Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Quantitative infrared analysis of hydrogen fluoride  

SciTech Connect (OSTI)

This work was performed at the Portsmouth Gaseous Diffusion Plant where hydrogen fluoride is produced upon the hydrolysis of UF{sub 6}. This poses a problem for in this setting and a method for determining the mole percent concentration was desired. HF has been considered to be a non-ideal gas for many years. D. F. Smith utilized complex equations in his HF studies in the 1950s. We have evaluated HF behavior as a function of pressure from three different perspectives. (1) Absorbance at 3877 cm{sup -1} as a function of pressure for 100% HF. (2) Absorbance at 3877 cm{sup -1} as a function of increasing partial pressure HF. Total pressure = 300 mm HgA maintained with nitrogen. (3) Absorbance at 3877 cm{sup -1} for constant partial pressure HF. Total pressure is increased to greater than 800 mm HgA with nitrogen. These experiments have shown that at partial pressures up to 35mm HgA, HIF follows the ideal gas law. The absorbance at 3877 cm{sup -1} can be quantitatively analyzed via infrared methods.

Manuta, D.M.

1997-04-01T23:59:59.000Z

2

Thermodynamics of the conversion of calcium and magnesium fluorides to the parent metal oxides and hydrogen fluoride  

SciTech Connect (OSTI)

The authors have used thermodynamic modeling to examine the reaction of calcium fluoride (CaF{sub 2}) and magnesium fluoride (MgF{sub 2}) with water (H{sub 2}O) at elevated temperatures. The calculated, equilibrium composition corresponds to the global free-energy minimum for the system. Optimum, predicted reaction temperatures and reactant mole ratios are reported for the recovery of hydrogen fluoride (HF), a valuable industrial feedstock. Complete conversion of MgF{sub 2} is found at 1,000 C and a ratio of 40 moles of H{sub 2}O per 1 mole of MgF{sub 2}. For CaF{sub 2}, temperatures as high as 1,400 C are required for complete conversion at a corresponding mole ratio of 40 moles of H{sub 2}O per 1 mole of CaF{sub 2}. The authors discuss the presence of minor chemical constituents as well as the stability of various potential container materials for the pyrohydrolysis reactions at elevated temperatures. CaF{sub 2} and MgF{sub 2} slags are available as wastes at former uranium production facilities within the Department of Energy Complex and other facilities regulated by the Nuclear Regulatory Commission. Recovery of HF from these wastes is an example of environmental remediation at such facilities.

West, M.H.; Axler, K.M.

1997-02-01T23:59:59.000Z

3

490 C4H9FS Tetrahydrothiophene - hydrogen fluoride (1/1)  

Science Journals Connector (OSTI)

It contains molecular constants (high-resolution spectroscopic data) of C4H9FS Tetrahydrothiophene - hydrogen fluoride (1/1)

J. Demaison

2011-01-01T23:59:59.000Z

4

Hydrogen Fluoride Capture by Imidazolium Acetate Ionic Liquid  

E-Print Network [OSTI]

Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, I will evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

Chaban, Vitaly

2015-01-01T23:59:59.000Z

5

Role of hydrogen in Ge/HfO2/Al gate stacks subjected to negative bias temperature instability  

E-Print Network [OSTI]

Role of hydrogen in Ge/HfO2/Al gate stacks subjected to negative bias temperature instability N 2007; published online 17 January 2008 This work investigates the role of hydrogen and nitrogen in a Ge. Virtually unchanged interface state density as a function of NBTI indicates no atomic hydrogen release from

Misra, Durgamadhab "Durga"

6

Electrooptic parameters of the hydrogen bridge in B…HF complexes [B=HF, H2O, (CH3)2NCHO  

Science Journals Connector (OSTI)

The density-functional method [B3LYP/6-31++G(d,p)] is used to calculate molecular associates with various enthalpies of formation: HF…HF, H2O…HF, and...

Yukhnevich, G V; Tsoi, O Yu

2007-01-01T23:59:59.000Z

7

The system silver fluoride - hydrogen fluoride - water at zero degrees centigrade and at minus fifteen degrees centigrade  

E-Print Network [OSTI]

samples from the acid&ass titraticna vere filtered J ' through veigbed fritted glass filter oruclbles~ snd washed with 1 . V 0. 01 I nitrio aoid and vator. %e oruoiblee vere then dried in aa, oven eot at 140 for fogr bcnua, plaoed in a vaomsa... . . and Coupons, Xeu Tork (1952) ~ 'I g 16 I l \\ 1 I ( v' 4 o Al Figure 1 AHF-HF-HFO At 0 C, Figure 2 AHP-HP-H2G At -15 G. o b0 ID III IS Cw IS ...

Thomas, Hiram Jack

2012-06-07T23:59:59.000Z

8

Portsmouth DUF6 Conversion Final EIS - Appendix E: Impacts Associated with HF and CaF2 Conversion Product Sale and Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE HF and CaF 2 Conversion Products E-2 Portsmouth DUF 6 Conversion Final EIS HF and CaF 2 Conversion Products E-3 Portsmouth DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE E.1 INTRODUCTION During the conversion of the depleted uranium hexafluoride (DUF 6 ) inventory to depleted uranium oxide, products having some potential for sale to commercial users would be produced. These products would include aqueous hydrogen fluoride (HF) and calcium fluoride (CaF 2 , commonly referred to as fluorspar). These products are routinely used as commercial materials, and an investigation into their potential reuse was done; results are included as part of

9

Paducah DUF6 Conversion Final EIS - Appendix E: Impacts Associated with HF and CaF2 Conversion Product Sale and Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE HF and CaF 2 Conversion Products E-2 Paducah DUF 6 Conversion Final EIS HF and CaF 2 Conversion Products E-3 Paducah DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE E.1 INTRODUCTION During the conversion of the depleted uranium hexafluoride (DUF 6 ) inventory to depleted uranium oxide, products having some potential for sale to commercial users would be produced. These products would include aqueous hydrogen fluoride (HF) and calcium fluoride (CaF 2 , commonly referred to as fluorspar). These products are routinely used as commercial materials, and an investigation into their potential reuse was done; results are included as part of

10

Process for converting magnesium fluoride to calcium fluoride  

DOE Patents [OSTI]

This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

Kreuzmann, A.B.; Palmer, D.A.

1984-12-21T23:59:59.000Z

11

Band offsets of Al{sub 2}O{sub 3} and HfO{sub 2} oxides deposited by atomic layer deposition technique on hydrogenated diamond  

SciTech Connect (OSTI)

High-k oxide insulators (Al{sub 2}O{sub 3} and HfO{sub 2}) have been deposited on a single crystalline hydrogenated diamond (H-diamond) epilayer by an atomic layer deposition technique at temperature as low as 120 Degree-Sign C. Interfacial electronic band structures are characterized by X-ray photoelectron spectroscopy. Based on core-level binding energies and valence band maximum values, valence band offsets are found to be 2.9 {+-} 0.2 and 2.6 {+-} 0.2 eV for Al{sub 2}O{sub 3}/H-diamond and HfO{sub 2}/H-diamond heterojunctions, respectively. Band gaps of the Al{sub 2}O{sub 3} and HfO{sub 2} have been determined to be 7.2 {+-} 0.2 and 5.4 {+-} 0.2 eV by measuring O 1s energy loss spectra, respectively. Both the Al{sub 2}O{sub 3}/H-diamond and HfO{sub 2}/H-diamond heterojunctions are concluded to be type-II staggered band configurations with conduction band offsets of 1.2 {+-} 0.2 and 2.7 {+-} 0.2 eV, respectively.

Liu, J. W.; Liao, M. Y.; Imura, M. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Koide, Y. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Center of Materials Research for Low Carbon Emission, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2012-12-17T23:59:59.000Z

12

Uranium hexafluoride liquid thermal expansion, elusive eutectic with hydrogen fluoride, and very first production using chlorine trifluoride  

SciTech Connect (OSTI)

Three unusual incidents and case histories involving uranium hexafluoride in the enrichment facilities of the USA in the late 1940`s and early 1950`s are presented. The history of the measurements of the thermal expansion of liquids containing fluorine atoms within the molecule is reviewed with special emphasis upon uranium hexafluoride. A comparison is made between fluorinated esters, fluorocarbons, and uranium hexafluoride. The quantitative relationship between the thermal expansion coefficient, a, of liquids and the critical temperature, T{sub c} is presented. Uranium hexafluoride has an a that is very high in a temperature range that is used by laboratory and production workers - much higher than any other liquid measured. This physical property of UF{sub 6} has resulted in accidents involving filling the UF{sub 6} containers too full and then heating with a resulting rupture of the container. Such an incident at a uranium gaseous diffusion plant is presented. Production workers seldom {open_quotes}see{close_quotes} uranium hexafluoride. The movement of UF{sub 6} from one container to another is usually trailed by weight, not sight. Even laboratory scientists seldom {open_quotes}see{close_quotes} solid or liquid UF{sub 6} and this can be a problem at times. This inability to {open_quotes}see{close_quotes} the UF{sub 6}-HF mixtures in the 61.2{degrees}C to 101{degrees}C temperature range caused a delay in the understanding of the phase diagram of UF{sub 6}-HF which has a liquid - liquid immiscible region that made the eutectic composition somewhat elusive. Transparent fluorothene tubes solved the problem both for the UF{sub 6}-HF phase diagram as well as the UF{sub 6}-HF-CIF{sub 3} phase diagram with a miscibility gap starting at 53{degrees}C. The historical background leading to the first use of CIF{sub 3} to produce UF{sub 6} in both the laboratory and plant at K-25 is presented.

Rutledge, G.P. [Central Environmental, Inc., Anchorage, AK (United States)

1991-12-31T23:59:59.000Z

13

Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed reactor system at Building 9212. Draft environmental assessment  

SciTech Connect (OSTI)

The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is Iocated within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The current AHF supply and fluidized-bed reactor systems were designed and constructed more than 40 years ago. Because of their deteriorating condition, the corrosive nature of the materials processed, and the antiquated design philosophy upon which they are based, their long-term reliability cannot be assured. The current AHF supply system cannot mitigate an accidental release of AHF and vents fugitive AHF directly to the atmosphere during operations. the proposed action would reduce the risk of exposing the Y-12 Plant work force, the public, and the environment to an accidental release of AHF and would ensure the continuing ability of the Y-12 Plant to manufacture highly enriched uranium metal and process uranium from retired weapons for storage.

NONE

1995-03-01T23:59:59.000Z

14

Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed chemical processing systems at Building 9212, Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is located within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The proposed replacement system would be based upon modern design criteria and safety analyses. The replacement AHF supply and distribution system equipment would be located on the existing Dock 8/8A at Building 9212. Utilities would be extended to the dock to service the process equipment. The following process equipment modules would be prefabricated for installation at the modified dock: an AHF cylinder enclosure, an AHF supply manifold and vaporizer module, an AHF sump tank and transfer skid, and an AHF supply off-gas scrubber assembly module. The fluidized-bed reactor system would be constructed in an area adjacent to the existing system in Building 9212. The replacement equipment would consist of a new reduction fluidized-bed reactor, a hydrofluorination fluidized-bed reactor, and associated air emission control equipment. The no-action alternative, which is the continued operation of the existing AHF supply and fluidized-bed reactor systems, was also evaluated.

NONE

1995-09-01T23:59:59.000Z

15

The synthesis, characterization and reactivity of high oxidation state nickel fluorides  

SciTech Connect (OSTI)

The research described in this thesis has mainly addressed the challenge of the synthesis of thermodynamically unstable nickel fluorides, which cannot be made by traditional thermal methods. A low-temperature approach towards the synthesis of such transition metal fluorides exploits the greater thermodynamic stability of high oxidation states in anions and involves the use of anhydrous hydrogen fluoride (aHF) as a solvent. The general method consists of combining an aHF soluble starting material (e.g., K{sub 2}NiF{sub 6}) with a Lewis fluoroacid (e.g., BF{sub 3}), which precipitates a neutral polymeric solid state fluoride: 2 K{sup +} + NiF{sub 6}{sup 2{minus}} + BF{sub 3} {r_arrow} NiF{sub 4} + 2 BF{sub 4}{sup {minus}} + 2 K{sup +}. At room temperature, this reaction yields a different structural phase, with composition K{sub x}NiF{sub 3} (x {approx} 0.18). This material has a pseudo-hexagonal tungsten bronze structure (H{sub 0}-K{sub x}NiF{sub 3}), and is an ionic conductor, probably due to K{sup +} ions hosted in the lattice channels. R-NiF{sub 3} is capable of fluorinating a wide range of inorganic and organic substrates. These reactions have probably shed light on the mechanism of the Simons Electrochemical Fluorination (ECF) Process, an important industrial method of fluorinating organic compounds. It has long been speculated that NiF{sub 3} plays a role in the ECF process, which uses nickel electrodes in aHF solvent. K{sub 2}NiF{sub 6} also fluorinates organic compounds in aHF, but interestingly, yields different fluorinated products. The reduction of R-NiF{sub 3} and K{sub 2}NiF{sub 6} during fluorination reactions yields NiF{sub 2}. A method has been developed to regenerate NiF{sub 6}{sup 2{minus}} from NiF{sub 2}.

Chacon, L.C. [Univ. of Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

1997-12-01T23:59:59.000Z

16

Selective etching of high-k HfO{sub 2} films over Si in hydrogen-added fluorocarbon (CF{sub 4}/Ar/H{sub 2} and C{sub 4}F{sub 8}/Ar/H{sub 2}) plasmas  

SciTech Connect (OSTI)

Inductively coupled hydrogen-added fluorocarbon (CF{sub 4}/Ar/H{sub 2} and C{sub 4}F{sub 8}/Ar/H{sub 2}) plasmas were used to etch HfO{sub 2}, which is a promising high-dielectric-constant material for the gate of complementary metal-oxide-semiconductor devices. The etch rates of HfO{sub 2} and Si were drastically changed depending on the additive-H{sub 2} flow rate in C{sub 4}F{sub 8}/Ar/H{sub 2} plasmas. The highly selective etching of HfO{sub 2} over Si was done in the condition with an additive-H{sub 2} flow rate, where the Si surface was covered with the fluorocarbon polymer. The results of x-ray photoelectron spectroscopy indicated that the carbon content of the selectively etched HfO{sub 2} surface was extremely low compared with the preetched surface contaminated by adventitious hydrocarbon in atmosphere. In the gas phase of the C{sub 4}F{sub 8}/Ar/H{sub 2} plasmas, Hf hydrocarbide molecules such as metal-organic compounds and Hf hydrofluoride were detected by a quadrupole mass analyzer. These findings indicate that the fluorine species, carbon, and hydrogen can work to etch HfO{sub 2} and that the carbon species also plays an important role in selective etching of HfO{sub 2} over Si.

Takahashi, Kazuo; Ono, Kouichi [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

2006-05-15T23:59:59.000Z

17

Hydrogen  

Science Journals Connector (OSTI)

Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Today’s energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solut...

2009-01-01T23:59:59.000Z

18

Synthesis, structure, and reactivity of high oxidation state silver fluorides and related compounds  

SciTech Connect (OSTI)

This thesis has been largely concerned with defining the oxidizing power of Ag(III) and Ag(II) in anhydrous hydrogen fluoride (aHF) solution. Emphasis was on cationic species, since in a cation the electronegativity of a given oxidation state is greatest. Cationic Ag(III) solv has a short half life at ordinary temperatures, oxidizing the solvent to elemental fluorine with formation of Ag(II). Salts of such a cation have not yet been preparable, but solutions which must contain such a species have proved to be effective and powerful oxidizers. In presence of PtF{sub 6}{sup {minus}}, RuF{sub 6}{sup {minus}}, or RhF{sub 6}{sup {minus}}, Ag(III) solv effectively oxidizes the anions to release the neutral hexafluorides. Such reactivity ranks cationic Ag(III) as the most powerfully oxidizing chemical agent known as far. Unlike its trivalent relative Ag (II) solv is thermodynamically stable in acid aHF. Nevertheless, it oxidizes IrF{sub 6}{sup {minus}} to IrF{sub 6} at room temperature, placing its oxidizing potential not more than 2 eV below that of cationic Ag(III). Range of Ag{sup 2+} (MF{sub 6}{sup {minus}}){sub 2} salts attainable in aHF has been explored. An anion must be stable with respect to electron loss to Ag{sup 2+}. The anion must also be a poor F{sup {minus}} donor; otherwise, either AgF{sup +} salts or AgF{sub 2} are generated.

Lucier, G.M.

1995-05-01T23:59:59.000Z

19

E-Print Network 3.0 - alkali metals phase Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: , calcium hypochlorite, hydrogen fluoride (HF) Ammonium Nitrate acids, metal powders, flammable liquids... , sodium carbide, turpentine, finely divided metals...

20

E-Print Network 3.0 - alkali metal dimers Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: , calcium hypochlorite, hydrogen fluoride (HF) Ammonium Nitrate acids, metal powders, flammable liquids... , sodium carbide, turpentine, finely divided metals...

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Magnesium fluoride recovery method  

DOE Patents [OSTI]

A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

Gay, Richard L. (Canoga Park, CA); McKenzie, Donald E. (Woodland Hills, CA)

1989-01-01T23:59:59.000Z

22

www.eurofluor.org CTEF Comit Technique Europen du Fluor Comit Technique Europen du Fluor  

E-Print Network [OSTI]

Fluor Working group Storage, Transportation and Safety Guidelines in case of a Hydrogen Fluoride of HF Exposure Page 2 of 20 pages PREFACE Hydrogen fluoride (HF) is essential for chemical industry and therefore, there is a need for HF to be produced, transported, stored and used. HF is primarily

Saskatchewan, University of

23

New Coordination Compounds of Cd(AsF6)2 with HF and XeF2  

Science Journals Connector (OSTI)

New Coordination Compounds of Cd(AsF6)2 with HF and XeF2 ... The total fluoride content (Ftotal-) was determined after complete decomposition of the sample by fusion with KNaCO3. ... Raman spectra of the powdered samples in sealed quartz capillaries were recorded on a Renishaw Raman Imaging Microscope System 1000 by use of the 632.8 nm exciting line of a He?Ne laser. ...

Gašper Tav?ar; Primož Benki?; Boris Žemva

2004-01-21T23:59:59.000Z

24

Nuclear spin relaxation in a vinylidene fluoride and trifluoroethylene copolymer (70/30).  

E-Print Network [OSTI]

583 Nuclear spin relaxation in a vinylidene fluoride and trifluoroethylene copolymer (70/30). II de la dispersion « unidimension- nelle » caractéristique en 03C9-1/2 de (T1)-1 et de (T103C1)-1; un orientations dans les chaînes. Abstract. 2014 Measurements of the hydrogen and fluorine nuclear spin

Boyer, Edmond

25

Methods of using ionic liquids having a fluoride anion as solvents  

DOE Patents [OSTI]

A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

Pagoria, Philip (Livermore, CA); Maiti, Amitesh (San Ramon, CA); Gash, Alexander (Brentwood, CA); Han, Thomas Yong (Pleasanton, CA); Orme, Christine (Oakland, CA); Fried, Laurence (Livermore, CA)

2011-12-06T23:59:59.000Z

26

Calculations of Hf -electron affinity and  

E-Print Network [OSTI]

Calculations of Hf - electron affinity and photodetachment partial cross sections Lin Pan. PHYS. B 2009 #12;Calculations of Hf - electron affinity and photodetachment partial cross sections 2 1 the replacements, the subshells that are not occupied in #12;Calculations of Hf - electron affinity

Beck, Donald R.

27

Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)  

SciTech Connect (OSTI)

The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D. [Dept. of Engineering Physics, Univ.of Wisconsin - Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

2012-07-01T23:59:59.000Z

28

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Presentation...

29

Mechanistic investigation of vinylic carbonfluorine bond activation of perfluorinated cycloalkenes using Cp*2ZrH2 and Cp*2ZrHF  

E-Print Network [OSTI]

using Cp*2ZrH2 and Cp*2ZrHF Bradley M. Kraft a , Eric Clot b , Odile Eisenstein b , William W behaves similarly [4]. In contrast, Cp*Rh(PMe3)H2 reacts with C6F6 by way of an SNAr2 attack by its conjugate base to give Cp*Rh(PMe3)(C6F5)H and fluoride ion, resulting in an autocatalytic reaction [5]. Cp

Jones, William D.

30

WAVE-DRIVEN SURFACE FROM HF RADAR  

E-Print Network [OSTI]

experiments using the University of Miami's Ocean Surface Current Radar (OSCR) (Shay et al., 1995, 1997 to the internal wave signals. Observations The HF radar system mapped the coastal ocean currents over a 30 Ã? 45 kmFEATURE INTERNAL CURRENTS WAVE-DRIVEN SURFACE FROM HF RADAR By Lynn K. Shay Observations from

Miami, University of

31

Current status of fluoride volatility method development  

SciTech Connect (OSTI)

The Fluoride Volatility Method is based on a separation process, which comes out from the specific property of uranium, neptunium and plutonium to form volatile hexafluorides whereas most of fission products (mainly lanthanides) and higher transplutonium elements (americium, curium) present in irradiated fuel form nonvolatile tri-fluorides. Fluoride Volatility Method itself is based on direct fluorination of the spent fuel, but before the fluorination step, the removal of cladding material and subsequent transformation of the fuel into a powdered form with a suitable grain size have to be done. The fluorination is made with fluorine gas in a flame fluorination reactor, where the volatile fluorides (mostly UF{sub 6}) are separated from the non-volatile ones (trivalent minor actinides and majority of fission products). The subsequent operations necessary for partitioning of volatile fluorides are the condensation and evaporation of volatile fluorides, the thermal decomposition of PuF{sub 6} and the finally distillation and sorption used for the purification of uranium product. The Fluoride Volatility Method is considered to be a promising advanced pyrochemical reprocessing technology, which can mainly be used for the reprocessing of oxide spent fuels coming from future GEN IV fast reactors.

Uhlir, J.; Marecek, M.; Skarohlid, J. [UJV - Nuclear Research Institute, Research Centre Rez, CZ-250 68 Husinec - Rez 130 (Czech Republic)

2013-07-01T23:59:59.000Z

32

Sulfuryl fluoride in the global atmosphere  

E-Print Network [OSTI]

The first calibrated high-frequency, high-precision, in situ atmospheric and archived air measurements of the fumigant sulfuryl fluoride (SO[subscript 2]F[subscript 2]) have been made as part of the Advanced Global Atmospheric ...

Muhle, J.

33

Method for fluorination of actinide fluorides and oxyfluorides using O/sub 2/F/sub 2/  

DOE Patents [OSTI]

The present invention relates generally to methods of fluorination and more particularly to the use of O/sub 2/F/sub 2/ for the preparation of actinide hexafluorides, and for the extraction of deposited actinides and fluorides and oxyfluorides thereof from reaction vessels. The experiments set forth hereinabove demonstrate that the room temperature or below use of O/sub 2/F/sub 2/ will be highly beneficial for the preparation of pure actinide hexafluorides from their respective tetrafluorides without traces of HF being present as occurs using other fluorinating agents: and decontamination of equipment previously exposed to actinides: e.g., walls, feed lines, etc.

Eller, P.G.; Malm, J.G.; Penneman, R.A.

1984-08-01T23:59:59.000Z

34

BAND STRUCTURE AND OPTICAL PROPERTIES OF MAGNESIUM FLUORIDE  

E-Print Network [OSTI]

595 BAND STRUCTURE AND OPTICAL PROPERTIES OF MAGNESIUM FLUORIDE C. JOUANIN, J. P. ALBERT and C'autres transitions expéri- mentales. Abstract. 2014 The electronic band structure of magnesium fluoride is calculated, only some qualitative investigations exist for the calcium and magnesium fluorides [1, 2]. This lack

Paris-Sud XI, Université de

35

DECONTAMINATION OF PLUTONIUM FOR FLUORIDE AND CHLORIDE DURING OXALATE PRECIPITATION, FILTRATION AND CALCINATION PROCESSES  

SciTech Connect (OSTI)

Due to analytical limitations for the determination of fluoride (F) and chloride (Cl) in a previous anion exchange study, an additional study of the decontamination of Pu from F and Cl by oxalate precipitation, filtration and calcination was performed. Anion product solution from the previous impurity study was precipitated as an oxalate, filtered, and calcined to produce an oxide for analysis by pyrohydrolysis for total Cl and F. Analysis of samples from this experiment achieved the purity specification for Cl and F for the proposed AFS-2 process. Decontamination factors (DF's) for the overall process (including anion exchange) achieved a DF of {approx}5000 for F and a DF of {approx}100 for Cl. Similar experiments where both HF and HCl were spiked into the anion product solution to a {approx}5000 {micro}g /g Pu concentration showed a DF of 5 for F and a DF of 35 for Cl across the combined precipitation-filtration-calcination process steps.

Kyser, E.

2012-07-25T23:59:59.000Z

36

Hydrogen penetration into silicon during wet-chemical etching  

Science Journals Connector (OSTI)

Hydrogen incorporation during wet-chemical etching into p-type silicon was studied by CV measurements. Etching rates between 0.08 and 0.5 µm/s were generated by different ratios of HF:HNO3:CH3COOH solutions. CV measurements ... Keywords: Schottky diodes, hydrogen, silicon, wet chemical etching

J. Weber; S. Knack; O. V. Feklisova; N. A. Yarykin; E. B. Yakimov

2003-05-01T23:59:59.000Z

37

Florida Hydrogen Initiative  

SciTech Connect (OSTI)

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

38

Energy parameters and stability of the discharge in a nonchain, self-sustained-discharge-pumped HF laser  

SciTech Connect (OSTI)

The generation and discharge are studied in a nonchain HF laser operating on mixtures of SF{sub 6} with hydrogen and hydrocarbons. The specific output energy of the laser is 8.8 J L{sup -1} (73 J L{sup -1} atm{sup -1}) and the total lasing efficiency is 5.5%. It is shown that the formation and maintaining of a volume discharge in self-sustained-discharge-pumped HF lasers with a large content of electronegative gases is caused by the accumulation of the volume discharge of negative ions in conducting regions. (letters)

Tarasenko, Viktor F; Orlovskii, Viktor M; Panchenko, Aleksei N [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

2001-12-31T23:59:59.000Z

39

Hydrogen Highways  

E-Print Network [OSTI]

adequate on-board hydrogen storage is essential, and remainsjustify their costs. Hydrogen storage remains an importantto 10,000 psi, liquid hydrogen storage, and other solid and

Lipman, Timothy

2005-01-01T23:59:59.000Z

40

Acidizing of Sandstone Reservoirs Using HF and Organic Acids  

E-Print Network [OSTI]

Mud acid, which is composed of HCl and HF, is commonly used to remove the formation damage in sandstone reservoirs. However, many problems are associated with HCl, especially at high temperatures. Formic-HF acids have served as an alternative...

Yang, Fei

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Stellar (n,?) cross sections of Hf174 and radioactive Hf182  

Science Journals Connector (OSTI)

The stellar neutron capture cross sections of Hf174 and the radioactive isotope Hf182 (t1/2=8.9×106 yr) have been measured for the first time at kT=25 keV by means of the activation technique. These isotopes originate from different stellar scenarios, Hf174 from the p-process by a series of photodisintegration reactions of heavier seed nuclei, and Hf182 from the s-process in asymptotic giant branch stars as well as from the r-process in supernovae or neutron star mergers. Both activation measurements were carried out at the Karlsruhe Van de Graaff accelerator using the Li7(p,n)Be7 reaction for simulating a Maxwellian neutron spectrum corresponding to a thermal energy of kT=25 keV. The Maxwellian averaged cross sections (MACS) extrapolated to the common s-process temperatures at kT=30 keV yield ???30=983±46 and 141±8 mb for Hf174 and Hf182, respectively.

C. Vockenhuber; I. Dillmann; M. Heil; F. Käppeler; N. Winckler; W. Kutschera; A. Wallner; M. Bichler; S. Dababneh; S. Bisterzo; R. Gallino

2007-01-12T23:59:59.000Z

42

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network [OSTI]

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

43

Hydrogen Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

44

Eye Cancer Incidence in U.S. States and Access to Fluoridated Water  

Science Journals Connector (OSTI)

...S. States and Access to Fluoridated Water Gary G. Schwartz 1 2 * * Corresponding...of the population receiving fluoridated water; that is, higher rates were found in...inversely with the availability of fluoridated water. Materials and Methods Uveal melanoma...

