia subjects homozygous for the MIR137HG risk allele show significant decreases in occipital, parietal and temporal lobe GMC with increasing miR-137-regulated GRS, whereas those carrying the protective minor allele show significant increases in GMC with GRS. No correlations of GMC and GRS were found in control subjects. Variants within or upstream of genes regulated by miR-137 in combination with the MIR137HG risk variant may influence GMC in schizophrenia-related regions in patients. Furthermore, given that the genes evaluated here are involved in protein kinase A signaling, dysregulation of this pathway through alterations in miR-137 biogenesis may underlie the gray matter loss seen in the disease.« less

  9. Temperature scaling in the quantum-Hall-effect regime in a HgTe quantum well with an inverted energy spectrum

    SciTech Connect (OSTI)

    Arapov, Yu. G.; Gudina, S. V.; Neverov, V. N.; Podgornykh, S. M.; Popov, M. R. Harus, G. I.; Shelushinina, N. G.; Yakunin, M. V.; Mikhailov, N. N.; Dvoretsky, S. A.

    2015-12-15

    The longitudinal and Hall magnetoresistances of HgTe/HgCdTe heterostructures with an inverted energy spectrum (the HgTe quantum well width is d = 20.3 nm) are measured in the quantum-Hall-effect regime at T = 2–50 K in magnetic fields up to B = 9 T. Analysis of the temperature dependences of conductivity in the transition region between the first and second plateaus of the quantum Hall effect shows the feasibility of the scaling regime for a plateau–plateau quantum phase transition in 2D-structures on the basis of mercury telluride.

  10. Nuclear structure ''southeast'' of {sup 208}Pb: Isomeric states in {sup 208}Hg and {sup 209}Tl

    SciTech Connect (OSTI)

    Al-Dahan, N.; Podolyak, Zs.; Regan, P. H.; Alkhomashi, N.; Deo, A. Y.; Farrelly, G.; Steer, S. J.; Cullen, I. J.; Gelletly, W.; Swan, T.; Thomas, J. S.; Walker, P. M.; Gorska, M.; Grawe, H.; Gerl, J.; Pietri, S. B.; Wollersheim, H. J.; Boutachkov, P.; Domingo-Pardo, C.; Farinon, F.

    2009-12-15

    The nuclear structure of neutron-rich N>126 nuclei has been investigated following their production via relativistic projectile fragmentation of a E/A=1 GeV {sup 238}U beam. Metastable states in the N=128 isotones {sup 208}Hg and {sup 209}Tl have been identified. Delayed {gamma}-ray transitions are interpreted as arising from the decay of I{sup {pi}}=(8{sup +}) and (17/2{sup +}) isomers, respectively. The data allow for the so far most comprehensive verification of the shell-model approach in the region determined by magic numbers Z<82 and N>126.

  11. Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic

    SciTech Connect (OSTI)

    Izhnin, I. I.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Mynbaev, K. D.; Fitsych, O. I.; Pociask-Bialy, M.; Sheregii, E.; Voitsekhovskii, A. V.

    2014-04-28

    A defect study was performed on molecular beam epitaxy-grown HgCdTe films in situ doped with arsenic. Doping was performed from either effusion cell or cracker cell, and studied were both as-grown samples and samples subjected to arsenic activation annealing. Electrical properties of the films were investigated with the use of ion milling as a means of stirring defects in the material. As a result of the study, it was confirmed that the most efficient incorporation of electrically active arsenic occurs at the cracking zone temperature of 700?C. Interaction between arsenic and tellurium during the growth was observed and is discussed in the paper.

  12. Calif. Utilities play catchup with Ever-Rising RPS targets

    SciTech Connect (OSTI)

    2008-08-15

    The current status of attempts by California's three major utilities to meet mandated targets for producing power from renewable energy sources are sketched.

  13. Memorandum of Understanding between DOE and NASA concerning RPS...

    Broader source: Energy.gov (indexed) [DOE]

    Aeronautics and Space Administration (NASA) (the parties) in the research, technology ... an agreement pursuant to which DOE and NASA will perform certain functions and provide ...

  14. RPS 11.1 ALARA Programs 12/31/99

    Broader source: Energy.gov [DOE]

     The objective of this surveillance is to evaluate the effectiveness of the contractor's implementation of a program to minimize doses to ionizing radiation As Low As Reasonably Achievable (ALARA)....

  15. NYSERDA's RPS Customer Sited Tier Fuel Cell Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services * Fire * Police * AmbulanceEmergency Medical Services * Health Care Services * ... PhD Project Manager, On-Site Power Team NYSERDA 17 Columbia Circle Albany, NY ...

  16. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    SciTech Connect (OSTI)

    Qiu, W. C.; Wang, R.; Xu, Z. J.; Jiang, T.; Cheng, X. A.

    2014-05-28

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scale array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.

  17. Effects of embryonic pre-exposure to methylmercury and Hg/sup 2 +/ on larval tolerance in Fundulus heteroclitus

    SciTech Connect (OSTI)

    Weis, P.; Weis, J.S.

    1983-11-01

    Many reports demonstrate enhanced metal tolerance as a result of previous exposure to low concentrations. Pretreatment of rainbow trout (Salmo gairdneri) eggs with cadmium made the larvae more resistant to subsequent Cd treatment. Larvae of the flagfish, Jordanella floridae, initially exposed as embryos to Zn and to mixtures of Zn and Cd were much more tolerant than those not previously exposed, indicating acclimation during embryonic exposure. Acclimation to metals after pre-exposure was attributed to stimulation of the synthesis of metal-binding proteins, or metallothioneins, in the liver, which form a nontoxic complex with the metal. In this paper we report on the effects of embryonic pre-exposure to methylmercury(meHf) and Hg/sup 2 +/ on larval susceptibility to these toxicants in the killifish, Fundulus heteroclitus.

  18. Identification and decay of the 0.48 ms 13/2{sup +} isomer in {sup 181}Hg

    SciTech Connect (OSTI)

    Andreyev, A. N.; Antalic, S.; Saro, S.; Ackermann, D.; Comas, V. F.; Heinz, S.; Heredia, J. A.; Hessberger, F. P.; Khuyagbaatar, J.; Kojouharov, I.; Kindler, B.; Lommel, B.; Mann, R.; Cocolios, T. E.; Elseviers, J.; Huyse, M.; Duppen, P. Van; Venhart, M.; Franchoo, S.; Hofmann, S.

