National Library of Energy BETA

Sample records for hfcs perfluorocarbons pfcs

  1. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  2. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, Charles E. (Idaho Falls, ID)

    1997-01-01

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  3. Monthly Energy Review - April 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  4. Monthly Energy Review - August 2014

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  5. Monthly Energy Review - January 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  6. Monthly Energy Review - July 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  7. Monthly Energy Review - December 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  8. Monthly Energy Review - January 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  9. Monthly Energy Review - September 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  10. Monthly Energy Review - July 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  11. Monthly Energy Review - September 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  12. Monthly Energy Review - August 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  13. Monthly Energy Review - December 2014

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  14. Monthly Energy Review - February 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  15. Monthly Energy Review - August 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  16. Monthly Energy Review - September 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  17. Monthly Energy Review - February 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  18. Monthly Energy Review - December 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  19. Monthly Energy Review - November 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  20. Monthly Energy Review - October 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  1. Monthly Energy Review - July 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  2. Monthly Energy Review - October 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  3. Monthly Energy Review - July 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  4. Monthly Energy Review - May 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  5. Monthly Energy Review - March 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  6. Monthly Energy Review - April 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  7. Glossary: Energy-Related Carbon Emissions

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride, that are transparent to solar (short-wave) radiation but opaque to long-wave radiation, thus preventing long-wave...

  8. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  9. Monthly Energy Review - May 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  10. Monthly Energy Review - November 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  11. Monthly Energy Review - March 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  12. Monthly Energy Review - May 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  13. Monthly Energy Review - October 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  14. Monthly Energy Review - June 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  15. Monthly Energy Review - August 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  16. Monthly Energy Review - June 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  17. Monthly Energy Review - January 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  18. Monthly Energy Review - Janurary 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  19. Monthly Energy Review - November 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  20. Monthly Energy Review - October 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  1. Monthly Energy Review - April 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  2. Monthly Energy Review - November 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  3. Monthly Energy Review - August 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  4. Monthly Energy Review - February 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  5. Monthly Energy Review - June 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  6. Monthly Energy Review - December 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  7. Monthly Energy Review - October 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  8. Monthly Energy Review - November 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  9. Monthly Energy Review - July 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  10. Monthly Energy Review - September 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  11. Monthly Energy Review - May 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  12. Monthly Energy Review - February 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  13. Monthly Energy Review - June 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  14. Monthly Energy Review - March 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  15. Monthly Energy Review - December 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  16. Monthly Energy Review - August 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  17. Monthly Energy Review - April 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  18. Monthly Energy Review - March 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  19. Monthly Energy Review - December 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  20. Monthly Energy Review - September 2014

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  1. Monthly Energy Review - September 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  2. Perfluorocarbons and Gilbert syndrome (phenotype) in the C8 Health Study Population

    SciTech Connect (OSTI)

    Fan, Hongmin; Ducatman, Alan; Zhang, Jianjun

    2014-11-15

    Background: Gilbert syndrome (GS) is an inherited defect of bilirubin conjugation, most commonly caused by a gene mutation for the enzyme UGT1A. GS is known to affect the metabolism and excretion of drugs and xenobiotics. Perfluorocarbon compounds (PFCs) are bio-persistent environmental contaminants that affect metabolic regulation. In this study, we examined the associations of GS phenotype and serum PFCs in the C8 Health Study Population. Materials and methods: Using 2005–2006 data from a large PFC-exposure population survey, we compared serum PFCs concentrations between GS and non GS clinical phenotypes, in a cross sectional design, adjusting for standard risk factors, including age, BMI, smoking status, socioeconomic status and gender. Results: Among 10 PFC compounds considered, only perfluorohexanoic acid (PFHxA) was seen at a significantly higher concentration in GS men and women. Conclusion: PFHxA exposure may be associated with GS. Our findings do not support increased exposure in GS for other PFCs. - Highlights: • Most serum PFCs are not associated with clinically evident Gilbert syndrome. • However, serum perfluorohexanoic acid is positively associated. • The investigation addresses the clinical presentation, not the genetic mutation.

  3. Perfluorocarbon vapor tagging of blasting cap detonators

    DOE Patents [OSTI]

    Dietz, R.N.; Senum, G.I.

    A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

  4. Perfluorocarbon vapor tagging of blasting cap detonators

    DOE Patents [OSTI]

    Dietz, Russell N.; Senum, Gunnar I.

    1981-01-01

    A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

  5. HDW Fuel Cell Systems GmbH HFCS | Open Energy Information

    Open Energy Info (EERE)

    HDW Fuel Cell Systems GmbH HFCS Jump to: navigation, search Name: HDW Fuel Cell Systems GmbH (HFCS) Place: Kiel, Schleswig-Holstein, Germany Zip: D-24143 Product: HDW develops...

  6. HFCs contribution to the greenhouse effect. Present and projected estimations

    SciTech Connect (OSTI)

    Libre, J.M.; Elf-Atochem, S.A.

    1997-12-31

    This paper reviews data that can be used to calculate hydrofluorocarbon (HFC) contribution to the greenhouse effect and compare it to other trace gas contributions. Projections are made for 2010 and 2100 on the basis of available emission scenarios. Industrial judgement on the likelihood of those scenarios is also developed. Calculations can be made in two different ways: from Global Warming Potential weighted emissions of species or by direct calculation of radiative forcing based on measured and projected atmospheric concentrations of compounds. Results show that HFCs corresponding to commercial uses have a negligible contribution to the greenhouse effect in comparison with other trace gases. The projected contributions are also very small even if very high emission scenarios are maintained for decades. In 2010 this contribution remains below 1%. Longer term emissions projections are difficult. However, based on the IPCC scenario IS92a, in spite of huge emissions projected for the year 2100, the HFC contribution remains below 3%. Actually many factors indicate that the real UFC contribution to the greenhouse effect will be even smaller than presented here. Low emissive systems and small charges will likely improve sharply in the future and have drastically improved in the recent past. HFC technology implementation is likely to grow in the future, reach a maximum before the middle of the next century; the market will stabilise driven by recycling, closing of systems and competitive technologies. This hypothesis is supported by previous analysis of the demand for HTCs type applications which can be represented by {open_quotes}S{close_quotes} type curves and by recent analysis indicating that the level of substitution of old products by HFCs is growing slowly. On the basis of those data and best industrial judgement, the contribution of HFCs to the greenhouse effect is highly likely to remain below 1% during the next century. 11 refs., 2 figs., 5 tabs.

  7. Perfluorocarbon tracer method for air-infiltration measurements

    DOE Patents [OSTI]

    Dietz, R.N.

    1982-09-23

    A method of measuring air infiltration rates suitable for use in rooms of homes and buildings comprises the steps of emitting perfluorocarbons in the room to be measured, sampling the air containing the emitted perfluorocarbons over a period of time, and analyzing the samples at a laboratory or other facility.

  8. Vaporization dynamics of volatile perfluorocarbon droplets: A theoretical model and in vitro validation

    SciTech Connect (OSTI)

    Doinikov, Alexander A. Bouakaz, Ayache; Sheeran, Paul S.; Dayton, Paul A.

    2014-10-15

    Purpose: Perfluorocarbon (PFC) microdroplets, called phase-change contrast agents (PCCAs), are a promising tool in ultrasound imaging and therapy. Interest in PCCAs is motivated by the fact that they can be triggered to transition from the liquid state to the gas state by an externally applied acoustic pulse. This property opens up new approaches to applications in ultrasound medicine. Insight into the physics of vaporization of PFC droplets is vital for effective use of PCCAs and for anticipating bioeffects. PCCAs composed of volatile PFCs (with low boiling point) exhibit complex dynamic behavior: after vaporization by a short acoustic pulse, a PFC droplet turns into a vapor bubble which undergoes overexpansion and damped radial oscillation until settling to a final diameter. This behavior has not been well described theoretically so far. The purpose of our study is to develop an improved theoretical model that describes the vaporization dynamics of volatile PFC droplets and to validate this model by comparison with in vitro experimental data. Methods: The derivation of the model is based on applying the mathematical methods of fluid dynamics and thermodynamics to the process of the acoustic vaporization of PFC droplets. The used approach corrects shortcomings of the existing models. The validation of the model is carried out by comparing simulated results with in vitro experimental data acquired by ultrahigh speed video microscopy for octafluoropropane (OFP) and decafluorobutane (DFB) microdroplets of different sizes. Results: The developed theory allows one to simulate the growth of a vapor bubble inside a PFC droplet until the liquid PFC is completely converted into vapor, and the subsequent overexpansion and damped oscillations of the vapor bubble, including the influence of an externally applied acoustic pulse. To evaluate quantitatively the difference between simulated and experimental results, the L2-norm errors were calculated for all cases where the

  9. EIA - Greenhouse Gas Emissions - High-GWP gases

    Gasoline and Diesel Fuel Update (EIA)

    5. High-GWP gases 5.1. Total emissions Greenhouse gases with high global warming potential (high-GWP gases) are hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), which together represented 3 percent of U.S. greenhouse gas emissions in 2009. Emissions estimates for the high-GWP gases are provided to EIA by the EPA's Office of Air and Radiation. The estimates for emissions of HFCs not related to industrial processes or electric transmission are derived from the EPA

  10. Kyoto Protocol | Open Energy Information

    Open Energy Info (EERE)

    The goal is to lower overall emissions from six greenhouse gases - carbon dioxide, methane, nitrous oxide, sulfur hexafluoride, HFCs, and PFCs - calculated as an average over...