Gary G. Schwartz

2014-09-01T23:59:59.000Z

45

Examination of Liquid Fluoride Salt Heat Transfer  

SciTech Connect (OSTI)

The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

Yoder Jr, Graydon L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

46

Hydrogen’s Potential  

Science Journals Connector (OSTI)

Estimates of future demand for non-fossil produced hydrogen and of its potential are oriented toward ... to the environment as the present fossil energy economy [10.4, 10.9].

J. Nitsch; C. Voigt

1988-01-01T23:59:59.000Z

47

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

48

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

49

Scintillation of rare earth doped fluoride nanoparticles  

SciTech Connect (OSTI)

The scintillation response of rare earth (RE) doped core/undoped (multi-)shell fluoride nanoparticles was investigated under x-ray and alpha particle irradiation. A significant enhancement of the scintillation response was observed with increasing shells due: (i) to the passivation of surface quenching defects together with the activation of the REs on the surface of the core nanoparticle after the growth of a shell, and (ii) to the increase of the volume of the nanoparticles. These results are expected to reflect a general aspect of the scintillation process in nanoparticles, and to impact radiation sensing technologies that make use of nanoparticles.

Jacobsohn, L. G.; McPherson, C. L.; Sprinkle, K. B.; Ballato, J. [Center for Optical Materials Science and Engineering Technologies (COMSET), and School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Yukihara, E. G. [Physics Department, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States); DeVol, T. A. [Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634-0905 (United States)

2011-09-12T23:59:59.000Z

50

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

51

Corrosion Behavior of Copper Thin Films in Organic HF-Containing Cleaning Solution for Semiconductor Applications  

SciTech Connect (OSTI)

The corrosion behavior of electrochemically deposited copper thin films in deaerated and non-deaerated commercial cleaning solutions containing HF was investigated. Potentiodynamic polarization experiments were carried out to determine active, active-passive, passive, and transpassive regions. Corrosion rates were calculated from Tafel slopes. The addition of hydrogen peroxide to the solution and its influence on corrosion was also investigated by employing inductively coupled plasma-mass spectroscopy (ICP-MS) and X-ray photoelectron spectroscopy (XPS). The ICP-MS and potentiodynamic methods yielded comparable Cu dissolution rates. Surface analysis using atomic force microscopy and scanning electron microscopy, performed before and after the cleaning solution treatment, did not reveal any indication of pitting corrosion. The presence of hydrogen peroxide in the cleaning solution led to more than an order of magnitude suppression of copper dissolution rate. We ascribe this phenomenon to the formation of interfacial CuO detected by XPS on the wafer surface that dissolves at a slower rate in dilute HF.

Nabil G. Mistkawi,a,b Makarem A. Hussein,b Malgorzata Ziomek-Moroz,c and

2009-11-13T23:59:59.000Z

52

C15 intermetallic compounds HfV{sub 2}+Nb  

SciTech Connect (OSTI)

Phase fields and equilibria in the Hf-V-Nb system were determined using a combination-of SEM, EDS and x-ray diffraction. The structural stability of the C15 HfV{sub 2+}Nb was studied by x-ray diffraction and specific heat measurements. The elastic constants of C15 HfV{sub 2+}Nb were measured by the resonant ultrasound spectroscopy technique. First-principle quantum mechanical calculations based on the local-density-functional theory have been employed to study the total energy and electronic structure of C15 HfV{sub 2}, which can be used to understand the physical and metallurgical properties of the C15 intermetallics HfV{sub 2+}Nb.

Chu, F.; Chen, S.P.; Mitchell, T.E. [Los Alamos National Lab., NM (United States); Pope, D.P. [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering; Liu, C.T. [Oak Ridge National Lab., TN (United States)

1994-12-31T23:59:59.000Z

53

Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies  

SciTech Connect (OSTI)

This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

2011-09-28T23:59:59.000Z

54

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

55

Arsenic and fluoride in the groundwater of Mexico  

Science Journals Connector (OSTI)

Concentrations of arsenic and fluoride above Mexican drinking water standards have been detected in aquifers of various areas of Mexico. This contamination has been found to be mainly caused by natural sources...

M. A. Armienta; N. Segovia

2008-08-01T23:59:59.000Z

56

Characterization of double walled carbon nanotubes-polyvinylidene fluoride nanocomposites  

E-Print Network [OSTI]

One of the main objectives of this thesis is to disperse double-walled carbon nanotubes (DWNT) in a polyvinylidene fluoride (PVDF) matrix, and to characterize the resulting composite using electrical, thermal, and mechanical characterization...

Almasri, Atheer Mohammad

2007-04-25T23:59:59.000Z

57

Fluorination of amorphous thin-film materials with xenon fluoride  

DOE Patents [OSTI]

A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

Weil, R.B.

1987-05-01T23:59:59.000Z

58

Hydrogen Analysis  

Broader source: Energy.gov [DOE]

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

59

Hydrogen Storage  

Broader source: Energy.gov [DOE]

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

60

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Determination of naphthenic acids in California crudes and refinery waste waters by fluoride ion chemical ionization mass spectrometry  

SciTech Connect (OSTI)

A method based on negative ion chemical ionization mass spectrometry using fluoride (F/sup -/) ions produced from NF/sub 3/ reagent gas has been applied to the analysis of naphthenic acids in California crude oils and refinery waste waters. Since complex mixtures of naphthenic acids cannot be separated into individual components, only the determination of relative distribution of acids classified by the hydrogen deficiency was possible. The identities and relative distribution of paraffinic and mono-, di-, tri, and higher polycyclic acids were obtained from the intensities of the carboxylate (RCOO/sup -/) ions.

Dzidic, I.; Somerville, A.C.; Raia, J.C.; Hart, H.V.

1988-07-01T23:59:59.000Z

62

Hydrogen Cryomagnetics  

E-Print Network [OSTI]

% cryogenics (inc. MRI) 29% pressurisation and purging 11%controlled atmospheres (inc. breathing) 6% 4     Figure 5. Simplified price-cost, supply-demand relationship that is central to the helium market model developed during the Helium Resources... of hydrogen large amounts of hydrogen must be available for liquefaction. This poses problems for the production of liquid hydrogen via intermittent wind energy and via microwave plasma reactors that are not scalable as a result of low hydrogen production...

Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

2014-01-01T23:59:59.000Z

63

Storing Hydrogen, by Enhancing Diamond Powder Properties under Hydrogen Plasma with CaF2 and KF for Use in Fuel Cells  

Science Journals Connector (OSTI)

A fuel cell is like a battery that instead of using electricity to recharge itself it uses hydrogen. In the fuel cell industry one of the main problems is storing hydrogen in a safe way and extracting it economically. Gaseous hydrogen requires high pressures which could be very dangerous in case of a collision. The success of hydrogen use depends largely on the development of an efficient storage and release method. In an effort to develop a better hydrogen storage system for fuel cells technology this research investigates the use of 99% pure diamond powder for storing hydrogen. Mixing this powder with a calcium fluoride and potassium fluoride compound in its solid form and treating the surface of the powder with hydrogen plasma modifies the surface of the diamond. After some filtration through distilled water and drying the modified diamond is treated with hydrogen. We expect hydrogen to be attracted to the diamond powder surface in higher quantities due to the CaF2 and KF treatment. Due to the large surface area of diamond nanopowder and the electronegative terminal bonds of the fluorine particles on the structure’s surface to the method shows promise in storing high densities of hydrogen.

Franklyn E. Colmenares Ochoa

2006-01-01T23:59:59.000Z

64

Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides  

SciTech Connect (OSTI)

An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

Leon-Escamilla, E.A.

1996-10-17T23:59:59.000Z

65

Hydrogenation apparatus  

DOE Patents [OSTI]

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

66

Theoretical Assessment of 178m2Hf De-Excitation  

SciTech Connect (OSTI)

This document contains a comprehensive literature review in support of the theoretical assessment of the {sup 178m2}Hf de-excitation, as well as a rigorous description of controlled energy release from an isomeric nuclear state.

Hartouni, E P; Chen, M; Descalle, M A; Escher, J E; Loshak, A; Navratil, P; Ormand, W E; Pruet, J; Thompson, I J; Wang, T F

2008-10-06T23:59:59.000Z

67

Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications  

SciTech Connect (OSTI)

Hydrogen Fuel Cells offer the vital solution to the world's socio-political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells, storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure, the surface of the diamond is cleaned of unwanted molecules. Due to fluorine's electro negativity, the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then, the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor, or Prompt Gamma Neutron Activation Analysis, the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable, resistant structure, such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re-use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.

Leal, David A.; Leal-Quiros, E. [Mechanical Engineering, Polytechnic University of Puerto Rico (Puerto Rico); Velez, Angel; Prelas, Mark A.; Gosh, Tushar [University of Missouri-Columbia, Nuclear Science and Engineering Institute (United States)

2006-12-04T23:59:59.000Z

68

Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications  

Science Journals Connector (OSTI)

Hydrogen Fuel Cells offer the vital solution to the world’s socio?political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure the surface of the diamond is cleaned of unwanted molecules. Due to fluorine’s electro negativity the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor or Prompt Gamma Neutron Activation Analysis the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable resistant structure such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re?use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.

David A. Leal; Angel Velez; Mark A. Prelas; Tushar Gosh; E. Leal?Quiros

2006-01-01T23:59:59.000Z

69

Growth of HfO{sub 2} films using an alternate reaction of HfCl{sub 4} and O{sub 2} under atmospheric pressure  

SciTech Connect (OSTI)

HfO{sub 2} films were deposited onto a Si(100) substrate using an alternate reaction of HfCl{sub 4} and O{sub 2} under atmospheric pressure. Self-limiting growth of the HfO{sub 2} was achieved in the range of the growth temperature above 873K. The X-ray diffraction of the HfO{sub 2} films showed a typical diffraction pattern assigned to the monoclinic polycrystalline phase. Residual chloride concentration in HfO{sub 2} films were not higher than 0.1at%. When the growth temperature was 973K, the HfSiO{sub x} is formed in HfO{sub 2} film. This gives effective permittivity value of 9.6 for the HfO{sub 2} film grown at 573K.

Takahashi, Naoyuki [Department of Materials Science and Technology, Faculty of Engineering Shizuoka University, 3-5-1 Johoku, Hamamatu, Shizuoka 432-8561 (Japan)]. E-mail: tntakah@ipc.shizuoka.ac.jp; Nonobe, Shinichi [Department of Materials Science and Technology, Faculty of Engineering Shizuoka University, 3-5-1 Johoku, Hamamatu, Shizuoka 432-8561 (Japan); Nakamura, Takato [Department of Materials Science and Technology, Faculty of Engineering Shizuoka University, 3-5-1 Johoku, Hamamatu, Shizuoka 432-8561 (Japan)

2004-11-01T23:59:59.000Z

70

Kinetic and equilibrium studies of fluoride sorption onto surfactant-modified smectites  

Science Journals Connector (OSTI)

...be found in waste-water from the fluoride chemical...fluoride from drinking water is by liming and the...Sehn, 2008) and electrodialysis (Adhikary et al...fluoride from drinking water. However, the shortcomings...procedures involved in the treatment. Adsorption is also...

S. Gamoudi; N. Frini-Srasra; E. Srasra

71

Inhibition of the ATPase activity of Escherichia coli ATP synthase by magnesium fluoride  

E-Print Network [OSTI]

Inhibition of the ATPase activity of Escherichia coli ATP synthase by magnesium fluoride Zulfiqar activity of Escherichia coli ATP synthase by magnesium fluoride (MgFx) was studied. Wild-type F1-ATPase synthesis mechanism; Magnesium fluoride; ATPase inhibition; Transition state analog 1. Introduction ATP

Zulfiqar Ahmad

72

THE RAMAN SPECTRUM OF MAGNESIUM FLUORIDE By R. S. KRISHNAN and R. S. KATIYAR,  

E-Print Network [OSTI]

627. THE RAMAN SPECTRUM OF MAGNESIUM FLUORIDE By R. S. KRISHNAN and R. S. KATIYAR, Department, NOVEMBRE 1965, I Magnesium fluoride, which occurs in nature as the mineral sellaite, crystallizes spectrum of magnesium fluoride (MgF2) taken with a medium Quartz spectrograph. (b) Its microphotometer

Paris-Sud XI, Université de

73

Growth mechanism difference of sputtered HfO{sub 2} on Ge and on Si  

SciTech Connect (OSTI)

HfO{sub 2} films were deposited by the reactive sputtering on Ge and Si substrates simultaneously, and we found both the interface layer and the HfO{sub 2} film were thinner on Ge substrate than those on Si substrate. A metallic Hf layer has a crucial role for the thickness differences of both interface layer and HfO{sub 2} film, since those thickness differences were observed only when an ultrathin metallic Hf layer was predeposited before the reactive sputtering process. The role of metallic Hf in these phenomena is understandable by assuming the formation of a volatile Hf-Ge-O ternary compound at the early stage of the film growth. This result shows that the HfO{sub 2}/Ge system has an advantage over the HfO{sub 2}/Si system from the viewpoint of further reduction of the gate oxide film thickness.

Kita, Koji; Kyuno, Kentaro; Toriumi, Akira [Department of Materials Science, School of Engineering, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

2004-07-05T23:59:59.000Z

74

Early (4.5 Ga) formation of terrestrial crust: LuHf, 18 thermometry results for Hadean zircons  

E-Print Network [OSTI]

the characterization of 176 Hf/177 Hf initial ratios (Hf ) in Hadean zircons by acquiring a further 116 laser ablationEarly (4.5 Ga) formation of terrestrial crust: Lu­Hf, 18 O, and Ti thermometry results for Hadean Editor: R.W. Carlson Available online 19 February 2008 Abstract Large deviations in Hf(T) from bulk

Harrison, Mark

75

Determination of dynamic fracture parameters for HF?1 steel  

Science Journals Connector (OSTI)

Dynamic fracture parameters have been determined for two heat treatments of HF?1 steel. A gas gun was used for the experiments. Different amounts of fracture damage were produced in HF?1 steel specimens under known impact conditions. The specimens were soft recovered sectioned and polished to reveal any internal microscopic fracture. The fracturecracks were then digitized. The velocities of the 1.15? 1.59? and 2.37?mm?thick impactor disks range from 0.120 to 0.276 km/s. The specimen disks were 3.18? and 6.35?mm thick. An SRI stress wave propagationcomputer program with a brittlefracturemodel was used for calculating the dynamic fracture parameters. A series of Hugoniot experiments was performed for HF?1 steel to determine equation of state input data for the computer program. The Hugoniot elastic limits were 2.2 and 2.4 GPa for the two heat treatments.

Willis Mock Jr.; William H. Holt

1982-01-01T23:59:59.000Z

76

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

77

Viscosity of gaseous ethyl fluoride (HFC-161)  

Science Journals Connector (OSTI)

Abstract The paper describes an improved Maxwell type oscillating-disk viscometer. The experimental system was calibrated by argon, carbon dioxide, nitrogen, hydrogen and verified by nitrogen. The viscosities of gaseous HFC-161 were measured from 293 K to 369 K at pressures from 0.1 MPa up to the saturated vapor pressure. An empirical viscosity equation is proposed to interpolate the present experimental data as a function of density and temperature. The uncertainty of the reported viscosity was estimated to be within 1%.

Shaohua Lv; Xiaoming Zhao; Chuanqi Yao; Wei Wang; Zhikai Guo

2014-01-01T23:59:59.000Z

78

Status of the ADMX and ADMX-HF experiments  

E-Print Network [OSTI]

The Axion Dark Matter eXperiment (ADMX) is in the midst of an upgrade to reduce its system noise temperature. ADMX-HF (High Frequency) is a second platform specifically designed for higher mass axions and will serve as an innovation test-bed. Both will be commissioning in 2013 and taking data shortly thereafter. The principle of the experiment, current experimental limits and the status of the ADMX/ADMX-HF program will be described. R&D on hybrid superconducting cavities will be discussed as one example of an innovation to greatly enhance sensitivity.

Karl van Bibber; Gianpaolo Carosi

2013-04-29T23:59:59.000Z

79

Status of the ADMX and ADMX-HF experiments  

E-Print Network [OSTI]

The Axion Dark Matter eXperiment (ADMX) is in the midst of an upgrade to reduce its system noise temperature. ADMX-HF (High Frequency) is a second platform specifically designed for higher mass axions and will serve as an innovation test-bed. Both will be commissioning in 2013 and taking data shortly thereafter. The principle of the experiment, current experimental limits and the status of the ADMX/ADMX-HF program will be described. R&D on hybrid superconducting cavities will be discussed as one example of an innovation to greatly enhance sensitivity.

van Bibber, Karl

2013-01-01T23:59:59.000Z

80

Fluoride based cathodes and electrolytes for high energy thermal batteries  

SciTech Connect (OSTI)

A research and development program is being conducted at the Saft Advanced Technologies Division in Hunt Valley, MD to double the energy density of a thermal battery. A study of high voltage cathodes to replace iron disulfide is in progress. Single cells are being studied with a lithium anode and either a copper(II) fluoride, silver(II) fluoride, or iron(III) fluoride cathode. Due to the high reactivity of these cathodes, conventional alkali metal chloride and bromide salt electrolytes must be replaced by alkali metal fluoride electrolytes. Parametric studies using design-of-experiments matrices will be performed so that the best cathode for an improved battery design can be selected. Titanium hardware for the design will provide a higher strength to weight ratio with lower emissivity than conventional stainless steel. The battery will consist of two power sections. The goals are battery activation in less than 0.2 s, 88 Wh/kg, 1,385 W/kg, and 179 Wh/L over an environmental temperature range of {minus}40 C to +70 C.

Briscoe, J.D.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydrogen Liquefaction  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Liquid Hydrogen is 0.2% Ortho, 99.8% Para 3 Liquid Supply North America 250+ TPD Capacity Diverse Feedstocks Chlor-Alkali SMR Petro-chem Market...

82

Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogen is an important energy carrier, and when used as a fuel, can be considered as an alternate to the major fossil fuels, coal, crude oil, and natural gas, and their derivatives. It has the potential to b...

Prof. Dr. Robert A. Huggins

2010-01-01T23:59:59.000Z

83

Hydrogen energy  

Science Journals Connector (OSTI)

...use of hydrogen as an energy carrier will depend significantly...its utilization and conversion to electricity/heat...becomes an alternative energy carrier. However, various...effectively with conventional energy conversion technologies. The...

2007-01-01T23:59:59.000Z

84

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

85

Structural studies of magnesium nitride fluorides by powder neutron diffraction  

SciTech Connect (OSTI)

Samples of ternary nitride fluorides, Mg{sub 3}NF{sub 3} and Mg{sub 2}NF have been prepared by solid state reaction of Mg{sub 3}N{sub 2} and MgF{sub 2} at 1323-1423 K and investigated by powder X-ray and powder neutron diffraction techniques. Mg{sub 3}NF{sub 3} is cubic (space group: Pm3m) and has a structure related to rock-salt MgO, but with one cation site vacant. Mg{sub 2}NF is tetragonal (space group: I4{sub 1}/amd) and has an anti-LiFeO{sub 2} related structure. Both compounds are essentially ionic and form structures in which nitride and fluoride anions are crystallographically ordered. The nitride fluorides show temperature independent paramagnetic behaviour between 5 and 300 K. - Graphical abstract: Definitive structures of the ternary magnesium nitride fluorides Mg{sub 3}NF{sub 3} and the lower temperature polymorph of Mg{sub 2}NF have been determined from powder neutron diffraction data. The nitride halides are essentially ionic and exhibit weak temperature independent paramagnetic behaviour. Highlights: Black-Right-Pointing-Pointer Definitive structures of Mg{sub 3}NF{sub 3} and Mg{sub 2}NF were determined by neutron diffraction. Black-Right-Pointing-Pointer Nitride and fluoride anions are crystallographically ordered in both structures. Black-Right-Pointing-Pointer Both compounds exhibit weak, temperature independent paramagnetic behaviour. Black-Right-Pointing-Pointer The compounds are essentially ionic with ionicity increasing with F{sup -} content.

Brogan, Michael A. [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Hughes, Robert W. [WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Smith, Ronald I. [ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Gregory, Duncan H., E-mail: Duncan.Gregory@glasgow.ac.uk [WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

2012-01-15T23:59:59.000Z

86

Effect of Al addition on the microstructure and electronic structure of HfO2 film  

E-Print Network [OSTI]

Effect of Al addition on the microstructure and electronic structure of HfO2 film X. F. Wang investigated the microstructures and electronic structures of a series of hafnium aluminate HfAlO films with Al concentration ranging from 0% to 100%. When the films evolve from pure HfO2 to pure Al2O3 by increasing

Gong, Xingao

87

Hydrogen program overview  

SciTech Connect (OSTI)

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

88

Active Hydrogen  

Science Journals Connector (OSTI)

Dry hydrogen can be activated in an electric discharge if the pressure and voltage are carefully regulated. Active hydrogen reduces metallic sulphides whose heat of formation is 22 000 cal. or less. The active gas is decomposed by 3 cm of well packed glass wool. A quantitative method is given for the determination of active hydrogen. Less of the active gas is formed in a tube coated with stearic acid or phosphoric acid than when no coating is employed. The decay reaction was found to follow the expression for a unimolecular reaction. The rate of decay appears to be independent of the wall surface. The period of half?life at room temperature and 40 mm pressure is 0.2 sec. approximately. The energy of formation of active hydrogen is approximately 18 000 cal. The energy of activation for the decay of the active constituent is approximately 17 800 cal. The properties of active hydrogen are considered in relation to the properties predicted for H3.

A. C. Grubb; A. B. Van Cleave

1935-01-01T23:59:59.000Z

89

Geometry of hydrogen bonds formed by lipid bilayer nitroxide probes : A high frequency pulsed ENDOR/EPR study.  

SciTech Connect (OSTI)

Solvent effects on magnetic parameters of nitroxide spin labels in combination with side-directed spin-labeling EPR methods provide very useful means for elucidating polarity profiles in lipid bilayers and mapping local electrostatic effects in complex biomolecular systems. One major contributor to these solvent effects is the hydrogen bonds that could be formed between the nitroxide moiety and water and/or the available hydroxyl groups. Here, formation of hydrogen bonds between a lipid bilayer spin probe 5-doxyl stearic acid, 5DSA and hydrogen-bond donors has been studied using high-frequency (HF) pulsed ENDOR and EPR. A hydrogen-bonded deuteron was directly detected in HF ENDOR (130 GHz) spectra of 5DSA dissolved in several deuterated alcohols, while the characteristic signal was absent in nonpolar toluene-d{sub 8}. The length of the hydrogen bond, 1.74 {+-} 0.06 {angstrom}, and its geometry were found to be essentially the same for all four alcohols studied, indicating that nearly identical hydrogen bonds have been formed regardless of the solvent dielectric constant. This strengthens a hypothesis that HF EPR spectra are exclusively sensitive to formation of hydrogen bonds and could be used for probing the hydrogen-bond network in complex biomolecular assemblies and lipid bilayers with site-directed spin-labeling methods.

Smirnova, T. I.; Smirnov, A. I.; Pachtchenko, S.; Poluektov, O. G.; Chemistry; North Carolina State Univ.

2007-01-01T23:59:59.000Z

90

Hydrogen Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

91

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

92

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from "http:en.openei.orgwindex.php?titleHydrogen&oldid271963...

93

The Hype About Hydrogen  

E-Print Network [OSTI]

economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

94

Hydrogen and Hydrogen-Storage Materials  

Science Journals Connector (OSTI)

Currently, neutron applications in the field of hydrogen and hydrogen-storage materials represent a large and promising research ... relevant topics from this subject area, including hydrogen bulk properties (con...

Milva Celli; Daniele Colognesi; Marco Zoppi

2009-01-01T23:59:59.000Z

95

Luminescence from Edge Fracture in Shocked Lithium Fluoride Crystals  

SciTech Connect (OSTI)

Light emitted from a [100] lithium fluoride crystal was characterized under shock wave compression to 28GPa followed by complete stress release at the edges. The light was examined using time-gated optical spectrometry and imaging, time-resolved optical emission measurements, and hydrodynamic modeling. The shock arrival at the circumference of the crystal was delayed relative to the center so that the two regions could be studied at different times. The majority of the light emission originated when the shock waves released at the circumference of the crystal. Unlike previously reported results for shocked lithium fluoride, we found that the light spectrum is not strictly broad band, but has spectral lines associated with atomic lithium in addition to a broad band background. Also, the emission spectrum depends strongly on the gas surrounding the sample. Based on our observations, the line emission appears to be related to fracture of the lithium fluoride crystal from the shock wave releasing at the edges. Experimenters frequently utilize lithium fluoride crystals as transparent windows for observing shock compressed samples. Because of the experimental geometries used, the shock wave in such cases often reaches the circumference of the window at nearly the same moment as when it reaches the center of the sample-window interface. Light generated at the circumference could contaminate the measurement at the interface when this light scatters into the observed region. This background light may be reduced or avoided using experimental geometries which delay the arrival of the shock wave at the edges of the crystal.

Turley, W. D. [NSTec; Stevens, G. D. [NSTec; Capelle, G. A. [NSTec; Grover, M. [NSTec; Holtkamp, D. B. [LANL; LaLone, B. M. [NSTec; Veeser, L. R. [NSTec, LANL

2013-04-01T23:59:59.000Z

96

Intrinsic metastability of orthorhombic HfTiO{sub 4} in thin film hafnia-titania  

SciTech Connect (OSTI)

Orthorhombic (o) HfTiO{sub 4} is crystallized when sputter deposited hafnia-titania nanolaminates with ultrathin layers and bilayer (HfO{sub 2}){sub 0.5}(TiO{sub 2}){sub 0.5} composition are annealed between 573 and 1173 K. However, o-HfTiO{sub 4} demixes after annealing at 1273 K, a result not predicted from bulk thermodynamics. X-ray diffraction and Raman microscopy are used here to study structural changes as o-HfTiO{sub 4} demixes upon long-term annealing at 1273 K into Ti-doped monoclinic HfO{sub 2} and Hf-doped rutile TiO{sub 2}. We conclude that o-HfTiO{sub 4} crystallized at low temperature is intrinsically metastable. A space group symmetry analysis shows that demixing can be accomplished by a continuous phase transition chain.

Cisneros-Morales, Massiel Cristina; Aita, Carolyn Rubin [Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201 (United States)

2011-01-31T23:59:59.000Z

97

Comparison of the Ca+HF(DF) and Sr+HF(DF) reaction dynamics Rong Zhang, David J. Rakestraw,a) Kenneth G. McKendrick,b) and Richard N. Zare  

E-Print Network [OSTI]

Comparison of the Ca+HF(DF) and Sr+HF(DF) reaction dynamics Rong Zhang, David J. Rakestraw family, Ca and Sr with rovibrationally selected HF or DF, has been carried out under single-collision conditions. A thermal beam of the alkaline earth atoms, Ca or Sr, is fired into a low-pressure gas of HF

Zare, Richard N.

98

Hydrogen Energy System and Hydrogen Production Methods  

Science Journals Connector (OSTI)

Hydrogen is being considered as a synthetic fuel ... . This paper contains an overview of the hydrogen production methods, those being commercially available today as well...

F. Barbir; T. N. Veziro?lu

1992-01-01T23:59:59.000Z

99

Hydrogen Production from Thermocatalytic Hydrogen Sulfide Decomposition  

Science Journals Connector (OSTI)

Experimental data on hydrogen production from hydrogen sulfide decomposition over various solid catalysts at ... The possibilities given by surface modification by vacuum methods (electron beam evaporation and ma...

O. K. Alexeeva

2002-01-01T23:59:59.000Z

100

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Broader source: Energy.gov [DOE]

Overview of the U.S. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program, including technical targets and research and development needs for hydrogen storage and delivery.