    2009-10-15

    A new isomer with a half-life of 0.48(2) ms was identified in the nuclide {sup 181}Hg, which was produced in the complete fusion reaction {sup 40}Ca+{sup 144}Sm{yields}{sup 184}Pb* at the velocity filter SHIP (GSI, Darmstadt). The isomeric state was tentatively assigned a spin-parity of 13/2{sup +}. We propose that this isomer de-excites by a yet unobserved low-energy, strongly converted {gamma}-ray transition, followed by a newly identified cascade composed of a 90.3 keV M1 and a 71.4 keV E2 {gamma}-ray transition.

  19. Dynamic conductivity of the bulk states of n-type HgTe/CdTe quantum well topological insulator

    SciTech Connect (OSTI)

    Chen, Qinjun; Sanderson, Matthew; Cao, J. C.; Zhang, Chao

    2014-11-17

    We theoretically studied the frequency-dependent current response of the bulk state of topological insulator HgTe/CdTe quantum well. The optical conductivity is mainly due to the inter-band process at high frequencies. At low frequencies, intra-band process dominates with a dramatic drop to near zero before the inter-band contribution takes over. The conductivity decreases with temperature at low temperature and increases with temperature at high temperature. The transport scattering rate has an opposite frequency dependence in the low and high temperature regime. The different frequency dependence is due to the interplay of the carrier-impurity scattering and carrier population near the Fermi surface.

  20. Dielectric functions and carrier concentrations of Hg{sub 1−x}Cd{sub x}Se films determined by spectroscopic ellipsometry

    SciTech Connect (OSTI)

    Lee, A. J.; Peiris, F. C.; Brill, G.; Doyle, K.; Myers, T. H.

    2015-08-17

    Spectroscopic ellipsometry, ranging from 35 meV to 6 eV, was used to determine the dielectric functions of a series of molecular beam epitaxy-grown Hg{sub 1−x}Cd{sub x}Se thin films deposited on both ZnTe/Si(112) and GaSb(112) substrates. The fundamental band gap as well as two higher-order electronic transitions blue-shift with increasing Cd composition in Hg{sub 1−x}Cd{sub x}Se, as expected. Representing the free carrier absorption with a Drude oscillator, we found that the effective masses of Hg{sub 1−x}Cd{sub x}Se (grown on ZnTe/Si) vary between 0.028 and 0.050 times the free electron mass, calculated using the values of carrier concentration and the mobility obtained through Hall measurements. Using these effective masses, we determined the carrier concentrations of Hg{sub 1−x}Cd{sub x}Se samples grown on GaSb, which is of significance as films grown on such doped-substrates posit ambiguous results when measured by conventional Hall experiments. These models can serve as a basis for monitoring Cd-composition during sample growth through in-situ spectroscopic ellipsometry.

  1. Results of Hg speciation testing on 3Q15 tank 50, salt solution feed tank (SSFT), and solvent hold tank (SHT) materials

    SciTech Connect (OSTI)

    Bannochie, C.

    2015-08-13

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The results are documented in this report.

  2. Synthesis, crystal structure and optical property of a novel metal chalcohalide: ZnHg{sub 3}Se{sub 2}Cl{sub 4}

    SciTech Connect (OSTI)

    Zhang, Guodong; Xiong, Wei-Wei; Nie, Lina; Zhang, Qichun

    2015-10-15

    A novel chalcohalide ZnHg{sub 3}Se{sub 2}Cl{sub 4} has been synthesized through a solid state method and structurally characterized by single-crystal X-ray diffraction. It crystallizes in the acentric space group Cmc2{sub 1} (No. 36) with cell parameters a=7.3262(8) Å, b=12.518(2) Å, c=11.3324(14) Å. The compound consists of 12-membered Hg{sub 6}Se{sub 6} rings edge-sharing with six neighbored rings to construct a 2D layered network and the ZnCl{sub 4} tetrahedra are sandwiched between layers. TG-DTA measurement shows that the compound is thermally stable up to 300 °C. The band gap of the crystal is about 2.23 eV, and the crystal exhibits a broad transparent range from 0.56 to 13.8 µm. - Highlights: • A novel chalcohalide ZnHg{sub 3}Se{sub 2}Cl{sub 4} was synthesized by a solid state method. • The structure contains 12-membered Hg{sub 6}Se{sub 6} rings and ZnCl{sub 4} tetrahedra. • The band gap of the as-prepared compound is about 2.23 eV.

  3. Results of Hg speciation testing on MCU strip effluent hold tank (SEHT) and decontaminated salt solution hold tank (DSSHT) materials

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2015-09-17

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The tenth shipment of samples was designated to include Modular Caustic Side Solvent Extraction Unit (MCU) Strip Effluent Hold Tank (SEHT) and MCU Decontaminated Salt Solution Hold Tank (DSSHT) materials from processing Salt Batch 7b. The MCU SEHT (MCU-15-722) and DSSHT (MCU-15-709) samples were pulled on June 15, 2015. All MCU samples were received at SRNL on June 16, 2015. The DSSHT sample was moved the same day to refrigeration, while the SEHT sample was placed in the Shielded Cells. On July 9, 2015 it was opened and an aliquot diluted 1:100 with Eurofins deionized water and a portion of the diluted sample transferred to a Teflon® bottle prior to moving it to refrigeration that same day. All samples were kept in the dark and refrigerated until final dilutions were prepared for shipment to Eurofins.