  11. QUANTIFICATION OF FUGITIVE REACTIVE ALKENE EMISSIONS FROM PETROCHEMICAL PLANTS WITH PERFLUOROCARBON TRACERS.

    SciTech Connect (OSTI)

    SENUM,G.I.; DIETZ,R.N.

    2004-06-30

    Recent studies demonstrate the impact of fugitive emissions of reactive alkenes on the atmospheric chemistry of the Houston Texas metropolitan area (1). Petrochemical plants located in and around the Houston area emit atmospheric alkenes, such as ethene, propene and 1,3-butadiene. The magnitude of emissions is a major uncertainty in assessing their effects. Even though the petrochemical industry reports that fugitive emissions of alkenes have been reduced to less than 0.1% of daily production, recent measurement data, obtained during the TexAQS 2000 experiment indicates that emissions are perhaps a factor of ten larger than estimated values. Industry figures for fugitive emissions are based on adding up estimated emission factors for every component in the plant to give a total estimated emission from the entire facility. The dramatic difference between estimated and measured rates indicates either that calculating emission fluxes by summing estimates for individual components is seriously flawed, possibly due to individual components leaking well beyond their estimated tolerances, that not all sources of emissions for a facility are being considered in emissions estimates, or that there are known sources of emissions that are not being reported. This experiment was designed to confirm estimates of reactive alkene emissions derived from analysis of the TexAQS 2000 data by releasing perfluorocarbon tracers (PFTs) at a known flux from a petrochemical plant and sampling both the perfluorocarbon tracer and reactive alkenes downwind using the Piper-Aztec research aircraft operated by Baylor University. PFTs have been extensively used to determine leaks in pipelines, air infiltration in buildings, and to characterize the transport and dispersion of air parcels in the atmosphere. Over 20 years of development by the Tracer Technology Center (TTC) has produced a range of analysis instruments, field samplers and PFT release equipment that have been successfully deployed in a

  12. Acoustic Droplet Vaporization, Cavitation, and Therapeutic Properties of Copolymer-Stabilized Perfluorocarbon Nanoemulsions

    SciTech Connect (OSTI)

    Nam, Kweon-Ho; Christensen, Douglas A.; Rapoport, Natalya; Kennedy, Anne M.

    2009-04-14

    Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions and tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.

  13. A Really Good Hammer: Quantification of Mass Transfer Using Perfluorocarbon Tracers (475th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Watson, Tom

    2012-02-15

    Brookhaven Labs perfluorocarbon tracer (PFT) technology can be viewed as a hammer looking for nails. But, according to Tom Watson, leader of the Labs Tracer Technology Group in the Environmental Research and Technology Division (ERTD), Its a really good hammer! The colorless, odorless and safe gases have a number of research uses, from modeling how airborne contaminants might move through urban canyons to help first responders plan their response to potential terrorist attacks and accidents to locating leaks in underground gas pipes. Their extremely low background level detectable at one part per quadrillion allows their transport to be easily tracked. Lab researchers used PFTs during the 2005 Urban Dispersion Program field studies in New York City, gathering data to help improve models of how a gas or chemical release might move around Manhattans tall buildings and canyons. Closer to home, scientists also used PFTs to make ventilation measurements in Bldg. 400 on the Lab site to provide data to test air flow models used in determining the effects of passive and active air exchange on the levels of indoor and outdoor air pollution, and to determine the effects of an accidental or intentional release of hazardous substances in or around buildings.

  14. Pre-fire warning system and method using a perfluorocarbon tracer

    DOE Patents [OSTI]

    Dietz, Russell N.; Senum, Gunnar I.

    1994-01-01

    A composition and method for detecting thermal overheating of an apparatus or system and for quickly and accurately locating the portions of the apparatus or system that experience a predetermined degree of such overheating. A composition made according to the invention includes perfluorocarbon tracers (PFTs) mixed with certain non-reactive carrier compounds that are effective to trap or block the PFTs within the composition at normal room temperature or at normal operating temperature of the coated apparatus or system. When a predetermined degree of overheating occurs in any of the coated components of the apparatus or system, PFTs are emitted from the compositions at a rate corresponding to the degree of overheating of the component. An associated PFT detector (or detectors) is provided and monitored to quickly identify the type of PFTs emitted so that the PFTs can be correlated with the respective PFT in the coating compositions applied on respective components in the system, thereby to quickly and accurately localize the source of the overheating of such components.

  15. Pre-fire warning system and method using a perfluorocarbon tracer

    DOE Patents [OSTI]

    Dietz, R.N.; Senum, G.I.

    1994-11-08

    A composition and method are disclosed for detecting thermal overheating of an apparatus or system and for quickly and accurately locating the portions of the apparatus or system that experience a predetermined degree of such overheating. A composition made according to the invention includes perfluorocarbon tracers (PFTs) mixed with certain non-reactive carrier compounds that are effective to trap or block the PFTs within the composition at normal room temperature or at normal operating temperature of the coated apparatus or system. When a predetermined degree of overheating occurs in any of the coated components of the apparatus or system, PFTs are emitted from the compositions at a rate corresponding to the degree of overheating of the component. An associated PFT detector (or detectors) is provided and monitored to quickly identify the type of PFTs emitted so that the PFTs can be correlated with the respective PFT in the coating compositions applied on respective components in the system, thereby to quickly and accurately localize the source of the overheating of such components. 4 figs.

  16. PERFLUOROCARBON GAS TRACER STUDIES TO SUPPORT RISK ASSESSMENT MODELING OF CRITICAL INFRASTRUCTURE SUBJECTED TO TERRORIST ATTACKS.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; HEISER, J.; WATSON, T.; ALLWINE, K.J.; FLAHERTY, J.E.

    2006-05-06

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., ''urban canyons''. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City's (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport models

  17. Using CO2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air

    SciTech Connect (OSTI)

    Heiser,J.H.; Smith, S.; Sedlacek, A.

    2008-02-06

    The Tag, Track and Location System Program (TTL) is investigating the use of PFTs as tracers for tagging and tracking items of interest or fallen soldiers. In order for the tagging and tracking to be valuable there must be a location system that can detect the PFTs. This report details the development of an infrared lidar platform for standoff detection of PFTs released into the air from a tagged object or person. Furthering work performed using a table top lidar system in an indoor environment; a mobile mini lidar platform was assembled using an existing Raman lidar platform, a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was then successfully demonstrated at an outdoor test. The lidar system was able to detect PFTs released into a vehicle from a distance of 100 meters. In its final, fully optimized configuration the lidar was capable of repeatedly detecting PFTs in the air released from tagged vehicles. Responses were immediate and clear. This report details the results of a proof-of-concept demonstration for standoff detection of a perfluorocarbon tracer (PFT) using infrared lidar. The project is part of the Tag, Track and Location System Program and was performed under a contract with Tracer Detection Technology Corp. with funding from the Office of Naval Research. A lidar capable of detecting PFT releases at distance was assembled by modifying an existing Raman lidar platform by incorporating a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was successfully demonstrated at an outdoor test. The demonstration test (scripted by the sponsor) consisted of three parked cars, two of which were tagged with the PFT. The cars were located 70 (closest) to 100 meters (farthest

  18. Demonstration of the BNL Continuous Dual Trap Analyzer to Detect Perfluorocarbon Tracers for the Tag, Track and Location Program

    SciTech Connect (OSTI)

    Heiser,J.H.; Adams, J.; Dietz, R..; Milian, L.; Watson, T.

    2008-10-07

    The Tag, Track and Location System (TTL) Program is investigating methods of tracking an asset using perfluorocarbon tracers (PFT). The success of any TTL method requires sound detection/location instrumentation. Tracer Detection Technologies Corp (TDT), through a contract with the Office of Naval Research (ONR), is investigating different detection systems. The detections systems generally fall into two categories; proximity detectors and standoff detectors. Proximity detectors, as the name implies, need to be in close proximity (e.g., meter to 10's of meters) to the PFT source. Standoff detection searches for the PFT from a greater distance away from the source (e.g., 100's of meters to kilometers). Gas Chromatographs (GC) are generally considered a proximity detection systems, but in the case of PFTs should be considered for both proximity and standoff detection with the caveat that in standoff use the GC needs to be somewhere in the PFT plume, i.e., generally downwind of the source. With a properly sized PFT source, the right GC can afford fairly large standoff (distance from the source) distances; 100's of meters to kilometers downwind. Brookhaven National Laboratory (BNL) has such a GC system and offered to demonstrate the CDTA for TTL as a no cost addition to the TDTTTL project, of which BNL was a participant. BNL is a leading authority on the sampling, collection, release and detection of PFTs. In addition, the BNL team has extensive background in atmospheric dispersion, the application of PFTs to such studies and the development of applications utilizing PFTs such as building infiltration measurements, control room integrity determination, leak location and environmental investigations. This experience and expertise is essential in developing any PFT application were dispersion, dilution and overcoming environmental conditions and interferences are integral to success. BNL has developed sophisticated gas chromatography methods and instruments that allow

  19. Emissions of greenhouse gases in the United States 1995

    SciTech Connect (OSTI)

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  20. PROCESS FOR PURIFYING CRUDE PERFLUOROCARBONS

    DOE Patents [OSTI]

    Holeton, R.E.

    1959-03-24

    A method is described for refining organic perfluoro compounds. In the manufacture of perfluorinated compounds by the fluorination of hydrocarbons, the product frequently is contaminated ny incompletely fluorimated hydrogen containing impurities. These impurities can be removed by contacting the products in a fluid conditions with an active adsorbents such as silica gel or alumina gel. The patent claims are restricted to this refining of crude perfluorinated lubricating oil.

  1. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    }), nitrous oxide (N{sub 2}O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF{sub 6}). Human activities have caused a rapid increase in GHG concentrations. This rising level contributes to global climate change, which contributes to environmental and public health problems.