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen Analysis Group  

SciTech Connect (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

102

The Hype About Hydrogen  

E-Print Network [OSTI]

another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

103

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

104

Growth, microstructure and electrical properties of sputter-deposited hafnium oxide (HfO2) thin films grown using HfO2 ceramic target  

SciTech Connect (OSTI)

Hafnium oxide (HfO?) thin films have been made by radio-frequency (rf) magnetron-sputtering onto Si(100) substrates under varying growth temperature (Ts). HfO? ceramic target has been employed for sputtering while varying the Ts from room temperature to 500?C during deposition. The effect of Ts on the growth and microstructure of deposited HfO? films has been studied using grazing incidence x-ray diffraction (GIXRD), X-ray photoelectron spectroscopy (XPS), and high-resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectrometry (EDS). The results indicate that the effect of Ts is significant on the growth, surface and interface structure, morphology and chemical composition of the HfO? films. Structural characterization indicates that the HfO? films grown at Ts<200 ?C are amorphous while films grown at Ts>200 ?C are nanocrystalline. An amorphous-to-crystalline transition occurs at Ts=200 ?C. Nanocrystalline HfO? films crystallized in a monoclinic structure with a (-111) orientation. XPS measurements indicated the high surface-chemical quality and stoichiometric nature of the grown HfO? films. An interface layer (IL) formation occurs due to reaction at the HfO?-Si interface for HfO? films deposited at Ts>200 ?C. The thickness of IL increases with increasing Ts. XPS and EDS at the HfO?-Si cross-section indicate the IL is a (Hf, Si)-O compound. The electrical characterization using capacitance-voltage measurements indicate that the dielectric constant decreases from 25 to 16 with increasing Ts.

Aguirre, B.; Vemuri, R. S.; Zubia, David; Engelhard, Mark H.; Shutthanandan, V.; Kamala Bharathi, K.; Ramana, Chintalapalle V.

2011-01-01T23:59:59.000Z

105

E-Print Network 3.0 - aluminium fluorides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delhi Collection: Biotechnology ; Biology and Medicine 63 The aqueous geochemistry of gallium, germanium, indium and scandium Summary: , fluoride, sulfate and phosphate, and...

106

E-Print Network 3.0 - arsenic fluorides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(F), selenium (Se), uranium (U), and radium... : arsenic, fluoride, nitrate, selenium, uranium, and ... Source: Scanlon, Bridget R. - Bureau of Economic Geology, Department of...

107

Use of GPS network data for HF Doppler measurements interpretation  

E-Print Network [OSTI]

The method of measurement of Doppler frequency shift of ionospheric signal - HF Doppler technique - is one of well-known and widely used methods of ionosphere research. It allows to research various disturbances in the ionosphere. There are some sources of disturbances in the ionosphere. These are geomagnetic storms, solar flashes, metrological effects, atmospheric waves. This method allows to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occur near to the Earth. HF Doppler technique has the high sensitivity to small frequency variations and the high time resolution, but interpretation of results is difficult. In this work we make an attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows to separate ionosphere disturbances of medium scale.

Petrova, Inna R; Latypov, Ruslan R

2014-01-01T23:59:59.000Z

108

CMS HF calorimeter PMTs and Xi(c)+ lifetime measurement  

SciTech Connect (OSTI)

This thesis consists of two parts: In the first part we describe the Photomultiplier Tube (PMT) selection and testing processes for the Hadronic Forward (HF) calorimeter of the CMS, a Large Hadron Collier (LHC) experiment at CERN. We report the evaluation process of the candidate PMTs from three different manufacturers, the complete tests performed on the 2300 Hamamatsu PMTs which will be used in the HF calorimeter, and the details of the PMT Test Station that is in University of Iowa CMS Laboratories. In the second part we report the {Xi}{sub c}{sup +} lifetime measurement from SELEX, the charm hadro-production experiment at Fermilab. Based upon 301 {+-} 31 events from three di.erent decay channels, by using the binned maximum likelihood technique, we observe the lifetime of {Xi}{sub c}{sup +} as 427 {+-} 31 {+-} 13 fs.

Akgun, Ugur; /Iowa U.

2003-12-01T23:59:59.000Z

109

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

110

E-Print Network 3.0 - ammonium hydrogen fluoride Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tetrafluoride 7783-58-6 Hexafluoroacetone 684-16-2 ... Source: Manning, Sturt - Cornell Tree-Ring Laboratory, Cornell University Collection: Environmental Sciences and Ecology 10...

111

Nuclear Hydrogen Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

112

Solvated Electrons in Very Small Clusters of Polar Molecules: (HF)(3)(-): art. no. 143001  

SciTech Connect (OSTI)

A cluster of polar molecules can host an excess electron in at least two ways. First, the excess electron can be tethered to the cluster by its interaction with the cluster?s dipole moment. , Second, the electron can localize inside the cluster, bulk analogs being the hydrated and ammoniated electrons. - While the structural reorganization of the cluster, due to attachment of an excess electron, is typically small for dipole-bound electrons (dbe), it is usually quite significant for''solvated electrons'' (se), since the solvation occurs at the expense of breaking of pre-existing hydrogen bonds. The se structures, however, provide more contact interactions between the polar molecules and the excess electron. For these reasons, it is often assumed that dbe's dominate for small polar clusters, whereas large clusters form se's. Here we show that dbe's and se's coexist in as small a cluster as (HF)3-. The stability of these anions with respect to the neutral cluster results not only from the excess electron binding energy but also from favorable entropic effects, which reflect the greater ''floppiness'' of the anionic structures.

Gutowski, Maciej S. (BATTELLE (PACIFIC NW LAB)); Hall, C (Arizona, University Of); Adamowicz, L (Arizona, University Of); Hendricks, J.H. (Johns Hopkins Univ); De Clercq, Helen (Howard University); Lyapustina, S.A. (Johns Hopkins Univ); Nilles, J.M. (Johns Hopkins Univ); Xu, S.J. (Johns Hopkins Univ); Bowen Jr., K.H. (Johns Hopkins Univ)

2001-12-01T23:59:59.000Z

113

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31...

114

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

115

Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

116

Experimental and theoretical study of the (n,2n) reaction on 174,176Hf isotopes  

Science Journals Connector (OSTI)

Cross sections for the 174Hf(n,2n)173Hf and 176Hf(n,2n)175Hf reactions have been measured on the 5.5-MV Van de Graaff tandem accelerator of National Centre for Scientific Research “Demokritos” in Athens, in the neutron energy region from 8.8 to 11.0 MeV, using the activation technique. An experimental method to account for the contamination of the 176Hf(n,2n) reaction by the 174Hf(n,?) reaction activated by the parasitic neutrons of the beam is presented. Statistical model calculations have also been performed using the nuclear-reaction codes empire-ii and talys. The results and effects of the nuclear input parameters as well as pre-equilibrium emission are discussed in detail.

M. Serris; M. Diakaki; S. Galanopoulos; M. Kokkoris; M. Lamprou; C. T. Papadopoulos; R. Vlastou; P. Demetriou; C. A. Kalfas; A. Lagoyannis

2012-09-07T23:59:59.000Z

117

Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

118

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network [OSTI]

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure)DescriptionMilestone #12;Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

119

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network [OSTI]

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

120

Crystal phase transition of HfO2 films evaporated by plasma-ion-assisted deposition  

Science Journals Connector (OSTI)

HfO2 is a well-known high-refractive-index material for optical interference coatings from the infrared down to the ultraviolet

Wang, Jue; Maier, Robert L; Schreiber, Horst

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Crystal Phase Transition of HfO2 Films Evaporated by Plasma Ion-Assisted Deposition  

Science Journals Connector (OSTI)

HfO2 films were evaluated by spectroscopic ellipsometry, indicating crystal phase transition due to plasma ion momentum transfer during deposition. The film inhomogeneity,...

Wang, Jue; Maier, Robert L; Schreiber, Horst

122

Reduced-temperature processing and consolidation of ultra-refractory Ta4HfC5  

SciTech Connect (OSTI)

TaC, HfC, and WC powders were subjected to high-energy milling and hot pressing to produce Ta4HfC5, a composite of Ta(4)HfC5 + 30 vol.% WC, and a composite of Ta4HfC5 + 50 vol.% WC. Sub-micron powders were examined after four different milling intervals prior to hot pressing. XRD was used to verify proper phase formation. SEM, relative density, and hardness measurements were used to examine the resulting phases. Hot pressed compacts of Ta4HfC5 showed densification as high as 98.6% along with Vickers hardness values of 21.4 GPa. Similarly, Ta4HfC5 + 30 vol.% WC exhibited 99% densification with a Vickers hardness of 22.5 GPa. These levels of densification were achieved at 1500 degrees C, which is lower than any previously reported sintering temperature for Ta4HfC5. Microhardness values measured in this study were higher than those previously reported for Ta4HfC5. The WC additions to Ta4HfC5 were found to improve densification and increase microhardness. (C) 2013 Elsevier Ltd. All rights reserved.

Gaballa, Osama [Ames Laboratory; Cook, B. A. [TRI International; Russell, A. M. [Ames Laboratory

2013-04-26T23:59:59.000Z

123

Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis: Final Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geographically Based Hydrogen Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NREL/TP-540-40373 October 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Prepared under Task No. HF65.8310 Technical Report NREL/TP-540-40373 October 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

124

Anharmonic Three-Phonon Processes in Lithium Fluoride  

Science Journals Connector (OSTI)

The ultrasonic attenuation was measured in lithium fluoride for longitudinal and both transverse waves along the [110] axis at 0.4 and 1.0 Gc/sec from liquid-helium to room temperatures. After subtracting the low-temperature residual attenuation, the anharmonic attenuation of the slow transverse mode was found to vary linearly with frequency and as T3.5 below 30°K. For the fast transverse and the longitudinal modes, the temperature variation is more rapid and not expressible as a single power of temperature. The attenuation of the longitudinal mode showed some dependence on beam intensity. The attenuation of the slow transverse waves at 15°K was found to be somewhat higher than predicted by the Landau-Rumer theory. The strength of three-phonon processes had been deduced by Berman and Brock from the isotope thermal resistance of lithium fluoride. These results refer to phonons of frequencies around 300 Gc/sec. Assuming a linear variation with frequency, the present attenuation values agree to almost within a factor 2 with the values deduced by Berman and Brock at the same temperatures. Velocities of the three modes are given as functions of crystallographic direction.

J. de Klerk and P. G. Klemens

1966-07-15T23:59:59.000Z

125

FCT Hydrogen Production: Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

126

The Transition to Hydrogen  

E-Print Network [OSTI]

above, not all hydrogen production methods are equal inrealize hydrogen’s bene- ?ts fully, production methods thathydrogen vary depending on which primary source produces it and which production method

Ogden, Joan M

2005-01-01T23:59:59.000Z

127

The Hydrogen Economy  

Science Journals Connector (OSTI)

The hydrogen economy is a vision for a future in which hydrogen replaces fossil fuels. There are a variety ... of methods for generating, storing and delivering hydrogen since no single method has yet proven supe...

2009-01-01T23:59:59.000Z

128

Hydrogen storage methods  

Science Journals Connector (OSTI)

Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today’s ...

Andreas Züttel

2004-04-01T23:59:59.000Z

129

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

130

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

Delucchi, Mark

1992-01-01T23:59:59.000Z

131

Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations  

SciTech Connect (OSTI)

Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end of the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary ?-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels. • Fluoride increased kidney injury biomarkers at stages where eGFR was unaltered.

Cárdenas-González, Mariana C.; Del Razo, Luz M. [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); Barrera-Chimal, Jonatan [Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D. F., México (Mexico); Jacobo-Estrada, Tania [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); López-Bayghen, Esther [Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); and others

2013-11-01T23:59:59.000Z

132

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Title The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Publication Type Journal Article Year of Publication 2012 Authors Lux, Simon F., Ivan T. Lucas, Elad Pollak, Stefano Passerini, Martin Winter, and Robert Kostecki Journal Electrochemistry Communications Volume 14 Start Page 47 Issue 1 Pagination 47-50 Date Published 01/2012 Keywords Hydrofluoric acid, LiPF6 degradation, Lithium ion batteries, spectroscopic ellipsometry Abstract Spectroscopic ellipsometry was used to study the time-dependent formation of HF upon the thermal degradation of LiPF6 at 50 °C in a lithium ion battery electrolyte containing ethylene carbonate and diethyl carbonate. The generated HF was monitored by following the etching rate of a 300 nm thick SiO2 layer, grown on both sides of a silicon wafer substrate, as a function of the immersion time in the electrolyte at 50 °C. It was found that the formation of HF starts after 70 h of exposure time and occurs following several different phases. The amount of generated HF was calculated using an empirical formula correlating the etching rate to the temperature. Combining the results of the HF formation with literature data, a simplified mechanism for the formation of the HF involving LiPF6 degradation, and a simplified catalytical reaction pathway of the formed HF and silicon dioxide are proposed to describe the kinetics of HF formation.

133

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

134

Technology: Hydrogen and hydrates  

Science Journals Connector (OSTI)

... . 2249–2258 (2004). US Department of Energy Hydrogen Posture Plan http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/hydrogen_posture_plan.pdf Kuhs, W. F. , Genov, ...

Ferdi Schüth

2005-04-06T23:59:59.000Z

135

Hydrogen Pipeline Working Group  

Broader source: Energy.gov [DOE]

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

136

Hydrogen and fuel taxation.  

E-Print Network [OSTI]

??The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and… (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

137

CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN  

E-Print Network [OSTI]

such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel cells failed unless costs were assumed to descend independent of demand. However, hydrogen vehicles were; Hydrogen as fuel -- Economic aspects; Technological innovations -- Environmental aspects; Climatic changes

138

Comparison of the vacuum-ultraviolet radiation response of HfO{sub 2}/SiO{sub 2}/Si dielectric stacks with SiO{sub 2}/Si  

SciTech Connect (OSTI)

Vacuum ultraviolet (vuv) emitted during plasma processing degrades dielectrics by generating electron-hole pairs. VUV-induced charging of SiO{sub 2}/p-Si and HfO{sub 2}/SiO{sub 2}/p-Si dielectric stacks are compared. For SiO{sub 2}/p-Si, charging is observed for photon energies >15 eV by ionization of dielectric atoms from photoinjected electrons. In HfO{sub 2}/SiO{sub 2}/p-Si, charging is observed for photon >10 eV and is due to ionization by photoinjected electrons and by H{sup +} trapping in the HfO{sub 2}/SiO{sub 2} bulk. Hydrogen appears during annealing at the Si-SiO{sub 2} interface forming Si-H, which, during irradiation, is depassivated by photoinjected electrons. The authors conclude that dielectric charging in thin oxides (<10 nm) occurs more easily in HfO{sub 2}/SiO{sub 2} than in SiO{sub 2}.

Upadhyaya, G. S.; Shohet, J. L. [Plasma Processing and Technology Laboratory, and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2007-02-12T23:59:59.000Z

139

Hydrogen Pipeline Discussion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

140

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

<-- Back to Hydrogen Gateway <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials selection for hydrogen service is needed to support the deployment of hydrogen as a fuel as well as the development of codes and standards for stationary hydrogen use, hydrogen vehicles, refueling stations, and hydrogen transportation. Materials property measurement is needed on deformation, fracture and fatigue of metals in environments relevant to this hydrogen economy infrastructure. The identification of hydrogen-affected material properties such as strength, fracture resistance and fatigue resistance are high priorities to ensure the safe design of load-bearing structures. To support the needs of the hydrogen community, Sandia National

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Finland HF and Esrange MST radar observations of polar mesosphere summer echoes  

E-Print Network [OSTI]

Finland HF and Esrange MST radar observations of polar mesosphere summer echoes Tadahiko Ogawa1 (200x) xx:1­8 Finland HF and Esrange MST radar observations of polar mesosphere summer echoes Tadahiko in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant

Kirkwood, Sheila

142

Interfacial and structural properties of sputtered HfO{sub 2} layers  

SciTech Connect (OSTI)

Magnetron sputtered HfO{sub 2} layers formed on a heated Si substrate were studied by spectroscopic ellipsometer (SE), x-ray diffraction (XRD), Fourier transform infrared (FTIR), and x-ray photoelectron spectroscopy (XPS) depth profiling techniques. The results show that the formation of a SiO{sub x} suboxide layer at the HfO{sub 2}/Si interface is unavoidable. The HfO{sub 2} thickness and suboxide formation are highly affected by the growth parameters such as sputtering power, O{sub 2}/Ar gas ratio during sputtering, sputtering time, and substrate temperature. XRD spectra show that the deposited film has (111) monoclinic phase of HfO{sub 2}, which is also supported by FTIR spectra. The atomic concentration and chemical environment of Si, Hf, and O have been measured as a function of depth starting from the surface of the sample by XPS technique. It shows that HfO{sub 2} layers of a few nanometers are formed at the top surface. Below this thin layer, Si-Si bonds are detected just before the Si suboxide layer, and then the Si substrate is reached during the depth profiling by XPS. It is clearly understood that the highly reactive sputtered Hf atoms consume some of the oxygen atoms from the underlying SiO{sub 2} to form HfO{sub 2}, leaving Si-Si bonds behind.

Aygun, G. [Department of Physics, Izmir Institute of Technology, Urla, TR-35430 Izmir (Turkey); Yildiz, I. [Department of Physics, Middle East Technical University, TR-06531 Ankara (Turkey); Central Laboratory, Middle East Technical University, TR-06531 Ankara (Turkey)

2009-07-01T23:59:59.000Z

143

Ca+HF: The anatomy of a chemical insertion reaction R. L. Jaffe  

E-Print Network [OSTI]

Ca+HF: The anatomy of a chemical insertion reaction R. L. Jaffe NASA Ames Research Center, Moffett theoretical investigation of the gas phase reaction Ca + HF-CaF + H is reported. The overall study involves electronic state of the Ca-F-H system, (b) careful fitting of the computed surface to an analytical form

Zare, Richard N.

144

Electronic Structure of Hf@C28 and Its Ions. 1. SCF Calculations  

Science Journals Connector (OSTI)

Electronic Structure of Hf@C28 and Its Ions. 1. SCF Calculations ... Electronic Structures of C28H4 and Hf@C28H4 and Their Ions. ... Electronic structure calculations, including relativistic core potentials and the spin?orbit interaction, have been carried out on the C28, Pa@C28, and U@C28 species. ...

Debbie Fu-Tai Tuan; Russell M. Pitzer

1995-01-01T23:59:59.000Z

145

Ge interactions on HfO{sub 2} surfaces and kinetically driven patterning of Ge nanocrystals on HfO{sub 2}  

SciTech Connect (OSTI)

Germanium interactions are studied on HfO{sub 2} surfaces, which are prepared through physical vapor deposition (PVD) and by atomic layer deposition. X-ray photoelectron spectroscopy and temperature-programed desorption are used to follow the reactions of germanium on HfO{sub 2}. Germanium chemical vapor deposition at 870 K on HfO{sub 2} produces a GeO{sub x} adhesion layer, followed by growth of semiconducting Ge{sup 0}. PVD of 0.7 ML Ge (accomplished by thermally cracking GeH{sub 4} over a hot filament) also produces an initial GeO{sub x} layer, which is stable up to 800 K. PVD above 2.0 ML deposits semiconducting Ge{sup 0}. Temperature programed desorption experiments of {approx}1.0 ML Ge from HfO{sub 2} at 400-1100 K show GeH{sub 4} desorption below 600 K and GeO desorption above 850 K. These results are compared to Ge on SiO{sub 2} where GeO desorption is seen at 550 K. Exploiting the different reactivity of Ge on HfO{sub 2} and SiO{sub 2} allows a kinetically driven patterning scheme for high-density Ge nanoparticle growth on HfO{sub 2} surfaces that is demonstrated.

Stanley, Scott K.; Joshi, Sachin V.; Banerjee, Sanjay K.; Ekerdt, John G. [Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-0231 (United States); Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712-0240 (United States); Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-0231 (United States)

2006-01-15T23:59:59.000Z

146

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Polyvinylidene Fluoride-Based Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Wensheng He, David Mountz, Tao Zhang, Chris Roger July 17, 2012 2 Outline Background on Arkema's polyvinylidene fluoride (PVDF) blend membrane technology Overview of membrane properties and performance Summary 3 Membrane Technology Polymer Blend * Kynar ® PVDF * Chemical and electrochemical stability * Mechanical strength * Excellent barrier against methanol * Polyelectrolyte * H + conduction and water uptake Flexible Blending Process  PVDF can be compatibilized with a number of polyelectrolytes  Process has been scaled to a pilot line Property Control * Morphology: 10-100s nm domains * Composition can be tailored to minimize methanol permeation, while optimizing

147

Phase selection and transition in Hf-rich hafnia-titania nanolaminates  

SciTech Connect (OSTI)

Hf-rich hafnia-titania nanolaminate films with five HfO{sub 2}-TiO{sub 2} bilayer architectures (0.64 to 0.94 Hf atom fraction) were sputter deposited on unheated fused silica substrates, annealed post-deposition from 573 to 1273 K, and analyzed by x-ray diffraction to study phase selection and transition. Isochronal annealing for 1 h intervals from 573 to 1173 K produces weak crystallization into monoclinic (m) HfO{sub 2} doped with Ti, i.e., m-Hf{sub 1-x}Ti{sub x}O{sub 2}. The amount of Ti incorporated into m-HfO{sub 2} depends upon both architecture and overall stoichiometry, but in all but the coarsest architecture, exceeds the bulk solubility limit of x = 0.05. Initial annealing at 1273 K produces significant crystallization into a biphasic structure, m-Hf{sub 1-x}Ti{sub x}O{sub 2} and orthorhombic (o) HfTiO{sub 4}. From bulk phase equilibrium considerations, o-HfTiO{sub 4} is expected to crystallize under conditions of interfacial bilayer mixing. However, upon further annealing at 1273 K, o-HfTiO{sub 4} proves to be unstable. o-HfTiO{sub 4} demixing inevitably occurs independent of architecture and stoichiometry, resulting in final crystallization products after 96 h at 1273 K that are m-Hf{sub 1-x}Ti{sub x}O{sub 2} with x {approx_equal} 0.05 and TiO{sub 2} doped with Hf. We suggest that o-HfTiO{sub 4} instability arises from a driving force to form domains similar to those found in the low temperature in/commensurate structures of ZrTiO{sub 4}. A detailed crystallographic group-subgroup analysis of the o (Pbcn) {yields} m (P2{sub 1}/c) transition shows that these domains can be represented by an orientation twin in the latter structure and their creation can be achieved by a single step second-order phase transition.

Cisneros-Morales, Massiel Cristina; Rubin Aita, Carolyn

2011-06-15T23:59:59.000Z

148

Crystal structure of Si-doped HfO{sub 2}  

SciTech Connect (OSTI)

Si-doped HfO{sub 2} was prepared by solid state synthesis of the starting oxides. Using Rietveld refinement of high resolution X-ray diffraction patterns, a substitutional limit of Si in HfO{sub 2} was determined as less than 9 at.?%. A second phase was identified as Cristobalite (SiO{sub 2}) rather than HfSiO{sub 4}, the latter of which would be expected from existing SiO{sub 2}-HfO{sub 2} phase diagrams. Crystallographic refinement with increased Si-dopant concentration in monoclinic HfO{sub 2} shows that c/b increases, while ? decreases. The spontaneous strain, which characterizes the ferroelastic distortion of the unit cell, was calculated and shown to decrease with increasing Si substitution.

Zhao, Lili [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); School of Information Science and Technology, Northwest University, Xi'an 710127 (China); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Nelson, Matthew; Fancher, Chris M. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Aldridge, Henry [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Iamsasri, Thanakorn; Forrester, Jennifer S.; Jones, Jacob L., E-mail: jacobjones@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Nishida, Toshikazu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 (United States); Moghaddam, Saeed [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States)

2014-01-21T23:59:59.000Z

149

Hydrogen Energy Technology Geoff Dutton  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

150

Safety Slide 1 Hydrofluoric (HF) Acid Hazards http://www.emsworld.com/web/online/Education/Hydrofluoric-Acid-/5$12949  

E-Print Network [OSTI]

Safety Slide 1 ­ Hydrofluoric (HF) Acid Hazards http://www.emsworld.com/web may be delayed for up to 24 hours, even with dilute solutions. HF burns affect deep tissue layers

Cohen, Robert E.

151

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

152

Hydrogen & Our Energy Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

153

Fluoride Salt-Cooled High-Temperature Reactor Development Roadmap  

SciTech Connect (OSTI)

Fluoride salt-cooled high-temperature reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics and fully passive safety. This paper provides an overview of a technology development pathway for expeditious commercial deployment of first-generation FHRs. The paper describes the principal remaining FHR technology challenges and the development path needed to address the challenges. First-generation FHRs do not appear to require any technology breakthroughs, but will require significant technology development and demonstration. FHRs are currently entering early phase engineering development. As such, the development roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant; the lack of an approved licensing framework; the lack of qualified, salt-compatible structural materials; and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

Holcomb, David Eugene [ORNL] [ORNL; Flanagan, George F [ORNL] [ORNL; Mays, Gary T [ORNL] [ORNL; Pointer, William David [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Yoder Jr, Graydon L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

154

Ytterbium-doped borate fluoride laser crystals and lasers  

DOE Patents [OSTI]

A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

1997-10-14T23:59:59.000Z

155

Photon avalanche up-conversion in holmium doped fluoride glasses  

SciTech Connect (OSTI)

Photon avalanche green up-conversion emission centered at 545 nm has been observed in Ho{sup 3+} doped and Ho{sup 3+}, Tm{sup 3+} co-doped ZrF{sub 4}-based fluoride glasses when excited near 585 nm which is off resonance with any ground state absorption bands of either Ho{sup 3+} or Tm{sup 3+} ions. Detailed spectral measurements and analysis suggest that the 545 nm emission occurs from the {sup 5}S{sub 2},{sup 5}F{sub 4} states of Ho{sup 3+} that are populated by excited state absorption from the {sup 5}I{sub 7} state of Ho{sup 3+}. Strong cross-relaxation that efficiently populates the {sup 5}I{sub 7} state makes the photon avalanche process possible in this system.

Chen, Y.H.; Liu, G.K.; Beitz, J.V. [Argonne National Lab., IL (United States). Chemistry Division; Jie Wang [Shanghai Institute of Optics and Fine Mechanics, Shanghai (China)

1996-08-01T23:59:59.000Z

156

Hydrogen Compatibility of Materials  

Broader source: Energy.gov [DOE]

Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

157

Hydrogen Delivery Liquefaction & Compression  

E-Print Network [OSTI]

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

158

Metallization of fluid hydrogen  

Science Journals Connector (OSTI)

...P. Tunstall Metallization of fluid hydrogen W. J. Nellis 1 A. A. Louis 2 N...The electrical resistivity of liquid hydrogen has been measured at the high dynamic...which structural changes are paramount. hydrogen|metallization of hydrogen|liquid...

1998-01-01T23:59:59.000Z

159

Safetygram #9- Liquid Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

160

Ternary ceramic alloys of Zr-Ce-Hf oxides  

DOE Patents [OSTI]

A ternary ceramic alloy is described which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce[sub x]Hf[sub y]Zr[sub 1[minus]x[minus]y]O[sub 2], is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites. 1 fig.

Becher, P.F.; Funkenbusch, E.F.

1990-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ternary ceramic alloys of ZR-CE-HF oxides  

DOE Patents [OSTI]

A ternary ceramic alloy which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce.sub.x Hf.sub.y Zn.sub.1-x-y O.sub.2, is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites.

Becher, Paul F. (Oak Ridge, TN); Funkenbusch, Eric F. (White Bear Lake, MN)

1990-01-01T23:59:59.000Z

162

Composition for absorbing hydrogen  

DOE Patents [OSTI]

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

163

Hydrogen Storage - Current Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current on-board hydrogen storage approaches involve compressed hydrogen gas tanks, liquid hydrogen tanks, cryogenic compressed hydrogen, metal hydrides,...

164

Gaseous Hydrogen Delivery Breakout - Strategic Directions for...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

165

Electrical properties of MIS capacitor using low temperature electron beam gun--evaporated HfAlO dielectrics  

E-Print Network [OSTI]

Electrical properties of MIS capacitor using low temperature electron beam gun--evaporated Hf of $1.45 nm was achieved in HfAlO films deposited by an electron beam gun evap- orator on unheated p of electron beam gun (EBG) evaporation to deposit high quality HfAlO films close to room temperature

Eisenstein, Gadi

166

Growth and characterization of UHV sputtering HfO2 film by plasma oxidation and low temperature annealing  

Science Journals Connector (OSTI)

Ultra-thin (?4.0 nm) HfO2 films were fabricated by plasma oxidation of sputtered metallic Hf films with post low temperature annealing. Advantage of this fabrication process is that the pre-deposition of Hf metal...