  4. Commensurate antiferromagnetic excitations as a signature of the pseudogap in the tetragonal high-Tc cuprate HgBa2CuO4+δ

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chan, M. K.; Dorow, C. J.; Mangin-Thro, L.; Tang, Y.; Ge, Y.; Veit, M. J.; Yu, G.; Zhao, X.; Christianson, A. D.; Park, J. T.; et al

    2016-03-04

    We report that antiferromagnetic correlations have been argued to be the cause of the d-wave superconductivity and the pseudogap phenomena exhibited by the cuprates. Although the antiferromagnetic response in the pseudogap state has been reported for a number of compounds, there exists no information for structurally simple HgBa2CuO4+δ. We report neutron-scattering results for HgBa2CuO4+δ (superconducting transition temperature Tc≈71 K, pseudogap temperature T*≈305 K) that demonstrate the absence of the two most prominent features of the magnetic excitation spectrum of the cuprates: the X-shaped ‘hourglass’ response and the resonance mode in the superconducting state. Instead, the response is Y-shaped, gapped andmore » significantly enhanced below T*, and hence a prominent signature of the pseudogap state.« less

  5. Relationship between textural properties, fly ash carbons, and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends

    SciTech Connect (OSTI)

    Isabel Surez-Ruiz; Jose B. Parra

    2007-08-15

    In this work, the textural properties of a series of whole anthracitic-derived fly ashes sampled in eight hoppers from the electrostatic precipitators and their sized fractions (from {gt}150 to {lt}25 {mu}m) are investigated. Data from N{sub 2} adsorption isotherms at 77 K, helium density, and mercury porosimetry have contributed to establish a relationship between the Brunauer-Emmett-Teller (BET) surface areas, VTOT, porosity, carbon content (the type of fly ash carbons), and Hg retention in these fly ashes. The unburned carbons in these ashes are macroporous materials, and they are different from the carbons in fly ashes from classes C and F (the latter derived from the combustion of bituminous coals) and show different textural properties. These ashes represent the end member of the fly ash classes C and F with respect to certain textural properties. Although the BET surface area and VTOT values for the studied samples are the lowest reported, they increase with the increase in carbon content, anisotropic carbon content, and particle size of the ashes. Thus, a positive relationship between all these parameters and Hg capture by the coarser ash fractions was found. The finest fraction of carbons ({lt}25 {mu}m) represented an exception. Although it makes a significant contribution to the total carbon of the whole fly ashes and shows relatively higher surface areas and VTOT values, its Hg concentration was found to be the lowest. This suggests that the type of unburned carbons in the finest fraction and/or other adsorption mechanisms may play a role in Hg concentration. Because the textural properties of anisotropic carbons depend on their subtype and on their origin, the need for its differentiation has been evidenced. 54 refs., 8 figs., 3 tabs.

  6. Stellar (n,{gamma}) cross sections of p-process isotopes. II. {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg

    SciTech Connect (OSTI)

    Marganiec, J.; Dillmann, I.; Pardo, C. Domingo; Kaeppeler, F.; Walter, S.

    2010-09-15

    The neutron-capture cross sections of {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg have been measured by means of the activation technique. The samples were irradiated in a quasistellar neutron spectrum of kT=25 keV, which was produced at the Karlsruhe 3.7-MV Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. Systematic uncertainties were investigated in repeated activations with different samples and by variation of the experimental parameters, that is, irradiation times, neutron fluxes, and {gamma}-ray counting conditions. The measured data were converted into Maxwellian-averaged cross sections at kT=30 keV, yielding 1214{+-}61, 624{+-}54, 590{+-}43, 511{+-}46, and 201{+-}11 mb for {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg, respectively. The present results either represent first experimental data ({sup 168}Yb, {sup 184}Os, and {sup 196}Hg) or could be determined with significantly reduced uncertainties ({sup 180}W and {sup 190}Pt). These measurements are part of a systematic study of stellar (n,{gamma}) cross sections of the stable p isotopes.

  7. Cationic coordination compound Cs{sub 2}Hg{sub 3}I{sub 8} for IR NLO material: Synthesis, crystal growth and characterizations

    SciTech Connect (OSTI)

    Sathiskumar, S.; Kathiravan, P.; Balakrishnan, T.

    2015-06-24

    Single crystals Cs{sub 2}Hg{sub 3}I{sub 8} of dimensions 5 × 3 × 4   mm{sup 3} were grown by solution growth method at room temperature and structurally characterized by single crystal X – ray diffraction. Cs{sub 2}Hg{sub 3}I{sub 8} compound crystallizes in a noncentrosymmetric space group Cm with the crystal data of a = 7.4415 Å, b = 21.6629 Å, c = 7.6726 Å, α, β = 90°, γ = 108.05° and Z = 2. The grown crystals were characterized by powder X – ray diffraction analysis and the various diffraction planes are indexed. The presence of functional groups was identified qualitatively by Fourier transform infrared and FT – Raman spectral analyses. Ultraviolet – visible spectral analyses shows that the crystal has low UV cut off at 388 nm combined with very good transparency of 98 % in a wide range. The optical band gap was estimated to be 3 eV. Mechanical hardness of the grown crystal Cs{sub 2}Hg{sub 3}I{sub 8} was determined. The dielectric response of the crystal with varying frequencies was studied. Differential scanning calorimetry (DSC) analysis shows that the grown crystal has very good thermal stability up to 97.5°C.

  8. Crystal Growth And Characterization of the Model High-Temperature Superconductor HgBa{sub 2}CuO{sub 4+{delta}}

    SciTech Connect (OSTI)

    Zhao, Xudong; Yu, Guichuan; Cho, Yong-Chan; Chabot-Couture, Guillaume; Barisic, Neven; Bourges, Philippe; Kaneko, Nobuhisa; Li, Yuan; Lu, Li; Motoyama, Eugene M.; Vajk, Owen P.; Greven, Martin; /Stanford U., Appl. Phys. Dept. /SLAC, SSRL /Jilin U. /Stanford U., Phys. Dept. /Saclay /NIST, Wash., D.C.