  2. Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons

    SciTech Connect (OSTI)

    Wells, Arthur W.; Diehl, J. Rodney; Strazisar, Brian R.; Wilson, Thomas; H Stanko, Dennis C.

    2012-05-01

    Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period of 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 2030% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.

  3. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    SciTech Connect (OSTI)

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 C inlet temperature. We investigated flow perturbations caused by a 30 MW/m2 off-normal heat flux applied over a 25 mm2 area in addition to the nominal 5 MW/m2 applied over a 75 mm2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm2 heated area.

  4. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    SciTech Connect (OSTI)

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flow perturbations caused by a 30 MW/m2 off-normal heat flux applied over a 25 mm2 area in addition to the nominal 5 MW/m2 applied over a 75 mm2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.

  5. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m2 off-normal heat flux applied over a 25 mm2 area in addition to the nominal 5 MW/m2 applied over a 75 mm2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less

  6. Laboratory testing and modeling to evaluate perfluorocarbon compounds...

    Office of Scientific and Technical Information (OSTI)

    Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second ...

  7. Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems

    SciTech Connect (OSTI)

    Reimus, Paul W

    2011-01-21

    The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

  8. Replacement of chlorofluorocarbons at the DOE gaseous diffusion plants: An assessment of global impacts

    SciTech Connect (OSTI)

    Socolof, M.L.; McCold, L.N.; Saylor, R.E.

    1997-01-01

    Three gaseous diffusion plants (GDPs) for enriching uranium maintain a large inventory of chlorofluorocarbon-114 (CFC-114) as a coolant. To address the continued use of CFC-114, an ozone-depleting substance, the US Department of Energy (DOE) considered introducing perfluorocarbons (PFCs) by the end of 1995. These PFCs would not contribute to stratospheric ozone depletion but would be larger contributors to global warming than would CFC-114. The paper reports the results of an assessment of the global impacts of four alternatives for modifying GDP coolant system operations over a three-year period beginning in 1996. The overall contribution of GDP coolant releases to impacts on ozone depletion and global warming were quantified by parameters referred to as ozone-depletion impact and global-warming impact. The analysis showed that these parameters could be used as surrogates for predicting global impacts to all resources and could provide a framework for assessing environmental impacts of a permanent coolant replacement, eliminating the need for subsequent resource-specific analyses.

  9. Replacement of chlorofluorocarbons (CFCs) at the DOE Gaseous Diffusion Plants: An assessment of global impacts

    SciTech Connect (OSTI)

    Socolof, M.L.; Saylor, R.E.; McCold, L.N.

    1994-12-31

    The US Department of Energy (DOE) operates two uranium enrichment plants. Together, the two plants maintain an inventory of approximately 14 million pounds of a chlorofluorocarbon (CFC), dichlorote-trafluoroethane (CFC-114) as a coolant. Annual operational CFC-114 losses total over 500,000 pounds. In February, 1992, President Bush announced that the US would terminate manufacture and importation of Class 1 ozone depleting substances (including CFC-114) by the end of 1995. To comply with this requirement DOE has considered introducing a replacement coolant by the end of 1995. Two perfluorocarbons (PFCs) - namely, octofluoro-cyclobutane and decafluorobutane - are presently the only known coolants that could meet safety requirements. They would not contribute to stratospheric ozone depletion but contribute to global warming. The paper describes an analysis of the potential global impacts of the proposed replacement of CFC-114 with a PFC. A problem with analyses of global warming and ozone depletion impacts is that even large sources of compounds that contribute to these effects contribute only very small fractions of the total effect. The authors take the position that significant effects to global warming and ozone depletion have already occurred, and that any additional contribution to these effects are contributions to cumulatively significant adverse effects on the environment. The paper describes four alternatives and the extent to which each would contribute to global warming and ozone depletion.

  10. Energy Department Invests to Save on Heating, Cooling and Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The projects will also help curb emissions of hydrofluorocarbons (HFCs) - potent greenhouse gases primarily used in refrigeration and air conditioning. In the United States, ...

  11. EERE Success Story-New Refrigerant Boosts Energy Efficiency of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy savings for supermarkets nationwide and greatly reduce greenhouse gas emissions. ... hydrofluorocarbons (HFCs), powerful greenhouse gases that contribute to climate change. ...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (HFCs) are a significant source of green house gas (GHG) emissions, and their ... will amount to approx 5% of primary energy consumption and approx5% of allmore ...

  13. A “Cool” Way to Combat Climate Change under the Montreal Protocol

    Broader source: Energy.gov [DOE]

    World climate leaders are meeting this week in Vienna for the next stage of international discussions about a global phase-down of climate-damaging hydrofluorocarbons (HFCs).

  14. Modeling of CBM production, CO{sub 2} injection, and tracer movement...

    Office of Scientific and Technical Information (OSTI)

    The fate and movement of injected COsub 2 can be determined by using several monitoring techniques. Monitoring of perfluorocarbon (PFC) tracers is one of these monitoring ...

  15. PFT Air Infiltration Measurement Technique | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infiltration Measurement Technique PFT Air Infiltration Measurement Technique The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to...

  16. Demonstration of High Efficiency Elastocaloric Cooling with Large...

    Office of Scientific and Technical Information (OSTI)

    (HFCs) are a significant source of green house gas (GHG) emissions, and their ... 5% of primary energy consumption and approx5% of all CO2 emission in U.S. in 2030 . ...

  17. Atmospheric and soil-gas monitoring for surface leakage at the...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin COsub 2 pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, COsub 2 soil-gas ...

  18. PFT Air Infiltration Measurement Technique

    Broader source: Energy.gov [DOE]

    The airtightness of a building can be determined by using several methods. Learn how the PFT (PerFluorocarbon tracer gas) technique provides information about air leakage and energy loss.

  19. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  20. Comparison of H-Mode Plasmas Diverted to Solid and Liquid Lithium Surfaces

    SciTech Connect (OSTI)

    R. Kaita, et. al.

    2012-07-20

    Experiments were conducted with a Liquid Lithium Divertor (LLD) in NSTX. Among the goals was to use lithium recoating to sustain deuterium (D) retention by a static liquid lithium surface, approximating the ability of flowing liquid lithium to maintain chemical reactivity. Lithium evaporators were used to deposit lithium on the LLD surface. Improvements in plasma edge conditions were similar to those with lithiated graphite plasma-facing components (PFCs), including an increase in confinement over discharges without lithiumcoated PFCs and ELM reduction during H-modes. With the outer strike point on the LLD, the D retention in the LLD was about the same as that for solid lithium coatings on graphite, or about two times that achieved without lithium PFC coatings. There were also indications of contamination of the LLD surface, possibly due erosion and redeposition of carbon from PFCs. Flowing lithium may thus be needed for chemically active PFCs during long-pulse operation.

  1. Addressing the challenges of plasma-surface interactions in NSTX-U*

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaita, Robert; Abrams, Tyler; Jaworski, Michael; Lucia, Matthew; Nichols, Jacob H.; Skinner, Charles H.; Stotler, Daren; Allain, Jean Paul; Bedoya, Felipe

    2015-04-01

    The importance of conditioning plasma-facing components (PFCs) has long been recognized as a critical element in obtaining high-performance plasmas in magnetic confinement devices. Lithium coatings, for example, have been used for decades for conditioning PFCs. Since the initial studies on the Tokamak Fusion Test Reactor, experiments on devices with different aspect ratios and magnetic geometries like the National Spherical Torus Experiment (NSTX) continue to show the relationship between lithium PFCs and good confinement and stability. While such results are promising, their empirical nature do not reflect the detailed relationship between PFCs and the dynamic conditions that occur in the tokamakmore » environment. A first step developing an understanding such complexity will be taken in the upgrade to NSTX (NSTX-U) that is nearing completion. New measurement capabilities include the Materials Analysis and Particle Probe (MAPP) for in situ surface analysis of samples exposed to tokamak plasmas. The OEDGE suite of codes, for example, will provide a new way to model the underlying mechanisms for such material migration in NSTX-U. This will lead to a better understanding of how plasma-facing surfaces evolve during a shot, and how the composition of the plasma facing surface influences the discharge performance we observe. This paper will provide an overview of these capabilities, and highlight their importance for NSTX-U plans to transition from carbon to high-Z PFCs.« less

  2. Addressing the challenges of plasma-surface interactions in NSTX-U*

    SciTech Connect (OSTI)

    Kaita, Robert; Abrams, Tyler; Jaworski, Michael; Lucia, Matthew; Nichols, Jacob H.; Skinner, Charles H.; Stotler, Daren; Allain, Jean Paul; Bedoya, Felipe

    2015-04-01

    The importance of conditioning plasma-facing components (PFCs) has long been recognized as a critical element in obtaining high-performance plasmas in magnetic confinement devices. Lithium coatings, for example, have been used for decades for conditioning PFCs. Since the initial studies on the Tokamak Fusion Test Reactor, experiments on devices with different aspect ratios and magnetic geometries like the National Spherical Torus Experiment (NSTX) continue to show the relationship between lithium PFCs and good confinement and stability. While such results are promising, their empirical nature do not reflect the detailed relationship between PFCs and the dynamic conditions that occur in the tokamak environment. A first step developing an understanding such complexity will be taken in the upgrade to NSTX (NSTX-U) that is nearing completion. New measurement capabilities include the Materials Analysis and Particle Probe (MAPP) for in situ surface analysis of samples exposed to tokamak plasmas. The OEDGE suite of codes, for example, will provide a new way to model the underlying mechanisms for such material migration in NSTX-U. This will lead to a better understanding of how plasma-facing surfaces evolve during a shot, and how the composition of the plasma facing surface influences the discharge performance we observe. This paper will provide an overview of these capabilities, and highlight their importance for NSTX-U plans to transition from carbon to high-Z PFCs.