Q. Li; S. J. Wang; W. D. Wang; D. Z. Chi; A. C. H. Huan…

2006-07-01T23:59:59.000Z

167

Epigallocatechin gallate supplementation protects against renal injury induced by fluoride intoxication in rats: Role of Nrf2/HO-1 signaling  

Science Journals Connector (OSTI)

Abstract Fluoride intoxication generates free radicals, causing oxidative stress that plays a critical role in the progression of nephropathy. In the present study, we hypothesized that epigallocatechin gallate (EGCG), found in green tea, protects the kidneys of rats treated with fluoride by preventing oxidative stress, inflammation, and apoptosis. Pretreatment of fluoride-treated rats with EGCG resulted in a significant normalization of creatinine clearance and levels of urea, uric acid, and creatinine. Fluoride intoxication significantly increased renal oxidative stress markers and decreased the levels of renal enzymatic and non-enzymatic antioxidants. In addition, renal NO, TNF-?, IL-6 and NF-?B were also increased in the renal tissue of fluoride-treated rats. Further, EGCG pretreatment produced a significant improvement in renal antioxidant status and reduced lipid peroxidation, protein carbonylation and the levels of inflammatory markers in fluoride-treated kidney. Similarly, mRNA and protein analyses showed that EGCG pretreatment normalized the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in fluoride-treated rat kidney. EGCG also effectively attenuated fluoride-induced renal apoptosis by the up-regulation of anti-apoptotic proteins such as Bcl-2 and down-regulation of Bax, caspase-3, caspase-9 and cytochrome c. Histology and immunohistochemical observations of Kim-1 provided further evidence that EGCG effectively protects the kidney from fluoride-mediated oxidative damage. These results suggest that EGCG ameliorates fluoride-induced oxidative renal injury by activation of the Nrf2/HO-1 pathway.

S. Thangapandiyan; S. Miltonprabu

2014-01-01T23:59:59.000Z

168

Detection of Propane by IR-ATR in a Teflon®-Clad Fluoride Glass Optical Fiber  

Science Journals Connector (OSTI)

The detection of propane with the use of ATR spectroscopy at 3.3 ?m, as the gas diffuses through the Teflon® cladding of a fluoride optical fiber, is reported. A...

Ruddy, V; McCabe, S

1990-01-01T23:59:59.000Z

169

Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks  

Science Journals Connector (OSTI)

In this article, we describe the synthesis of new and ion-selective nanofiltration (NF) membranes using polyvinylidene fluoride (PVDF) nanofibers and hyperbranched polyethylenimine (PEI) as building blocks. Th...

Seong-Jik Park; Ravi Kumar Cheedrala…

2014-01-01T23:59:59.000Z

170

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

171

An Intercomparison of Ground-Based Solar FTIR Measurements of Atmospheric Gases at Eureka, Canada  

Science Journals Connector (OSTI)

The authors report the results of an intercomparison of vertical column amounts of hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N2O), nitric acid (HNO3), methane (CH4), ozone (O3), carbon dioxide (CO2), and nitrogen (N2) ...

C. Paton-Walsh; R. L. Mittermeier; W. Bell; H. Fast; N. B. Jones; A. Meier

2008-11-01T23:59:59.000Z

172

Method for removal of plutonium impurity from americium oxides and fluorides  

DOE Patents [OSTI]

Method for removal of plutonium impurity from americium oxides and fluorides. AmF/sub 4/ is not further oxidized to AmF/sub 6/ by the application of O/sub 2/F at room temperature thereto, while plutonium compounds present in the americium sample are fluorinated to volatile PuF/sub 6/, which can readily be separated therefrom, leaving the purified americium oxides and/or fluorides as the solid tetrafluoride thereof.

FitzPatrick, J.R.; Dunn, J.G.; Avens, L.R.

1987-02-13T23:59:59.000Z

173

Method for removal of plutonium impurity from americium oxides and fluorides  

DOE Patents [OSTI]

Method for removal of plutonium impurity from americium oxides and fluorides. AmF.sub.4 is not further oxidized to AmF.sub.6 by the application of O.sub.2 F at room temperature, while plutonium compounds present in the americium sample are fluorinated to volatile PuF.sub.6, which can readily be separated therefrom, leaving the purified americium oxides and/or fluorides as the solid tetrafluoride.

FitzPatrick, John R. (Los Alamos, NM); Dunn, Jerry G. (Los Alamos, NM); Avens, Larry R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

174

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

175

DOE Hydrogen and Fuel Cells Program: Hydrogen Analysis Resource Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > Hydrogen Analysis Resource Center Printable Version Hydrogen Analysis Resource Center The Hydrogen Analysis Resource Center provides consistent and transparent data that can serve as the basis for hydrogen-related calculations, modeling, and other analytical activities. This new site features the Hydrogen Data Book with data pertinent to hydrogen infrastructure analysis; links to external databases related to

176

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline...

177

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session - Bulk Hydrogen Storage Main ThemesCaveats Bulk...

178

Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...  

Broader source: Energy.gov (indexed) [DOE]

Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

179

NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L. Simpson. (2010) Contact: Thomas Gennett 303-384-6628 Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery Hydrogen Storage...

180

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

182

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

produce hydrogen in a centralized coal based operation for .79kg at the plant gate with carbon sequestration. Develop advanced OTM, HTM, technology, advanced reforming and shift...

183

Resource Assessment for Hydrogen Production: Hydrogen Production...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Administration ERR Estimated Recoverable Reserves FCEV fuel cell electric vehicle GHG greenhouse gas GW gigawatt GWh gigawatt-hour GWdt gigawatt-days thermal H2A Hydrogen...

184

Role of oxygen vacancy in HfO{sub 2}/SiO{sub 2}/Si(100) interfaces  

SciTech Connect (OSTI)

We have investigated the interface states in HfO{sub 2}/SiO{sub 2}/Si(100) systems that were prepared by using the in situ pulsed laser deposition technique. X-ray photoelectron spectroscopy data revealed that when the HfO{sub 2} film thickness exceeds 11 A, the film composition undergoes a systematic change from Hf silicate to oxygen-deficient HfO{sub x<2}. Furthermore, we determined that the evolution of the interface states clearly depends on the oxygen condition applied during the film growth and that the oxygen vacancy is an important parameter for Hf silicate formation.

Cho, Deok-Yong; Oh, S.-J.; Chang, Y.J.; Noh, T.W.; Jung, Ranju; Lee, Jae-Cheol [CSCMR and School of Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); ReCOE and School of Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Samsung Advanced Institute of Technology, Suwon 440-900 (Korea, Republic of)

2006-05-08T23:59:59.000Z

185

Towards forming-free resistive switching in oxygen engineered HfO{sub 2?x}  

SciTech Connect (OSTI)

We have investigated the resistive switching behavior in stoichiometric HfO{sub 2} and oxygen-deficient HfO{sub 2?x} thin films grown on TiN electrodes using reactive molecular beam epitaxy. Oxygen defect states were controlled by the flow of oxygen radicals during thin film growth. Hard X-ray photoelectron spectroscopy confirmed the presence of sub-stoichiometric hafnium oxide and defect states near the Fermi level. The oxygen deficient HfO{sub 2?x} thin films show bipolar switching with an electroforming occurring at low voltages and low operating currents, paving the way for almost forming-free devices for low-power applications.

Sharath, S. U., E-mail: sharath@oxide.tu-darmstadt.de; Kurian, J.; Hildebrandt, E.; Alff, L. [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Strasse 2, 64287 Darmstadt (Germany); Bertaud, T.; Walczyk, C.; Calka, P.; Zaumseil, P.; Sowinska, M.; Walczyk, D. [IHP, Im Technologiepark 25, 15236 Frankfurt Oder (Germany); Gloskovskii, A. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt Oder (Germany); Brandenburgische Technische Universität, Konrad-Zuse-Strasse 1, 03046 Cottbus (Germany)

2014-02-10T23:59:59.000Z

186

Low energy N{sub 2} ion bombardment for removal of (HfO{sub 2}){sub x}(SiON){sub 1-x} in dilute HF  

SciTech Connect (OSTI)

The ion assisted wet removal of (HfO{sub 2}){sub x}(SiON){sub 1-x} high dielectric constant (k) materials and its effect on electrical properties were investigated. Crystallization temperature of (HfO{sub 2}){sub x}(SiON){sub 1-x} increased as the percentage of SiON increased. The crystallized (HfO{sub 2}){sub 0.6}(SiON){sub 0.4} was damaged and turned to an amorphous film via incorporation of N species into the film by N{sub 2} plasma treatment. In addition, the structure of (HfO{sub 2}){sub 0.6}(SiON){sub 0.4} was disintegrated into HfO{sub 2}, SiO(N), and ON after N{sub 2} plasma treatment. N{sub 2} plasmas using low bias power were applied for wet removal of high-k films and the mechanism of the ion assisted wet removal process was explored. When high bias power was applied, the surface of source and drain regions was nitrided via the reaction between N and Si substrates. Feasibility of the low bias power assisted wet removal process was demonstrated for short channel high-k metal oxide semiconductor device fabrication by the smaller shift of threshold voltage, compared to the high bias power assisted wet removal process as well as the wet-etching-only process.

Hwang, Wan Sik; Cho, Byung-Jin; Chan, Daniel S. H.; Yoo, Won Jong [Silicon Nano Device Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, E4A 02-04, Engineering Drive 3, 117576 Singapore (Singapore); SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Mechanical Engineering, Sungkyunkwan University 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

2007-07-15T23:59:59.000Z

187

Hydrogen storage gets new hope  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

188

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

189

Mixed cation phases in sputter deposited HfO{sub 2}-TiO{sub 2} nanolaminates  

SciTech Connect (OSTI)

Nanolaminate HfO{sub 2}-TiO{sub 2} films are grown by reactive sputter deposition on unheated fused SiO{sub 2}, sequentially annealed at 573 to 973 K, and studied by x-ray diffraction. A nanocrystalline structure of orthorhombic (o) HfTiO{sub 4} adjacent to an interface followed by monoclinic (m) Hf{sub 1-x}Ti{sub x}O{sub 2} is identified. m-Hf{sub 1-x}Ti{sub x}O{sub 2}, a metastable phase, is isomorphous with m-HfO{sub 2} and a high pressure phase, m-HfTiO{sub 4}. A Vegard's law analysis shows that the Ti atomic fraction in m-Hf{sub 1-x}Ti{sub x}O{sub 2} is much greater than Ti equilibrium solubility in m-HfO{sub 2}. A space group-subgroup argument proposes that m-Hf{sub 1-x}Ti{sub x}O{sub 2} arises from an o/m-HfTiO{sub 4} second order phase transition to accommodate the larger Hf atom.

Cisneros-Morales, M. C.; Aita, C. R. [Advanced Coatings Experimental Laboratory, College of Engineering and Applied Science, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, Wisconsin 53201 (United States)

2008-07-14T23:59:59.000Z

190

Suppression of interfacial reaction for HfO{sub 2} on silicon by pre-CF{sub 4} plasma treatment  

SciTech Connect (OSTI)

In this letter, the effects of pre-CF{sub 4} plasma treatment on Si for sputtered HfO{sub 2} gate dielectrics are investigated. The significant fluorine was incorporated at the HfO{sub 2}/Si substrate interface for a sample with the CF{sub 4} plasma pretreatment. The Hf silicide was suppressed and Hf-F bonding was observed for the CF{sub 4} plasma pretreated sample. Compared with the as-deposited sample, the effective oxide thickness was much reduced for the pre-CF{sub 4} plasma treated sample due to the elimination of the interfacial layer between HfO{sub 2} and Si substrate. These improved characteristics of the HfO{sub 2} gate dielectrics can be explained in terms of the fluorine atoms blocking oxygen diffusion through the HfO{sub 2} film into the Si substrate.

Lai, C.S.; Wu, W.C.; Chao, T.S.; Chen, J.H.; Wang, J.C.; Tay, L.-L.; Rowell, Nelson [Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Department of Electronic Physics, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan (China); Department of Electronics Engineering, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan (China); Nanya Technology Corporation, Hwa-Ya Technology Park, 669 Fu-Hsing 3rd Rd., Kueishan, Taoyuan 338, Taiwan (China); Institute for Microstructural Sciences, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada)

2006-08-14T23:59:59.000Z

191

FCT Hydrogen Production: Hydrogen Production R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

192

Catalyzed Hydrogen Spillover for Hydrogen Storage  

Science Journals Connector (OSTI)

Catalyzed Hydrogen Spillover for Hydrogen Storage ... Storing sufficient H on-board a wide range of vehicle platforms, while meeting all consumer requirements (driving range, cost, safety, performance, etc.), without compromising passenger or cargo space, is a tremendous tech. ... The authors show that for the 1st time significant amts. of H can be stored in MOF-5 and IRMOF-8 at ambient temp. ...

Ralph T. Yang; Yuhe Wang

2009-02-27T23:59:59.000Z

193

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network [OSTI]

· To develop suitable welding technology for H2 pipeline construction and repair · To develop technical basisHydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J pressure permeation test · Edison Welding Institute - Pipeline materials · Lincoln Electric Company

194

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

195

BP and Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

196

Hydrogen Production- Current Technology  

Broader source: Energy.gov [DOE]

The development of clean, sustainable, and cost-competitive hydrogen production processes is key to a viable future clean energy economy. Hydrogen production technologies fall into three general...

197

A Hydrogen Economy  

Science Journals Connector (OSTI)

The history of the “hydrogen economy” may be broken down into three parts ... is the history of the founding of the Hydrogen Energy Society which took place in Miami,...

J. O’M. Bockris

1981-01-01T23:59:59.000Z

198

Solar Hydrogen Production  

Science Journals Connector (OSTI)

The common methods of hydrogen production impose many concerns regarding the decline in...2...emission, and ecological impacts. Subsequently, all the downstream industries that consume hydrogen involve the aforem...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

199

Hydrogen Fuel Quality (Presentation)  

SciTech Connect (OSTI)

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

200

Determination of Boron in Silicate Samples by Direct Aspiration of Sample HF Solutions into ICPMS  

Science Journals Connector (OSTI)

A rapid and precise technique for the determination of boron content in silicate rocks was developed by employing isotope dilution inductively coupled plasma mass spectrometry with a flow injection system (FI-ID-ICPMS). The sample was decomposed with HF ...

Akio Makishima; Eizo Nakamura; Toshio Nakano

1997-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

E-Print Network 3.0 - al hf ta Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a JEOL electron microprobe and Ca, Ti, Nb, Ta, Hf and Zr abundances measured using laser ablation... for an Al-rich chon- drule. As Figure 1 shows there is little evidence for...

202

Magnetospheric wave injection by modulated HF heating of the auroral electrojet.  

E-Print Network [OSTI]

?? Modulated High Frequency (HF, 3-30 MHz) heating of the auroral electrojet to generate electromagnetic waves in the Extremely Low Frequency (ELF, 3-3000 Hz) and… (more)

Golkowski, Mark

2009-01-01T23:59:59.000Z

203

LuHf isotope systematics of fossil biogenic apatite and their effects on geochronology  

E-Print Network [OSTI]

) and argillaceous matrices with low permeability (oil shale of Messel, Germany; Posidonienschiefer of Holzmaden the Eifel, Germany. Low 176 Lu/177 Hf ratios in all materials from the Middle Eocene Messel oil shale (e

Schöne, Bernd R.

204

Observations of small-scale plasma density depletions in arecibo HF heating experiments  

SciTech Connect (OSTI)

Observations of incoherent scattering of electromagnetic waves at UHF from Langmuir waves by a new scheme involving linear frequency modulation (chirping) of a UHF transmitter and the demodulation (dechirping) of the received signals have been applied during HF heating experiments. These observations show that the high power HF wave used for ionospheric modification creates small-scale plasma depletions instantly on a time scale of 5 ms. For a plasma frequency of 5.1 MHz, plasma frequency gradient of the order of 50 kHz/km, and power density input of the HF heater wave of 8.0 x 10/sup -5/ W/m/sup 2/ the depletion ranged from 3 to 5%. This appears to provide direct evidence that the HF-induced modifications involve Langmuir waves trapped in density cavities. copyrightAmerican Geophysical Union 1987

Isham, B.; Birkmayer, W.; Hagfors, T.; Kofman, W.

1987-05-01T23:59:59.000Z

205

Simulation and detection of tsunami signatures in ocean surface currents measured by HF radar  

Science Journals Connector (OSTI)

High-frequency (HF) surface wave radars provide the unique capability to continuously monitor the coastal environment far beyond the range of conventional microwave radars. Bragg-resonant backscattering by ocean ...

Klaus-Werner Gurgel; Anna Dzvonkovskaya; Thomas Pohlmann; Thomas Schlick…

2011-10-01T23:59:59.000Z

206

In situ characterization of initial growth of HfO{sub 2}  

SciTech Connect (OSTI)

The initial growth of HfO{sub 2} on Si (111) is monitored in situ by ultrahigh vacuum (UHV) scanning probe microscopy. UHV scanning tunneling microscopy and UHV atomic force microscopy reveal the topography of HfO{sub 2} films in the initial stage. The chemical composition is further confirmed by x-ray photoelectron spectroscopy. Scanning tunneling spectroscopy is utilized to inspect the evolution of the bandgap. When the film thickness is less than 0.6 nm, the bandgap of HfO{sub 2} is not completely formed. A continuous usable HfO{sub 2} film with thickness of about 1.2 nm is presented in this work.

Wang, L.; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Xue, K.; Xu, J. B. [Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, New Territories (Hong Kong)

2009-01-19T23:59:59.000Z

207

Germanium diffusion during HfO{sub 2} growth on Ge by molecular beam epitaxy  

SciTech Connect (OSTI)

The authors study the Ge diffusion during HfO{sub 2} growth by molecular beam epitaxy on differently in situ prepared germanium substrates and at different growth temperatures. While HfO{sub 2} layers grown directly on Ge do not show any germanium contamination, oxygen rich interfacial layers such as GeO{sub x} or GeO{sub x}N{sub y} partly dissolve into the HfO{sub 2} layer, giving rise to high Ge contamination (from 1% to 10%). The use of nitridated interfacial layers does not prevent Ge diffusion into the HfO{sub 2} during the growth process because of the high oxygen content present in the nitridated germanium layer.

Ferrari, S.; Spiga, S.; Wiemer, C.; Fanciulli, M.; Dimoulas, A. [Laboratorio MDM-INFM-CNR, Via Olivetti, 2 Agrate Brianza, Milano 20041 (Italy); MBE Laboratory, Institute of Materials Science, DEMOKRITOS National Center for Scientific Research, 153 10 Athens (Greece)

2006-09-18T23:59:59.000Z

208

Wind-speed inversion from HF radar first-order backscatter signal  

Science Journals Connector (OSTI)

Land-based high-frequency (HF) radars have the unique capability of continuously monitoring ocean surface environments at ranges up to 200 km off the coast. They provide reliable data on ocean surface currents an...

Wei Shen; Klaus-Werner Gurgel; George Voulgaris; Thomas Schlick…

2012-01-01T23:59:59.000Z

209

Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA  

SciTech Connect (OSTI)

Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

Chowdhury, E.H., E-mail: md.ezharul.hoque@med.monash.edu.my [Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan (Malaysia)

2011-06-17T23:59:59.000Z

210

Webinar: Hydrogen Refueling Protocols  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

211

The Hydrogen Economy  

Science Journals Connector (OSTI)

Before describing the characteristics of an economy in which hydrogen is the medium of energy, let us...

J. O’M. Bockris; Z. Nagy

1974-01-01T23:59:59.000Z

212

Hydrogen Technologies Safety Guide  

SciTech Connect (OSTI)

The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

Rivkin, C.; Burgess, R.; Buttner, W.

2015-01-01T23:59:59.000Z

213

National Hydrogen Energy Roadmap  

Broader source: Energy.gov [DOE]

This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development.

214

Plasma etching of HfO{sub 2} at elevated temperatures in chlorine-based chemistry  

SciTech Connect (OSTI)

Plasma etching of HfO{sub 2} at an elevated temperature is investigated in chlorine-based plasmas. Thermodynamic studies are performed in order to determine the most appropriate plasma chemistry. The theoretical calculations show that chlorocarbon gas chemistries (such as CCl{sub 4} or Cl{sub 2}-CO) can result in the chemical etching of HfO{sub 2} in the 425-625 K temperature range by forming volatile effluents such as HfCl{sub 4} and CO{sub 2}. The etching of HfO{sub 2} is first studied on blanket wafers in a high density Cl{sub 2}-CO plasma under low ion energy bombardment conditions (no bias power). Etch rates are presented and discussed with respect to the plasma parameters. The evolution of the etch rate as function of temperature follows an Arrhenius law indicating that the etching comes from chemical reactions. The etch rate of HfO{sub 2} is about 110 A /min at a temperature of 525 K with a selectivity towards SiO{sub 2} of 15. x-ray photoelectron spectroscopy analyses (XPS) reveal that neither carbon nor chlorine is detected on the HfO{sub 2} surface, whereas a chlorine-rich carbon layer is formed on top of the SiO{sub 2} surface leading to the selectivity between HfO{sub 2} and SiO{sub 2}. A drift of the HfO{sub 2} etch process is observed according to the chamber walls conditioning due to chlorine-rich carbon coatings formed on the chamber walls in a Cl{sub 2}-CO plasma. To get a very reproducible HfO{sub 2} etch process, the best conditioning strategy consists in cleaning the chamber walls with an O{sub 2} plasma between each wafer. The etching of HfO{sub 2} is also performed on patterned wafers using a conventional polysilicon gate. The first result show a slight HfO{sub 2} foot at the bottom of the gate and the presence of hafnium oxide-based residues in the active areas.

Helot, M.; Chevolleau, T.; Vallier, L.; Joubert, O.; Blanquet, E.; Pisch, A.; Mangiagalli, P.; Lill, T. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Laboratoire des Technologies de la Microelectronique, CNRS, 17 rue des martyrs (CEA-LETI), 38054 Grenoble Cedex 09 (France); LTPCM/INPG-CNRS-UJF, 1130 rue de la piscine, 38402 Saint-Martin-d'Heres (France); Applied Materials, 974 E. Arques Ave. M/S 81334, Sunnyvale, California 94086 (United States)

2006-01-15T23:59:59.000Z

215

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage ... Use of hydrogen for transportation applications requires materials that not only store hydrogen at high density but that can operate reversibly at temperatures and pressures below approximately 100 °C and 10 bar, respectively. ... This composition is based on assuming the following complete hydrogenation reaction:which stores 2.6 wt % hydrogen. ...

Wen Li; John J. Vajo; Robert W. Cumberland; Ping Liu; Son-Jong Hwang; Chul Kim; Robert C. Bowman, Jr.

2009-11-06T23:59:59.000Z

216

Large area electron beam pumped krypton fluoride laser amplifier  

SciTech Connect (OSTI)

Nike is a recently completed multi-kilojoule krypton fluoride (KrF) laser that has been built to study the physics of direct drive inertial confinement fusion. This paper describes in detail both the pulsed power and optical performance of the largest amplifier in the Nike laser, the 60 cm amplifier. This is a double pass, double sided, electron beam-pumped system that amplifies the laser beam from an input of 50 J to an output of up to 5 kJ. It has an optical aperture of 60 cm {times} 60 cm and a gain length of 200 cm. The two electron beams are 60 cm high {times} 200 cm wide, have a voltage of 640 kV, a current of 540 kA, and a flat top power pulse duration of 250 ns. A 2 kG magnetic field is used to guide the beams and prevent self-pinching. Each electron beam is produced by its own Marx/pulse forming line system. The amplifier has been fully integrated into the Nike system and is used on a daily basis for laser-target experiments. {copyright} {ital 1997 American Institute of Physics.}

Sethian, J.D.; Obenschain, S.P.; Gerber, K.A.; Pawley, C.J.; Serlin, V.; Sullivan, C.A. [Plasma Physics Division, Naval Research Laboratory, Washington DC 20375 (United States)] [Plasma Physics Division, Naval Research Laboratory, Washington DC 20375 (United States); Webster, W. [Research Support Instruments, 4325-B Forbes Boulevard, Lanham, Maryland 20706 (United States)] [Research Support Instruments, 4325-B Forbes Boulevard, Lanham, Maryland 20706 (United States); Deniz, A.V.; Lehecka, T. [Science Applications International Corporation, 1710 Goodridge Drive, McLean, Virginia 22102 (United States)] [Science Applications International Corporation, 1710 Goodridge Drive, McLean, Virginia 22102 (United States); McGeoch, M.W. [PLEX Corporation, 21 Addington Road, Brookline, Massachusetts 02146 (United States)] [PLEX Corporation, 21 Addington Road, Brookline, Massachusetts 02146 (United States); Altes, R.A.; Corcoran, P.A.; Smith, I.D. [Pulse Sciences, Incorporated, 600 McCormick Street, San Leandro, California 94577 (United States)] [Pulse Sciences, Incorporated, 600 McCormick Street, San Leandro, California 94577 (United States); Barr, O.C. [Pharos Technical Enterprises, 1603 Barcelona Street, Livermore, California 94550 (United States)] [Pharos Technical Enterprises, 1603 Barcelona Street, Livermore, California 94550 (United States)

1997-06-01T23:59:59.000Z

217

Gaseous Hydrogen Delivery Breakout  

E-Print Network [OSTI]

or reduce the likelihood of hydrogen embrittlement Test existing high strength steel alloys for use in largeGaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 compression. Safety, integrity, reliability: Metal embrittlement, no H2 odorant, low ignition energy

218

Chemical states and electronic structure of a HfO(-2) / Ge(001) interface  

SciTech Connect (OSTI)

We report the chemical bonding structure and valence band alignment at the HfO{sub 2}/Ge (001) interface by systematically probing various core level spectra as well as valence band spectra using soft x-rays at the Stanford Synchrotron Radiation Laboratory. We investigated the chemical bonding changes as a function of depth through the dielectric stack by taking a series of synchrotron photoemission spectra as we etched through the HfO{sub 2} film using a dilute HF-solution. We found that a very non-stoichiometric GeO{sub x} layer exists at the HfO{sub 2}/Ge interface. The valence band spectra near the Fermi level in each different film structure were carefully analyzed, and as a result, the valence band offset between Ge and GeO{sub x} was determined to be {Delta}E{sub v} (Ge-GeO{sub x}) = 2.2 {+-} 0.15 eV, and that between Ge and HfO{sub 2}, {Delta}E{sub v} (Ge-HfO{sub 2}) = 2.7 {+-} 0.15 eV.

Seo, Kang-ill; McIntyre, Paul C.; /Stanford U., Materials Sci. Dept.; Sun, Shiyu; Lee, Dong-Ick; Pianetta, Piero; /SLAC, SSRL; Saraswat, Krishna C.; /Stanford U., Elect.

2005-05-04T23:59:59.000Z

219

HfO{sub x}N{sub y} gate dielectric on p-GaAs  

SciTech Connect (OSTI)

Plasma nitridation method is used for nitrogen incorporation in HfO{sub 2} based gate dielectrics for future GaAs-based devices. The nitrided HfO{sub 2} (HfO{sub x}N{sub y}) films on p-GaAs improve metal-oxide-semiconductor device characteristics such as interface state density, accumulation capacitance, hysteresis, and leakage current. An equivalent oxide thickness of 3.6 nm and a leakage current density of 10{sup -6} A cm{sup -2} have been achieved at V{sub FB}-1 V for nitrided HfO{sub 2} films. A nitride interfacial layer (GaAsO:N) was observed at HfO{sub 2}-GaAs interface, which can reduce the outdiffusion of elemental Ga and As during post-thermal annealing process. Such suppression of outdiffusion led to a substantial enhancement in the overall dielectric properties of the HfO{sub 2} film.