    2007-03-16

    Since the discovery of high-transition-temperature (T{sub c}) superconductivity in La{sub 2-x}Ba{sub x}CuO{sub 4} in 1986, the study of the lamellar copper oxides has remained at the forefront of condensed matter physics. Apart from their unusually high values of T{sub c}, these materials also exhibit a variety of complex phenomena and phases. This rich behavior is a consequence of the lamellar crystal structures, formed of copper-oxygen sheets separated by charge reservoir layers, and of the strong electron-electron correlations in the copper-oxygen sheets. After two decades of intensive research, which has stimulated many valuable new insights into correlated electron systems in general, there remains a lack of consensus regarding the correct theory for high-T{sub c} superconductivity. The ultimate technological goal of room-temperature superconductivity might only be attained after the development of a deeper understanding of the mercury-based compounds HgBa{sub 2}Ca{sub n-1}Cu{sub n}OI{sub 2n+2+{delta}}, which currently exhibit the highest T{sub c}values. One very important issue in this regard is the role of electronic versus chemical and structural inhomogeneities in these materials, and the associated need to separate material-specific properties from those that are essential to superconductivity. Unfortunately, there has been remarkably little scientific work on the mercury-based compounds because sizable crystals have not been available; quantitative measurements of any kind would be invaluable benchmarks for testing the theories of high-T{sub c} superconductivity. The compounds HgBa{sub 2}Ca{sub n-1}Cu{sub n}OI{sub 2n+2+{delta}} can be viewed as model systems not only because of their record high-T{sub c} values, but also because of their high-symmetry crystal structures. Of particular interest is the simplest member of this materials family, HgBa{sub 2}CuO{sub 4+{delta}} (Hg1201), which possesses only one copper-oxygen sheet per unit cell (n = 1), as

  9. Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions

    SciTech Connect (OSTI)

    Michael L. Fenger; Richard A. Winschel

    2005-08-31

    A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and

  10. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment

    DOE Patents [OSTI]

    Grossman, Mark W.

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  11. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1993-02-16

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  12. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  13. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from {sub 55}Cs to {sub 80}Hg

    SciTech Connect (OSTI)

    Tatewaki, Hiroshi; Hatano, Yasuyo; Noro, Takeshi; Yamamoto, Shigeyoshi

    2015-06-15

    We consider, for atoms from {sub 55}Cs to {sub 80}Hg, the effective atomic radius (r{sub ear}), which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He{sub 2}. The values of r{sub ear} are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of r{sub ear} decreases from {sub 55}Cs to {sub 56}Ba and undergoes increases and decreases with rising nuclear charge from {sub 57}La to {sub 70}Y b. In fact r{sub ear} is understood as comprising two interlaced sequences; one consists of {sub 57}La, {sub 58}Ce, and {sub 64}Gd, which have electronic configuration (4f{sup n−1})(5d{sup 1})(6s{sup 2}), and the remaining atoms have configuration (4f{sup n})(6s{sup 2}). The sphere defined by r{sub ear} contains 85%–90% of the 6s electrons. From {sub 71}Lu to {sub 80}Hg the radius r{sub ear} also involves two sequences, corresponding to the two configurations 5d{sup n+1}6s{sup 1} and 5d{sup n}6s{sup 2}. The radius r{sub ear} according to the present methodology is considerably larger than r{sub vdW} obtained by other investigators, some of who have found values of r{sub vdW} close to .

  14. Temperature dependence of the carrier lifetime in narrow-gap Cd{sub x}Hg{sub 1–x}Te solid solutions: Radiative recombination

    SciTech Connect (OSTI)

    Bazhenov, N. L. Mynbaev, K. D.; Zegrya, G. G.

    2015-09-15

    The probability of the radiative recombination of carriers in narrow-gap semiconductors is analyzed for the example of Cd{sub x}Hg{sub 1–x}Te solid solutions. Expressions are derived for the imaginary part of the dielectric permittivity in terms of the three-band Kane’s model with consideration for the nonparabolic dependence of the carrier energy on the wave vector. It is shown that taking into account this nonparabolicity of the energy spectrum of carriers modifies the dependence of the imaginary part of the dielectric permittivity on frequency. Expressions for the probability of radiative recombination, derived in terms of the simple parabolic model and Kane’s model with and without the nonparabolicity effect taken into account, are compared. It is shown that the contributions to recombination from electron transitions to heavy- and light-hole bands are close and the contribution from light holes cannot be neglected when calculating the radiative-recombination probability.

  15. Energy release, beam attenuation radiation damage, gas production and accumulation of long-lived activity in Pb, Pb-Bi and Hg targets

    SciTech Connect (OSTI)

    Shubin, Yu.N.

    1996-06-01

    The calculation and analysis of the nuclei concentrations and long-lived residual radioactivity accumulated in Pb, Pb-Bi and Hg targets irradiated by 800 MeV, 30 mA proton beam have been performed. The dominating components to the total radioactivity of radionuclides resulting from fission and spallation reactions and radiative capture by both target nuclei and accumulated radioactive nuclei for various irradiation and cooling times were analyzed. The estimations of spectral component contributions of neutron and proton fluxes to the accumulated activity were carried out. The contributions of fission products to the targets activity and partial activities of main long-lived fission products to the targets activity and partial activities of main long-lived fission products were evaluated. The accumulation of Po isotopes due to reactions induced by secondary alpha-particles were found to be important for the Pb target as compared with two-step radiative capture. The production of Tritium in the targets and its contribution to the total targets activity was considered in detail. It is found that total activities of both targets are close to one another.

  16. Electrical and optical properties of Mn-doped Hg{sub 3}In{sub 2}Te{sub 6} crystals

    SciTech Connect (OSTI)

    Grushka, O. G. Chupyra, S. M.; Mysliuk, O. M.; Bilichuk, S. V.; Koziarskyi, D. P.

    2013-09-15

    The effect of Mn impurities on the properties of Hg{sub 3}In{sub 2}Te{sub 6} crystals is studied by electrical and optical measurements. It is shown that, despite the high dopant concentration (1 Multiplication-Sign 10{sup 19} cm{sup -3}), the electron concentration remains the same as that in an undoped crystal ({approx}10{sup 13} cm{sup -3} at 300 K). At the same time, narrowing of the band gap from 0.74 to 0.7 eV is observed. From an analysis of the absorption spectra, it is found that the absorption edge is formed by optical transitions involving density-of-states (DoS) tails and that two acceptor- and donor-type impurity bands are formed in the band gap. The two bands are described by a Gaussian distribution of the DoS, with an energy gap between the peaks of E{sub 0} = E{sub d}{sup 0} - E{sub a}{sup 0} = 0.4 eV. The total donor and acceptor concentration N{sub d} + N{sub a} and the degree of compensation K = N{sub a}/N{sub d} {yields} 1 are determined. Such compensation is responsible for pinning of the Fermi level near the middle of the band gap and for quasi-intrinsic conductivity at temperatures T {>=} 300 K.