  3. Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Murtishaw, Scott; Worrell, Ernst

    2003-06-01

    Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any future international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California

  4. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Plan: EIA, EPA, and State and Regional Perspectives Joseph Goffman Associate Assistant Administrator for Climate and Senior Counsel U.S. EPA Office of Air and Radiation July 11, 2016 Climate Action Plan * Building a 21 st century transportation sector * Cutting energy waste in homes, businesses, and factories * Reducing methane and HFCs * Preparing the U.S. for the impacts of climate change * Leading international efforts to address global climate change * Reducing carbon pollution from

  5. Slide 1

    U.S. Energy Information Administration (EIA) Indexed Site

    Clean Power Plan: EIA, EPA, and State and Regional Perspectives Joseph Goffman Associate Assistant Administrator for Climate and Senior Counsel U.S. EPA Office of Air and Radiation July 11, 2016 Climate Action Plan * Building a 21 st century transportation sector * Cutting energy waste in homes, businesses, and factories * Reducing methane and HFCs * Preparing the U.S. for the impacts of climate change * Leading international efforts to address global climate change * Reducing carbon pollution

  6. FBIS report. Science and technology: Central Eurasia, June 21, 1996

    SciTech Connect (OSTI)

    1996-06-21

    Partial Contents: Ukraine: Development of Non-Oxide Ceramic Materials Based on Silicon Carbide and Silicon Nitride; Ukraine: Effect of Sintering Conditions on Optical Properties of Diamond-Like Carbon Films; Ukraine: Tooth Defects Linked With Chemical Burial Site (FBIS Report); Russia: Radionculide Excretion From the Bodies of Animals and Humans; Kazakhstan: State of Rural Public Health; and Russia: Organization of Mobile Structure in the Bloodstream: Functional Basis of Perfluorocarbon `Artificial Blood`.

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GEOSEQ: Monitoring of Geological CO2 Sequestration Using Isotopes and Perfluorocarbon Tracers (PFTs) Background The purpose of this project is to develop monitoring, verification, and accounting (MVA) tools to ensure the safety and viability of long-term geologic storage of CO2. The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) and Oak Ridge National Laboratory (ORNL) will expand the lessons learned at the Frio Brine Pilot (as part of the GEO-SEQ project) to

  8. Stabilizing System Pressure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stabilizing System Pressure Stabilizing System Pressure This tip sheet summarizes three methods used to stabilize compressed air system pressure: adequate primary and secondary storage, Pressure/Flow Controllers (P/FCs), and dedicated compressors. COMPRESSED AIR TIP SHEET #8 Stabilizing System Pressure (August 2004) (243.38 KB) More Documents & Publications Compressed Air Storage Strategies Compressed Air System Control Strategies Analyzing Your Compressed Air System

  9. Stable and Efficient White OLEDs Based on a Single Emissive Material |

    Broader source: Energy.gov (indexed) [DOE]

    tip sheet summarizes three methods used to stabilize compressed air system pressure: adequate primary and secondary storage, Pressure/Flow Controllers (P/FCs), and dedicated compressors. COMPRESSED AIR TIP SHEET #8 Stabilizing System Pressure (August 2004) (243.38 KB) More Documents & Publications Compressed Air Storage Strategies Compressed Air System Control Strategies Analyzing Your Compressed Air System Diesel Emissions | Department of Energy

    5 Diesel Engine Emissions Reduction

  10. Associate Research Physicist - LTX | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - LTX Department: Experimental Supervisor(s): Dick Majeski Staff: RM 1 Requisition Number: 16000300 The Princeton Plasma Physics Laboratory (PPPL) of Princeton University invites applications for a postdoctoral physicist position working on the Lithium Tokamak Experiment (LTX). LTX is a medium scale, low aspect ration tokamak designed to explore the modifications to edge and core plasmas in regimes of very low wall recycling using solid and liquefied lithium plasma-facing components (PFCs). LTX

  11. Decomposition of Perfluorocompounds on Alumina-Based Catalyst

    SciTech Connect (OSTI)

    Kanno, Shuichi; Tamata, Shin; Kurokawa, Hideaki

    2004-03-31

    The control of the atmospheric release of PFCs (perfluorocompounds) is an important environmental problem worldwide. PFCs are powerful greenhouse gases used by the semiconductor and liquid crystal industries as etching and cleaning agents. We developed a catalyst that decomposes PFCs with only water. Al2O3 was selected from the survey of some single metal-oxide catalysts. Addition of another metal-oxide improved the decomposition ratio and durability. The Al2O3-based catalyst decomposed CF4, C2F6, C3F8, C4F8, NF3 and SF6 by more than 99% at 750 degrees Celsius. Furthermore, our catalyst retained a high decomposition ratio as demonstrated by a continuous run for about 4000 hours at 700-750 degrees Celsius. The influence of chlorine as an impurity with regard to the SF6 decomposition ratio on the catalyst was examined. SF6 was decomposed at more than 99% during 8 hours in the presence of 400 ppm chlorine. Chlorine concentration in the outlet gas was less than TLV. No chlorine compounds were found by X-ray diffraction analysis of the used catalyst. That is, the hydrogenation of chlorine did not inhibit the surface catalytic reaction for PFC. Also, CF4 was decomposed at the condition of 1.4% of high concentration. The conversion remained higher than 99% throughout during a durability test. Furthermore, we investigated a large-scale decomposition system in the paper.

  12. Buildings Energy Data Book: 7.1 National Legislation

    Buildings Energy Data Book [EERE]

    5 Phase Out Schedule of Halocarbons in the U.S. (1) Gas % By % By Chlorofluorocarbons 75% 1994 75% 1994 (CFCs) 100% 1996 (4) 100% 1996 Bromofluorocarbons 100% 1994 (4) 100% 1994 (Halons) Hydrochlorofluorocarbons 35.0% 2004 35% 2003 (HCFCs) 75.0% 2010 75% 2010 90.0% 2015 90% 2015 99.5% 2020 99.5% 2020 100% 2030 (4) 100% 2030 Hydrofluorocarbons N.A. N.A. N.A. N.A. (HFCs) Note(s): Source(s): 1989 HCFC consumption + 2.8 % of 1989 CFC consumption 1996 N.A. N.A. 1) The phase out of halocarbons is

  13. Demonstration of high efficiency elastocaloric cooling with large Delta T using NiTi wires

    SciTech Connect (OSTI)

    Cui, J; Wu, YM; Muehlbauer, J; Hwang, YH; Radermacher, R; Fackler, S; Wuttig, M; Takeuchi, I

    2012-08-13

    Vapor compression (VC) is by far the most dominant technology for meeting all cooling and refrigeration needs around the world. It is a mature technology with the efficiency of modern compressors approaching the theoretical limit, but its environmental footprint remains a global problem. VC refrigerants such as hydrochloroflurocarbons (HCFCs) and hydrofluorocarbons (HFCs) are a significant source of green house gas emissions, and their global warming potential (GWP) is as high as 1000 times that of CO2 [Buildings Energy Data Book (Building Technologies Program, Department of Energy, 2009)]. There is an urgent need to develop an alternative high-efficiency cooling technology that is affordable and environmentally friendly [A. D. Little, Report For Office of Building Technology State and Community Programs, Department of Energy, 2001]. Here, we demonstrate that elastocaloric cooling (EC), a type of solid-state cooling mechanism based on the latent heat of reversible martensitic transformation, can have the coefficient of performance as high as 1 1, with a directly measured Delta T of 17 degrees C. The solid-state refrigerant of EC completely eliminates the use of any GWP refrigerants including HCFCs/HFCs. (C) 2012 American Institute. of Physics. [http://dx.doiorg/10.1063/1.4746257

  14. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect (OSTI)

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  15. Method for inducing hypothermia

    DOE Patents [OSTI]

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2008-09-09

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  16. Method for inducing hypothermia

    DOE Patents [OSTI]

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2003-04-15

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  17. Method for inducing hypothermia

    DOE Patents [OSTI]

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2005-11-08

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  18. First operation with the JET International Thermonuclear Experimental Reactor-like wall

    SciTech Connect (OSTI)

    Neu, R.; Max-Planck-Institut fr Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching ; Arnoux, G.; Beurskens, M.; Challis, C.; Giroud, C.; Lomas, P.; Maddison, G.; Matthews, G.; Mayoral, M.-L.; Meigs, A.; Rimini, F.; Brezinsek, S. [IEK-4, Association EURATOM and others

    2013-05-15

    To consolidate International Thermonuclear Experimental Reactor (ITER) design choices and prepare for its operation, Joint European Torus (JET) has implemented ITER's plasma facing materials, namely, Be for the main wall and W in the divertor. In addition, protection systems, diagnostics, and the vertical stability control were upgraded and the heating capability of the neutral beams was increased to over 30 MW. First results confirm the expected benefits and the limitations of all metal plasma facing components (PFCs) but also yield understanding of operational issues directly relating to ITER. H-retention is lower by at least a factor of 10 in all operational scenarios compared to that with C PFCs. The lower C content (? factor 10) has led to much lower radiation during the plasma burn-through phase eliminating breakdown failures. Similarly, the intrinsic radiation observed during disruptions is very low, leading to high power loads and to a slow current quench. Massive gas injection using a D{sub 2}/Ar mixture restores levels of radiation and vessel forces similar to those of mitigated disruptions with the C wall. Dedicated L-H transition experiments indicate a 30% power threshold reduction, a distinct minimum density, and a pronounced shape dependence. The L-mode density limit was found to be up to 30% higher than for C allowing stable detached divertor operation over a larger density range. Stable H-modes as well as the hybrid scenario could be re-established only when using gas puff levels of a few 10{sup 21} es{sup ?1}. On average, the confinement is lower with the new PFCs, but nevertheless, H factors up to 1 (H-Mode) and 1.3 (at ?{sub N}?3, hybrids) have been achieved with W concentrations well below the maximum acceptable level.