Dalapati, G. K.; Sridhara, A.; Wong, A. S. W.; Chia, C. K.; Chi, D. Z. [Institute of Materials Research and Engineering, A-STAR - Agency for Science, Technology and Research, 3 Research Link, Singapore 117602 (Singapore)

2009-02-16T23:59:59.000Z

220

Hydrogen Delivery Liquefaction and Compression  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

New Materials for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

222

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

223

Anti-Hydrogen Jonny Martinez  

E-Print Network [OSTI]

Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

Budker, Dmitry

224

Hydrothermal synthesis and formation mechanism of hexagonal yttrium hydroxide fluoride nanobundles  

SciTech Connect (OSTI)

Graphical abstract: The formation of yttrium hydroxide fluorides nanobundles can be expressed as a precipitation transformation from cubic NaYF{sub 4} to hexagonal NaYF{sub 4} and to hexagonal Y(OH){sub 2.02}F{sub 0.98} owing to ion exchange. - Highlights: • Novel Y(OH){sub 2.02}F{sub 0.98} nanobundles have been successfully prepared by hydrothermal method. • The branched nanobundles composed of numerous oriented-attached nanoparticles has been studied. • The growth mechanism is proposed to be ion exchange and precipitation transformation. - Abstract: This article presents the fabrication of hexagonal yttrium hydroxide fluoride nanobundles via one-pot hydrothermal process, using yttrium nitrate, sodium hydroxide and ammonia fluoride as raw materials to react in propanetriol solvent. The X-ray diffraction pattern clearly reveals that the grown product is pure yttrium hydroxide fluoride, namely Y(OH){sub 2.02}F{sub 0.98}. The morphology and microstructure of the synthesized product is testified to be nanobundles composed of numerous oriented-attached nanoparticles as observed from the field emission scanning electron microscopy (FESEM). The chemical composition was analyzed by the energy dispersive spectrum (EDS), confirming the phase transformation of the products which was clearly consistent with the result of XRD analysis. It is proposed that the growth of yttrium hydroxide fluoride nanobundles be attributed to ion exchange and precipitation transformation.

Tian, Li, E-mail: tianli_cl@163.com [Department of Material Science and Engineering, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Sun, QiLiang; Zhao, RuiNi; He, HuiLin; Xue, JianRong [Department of Material Science and Engineering, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Lin, Jun [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

2013-11-15T23:59:59.000Z

225

Hydrogen peroxide safety issues  

SciTech Connect (OSTI)

A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors.

Conner, W.V.

1993-04-14T23:59:59.000Z

226

Hydrogen Use and Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USE AND SAFETY USE AND SAFETY The lightest and most common element in the universe, hydrogen has been safely used for decades in industrial applications. Currently, over 9 million tons of hydrogen are produced in the U.S. each year and 3.2 trillion cubic feet are used to make many common products. They include glass, margarine, soap, vitamins, peanut butter, toothpaste and almost all metal products. Hydrogen has been used as a fuel since the 1950s by the National Aeronautics & Space Administration (NASA) in the U.S. space program. Hydrogen - A Safe, Clean Fuel for Vehicles Hydrogen has another use - one that can help our nation reduce its consumption of fossil fuels. Hydrogen can be used to power fuel cell vehicles. When combined with oxygen in a fuel cell, hydrogen generates electricity used

227

First-principles phase diagram calculations for the HfCTiC, ZrCTiC, and HfCZrC solid O. Adjaoud,1,*,  

E-Print Network [OSTI]

Transition metal carbides, including the NaCl-structured group IV Ti, Zr, and Hf carbides, have extremely of oxidizing agents, and retain good corrosion resistance to high temperature.1,5,6 The transition-metal high melting points and are therefore referred to collectively as the "refractory carbides

Steinle-Neumann, Gerd

228

DOE Hydrogen Analysis Repository: Hydrogen Production by  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production by Photovoltaic-powered Electrolysis Production by Photovoltaic-powered Electrolysis Project Summary Full Title: Production of Hydrogen by Photovoltaic-powered Electrolysis Project ID: 91 Principal Investigator: D.L. Block Keywords: Hydrogen production; electrolysis; photovoltaic (PV) Purpose To evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. Performer Principal Investigator: D.L. Block Organization: Florida Solar Energy Center Address: 1679 Clearlake Road Cocoa, FL 32922 Telephone: 321-638-1001 Email: block@fsec.ucf.edu Sponsor(s) Name: Michael Ashworth Organization: Florida Energy Office Name: Neil Rossmeissl Organization: DOE/Advanced Utilities Concepts Division Name: H.T. Everett Organization: NASA/Kennedy Space Center Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

229

Hydrogen Material Compatibility for Hydrogen ICE | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. pm04smith.pdf More Documents & Publications Hydrogen Materials Compatibility for the H-ICE...

230

Mechanical Properties of Aluminum Fluoride Glass Fibers James Colaizzi, M. John Matthewson, Tariq Iqbal, and Mahmoud R. Shahriari  

E-Print Network [OSTI]

#12;Mechanical Properties of Aluminum Fluoride Glass Fibers James Colaizzi, M. John Matthewson solutions of various pH values on the mechanical properties of polymer coated optical fibers of an aluminum to failure of the fiber. In static fatigue, the time to failure of the aluminum fluoride-based fibers

Matthewson, M. John

231

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

232

Quaternised biomass as anion exchanger for the removal of fluoride from water  

Science Journals Connector (OSTI)

Dried Chinese Reed, a fast growing plant, was used as a model biomass for the development of anion exchangers using a quaternisation agent, N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHMAC), for the removal of fluoride from water. Parameters investigated in the adsorption studies include F? concentration, agitation time, adsorbent dose and pH. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Presence of chloride, nitrate and sulfate decreased the adsorption significantly. Quaternised Hanf sativa and coconut coir pith (solid waste from coconut coir fibre industry) were also tested for the removal of fluoride with and without cross linking.

C. Namasivayam; W.H. Hoell

2008-01-01T23:59:59.000Z

233

Thermally-driven H interaction with HfO{sub 2} films deposited on Ge(100) and Si(100)  

SciTech Connect (OSTI)

In the present work, we investigated the thermally-driven H incorporation in HfO{sub 2} films deposited on Si and Ge substrates. Two regimes for deuterium (D) uptake were identified, attributed to D bonded near the HfO{sub 2}/substrate interface region (at 300?°C) and through the whole HfO{sub 2} layer (400–600?°C). Films deposited on Si presented higher D amounts for all investigated temperatures, as well as, a higher resistance for D desorption. Moreover, HfO{sub 2} films underwent structural changes during annealings, influencing D incorporation. The semiconductor substrate plays a key role in this process.

Soares, G. V., E-mail: gabriel.soares@ufrgs.br; Feijó, T. O. [Instituto de Física, UFRGS, Porto Alegre 91509-900 (Brazil); Baumvol, I. J. R. [Instituto de Física, UFRGS, Porto Alegre 91509-900 (Brazil); Universidade de Caxias do Sul, Caxias do Sul 95070-560 (Brazil); Aguzzoli, C. [Universidade de Caxias do Sul, Caxias do Sul 95070-560 (Brazil); Krug, C. [Instituto de Física, UFRGS, Porto Alegre 91509-900 (Brazil); CEITEC S.A., Porto Alegre 91550-000 (Brazil); Radtke, C. [Instituto de Química, UFRGS, Porto Alegre 91509-900 (Brazil)

2014-01-27T23:59:59.000Z

234

Hydrogen Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

235

President's Hydrogen Fuel Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

236

Hydrogen Based Bacteria  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Based Bacteria Hydrogen Based Bacteria Name: Ellen Location: N/A Country: N/A Date: N/A Question: i was in my Biology class and a very respectable someone mentioned something about the discovery of a hydrogen based bacteria. my teacher wasnt aware of this study, and assigned me to find out about it. so i thought i would Email you and see if you people knew anything about it. Awaiting your repsonse Replies: I'm not quite sure what you mean by hydrogen based bacteria but I will take a stab that you mean bacteria that use hydrogen for energy. Some bacteria are chemolithotrophs which mean that they are autrophs but don't use the sun as their energy source; they get their energy from chemical sources. There are bacteria that use hydrogen as their energy source. They are diverse as a group and are all facultative. The overall chemical reaction looks like this:

237

Hydrogenation of carbonaceous materials  

DOE Patents [OSTI]

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

238

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network [OSTI]

Natural Gas Pipelines Hydrogen embrittlement What is the relevance to hydrogen pipelines? ORNL researchHydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory

239

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Issues for H2 Service Materials of Construction Hydrogen Embrittlement Presence of atomic hydrogen susceptible to Hydrogen Embrittlement. #12;Pipeline Transmission of Hydrogen --- 7 Copyright: H2 Induced, characteristic of hydrogen embrittlement. Photo Courtesy of NASA/Kennedy Space Center Materials Lab #12;Pipeline

240

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*  

E-Print Network [OSTI]

Hydrogen Storage - Overview George Thomas, Hydrogen Consultant to SNL* and Jay Keller, Hydrogen volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen and cost-effective hydrogen storage? #12;4/14/03 3 Sandia National Laboratories From George Thomas, BES

242

Spectroscopic analysis of Al and N diffusion in HfO{sub 2}  

SciTech Connect (OSTI)

X-ray photoelectron core level spectroscopy, secondary ion mass spectroscopy, spectroscopic ellipsometry, and extended x-ray absorption fine structure measurements have been employed to distinguish the effects of Al and N diffusion on the local bonding and microstructure of HfO{sub 2} and its interface with the Si substrate in (001)Si/SiO{sub x}/2 nm HfO{sub 2}/1 nm AlO{sub x} film structures. The diffusion of Al from the thin AlO{sub x} cap layer deposited on both annealed and unannealed HfO{sub 2} has been observed following anneal in N{sub 2} and NH{sub 3} ambient. Both N{sub 2} and NH{sub 3} subsequent anneals were performed to decouple incorporated nitrogen from thermal reactions alone. Causal variations in the HfO{sub 2} microstructure combined with the dependence of Al and N diffusion on initial HfO{sub 2} conditions are presented with respect to anneal temperature and ambient.

Lysaght, P. S.; Price, J.; Kirsch, P. D. [SEMATECH, 257 Fuller Rd, Albany, New York 12203 (United States); Woicik, J. C.; Weiland, C. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Sahiner, M. A. [Seton Hall University, 400 South Orange Ave, South Orange, New Jersey 07079 (United States)

2012-09-15T23:59:59.000Z

243

HF treatment effect for carbon deposition on silicon (111) by DC sputtering technique  

SciTech Connect (OSTI)

Surface modifications of Si (111) substrate by HF solution for thin film carbon deposition have been systematically studied. Thin film carbon on Si (111) has been deposited using DC Unbalanced Magnetron Sputtering with carbon pellet doped by 5% Fe as the target. EDAX characterization confirmed that the carbon fraction on Si substrate much higher by dipping a clean Si substrate by HF solution before sputtering process in comparison with carbon fraction on Si substrate just after conventional RCA. Moreover, SEM and AFM images show the uniform thin film carbon on Si with HF treatment, in contrast to the Si without HF solution treatment. These experimental results suggest that HF treatment of Si surface provide Si-H bonds on top Si surface that useful to enhance the carbon deposition during sputtering process. Furthermore, we investigate the thermal stability of thin film carbon on Si by thermal annealing process up to 900 °C. Atomic arrangements during annealing process were characterized by Raman spectroscopy. Raman spectra indicate that thin film carbon on Si is remaining unchanged until 600 °C and carbon atoms start to diffuse toward Si substrate after annealing at 900 °C.

Aji, A. S., E-mail: aji.ravazes70@gmail.com; Darma, Y., E-mail: aji.ravazes70@gmail.com [Quantum Semiconductor and Devices Lab., Physics of Material Electronics Research Division, Department of Physics, Institut Teknologi Bandung (Indonesia)

2014-03-24T23:59:59.000Z

244

Hydrogen powered bus  

ScienceCinema (OSTI)

Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

None

2013-11-22T23:59:59.000Z

245

Hydrogen Compatibility of Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compatibility of Materials Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen compatibility of materials - Distinguish embrittlement, compatibility and suitability - Examples of hydrogen embrittlement * Historical perspective - Previous work on hydrogen compatibility - Motivation of "Materials Guide" * Identify the landscape of materials compatibility documents

246

Hydrogen Generation by Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

247

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

248

Hydrogen Generator Appliance  

Broader source: Energy.gov (indexed) [DOE]

lAbOrAtOry NG Workshop summary report - appeNDIX J slide presentation: hydrogen Generator appliance Gus Block, Nuvera Fuel Cells...

249

Module 2: Hydrogen Use  

Broader source: Energy.gov [DOE]

This course covers the processes by which hydrogen is extracted, how it is stored and transported, and the inherent advantages and disadvantages of each method

250

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

251

Hydrogen Production & Delivery  

Energy Savers [EERE]

* Address key materials needs for P&D: Membranes, Catalysts, PEC Devices, Reactors, and Tanks Hydrogen from Coal * Complete laboratory-scale development of separation and...

252

Renewable Hydrogen (Presentation)  

SciTech Connect (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

253

Hydrogen Production & Delivery  

Broader source: Energy.gov [DOE]

"2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation H2 and Fuel Cells Plenary "

254

Hydrogen Release Behavior  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

255

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, J.C.; Brehm, W.F.

1980-02-08T23:59:59.000Z

256

President's Hydrogen Fuel Initiative  

Broader source: Energy.gov [DOE]

Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

257

Hydrogen Safety Knowledge Tools  

SciTech Connect (OSTI)

With hydrogen gaining acceptance as an energy carrier for fuel cell vehicles and stationary fuel cell applications, a new community of hydrogen users is emerging and continues to grow. With this growth has come the need to spread the word about safe practices for handling, storing, and using hydrogen. Like all energy forms, hydrogen can be used safely through proper procedures and engineering techniques. However, hydrogen involves a degree of risk that must be respected, and the importance of avoiding complacency or haste in the safe conduct and performance of projects involving hydrogen cannot be overstated. To encourage and promote the safe use of hydrogen, Pacific Northwest National Laboratory (PNNL) has developed and continues to enhance two software tools in support of the U.S. Department of Energy's Fuel Cell Technologies Program: the Hydrogen Safety Best Practices online manual (www.H2BestPractices.org) and the Hydrogen Incident Reporting and Lessons Learned database (www.H2Incidents.org).

Fassbender, Linda L.

2011-01-31T23:59:59.000Z

258

Hydrogen ion microlithography  

DOE Patents [OSTI]

Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

Tsuo, Y.S.; Deb, S.K.

1990-10-02T23:59:59.000Z

259

Detroit Commuter Hydrogen Project  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

260

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Department of Energy - Hydrogen  

Broader source: Energy.gov (indexed) [DOE]

Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

262

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

263

Alternative Fuels Data Center: Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives Hydrogen Hydrogen is a potentially emissions-free alternative fuel that can be produced from diverse domestic energy sources. Research is under way to make hydrogen vehicles practical for widespread use.

264

FCT Hydrogen Production: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

265

Hydrogen Threshold Cost Calculation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Threshold Cost Calculation Hydrogen Threshold Cost Calculation DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and...

266

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

high-pressure stationary hydrogen storage tanks. The storagehigh-pressure gaseous hydrogen storage containers, and atrailer Compressed hydrogen storage High-pressure hydrogen

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

267

Hydrogen Delivery - Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

268

NREL: Hydrogen and Fuel Cells Research - Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable...

269

Combination moisture and hydrogen getter  

DOE Patents [OSTI]

A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

Harrah, L.A.; Mead, K.E.; Smith, H.M.

1983-09-20T23:59:59.000Z

270

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

271

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

272

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

273

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

Broader source: Energy.gov [DOE]

Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

274

Electronic structure of HfN0.93(100) studied by angle-resolved photoemission  

Science Journals Connector (OSTI)

An experimental and theoretical study of the electronic structure of HfN is reported. Results from angle-resolved photoemission experiments on HfN0.93(100) are presented and interpreted with use of calculated results. The bulk-band structure of stoichiometric HfN was calculated relativistically and nonrelativistically using the linear augmented-plane-wave method. Predicted band locations and dispersions along the ?–X direction are compared with experimental results. In general the experiment indicates smaller bandwidths and locates the bands deeper below the Fermi level than the calculated values. Calculations of photoemission spectra, made nonrelativistically, are also reported and these spectra are found to reflect the recorded spectra fairly well.

J. Lindström; L. I. Johansson; P. E. S. Persson; A. Callens; D. S. L. Law; A. N. Christensen

1989-02-15T23:59:59.000Z

275

On the K{sup {pi}} = 0{sup +} rotational bands in the {sup 178}Hf nucleus  

SciTech Connect (OSTI)

The results obtained by studying the angular distributions of gamma rays with respect to the neutron-beam axis in the reaction {sup 178}Hf(n, n'{gamma}) involving the deexcitation of the K{sup {pi}} = 0{sup +} rotational bands of {sup 178}Hf are presented.New information about themultipole-mixing parameter {delta} in gamma transitions from the levels of these bands is obtained. The K{sup {pi}} = 0{sub 4}{sup +} band is constructed anew. The relationship between the parameter {delta} for the (2{sup +}0{sub n}-2{sup +}0{sub 1}) gamma transition and the energy gap {Delta}{sub n} = E{sub lev}(2{sup +}0{sub n}) - E{sub lev}(0{sup +}0{sub n}), on one hand, and the quasiparticle structure of the rotational band, on the other hand, is discussed for {sup 178}Hf on the basis of the quasiparticle-phonon model.

Govor, L. I.; Demidov, A. M.; Kurkin, V. A., E-mail: kurkin@polyn.kiae.su; Mikhailov, I. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2010-07-15T23:59:59.000Z

276

Band offsets in HfO{sub 2}/InGaZnO{sub 4} heterojunctions  

SciTech Connect (OSTI)

The valence band discontinuity ({Delta}E{sub V}) of sputter deposited HfO{sub 2}/InZnGaO{sub 4} (IGZO) heterostructures was obtained from x-ray photoelectron spectroscopy measurements. The HfO{sub 2} exhibited a bandgap of 6.07 eV from absorption measurements. A value of {Delta}E{sub V} = 0.48 {+-} 0.025 eV was obtained by using the Ga 2p{sub 3/2}, Zn 2p{sub 3/2}, and In 3d{sub 5/2} energy levels as references. This implies a conduction band offset {Delta}E{sub C} of 2.39 eV in HfO{sub 2}/InGaZnO{sub 4} heterostructures and a nested interface band alignment.

Cho, Hyun [Department of Nanomechatronics Engineering, Pusan National University, Gyeongnam 627-706 (Korea, Republic of); Douglas, E. A.; Gila, B. P.; Craciun, V.; Lambers, E. S.; Pearton, S. J. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Ren Fan [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States)

2012-01-02T23:59:59.000Z

277

Ge doped HfO{sub 2} thin films investigated by x-ray absorption spectroscopy  

SciTech Connect (OSTI)

The stability of the tetragonal phase of Ge doped HfO{sub 2} thin films on Si(100) was investigated. Hf(Ge)O{sub 2} films with Ge atomic concentrations varying from 0% to 15% were deposited by remote plasma chemical vapor deposition. The atomic structure on the oxide after rapid thermal annealing was investigated by x-ray absorption spectroscopy of the O and Ge K edges and by Rutherford backscattering spectrometry. The authors found that Ge concentrations as low as 5 at. % effectively stabilize the tetragonal phase of 5 nm thick Hf(Ge)O{sub 2} on Si and that higher concentrations are not stable to rapid thermal annealing at temperatures above 750 deg. C.

Miotti, Leonardo; Bastos, Karen P.; Lucovsky, Gerald; Radtke, Claudio; Nordlund, Dennis [Department of Physics, North Carolina State University, Box 8202, Raleigh, North Carolina 27695-8202 (United States); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre (Brazil); Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025 (United States)

2010-07-15T23:59:59.000Z

278

NMR SPECTROSCOPY OF NATURALLY OCCURRING SURFACE-ADSORBED FLUORIDE ON GEORGIA KAOLINITE  

Science Journals Connector (OSTI)

...high concentration, large fluoride concentrations...measured surface area of the 2 mum fraction...reaction vessel and N2 atmosphere to exclude CO2...direct-coupled plasma atomic emission spectrometry...BET-measured surface area of the particles...operating at 470.18 MHz for 19F and 130...

Stacey G. Cochiara; Brian L. Phillips

279

Radiolytic Effects on Fluoride Impurities in a U{sub 3}O{sub 8} Matrix  

SciTech Connect (OSTI)

The safe handling and storage of radioactive materials require an understanding of the effects of radiolysis on those materials. Radiolysis may result in the production of gases (e.g., corrosives) or pressures that are deleterious to storage containers. A study has been performed to address these concerns as they relate to the radiolysis of residual fluoride compounds in uranium oxides.

Icenhour, A.S.

2000-05-01T23:59:59.000Z

280

Dielectric Properties of Relaxor-like Vinylidene Fluoride-Trifluoroethylene-Based Electroactive Polymers  

E-Print Network [OSTI]

(VDF-TrFE) copolymer, and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF- TrFE-CFE and P(VDF-TrFE-CFE) terpolymer show a significantly different dielectric response: a broad frequency confirmation that giant electrostrictive response of the electron-irradiated P(VDF-TrFE) copolymer and P(VDF-TrFE-CFE

Bobnar, Vid

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Compatibilizing Poly(vinylidene fluoride)/Nylon-6 Blends with Nanoclay  

Science Journals Connector (OSTI)

Blends of poly(vinylidene fluoride)/nylon-6 (PVDF/N6) 30:70 were melt compounded with various organoclays directly or sequentially. The morphology, thermal, and mechanical properties of the blend nanocomposites were investigated. It was determined that ...

Loan T. Vo; Emmanuel P. Giannelis

2007-10-04T23:59:59.000Z

282

Optical spectroscopic study of the SiN/HfO{sub 2} interfacial formation during rf sputtering of HfO{sub 2}  

SciTech Connect (OSTI)

High-k stacks formed by chemical-vapor-deposited SiN and high-pressure sputtered HfO{sub 2} in either O{sub 2} or Ar atmosphere have been studied. The introduction of a SiN layer is proposed to prevent the uncontrollable SiO{sub 2} growth while sputtering. The formation of Si-O bonds after the sputtering of the HfO{sub 2} film in O{sub 2} atmosphere was observed by infrared spectroscopy. Optical diagnosis of the plasma demonstrated a high density of O radicals in the system when working with O{sub 2}. The small radius and high reactivity of these O radicals are the source of the SiN oxidation. However, the structure of the SiN film is preserved during Ar sputtering.

Toledano-Luque, M.; Lucia, M. L.; Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid (Spain)

2007-11-05T23:59:59.000Z

283

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

284

Plasma post-hydrogenation of hydrogenated amorphous silicon and germanium  

SciTech Connect (OSTI)

Incorporation and kinetics of hydrogen during plasma post-hydrogenation and thermal treatment are discussed for a-Si:H and a-Ge:H films. For material of low hydrogen content, the hydrogen surface concentration reached by plasma treatment equals the hydrogen concentration obtained by deposition at the same temperature and under similar plasma conditions. Enhancements of the hydrogen diffusion coefficient and of hydrogen solubility observed for plasma treatment at temperatures {le}400 C and {le}300 C for a-Si:H and a-Ge:H, respectively, are attributed to a plasma induced rise of the surface hydrogen chemical potential.

Beyer, W.; Zastrow, U. [Forschungszentrum Juelich (Germany). Inst. fuer Schicht- und Ionentechnik

1996-12-31T23:59:59.000Z

285

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

286

NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric...

287

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Cost adjusted to 2007 dollars, accurate to two significant figures. Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery...

288

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cells Program Record Record : 5037 Date: May 22, 2006 Title: Hydrogen Storage Materials - 2004 vs 2006 Originator: Sunita Satyapal Approved by: JoAnn Milliken...

289

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen Dinh, focus on the following topics: Biological Water Splitting Fermentation Conversion of Biomass and Wastes Photoelectrochemical Water Splitting Solar Thermal Water Splitting Renewable Electrolysis Hydrogen Dispenser Hose Reliability Hydrogen Production and Delivery Pathway Analysis. Biological Water Splitting Certain photosynthetic microbes use light energy to produce hydrogen from

290

The Hydrogen Backlash  

Science Journals Connector (OSTI)

...from outside: the infrastructure they need to...existing electricity grid or natural gas...massive new hydrogen infrastructure to deliver the...development of hybrid cars, critics...out on page 974 , hybrid electric vehicles...separate hydrogen infrastructure. Near-term help...

Robert F. Service

2004-08-13T23:59:59.000Z

291

The Hydrogen Backlash  

Science Journals Connector (OSTI)

...paces, 200 fuel cells under...Switching from fossil fuels to hydrogen...reduce urban air pollution, lower dependence...cleaner air, lower greenhouse...cost of the fuel drops to $1.50...hydrogen from fossil fuels, DOE...none of these solutions is up to...

Robert F. Service

2004-08-13T23:59:59.000Z

292

Hydrogen Delivery- Current Technology  

Broader source: Energy.gov [DOE]

Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

293

Hydrogen, Fuel Infrastructure  

E-Print Network [OSTI]

results of using hydrogen power, of course, will be energy independence for this nation... think about between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could

294

Thick film hydrogen sensor  

DOE Patents [OSTI]

A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

Hoffheins, B.S.; Lauf, R.J.

1995-09-19T23:59:59.000Z

295

Two-step behavior of initial oxidation at HfO{sub 2}/Si interface  

SciTech Connect (OSTI)

In situ x-ray photoelectron spectroscopy revealed that initial Si oxidation at the HfO{sub 2}/Si(001) interface in O{sub 2} proceeds in a two-step manner with an initial slow stage followed by a fast one. This transition in the oxidation process is most likely caused by crystallization of the HfO{sub 2} film. The first stage at 400-600 deg. C exhibited postdeposition annealing conditions suitable for suppressing the interfacial Si oxide in a monolayer region.

Miyata, Noriyuki [MIRAI, Advanced Semiconductor Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562 (Japan)

2006-09-04T23:59:59.000Z

296

FCT Hydrogen Storage: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

297

Renewable Resources for Hydrogen (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

Jalalzadeh-Azar, A. A.

2010-05-03T23:59:59.000Z

298

Gaseous and Liquid Hydrogen Storage  

Broader source: Energy.gov [DOE]

Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

299

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

in the cost of hydrogen production, distribution, and use.accelerate R&D of zero-emission hydrogen production methods.Renewable hydrogen production is a key area for focused

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

300

Hydrogen in semiconductors and insulators  

E-Print Network [OSTI]

type can be applied to hydrogen storage materials. Keywords:can be applied to hydrogen storage materials. Manuscript O-of the formalism to hydrogen storage materials. A partial

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thin Film Hydrogen Storage System  

Science Journals Connector (OSTI)

In the last one decade the use of hydrogen as an energy carrier has attracted world ... on the technology involved for the production, storage and use of hydrogen. In this paper we discuss storage aspect of hydrogen

I. P. Jain; Y. K. Vijay

1987-01-01T23:59:59.000Z

302

Hydrogen Delivery | Department of Energy  

Energy Savers [EERE]

truck at hydrogen production facility. A viable hydrogen infrastructure requires that hydrogen be able to be delivered from where it's produced to the point of end-use, such as...