  17. Microsoft Word - Hg.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Figure 1. Dr. Christopher Kim collects a mine waste sample from the Oat Hill mercury mine in Northern California. The majority of mercury mine wastes at these sites are present as loose, unconsolidated piles, facilitating the transport of mercury-bearing material downstream into local watersheds. Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine Wastes Christopher S. Kim 1 , James J. Rytuba 2 , Gordon E. Brown, Jr. 3 1 Department of Physical Sciences, Chapman

  18. Multi-Mission Capable, High g Load mW RPS

    SciTech Connect (OSTI)

    John C. Bass; Nathan Hiller; Velimir Jovanovic; Norbert B. Elsner

    2007-05-23

    Over the past few years Hi-Z has been developing a wide range of mW generators and life testing thermoelectric modules for the Department of Energy (DOE) to fulfill requirements by NASA Ames and other agencies. The purpose of this report is to determine the capabilities of a wide range of mW generators for various missions. In the 1st quarterly report the power output of various mW generators was determined via thermal and mechanical modeling. The variable attributes of each generator modeled were: the number of RHUs (1-8), generator outer diameter (1.25-4 in.), and G-load (10, 500, or 2,000). The resultant power output was as high as 180 mW for the largest generator with the lowest Gload. Specifically, we looked at the design of a generator for high G loading that is insulated with Xenon gas and multifoil solid insulation. Because the design of this new generator varied considerably from the previous generator design, it was necessary to show in detail how it is to be assembled, calculate them as of the generator and determine the heat loss from the system. A new method of assembling the RHU was also included as part of the design. As a side issue we redesigned the test stations to provide better control of the cold sink temperature. This will help in reducing the test data by eliminating the need to 'normalize' the data to a specific temperature. In addition these new stations can be used to simulate the low ambient temperatures associated with Mars and other planets.

  19. Analysis of a 10% RPS - Response letter summarizing principal conclusions of supplement

    Reports and Publications (EIA)

    2003-01-01

    Transmittal letter for the supplement to the Service Report 'Analysis of a 10% Renewable Portfolio Standard'.

  20. RPS Collaborative Webinar: Using AVERT to Estimate the Emissions Benefits of Clean Energy Policies and Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    State policymakers and various stakeholders frequently have need to estimate the emissions impacts of particular renewable energy and energy efficiency policies. However, it can be challenging and...

  1. Energy and Economic Impacts of Implementing Both a 25% RPS and a 25% RFS by 2025

    Reports and Publications (EIA)

    2007-01-01

    This report responds to a request by Senator James Inhofe for analysis of a "25-by-25" proposal that combines a requirement that a 25% share of electricity sales be produced from renewable sources by 2025 with a requirement that a 25% share of liquid transportation fuel sales also be derived from renewable sources by 2025.

  2. RPS 11.2 Radiological Work Practices 3/9/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the practices of workers performing tasks in radiological controlled areas to ensure that these practices protect the safety and health of the...

  3. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect (OSTI)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full

  4. Temperature dependence of the carrier lifetime in Cd{sub x}Hg{sub 1−x}Te narrow-gap solid solutions with consideration for Auger processes

    SciTech Connect (OSTI)

    Bazhenov, N. L. Mynbaev, K. D.; Zegrya, G. G.

    2015-04-15

    The temperature dependence of the carrier lifetime in Cd{sub x}Hg{sub 1−x}Te narrow-gap solid solutions in the temperature range 5 K < T < 300 K is analyzed within the scope of a microscopic model. Main attention is given to an analysis of the Auger recombination mechanism governing the carrier lifetime at high temperatures. The Auger-recombination rates are calculated with consideration for specific features of the band structure of the narrow-gap semiconductor in microscopic theory. It is shown that strict account of the non-parabolicity of the electronic structure in terms of Kane’s model leads to a substantially different temperature dependence of the Auger-recombination rates, compared with the approach in which nonparabolicity is disregarded.

  5. Two-fermion-four-boson description of {sup 198}Hg within the U{sub {nu}}(6/12) x U{sub {pi}}(6/4) extended nuclear structure supersymmetry

    SciTech Connect (OSTI)

    Bernards, C.; Heinze, S.; Jolie, J.; Fransen, C.; Linnemann, A.; Radeck, D.

    2009-05-15

    Using the U{sub {nu}}(6/12) x U{sub {pi}}(6/4) extended supersymmetry, we constructed the energy spectrum and electromagnetic transition properties of the supermultiplet member {sup 198}Hg with two proton fermions coupled to a neutron boson core. Consistency between the supersymmetric interacting boson fermion fermion approximation (IBFFA) description and the F-spin symmetric interacting boson approximation (IBA-2) description is shown for this two-fermion-N-boson multiplet member. The data of a {gamma}{gamma} angular correlation experiment using the HORUS cube {gamma}-ray spectrometer--determining new multipole mixing ratios, level spins, {gamma} transitions, and energy states--shows quite a good agreement, also for the low-energy part of the spectrum, when comparing theoretical predictions and experimental data. This is contrary to the usual assumption that a two-fermion-N-boson constellation should describe just the excited two-quasiparticle states.

  6. Effect of annealing on the kinetic properties and band parameters of Hg{sub 1?x?y}Cd{sub x}Eu{sub y}Se semiconductor crystals

    SciTech Connect (OSTI)

    Kovalyuk, T. T. Maistruk, E. V.; Maryanchuk, P. D.

    2014-12-15

    The results of studies of the kinetic properties of Hg{sub 1?x?y}Cd{sub x}Eu{sub y}Se semiconductor crystals in the ranges of temperatures T = 77300 K and magnetic fields H = 0.55 kOe before and after heat treatment of the samples in Se vapors are reported. It is established that annealing of the samples in Se vapors induces a decrease in the electron concentration. From the concentration dependence of the electron effective mass at the Fermi level, the band gap, the matrix element of interband interaction, and the electron effective mass at the bottom of the conduction band are determined.