  19. Operation of Alcator C-Mod with high-Z plasma facing components and implications

    SciTech Connect (OSTI)

    Lipschultz, B.; Lin, Y.; Reinke, M.L.; Hubbard, A.; Hutchinson, I.H.; Irby, J.; LaBombard, B.; Marmar, E.S.; Marr, K.; Terry, J.L.; Wolfe, S.M.; Whyte, D.

    2006-05-15

    Studies of potential plasma facing component (PFC) materials for a magnetic fusion reactor generally conclude that tungsten is the best choice due to its low tritium (T) retention, capability to handle high heat fluxes with low erosion, and robustness to nuclear damage and activation. ITER [F. Perkins et al., Nucl. Fusion 39, 2137 (1999)] may operate with all tungsten PFCs to provide the necessary operational experience for a reactor. Alcator C-Mod [I. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] operates with molybdenum (Mo) high-Z PFCs, which have very similar properties to tungsten. The experiments described herein have provided a unique comparison of operation with or without in situ boron coatings applied to the molybdenum PFCs; the latter are likely most relevant to ITER and beyond. ICRF-heated H-modes were readily achieved without boron coatings although the resultant enhancement in energy confinement was typically small (H{sub ITER,89}{approx}1). Molybdenum concentrations, n{sub Mo}/n{sub e}, rise rapidly after the H-mode transition up to 0.1%, cooling the plasma by line radiation, reducing energy confinement, and/or causing a back H/L transition. Surprisingly, the primarily molybdenum PFC surfaces retain 3.5-5.0x10{sup 20} of injected D{sub 2} molecules per discharge, corresponding to 50% of the injected gas. Plasma current disruptions, both randomly occurring over the course of a day, or planned, reduce the retained D long term. After applying boron coatings, n{sub Mo}/n{sub e} was reduced by a factor of 10-20 with H{sub ITER,89} approaching 2. A world-record volume-average plasma pressure of 1.8 atm at 5.4 T was achieved at the ITER normalized {beta}. The effects of each boronization are found to be limited in time, correlated to time-integrated input energy. Intra- and inter-discharge boronization techniques have been developed with the latter being the most successful. This initial study indicates that a low-Z coating over at least a fraction of

  20. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOE Patents [OSTI]

    Keller, Rudolf (Export, PA); Larimer, Kirk T. (Pittsburgh, PA)

    1998-01-01

    A method of producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage.

  1. From fire to ice

    SciTech Connect (OSTI)

    Adcock, P.W.

    1995-06-01

    Absorption chillers are heat-operate refrigeration without harmful environmental emissions (CFCs, HCFCS, and HFCS). The machine uses either steam or a gas-fired burner as the energy source and utilizes endothermic evaporation to provide refrigeration to an external process fluid, usually chilled water. In the United States, absorption chillers are used in regions where the cost of electricity is high relative to natural gas. Absorption chillers are also used in applications where steam is readily available or in areas where seasonal load peaks cause utilities to subsidize gas cooling. This paper will describe the history of absorption, the basic absorption refrigeration cycle and some advanced high efficiency cycles. Practical applications of absorption refrigeration to commercial end uses will also be discussed.

  2. Catalytic hydrodechlorination of CFC-114a (CF{sub 3}-CFCl{sub 2}) over palladium single crystals

    SciTech Connect (OSTI)

    Gerken, C.A.; Rupprechter, G.; Ribeiro, F.H.; Somorjai, G.A.

    1997-12-31

    As the chlorofluorocarbons (CFC`s) are being phased out, their most promising replacements are the hydrofluorocarbons (HFC`s). In particular, CFC-12 (CF{sub 2}Cl{sub 2}), widely used as a refrigerant, for example, is being replaced by HFC-134a CF{sub 3}-CFH{sub 2}. One possible route to HFC-134a is the hydrodechlorination of CFC-114a (CF{sub 3}CFCl{sub 2}) over palladium catalysts. We report results using single crystal palladium catalysts and compare the reactivity of the low Miller index planes and a polycrystalline foil. We correlate these results with parallel UHV surface science experiments. Deuterium isotope studies (D{sub 2} rather than H{sub 2}) will also be presented and discussed. Of particular interest is an observed sample history-dependent inverse isotope effect.

  3. Demonstration of High Efficiency Elastocaloric Cooling with Large Delta- T Using NiTi Wires

    SciTech Connect (OSTI)

    Cui, Jun; Wu, Yiming; Muehlbauer, Jan; Hwang, Yunho; Radermacher, Reinhard; Fackler, Sean; Wuttig, Manfred; Takeuchi, Ichiro

    2012-08-01

    Vapor compression (VC) is by far the most dominant technology for meeting all cooling and refrigeration needs around the world. It is a mature technology with the efficiency of modern compressors approaching the theoretical limit, but its envi-ronmental footprint remains a global problem. VC refrigerants such as hydrochlo-roflurocarbons (HCFCs) and hydrofluorocarbons (HFCs) are a significant source of green house gas (GHG) emissions, and their global warming potential (GWP) is as high as 1000 times that of CO2. It is expected that building space cooling and re-frigeration alone will amount to {approx} 5% of primary energy consumption and {approx}5% of all CO2 emission in U.S. in 2030 . As such, there is an urgent need to develop an al-ternative high-efficiency cooling technology that is affordable and environmentally friendly. Among the proposed candidates, magnetocaloric cooling (MC) is currently received a lot of attention because of its high efficiency. However, MC is inherently expensive because of the requirement of large magnetic field and rare earth materi-als. Here, we demonstrate an entirely new type of solid-state cooling mechanism based on the latent heat of reversible martensitic transformation. We call it elasto-caloric cooling (EC) after the superelastic transformation of austenite it utilizes. The solid-state refrigerant of EC is cost-effective, and it completely eliminates the use of any refrigerants including HCFCs/HFCs. We show that the COP (coefficient of per-formance) of a jugular EC with optimized materials can be as high as > 10 with measured {Delta}T of 17 C.

  4. Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III

    SciTech Connect (OSTI)

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1997-06-01

    The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

  5. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect (OSTI)

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin

  6. Measurement of large strains in ropes using plastic optical fibers

    DOE Patents [OSTI]

    Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David

    2006-02-14

    A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.

  7. Lithium Wall Conditioning And Surface Dust Detection On NSTX

    SciTech Connect (OSTI)

    Skinner, C H; Bell, M G; Friesen, F.Q.L.; Heim, B; Jaworski, M A; Kugel, H; Maingi, R; Rais, B

    2011-05-23

    Lithium evaporation onto NSTX plasma facing components (PFC) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that binding of D atoms to the polycrystalline graphite material of the PFCs is fundamentally changed by lithium - in particular deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real-time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high voltage 3-phase waveform was evaluated for potential application to fusion reactors

  8. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOE Patents [OSTI]

    Keller, R.; Larimer, K.T.

    1998-09-22

    A method is described for producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage. 4 figs.

  9. Bulk ion heating with ICRF waves in tokamaks

    SciTech Connect (OSTI)

    Mantsinen, M. J.; Bilato, R.; Bobkov, V. V.; Kappatou, A.; McDermott, R. M.; Odstrčil, T.; Tardini, G.; Bernert, M.; Dux, R.; Maraschek, M.; Noterdaeme, J.-M.; Ryter, F.; Stober, J.; Nocente, M.; Hellsten, T.; Mantica, P.; Tardocchi, M.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; and others

    2015-12-10

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without {sup 3}He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with {sup 3}He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T{sub i} from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central {sup 3}He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the T{sub i} profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LT{sub i} of about 20, which are unusually large for AUG plasmas. The large changes in the T{sub i} profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the {sup 3}He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.

  10. Heat Flux Calculation and Problem of Flaking of Boron Carbide Coatings on the Faraday Screen of the ICRH Antennas During Tore Supra High Power, Long Pulse Operation

    SciTech Connect (OSTI)

    Corre, Y.; Lipa, M.; Agarici, G.; Basiuk, V.; Colas, L.; Courtois, X.; Dumont, R. J.; Ekedahl, A.; Gardarein, J. L.; Klepper, C Christopher; Martin, V.; Moncada, V.; Portafaix, C.; Rigollet, F.; Tawizgant, R.; Travere, J. M.; Valliez, K.

    2011-01-01

    Reliable and repetitive high power and long pulse tokamak operation is strongly dependant of the ability to secure the Plasma Facing Components (PFCs). In Tore Supra, a network of 7 infrared (IR) video cameras is routinely used to prevent PFCs overheating and damage in selected regions. Real time feedback control and offline analysis are essential for basic protection and understanding of abnormal thermal events. One important limitation detected by the IR real time feed-back loop during high power RF operation (injected power of 9.5 MW over 26 s and 12 MW over 10 s have been achieved respectively in 2006 and 2008) is due to the interaction between fast ions which increase the power flux density and flaking of the boron carbide coatings on the Faraday screen box of the ICRH antennas. An IR-based experimental procedure is proposed in order to detect new flakes during plasma operation. The thermal response of the B4C coating is studied with and without flaking during plasma operation. The experimental heat flux deposited by fast ion losses on the Faraday screen is calculated for high (3.8 T) and low magnetic field (2 T) during high RF power operation (with fundamental hydrogen minority and second harmonic ICRH heating schemes respectively). The paper addresses both thermal science issues applied to machine protection and limitation due to fast ions issues during high RF power, long pulse operation. Safety margin to critical heat flux and number of fatigue cycles under heat load are presented in the paper.