303

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

304

Hydrogen Storage- Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

305

Electrochemical Hydrogen Compression (EHC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

306

NREL: Learning - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

307

Hydrogen Threshold Cost Calculation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

308

Hydrogen Fuel Quality  

SciTech Connect (OSTI)

For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

Rockward, Tommy [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

309

Hydrogen Purity Standard  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compressed Gas Association Compressed Gas Association Roger A. Smith Technical Director April 26, 2004 Hydrogen Purity Standard Compressed Gas Association 2 Compressed Gas Association ‹ 150 Members „ Industrial Gas Companies „ Equipment Manufacturers „ Other Gas Industry Associations „ Other SDOs ‹ Manufacturers, Fillers, Distributors, and Transporters of Industrial and Medical Gases Compressed Gas Association 3 Hydrogen Activities ‹ Committees „ Hydrogen Fuel Technology „ Bulk Distribution Equipment „ Hazardous Materials Codes „ Gas Specifications „ Cylinders, Valves & PRD's ‹ International „ Europe (EIGA) „ Japan (JIGA) „ Asia (AIGA) „ United Nations Compressed Gas Association 4 Hydrogen Purity Standard ‹ Draft hydrogen purity standard for stationary fuel cells and ICE's in 10 months

310

An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor  

SciTech Connect (OSTI)

The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

Yoder Jr, Graydon L [ORNL] [ORNL; Aaron, Adam M [ORNL] [ORNL; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Fugate, David L [ORNL] [ORNL; Holcomb, David Eugene [ORNL] [ORNL; Kisner, Roger A [ORNL] [ORNL; Peretz, Fred J [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Wilgen, John B [ORNL] [ORNL; Wilson, Dane F [ORNL] [ORNL

2014-01-01T23:59:59.000Z

311

High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, Cyclones and localized heating  

E-Print Network [OSTI]

High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, the HAARP heater is the most powerful ionospheric heater, with 3.6GW of effective power using HF heating, Cyclones and localized heating Fran De Aquino Maranhao State University, Physics Department, S

Paris-Sud XI, Université de

312

Hydrogen Data Book from the Hydrogen Analysis Resource Center  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

313

Photoemission study of energy-band alignment for RuO{sub x}/HfO{sub 2}/Si system  

SciTech Connect (OSTI)

Conductive oxides RuO{sub x} as alternative electrode on high-{kappa} HfO{sub 2} gate dielectric have been fabricated by ultrahigh-vacuum sputtering and subsequently oxidized using oxygen plasma. The energy-band alignment for the RuO{sub x}/HfO{sub 2}/Si system and the oxidation-state dependence of barrier height for RuO{sub x} contacting to HfO{sub 2} dielectrics has been analyzed by x-ray photoemission spectroscopy. The valence- and conduction-band offsets of HfO{sub 2}/Si are determined to be 3.05{+-}0.1 and 1.48{+-}0.1 eV, respectively. The barrier heights for the RuO{sub x} contacting to HfO{sub 2} are oxidation-state dependent, in the range of 1.95-2.73 eV.

Li, Q.; Wang, S.J.; Li, K.B.; Huan, A.C.H.; Chai, J.W.; Pan, J.S.; Ong, C.K. [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Data Storage Institute, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Singapore and Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

2004-12-20T23:59:59.000Z

314

Low-temperature method for enhancing sputter-deposited HfO{sub 2} films with complete oxidization  

SciTech Connect (OSTI)

A low-temperature method, supercritical CO{sub 2} fluid (SCF) technology, is proposed to improve the dielectric properties of ultrathin hafnium oxide (HfO{sub 2}) film at 150 deg. C without significant formation of parasitic oxide at the interface between HfO{sub 2} and Si substrate. In this research, the HfO{sub 2} films were deposited by dc sputter at room temperature and post-treated by SCF which is mixed with 5 vol % propyl alcohol and 5 vol % H{sub 2}O. From high-resolution transmission electron microscopy image, the interfacial oxide of SCF-treated HfO{sub 2} film is only 5 A ring thick. Additionally, the enhancements in the qualities of sputter-deposited HfO{sub 2} film after SCF process are exhibited by x-ray photoelectron spectroscopy and capacitance-voltage (C-V) measurement.

Tsai, C.-T.; Chang, T.-C.; Liu, P.-T.; Yang, P.-Y.; Kuo, Y.-C.; Kin, K.-T.; Chang, P.-L.; Huang, F.-S. [Institute of Electronics Engineering, National Tsing Hua University, HsinChu 300, Taiwan (China); Department of Physics and Institute of Electro-Optical Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan (China); Department of Photonics and Display Institute, National Chiao Tung University, 1001 Ta-Hsueh Rd., HsinChu 300, Taiwan (China); Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan (China); Institute of Electronics Engineering, National Tsing Hua University, HsinChu 300, Taiwan (China)

2007-07-02T23:59:59.000Z

315

Nuclear Power PROS -`No' greenhouse gas emissions  

E-Print Network [OSTI]

uranium hexafluoride reacting with moisture in air creates the immediate danger of HF hydrogen fluoride or ammonia; hydrofluoric acid is also used in the conversion process) -CO2 emissions involved in mining gases / acid rain: emits Hg, CO2, CO, SOx, NOx (there are pollution controls on SOx and Hg which makes

Toohey, Darin W.

316

NREL's Hydrogen Program  

SciTech Connect (OSTI)

The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful element—hydrogen—to power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.

None

2011-01-01T23:59:59.000Z

317

MicroPlanet Technology Corp formerly HF Capital Corp | Open Energy  

Open Energy Info (EERE)

Technology Corp formerly HF Capital Corp Technology Corp formerly HF Capital Corp Jump to: navigation, search Name MicroPlanet Technology Corp (formerly HF Capital Corp) Place Seattle, Washington Zip 98104 Sector Efficiency Product MicroPlanet develops energy-efficiency products for homes and small businesses. Specifically they focus on custom voltage regulators that result in energy savings. On May 6, 2005, the company reverse-listed into Toronto Venture Exchange quoted HF Capital. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

High-spin excitations in 158,159,160 Hf from recoil-decay tagging  

E-Print Network [OSTI]

Argonne National Laboratory, Argonne, Illinois 60439 3 Nuclear Science Division, Lawrence Berkeley coupled to the Fragment Mass Analyzer at Argonne National Laboratory. Level structures of 158 Hf and 159 technique at Argonne National Laboratory. These reactions have a large number of particle

319

ELF/VLF PHASED ARRAY GENERATION VIA FREQUENCY-MATCHED STEERING OF A CONTINUOUS HF  

E-Print Network [OSTI]

;Abstract The radio spectrum between 300 Hz and 10 kHz (ELF/VLF) has broad applications to global (HF, 3-10 MHz) heating of the lower ionosphere (60-100 km altitude), which changes the atmospheric plasma conductivity. In the presence of natural currents such as the auroral electrojet, ON

320

Scanning tunneling microscopy study of nitrogen incorporated HfO{sub 2}  

SciTech Connect (OSTI)

The impact of nitrogen incorporation on the physical and electrical characteristics of the HfO{sub 2} is examined. X-ray photoelectron spectroscopy shows that nitrogen can be incorporated into the HfO{sub 2} via a two-step thermal anneal--first in ultrahigh vacuum (UHV) and subsequently in N{sub 2}. Following the N{sub 2} anneal, scanning tunneling microscopy in UHV reveals a marked reduction in the low-voltage leakage current under gate injection biasing. From band theory and existing first-principles simulation results, one may consistently attribute this improvement to the passivation of oxygen vacancies in the HfO{sub 2} by nitrogen. Improvement in the breakdown strength of the HfO{sub 2} subjected to ramp-voltage stress (substrate injection) is also observed after the N{sub 2} anneal. The local current-voltage curves acquired concurrently during the ramp-voltage stress exhibit 'space-charge limited conduction', which implies that the observed improvement in breakdown strength may be related to a limitation of the current flow through the gate stack in the high stress voltage regime.

Ong, Y. C.; Ang, D. S.; Pey, K. L.; Li, X. [Nanyang Technological University, School of Electrical and Electronic Engineering, Nanyang Avenue, Singapore 639798 (Singapore); O'Shea, S. J.; Wang, S. J. [Institute of Materials Research and Engineering, A-STAR - Agency for Science, Technology and Research, 3 Research Link, Singapore 11760 (Singapore); Tung, C. H. [Institute of Microelectronics, A-STAR - Agency for Science, Technology and Research, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore)

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Metal-gate-induced reduction of the interfacial layer in Hf oxide gate stacks  

SciTech Connect (OSTI)

The properties of high-{kappa} metal oxide gate stacks are often determined in the final processing steps following dielectric deposition. We report here results from medium energy ion scattering and x-ray photoelectron spectroscopy studies of oxygen and silicon diffusion and interfacial layer reactions in multilayer gate stacks. Our results show that Ti metallization of HfO{sub 2}/SiO{sub 2}/Si stacks reduces the SiO{sub 2} interlayer and (to a more limited extent) the HfO{sub 2} layer. We find that Si atoms initially present in the interfacial SiO{sub 2} layer incorporate into the bottom of the high-{kappa} layer. Some evidence for Ti-Si interdiffusion through the high-{kappa} film in the presence of a Ti gate in the crystalline HfO{sub 2} films is also reported. This diffusion is likely to be related to defects in crystalline HfO{sub 2} films, such as grain boundaries. High-resolution transmission electron microscopy and corresponding electron energy loss spectroscopy scans show aggressive Ti-Si intermixing and oxygen diffusion to the outermost Ti layer, given high enough annealing temperature. Thermodynamic calculations show that the driving forces exist for some of the observed diffusion processes.

Goncharova, L. V.; Dalponte, M.; Gustafsson, T.; Celik, O.; Garfunkel, E.; Lysaght, P. S.; Bersuker, G. [Department of Physics and Astronomy, and Laboratory for Surface Modification, Rutgers University, 136 Frelinghuysen Rd., Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, and Laboratory for Surface Modification, Rutgers University, 610 Taylor Rd., Piscataway, New Jersey 08854 (United States); SEMATECH, 2705 Montopolis Dr., Austin, Texas 78741 (United States)

2007-03-15T23:59:59.000Z

322

ACCEPTED MANUSCRIPT The behaviour of Rare-Earth Elements, Zr and Hf during biologically-mediated  

E-Print Network [OSTI]

ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT 1 The behaviour of Rare-Earth Elements, Zr and Hf during.a,b* , Cangemi M.a , Brusca L.c , Madonia P.c , Saiano F.d , Zuddas P.e a) Department of Earth and Marine at the solid-liquid interface influencing the distribution of trace elements onto microbial surfaces. Since

323

Investigation of HF plasma turbulence excitation and dissipation in the vicinity of 5th  

E-Print Network [OSTI]

of stimulated electromagnetic emission (SEE) of the ionosphere pumped by powerful HF radio waves are presented, Uppsala Division, SE-751 21 Uppsala, Sweden Experimental results on development and relaxation times after PW turn off d 0.7­1.0 ms are 2­4 times faster than collisional ones for the Langmuir waves

324

Oxygen diffusion and reactions in Hf-based dielectrics L. V. Goncharova,a  

E-Print Network [OSTI]

Oxygen diffusion and reactions in Hf-based dielectrics L. V. Goncharova,a M. Dalponte, D. G Oxygen transport in and reactions with thin hafnium oxide and hafnium silicate films have been. The exchange rate is faster for pure hafnium oxides than for silicates. The amount of exchanged oxygen

Gustafsson, Torgny

325

Amorphous Alloy Membranes for High Temperature Hydrogen Separation  

SciTech Connect (OSTI)

At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

Coulter, K

2013-09-30T23:59:59.000Z

326

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films  

E-Print Network [OSTI]

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

327

Hydrogen: The ultimate fuel and energy carrier  

Science Journals Connector (OSTI)

Hydrogen: The ultimate fuel and energy carrier ... Some of the questions include: 1)Why choose hydrogen as a fuel, 2) How is hydrogen produced, 3)Why is this combustion nonpolluting, 4) How is hydrogen stored? ... Hydrogen ...

Gustav P. Dinga

1988-01-01T23:59:59.000Z

328

Control of silicidation in HfO2/Si,,100... interfaces Deok-Yong Cho, Kee-Shik Park, B.-H. Choi,a  

E-Print Network [OSTI]

like nitrogen.6,7 Among these, Hf-silicide is probably most detrimental since it is metallic and degrades the capacitor performance. Metal- lic Hf-silicide formation has been reported in the interfaceControl of silicidation in HfO2/Si,,100... interfaces Deok-Yong Cho, Kee-Shik Park, B.-H. Choi

Oh, Se-Jung

329

Preventing fuel failure for a beyond design basis accident in a fluoride salt cooled high temperature reactor  

E-Print Network [OSTI]

The fluoride salt-cooled high-temperature reactor (FHR) combines high-temperature coated-particle fuel with a high-temperature salt coolant for a reactor with unique market and safety characteristics. This combination can ...

Minck, Matthew J. (Matthew Joseph)

2013-01-01T23:59:59.000Z

330

Effect of Acidulated Phosphate Fluoride Gel on the Prevention of White Spot Lesions in Patients Undergoing Active Orthodontic Treatment  

E-Print Network [OSTI]

Introduction: The purpose of this study was to evaluate the effect of 1.23% acidulated phosphate fluoride (APF) gel on white spot lesion (WSL) formation utilizing a typical orthodontic treatment interval for the applications. Methods...

Hutto Fretty, Corneil Kimberly

2014-05-06T23:59:59.000Z

331

Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries  

Science Journals Connector (OSTI)

Herein, we describe the preparation of a gel polymer consisting of a solution of lithium salt in alkyl carbonate mixture solvent dispersed in a matrix of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(meth...

Yongguang Zhang; Yan Zhao; Zhumabay Bakenov…

2014-04-01T23:59:59.000Z

332

Tritium production analysis and management strategies for a Fluoride-salt-cooled high-temperature test reactor (FHTR)  

E-Print Network [OSTI]

The Fluoride-salt-cooled High-temperature Test Reactor (FHTR) is a test reactor concept that aims to demonstrate the neutronics, thermal-hydraulics, materials, tritium management, and to address other reactor operational ...

Rodriguez, Judy N

2013-01-01T23:59:59.000Z

333

APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE  

SciTech Connect (OSTI)

Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.

Pierce, R.; Pak, D.

2011-08-10T23:59:59.000Z

334

hydrogen | OpenEI  

Open Energy Info (EERE)

hydrogen hydrogen Dataset Summary Description Technical Reference for Hydrogen Compatibility of Materials Source Sandia National Laboratories Date Released June 03rd, 2010 (4 years ago) Date Updated September 27th, 2012 (2 years ago) Keywords Compatibility of Materials hydrogen NREL Sandia Technical Database Technical Reference Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_cia85_ten_fra_fat.xlsx (xlsx, 60.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10_fra_fat.xlsx (xlsx, 58.5 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san10b_fra_fat.xlsx (xlsx, 59.4 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 1100_san11_fra_fat.xlsx (xlsx, 48.4 KiB)

335

NREL: Learning - Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Production The simplest and most common element, hydrogen is all around us, but always as a compound with other elements. To make it usable in fuel cells or otherwise provide energy, we must expend energy or modify another energy source to extract it from the fossil fuel, biomass, water, or other compound in which it is found. Nearly all hydrogen production in the United States today is by steam reformation of natural gas. This, however, releases carbon dioxide in the process and trades one relatively clean fuel for another, with associated energy loss, so it does little to meet national energy needs. Hydrogen can also be produced by electrolysis-passing an electrical current through water to break it into hydrogen and oxygen-but electrolysis is inefficient and is only as clean

336

Sustainable Hydrogen Production  

Science Journals Connector (OSTI)

...Today, hydrogen is mainly produced from natural gas via steam methane reforming, and although this process can sustain an initial...operating, or maintenance costs are included in the calculation. HHV, higher heating value. System efficiencies of commercial electrolyzers...

John A. Turner

2004-08-13T23:59:59.000Z

337

Hydrogen Production Methods  

Science Journals Connector (OSTI)

As hydrogen appears to be a potential solution for a carbon-free society, its production plays a critical role in showing how well it fulfills the criteria of being environmentally benign and sustainable. Of c...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

338

Hydrogen Production Methods  

Science Journals Connector (OSTI)

Commercially available hydrogen production methods such as steam reforming of natural gas, ... process that are based on fossil hydrocarbons and methods in the stage of development, like thermolysis ... radiolysi...

Y. Yürüm

1995-01-01T23:59:59.000Z

339

Bacterial Fermentative Hydrogen Production  

Broader source: Energy.gov [DOE]

Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

340

Electrolytic Hydrogen Generators  

Science Journals Connector (OSTI)

The energy crisis and associated fuel shortages have propagated many proposals to attain energy independence and develop new sources of energy. The approach of a “Hydrogen Economy” is one of these proposals. The ...

J. B. Laskin

1975-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Hydrogen Economy  

Science Journals Connector (OSTI)

For some time, people have envisioned an economy where the only source of energy was hydrogen. The idea may have originated in Jules...Mysterious Island....There, a shipwrecked engineer says that once they ran ou...

Sidney Borowitz

1999-01-01T23:59:59.000Z

342

The Hydrogen Economy  

Science Journals Connector (OSTI)

During the 1970s a concept grew up: one of the better ways to reduce the spread of pollutants from the burning of fossil fuels would be to replace these with hydrogen. Thoughts concerning this were expressed in t...

J. O’M. Bockris

1977-01-01T23:59:59.000Z

343

Energy Security Through Hydrogen  

Science Journals Connector (OSTI)

Energy and environmental security are major problems facing our global economy. Fossil fuels, particularly crude oil, are ... energy sources. In the long term, a hydrogen-based economy will have an impact on all ...

Professor John W. Sheffield

2007-01-01T23:59:59.000Z

344

The Hydrogen Connection  

SciTech Connect (OSTI)

As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

Barilo, Nick F.

2014-05-01T23:59:59.000Z

345

NREL: Learning - Hydrogen Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel, so the carbon dioxide released in the reformation process adds to the greenhouse effect. Hydrogen has very high energy for its weight, but very low energy for its...

346

National Hydrogen Energy Roadmap  

Fuel Cell Technologies Publication and Product Library (EERE)

This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

347

Hydrogen Compatible Materials Workshop  

Broader source: Energy.gov [DOE]

Summary of the Hydrogen Compatible Materials Workshop held November, 3, 2010, at Sandia National Laboratories in Livermore, California. Summary includes the workshop agenda, an overview of the morning presentations, a discussion of the afternoon meeting, and a list of participants.

348

Hydrogen Production Infrastructure Options Analysis  

Broader source: Energy.gov [DOE]

Presentation on hydrogen production and infrastructure options presented at the DOE Transition Workshop.

349

Solar energy: Hydrogen and oxygen  

Science Journals Connector (OSTI)

Solar energy: Hydrogen and oxygen ... Demonstrating the electrolysis of water with solar energy. ...

John J. Farrell

1982-01-01T23:59:59.000Z

350

Savannah River Hydrogen Storage Technology  

Broader source: Energy.gov [DOE]

Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

351

January 2005 HYDROGEN EMBRITTLEMENT OF  

E-Print Network [OSTI]

1 January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I #12;3 January 2005 Hydrogen Embrittlement: Long History Proc. R. Soc. 23, 168-175, 1875 #12;4 January 2005 Hydrogen Embrittlement: Long History Proc. R. Soc. 23, 168-175, 1875 #12;5 January 2005 Hydrogen

352

Bulk Hydrogen Strategic Directions for  

E-Print Network [OSTI]

Bulk Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia #12;Breakout Session - Bulk Hydrogen Storage Main Themes/Caveats Bulk Storage = Anything storage is an economic solution to address supply/demand imbalance #12;Breakout Session - Bulk Hydrogen

353

Webinar: Hydrogen Compatibility of Materials  

Broader source: Energy.gov [DOE]

Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

354

Nanostructured materials for hydrogen storage  

DOE Patents [OSTI]

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

355

Hydrogen & Fuel Cells Program Overview  

E-Print Network [OSTI]

Hydrogen & Fuel Cells Program Overview Dr. Sunita Satyapal Program Manager Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell

356

Composites Technology for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution

357

Hydrogen recovery process  

DOE Patents [OSTI]

A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2000-01-01T23:59:59.000Z

358

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network [OSTI]

pathway, with hydrogen production at refueling stations (with centralized hydrogen production and gaseous hydrogenwith centralized hydrogen production and liquid hydrogen (

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

359

Effects of fluoride and polymeric additives on the dissolution of calcite and the subsequent formation of fluorite  

Science Journals Connector (OSTI)

Abstract Fluoride is a problematic contaminant of the ground water arising from both natural and man-made origins. In this report, the fluoride uptake by calcite (calcium carbonate) was examined with emphasis on the effects of model organic compounds (polymers) and the possible adhesion of fluorite (calcium fluoride) on calcite. The primary route of the fluoride removal was fluorite formation through dissolution-and-recrystallization. While all model polymers affected the kinetics of fluorite formation, the positively charged poly(ethylene imine) had the most inhibiting influence. The observation of the calcite single crystals using atomic force microscopy revealed that the inhibitory effect was attributed to the retarded diffusion of fluoride to the calcite surface, which was also in accordance with the analysis of bulk experiments with calcite powders. It was also found that the oriented growth of fluorite was induced on the calcite (1 0 4) surface probably by the epitaxy with the (1 2 0) plane of fluorite. The current results could be of critical implications in the process design of fluoride removal by considering organic interferences and minimizing the need of flocculation step.

Taewook Yang; Wansoo Huh; Jae Young Jho; Il Won Kim

2014-01-01T23:59:59.000Z

360

Nitrogen Doping and Thermal Stability in HfSiOxNy Studied by Photoemission and X-ray Absorption Spectroscopy  

SciTech Connect (OSTI)

We have investigated nitrogen-doping effects into HfSiO{sub x} films on Si and their thermal stability using synchrotron-radiation photoemission and x-ray absorption spectroscopy. N 1s core-level photoemission and N K-edge absorption spectra have revealed that chemical-bonding states of N-Si{sub 3-x}O{sub x} and interstitial N{sub 2}-gas-like features are clearly observed in as-grown HfSiO{sub x}N{sub y} film and they decrease upon ultrahigh vacuum (UHV) annealing due to a thermal instability, which can be related to the device performance. Annealing-temperature dependence in Hf 4f and Si 2p photoemission spectra suggests that the Hf-silicidation temperature is effectively increased by nitrogen doping into the HfSiO{sub x} although the interfacial SiO{sub 2} layer is selectively reduced. No change in valence-band spectra upon UHV annealing suggests that crystallization of the HfSiO{sub x}N{sub y} films is also hindered by nitrogen doping into the HfSiO{sub x}.

Toyoda, Satoshi; Okabayashi, Jun; Takahashi, Haruhiko; Oshima, Masaharu; /Tokyo U.; Lee, Dong-Ick; Sun, Shiyu; sun, Steven; Pianetta, Piero A.; /SLAC, SSRL; Ando, Takashi; Fukuda, Seiichi; /SONY, Atsugi

2005-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Interfacial reaction induced phase separation in La{sub x}Hf{sub y}O films  

SciTech Connect (OSTI)

Amorphous La{sub x}Hf{sub y}O films containing La at concentrations (x) of 50 and 20% were prepared by atomic layer deposition on ultrathin SiO{sub 2} films (1 nm). We examined the electronic structures and microstructures of the La{sub x}Hf{sub y}O films by x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD). Phase separation into La{sub 2}O{sub 3} and HfO{sub 2} was observed in the La{sub x}Hf{sub y}O films subjected to annealing temperatures over 900 deg. C, although the mixture of La{sub 2}O{sub 3} and HfO{sub 2} is thermodynamically stable. The structural changes that occurred as the result of phase separation were dependent on the concentrations of La and Hf in the films. During the annealing treatment, silicate was produced due to interfacial reactions and the interfacial reactions were found to be dependent on the La{sub 2}O{sub 3} content in the La{sub x}Hf{sub y}O films, which has a significant influence on the phase separation process and resulting film structure.

Ma, J. W.; Lee, W. J.; Cho, M.-H. [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, K. M.; Sohn, H. C. [Department of Material Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, C. S. [Korea Research Institute of Standards and Science, Daejeon 305-540 (Korea, Republic of); Cho, H. J. [Process Development Team, Semiconductor R and D Center, Samsung Electronics Co., LTD, Gyeonggi-Do 449-711 (Korea, Republic of)

2011-06-15T23:59:59.000Z

362

A low temperature fabrication of HfO{sub 2} films with supercritical CO{sub 2} fluid treatment  

SciTech Connect (OSTI)

To improve the dielectric properties of sputter-deposited hafnium oxide (HfO{sub 2}) films, the supercritical CO{sub 2} (SCCO{sub 2}) fluid technology is introduced as a low temperature treatment. The ultrathin HfO{sub 2} films were deposited on p-type (100) silicon wafer by dc sputtering at room temperature and subsequently treated with SCCO{sub 2} fluids at 150 deg. C to diminish the traps in the HfO{sub 2} films. After SCCO{sub 2} treatment, the interfacial parasitic oxide between the Si substrate and HfO{sub 2} layer is only about 5 A, and the oxygen content of the HfO{sub 2} films apparently increased. From current-voltage (I-V) and capacitance-voltage (C-V) measurements, the leakage current density of the SCCO{sub 2}-treated HfO{sub 2} films is repressed from 10{sup -2} to 10{sup -7} A/cm{sup 2} at electric field=3 MV/cm due to the reduction of traps in the HfO{sub 2} films. The equivalent oxide thickness also obviously decreased. Besides, the efficiency of terminating traps is relative to the pressure of the SCCO{sub 2} fluids.

Tsai, C.-T.; Huang, F.-S. [Institute of Electronics Engineering, National Tsing Hua University, HsinChu 300, Taiwan (China); Chang, T.-C. [Department of Physics, Center for Nanoscience and Nanotechnology, National Sun Yat-set University, 70 Lien-hai Road, Kaohsiung 804, Taiwan (China); Institute of Electro-Optical Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Kin, K.-T. [Industrial Technology Research Institute-Energy and Environment Research Laboratories, Hsinchu 300, Taiwan (China); Liu, P.-T.; Yang, P.-Y. [Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 300, Taiwan (China); Weng, C.-F. [Department of Physics, Center for Nanoscience and Nanotechnology, National Sun Yat-set University, 70 Lien-hai Road, Kaohsiung 804, Taiwan (China)

2008-04-01T23:59:59.000Z

363

Hydrogen storage and generation system  

DOE Patents [OSTI]

A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

2010-08-24T23:59:59.000Z

364

Nuclear quantum effects in water exchange around lithium and fluoride ions  

E-Print Network [OSTI]

We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reaction...

Wilkins, David M; Dang, Liem X

2015-01-01T23:59:59.000Z

365

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Issues on Hydrogen Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special structures River Crossings (culvert): 6 (Rhein, Ruhr, Rhein-Herne-Kanal) River crossing (on bridge): 1 (Rhein-Herne-Kanal) Motorway Crossings: 26 Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands

366

PEG/Ion -Scoring Sheet 1. 0.2 M Sodium Fluoride, 20% PEG 3350  

E-Print Network [OSTI]

3350 23. 0.2 M Ammonium Formate, 20% PEG 3350 24. 0.2 M Lithium Acetate, 20% PEG 3350 25. 0.2 M Acetate, 20% PEG 3350 31. 0.2 M Lithium Sulfate, 20% PEG 3350 32. 0.2 M Magnesium Sulfate, 20% PEG 3350 33 3350 3. 0.2 M Ammonium Fluoride, 20% PEG 3350 4. 0.2 M Lithium Chloride, 20% PEG 3350 5. 0.2 M

Hill, Chris

367

FNS Presentation - Hydrogen Station & Hydrogen ICE Vehicles Operation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Station & Hydrogen ICE Hydrogen Station & Hydrogen ICE Vehicle Operations Federal Network for Sustainability Idaho Falls, Idaho - July 2006 Jim Francfort INL/CON-06-11569 Presentation Outline * Background & Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations * Fuel Dispensing * Hydrogen & HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * Briefly, other AVTA Activities * WWW Information 2 AVTA Background & Goal * Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's (DOE) FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) & the AVTA testing partner Electric Transportation Applications (ETA) * AVTA Goal - Provide benchmark data for technology

368

Magnetic liquefier for hydrogen  

SciTech Connect (OSTI)

This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

NONE

1992-12-31T23:59:59.000Z

369

Hydrogen-Selective Membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

1995-09-19T23:59:59.000Z

370

Water's Hydrogen Bond Strength  

E-Print Network [OSTI]

Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

Martin Chaplin

2007-06-10T23:59:59.000Z

371

Hydrogen-selective membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1997-07-29T23:59:59.000Z

372

Hydrogen-selective membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1995-09-19T23:59:59.000Z

373

FCT Hydrogen Delivery: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Delivery: Current Technology on Facebook Tweet about FCT Hydrogen Delivery: Current Technology on Twitter Bookmark FCT Hydrogen Delivery: Current Technology on Google Bookmark FCT Hydrogen Delivery: Current Technology on Delicious Rank FCT Hydrogen Delivery: Current Technology on Digg Find More places to share FCT Hydrogen Delivery: Current Technology on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Production Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology Today, hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube

374

Electronic structure and magnetic susceptibility of the different structural modifications of Ti, Zr, and Hf metals  

Science Journals Connector (OSTI)

The electronic structure of the early transition metals Ti, Zr, and Hf has been investigated for the hexagonal (?), hcp (?), bcc (?), and fcc phases using the linear-muffin-tin-orbital method of band-structure calculation. The results of these investigations are discussed in the light of previous band-structure calculations and experimental data closely related to the electronic structure (low-temperature specific heat, superconductive properties and magnetic susceptibility). It is found from the theoretical calculations that the electronic density of states at the Fermi level increases in the phase sequence hexagonal (?)?hcp (?)?fcc?bcc (?) and this behavior is unambiguously reflected in all the experimental data as well. A separation of the magnetic susceptibility into its components is performed and from this, the temperature dependence of the Pauli susceptibility for Ti, Zr, and Hf is deduced.