  7. Energy recycling by co-combustion of coal and recovered paint solids from automobile paint operations

    SciTech Connect (OSTI)

    Achariya Suriyawong; Rogan Magee; Ken Peebles; Pratim Biswas

    2009-05-15

    This paper presents the results of an experimental study of particulate emission and the fate of 13 trace elements (arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), mercury (Hg), vanadium (V), and zinc (Zn)) during combustion tests of recovered paint solids (RPS) and coal. The emissions from combustions of coal or RPS alone were compared with those of co-combustion of RPS with subbituminous coal. The distribution/partitioning of these toxic elements between a coarse-mode ash (particle diameter (d{sub p}) > 0.5 {mu}m), a submicrometer-mode ash (d{sub p} < 0.5 {mu}m), and flue gases was also evaluated. Submicrometer particles generated by combustion of RPS alone were lower in concentration and smaller in size than that from combustion of coal. However, co-combustion of RPS and coal increased the formation of submicrometer-sized particles because of the higher reducing environment in the vicinity of burning particles and the higher volatile chlorine species. Hg was completely volatilized in all cases; however, the fraction in the oxidized state increased with co-combustion. Most trace elements, except Zn, were retained in ash during combustion of RPS alone. Mo was mostly retained in all samples. The behavior of elements, except Mn and Mo, varied depending on the fuel samples. As, Ba, Cr, Co, Cu, and Pb were vaporized to a greater extent from cocombustion of RPS and coal than from combustion of either fuel. Evidence of the enrichment of certain toxic elements in submicrometer particles has also been observed for As, Cd, Cr, Cu, and Ni during co-combustion. 27 refs., 6 figs., 5 tabs.

  8. DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg

    SciTech Connect (OSTI)

    Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

    2004-03-01

    Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

  9. EIS-0299: Proposed Production of Plutonium-238 (Pu-238) for Use in Advanced Radioisotope Power Systems (RPS) for Space Missions

    Broader source: Energy.gov [DOE]

    This EIS is for the proposed production of plutonium-238 (Pu-238) using one or more DOE research reactors and facilities.

  10. Temperature- and frequency-dependent dielectric properties of organic–inorganic hybrid compound: (C{sub 6}H{sub 9}N{sub 2}){sub 2}(Hg{sub 0.75}Cd{sub 0.25})Cl{sub 4}

    SciTech Connect (OSTI)

    Elwej, R. Hamdi, M.; Hannachi, N.; Hlel, F.

    2015-02-15

    Highlights: • We have synthesized a new hybrid compound of composition (C6H9N2)2(Hg0.75Cd0.25)Cl4. • The Ac conductivity of the title material was studied as a function of frequency and temperature. • The dielectric data have been analyzed in modulus formalism using KWW. - Abstract: The bis-2-amino-4-picolinium tetrachloromercurate-cadmate compound (C{sub 6}H{sub 9}N{sub 2}){sub 2}(Hg{sub 0.75}Cd{sub 0.25})Cl{sub 4} was prepared by hydrothermal method and characterized by X-ray diffraction (XRD) technique. The electrical properties of the compound were studied using impedance spectroscopy in the frequency and temperature range of 200 Hz–5 MHz and 308–403 K, respectively. The equivalent circuit is modeled by a combination of a parallel Rp//CPE circuit to explain the impedance results. The dielectric data were analyzed using complex electrical modulus M* at various temperatures. The activation energy responsible for the relaxation calculated from the modulus spectra is found to be almost the same as the value obtained from the temperature variation of dc conductivity. The electrical modulus and its scaling behavior are also investigated.

  11. Microsoft Word - Hg SEIS NNMCAB Member Comments Letter Rev 1

    Office of Environmental Management (EM)

    ... of the chemistry of received mercury samples did not seem adequate to protect the ... It is obvious that the mercury arriving at the storage facility would originate from a ...

  12. Packed bed reactor for photochemical .sup.196 Hg isotope separation

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

  13. Microsoft Word - Hg SEIS NNMCAB Member Comments Letter Rev 1

    Office of Environmental Management (EM)

    U.S. Department of Energy Office of Inspector General Office of Inspections and Special Inquiries Inspection Report 40 MM Grenade Launcher Qualification Requirements at Department of Energy Sites DOE/IG-0806 November 2008 Department of Energy Washington, DC 20585 November 25, 2008 MEMORANDUM FOR FROM: Inspector General SUBJECT: INFORMATION: Inspection Report on "40 mm Grenade Launcher Qualification Requirements at Department of Energy Sites" BACKGROUND The Department of Energy and its

  14. Technology could deliver 90% Hg reduction from coal

    SciTech Connect (OSTI)

    Maize, K.

    2009-07-15

    Reducing mercury emissions at coal-fired power plants by 90% has been considered the holy grail of mercury control. A new technology promises to get used there, but at a price. This is a mixture of chemical approaches, including activated carbon injection into the gases coming off the combustor along with injection of trona or calcium carbonate to reduce sulfur trioxide in the exhaust gases. The trick according to Babcock and Wilcox's manager Sam Kumar, to 'capture the mercury as a particulate on the carbon and then capture the particulate' in an electrostatic precipitator or a fabric filter baghouse. 2 figs.

  15. Materials Data on Hg (SG:191) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Hg (SG:166) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Are renewables portfolio standards cost-effective emission abatement policy?

    SciTech Connect (OSTI)

    Katerina Dobesova; Jay Apt; Lester B. Lave

    2005-11-15

    Renewables portfolio standards (RPS) could be an important policy instrument for 3P and 4P control. The authors examine the costs of renewable power, accounting for the federal production tax credit, the market value of a renewable credit, and the value of producing electricity without emissions of SO{sub 2}, NOx, mercury, and CO{sub 2}. The focus is on Texas, which has a large RPS and is the largest U.S. electricity producer and one of the largest emitters of pollutants and CO{sub 2}. The private and social costs of wind generation in an RPS is compared with the current cost of fossil generation, accounting for the pollution and CO{sub 2} emissions. It was found that society paid about 5.7 cents/kWh more for wind power, counting the additional generation, transmission, intermittency, and other costs. The higher cost includes credits amounting to 1.1 cents/kWh in reduced SO{sub 2}, NOx, and Hg emissions. These pollution reductions and lower CO{sub 2} emissions could be attained at about the same cost using pulverized coal (PC) or natural gas combined cycle (NGCC) plants with carbon capture and sequestration (CCS); the reductions could be obtained more cheaply with an integrated coal gasification combined cycle (IGCC) plant with CCS. 35 refs., 7 tabs.