  11. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    SciTech Connect (OSTI)

    Prather, Michael J.; Hsu, Juno; Nicolau, Alex; Veidenbaum, Alex; Smith, Philip Cameron; Bergmann, Dan

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  12. Global warming implications of non-fluorocarbon technologies as CFC replacements

    SciTech Connect (OSTI)

    Fischer, S.K.; Tomlinson, J.J.

    1993-12-31

    Many technologies could be developed for use in place of conventional compression systems for refrigeration and air conditioning. Comparisons of the global warming impacts using TEWI (Total Equivalent Warming Impact) can be used to identify alternatives that have the potential for lower environmental impacts than electric-driven vapor compression systems using HCFCs and HFCs. Some options, such as secondary heat transfer loops in commercial refrigeration systems to reduce refrigerant charge and emission rates, could be useful in reducing the losses of refrigerants to the atmosphere. Use of ammonia instead of a fluorocarbon in a system with a secondary loop offers only a small potential for decreasing TEWI, and this may not warrant the increased complexity and risks of using ammonia in a retail sales environment. A few technologies, such as adsorption heat pumps, have efficiency levels that show reduced TEWI levels compared to conventional and state of the art compression systems, and further development could lead to an even more favorable comparison. Health and safety risks of the alternative technologies and the materials they employ must also be considered.

  13. Lithium As Plasma Facing Component for Magnetic Fusion Research

    SciTech Connect (OSTI)

    Masayuki Ono

    2012-09-10

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main

  14. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 m) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 m) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 C/min up to 900 C, and the samples were annealed at 900 C for 0.5 hour. These procedures were repeated three (for 100 and 200 C samples) and four (for 500 C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 C to 600 C after 1st annealing for the

  15. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Mod

    SciTech Connect (OSTI)

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.; Terry, J. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Reinke, M. L.; Whyte, D.; Collaboration: Alcator C-Mod Team

    2013-05-15

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed

  16. The VTMX 2000 Campaign

    SciTech Connect (OSTI)

    Doran, J C.; Fast, Jerome D.; Horel, John D.

    2002-04-01

    A month-long meteorological field campaign sponsored by the Department of Energy's Environmental Meteorology Program was conducted during October 2000 in the Salt Lake Valley to study vertical transport and mixing (VTMX) processes. The goals of the program are to increase our understanding of these processes, to improve our ability to measure and characterize them, and to incorporate that improved knowledge into conceptual and numerical models that can be used to describe and predict them. The program is currently concentrating on nocturnal stable periods and morning and evening transition periods, and it is further focused on urban areas located in valleys, basins, or other settings affected by nearby elevated terrain. Approximately 75 people participated in the campaign. The campaign featured a wide range of remote sensing and in situ measurements, including those from six radar wind profilers, six sodars, five radio acoustic sounding systems, a Doppler lidar, two aerosol lidars, and a water vapor lidar, as many as 22 rawinsonde soundings per Intensive Observing Period (IOP), and the simultaneous release of up to seven perfluorocarbon tracers. Preliminary results show the existence of strong cold pools forming over the valley center with significant wind shear aloft and intermittent turbulence close to the surface, a heat island over the downtown area at night and areas with substantially cooler temperatures nearby, regions of strong convergence and divergence affected by a narrow jet through a gap in the mountains to the south and flows out of the canyons to the east, and extensive wave activity.

  17. Monitoring cable systems

    SciTech Connect (OSTI)

    Samm, R.; Garcia, F.; Rodenbaugh, T.; Shimshock, J.

    1990-12-01

    The existing underground transmission system in the United States is worth about $5 billion. To optimize the return on that investment and on further investment in the growing system, EPRI has sponsored research to develop periodic and continuous diagnostic procedures and methodologies for evaluating underground cables. By using monitoring results to support maintenance and cable management decisions, utilities will be able to improve maintenance planning, reduce unscheduled outages, increase system reliability, and extend cable life. At the same time, they will be able to operate systems more efficiently and closer to true ratings. The scope of this paper are the following projects: application of dissolved-gas analysis to the periodic monitoring of liquid-filled, paper-wrapped cables (RP7895-1) and also cables insulated with a laminate of cellulose paper, polypropylene film, and cellulose paper, or PPP-insulated cables (RP7910-1); development of a transmission cable diagnostic system based on periodic power factor measurements (RP7910-5); development of an integrated, multifaceted online diagnostic monitoring system known as the Dynamic Rating and Underground Monitoring System (DRUMS) (RP7900); development of a protocol for using perfluorocarbon tracers to locate leaks in high-pressure, liquid-filled cables (RP7905-1); and a long-term cable life evaluation and management project, comprising 10 research areas (RP7914).

  18. Taggants, method for forming a taggant, and a method for detecting an object

    DOE Patents [OSTI]

    Harrup, Mason K.; Stewart, Frederick F.; Stone, Mark L.

    2012-02-28

    A taggant comprising at least one perfluorocarbon compound surrounded by a polyphosphazene compound. The polyphosphazene compound has the chemical structure: ##STR00001## wherein G.sub.1 and G.sub.2 are pendant groups having different polarities, m is an integer greater than or equal to 100, and each of A and B is independently selected from hydrogen, an alkyl, an alkene, an alkoxide, a polyether, a polythioether, a siloxane, and --X(CH.sub.2).sub.nY.sup.1(CH.sub.2)p.sub.1Y.sup.2(CH.sub.2)p.sub.2 . . . Y.sup.i(CH.sub.2)p.sub.iCH.sub.3, where n ranges from 1 to 6, X and Y are independently selected from oxygen, sulfur, selenium, tellurium, and polonium, and p.sub.1 through p.sub.i range from 1 to 6. Cyclic polyphosphazene compounds lacking the A and B groups are also disclosed, as are methods of forming the taggant and of detecting an object.

  19. Midwestern efforts to address climate change

    SciTech Connect (OSTI)

    Daniel Stenberg

    2008-12-15

    Six Midwestern governors and a Canadian premier signed the Midwestern Greenhouse Gas Reduction Accord in November 2007. The governors agreed to begin the process of developing a market-based cap-and-trade program that would reduce GHG emissions (e.g., carbon dioxide, methane, nitrous oxide, hydro-fluorocarbons, perfluorocarbons, and sulfur hexafluoride) to meet reduction targets. Member jurisdictions include Illinois, Iowa, Kansas, Manitoba, Michigan, Minnesota, and Wisconsin. Observer jurisdictions - those who are participating in the program design, but will decide later whether to be full members-include Indiana, Ohio, Ontario, and South Dakota. To date, the advisory group has proposed target ranges for GHG emissions reductions of 15-25% below 2005 levels by 2020 and 60-80% by 2050. The following sectors are currently being considered for the cap-and-trade program: electricity generation and imports (power plants); industrial combustion sources (factories and other industrial facilities); and industrial process sources (to the extent credible measurement and monitoring protocols exist or can be developed prior to inclusion).

  20. Urban Dispersion Program MSG05 Field Study: Summary of Tracer and Meteorological Measurements

    SciTech Connect (OSTI)

    Allwine, K Jerry; Flaherty, Julia E.

    2006-08-09

    The Urban Dispersion Program is a multi-year project, funded by the U.S. Department of Homeland Security, to better understand the flow and dispersion of airborne contaminants through and around the deep street canyons of New York City. The first tracer and meteorological field study was a limited study conducted during March 2005 near the Madison Square Garden in midtown Manhattan. Six safe, inert, gaseous perfluorocarbon tracers were released simultaneously at five street-level locations during two experimental days. In addition to collecting tracer data, meteorological data were also collected. Brookhaven National Laboratory conducted the bulk of the tracer and meteorological field efforts with Pacific Northwest National Laboratory and Stevens Institute of Technology assisting by measuring the vertical profile of winds. The Environmental Protection Agency worked with Brookhaven National Laboratory in accomplishing the personal exposure component of the study. This report presents some results from this analysis. In general, different release locations showed vastly different plume footprints for tracer materials, and the situation was made very complex with upwind and/or crosswind transport of tracer near street-level for the different release locations. Overall wind speeds and directions upwind and over the city were generally constant throughout each of the two experimental periods.

  1. Ventilation Control of Volatile Organic Compounds in New U.S. Homes: Results of a Controlled Field Study in Nine Residential Units

    SciTech Connect (OSTI)

    Willem, Henry; Hult, Erin L.; Hotchi, Toshifumi; Russell, Marion L.; Maddalena, Randy L.; Singer, Brett C.

    2013-01-01

    In order to optimize strategies to remove airborne contaminants in residences, it is necessary to determine how contaminant concentrations respond to changes in the air exchange rate. The impact of air exchange rate on the indoor concentrations of 39 target volatile organic compounds (VOCs) was assessed by measuring air exchange rates and VOC concentrations at three ventilation settings in nine residences. Active sampling methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate corresponding to the VOC measurements at each ventilation setting. The concentration levels and emission rates of the target VOCs varied by as much as two orders of magnitude across sites. Aldehyde and terpene compounds were typically the chemical classes with highest concentrations, followed by alkanes, aromatics, and siloxanes. For each home, VOC concentrations tended to decrease as the air exchange rate was increased, however, measurement uncertainty was significant. The indoor concentration was inversely proportional to air exchange rate for most compounds. For a subset of compounds including formaldehyde, however, the indoor concentration exhibited a non-linear dependence on the timescale for air exchange

  2. Silent discharge plasma for point-of-use abatement of VOC emissions. Final report ESHCOO3(b)

    SciTech Connect (OSTI)

    Coogan, J.J.; Jassal, A.