I. Bakonyi, H. Ebert, and A. I. Liechtenstein

1993-09-15T23:59:59.000Z

375

Hydrogen Pathway Cost Distributions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

376

ENERGY | Hydrogen Economy  

Science Journals Connector (OSTI)

Abstract The growing concerns about global climate change, local pollution, and availability and security of energy supply have drawn the larger public attention, well outside the frontiers of the research community. A large debate has been considering the potential benefits of a hydrogen economy with low- or carbon-free primary energy sources. The attractive potential of hydrogen is countered by uncertainties about the development and the economics of the implied key enabling technologies, such as renewable energy sources, advanced production processes, fuel cells (FCs), novel storage technologies, safety, and a brand new or a substantially modified infrastructure. A paradigm shift to a hydrogen economy will surely require substantial research and development (R&D) breakthroughs on critical technologies with a lengthy transitional approach.

M. Conte; M. Ronchetti

2013-01-01T23:59:59.000Z

377

Hydrogen Generator Appliance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Generator Appliance Hydrogen Generator Appliance Presentation by Gus Block, Nuvera Fuel Cells, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held...

378

Natural Gas and Hydrogen Infrastructure Opportunities Workshop...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen...

379

Hydrogen Storage Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

storing hydrogen include: Physical storage of compressed hydrogen gas in high pressure tanks (up to 700 bar) Physical storage of cryogenic liquid hydrogen (cooled to -253C, at...

380

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network [OSTI]

Electrochemical hydrogen production methods are quiteonly causative hydrogen production method. Although the massa method for the production of molecular hydrogen from

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network [OSTI]

currents and hydrogen production rates are shown to followmolecules. The hydrogen production efficiency is currentlycurrently available hydrogen production routes that can be

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

382

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

pieces of hardware: 1. Hydrogen production equipment (e.g.when evaluating hydrogen production costs. Many analyses inrespect to size and hydrogen production method. These costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

383

Tanadgusix (TDX) Foundation Hydrogen Project | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tanadgusix (TDX) Foundation Hydrogen Project Tanadgusix (TDX) Foundation Hydrogen Project 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer...

384

Strategic Directions for Hydrogen Delivery Workshop Proceedings  

Broader source: Energy.gov (indexed) [DOE]

including water or oil pipelines for hydrogen transport Assess viability of natural gas safety systems when hydrogen is introduced Conduct field demonstra- tion of hydrogen...

385

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy Hydrogen, Fuel Cells,...

386

Hydrogen Storage Challenges | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Current Technology Hydrogen Storage Challenges Hydrogen Storage Challenges For transportation, the overarching technical challenge for hydrogen storage is how to store the...

387

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

388

Chemical Hydrogen Storage Research and Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Hydrogen Storage Research and Development Chemical Hydrogen Storage Research and Development DOE's chemical hydrogen storage R&D is focused on developing low-cost...

389

Hydrogen Production Fact Sheet | Department of Energy  

Energy Savers [EERE]

Production Fact Sheet Hydrogen Production Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen production. Hydrogen Production More Documents &...

390

Chevron Hydrogen Company LLC | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

391

HYDROGEN TO THE HIGHWAYS | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HYDROGEN TO THE HIGHWAYS HYDROGEN TO THE HIGHWAYS 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 --...

392

Hunterston Hydrogen Ltd | Open Energy Information  

Open Energy Info (EERE)

Hunterston Hydrogen Ltd Jump to: navigation, search Name: Hunterston Hydrogen Ltd Place: Anglesey, United Kingdom Zip: LL65 4RJ Sector: Hydro, Hydrogen, Wind energy Product:...

393

Florida Hydrogen Initiative | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Florida Hydrogen Initiative Florida Hydrogen Initiative 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009...

394

California Hydrogen Infrastructure Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Infrastructure Project California Hydrogen Infrastructure Project 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

395

Maximizing Light Utilization Efficiency and Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen...

396

President's Hydrogen Fuel Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

President's Hydrogen Fuel Initiative President's Hydrogen Fuel Initiative Presentation prepared by JoAnn Milliken for the 2005 Manufacturing for the Hydrogen Economy workshop...

397

Hydrogen Fuel Quality - Focus: Analytical Methods Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

398

Hydrogen and Fuel Cells Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

71 Hydrogen and Fuel Cells Success Stories en Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle http:energy.goveeresuccess-storiesarticlesadvancing-hydrogen-in...

399

New Materials for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

400

Hydrogen production from microbial strains  

DOE Patents [OSTI]

The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

Harwood, Caroline S; Rey, Federico E

2012-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EFFECT OF AGING ON THE PHASE TRANSFORMATION AND MECHANICAL BEHAVIOR OF Ti36Ni49Hf15 HIGH  

E-Print Network [OSTI]

and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China (Received August 19 the microstructure, transformation temperature, mechanical properties and shape memory effects (SMEs) for Ti36Ni49Hf

Zheng, Yufeng

402

Human Factors Process Failure Mode and Effects Analysis (HF PFMEA) Application in the Evaluation of Management Risks  

E-Print Network [OSTI]

.3.1. Mechanisms of Prevention ............................................................................................... 11 2.4. Human Factors Process Failure Mode and Effects Analysis (HF PFMEA) ....................... 11 2.5. FMEA Components... ........................................................................................... 15 2.5.5. Risk Priority Number ....................................................................................................... 17 2.6. FMEA Model...

Soguilon, Nenita M.

2009-12-18T23:59:59.000Z

403

Electronic properties of InP (001)/HfO{sub 2} (001) interface: Band offsets and oxygen dependence  

SciTech Connect (OSTI)

Using ab-initio methods, atomic structures and electronic properties of InP (001)/HfO{sub 2} (001) interface are studied within the framework of density functional theory. We examine the InP/HfO{sub 2} model interface electronic structures under varying oxidation conditions. The effects of indium and phosphorous concentrations on interfacial bonding, defect states, band offsets, and the thermodynamic stability at the interface are also investigated. The origin of interfacial gap states in InP (001)/HfO{sub 2} (001) interface are proposed, mainly from the P-rich oxides, which is validated by our experimental work. This highlights the importance of surface passivation prior to high-? deposition based on the in situ spectroscopic results of atomic layer deposition of HfO{sub 2} on InP.

KC, Santosh; Dong, Hong; Longo, Roberto C.; Xiong, Ka [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Wang, Weichao [Department of Electronics and Microelectronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071 (China); Wallace, Robert M.; Cho, Kyeongjae, E-mail: kjcho@utdallas.edu [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080 (United States)

2014-01-14T23:59:59.000Z

404

Initial phases in sputter deposited HfO{sub 2}-Al{sub 2}O{sub 3} nanolaminate films  

SciTech Connect (OSTI)

Nanolaminate films of crystalline HfO{sub 2} and amorphous Al{sub 2}O{sub 3} were grown by reactive sputter deposition on unheated fused SiO{sub 2} and the surface oxide of <111> Si. X-ray diffraction showed the amount of monoclinic (m) HfO{sub 2} decreased with decreasing HfO{sub 2} layer thickness, consistent with a finite crystal size effect. High resolution transmission electron microscopy of individual crystallites detected tetragonal (t) and orthorhombic (o) HfO{sub 2} as the initial phases formed. Whereas the t{yields}m transition is accomplished by a shear mechanism, we demonstrate the important role of polysynthetic twinning for the o{yields}m transition.

Hoppe, E. E.; Aita, C. R.; Gajdardziska-Josifovska, M. [Advanced Coatings Experimental Laboratory, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, Wisconsin 53201 (United States); Department of Physics and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201 (United States)

2007-11-12T23:59:59.000Z

405

Enhanced electrical characteristics of Au nanoparticles embedded in high-k HfO{sub 2} matrix  

SciTech Connect (OSTI)

We present experimental results for laser-induced Au nanoparticle (NP) embedded in a HfO{sub 2} high-k dielectric matrix. Cross-sectional transmission electron microscopy images showed that the Au NPs of 8 nm in diameter were clearly embedded in HfO{sub 2} matrix. Capacitance-voltage measurements of Pt/HfO{sub 2}/Au NPs/HfO{sub 2} on p-type Si substrate reliably exhibited metal-oxide-semiconductor behavior with a large flatband shift of 4.7 V. In addition, the charge retention time at room temperature was found to exceed 10{sup 5} h. This longer time was attributed to the higher electron barrier height via high work function of the Au NP.

Yang, Jung Yup; Kim, Ju Hyung; Choi, Won Joon; Do, Young Ho; Kim, Chae Ok; Hong, Jin Pyo [New Functional Materials and Devices Laboratory, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of)

2006-09-15T23:59:59.000Z

406

Stress effects on superconducting properties of the composite-processed V/sub 2/(Hf,Zr)  

SciTech Connect (OSTI)

The superconducting critical current I/sub c/ (4.2 K) of V/sub 2/(Hf,Zr) composite tape was measured under tensile load. I/sub c/ values of the V/sub 2/(Hf,Zr) composite tape do not change at all up to a strain level of 0.55%, and then decrease irreversibly with respect to strain, although the stress-strain curves for these tapes exhibit no irreversible behavior. Many cracks were observed in the V/sub 2/(Hf,Zr) layer of the composite tape strained up to 0.6%. Thermal expansion data indicate that the residual tensile stress may be produced in the V/sub 2/(Hf,Zr) layer by the large thermal contraction of the layer and may reduce the strain tolerance of the composite tape.

Inoue, K.; Wada, H.; Kuroda, T.; Tachikawa, K.

1981-06-01T23:59:59.000Z

407

Reversed spin polarization at the Co(001)-HfO2(001) interface  

Science Journals Connector (OSTI)

Ab initio electronic-structure calculations on the Co(001)-HfO2(001) interface are reported. The spin polarization of conduction electrons is positive at the interface, i.e., it is reversed with respect to the spin polarization in bulk Co. The electronic structure is very sensitive to the interface structure; without atomic relaxations the reversed spin polarization is not found. The possible relation with spin-polarized tunneling and magnetoresistance is discussed.

P. K. de Boer; G. A. de Wijs; R. A. de Groot

1998-12-15T23:59:59.000Z

408

DOE Hydrogen Analysis Repository: Distributed Hydrogen Fueling Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Hydrogen Fueling Systems Analysis Distributed Hydrogen Fueling Systems Analysis Project Summary Full Title: H2 Production Infrastructure Analysis - Task 1: Distributed Hydrogen Fueling Systems Analysis Project ID: 78 Principal Investigator: Brian James Keywords: Hydrogen infrastructure; costs; methanol; hydrogen fueling Purpose As the DOE considers both direct hydrogen and reformer-based fuel cell vehicles, it is vital to have a clear perspective of the relative infrastructure costs to supply each prospective fuel (gasoline, methanol, or hydrogen). Consequently, this analysis compares these infrastructure costs as well as the cost to remove sulfur from gasoline (as will most likely be required for use in fuel cell systems) and the cost implications for several hydrogen tank filling options. This analysis supports Analysis

409

DOE Hydrogen Analysis Repository: Hydrogen for Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen for Energy Storage Hydrogen for Energy Storage Project Summary Full Title: Cost and GHG Implications of Hydrogen for Energy Storage Project ID: 260 Principal Investigator: Darlene Steward Brief Description: The levelized cost of energy (LCOE) of the most promising and/or mature energy storage technologies was compared with the LCOE of several hydrogen energy storage configurations. In addition, the cost of using the hydrogen energy storage system to produce excess hydrogen was evaluated. The use of hydrogen energy storage in conjunction with an isolated wind power plant-and its effect on electricity curtailment, credit for avoided GHG emissions, and LCOE-was explored. Keywords: Energy storage; Hydrogen; Electricity Performer Principal Investigator: Darlene Steward

410

Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting  

SciTech Connect (OSTI)

Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

Melendez, M.; Milbrandt, A.

2008-04-01T23:59:59.000Z

411

Hydrogen permeability and Integrity of hydrogen transfer pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held January 5th and 6th, 2005 at Oak Ridge National...

412

NREL: Hydrogen and Fuel Cells Research - 2014 DOE Hydrogen and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted November 3, 2014 The U.S. Department of Energy's (DOE) Hydrogen and Fuel Cells...

413

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Companies Hydrogen Companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":1,"width":"380px","height":"250px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

414

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

1999-03-23T23:59:59.000Z

415

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

416

Reactive ion beam etching of HfO{sub 2} film and removal of sidewall redeposition  

SciTech Connect (OSTI)

Comparative studies on ion beam etching (IBE) and reactive ion beam etching (RIBE) of HfO{sub 2} film have been carried out using photoresist as the masking layer. The etching rates of HfO{sub 2} film and photoresist mask in pure Ar and Ar/CHF{sub 3} mixture plasmas were measured as a function of ion energy, plasma composition, and ion beam incident angle. It has been found that the RIBE with Ar/CHF{sub 3} plasma is capable of lowering the threshold energy of ion beam and increasing sputtering yield, compared to the IBE with pure Ar. The redeposition of photoresist sidewall is a major issue, due to the formation of nonvolatile etching products during sputtering of HfO{sub 2} film in both IBE and RIBE. However, the sidewall redeposition can be easily removed in HCl solutions with assistance of ultrasonic wave for RIBE with Ar/CHF{sub 3} plasma. Alternatively, the sidewall redeposition can be eliminated by controlling the slope of photoresist sidewall or combined with ion incident angle.

Wang Xudi; Liu Ying; Xu Xiangdong; Fu Shaojun; Cui Zheng [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China) and School of Mechanical and Automobile Engineering, Hefei University of Technology, Hefei 230009 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Central Microstructure Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

2006-07-15T23:59:59.000Z

417

Gate Metal-Induced Diffusion and Interface Reactions in Hf Oxide Films on Si  

SciTech Connect (OSTI)

When metal electrodes are deposited on a high-{kappa} metal-oxide/SiO{sub 2}/Si stack, chemical interactions may occur both at the metal/high-{kappa} and the high-{kappa}/Si interfaces, causing changes in electrical performance. We report here results from medium energy ion scattering (MEIS) and x-ray photoelectron (XPS) studies of oxygen and silicon transport and interfacial layer reactions in multilayer gate stacks. Our results show that Ti deposition on HfO{sub 2}/SiO{sub 2}/Si stacks causes reduction of the SiO{sub 2} interfacial layer and (to a lesser extent) the HfO{sub 2} layer. Silicon atoms initially present in the interfacial SiO{sub 2} layer incorporate into the bottom of the high-{kappa} layer. Some evidence for titanium-silicon interdiffusion through the high-{kappa} film in the presence of a titanium gate in crystalline HfO{sub 2} films is also reported.

Goncharova, Lyudmila V.; Dalponte, Mateus; Celik, Ozgur; Garfunkel, Eric; Gustafsson, Torgny [Departments of Physics and Chemistry, and Laboratory for Surface Modification, Rutgers University, Piscataway, NJ 08854 (United States); Lysaght, Pat S.; Bersuker, Gennadi I. [Sematech, Austin, Texas 78741 (United States)

2007-09-26T23:59:59.000Z

418

Phase stability and elastic properties of C15 compounds HfV{sub 2}+Nb  

SciTech Connect (OSTI)

The ternary phase diagram of Hf-V-Nb system has been established and the C15 and C14 Laves phase regions located. The structural stability of the cubic Laves phase HfV{sub 2}+Nb was examined using heat capacity measurements and transmission electron microscopy. It is found that the binary C 15 has a martensitic transformation at 115K and that Nb addition can eliminate the martensitic transformation and stabilize the C15 structure. The elastic properties vs. temperature of the C15 HfV{sub 2}+Nb were studied using the resonant ultrasound technique. It is observed that the shear and Young`s moduli increase abnormally with increasing temperature, the bulk modulus is virtually constant, and the Poisson`s ratio is very high and decreases abnormally with increasing temperature. The elastic properties of the C15 compound can be qualitatively understood using the electronic structure obtained from ab initio calculations. The relation between the phase stability and anomalous elastic properties is discussed based on these results.

Chu, F.; Mitchell, T.E. [Los Alamos National Lab., NM (United States); Pope, D.P. [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering

1994-10-01T23:59:59.000Z

419

Impact of titanium addition on film characteristics of HfO{sub 2} gate dielectrics deposited by atomic layer deposition  

SciTech Connect (OSTI)

The impact of 8-to 45-at. % Ti on physical and electrical characteristics of atomic-layer-deposited and annealed hafnium dioxide was studied using vacuum-ultraviolet spectroscopic ellipsometry, secondary ion mass spectroscopy, transmission electron microscopy, atomic force microscopy, x-ray diffraction, Rutherford backscattering spectroscopy, x-ray photoelectron spectroscopy, and x-ray reflectometry. The role of Ti addition on the electrical performance is investigated using molybdenum (Mo)-gated capacitors. The film density decreases with increasing Ti addition. Ti addition stabilizes the amorphous phase of HfO{sub 2}, resulting in amorphous films as deposited. After a high-temperature annealing, the films transition from an amorphous to a polycrystalline phase. Orthorhombic Hf-Ti-O peaks are detected in polycrystalline films containing 33-at. % or higher Ti content. As Ti content is decreased, monoclinic HfO{sub 2} becomes the predominant microstructure. No TiSi is formed at the dielectric/Si interface, indicating films with good thermal stability. The band gap of Hf-Ti-O was found to be lower than that of HfO{sub 2}. Well-behaved capacitance-voltage and leakage current density-voltage characteristics were obtained for Hf-Ti-O. However, an increased leakage current density was observed with Ti addition. The data from capacitance-voltage stressing indicate a smaller flatband voltage (V{sub fb}) shift in the HfO{sub 2} films with low Ti content when compared with the HfO{sub 2} films. This indicates less charge trapping with a small amount of Ti addition.

Triyoso, D.H.; Hegde, R.I.; Zollner, S.; Ramon, M.E.; Kalpat, S.; Gregory, R.; Wang, X.-D.; Jiang, J.; Raymond, M.; Rai, R.; Werho, D.; Roan, D.; White, B.E. Jr.; Tobin, P.J. [Freescale Semiconductor, Inc., Advanced Products Research and Development Laboratory, 3501 Ed Bluestein Boulevard, Austin, Texas 78721 (United States)

2005-09-01T23:59:59.000Z

420

Chemical analysis of HfO{sub 2}/Si (100) film systems exposed to NH{sub 3} thermal processing  

SciTech Connect (OSTI)

Nitrogen incorporation in HfO{sub 2}/SiO{sub 2} films utilized as high-k gate dielectric layers in advanced metal-oxide-semiconductor field effect transistors has been investigated. Thin HfO{sub 2} blanket films deposited by atomic layer deposition on either SiO{sub 2} or NH{sub 3} treated Si (100) substrates have been subjected to NH{sub 3} and N{sub 2} anneal processing. Several high resolution techniques including electron microscopy with electron energy loss spectra, grazing incidence x-ray diffraction, and synchrotron x-ray photoelectron spectroscopy have been utilized to elucidate chemical composition and crystalline structure differences between samples annealed in NH{sub 3} and N{sub 2} ambients as a function of temperature. Depth profiling of core level binding energy spectra has been obtained by using variable kinetic energy x-ray photoelectron spectroscopy with tunable photon energy. An 'interface effect' characterized by a shift of the Si{sup 4+} feature to lower binding energy at the HfO{sub 2}/SiO{sub 2} interface has been detected in the Si 1s spectra; however, no corresponding chemical state change has been observed in the Hf 4f spectra acquired over a broad range of electron take-off angles and surface sensitivities. The Si 2p spectra indicate Si-N bond formation beneath the HfO{sub 2} layer in the samples exposed to NH{sub 3} anneal. The NH{sub 3} anneal ambient is shown to produce a metastable Hf-N bond component corresponding to temperature driven dissociation kinetics. These findings are consistent with elemental profiles across the HfO{sub 2}/Si(100) interface determined by electron energy loss spectroscopy measurements. X-ray diffraction measurements on similarly treated films identify the structural changes resulting from N incorporation into the HfO{sub 2} films.

Lysaght, Patrick S.; Barnett, Joel; Bersuker, Gennadi I.; Woicik, Joseph C.; Fischer, Daniel A.; Foran, Brendan; Tseng, Hsing-Huang; Jammy, Raj [Front End Process Division, SEMATECH, 2706 Montopolis Drive, Austin, Texas 78741-6499 (United States); National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Physical Characterization Laboratory, Advanced Technology Development Facility, 2706 Montopolis Drive, Austin, Texas 78741-6499 (United States); Front End Process Division, SEMATECH, 2706 Montopolis Drive, Austin, Texas 78741-6499 (United States)

2007-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electronic Structures of C28H4 and Hf@C28H4 and Their Ions. SCF Calculations  

Science Journals Connector (OSTI)

In our calculations, we use the ab initio restricted Hartree?Fock (SCF) and configuration interaction (CI) methods to study the electronic structure respectively excluding and including electron correlation and the spin?orbit interaction. ... Systems of Calculation. ... The molecular integrals were calculated once for C28H4 (or Hf@C28H4) and stored on disk for all the SCF calculations of the neutral molecule and ions of C28H4 (or Hf@C28H4). ...

Debbie Fu-Tai Tuan; Russell M. Pitzer

1996-04-11T23:59:59.000Z

422

Model calculations of the hydrogen/deuterium kinetic isotope effect in the atomic hydrogen + disilane reaction  

Science Journals Connector (OSTI)

Model calculations of the hydrogen/deuterium kinetic isotope effect in the atomic hydrogen + disilane reaction ...

I. Safarik; T. L. Pollock; O. P. Strausz

1974-01-01T23:59:59.000Z

423

Catalyst for Recombination of Hydrogen and Oxygen in Confined Spaces Under High Concentrations of Hydrogen  

Science Journals Connector (OSTI)

Technical Paper / Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Hydrogen Safety and Recombiners

V. Shepelin; D. Koshmanov; E. Chepelin

424

Etching characteristics of high-k dielectric HfO{sub 2} thin films in inductively coupled fluorocarbon plasmas  

SciTech Connect (OSTI)

Inductively coupled fluorocarbon (CF{sub 4}/Ar and C{sub 4}F{sub 8}/Ar) plasmas were used to etch HfO{sub 2}, which is a promising high-dielectric-constant material for the gate of complementary metal-oxide-semiconductor devices. The etch rates of HfO{sub 2} in CF{sub 4}/Ar plasmas exceeded those in C{sub 4}F{sub 8}/Ar plasmas. The tendency for etch rates to become higher in fluorine-rich (high F/C ratio) conditions indicates that HfO{sub 2} can be chemically etched by fluorine-containing species. In C{sub 4}F{sub 8}/Ar plasmas with a high Ar dilution ratio, the etch rate of HfO{sub 2} increased with increasing bias power. The etch rate of Si, however, decreased with bias power, suggesting that the deposition of carbon-containing species increased with increasing the power and inhibited the etching of Si. The HfO{sub 2}/Si selectivity monotonically increased with increasing power, then became more than 5 at the highest tested bias power. The carbon-containing species to inhibit etching of Si play an important role in enhancing the HfO{sub 2}/Si selectivity in C{sub 4}F{sub 8}/Ar plasmas.

Takahashi, Kazuo; Ono, Kouichi; Setsuhara, Yuichi [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

2005-11-15T23:59:59.000Z

425

Hydrogen Delivery Infrastructure Options Analysis  

Fuel Cell Technologies Publication and Product Library (EERE)

This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

426

High-Pressure Hydrogen Tanks  

Broader source: Energy.gov [DOE]

Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

427

Hydrogen and Fuel Cell Activities  

Broader source: Energy.gov (indexed) [DOE]

U.S. * 50% of this resource could provide 340,000 kgday of hydrogen. Background: Biogas as an Early Source of Renewable Hydrogen * The majority of biogas resources are...

428

Liquid Hydrogen in Protonic Chabazite  

Science Journals Connector (OSTI)

1,5,6 Today, the prototype hydrogen vehicles use space-demanding tanks with compressed gas. ... aerogela ... hydrogen (LH2) storage in terms of vol., vehicle range, dormancy, energy required for fuel processing, and cost. ...

Adriano Zecchina; Silvia Bordiga; Jenny G. Vitillo; Gabriele Ricchiardi; Carlo Lamberti; Giuseppe Spoto; Morten Bjørgen; Karl Petter Lillerud

2005-04-12T23:59:59.000Z

429

Hydrogen storage and distribution systems  

Science Journals Connector (OSTI)

Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or ... or airplanes. All batch transportation requires a storage system but al...

Andreas Züttel

2007-03-01T23:59:59.000Z

430

Hydrogen Storage in Graphite Nanofibers  

Science Journals Connector (OSTI)

Hydrogen Storage in Graphite Nanofibers ... Subsequent lowering of the pressure to nearly atmospheric conditions results in the release of a major fraction of the stored hydrogen at room temperature. ...

Alan Chambers; Colin Park; R. Terry K. Baker; Nelly M. Rodriguez

1998-05-12T23:59:59.000Z

431

Hydrogen Distribution and Delivery Infrastructure  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

432

Muon capture in hydrogen  

E-Print Network [OSTI]

Theoretical difficulties in reconciling the measured rates for ordinary and radiative muon capture are discussed, based on heavy-baryon chiral perturbation theory. We also examine ambiguity in our analysis due to the formation of p$\\mu$p molecules in the liquid hydrogen target.

S. Ando; F. Myhrer; K. Kubodera

2001-10-30T23:59:59.000Z

433

Rethinking Hydrogen Cars  

Science Journals Connector (OSTI)

...cleanly or used in fuel cells and so can reduce air pollution; (ii) it emits...oil dependence. Air Quality Hydrogen...cost-effective solutions (9). Emissions...SO 2 per GJ of fuel(kg SO 2 /GJ...08 39 0.70 Fossil fuel electricity...

David W. Keith; Alexander E. Farrell

2003-07-18T23:59:59.000Z

434

The Hydrogen Backlash  

Science Journals Connector (OSTI)

...be gained by adopting hybrid gasoline-electric...former DOE director of energy research John Deutch...point out on page 974 , hybrid electric vehicles—a...market—would improve energy efficiency and reduce...a separate hydrogen infrastructure. Near-term help...

Robert F. Service

2004-08-13T23:59:59.000Z

435

Hydrogen isotope separation  

DOE Patents [OSTI]

A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

436

Resistive hydrogen sensing element  

DOE Patents [OSTI]

Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

Lauf, Robert J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

437

Effects of N{sub 2}, O{sub 2}, and Ar plasma treatments on the removal of crystallized HfO{sub 2} film  

SciTech Connect (OSTI)

The effects of plasma treatment using Ar, N{sub 2}, and O{sub 2} on the removal of crystallized HfO{sub 2} films in a dilute HF solution were studied. The resulting damage in source and drain regions, and recess in isolation regions were also investigated. It was found that plasma nitridation with an ion energy of several hundred electron volts can lower the wet etch resistance of crystallized HfO{sub 2} films up to 70 A thick through the generation of Hf-N bonds. However, thermal nitridation did not introduce sufficient nitrogen into bulk crystallized HfO{sub 2} films to lower wet etch resistance. Plasma nitridation without bias power introduced nitrogen to the crystallized HfO{sub 2} in the region only within 10 A of the surface. The enhancement of the etch rate of crystallized HfO{sub 2} in dilute HF and the amount of recess in the active and isolation regions using N{sub 2}, O{sub 2}, and Ar plasma treatment have been evaluated. Results show that N{sub 2} plasma treatment is the most effective in enhancing the removal rate of crystallized HfO{sub 2} in dilute HF and minimizing recess on substrate among the plasmas studied.

Chen Jinghao; Yoo, Won Jong; Chan, Daniel S.H. [Silicon Nano Device Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

2006-01-15T23:59:59.000Z

438

Hydrogen & Fuel Cells Program Overview  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Joint Plenary

439

Fossil-Based Hydrogen Production  

E-Print Network [OSTI]

) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX · Integrated Ceramic Membrane System for H2

440

Webinar: Hydrogen Storage Materials Requirements  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Materials-Based Hydrogen Storage  

Broader source: Energy.gov [DOE]

There are presently three generic mechanisms known for storing hydrogen in materials: absorption, adsorption, and chemical reaction.

442

California Hydrogen Infrastructure Project  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ���¢��������real-world���¢������� retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation���¢��������s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products���¢�������� Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user���¢��������s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

443

Argonne leads hydrogen storage project  

Science Journals Connector (OSTI)

A new $1.88m research project on on-board hydrogen storage at the US Department of Energy's Argonne National Laboratory in Illinois aims to develop a hydrogen storage system that can hold enough hydrogen for a driving range of 300 miles (480 km).

2007-01-01T23:59:59.000Z

444

Hydrogen Cars and Water Vapor  

E-Print Network [OSTI]

. This cycle is currently under way with hydrogen fuel cells. As fuel cell cars are suggested as a solutionHydrogen Cars and Water Vapor D.W.KEITHANDA.E.FARRELL'S POLICY FORUM "Rethinking hydrogen cars" (18 misidentified as "zero-emissions vehicles." Fuel cell vehicles emit water vapor. A global fleet could have

Colorado at Boulder, University of

445

Rydberg states of triatomic hydrogen  

Science Journals Connector (OSTI)

...Watson Rydberg states of triatomic hydrogen C. H. Greene 1 J. A. Stephens 2 1...Rydberg electron dynamics in triatomic hydrogen, at a level that includes the full rotational...deuterium. Rydberg states of triatomic hydrogen B y C. H. Greene1 and J. A. Stephens2...

1997-01-01T23:59:59.000Z

446

Hydrogen & Fuel Cells Program Overview  

E-Print Network [OSTI]

Hydrogen & Fuel Cells Program Overview Dr. Sunita Satyapal Program Manager 2011 Annual Merit Review and Peer Evaluation Meeting May 9, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell transportation applications/light duty vehicles Updated Program Plan May 2011 Hydrogen and Fuel Cells Key Goals 2

447

Hybrid & Hydrogen Vehicle Research Laboratory  

E-Print Network [OSTI]

such as Challenge X use this facility to develop advanced vehicles. Hydrogen Fueling Station Developed byAir Products and Chemicals, Inc. with funding from US DOE, the commercial hydrogen fueling station was installed at Penn State University Park in Fall 2004. This station will be used to fuel in-service hydrogen

Lee, Dongwon

448

Upcoming Webinar December 16: International Hydrogen Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges...

449

Ultraviolet stimulation of hydrogen peroxide production using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultraviolet stimulation of hydrogen peroxide production using aminoindazole, diaminopyridine, and phenylenediamine solid polymer Ultraviolet stimulation of hydrogen peroxide...

450

Robust Polymer Composite Membranes for Hydrogen Separation |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Robust Polymer Composite Membranes for Hydrogen Separation Robust Polymer Composite Membranes for Hydrogen Separation polymercompositemembranes.pdf More Documents & Publications...

451

International Hydrogen Infrastructure Challenges Workshop Summary...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Fuel Cell...

452

International Hydrogen Infrastructure Challenges Workshop Summary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE...

453

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Broader source: Energy.gov (indexed) [DOE]

Combinatorial Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial...

454

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Broader source: Energy.gov (indexed) [DOE]

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

455

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

456

National Hydrogen Learning Demonstration Status | Department...  

Energy Savers [EERE]

Hydrogen Learning Demonstration Status National Hydrogen Learning Demonstration Status Download presentation slides from the Fuel Cell Technologies Program webinar "National...

457

NREL: Hydrogen and Fuel Cells Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transportation, stationary, and portable applications. Learn about our projects: Fuel cells Hydrogen production and delivery Hydrogen storage Manufacturing Market transformation...

458

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

459

DOE Hydrogen Analysis Repository: Hydrogen Energy Station Validation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Energy Station Validation Hydrogen Energy Station Validation Project Summary Full Title: Validation of an Integrated Hydrogen Energy Station Previous Title(s): Validation of an Integrated System for a Hydrogen-Fueled Power Park Project ID: 128 Principal Investigator: Dan Tyndall Keywords: Power parks; co-production; hydrogen; electricity; digester gas Purpose Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell (HTFC) designed to produce power and hydrogen from digester gas. Performer Principal Investigator: Dan Tyndall Organization: Air Products and Chemicals, Inc. Address: 7201 Hamilton Blvd. Allentown, PA 18195 Telephone: 610-481-6055 Email: tyndaldw@airproducts.com Period of Performance Start: September 2001 End: March 2009

460

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Code for Hydrogen Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2 piping and pipelines - Include requirements specific to H 2 service for power, process, transportation, distribution, commercial, and residential applications - Balance reference and incorporation of applicable sections of B31.1, B31.3 and B31.8 - Have separate parts for industrial, commercial/residential

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE Hydrogen Analysis Repository: Production of Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production of Hydrogen from Coal Production of Hydrogen from Coal Project Summary Full Title: Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies Project ID: 265 Principal Investigator: Kristin Gerdes Brief Description: This report assesses the improvements in cost and performance of hydrogen production from domestic coal when employing emerging technologies funded by DOE. Keywords: Hydrogen production; Coal Purpose This analysis specifically evaluates replacing conventional acid gas removal (AGR) and hydrogen purification with warm gas cleanup (WGCU) and a high-temperature hydrogen membrane (HTHM) that meets DOE's 2010 and 2015 performance and cost research and development (R&D) targets. Performer Principal Investigator: Kristin Gerdes

462

DOE Hydrogen and Fuel Cells Program: Permitting Hydrogen Facilities Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy The objective of this U.S. Department of Energy Hydrogen Permitting Web site is to help local permitting officials deal with proposed hydrogen fueling stations, fuel cell installations for telecommunications backup power, and other hydrogen projects. Resources for local permitting officials who are looking to address project proposals include current citations for hydrogen fueling stations and a listing of setback requirements on the Alternative Fuels & Advanced Vehicle Data Center Web site. In addition, this overview of telecommunications fuel cell use and an animation that demonstrates telecommunications site layout using hydrogen fuel cells for backup power should provide helpful

463

DOE Hydrogen Analysis Repository: Hydrogen Demand and Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Demand and Infrastructure Deployment Hydrogen Demand and Infrastructure Deployment Project Summary Full Title: Geographically-Based Hydrogen Demand and Infrastructure Deployment Scenario Analysis Project ID: 189 Principal Investigator: Margo Melendez Keywords: Hydrogen fueling; infrastructure; fuel cell vehicles (FCV) Purpose This analysis estimates the spatial distribution of hydrogen fueling stations necessary to support the 5 million fuel cell vehicle scenario, based on demographic demand patterns for hydrogen fuel cell vehicles and strategy of focusing development on specific regions of the U.S. that may have high hydrogen demand. Performer Principal Investigator: Margo Melendez Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401-3393 Telephone: 303-275-4479

464

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

465

Hydrogen Storage by Polylithiated Molecules and Nanostructures  

Science Journals Connector (OSTI)

Hydrogen Storage by Polylithiated Molecules and Nanostructures ... (3) Physisorption offers the possibility of storing hydrogen in molecular form. ... Also given in Table 1 are the hydrogen binding energies, which are calculated by subtracting the total energy of the hydrogenated polylithiated molecules from the sum of the total energies of the isolated polylithiated molecules and the hydrogen molecules, divided by the number of hydrogen molecules. ...

Süleyman Er; Gilles A. de Wijs; Geert Brocks

2009-04-29T23:59:59.000Z

466

Neutron diffraction studies of antiferromagnetism in manganous fluoride and some isomorphous compounds  

E-Print Network [OSTI]

. CALCULATED AND OBSERVED INTENSITIES MnF2..................53 VI. CALCULATED AND OBSERVED INTENSITIES FeF2..................57 VII. CALCULATED AND OBSERVED INTENSITIES CqF2..................62 VIII. CALCULATED AND OBSERVED INTENSITIES NiF2... 18. Diffraction Patterns from C0F2............................ 59 19. Saturation Curve of F2 in CoF0 and NiFo.................6l 100 2 2 20. NiF2 Diffraction Patterns................................0\\- 21. Saturation Curves for the Fluorides...

Erickson, Richard Ames

1952-01-01T23:59:59.000Z

467

Fluoride removal in the presence of organophosphates: application to chemical warfare agent destruction  

E-Print Network [OSTI]

generated. Of the many commercially available anion exchange resins, two were identified by their manufacturer as possible fluoride exchangers. Rohm & Haas' Amberlite IRA- 400(OH/Gl) and Dow Corporation's Dowex MWA-1 were examined for their ability... crystal 105-107 extremel soluble Table 63: Physical Properties of MPA, GAS? 993-13-5. *As determined by titration, appendix F. APPENDIX C REVIEW OF ION EXCHANGE Ion exchange is based on the principle of a fixed ionic group bound to a resin which...

Wenaas, Christopher Eric

1996-01-01T23:59:59.000Z

468

HYDROFLUORIC ACID SCRUBBER SYSTEMS  

SciTech Connect (OSTI)

Each year over a million gallons of water are used to scrub hydrogen fluoride (HP) vapors from waste off-gas streams. Use of other potential scrubber solutions such as potassium hydroxide (KOH), aluminum nitrate nonahydrate (ANN), and monobasic aluminum nitrate (monoban) would result in significant volume reductions. A laboratory study was initiated to (1) demonstrate the effectiveness of these scrubber solutions to sorb HF, (2) determine if unexpected reactions occurred at flowsheet conditions, and (3) determine the consequences of deviation from flowsheet conditions. Caustic or aluminum scrubber solutions remove hydrogen fluoride from off-gas streams. Solids which appear with aluminum could be avoided by heating the scrubber solution.

PANESKO JV; MERRITT HD

2011-05-18T23:59:59.000Z

469

Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Chloride and Hydrogen Sulfide Hydrogen Chloride and Hydrogen Sulfide Removal Sorbents for High Temperature Gas Streams Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,767,000 entitled "Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams." Disclosed in this patent is the invention of a unique regenerable sorbent process that can remove contaminants from gas produced by the gasification of fossil fuels. Specifically, the process removes hydrogen chloride by using the regenerable sorbent and simultaneously extracts hydrogen chloride compounds and hydrogen

470

Advanced hydrogen utilization technology demonstration  

SciTech Connect (OSTI)

This report presents the results of a study done by Detroit Diesel Corporation (DDC). DDC used a 6V-92TA engine for experiments with hydrogen fuel. The engine was first baseline tested using methanol fuel and methanol unit injectors. One cylinder of the engine was converted to operate on hydrogen fuel, and methanol fueled the remaining five cylinders. This early testing with only one hydrogen-fueled cylinder was conducted to determine the operating parameters that would later be implemented for multicylinder hydrogen operation. Researchers then operated three cylinders of the engine on hydrogen fuel to verify single-cylinder idle tests. Once it was determined that the engine would operate well at idle, the engine was modified to operate with all six cylinders fueled with hydrogen. Six-cylinder operation on hydrogen provided an opportunity to verify previous test results and to more accurately determine the performance, thermal efficiency, and emissions of the engine.

Hedrick, J.C.; Winsor, R.E. [Detroit Diesel Corp., MI (United States)] [Detroit Diesel Corp., MI (United States)

1994-06-01T23:59:59.000Z

471

Polymer system for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

2000-01-01T23:59:59.000Z

472

Polymer formulations for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (Livermore, CA); Whinnery, LeRoy L. (Livermore, CA)

1998-11-17T23:59:59.000Z

473

Reversible hydrogen storage materials  

DOE Patents [OSTI]

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

474

Hydrogen Fuel Cell Automobiles  

Science Journals Connector (OSTI)

With gasoline now more than $2.00 a gallon alternate automobiletechnologies will be discussed with greater interest and developed with more urgency. For our government the hydrogen fuel cell-powered automobile is at the top of the list of future technologies. This paper presents a simple description of the principles behind this technology and a brief discussion of the pros and cons. It is also an extension on my previous paper on the physics of the automobile engine.1

Bernard J. Feldman

2005-01-01T23:59:59.000Z

475

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

476

Alternative Fuels Data Center: Hydrogen Related Links  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Related Links to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Related Links on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Related Links on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Google Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Delicious Rank Alternative Fuels Data Center: Hydrogen Related Links on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Related Links on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

477

Mechanisms and selectivity for etching of HfO{sub 2} and Si in BCl{sub 3} plasmas  

SciTech Connect (OSTI)

The authors have investigated plasma etching of HfO{sub 2}, a high dielectric constant material, and poly-Si in BCl{sub 3} plasmas. Etching rates were measured as a function of substrate temperature (T{sub s}) at several source powers. Activation energies range from 0.2 to 1.0 kcal/mol for HfO{sub 2} and from 0.8 to 1.8 kcal/mol for Si, with little or no dependence on source power (20-200 W). These low activation energies suggest that product removal is limited by chemical sputtering of the chemisorbed Hf or Si-containing layer, with a higher T{sub s} only modestly increasing the chemical sputtering rate. The slightly lower activation energy for HfO{sub 2} results in a small improvement in selectivity over Si at low temperature. The surface layers formed on HfO{sub 2} and Si after etching in BCl{sub 3} plasmas were also investigated by vacuum-transfer x-ray photoelectron spectroscopy. A thin boron-containing layer was observed on partially etched HfO{sub 2} and on poly-Si after etching through HfO{sub 2} films. For HfO{sub 2}, a single B(1s) feature at 194 eV was ascribed to a heavily oxidized species with bonding similar to B{sub 2}O{sub 3}. B(1s) features were observed for poly-Si surfaces at 187.6 eV (B bound to Si), 189.8 eV, and 193 eV (both ascribed to BO{sub x}Cl{sub y}). In the presence of a deliberately added 0.5% air, the B-containing layer on HfO{sub 2} is largely unaffected, while that on Si converts to a thick layer with a single B(1s) peak at 194 eV and an approximate stoichiometry of B{sub 3}O{sub 4}Cl.

Wang Chunyu; Donnelly, Vincent M. [Department of Chemical and Biomolecular Engineering, University of Houston, 4800 Calhoun Road, Houston, Texas 77204 (United States)

2008-07-15T23:59:59.000Z

478

Polyatomic-buffered pulsed DF/HF laser using electron-beam or photolysis initiation  

SciTech Connect (OSTI)

The initial performance of pulsed DF/HF chain lasers is presented in which the effect of polyatomic diluents on laser behavior is systematically explored. Laser energy, pulse length, and spectral output were investigated as functions of diluent gas (NF3, SF6, CF4), total mixture pressure, the partial pressure of fuel and oxidizer, O/sub 2/ concentration, and strength of initiation. Magnetically-confined electron beam and photolytically initiated systems are found to yield comparable performance. Results include 65 J/liter-atm DF output at 200 Torr cavity pressure and the ability to suppress long wavelength transitions from the free-running spectrum. 21 references.

Amimoto, S.T.; Gross, R.W.F.; Harper, G.N.; Azevedo, L.S.; Hofland, R. Jr.

1987-06-01T23:59:59.000Z

479

High-K barrier penetration in Hf174: A challenge to K selection  

Science Journals Connector (OSTI)

A sensitive study of the decay of the deformation-aligned K=14, 4-?s isomer in Hf174 has revealed a multitude of the K-forbidden branches to the ground-state rotational band and other low-K bands, in competition with the known decays to high-K bands. The isomeric transitions have consistently low hindrance factors. These anomalous findings in an axially symmetric deformed nucleus severely test our understanding of the K-selection rule. The isomeric decay to an I=12 rotation-aligned state, and its mixing with the I=12 yrast state, provide a partial explanation.

P. M. Walker; G. Sletten; N. L. Gjrup; M. A. Bentley; J. Borggreen; B. Fabricius; A. Holm; D. Howe; J. Pedersen; J. W. Roberts; J. F. Sharpey-Schafer

1990-07-23T23:59:59.000Z

480

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy ■ Hydrogen, Fuel Cells, and Infrastructure Technologies Program Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H 2 Pipeline Standard (in development) Pipeline Transmission of Hydrogen --- 3 Copyright: Future H 2 Infrastructure Wind Powered Electrolytic Separation Local Reformers Users Stationary Power Sources Vehicle Fueling Stations Distance from Source to User (Miles) <500 0-5 <2,000 <50 Off-peak Hydroelectric Powered Electrolytic Separation Large Reformers (scale economies) Pipeline Transmission of Hydrogen

Note: This page contains sample records for the topic "hf hydrogen fluoride" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects by Performing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performing Organization Performing Organization Below are hydrogen analyses and analytical models grouped by performing organization. A B D E F G I L M N O P R S T U W A Aalborg University Wind Power Integration Air Products and Chemicals, Inc. Ceramic Membrane Reactors for Converting Natural Gas to Hydrogen Hydrogen Energy Station Validation Anhui University of Technology Well-to-Wheels Analysis of Hydrogen Fuel-Cell Vehicle Pathways in Shanghai Argonne National Laboratory (ANL) Advanced Vehicle Introduction Decisions (AVID) Model AirCRED Model All Modular Industry Growth Assessment (AMIGA) Model Biofuels in Light-Duty Vehicles Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power Cost Implications of Hydrogen Quality Requirements

482

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

SciTech Connect (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

483

High-pressure Storage Vessels for Hydrogen, Natural Gas andHydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gas and Blends - Materials Testing and Design Requirements for Hydrogen Components and Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Hydrogen...

484

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

compressor Compressed hydrogen storage Figure 2: High-compressor Compressed hydrogen storage Clean Energy Group lduction, and a hydrogen compression, storage, and Energy

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

485

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus:...

486

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance...

487

Effect of Phosphate, Fluoride, and Nitrate on Gibbsite Dissolution Rate and Solubility  

SciTech Connect (OSTI)

Laboratory tests have been completed with simulated tank waste samples to investigate the effects of phosphate, fluoride, and nitrate on the dissolution rate and equilibrium solubility of gibbsite in sodium hydroxide solution at 22 and 40{degrees}C. Results are compared to relevant literature data and to computer model predictions. The presence of sodium nitrate (3 M) caused a reduction in the rate of gibbsite dissolution in NaOH, but a modest increase in the equilibrium solubility of aluminum. The increase in solubility was not as large, though, as the increase predicted by the computer model. The presence of phosphate, either as sodium phosphate or sodium fluoride phosphate, had a negligible effect on the rate of gibbsite dissolution, but caused a slight increase in aluminum solubility. The magnitude of the increased solubility, relative to the increase caused by sodium nitrate, suggests that the increase is due to ionic strength (or water activity) effects, rather than being associated with the specific ion involved. The computer model predicted that phosphate would cause a slight decrease in aluminum solubility, suggesting some Al-PO4 interaction. No evidence was found of such an interaction.

Herting, Daniel L. [Washington River Protection Solutions LLC (United States)

2014-01-29T23:59:59.000Z

488

One- and two-particle effects in the electronic and optical spectra of barium fluoride  

Science Journals Connector (OSTI)

One- and two-particle effects in the electronic and optical spectra of the fluoride compound BaF2 are determined using density functional theory and a many-body perturbation scheme. A wide energy range has been considered, including the visible and all the ultraviolet region. The GW approximation for the electronic self-energy has been used to tackle the one-particle excitations problem, enabling us to determine the electronic energy bands and densities of states of this fluoride. For the optical properties, the two-particle effects calculated with the Bethe–Salpeter scheme turn out to play a fundamental role. A bound exciton positioned at about 1.5 eV below the one-particle gap is forecasted. The optical absorption and the electron energy loss spectra together with other optical functions are in good agreement with the experimental results up to 15 eV. In fact, for this part of the spectrum a self-consistent one-particle scheme along with the Bethe–Salpeter approach produces notable results. Less satisfactory results for the higher energy region in the spectra have been produced with the proposed method. Possible causes of these discrepancies are fully discussed.

Emiliano Cadelano; Jürgen Furthmüller; Giancarlo Cappellini; Friedhelm Bechstedt

2014-01-01T23:59:59.000Z

489

Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes  

E-Print Network [OSTI]

HYDROGEN AND SULFUR PRODUCTION FROM HYDROGEN SULFIDE WASTES? John B.L. Harkness and Richard D. Doctor, Argonne National Laboratory, Argonne. IL ABSTRACT A new hydrogen sulfide waste-treatment process that uses microwave plasma... to be economically competitive. In addition, the experiments show-that. typical refinery acid-gas streams are compatible with the plasma process and that all by-products can be treated with existing technology. BACKGROUND In 1987, Argonne staff found the first...

Harkness, J.; Doctor, R. D.

490

Effect of Hf substitutions on the formation and superconductivity of Tl-1212 type phase TlSr{sub 2}(Ca{sub 1?x}Hf{sub x})Cu{sub 2}O{sub 7??}  

SciTech Connect (OSTI)

The TlSr{sub 2}(Ca{sub 1?x}Hf{sub x})Cu{sub 2}O{sub 7??} (Tl-1212) superconductor for x = 0.0 to 0.4 has been prepared by the solid state reaction method and studied by powder X-ray diffraction method, electrical resistance and scanning electron microscope (SEM). Most of the samples showed the Tl-1212 as the major phase and Tl-1201 as the minor phases. Small amounts of Hf-substitution (x ? 0.15 or x ? 0.25) maintained the formation of the Tl-1212 phase but larger amounts led to the formation of 1201 and an unknown impurity phase. The resistance versus temperature curve showed metallic behavior for all samples. The resistance versus temperature curves showed onset transition temperature (T{sub c} {sub onset}) between 38 and 47 K for Hf substitution.

Al-Sharabi, Annas; Abd-Shukor, R. [School of Applied Physics, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)

2013-11-27T23:59:59.000Z

491

Comparison of femtosecond and nanosecond laser-induced damage in HfO{sub 2} single-layer film and HfO{sub 2}-SiO{sub 2} high reflector  

SciTech Connect (OSTI)

HfO{sub 2} single layers, 800 nm high-reflective (HR) coating, and 1064 nm HR coating were prepared by electron-beam evaporation. The laser-induced damage thresholds (LIDTs) and damage morphologies of these samples were investigated with single-pulse femtosecond and nanosecond lasers. It is found that the LIDT of the HfO{sub 2} single layer is higher than the HfO{sub 2}-SiO{sub 2} HR coating in the femtosecond regime, while the situation is opposite in the nanosecond regime. Different damage mechanisms are applied to study this phenomenon. Damage morphologies of all samples due to different laser irradiations are displayed.

Yuan Lei; Zhao Yuanan; Shang Guangqiang; Wang Chengren; He Hongbo; Shao Jianda; Fan Zhengxiu [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China) and Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China) and Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

2007-03-15T23:59:59.000Z

492

Suppression of near-edge optical absorption band in sputter deposited HfO{sub 2}-Al{sub 2}O{sub 3} nanolaminates containing nonmonoclinic HfO{sub 2}  

SciTech Connect (OSTI)

Nanolaminates of polycrystalline (tetragonal+orthorhombic) HfO{sub 2} and amorphous Al{sub 2}O{sub 3} are sputter deposited on unheated fused SiO{sub 2}, air annealed at 573-1273 K, and analyzed by x-ray diffraction and spectrophometry. Significant O 2p{yields}Hf 5d interband absorption occurs in all films at energy E{>=}6.2 eV. For E<6.2 eV, films annealed below 1273 K retain a featureless optical absorption edge despite further crystallization. A band with a 5.65 eV onset concurrently develops with m-HfO{sub 2} crystallization after a 1273 K anneal, indicating this phase and not nanocrystallinity per se is responsible for increased absorption.

Hoppe, E. E.; Aita, C. R. [Advanced Coatings Experimental Laboratory, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, Wisconsin 53201 (United States)

2008-04-07T23:59:59.000Z

493

DOE Hydrogen Analysis Repository: Life Cycle Assessment of Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Project Summary Full Title: Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Project ID: 143 Principal Investigator: Ibrahim Dincer Brief Description: Examines the social, environmental and economic impacts of hydrogen fuel cell and gasoline vehicles. Purpose This project aims to investigate fuel cell vehicles through environmental impact, life cycle assessment, sustainability, and thermodynamic analyses. The project will assist in the development of highly qualified personnel in such areas as system analysis, modeling, methodology development, and applications. Performer Principal Investigator: Ibrahim Dincer Organization: University of Ontario Institute of Technology

494

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Permeability and Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J.G. Blencoe*, S. Babu*, and P. S. Korinko** * Oak Ridge National Laboratory * Savannah River National Laboratory August 30, 2005 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Partners and Collaborators * Oak Ridge National Laboratory - Project lead * Savannah River National Laboratory - Low H 2 pressure permeation test * Edison Welding Institute - Pipeline materials * Lincoln Electric Company - Welding electrode and weld materials for pipelines * Trans Canada - Commercial welding of pipelines and industry expectations * DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use

495

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

12024 Date: September 19, 2012 Title: Hydrogen Production Cost Using Low-Cost Natural Gas Originator: Sara Dillich, Todd Ramsden & Marc Melaina Approved by: Sunita Satyapal Date:...

496

Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN. Citation: Shokri A, Y Wang, GA...

497

CTP Hydrogen | Open Energy Information  

Open Energy Info (EERE)

CTP Hydrogen CTP Hydrogen Jump to: navigation, search Name CTP Hydrogen Place Westborough, Massachusetts Zip 1581 Sector Hydro, Hydrogen Product CTP Hydrogen is an early stage company developing a single-step reforming process for portable and distributed hydrogen generation. Coordinates 42.283096°, -71.600318° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.283096,"lon":-71.600318,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

498

Waste/By-Product Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WASTE/BY-PRODUCT HYDROGEN WASTE/BY-PRODUCT HYDROGEN Ruth Cox DOE/DOD Workshop January 13, 2011 January 13, 2011 Fuel Cell and Hydrogen Energy Association The Fuel Cell and Hydrogen Energy Association FCHEA ƒ Trade Association for the industry ƒ Member driven - Market focused ƒ Developers, suppliers, customers, nonprofits, government Ad ƒ Advocacy ƒ Safety and standardization ƒ Education ƒ Strategic Alliances Fuel Cell and Hydrogen Energy Association O M b Our Members 5 W t /B d t H d Waste/By-product Hydrogen Overview Overview ƒ Growing populations, rising standards of living, and increased urbanization leads to a escalating volume of waste leads to a escalating volume of waste. ƒ Huge volumes of waste are collected in dumps, creating a major environmental issue. ƒ ƒ Wastewater treatment plants generate noxious gasses that are released in Wastewater treatment plants generate noxious gasses that are released in

499

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

500

Hydrogen from renewable resources research  

SciTech Connect (OSTI)

In 1986 the Hawaii Natural Energy Institute (HNEI) and the Florida Solar Energy Center (FSEC) were contracted by the Solar Energy Research Institute (SERI) to conduct an assessment of hydrogen production technologies and economic feasibilities of the production and use of hydrogen from renewable resources. In the 1989/90 period all monies were directed toward research and development with an emphasis on integration of tasks, focusing on two important issues, production and storage. The current year's efforts consisted of four tasks, one task containing three subtasks: Hydrogen Production by Gasification of Glucose and Wet Biomass in Supercritical Water; Photoelectrochemical Production of Hydrogen; Photoemission and Photoluminescence Studies of Catalyzed Photoelectrode Surfaces for Hydrogen Production; Solar Energy Chemical Conversion by Means of Photoelectrochemical (PEC) Methods Using Coated Silicon Electrodes; Assessment of Impedance Spectroscopy Methods for Evaluation of Semiconductor-Electrolyte Interfaces; Solar Energy Conversion with Cyanobacteria; Nonclassical Polyhydride Metal Complexes as Hydrogen Storage Materials. 61 refs., 22 figs., 11 tabs.

Takahashi, P.K.; McKinley, K.R.

1990-07-01T23:59:59.000Z