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    enacted a Renewable Portfolio Standard (RPS) that applies to all retail electricity sales in the District. In October 2008 the RPS was amended by... Eligibility:...

  19. Property:Incentive/Auth10Link | Open Energy Information

    Open Energy Info (EERE)

    + Qualifying RPS State Export Markets (Illinois) + http:en.openei.orgwikiAlternativeEnergyPortfolioStandard + Qualifying RPS State Export Markets (Indiana) +...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Columbia Council enacted a Renewable Portfolio Standard (RPS) that applies to all retail electricity sales in the District. In October 2008 the RPS was amended by... Eligibility:...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delaware Electric Cooperative- Green Energy Fund Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation, electric cooperatives were allowed to opt out of the RPS...

  2. Property:Incentive/Auth16Link | Open Energy Information

    Open Energy Info (EERE)

    Q Qualifying RPS State Export Markets (Indiana) + http:en.openei.orgwikiAlternativeandRenewableEnergyPortfolioStandard%28WestVirginia%29 + Qualifying RPS State...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a renewable portfolio standard (RPS) without having restructured its electric utility industry. The RPS sets a total goal... Eligibility: Investor-Owned Utility, Municipal...

  4. Property:Incentive/Auth13Link | Open Energy Information

    Open Energy Info (EERE)

    + Qualifying RPS State Export Markets (New Jersey) + http:en.openei.orgwikiAlternativeandRenewableEnergyPortfolioStandard%28WestVirginia%29 + Qualifying RPS...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Council enacted a Renewable Portfolio Standard (RPS) that applies to all retail electricity sales in the District. In October 2008 the RPS was amended by... Eligibility:...

  6. SRNS Final VPP Report August 2010

    Office of Environmental Management (EM)

    ... for the new Hot Crane and 5-ton Maintenance Hoist-Wire Rope Inspection at H-Canyon. The maintenance was to be performed on the 5-ton crane in the H-Canyon crane maintenance room. ...

  7. Slide 1

    U.S. Energy Information Administration (EIA) Indexed Site

    Portfolio Standards Costs and Benefits Energy Information Administration 2008 Energy Conference 30 years of Energy Information and Analysis Washington, DC April 7- 8, 2008 Chris Namovicz Operations Research Analyst Energy Information Administration EIA Analyses of RPS Policy * AEO 2008 - Includes state RPS program * Other scenarios are based on AEO 2007 - Bingaman RPS - 15 percent national RPS by 2020 - 25 X 25 Proposal - 25 percent national RPS by 2025 plus 25 percent biofuels * Other renewable

  8. Materials Data on AgHgSI (SG:19) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Hg5Pd2 (SG:127) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Cr2HgS4 (SG:227) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2015-03-08

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on HgSO4 (SG:31) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on Hg3(SeBr)2 (SG:12) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. sup 3 P Hg, Cd, and Zn photosensitized chemistry of vinyl halides in krypton matrix

    SciTech Connect (OSTI)

    Cartland, H.E.; Pimentel, G.C. )

    1990-01-25

    The reaction of group IIB metals in the {sup 3}P state with vinyl fluoride, chloride, and bromide is studied in krypton matrix. The primary process in all cases is hydrogen halide elimination to form a hydrogen halide/acetylene hydrogen-bonded complex. Insertion of metal atoms into C-Cl and C-Br bonds, but not into C-H and C-F bonds, is also observed. The insertion photochemistry can be explained by a mechanism which requires that the process occur on a triplet surface with the vinyl halide in the planar ground-state conformation.

  14. Materials Data on K2Hg7 (SG:164) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on K5Hg7 (SG:57) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-03-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Cu2HgI4 (SG:121) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on HgPbF6 (SG:148) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Si(Hg2S3)2 (SG:9) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Si(Hg2Se3)2 (SG:9) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-03-08

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. The Molecular Structure of Aqueous Hg(II)-EDTA As Determined...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: ENGLISH Word Cloud More Like This Full Text Journal Articles DOI: 10.1021acs.jpca.5b00343 Select the DOI to obtain a copy of this ...

  1. Materials Data on Ag2HgO2 (SG:96) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Ag2HgI4 (SG:82) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on HgRhF6 (SG:148) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on HgP14Pb (SG:62) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Rb2Hg(BSe)9 (SG:2) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Ca3Hg2 (SG:127) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Mg5Hg3 (SG:193) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2015-03-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on Cu2HgGeS4 (SG:121) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on CaHg (SG:221) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Ag2HgI4 (SG:0) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Al2Hg3Cl8 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on TiCuHg2 (SG:216) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on HfCuHg2 (SG:216) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Hg(AuF4)2 (SG:124) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on ScHg3 (SG:194) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on HgPS3 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on HgSeO3 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on SnHgF6 (SG:148) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Hg2Mo2O7 (SG:13) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Cs2HgI4 (SG:11) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Mg2Hg (SG:62) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on HgPd (SG:123) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Hg2Rh (SG:123) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Al2HgSe4 (SG:82) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on In2HgS4 (SG:227) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on HgB4O7 (SG:31) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Ga2HgSe4 (SG:82) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on Hg3As2F12 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on CeHg2 (SG:191) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Hg3AsO4 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on HgO2 (SG:12) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on Hg2WO4 (SG:15) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on HgBrO3 (SG:15) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Rb2Hg7 (SG:164) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Hg3(BO3)2 (SG:167) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Na2HgO2 (SG:139) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on ZrCuHg2 (SG:216) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on HgS (SG:225) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Mn2Hg5 (SG:127) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Hg2P2S7 (SG:5) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on HgSeO4 (SG:31) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Ho2HgO4 (SG:12) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Hg3(TeI)2 (SG:15) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on BaHgS2 (SG:26) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Hg3(TeCl)2 (SG:199) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on CsHgBr3 (SG:221) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on CsGdHgSe3 (SG:63) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on NiHg (SG:221) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Hg4As2I3 (SG:205) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Hg2P2O7 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on RbHg11 (SG:221) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on BaHgO2 (SG:166) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on TlHg5Cl11 (SG:12) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Na4HgP2 (SG:166) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on BaHg (SG:221) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Hg4OF6 (SG:186) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-05-16