    1997-02-14

    Los Alamos and SEMATECH have evaluated a silent discharge plasma (SDP) device for point-of-use (POU) control of specific semiconductor VOC emissions at the source. Destruction efficiencies were initially determined at the bench scale using controlled gas mixtures and system performance was measured for simulated emissions containing a variety of volatile organic compounds (including HMDS) and PFCs. Based on this work, a field-pilot unit was designed and tested at a SEMATECH member site using two slip-streams: (1) PGMEA and HMDS gas mixture from lithography tools and the, (2) acetone, PCE and methanol from a wet bench cleaning tool. Based on the pilot test data, CoO estimates for the SDP technology show annual operating expenses (including amortized capital and installation costs, maintenance, and utilities) are $8.3K for a single 250 scfm lithotrack tool. End-of-pipe (EOP) system costs are $33.3K per 1000 scfm as compared to about $22K per 1000 scfm for a typical EOP concentrator/thermal abatement system. LANL does not recommend replacing existing EOP systems with SDP. However SDP could be easily installed in {open_quotes}niche{close_quotes} circumstances for POU control of VOCs from lithotrack tools.

  3. Characterization of local heat fluxes around ICRF antennas on JET

    SciTech Connect (OSTI)

    Campergue, A.-L.; Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A.; Milanesio, D.; Colas, L.; Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  4. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    SciTech Connect (OSTI)

    Ekedahl, Annika Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle

    2015-12-10

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  5. The Impact Of Lithium Wall Coatings On NSTX Discharges And The Engineering Of The Lithium Tokamak eXperiment (LTX)

    SciTech Connect (OSTI)

    R. Majeski, H. Kugel and R. Kaita

    2010-03-18

    Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both Land H- mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500 - 600 oC to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to operate at reactor-relevant temperatures. The engineering of LTX will be discussed.

  6. Influence of plasma surface interactions on tokamak startup

    SciTech Connect (OSTI)

    Goswami, Rajiv [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2013-08-15

    The startup phase of a tokamak is a complex phenomenon involving burnthrough of the low-Z impurities and rampup of I{sub p}, the plasma current. The design considerations of a tokamak are closely connected with the startup modeling. Plasma evolution is analysed using a zero-dimensional model. The particle and energy balance is considered of two subclasses of plasmas which are penetrable by neutral gas, together with another component, neutrals trapped in the wall. The first subclass includes plasmas being penetrated by slow neutrals of (?few eV) temperature. The second includes plasmas being penetrated only by fast neutrals having a temperature comparable to that of the ions. The impact of impurities on energy balance is considered through their generation by ion induced desorption of adsorbed oxygen on the first wall and physical and chemical sputtering of carbon. The paper demonstrates self-consistently that the evolution of initial phase of the discharge is intimately linked to the condition of the plasma facing components (PFCs) and the resultant plasma surface interactions.

  7. Alternative technologies for cooling and refrigeration equipment

    SciTech Connect (OSTI)

    Matchett, J.

    1995-12-01

    Significant national and international attention has focused on the role that chlorofluorocarbons (CFCs) play in stratospheric ozone depletion. The Clean Air Act of 1990 calls for the production of the most harmful CFCs to completely cease by December 31, 1995. This production phaseout affects many CFC-refrigerants which are commonly used in commercial, residential, and industrial cooling processes. The production phaseout of CFCs will require owners of CFC-based refrigeration equipment to make plans to replace their equipment. Many equipment owners find themselves in a {open_quotes}rut{close_quotes}replacing CFCs with another chemical coolant, rather than a new cooling process. Since many of the chemical alternatives are structurally similar to CFCs (i.e., HCFCs, HFCs, and blends) they require minimal changes to current equipment. However, these substances are also believed to affect the global climate. Hence, they may not be the most environmentally sound alternative and probable are subject to other Federal regulations. There are other HVAC/R alternatives which are less environmentally damaging than these chemicals and may actually be more cost-effective and energy efficient and than the {open_quotes}traditional{close_quotes} CFC chemical substitutes. Alternative cooling technologies include absorption systems, desiccant cooling, evaporative cooling, and ammonia vapor compression. These alternative technologies are proven alternatives and are commercially available. Further, significant technological developments in recent years have made these technologies feasible alternatives for applications previously believed to be unacceptable. This paper describes these alternative technologies and the conditions in which they are viable alternatives to CFC-based equipment. Additionally, energy efficiency and life-cycle cost analysis considerations are addressed to provide a more completes analysis of cooling equipment alternatives.

  8. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect (OSTI)

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  9. TEWI Analysis: Its Utility, Its Shortcomings, and Its Results

    SciTech Connect (OSTI)

    Baxter, V.D.; Fischer, S.K.; Sand, J.R.

    1999-09-13

    The past decade has been a challenging time for the refrigeration and air conditioning industry worldwide. Provisions of the Montreal Protocol and its amendments require the phaseout of chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) compounds that have been used extensively as insulating foam blowing agents and refrigerants in refrigeration systems, heat pumps, and air conditioners. In response, hydrofluorocarbon (HFC) compounds were proposed, developed, and are starting to be used as the primary alternatives to CFCs and HCFCs. However, in 1997 under the Kyoto Protocol, industrialized nations have agreed to roll back emissions of HCFCs, carbon dioxide (CO*), and four other greenhouse gases which threaten to cause excessive global warming. The US. Department of Energy and the Alternative Fluorocarbon Environmental Acceptability Study (AFEAS) jointly sponsored research projects to identify the major applications of CFCs, HCFCs, and HFCs and to examine the impacts of these compounds and the energy use of applications employing these compounds on global warming. The five major uses of fluorocarbons based on sales were automobile air conditioning, supermarket refrigeration, unitary heat pumps and air conditioning, chillers for cooling large office buildings, and household refrigeration. Almost all of the refrigerants used in these applications are global warming gases, and if the refrigerant leaks out of the system during operation, is lost during maintenance or is not recovered when the system is scraped, it contributes to global warming. But, it is also true that the energy consumed by refrigeration and air conditioning systems, in the form of electricity or the direct combustion of fossil fuel, results in the release of CO*, the primary cause of atmospheric global warming.

  10. The Climate Change Action Plan: Technical supplement

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This Technical Annex documents the assumptions and parameters used in developing the supporting analysis for the Climate Change Action Plan (the Plan) issued by President Clinton on October 19, 1993. The Annex is intended to meet the needs of independent energy and environmental analysts who wish to better understand the Plan, its analytical underpinnings, and the events that need to transpire for the emissions reductions called for in the Plan to be realized. The Plan documented in this Annex reflects the outcome of a wide-ranging effort by Government agencies and interested members of the public to develop and implement actions that can reduce net greenhouse gas emissions in the year 2000 to their aggregate 1990 level. Based on agency and public input, the Climate Change Mitigation Group, chaired by the White House Office on Environmental Policy, developed the Plan`s content. Many of the actions called for in the Plan are now underway, while others are in advanced planning pending congressional action on the fiscal year 1995 budget. The analysis supporting the Plan represents the results of an interagency effort. The US Department of Energy (DOE) was responsible for the integrated analysis of energy-related options, based on the analysis of individual energy-related options by DOE, the US Environmental Protection Agency (EPA), and the US Department of Transportation (DOT). EPA led in providing analysis for actions related to methane, hydrofluorocarbons, and perfluorocarbons. The US Department of Agriculture (USDA) led the analysis of carbon sequestration actions and cooperated with EPA in the analysis of actions to reduce nitrous oxide emissions.

  11. Innovative techniques for the description of reservoir heterogeneity using tracers. Final report, October 1992--December 1993

    SciTech Connect (OSTI)

    Pope, G.A.; Sepehrnoori, K.; Delshad, M.; Ferreira, L.; Gupta, A.; Maroongroge, V.

    1994-11-01

    This is the final report of a three year research project on the use of tracers for reservoir characterization. The objective of this research was to develop advanced, innovative techniques for the description of reservoir characteristics using both single-well backflow and interwell tracer tests. (1) The authors implemented and validated tracer modeling features in a compositional simulator (UTCOMP). (2) They developed and applied a new single well tracer test for estimating reservoir heterogeneity. (3) They developed and applied a new single well tracer test for estimating reservoir wettability in-situ. (4) They developed a new, simple and efficient method to analyze two well tracer tests based upon type curve matching and illustrated its use with actual field tracer data. (5) They developed a new method for deriving an integrated reservoir description based upon combinatorial optimization schemes. (6) They developed a new, interwell tracer test for reservoir heterogeneity called vertical tracer profiling (VTP) and demonstrated its advantages over conventional interwell tracer testing. (7) They developed a simple and easy analytical method to estimate swept pore volume from interwell tracer data and showed both the theoretical basis for this method and its practical utility. (8) They made numerous enhancements to our compositional reservoir simulator such as including the full permeability tensor, adding faster solvers, improving its speed and robustness and making it easier to use (better I/0) for tracer simulation problems. (9) They applied the enhanced version of UTCOMP to the analysis of interwell tracer data using perfluorocarbons at Elks Hill Naval Petroleum Reserve. All of these accomplishments taken together have significantly improved the state of reservoir tracer technology and have demonstrated that it is a far more powerful and useful tool for quantitative reservoir characterization than previously realized or practiced by the industry.

  12. Side-by-side evaluation of a stressed-skin insulated-core panel house and a conventional stud-frame house. Final report

    SciTech Connect (OSTI)

    Rudd, A.; Chandra, S.

    1994-01-14

    Side-by-side energy testing and monitoring was conducted on two houses in Louisville, KY between January--March 1993. Both houses were identical except that one house was constructed with conventional US 2 by 4 studs and a truss roof while the other house was constructed with stress-skin insulated core panels for the walls and second floor ceiling. Air-tightness testing included fan pressurization by blower door, hour long tracer tests using sulphur hexafluoride, and two-week long time-averaged tests using perfluorocarbon tracers. An average of all the air-tightness test results showed the SSIC panel house to have 22 percent less air infiltration than the frame house. Air-tightness testing resulted in a recommendation that both houses have a fresh air ventilation system installed to provide 0.35 air changes per hour continuously. Thermal insulation quality testing was by infrared imaging. Pressure differential testing resulted in recommendations to use sealed combustion appliances, and to allow for more return air flow from closed rooms. This can be accomplished by separate return ducts or transfer ducts which simply connect closed rooms to the main body with a short duct. The SSIC house UA was lower in both cases. By measurement, co-heating tests showed the SSIC panel house total UA to be 12 percent lower than the frame house. Short-term energy monitoring was also conducted for the two houses. A 17 day period of electric heating and a 14 day period of gas furnace heating was evaluated. Monitoring results showed energy savings for the panel house to be 12 percent during electric heating and 15 percent during gas heating. A comparison of the two monitoring periods showed that the lumped efficiency of the gas furnace and air distribution system for both houses was close to 80 percent. Simple regression models using Typical Meteorological Year weather data gave a preliminary prediction of seasonal energy savings between 14 and 20 percent.

  13. CHALLENGES IN SOURCE TERM MODELING OF DECONTAMINATION AND DECOMMISSIONING WASTES.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.

    2006-08-01

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., ''urban canyons''. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City's (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport models

  14. Prediction of PFC Plasma Fluxes by Improved Edge/Scrape-off-layer Simulations

    SciTech Connect (OSTI)

    Rognlien, T

    2009-02-26

    Large, localized plasma heat exhaust, subsequent inward transport of eroded impurities, and distribution of tritium to walls comprise one of the most critical class of problems for the development of tokamak fusion reactors. The magnitude and temporal duration of the heat fluxes is controlled by two factors: (1) the plasma power coming into the edge from the core, and (2), the physics processes in the edge/scrape-off-layer (SOL) that distribute the power to Plasma Facing Components (PFCs), both in space and in time. Given that the plasma power is largely determined by the fusion power desired, here I address model development needs for item (2), the distribution of power to PFCs, which naturally carries with it the capability for transport of impurities and tritium. Another key issue not addressed here is the impact of edge plasma transport on the plasma pedestal parameters. The nature of plasma transport in the edge/SOL region has long be differentiated from that in the bulk core, initially because of the larger fluctuation amplitudes that are observed, with density fluctuations relative to the time-average sometimes approaching as high as unity in the SOL. More recent measurements have shown addition effects such as strong intermittency, filamentation, toroidal asymmetry, and large flows [1]. These characteristics have a direct impact on plasma energy and particle fluxes to PFCs and on the flow of impurities in the edge. The theory of the edge/SOL is complicated by the steep gradients, multi-dimensional nature of plasma/neutral variations, and as mentioned above, the strong relative fluctuation levels compared to the core region. Furthermore, the strong interaction of the plasma with neutrals and the associated radiative effects for partially ionized plasma are important, Consequently, theoretical models typically need to be, or should be, more complicated, which may be one reason model development has lagged that in the core (funding being another reason

  15. Desalination utilizing clathrate hydrates (LDRD final report).

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy; Greathouse, Jeffery A.; Majzoub, Eric H.

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  16. National Spherical Torus Experiment (NSTX) Torus Design, Fabrication and Assembly

    SciTech Connect (OSTI)

    C. Neumeyer; G. Barnes; J.H. Chrzanowski; P. Heitzenroeder; et al

    1999-11-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio spherical torus (ST) located at Princeton Plasma Physics Laboratory (PPPL). Fabrication, assembly, and initial power tests were completed in February of 1999. The majority of the design and construction efforts were constructed on the Torus system components. The Torus system includes the centerstack assembly, external Poloidal and Toroidal coil systems, vacuum vessel, torus support structure and plasma facing components (PFC's). NSTX's low aspect ratio required that the centerstack be made with the smallest radius possible. This, and the need to bake NSTXs carbon-carbon composite plasma facing components at 350 degrees C, was major drivers in the design of NSTX. The Centerstack Assembly consists of the inner legs of the Toroidal Field (TF) windings, the Ohmic Heating (OH) solenoid and its associated tension cylinder, three inner Poloidal Field (PF) coils, thermal insulation, diagnostics and an Inconel casing which forms the inner wall of the vacuum vessel boundary. It took approximately nine months to complete the assembly of the Centerstack. The tight radial clearances and the extreme length of the major components added complexity to the assembly of the Centerstack components. The vacuum vessel was constructed of 304-stainless steel and required approximately seven months to complete and deliver to the Test Cell. Several of the issues associated with the construction of the vacuum vessel were control of dimensional stability following welding and controlling the permeability of the welds. A great deal of time and effort was devoted to defining the correct weld process and material selection to meet our design requirements. The PFCs will be baked out at 350 degrees C while the vessel is maintained at 150 degrees C. This required care in designing the supports so they can accommodate the high electromagnetic loads resulting from plasma disruptions and the resulting relative thermal expansions

  17. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    SciTech Connect (OSTI)

    James W. Evans

    2012-04-11

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focus of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has

  18. SU-E-J-214: MR Protocol Development to Visualize Sirius MRI Markers in Prostate Brachytherapy Patients for MR-Based Post-Implant Dosimetry

    SciTech Connect (OSTI)

    Lim, T; Wang, J; Frank, S; Stafford, R; Bruno, T; Bathala, T; Mahmood, U; Pugh, T; Ibbott, G; Kudchadker, R

    2015-06-15

    Purpose: The current CT-based post-implant dosimetry allows precise seed localization but limited anatomical delineation. Switching to MR-based post-implant dosimetry is confounded by imprecise seed localization. One approach is to place positive-contrast markers (Sirius) adjacent to the negative-contrast seeds. This patient study aims to assess the utility of a 3D fast spoiled gradient-recalled echo (FSPGR) sequence to visualize Sirius markers for post-implant dosimetry. Methods: MRI images were acquired in prostate implant patients (n=10) on Day 0 (day-of-implant) and Day 30. The post-implant MR protocol consisted of 3D T2-weighted fast-spin-echo (FSE), T2-weighted 2D-FSE (axial) and T1-weighted 2D-FSE (axial/sagittal/coronal). We incorporated a 3D-FSPGR sequence into the post-implant MR protocol to visualize the Sirius markers. Patients were scanned with different number-of-excitations (6, 8, 10), field-of-view (10cm, 14cm, 18cm), slice thickness (1mm, 0.8mm), flip angle (14 degrees, 20 degrees), bandwidth (122.070 Hz/pixel, 325.508 Hz/pixel, 390.625 Hz/pixel), phase encoding steps (160, 192, 224, 256), frequency-encoding direction (right/left, anterior/posterior), echo-time type (minimum-full, out-of-phase), field strength (1.5T, 3T), contrast (with, without), scanner vendor (Siemens, GE), coil (endorectal-coil only, endorectal-and-torso-coil, torsocoil only), endorectal-coil filling (30cc, 50cc) and endorectal-coil filling type (air, perfluorocarbon [PFC]). For post-implant dosimetric evaluation with greater anatomical detail, 3D-FSE images were fused with 3D-FSPGR images. For comparison with CT-based post-implant dosimetry, CT images were fused with 3D-FSPGR images. Results: The 3D-FSPGR sequence facilitated visualization of markers in patients. Marker visualization helped distinguish signal voids as seeds versus needle tracks for more definitive MR-based post-implant dosimetry. On the CT-MR fused images, the distance between the seed on CT to MR images was 3

  19. SMART 3D SUBSURFACE CONTAMINANT CHARACTERIZATION AT THE BGRR DEC OMMISSIONING PROJECT.

    SciTech Connect (OSTI)

    HEISER,J.; KALB,P.; SULLIVAN,T.; MILIAN,L.

    2002-08-04

    The Brookhaven Graphite Research Reactor is currently on an accelerated decommissioning schedule with a completion date projected for 2005. The accelerated schedule combines characterization with removal actions for the various systems and structures. A major project issue involves characterization of the soils beneath contaminated Below Grade Ducts (BGD), the main air ducts connecting the exhaust plenums with the Fan House. The air plenums experienced water intrusion during BGRR operations and after shutdown. The water intrusions were attributed to rainwater leaks into degraded parts of the system, and to internal cooling water system leaks. If the characterization could provide enough information to show that soil contamination surrounding the BGD is either below cleanup guidelines or is very localized and can be ''surgically removed'' at a reasonable cost, the ducts may be decontaminated and left in place. This will provide significant savings compared to breaking up the 170-ft. long concrete duct, shipping the projected 9,000 m{sup 3} of waste off-site and disposing of it in an approved site. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. A state-of-the-art perfluorocarbon tracer (PFT) technology was used to screen the BGD for existing leak pathways and thus focus the characterization on potential contamination ''hot spots.'' Once pathways were identified, the sampling and analysis plan was designed to emphasize the leaking areas of the duct and perform only confirmatory checks in areas shown to be leak-free. A small-footprint Geoprobe{reg_sign} was used obtain core samples and allowed sampling in areas