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Tl4HgBr6 (SG:128) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Hg(IO3)2 (SG:4) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Hg3(SeCl)2 (SG:199) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Hg(Mo3Cl7)2 (SG:201) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on BaSnHg (SG:194) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Hg(CO2)2 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on Hg(AsO3)2 (SG:162) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Ga2HgS4 (SG:82) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Rb5Hg19 (SG:87) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on Nd2HgO4 (SG:12) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on Hg2AsCl2 (SG:12) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on Cs3HgCl5 (SG:62) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Hg(PO3)2 (SG:61) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Sn(HgSe2)2 (SG:82) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Hg2GeSe4 (SG:82) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on HgTeO3 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Ba(TlHg)2 (SG:136) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on ThHg3 (SG:194) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on ThHg2 (SG:194) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Hg2IO (SG:15) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Tl4HgI6 (SG:128) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on NbHg3F6 (SG:162) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Hg3(TeBr)2 (SG:199) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Ag2SnHgSe4 (SG:31) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-03-08

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on HoHg (SG:221) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Materials Data on Ca5Hg3 (SG:140) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Materials Data on CdHg2 (SG:139) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Th2Hg (SG:140) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Hg2H10C3NCl5 (SG:2) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Materials Data on CaHg11 (SG:221) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on MnHg (SG:221) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on Hg3SO6 (SG:144) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Hg4As2O7 (SG:62) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on HgClO3 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on HgTe (SG:152) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-01-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on Hg3TeO6 (SG:206) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on In2HgTe4 (SG:119) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-04-15

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Microsoft Word - DOE-ID-INL-14-037.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 5-Ton Mezzanine Crane A subcontractor would remove, modify, fabricateprocure, paint, deliver and install ladders, platforms, guardrails, swing gates, and ladder accessories. ...

  15. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    New Jersey's Renewable Portfolio Standard (RPS) was first adopted in 1999 and has been updated several times. The total RPS requirement in New Jersey including solar carve out is 24.39% by EY 2028....

  16. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    In January 2005, the District of Columbia Council enacted a Renewable Portfolio Standard (RPS) that applies to all retail electricity sales in the District. In October 2008 the RPS was amended by...

  17. Renewable Portfolio Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    In October 1999, Wisconsin enacted Act 9, becoming the first state to enact a renewable portfolio standard (RPS) without having restructured its electric utility industry. The RPS sets a total goal...

  18. Delaware Electric Cooperative- Green Energy Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation, electric cooperatives were allowed to opt out of the RPS schedule if they met certain other requirements. One such requirem...

  19. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    Note: SB 350, signed on October 7, 2015, made a number of changes to California's Renewables Portfolio Standard (RPS). Most notably, SB 350 extended the timeline and requirements under the RPS to...

  20. Solar Renewable Energy Certificates (SREC-I)

    Broader source: Energy.gov [DOE]

    NOTE: In April 2014, the Massachusetts Department of Energy Resources (DOER) issued final changes to its RPS Class I and RPS Solar Carve-Out programs. These changes resulted in the establishment of...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Other Distributed Generation Technologies Delaware Electric Cooperative- Green Energy Fund Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All), Biomass, Hydroelectric, Wind (Small), Hydroelectric (Small) Renewables Portfolio Standard New Jersey's Renewable Portfolio Standard (RPS) was first adopted...

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    DOEEI USDOE Energy Information Administration (EIA) ... (NE) Radioisotope Power Systems (RPS) Program Desert ... Fernald Environmental Management Project, OH (United ...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    DOEEI USDOE Energy Information Administration (EIA) ... (NE) Radioisotope Power Systems (RPS) Program Desert ... Management-Consolidated Business Center Office of ...

  5. Renewable Portfolio Standards: Costs and Benefits (Poster)

    SciTech Connect (OSTI)

    Bird, L.; Heeter, J.; Barbose, G.; Weaver, S.; Flores, F.; Kuskova-Burns, K.; Wiser, R.

    2014-10-01

    This report summarizes state-level RPS costs to date, and considers how those costs may evolve going forward given scheduled increases in RPS targets and cost containment mechanisms. The report also summarizes RPS benefits estimates, based on published studies for individual states and discusses key methodological considerations.

  6. Impacts of a 10% Renewable Portfolio Standard

    Reports and Publications (EIA)

    2002-01-01

    This service report addresses the renewable portfolio standard provision of S. 1766. At Senator Murkowski's request it also includes an analysis of the impacts of a renewable portfolio standard (RPS) patterned after the one called for in S. 1766, but where the required share is based on a 20% RPS by 2020 rather than the 10% RPS called for in S. 1766.

  7. Ecology Information Request HgC2H6 for 241-AW Tank Farm, 01/13/2015

    SciTech Connect (OSTI)

    Dyekman, Dale L.; Greene, Michael R.

    2015-01-15

    This information was requested by Phil Gent of Ecology on 12/18/2014 and confirmed on 01/13/2015 to Dale Dyekman.

  8. Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater

    SciTech Connect (OSTI)

    Terry Yost; Paul Pier; Gregory Brodie

    2007-12-31

    TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with less toxic ash pond water, and replanted due to low survival rates from the first planting the previous summer. The goals of the TVA-EPRI-DOE collaboration include building a better understanding of the chemical transformations that trace elements such as arsenic, selenium, and mercury undergo as they are treated in a passive treatment system, and to evaluate the performance of a large-scale replicated passive treatment system to provide additional design criteria and economic factors.

  9. Materials Data on Ag2Hg7(As2I3)2 (SG:205) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on CoHgC4(SeN)4 (SG:82) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations