Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Documents: DUF6 Conversion EIS Supporting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion EIS DUF6 Conversion EIS Search Documents: Search PDF Documents View a list of all documents NEPA Compliance: DUF6 Conversion EIS Supporting Documents PDF Icon Notice of Change in National Environmental Policy Act (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project 38 KB details PDF Icon Press Release: DOE Seeks Public Input for Depleted Uranium Hexafluoride Environmental Impact Statement 90 KB details PDF Icon Advance Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 52 KB details PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program

2

DUF6 Conversion Facility EISs  

NLE Websites -- All DOE Office Websites (Extended Search)

Sign Me Up Search: OK Button DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home Conversion Facility EISs...

3

Paducah DUF6 Conversion Final EIS - Appendix C: Scoping Summary Report for Depleted Uranium Hexafluoride Conversion Facilities - Environmental Impact Statement Scoping Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX C: SCOPING SUMMARY REPORT FOR DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITIES ENVIRONMENTAL IMPACT STATEMENT SCOPING PROCESS Scoping Summary Report C-2 Paducah DUF 6 Conversion Final EIS Scoping Summary Report C-3 Paducah DUF 6 Conversion Final EIS APPENDIX C This appendix contains the summary report prepared after the initial public scoping period for the depleted uranium hexafluoride conversion facilities environmental impact statement (EIS) project. The scoping period for the EIS began with the September 18, 2001, publication of a Notice of Intent (NOI) in the Federal Register (66 FR 23213) and was extended to January 11, 2002. The report summarizes the different types of public involvement opportunities provided and the content of the comments received.

4

Paducah DUF6 Conversion Final EIS - Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS SUMMARY 1 S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in

5

Portsmouth DUF6 Conversion Final EIS - Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS SUMMARY 1 S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF 6 stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF 6 from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and

6

Documents: Disposal of DUF6 Conversion Products  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion Products Search Documents: Search PDF Documents View a list of all documents Disposal of DUF6 Conversion Products PDF Icon Engineering Analysis for Disposal of...

7

Documents: Portsmouth DUF6 Conversion Facility Final EIS and ROD  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF6 Final EIS Portsmouth DUF6 Final EIS Search Documents: Search PDF Documents View a list of all documents Portsmouth DUF6 Conversion Facility Final EIS and Record of Decision Full text of the Record of Decision and Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site. The full text of the Record of Decision and Portsmouth DUF6 Conversion Facility Final EIS and ROD is available for downloading or browsing in Adobe Acrobat PDF format through the links below. Record of Decision PDF Icon Portsmouth DUF6 Conversion Facility: Record of Decision 3.8 MB details PDF Icon Portsmouth DUF6 Conversion Facility: Record of Decision: As Published in the Federal Register 82 KB details

8

Documents: Paducah DUF6 Conversion Facility Final EIS and ROD  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF6 Final EIS Paducah DUF6 Final EIS Search Documents: Search PDF Documents View a list of all documents Paducah DUF6 Conversion Facility Final EIS and Record of Decision Full text of the Record of Decision and Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site. The full text of the Record of Decision and Paducah DUF6 Conversion Facility Final EIS and ROD is available for downloading or browsing in Adobe Acrobat PDF format through the links below. You may also order a CD-ROM or paper copy of the Depleted UF6 Conversion Facility EISs by submitting a Final EIS Document Request Form. Record of Decision PDF Icon Paducah DUF6 Conversion Facility: Record of Decision 3.6 MB details

9

Paducah DUF6 Conversion Final EIS - Appendix G: Consultation Letters  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX G: CONSULTATION LETTERS Consultation Letters G-2 Paducah DUF 6 Conversion Final EIS Consultation Letters G-3 Paducah DUF 6 Conversion Final EIS U.S. DEPARTMENT OF ENERGY LETTERS TO STATE AGENCIES AND RECOGNIZED NATIVE AMERICAN GROUPS Consultation Letters G-4 Paducah DUF 6 Conversion Final EIS Consultation Letters G-5 Paducah DUF 6 Conversion Final EIS Consultation Letters G-6 Paducah DUF 6 Conversion Final EIS Consultation Letters G-7 Paducah DUF 6 Conversion Final EIS Consultation Letters G-8 Paducah DUF 6 Conversion Final EIS Consultation Letters G-9 Paducah DUF 6 Conversion Final EIS Consultation Letters G-10 Paducah DUF 6 Conversion Final EIS Consultation Letters G-11 Paducah DUF 6 Conversion Final EIS Consultation Letters G-12 Paducah DUF 6 Conversion Final EIS

10

DUF6 Conversion Facility EIS Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Conversion Facility EISs Schedule The final EISs for the DUF6 Conversion Facilities have been completed, and are available through this web site. The RODs are...

11

Portsmouth DUF6 Conversion Final EIS - Appendix H: Contractor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF 6 Conversion Final EIS APPENDIX H: CONTRACTOR DISCLOSURE STATEMENT Disclosure Statement H-2 Portsmouth DUF 6 Conversion Final EIS Disclosure Statement H-3 Portsmouth...

12

Portsmouth DUF6 Conversion Final EIS - Chapter 1: Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 1 INTRODUCTION Over the last five decades, the U.S. Department of Energy (DOE) has enriched large quantities of uranium for nuclear applications by means of gaseous diffusion. This enrichment has taken place at three DOE sites located at Paducah, Kentucky; Portsmouth, Ohio; and the East Tennessee Technology Park (ETTP, formerly known as the K-25 site) in Oak Ridge, Tennessee (Figure 1-1). "Depleted" uranium hexafluoride (commonly referred to as DUF 6 ) is a product of this process. It is being stored at the three sites. The total DUF 6 inventory at the three sites weighs approximately 700,000 metric tons (t) (770,000 short tons [tons]) 1 and is stored in about 60,000 steel cylinders. This document is a site-specific

13

DUF6 Conversion Facility EIS Alternatives  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

14

Portsmouth DUF6 Conversion Final EIS - Appendix G-Part 1: Consultation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF 6 Conversion Final EIS APPENDIX G: CONSULTATION LETTERS Consultation Letters G-2 Portsmouth DUF 6 Conversion Final EIS Consultation Letters G-3 Portsmouth DUF 6...

15

Paducah DUF6 Conversion Final EIS - Appendix B: Estimation of...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Gill et al. 1997). Because the DUF 6 autoclaves would operate at approximately 95C, testing should be conducted either prior to or during the conversion facility startup...

16

Portsmouth DUF6 Conversion Final EIS - Appendix B: Issues Associated...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Gill et al. 1997). Because the DUF 6 autoclaves would operate at approximately 95C, testing should be conducted either prior to or during the conversion facility startup...

17

Paducah DUF6 Conversion Final EIS - Notation  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS xxv NOTATION The following is a list of acronyms and abbreviations, chemical names, and units of measure used in this document. Some acronyms used only in tables may be defined only in those tables. GENERAL ACRONYMS AND ABBREVIATIONS AEA Atomic Energy Act of 1954 AEC U.S. Atomic Energy Commission AIHA American Industrial Hygiene Association ALARA as low as reasonably achievable ANL Argonne National Laboratory ANP Advanced Nuclear Power (Framatone ANP, Inc.) ANSI American National Standards Institute AQCR Air Quality Control Region BLS Bureau of Labor Statistics CAA Clean Air Act CEQ Council on Environmental Quality CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980 CFR Code of Federal Regulations CRMP cultural resource management plan

18

Milestones Keep DUF6 Plants Moving Ahead | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestones Keep DUF6 Plants Moving Ahead Milestones Keep DUF6 Plants Moving Ahead Milestones Keep DUF6 Plants Moving Ahead May 30, 2013 - 12:00pm Addthis Cylinders containing depleted uranium hexafluoride. Cylinders containing depleted uranium hexafluoride. The depleted uranium hexafluoride conversion plant in Paducah. The depleted uranium hexafluoride conversion plant in Paducah. Workers inspect cylinders containing depleted uranium hexafluoride. Workers inspect cylinders containing depleted uranium hexafluoride. The operating room at a depleted uranium hexafluoride conversion plant. The operating room at a depleted uranium hexafluoride conversion plant. Cylinders containing depleted uranium hexafluoride. The depleted uranium hexafluoride conversion plant in Paducah. Workers inspect cylinders containing depleted uranium hexafluoride.

19

Paducah DUF6 Conversion Final EIS - Chapter 3: Affected Environment...  

NLE Websites -- All DOE Office Websites (Extended Search)

conversion facility at the Paducah site for conversion of the Paducah DUF 6 cylinder inventory. Section 3.1 presents a detailed description of the affected environment for the...

20

Paducah DUF6 Conversion Final EIS - Appendix A: Text of Public...  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF 6 Conversion Final EIS APPENDIX A: TEXT OF PUBLIC LAW 107-206 PERTINENT TO THE MANAGEMENT OF DUF 6 Public Law 107-206 A-2 Paducah DUF 6 Conversion Final EIS Public Law...

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Paducah DUF6 Conversion Final EIS - Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS v CONTENTS COVER SHEET.................................................................................................................... iii NOTATION .......................................................................................................................... xxv ENGLISH/METRIC AND METRIC/ENGLISH EQUIVALENTS..................................... xxx SUMMARY .......................................................................................................................... S-1 S.1 Introduction........................................................................................................... S-1 S.1.1 Background Information........................................................................... S-1

22

Paducah DUF6 Conversion Final EIS - Appendix F: Assessment Methodologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX F: ASSESSMENT METHODOLOGIES Assessment Methodologies F-2 Paducah DUF 6 Conversion Final EIS Assessment Methodologies F-3 Paducah DUF 6 Conversion Final EIS APPENDIX F: ASSESSMENT METHODOLOGIES In general, the activities assessed in this environmental impact statement (EIS) could affect workers, members of the general public, and the environment during construction of new facilities, during routine operation of facilities, during transportation, and during facility or transportation accidents. Activities could have adverse effects (e.g., human health impairment) or positive effects (e.g., regional socioeconomic benefits, such as the creation of jobs). Some impacts would result primarily from the unique characteristics of the uranium and other chemical

23

Portsmouth DUF6 Conversion Final EIS - Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS v CONTENTS COVER SHEET.................................................................................................................... iii NOTATION .......................................................................................................................... xxv ENGLISH/METRIC AND METRIC/ENGLISH EQUIVALENTS..................................... xxx SUMMARY .......................................................................................................................... S-1 S.1 INTRODUCTION ................................................................................................ S-1 S.1.1 Background Information........................................................................... S-1 S.1.1.1

24

Portsmouth DUF6 Conversion Final EIS - Appendix E: Impacts Associated with HF and CaF2 Conversion Product Sale and Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE HF and CaF 2 Conversion Products E-2 Portsmouth DUF 6 Conversion Final EIS HF and CaF 2 Conversion Products E-3 Portsmouth DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE E.1 INTRODUCTION During the conversion of the depleted uranium hexafluoride (DUF 6 ) inventory to depleted uranium oxide, products having some potential for sale to commercial users would be produced. These products would include aqueous hydrogen fluoride (HF) and calcium fluoride (CaF 2 , commonly referred to as fluorspar). These products are routinely used as commercial materials, and an investigation into their potential reuse was done; results are included as part of

25

Paducah DUF6 Conversion Final EIS - Appendix E: Impacts Associated with HF and CaF2 Conversion Product Sale and Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE HF and CaF 2 Conversion Products E-2 Paducah DUF 6 Conversion Final EIS HF and CaF 2 Conversion Products E-3 Paducah DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE E.1 INTRODUCTION During the conversion of the depleted uranium hexafluoride (DUF 6 ) inventory to depleted uranium oxide, products having some potential for sale to commercial users would be produced. These products would include aqueous hydrogen fluoride (HF) and calcium fluoride (CaF 2 , commonly referred to as fluorspar). These products are routinely used as commercial materials, and an investigation into their potential reuse was done; results are included as part of

26

Paducah DUF6 Conversion Final EIS - Volume 2: Comment and Response Document, Part 1  

NLE Websites -- All DOE Office Websites (Extended Search)

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Paducah DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process,

27

Portsmouth DUF6 Conversion Final EIS - Chapter 3: Affected Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 3 AFFECTED ENVIRONMENT This EIS considers the proposed action of building and operating a conversion facility at the Portsmouth site for conversion of the Portsmouth and ETTP DUF 6 cylinder inventories. Section 3.1 presents a detailed description of the affected environment for the Portsmouth site. Because the option of shipping cylinders from the ETTP site in Oak Ridge, Tennessee, to the Portsmouth site for conversion is part of the proposed action, a detailed description of the affected environment for the ETTP site is provided in Section 3.2. 3.1 PORTSMOUTH SITE The Portsmouth site is located in Pike County, Ohio, approximately 22 mi (35 km) north of the Ohio River and 3 mi (5 km) southeast of the town of Piketon (Figure 3.1-1). The two

28

DUF6 Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Depleted Uranium Hexafluoride Depleted Uranium Hexafluoride Conversion DOE/IG-0642 March 2004 Portsmouth Facility Design Details of Finding ...................................................................... 1 Recommendations and Comments ........................................... 3 Appendices 1. Objective, Scope, and Methodology ..................................... 5 2. Prior Audit Reports ............................................................... 6 3. Management Comments ...................................................... 7 DEPLETED URANIUM HEXAFLUORIDE CONVERSION TABLE OF CONTENTS Page 1 Background In January 2002, the Department of Energy (Department) solicited proposals to design, build, and operate two facilities for the conversion of 704,000 tons of depleted uranium hexafluoride (DUF6) into a more

29

Portsmouth DUF6 Conversion Final EIS - Appendix G-Part 2: Responses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF 6 Conversion Final EIS RESPONSES TO U.S. DEPARTMENT OF ENERGY LETTERS TO STATE AGENCIES AND NATIVE AMERICAN GROUPS Consultation Letters G-32 Portsmouth DUF 6...

30

Portsmouth DUF6 Conversion Final EIS - Chapter 7: References  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 7 REFERENCES Acoustical Society of America, 1983, American National Standard Specification for Sound Level Meters, ANSI S1.4-1983, New York, N.Y., Feb. Acoustical Society of America, 1985, American National Standard Specification for Sound Level Meters, ANSI S1.4A-1985, Amendment to ANSI S1.4-1983, New York, N.Y., June. AIHA (American Industrial Hygiene Association), 2002, The AIHA 2002 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, Fairfax, Va. Allison, T., 2002, "DUF 6 County, City, and School District Financial Data," intraoffice memorandum from Allison (Argonne National Laboratory, Argonne, Ill.) to H. Avci (Argonne National Laboratory, Argonne, Ill.), Aug. 1.

31

Paducah DUF6 Conversion Final EIS - Chapter 7: References  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS 7 REFERENCES Acoustical Society of America, 1983, American National Standard Specification for Sound Level Meters, ANSI S1.4-1983, New York, N.Y., Feb. Acoustical Society of America, 1985, American National Standard Specification for Sound Level Meters, ANSI S1.4A-1985, Amendment to ANSI S1.4-1983, New York, N.Y., June. AIHA (American Industrial Hygiene Association), 2002, The AIHA 2002 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook, Fairfax, Va. Allison, T., 2002, "DUF 6 County, City, and School District Financial Data," intraoffice memo from Allison (Argonne National Laboratory, Argonne, Ill.) to H. Avci (Argonne National Laboratory, Argonne, Ill.), Aug. 1.

32

Why Are the DUF6 Conversion Facility EISs Needed?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why is an EIS Needed Why is an EIS Needed Why the Depleted UF6 Conversion Facility EISs Are Needed The two Depleted UF6 Conversion EISs are needed to assess the potential environmental impacts of constructing, operating, maintaining, and decontaminating and decommissioning DUF6 conversion facilities at the Paducah and Portsmouth sites. National Environmental Policy Act Federal laws and regulations require the federal government to evaluate the effects of its actions on the environment and to consider alternative courses of action. The National Environmental Policy Act of 1969 (NEPA) specifies when an environmental impact statement (EIS) must be prepared. NEPA regulations require, among other things, federal agencies to include discussion of a proposed action and the range of reasonable alternatives in an EIS. Sufficient information must be included in the EIS for reviewers to evaluate the relative merits of each alternative. Council for Environmental Quality (CEQ) regulations provide the recommended format and content of Environmental Impact Statements.

33

Business Case Slide 1: DUF6 Conversion Program Background  

NLE Websites -- All DOE Office Websites (Extended Search)

to convert and dispose DUF6 Awarded to Uranium Disposition Services 8292002 Framatome ANPDuratek Federal ServicesBurns and Roe Design, construction, and 5 years operation of...

34

Portsmouth DUF6 Conversion Final EIS - Chapter 9: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 9 GLOSSARY Accident: An unplanned sequence of events resulting in undesirable consequences, such as the release of radioactive or hazardous material to the environment. Accident consequence assessment: An assessment of the impacts following the occurrence of an accident, independent of the probability of that accident. The environmental impact statement (EIS) provides estimates of the consequences of a number of possible accidents, ranging from those with low probability (rare) to those with relatively high probability (frequent). Accident frequency: The likelihood that a specific accident will occur, that is, the probability of occurrence. If an accident is estimated to happen once every 50 years, the accident frequency is generally reported as

35

Paducah DUF6 Conversion Final EIS - Chapter 9: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS 9 GLOSSARY Accident: An unplanned sequence of events resulting in undesirable consequences, such as the release of radioactive or hazardous material to the environment. Accident consequence assessment: An assessment of the impacts following the occurrence of an accident, independent of the probability of that accident. The environmental impact statement (EIS) provides estimates of the consequences of a number of possible accidents, ranging from those with low probability (rare) to those with relatively high probability (frequent). Accident frequency: The likelihood that a specific accident will occur, that is, the probability of occurrence. If an accident is estimated to happen once every 50 years, the accident frequency is generally reported as

36

Public Involvement Opportunities for the DUF6 Conversion Facility EISs  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities Opportunities Public Involvement Opportunities The public comment period for the Supplement Analysis for Disposal of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted Uranium Hexafluoride is closed. Sorry! The public comment period for the Supplement Analysis for Disposal of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted Uranium Hexafluoride is closed. The public comment form is no longer available. For information on other public involvement opportunities, please visit Public Involvement Opportunities. Ways to Provide Comments Comments may be submitted via the Public Comment Form on this Web site. Comments can also be mailed to: DU Disposal Supplement Analysis Comment Argonne National Laboratory

37

Portsmouth DUF6 Conversion Facility Final EIS - Appendix A: Text of Public Law 107-206 Pertinent to the Management of DUF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX A: TEXT OF PUBLIC LAW 107-206 PERTINENT TO THE MANAGEMENT OF DUF 6 Public Law 107-206 A-2 Portsmouth DUF 6 Conversion Final EIS Public Law 107-206 A-3 Portsmouth DUF 6 Conversion Final EIS APPENDIX A: TEXT OF PUBLIC LAW 107-206 PERTINENT TO THE MANAGEMENT OF DUF 6 Section 502 of Public Law 107-206, "2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States" (signed by the President 08/02/2002) SEC. 502. Section 1 of Public Law 105-204 (112 Stat. 681) is amended - (1) in subsection (b), by striking "until the date" and all that follows and inserting "until the date that is 30 days after the date on which the Secretary of Energy awards a contract under

38

Paducah DUF6 Conversion Final EIS - Appendix G: Responses to U.S. Department of Energy Letters to State Agencies and Native American Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS RESPONSES TO U.S. DEPARTMENT OF ENERGY LETTERS TO STATE AGENCIES AND NATIVE AMERICAN GROUPS Consultation Letters G-32 Paducah DUF 6 Conversion Final EIS Consultation Letters G-33 Paducah DUF 6 Conversion Final EIS Consultation Letters G-34 Paducah DUF 6 Conversion Final EIS Consultation Letters G-35 Paducah DUF 6 Conversion Final EIS Consultation Letters G-36 Paducah DUF 6 Conversion Final EIS Consultation Letters G-37 Paducah DUF 6 Conversion Final EIS Consultation Letters G-38 Paducah DUF 6 Conversion Final EIS Consultation Letters G-39 Paducah DUF 6 Conversion Final EIS Consultation Letters G-40 Paducah DUF 6 Conversion Final EIS Consultation Letters G-41 Paducah DUF 6 Conversion Final EIS Consultation Letters G-42 Paducah DUF 6 Conversion Final EIS Consultation Letters

39

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

40

DUF6 Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Guide DUF6 Guide Depleted UF6 Guide An introduction to uranium and its compounds, depleted uranium, and depleted uranium hexafluoride (depleted UF6). Uranium has unique properties that make it valuable as an energy source, yet potentially hazardous to human health and the environment. The Guide provides basic information about the properties of uranium compounds and the uranium enrichment process that produces depleted UF6. This information will help you understand the unique challenges involved in managing DOE's inventory of depleted UF6 in a safe and efficient manner. Overview Presentation DUF6 Health Risks Uranium and Its Compounds DUF6 Environmental Risks Depleted Uranium DUF6 Videos Uranium Hexafluoride Uranium Quick Facts DUF6 Production and Handling

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Final Plan for the Conversion of DUF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Draft PEIS) 1 . The Draft PEIS and...

42

Paducah DUF6 Conversion Final EIS - Chapter 2: Description and Comparison of Alternatives  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS 2 DESCRIPTION AND COMPARISON OF ALTERNATIVES Alternatives for building and operating a DUF 6 conversion facility at the Paducah site were evaluated for their potential impacts on the human and natural environment. This EIS considers the proposed action of building and operating a conversion facility and a no action alternative. Under the proposed action, three action alternatives are considered that focus on where to construct the conversion facility within the Paducah site. An option of shipping cylinders currently stored at ETTP to the Paducah facility is also considered. The no action alternative assumes that a conversion facility is not built at Paducah and that the DUF 6 cylinders at Paducah would continue to be stored indefinitely in a manner consistent with

43

Documents: DUF6 Fact Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets Search Documents: Search PDF Documents View a list of all documents DUF6 Fact Sheets PDF Icon Overview of Depleted Uranium Hexafluoride Management Program 174 KB...

44

Paducah DUF6 Conversion Final EIS - Appendix H: Contractor Disclosure Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX H: CONTRACTOR DISCLOSURE STATEMENT Disclosure Statement H-2 Paducah DUF 6 Conversion Final EIS Disclosure Statement H-3 Paducah DUF 6 Conversion Final EIS APPENDIX H: CONTRACTOR DISCLOSURE STATEMENT Argonne National Laboratory (ANL) is the contractor assisting the U.S. Department of Energy (DOE) in preparing the environmental impact statement (EIS) for depleted UF 6 conversion. DOE is responsible for reviewing and evaluating the information and determining the appropriateness and adequacy of incorporating any data, analyses, or results in the EIS. DOE determines the scope and content of the EIS and supporting documents and will furnish direction to ANL, as appropriate, in preparing these documents. The Council on Environmental Quality's regulations (40 CFR 1506.5(c)), which have

45

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

46

Portsmouth DUF6 Conversion Final EIS - Chapter 6: Environmental and Occupational Safety and Health Permits and Compliance Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 6 ENVIRONMENTAL AND OCCUPATIONAL SAFETY AND HEALTH PERMITS AND COMPLIANCE REQUIREMENTS 6.1 DUF 6 CYLINDER MANAGEMENT AND CONSTRUCTION AND OPERATION OF A DUF 6 CONVERSION FACILITY DUF 6 cylinder management as well as construction and operation of the proposed DUF 6 conversion facility would be subject to many federal, state, and local requirements. In accordance with such legal requirements, a variety of permits, licenses, and other consents must be obtained. Table 6.1 at the end of this chapter lists those that may be needed. The status of each is indicated on the basis of currently available information. However, because the DUF 6 project is still at an early stage, the information in Table 6.1 should not be considered comprehensive or

47

DUF6 Draft EIS Public Hearing Transcripts  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Draft EIS Public Hearing Transcripts Transcripts from the DUF6 Conversion Draft EIS Public Hearings The following transcripts are from the DUF6 Conversion...

48

Public Involvement Opportunities for the DUF6 Conversion Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Comment Form The public comment period for the Supplement Analysis for Disposal of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted...

49

Portsmouth DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Portsmouth DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND.............................................................................................................

50

Paducah DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Paducah DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND............................................................................................................. 3 3

51

Portsmouth DUF6 Conversion Final EIS - Cover Page  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen fluoride (HF) produced as a conversion co- product; and neutralization of HF to calcium fluoride (CaF 2 ) and its sale or disposal in the event that the HF product is not...

52

Paducah DUF6 Conversion Final EIS - Cover Page  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride (CaF 2 ) and its sale or disposal in the event that the HF product is not...

53

Portsmouth DUF6 Conversion Final EIS - Appendix F: Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Conversion EIS a Material Origin Destination Depleted U 3 O 8 Portsmouth Envirocare, NTS LLW, empty cylinders Portsmouth Envirocare, NTS CaF 2 Portsmouth Envirocare, NTS HF...

54

DUF6 Project Doubles Production in 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 November 26, 2013 - 12:00pm Addthis LEXINGTON, Ky. - The conversion plants at EM's Paducah and Portsmouth sites surpassed a fiscal year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier. EM's Portsmouth Paducah Project Office (PPPO) and contractor Babcock & Wilcox Conversion Services LLC (BWCS) began operations in 2011 to convert the nation's 800,000-metric-ton inventory of DUF6 to more benign forms for sale, ultimate disposal or long-term storage. "Since 2011, we have been ramping up production to determine and achieve the safe, sustainable operating rate of the plants," said George E.

55

DUF6 Project Doubles Production in 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 November 26, 2013 - 12:00pm Addthis LEXINGTON, Ky. - The conversion plants at EM's Paducah and Portsmouth sites surpassed a fiscal year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier. EM's Portsmouth Paducah Project Office (PPPO) and contractor Babcock & Wilcox Conversion Services LLC (BWCS) began operations in 2011 to convert the nation's 800,000-metric-ton inventory of DUF6 to more benign forms for sale, ultimate disposal or long-term storage. "Since 2011, we have been ramping up production to determine and achieve the safe, sustainable operating rate of the plants," said George E.

56

Paducah DUF6 Conversion Final EIS - Chapter 4: Environmental Impact Assessment Approach, Assumptions, and Methodology  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS 4 ENVIRONMENTAL IMPACT ASSESSMENT APPROACH, ASSUMPTIONS, AND METHODOLOGY This EIS evaluates potential impacts on human health and the natural environment from building and operating a DUF 6 conversion facility at three alternative locations at the Paducah site and for a no action alternative. These impacts might be positive, in that they would improve conditions in the human or natural environment, or negative, in that they would cause a decline in those conditions. This chapter provides an overview of the methods used to estimate the potential impacts associated with the EIS alternatives, summarizes the major assumptions that formed the basis of the evaluation, and provides some background information on human health

57

Public Hearing, DOE Release of DUF6 Conversion Facility Draft Environmental Impact Statements  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 UNITED STATES DEPARTMENT OF ENERGY 2 PUBLIC HEARING 3 4 SUBJECT: DOE Release of DUF6 Conversion 5 Facility Draft Environmental Impact Statements 6 DATE: January 13, 2004 7 LOCATION: Department of Energy 8 Environmental Information Center 115 Memorial Drive 9 Paducah, Kentucky 42001 10 TIME: 6:00 p.m. to 9:00 p.m. 11 FACILITATOR: Darryl Armstrong 12 REPORTED BY: Amy S. Caronongan, RPR, CSR 13 14 15 16 17

58

Who is Responsible for the DUF6 Conversion Facility EISs?  

NLE Websites -- All DOE Office Websites (Extended Search)

Who is Responsible Who is Responsible Who Is Responsible for the Depleted UF6 Conversion Facility EISs? The U.S. DOE Office of Environmental Management is preparing the two Depleted UF6 Conversion Facility EISs, with assistance from Argonne National Laboratory. Responsibilities The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for preparation of the Depleted UF6 Conversion EIS. Argonne National Laboratory is assisting EM in preparation of the EIS. About the Office of Environmental Management (EM) In 1989, the Department of Energy created the Office of Environmental Management (EM) to mitigate the risks and hazards posed by the legacy of nuclear weapons production and research. Although the nation continues to maintain an arsenal of nuclear weapons, as well as some production capability, the United States has embarked on new missions. The most ambitious and far ranging of these missions is dealing with the environmental legacy of the Cold War. Like most industrial and manufacturing operations, the nuclear complex has generated waste, pollution, and contamination. However, many problems posed by its operations are unique. They include unprecedented amounts of contaminated waste, water, and soil, and a vast number of contaminated structures that will remain radioactive for thousands of years.

59

Paducah and Portsmouth Sites Advance Operations at DUF6 Plants | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Portsmouth Sites Advance Operations at DUF6 Plants and Portsmouth Sites Advance Operations at DUF6 Plants Paducah and Portsmouth Sites Advance Operations at DUF6 Plants November 1, 2011 - 12:00pm Addthis First cylinder enters plant. First cylinder enters plant. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants First cylinder enters plant. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants Paducah and Portsmouth - Babcock & Wilcox Conversion Services (BWCS) began work at the Paducah and Portsmouth sites in March with the goal of making two depleted uranium hexafluoride (DUF6) conversion plants fully operational. The DOE site operations contactor achieved that goal at 3:43 p.m. Sept. 30 when all seven conversion lines at the plants were designated fully operational. "Our next goal is to bring all seven lines to steady state commercial

60

Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants  

SciTech Connect

One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on the conversion process, preconceptual plant description, rough capital and operating costs, and preliminary project schedule.

Jones, E

1999-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Selects Contractor for Depleted Hexafluoride Conversion Project DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

62

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor for Depleted Hexafluoride Conversion Project Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

63

Portsmouth DUF6 Conversion Final EIS - Chapter 8: List of Preparers  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 8 LIST OF PREPARERS Name Education/Expertise Contribution U.S. Department of Energy Gary S. Hartman B.A., Geology; 23 years of experience in NEPA compliance and environmental compliance and regulation DOE Document Manager Argonne National Laboratory 1 Timothy Allison M.S., Mineral and Energy Resource Economics; M.A., Geography; 16 years of experience in regional analysis and economic impact analysis Socioeconomic analysis Halil I. Avci Ph.D., Nuclear Engineering; 19 years of experience in environmental assessment, waste management, accident analysis, and project management Project Leader Bruce M. Biwer Ph.D., Chemistry; 13 years of experience in radiological pathway analysis, dose calculations, and radiological transportation risk analysis

64

Paducah DUF6 Conversion Final EIS - Chapter 8: List of Preparers  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS 8 LIST OF PREPARERS Name Education/Expertise Contribution U.S. Department of Energy Gary S. Hartman B.A., Geology; 23 years of experience in NEPA compliance and environmental compliance and regulation DOE Document Manager Argonne National Laboratory 1 Timothy Allison M.S., Mineral and Energy Resource Economics; M.A., Geography; 16 years of experience in regional analysis and economic impact analysis Socioeconomic analysis Halil I. Avci Ph.D., Nuclear Engineering; 19 years of experience in environmental assessment, waste management, accident analysis, and project management Project Leader Bruce M. Biwer Ph.D., Chemistry; 13 years of experience in radiological pathway analysis, dose calculations, and radiological transportation risk analysis

65

Portsmouth DUF6 Conversion Final EIS - Volume 2: Comment and Response Document: Chapter 2: Comment Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 2 COMMENT DOCUMENTS This section provides copies of the actual letters or other documents containing public comments on the draft EISs that were submitted to DOE, including comments extracted from the transcripts of the public hearings. Table 2.1 contains an index of the comment documents by document number. Table 2.2 provides an index of comment documents by the commentors last name. Table 2.3 contains an index of comment documents by company or organization. Individual comments are denoted with vertical lines in the right margin. TABLE 2.1 Index of Commentors by Document Number Document Number Name Company/Organization Page D0001 Driver, Charles M. Individual 2-5 D0002 Kilrod, John Individual 2-7 D0003 Colley, Vina Portsmouth/Piketon Residents for Environmental Safety and Security

66

Documents: Procurement of DUF6 Services  

NLE Websites -- All DOE Office Websites (Extended Search)

of DUF6 Conversion Services Search Documents: Search PDF Documents View a list of all documents Procurement of DUF6 Services HTML Icon Request for Proposals 34 KB details...

67

DUF6 Storage Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Safety Depleted UF6 Storage line line How DUF6 is Stored Where DUF6 is Stored DUF6 Storage Safety Cylinder Leakage Depleted UF6 Storage Safety Continued cylinder storage is...

68

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Paducah DUF 6 DEIS: December 2003 SUMMARY S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth,

69

Where DUF6 is Stored  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 is Stored Depleted UF6 Storage line line How DUF6 is Stored Where DUF6 is Stored DUF6 Storage Safety Cylinder Leakage Where Depleted UF6 is Stored in the United States The UF6...

70

Transcript of Public Hearing on DUF6 Conversion Facility Draft EISs, Held Jan. 7, 2004, Waverly, Ohio  

NLE Websites -- All DOE Office Websites (Extended Search)

- - - - - - Draft Environmental Impact Statements For the Construction and Operation of Depleted Uranium Hexafluoride Conversion Facilities at the Paducah, Kentucky and Portsmouth, Ohio Sites - - - PUBLIC HEARING JANUARY 7, 2004 - - - LOCATION: Pike County YMCA 400 Pride Drive Waverly, Ohio TIME: 6:00

71

Audit Report on "Depleted Uranium Hexafluoride Conversion," DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Audit Report on "Depleted Uranium Hexafluoride Conversion," DOEIG-0642 Audit Report on "Depleted Uranium Hexafluoride...

72

Follow-up of Depleted Uranium Hexafluoride Conversion, IG-0751...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Follow-up of Depleted Uranium Hexafluoride Conversion, IG-0751 Follow-up of Depleted Uranium Hexafluoride...

73

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Main Text and Appendixes A-H 1: Main Text and Appendixes A-H June 2004 U.S. Department of Energy Office of Environmental Management Cover Sheet Portsmouth DUF 6 Conversion Final EIS iii COVER SHEET * RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Ports_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

74

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Portsmouth DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Ports_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

75

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Paducah DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process,

76

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Main Text and Appendixes A-H 1: Main Text and Appendixes A-H June 2004 U.S. Department of Energy Office of Environmental Management Cover Sheet Paducah DUF 6 Conversion Final EIS iii COVER SHEET * RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

77

Portsmouth DUF6 Conversion Final EIS - Volume 2: Comment and Response Document: Chapters 3 and 4: Response to Documents and References  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 3 RESPONSES TO COMMENTS This section provides DOE's responses to comments received during the public comment period. Indices of the DOE responses are provided by document number (Table 3.1), by commentors' last name (Table 3.2), and by commentors' company/organization (Table 3.3). Most of the comments received apply to both the Portsmouth and the Paducah conversion facility EISs. However, there are some comment documents that apply specifically to one EIS or the other. An index of comment documents indicating their applicability to each EIS is given in Table 3.4. Table 3.5 lists only those comment documents that apply to the Portsmouth EIS, and Table 3.6 lists those comment documents that apply to the Paducah EIS. Table 3.7 lists the

78

Paducah DUF6 Conversion Final EIS - Volume 2: Comment and Response Document: Chapters 3 and 4: Responses to Comments and References  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS 3 RESPONSES TO COMMENTS This section provides DOE's responses to comments received during the public comment period. Indices of the DOE responses are provided by document number (Table 3.1), by commentors' last name (Table 3.2), and by commentors' company/organization (Table 3.3). Most of the comments received apply to both the Portsmouth and the Paducah conversion facility EISs. However, there are some comment documents that apply specifically to one EIS or the other. An index of comment documents indicating their applicability to each EIS is given in Table 3.4. Table 3.5 lists only those comment documents that apply to the Portsmouth EIS, and Table 3.6 lists those comment documents that apply to the Paducah EIS. Table 3.7 lists the

79

DUF6 Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Hexafluoride Videos NOTE: Due to recent security-related issues, you may experience problems playing these videos over the Internet. We are working to resolve...

80

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah DUF Paducah DUF 6 Conversion Final EIS FIGURE S-1 Regional Map of the Paducah, Kentucky, Site Vicinity Summary S-18 Paducah DUF 6 Conversion Final EIS FIGURE S-3 Three Alternative Conversion Facility Locations within the Paducah Site, with Location A Being the Preferred Alternative (A representative conversion facility footprint is shown within each location.) Summary S-20 Paducah DUF 6 Conversion Final EIS FIGURE S-4 Conceptual Overall Material Flow Diagram for the Paducah Conversion Facility Summary S-21 Paducah DUF 6 Conversion Final EIS FIGURE S-5 Conceptual Conversion Facility Site Layout for Paducah Summary S-28 Paducah DUF 6 Conversion Final EIS FIGURE S-6 Areas of Potential Impact Evaluated for Each Alternative Alternatives 2-7 Paducah DUF 6 Conversion Final EIS

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PADUCAH, KENTUCKY, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Paducah DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

82

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PORTSMOUTH, OHIO, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Portsmouth DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

83

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS FIGURE S-1 Regional Map of the Portsmouth, Ohio, Site Vicinity Summary S-18 Portsmouth DUF 6 Conversion Final EIS FIGURE S-3 Three Alternative Conversion Facility Locations within the Portsmouth Site, with Location A Being the Preferred Alternative (A representative conversion facility footprint is shown within each location.) Summary S-20 Portsmouth DUF 6 Conversion Final EIS FIGURE S-4 Conceptual Overall Material Flow Diagram for the Portsmouth Conversion Facility Summary S-21 Portsmouth DUF 6 Conversion Final EIS FIGURE S-5 Conceptual Conversion Facility Site Layout for Portsmouth Summary S-25 Portsmouth DUF 6 Conversion Final EIS FIGURE S-6 Potential Locations for Construction of a New Cylinder Storage Yard at Portsmouth

84

DUF6 Materials Use Roadmap  

Science Conference Proceedings (OSTI)

The U.S. government has {approx}500,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms stored at U.S. Department of Energy (DOE) sites across the United States. This DU, most of which is DU hexafluoride (DUF{sub 6}) resulting from uranium enrichment operations, is the largest amount of nuclear material in DOE's inventory. On July 6, 1999, DOE issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap'' in order to establish a strategy for the products resulting from conversion of DUF{sub 6} to a stable form. This report meets the commitment in the Final Plan by providing a comprehensive roadmap that DOE will use to guide any future research and development activities for the materials associated with its DUF{sub 6} inventory. The Roadmap supports the decision presented in the ''Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride'', namely to begin conversion of the DUF{sub 6} inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for future uses of as much of this inventory as possible. In particular, the Roadmap is intended to explore potential uses for the DUF{sub 6} conversion products and to identify areas where further development work is needed. It focuses on potential governmental uses of DUF{sub 6} conversion products but also incorporates limited analysis of using the products in the private sector. The Roadmap builds on the analyses summarized in the recent ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride''. It also addresses other surplus DU, primarily in the form of DU trioxide and DU tetrafluoride. The DU-related inventory considered here includes the following: (1) Components directly associated with the DUF{sub 6} presently being stored at gaseous diffusion plant sites in Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee--470,500 MT of DU, 225,000 MT of fluorine chemically combined with the DU, and 74,000 MT of carbon steel comprising the storage cylinders; (2) Approximately 27,860 MT of DU in the form of uranium trioxide, tetrafluoride, and various other forms containing varying amounts of radioactive and chemical impurities, presently stored primarily at DOE's Savannah River Site. This Roadmap characterizes and analyzes alternative paths for eventual disposition of these materials, identifies the barriers that exist to implementing the paths, and makes recommendations concerning the activities that should be undertaken to overcome the barriers. The disposition paths considered in this roadmap and shown in Fig. ES.1 are (a) implementation of cost-effective and institutionally feasible beneficial uses of DU using the products of DUF{sub 6} conversion and other forms of DU in DOE's inventory, (b) processing the fluorine product resulting from DUF{sub 6} conversion to yield an optimal mix of valuable fluorine compounds [e.g., hydrogen fluoride (hydrofluoric acid), boron trifluoride] for industrial use, and (c) processing emptied cylinders to yield intact cylinders that are suitable for reuse, while maintaining an assured and cost-effective direct disposal path for all of the DU-related materials. Most paths consider the potential beneficial use of the DU and other DUF{sub 6} conversion products for the purpose of achieving overall benefits, including cost savings to the federal government, compared with simply disposing of the materials. However, the paths provide for assured direct disposal of these products if cost-effective and institutionally feasible beneficial uses are not found.

Haire, M.J.

2002-09-04T23:59:59.000Z

85

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX A: TEXT OF PUBLIC LAW 107-206 PERTINENT TO THE MANAGEMENT OF DUF 6 Public Law 107-206 A-2 Paducah DUF 6 Conversion Final EIS Public Law 107-206 A-3 Paducah DUF 6 Conversion Final EIS APPENDIX A: TEXT OF PUBLIC LAW 107-206 PERTINENT TO THE MANAGEMENT OF DUF 6 Section 502 of Public Law 107-206, "2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States" (signed by the President 08/02/2002) SEC. 502. Section 1 of Public Law 105-204 (112 Stat. 681) is amended - (1) in subsection (b), by striking "until the date" and all that follows and inserting "until the date that is 30 days after the date on which the Secretary of Energy awards a contract under

86

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX A: TEXT OF PUBLIC LAW 107-206 PERTINENT TO THE MANAGEMENT OF DUF 6 Public Law 107-206 A-2 Portsmouth DUF 6 Conversion Final EIS Public Law 107-206 A-3 Portsmouth DUF 6 Conversion Final EIS APPENDIX A: TEXT OF PUBLIC LAW 107-206 PERTINENT TO THE MANAGEMENT OF DUF 6 Section 502 of Public Law 107-206, "2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States" (signed by the President 08/02/2002) SEC. 502. Section 1 of Public Law 105-204 (112 Stat. 681) is amended - (1) in subsection (b), by striking "until the date" and all that follows and inserting "until the date that is 30 days after the date on which the Secretary of Energy awards a contract under

87

DUF6 Final EIS Document Request Form  

NLE Websites -- All DOE Office Websites (Extended Search)

EIS Request Form EIS Request Form Final EIS Document Request Form Use the form below to order copies of the DUF6 Conversion Facility Final EISs and Records of Decision. Step 3 Select the EIS that you want to receive. Select one of the three options below. My request applies to the Paducah Conversion Facility EIS My request applies to the Portsmouth Conversion Facility EIS My request applies to both the Paducah and the Portsmouth Conversion Facility EISs Step 1 Request EIS copies. Choose one or more of the following: Mail me a compact disc (CD-ROM) of the Final EIS and Record of Decision. Mail me a printed copy of the Final EIS and Record of Decision. Step 2 Enter your personal information. You must submit your full name and complete address including zip code to receive postal mail. You must provide an email address if you want to receive email notifications.

88

Microsoft Word - duf6 Report.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Follow-up of Depleted Uranium Follow-up of Depleted Uranium Hexafluoride Conversion DOE/IG-0751 December 2006 a-, 2 @I 5 - , & % %TEE.@ Department of Energy Washington, DC 20585 December 26, 2006 MEMORANDUM FOR THE SECRETARY FROM: Inspector General SUBJECT : INFORMATION: "Follow-up Audit Report of Depleted Uranium Hexafluoride Conversion" BACKGROUND -- - -- - - - - - In 1998, legislation was enacted requiring the Department of Energy (Department) to convert the 794,000 metric tons of depleted uranium hexafluoride stored at its gaseous diffusion plants to a more stable form. In August 2002, the Department awarded a contract to IJranium Disposition Services, LLC for the design, construction, and operation of conirersion facilities in Paducah, Kentucky and Portsmouth, Ohio. The

89

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

90

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

91

Notice of Change in National Environmental Policy (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project (4/28/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

68 68 Federal Register / Vol. 68, No. 81 / Monday, April 28, 2003 / Notices ''Browse Pending Collections'' link and by clicking on link number 2270. When you access the information collection, click on ''Download Attachments'' to view. Written requests for information should be addressed to Vivian Reese, Department of Education, 400 Maryland Avenue, SW., Room 4050, Regional Office Building 3, Washington, DC 20202-4651 or to the e-mail address vivan.reese@ed.gov. Requests may also be electronically mailed to the internet address OCIO_RIMG@ed.gov or faxed to 202-708-9346. Please specify the complete title of the information collection when making your request. Comments regarding burden and/or the collection activity requirements should be directed to Joseph Schubart at

92

Notice of Change in National Environmental Policy Act (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project  

NLE Websites -- All DOE Office Websites (Extended Search)

68 68 Federal Register / Vol. 68, No. 81 / Monday, April 28, 2003 / Notices ''Browse Pending Collections'' link and by clicking on link number 2270. When you access the information collection, click on ''Download Attachments'' to view. Written requests for information should be addressed to Vivian Reese, Department of Education, 400 Maryland Avenue, SW., Room 4050, Regional Office Building 3, Washington, DC 20202-4651 or to the e-mail address vivan.reese@ed.gov. Requests may also be electronically mailed to the internet address OCIO_RIMG@ed.gov or faxed to 202-708-9346. Please specify the complete title of the information collection when making your request. Comments regarding burden and/or the collection activity requirements should be directed to Joseph Schubart at

93

Portsmouth DUF6 Conversion Final EIS - Notation  

NLE Websites -- All DOE Office Websites (Extended Search)

Association ALARA as low as reasonably achievable ANL Argonne National Laboratory ANP Advanced Nuclear Power (Framatome ANP, Inc.) ANSI American National Standards Institute...

94

DOE Selects Contractor for Depleted Hexafluoride Conversion Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Paducah, Kentucky and Portsmouth, Ohio. For several decades DOE was responsible for uranium enrichment, the uranium hexafluoride depleted in the 235U isotope (typically down...

95

Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.  

SciTech Connect

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

96

Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.  

SciTech Connect

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

97

Documents: NEPA Compliance: DUF6 Programmatic EIS  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride PDF Icon Record of Decision for Long-term Management and Use...

98

Overview of Depleted Uranium Hexafluoride Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

99

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

OFFICE OF DEPLETED URANIUM HEXAFLUORIDE MANAGEMENT Issuance Of Final Report On Preconceptual Designs For Depleted Uranium Hexafluoride Conversion Plants The Department of Energy...

100

Summary: DUF6 Management Cost Analysis Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7650 7650 Depleted Uranium Hexafluoride Management Program Summary of the COST ANALYSIS REPORT for the Long-term Management of Depleted Uranium Hexafluoride Prepared for the Department of Energy by Lawrence Livermore National Laboratory September 1997 DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer,

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Acceptability of DUF6 Converison Products at Envirocare Site  

NLE Websites -- All DOE Office Websites (Extended Search)

55 55 Chemical Technology Division EVALUATION OF THE ACCEPTABILITY OF POTENTIAL DEPLETED URANIUM HEXAFLUORIDE CONVERSION PRODUCTS AT THE ENVIROCARE DISPOSAL SITE Allen G. Croff, J. Robert Hightower, and Nancy L. Ranek* *Argonne National Laboratory, Argonne, Illinois December 2000 Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6285 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 iii CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. LICENSE RECEIPT LIMITS

102

Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant  

Science Conference Proceedings (OSTI)

The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed.

Miles, T.L.; Liu, Y.

1995-08-01T23:59:59.000Z

103

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the 60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride

104

Paducah DUF6 Conversion Final EIS - Chapter 1: Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

in Section 1.2. Uranium enrichment in the United States began as part of the atomic bomb development by the Manhattan Project during World War II. Enrichment for both civilian...

105

Paducah DUF6 Conversion Final EIS - Chapter 6: Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility at the appropriate time. Approval to Release Materials Containing Residual Radioactive Contamination: Required before releasing (1) nonuranium products from the DUF...

106

Paducah DUF6 Conversion Final EIS - Chapter 10: Index  

NLE Websites -- All DOE Office Websites (Extended Search)

5-42, (Appendix C Report, 2), (Appendix D Report, 2) Biotic Resources 3-17, 3-57, 6-10 Breached Cylinders 2-3, 2-4, 2-26, 2-28, 3-14, 3-53, 5-5, 5-6, 5-8, 5-9, 5-15, 5-18, 5-19,...

107

Portsmouth DUF6 Conversion Final EIS - Chapter 10: Index  

NLE Websites -- All DOE Office Websites (Extended Search)

5-59, (Appendix C Report, 2), (Appendix D Report, 2) Biotic Resources 3-17, 3-56, 6-12 Breached Cylinders 2-3, 2-4, 2-28, 2-31, 3-12, 3-51, 5-4, 5-5, 5-7, 5-8, 5-14, 5-16, 5-17,...

108

Portsmouth DUF6 Conversion Final EIS - Volume 2: Comment and...  

NLE Websites -- All DOE Office Websites (Extended Search)

enrichment plant ALARA as low as reasonably achievable ANL Argonne National Laboratory ANP Advanced Nuclear Power, Inc. ATSDR Agency for Toxic Substances and Disease Registry BAT...

109

Paducah DUF6 Conversion Final EIS - Chapter 5: Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Paducah site, would involve about 4,000 truck shipments of intact heel cylinders to NTS and about 6,000 rail shipments of U 3 O 8 and crushed heel cylinders to Envirocare....

110

Portsmouth DUF6 Conversion Final EIS - Chapter 4: Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

(empty cylinders, if not used as disposal containers) Disposal; Envirocare (primary), NTS (secondary) a DOE plans to decide the specific disposal location(s) for the depleted U...

111

Portsmouth DUF6 Conversion Final EIS - Chapter 5: Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

survey suggest that these locations are too disturbed to warrant subsurface testing (Anderson 2002). However, unless these findings receive SHPO concurrence, a...

112

Portsmouth DUF6 Conversion Final EIS - Chapter 2: Description...  

NLE Websites -- All DOE Office Websites (Extended Search)

and packaged in intermodal containers. Disposal at Envirocare of Utah, Inc. a Disposal at NTS. a a DOE plans to decide the specific disposal location(s) for the depleted U 3 O 8...

113

Portsmouth DUF6 Conversion Final EIS - Appendix C: Scoping Summary...  

NLE Websites -- All DOE Office Websites (Extended Search)

. The agreement also requires DOE to continue its efforts to evaluate potential use or reuse of the material. The agreement expires in 2008. In 1994, DOE began work on the...

114

Final DUF6 PEIS: Volume 2: Appendix F; Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

would be packaged and sent either for disposal or storage. The HF would be neutralized to calcium fluoride (CaF 2 ) and separately packaged for disposal or sale. It was assumed...

115

Health Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

116

DUF6 Management Cost Analysis Report (CAR): Part 2  

NLE Websites -- All DOE Office Websites (Extended Search)

. . . Cost Analysis Report for the Long-Term Management of May 1997 Figure 4.5 Total Costs of Manufacture of Metal Options 900 800 700 Ctj 300 3 200 100 0 Metal Shielding Oxide Shielding Depleted Uranium Hexafluoride and Oxide Shielding s Decontamination & Decommissioning QI Operations & Maintenance s Regulatory Compliance u Balance of Plant u Manufacturing Facilities s Manufacturing Equipment u Engineering Development 57 ..- . Cost Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride May 1997 4.4 Long-term Storage Storage of depleted uranium is predicated on its use at some later date. In the engineering analysis, storage options are defined by the type of storage facility, and suboptions are defined by the chemical form in which the depleted uranium is stored. The types of storage facilities analyzed are (1) buildings, (2) below ground vaults,

117

Notice of Intent (NOI) to Prepare DUF6 PEIS  

NLE Websites -- All DOE Office Websites (Extended Search)

1, No. 17 / Thursday, January 25, 1996 / Notice 1, No. 17 / Thursday, January 25, 1996 / Notice [Pages 2239-2242] From the Federal Register Online via GPO Access [wais.access.gpo.gov] Alternative Strategies for the Long-Term Management and Use o f Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Notice of Intent (NOI). SUMMARY: The Department of Energy (DOE) announces its intent to prepare a programmatic environmental impact statement (PEIS) pursuant to the National Environmental Policy Act (NEPA) of 1969 (42 USC 4321 et seq.). The PEIS will assess the potential environmental impacts of alternative strategies for the long-term management and use of 560,000 metric tons of depleted uranium hexafluoride (UF 6 ) currently stored in cylinders at DOE's three gaseous diffusion plant sites located near Paducah, Kentucky; Portsmouth, Ohio; and Oak

118

Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant  

Science Conference Proceedings (OSTI)

Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0.88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the higher cost of deferred decontamination makes passive SAFSTOR more expensive than DECON. Seve

Elder, H. K.

1981-10-01T23:59:59.000Z

119

Microsoft Word - DUF6 final concurred-in SA.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This Draft Supplement Analysis .............................. 1 1.2 Background ....................................................................................................... 3 1.3 Proposed Actions Considered in this Draft Supplement Analysis.................... 4

120

Video: Metamorphosis (Physical Characteristics of Uranium Hexafluoride)  

NLE Websites -- All DOE Office Websites (Extended Search)

Metamorphosis Metamorphosis Metamorphosis (Physical Characteristics of Uranium Hexafluoride) The Uranium Hexafluoride phase diagram is investigated. An experimental setup is shown to look at the gas, liquid, and solid phases at various temperatures and pressures. This information is used to understand what happens inside a DUF6 storage cylinder. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:12 Metamorphosis from the U.S. Department of Energy Video 00:45 Laboratory setup to examine the phases of UF6 Video 01:45 UF6 Phase Diagram Video 03:25 Liquid UF6 appearing in a glass tube Video 03:38 Cloud of HF from moisture reaction dissolving in UF6 gas Video 04:27 Beginning of UF6 phase change from liquid to solid Video 04:40 Formation of porous solid structure

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of the Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants May 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

122

Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants May 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

123

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

DOE Green Energy (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

N /A

2003-11-28T23:59:59.000Z

124

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site  

DOE Green Energy (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

N /A

2003-11-28T23:59:59.000Z

125

Uranium hexafluoride handling. Proceedings  

SciTech Connect

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

126

Wetland assessment of the effects of construction and operation of a depleteduranium hexafluoride conversion facility at the Portsmouth, Ohio, site.  

SciTech Connect

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This wetland assessment has been prepared by DOE, pursuant to Executive Order 11990 (''Protection of Wetlands'') and DOE regulations for implementing this Executive Order as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [Compliance with Floodplain and Wetland Environmental Review Requirements]), to evaluate potential impacts to wetlands from the construction and operation of a conversion facility at the DOE Portsmouth site. Approximately 0.02 acre (0.009 ha) of a 0.08-acre (0.03-ha) palustrine emergent wetland would likely be eliminated by direct placement of fill material during facility construction at Location A. Portions of this wetland that are not filled may be indirectly affected by an altered hydrologic regime because of the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation, and potential loss of hydrology necessary to sustain wetland conditions. Construction at Locations B or C would not result in direct impacts to wetlands. However, the hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 are set forth in 10 CFR Part 1022. The impacts at Location A may potentially be avoided by an alternative routing of the entrance road, or mitigation may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the State of Ohio. Unavoidable impacts to isolated wetlands may require an Isolated Wetlands Permit from the Ohio Environmental Protection Agency. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to wetlands are anticipated to be negligible to minor for the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found in this part of Ohio, which in many cases involve previously disturbed habitats.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

127

Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1  

SciTech Connect

This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

1995-07-05T23:59:59.000Z

128

Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This Draft Supplement Analysis .............................. 1 1.2 Background ....................................................................................................... 3 1.3 Proposed Actions Considered in this Draft Supplement Analysis.................... 4

129

EIS-0359: Notice of Change in National Environmental Policy ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0359: Notice of Change in National Environmental Policy (NEPA) Compliance Approach Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project Notice of Change in...

130

EIS-0359: Notice of Change in National Environmental Policy ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Policy (NEPA) Compliance Approach Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project Notice of Change in National Environmental Policy (NEPA)...

131

Independent Oversight Assessment, Portsmouth/Paducah Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

oversight of conduct of operations (CONOPS) at the depleted uranium hexafluoride (DUF6) conversion plants. The onsite portion of the review was performed March 12-16, 2012,...

132

Portsmouth DUF6 Conversion Facility: Record of Decision: As Published in the Federal Register  

NLE Websites -- All DOE Office Websites (Extended Search)

49 49 Federal Register / Vol. 69, No. 143 / Tuesday, July 27, 2004 / Notices halseypj@oro.doe.gov or check the Web site at www.oakridge.doe.gov/em/ssab. SUPPLEMENTARY INFORMATION: Purpose of the Board: The purpose of the Board is to make recommendations to DOE in the areas of environmental restoration, waste management, and related activities. Tentative Agenda 8 a.m.-Introductions, overview of meeting agenda and logistics (Dave Mosby) 8:15 a.m.-Past year evaluation-Board and stakeholder survey results, what worked, what can be improved (Facilitator) 9:50 a.m.-Break 10:05 a.m.-Past year evaluation continued 10:45 a.m.-Summaries and Q&A on the most important issues to DOE, TN Department of Environment & Conservation, and EPA (Facilitator) 11:30 a.m.-Lunch

133

Paducah DUF6 Conversion Final EIS - Volume 2: Comment and Response...  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Security 2-8 D0004 Howell, Linda Individual 2-13 D0005 Minter, Dan Southern Ohio Diversification Initiative 2-15 D0006 Justice, T.J. Ohio Governor's Office 2-16 D0007...

134

Paducah DUF6 Conversion Facility: Record of Decision: As Published in the Federal Register  

NLE Websites -- All DOE Office Websites (Extended Search)

54 54 Federal Register / Vol. 69, No. 143 / Tuesday, July 27, 2004 / Notices accordance with the comprehensive set of DOE requirements and applicable regulatory requirements that have been established to protect public health and the environment. These requirements encompass a wide variety of areas, including radiation protection, facility design criteria, fire protection, emergency preparedness and response, and operational safety requirements. * Cylinder management activities will be conducted in accordance with applicable DOE safety and environmental requirements, including the Cylinder Management Plan. * Temporary impacts on air quality from fugitive dust emissions during reconstruction of cylinder yards or construction of any new facility will be controlled by the best available

135

U.S. transparency monitoring of HEU oxide conversion and blending to LEU hexafluoride at three Russian blending plants  

SciTech Connect

The down-blending of Russian highly enriched uranium (HEU) takes place at three Russian gaseous centrifuge enrichment plants. The fluorination of HEU oxide and down-blending of HEU hexafluoride began in 1994, and shipments of low enriched uranium (LEU) hexafluoride product to the United States Enrichment Corporation (USEC) began in 1995 US transparency monitoring under the HEU Purchase Agreement began in 1996 and includes a permanent monitoring presence US transparency monitoring at these facilities is intended to provide confidence that HEU is received and down-blended to LEU for shipment to USEC The monitoring begins with observation of the receipt of HEU oxide shipments, including confirmation of enrichment using US nondestructive assay equipment The feeding of HEU oxide to the fluorination process and the withdrawal of HEU hexafluoride are monitored Monitoring is also conducted where the blending takes place and where shipping cylinders are filled with LEU product. A series of process and material accountancy documents are provided to US monitors.

Leich, D., LLNL

1998-07-27T23:59:59.000Z

136

Record of Decision for Long-term Management and Use of Depleted Uranium Hexafluoride  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Record of Decision SUMMARY: The Department of Energy ("DOE" or "the Department") issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF 6 ). DOE has decided to promptly convert the depleted UF 6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both. The depleted uranium oxide will be

137

Transcript of Public Scoping Meeting for Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities at Portsmouth, Ohio, and Paducah, Kentucky, held Nov. 28, 2001, Piketon, Ohio  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DEPARTMENT OF ENERGY ENVIRONMENTAL 2 IMPACT STATEMENT 3 FOR DEPLETED URANIUM HEXAFLUORIDE 4 CONVERSION FACILITIES 5 AT PORTSMOUTH, OHIO AND PADUCAH, KENTUCKY 6 7 SCOPING MEETING 8 9 November 28, 2001. 10 11 6:00 p.m. 12 13 Riffe Beavercreek Vocational School 14 175 Beavercreek Road 15 Piketon, Ohio 45661 16 17 FACILITATORS: Darryl Armstrong 18 Harold Munroe 19 Kevin Shaw 20 Gary Hartman 21 22 23 24 Professional Reporters, Inc. (614) 460-5000 or (800) 229-0675 2 1 -=0=- 2 PROCEEDINGS 3 -=0=- 4 MR. ARMSTRONG: I have 6:00, 5 according to my watch. Good evening, ladies 6 and gentlemen. If you'll please take your 7 seats, we'll get started. This meeting is 8 now officially convened. 9 On behalf of DOE, we thank you for 10 attending the environmental impact 11 statement, or EIS, scoping meeting this 12 evening for the depleted uranium conversion 13 facilities. My name is Darryl Armstrong. I 14

138

Method of recovering uranium hexafluoride  

DOE Patents (OSTI)

A method of recovering uranium hexafluoride from gaseous mixtures which comprises adsorbing said uranium hexafluoride on activated carbon is described.

Schuman, S.

1975-12-01T23:59:59.000Z

139

Standing by Ohio: Cleaning Up our Environmental Legacy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the start-up of operations at the Depleted Uranium Hexafluoride Conversion Plant, or DUF6, as we commonly call it. Depleted uranium hexafluoride has been generated in the United...

140

Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.  

SciTech Connect

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.  

SciTech Connect

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors along Little Beaver Creek, the Northwest Tributary stream, and a wooded area east of the X-100 facility. However, no Indiana bats were collected during surveys of these areas in 1994 and 1996. Locations A, B, and C do not support suitable habitat for the Indiana bat and would be unlikely to be used by Indiana bats. Indiana bat habitat also does not occur at Proposed Areas 1 and 2. Although Locations A and C contain small wooded areas, the small size and lack of suitable maturity of these areas indicate that they would provide poor habitat for Indiana bats. Trees that may be removed during construction would not be expected to be used for summer roosting by Indiana bats. Disturbance of Indiana bats potentially roosting or foraging in the vicinity of the facility during operations would be very unlikely, and any disturbance would be expected to be negligible. On the basis of these considerations, DOE concludes that the proposed action is not likely to adversely affect the Indiana bat. No critical habitat exists for this species in the action area. Although the timber rattlesnake occurs in the vicinity of the Portsmouth site, it has not been observed on the site. In addition, habitat for the timber rattlesnake is not present on the Portsmouth site. Therefore, DOE concludes that the proposed action would not affect the timber rattlesnake.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

142

Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.  

SciTech Connect

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors along Little Beaver Creek, the Northwest Tributary stream, and a wooded area east of the X-100 facility. However, no Indiana bats were collected during surveys of these areas in 1994 and 1996. Locations A, B, and C do not support suitable habitat for the Indiana bat and would be unlikely to be used by Indiana bats. Indiana bat habitat also does not occur at Proposed Areas 1 and 2. Although Locations A and C contain small wooded areas, the small size and lack of suitable maturity of these areas indicate that they would provide poor habitat for Indiana bats. Trees that may be removed during construction would not be expected to be used for summer roosting by Indiana bats. Disturbance of Indiana bats potentially roosting or foraging in the vicinity of the facility during operations would be very unlikely, and any disturbance would be expected to be negligible. On the basis of these considerations, DOE concludes that the proposed action is not likely to adversely affect the Indiana bat. No critical habitat exists for this species in the action area. Although the timber rattlesnake occurs in the vicinity of the Portsmouth site, it has not been observed on the site. In addition, habitat for the timber rattlesnake is not present on the Portsmouth site. Therefore, DOE concludes that the proposed action would not affect the timber rattlesnake.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

143

Uranium Hexafluoride (UF6)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hexafluoride (UF6) Hexafluoride (UF6) Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Uranium Hexafluoride (UF6) Physical and chemical properties of UF6, and its use in uranium processing. Uranium Hexafluoride and Its Properties Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. UF6 crystals in a glass vial image UF6 crystals in a glass vial. Uranium hexafluoride does not react with oxygen, nitrogen, carbon dioxide, or dry air, but it does react with water or water vapor. For this reason,

144

FAQ 10-Why is uranium hexafluoride used?  

NLE Websites -- All DOE Office Websites (Extended Search)

uranium hexafluoride used? Why is uranium hexafluoride used? Uranium hexafluoride is used in uranium processing because its unique properties make it very convenient. It can...

145

Transcript of Public Hearing on DUF6 Conversion Facility Draft EISs, Held Jan. 15, 2004, Oak Ridge, Tennessee  

NLE Websites -- All DOE Office Websites (Extended Search)

PUBLIC MEETING PUBLIC MEETING ______________________________________________________ PRESENTATION BY MR. GARY HARTMAN SPEAKERS: MS. BARBARA WALTON MR. NORMAN MULVENON MS. SUSAN GAWARECKI MR. CHARLES FORSBERG FACILITATOR: MR. DARRYL ARMSTRONG JANUARY 15, 2004 ____________________________________________________ JOAN S. ROBERTS COURT REPORTER P.O. BOX 5924 OAK RIDGE, TENNESSEE 37831

146

PRODUCTION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

Fowler, R.D.

1957-08-27T23:59:59.000Z

147

PREPARATION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

1959-10-01T23:59:59.000Z

148

DUF6 Environmental Risks  

NLE Websites -- All DOE Office Websites (Extended Search)

Risks A discussion of the potential environmental impacts associated with depleted uranium handling or processing facilities. Impacts Considered in the PEIS Depleted uranium...

149

DUF6 Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Depleted UF6 Management An introduction to DOE's Depleted UF6 Management Program. The mission of the DOE's Depleted UF6 Management Program is to safely and efficiently...

150

DUF6 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

of depleted UF6 is stored in steel cylinders at three sites in the U.S. Depleted UF6 Inventory and Storage Locations U.S. DOE's inventory of depleted UF6 consists of approximately...

151

Depleted UF6 Conversion facility EIS Topics  

NLE Websites -- All DOE Office Websites (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

152

PROCESS FOR MAKING URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for producing uranium hexafluoride by reacting uranium hexachloride with hydrogen fluoride at a temperature below about 150 deg C, under anhydrous conditions.

Rosen, R.

1959-07-14T23:59:59.000Z

153

EIS-0359: Notice of Change in National Environmental Policy (NEPA)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Change in National Environmental Policy (NEPA) Notice of Change in National Environmental Policy (NEPA) Compliance Approach EIS-0359: Notice of Change in National Environmental Policy (NEPA) Compliance Approach Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project Notice of Change in National Environmental Policy (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project (4/28/03). The purpose of this Notice is to inform the public of the change in the approach for the NEPA review for the DUF6 conversion projects for Paducah and Portsmouth, and to invite public comments on the revised approach. DOE/EIS-0359, Department of Energy, Notice of Change in National Environmental Policy (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project, 68 FR 22368 (April 2003)

154

PROCESS FOR PRODUCING URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ convented to UF/sub 6/ by reaction with a fluorinating agent. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reaction chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. The oven is then swept clean of hydrogen and the water vapor formed by means of nitrogen and then while continuing to maintain the temperature between 400 and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion to uranium tetrafluoride, the temperature of the reaction chamber is lowered to ahout 400 deg C, and elemental fluorine is used as the fluorinating agent for the conversion of UF/sub 4/ into UF/sub 6/. The fluorine gas is passed into the chamber, and the UF/sub 6/ formed passes out and is delivered to a condenser.

Fowler, R.D.

1957-10-22T23:59:59.000Z

155

FAQ 11-What are the properties of uranium hexafluoride?  

NLE Websites -- All DOE Office Websites (Extended Search)

properties of uranium hexafluoride? What are the properties of uranium hexafluoride? Uranium hexafluoride can be a solid, liquid, or gas, depending on its temperature and pressure....

156

Production and Handling Slide 18: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

last step of the conversion process involves the chemical conversion of uranium tetrafluoride UF4 to uranium hexafluoride UF6 using fluorine F2. Slide 1...

157

Transcript of Public Scoping Meeting for Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities at Portsmouth, Ohio, and Paducah, Kentucky, held Dec. 4, 2001, Oak Ridge, Tennessee  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSCRIPT TRANSCRIPT OF MEETING ______________________________________________________ FACILITATOR: MR. DARRYL ARMSTRONG SPEAKER: MR. DALE RECTOR SPEAKER: MR. NORMAN MULVENON SPEAKER: MS. SUSAN GAWARECKI SPEAKER: MR. GENE HOFFMAN DECEMBER 4, 2001 ____________________________________________________ JOAN S. ROBERTS COURT REPORTER P.O. BOX 5924 OAK RIDGE, TENNESSEE 37831 (865-457-4027) 2 1 MR. ARMSTRONG: TAKE YOUR SEATS AND WE 2 WILL BEGIN THE MEETING. GOOD EVENING, LADIES 3 AND GENTLEMEN. IF YOU WILL, WE WILL START, THE 4 TIME IS NOW 6:02 P.M. THE MEETING IS 5 OFFICIALLY CONVENED. ON BEHALF OF THE 6 DEPARTMENT OF ENERGY, WE THANK YOU FOR 7 ATTENDING THIS ENVIRONMENTAL IMPACT STATEMENT 8 SCOPING MEETING, ALSO KNOWN AS AN EIS SCOPING 9 MEETING, FOR THE DEPLETED URANIUM CONVERSION 10 FACILITIES. MY NAME IS DARRYL ARMSTRONG. I'M 11 AN INDEPENDENT AND NEUTRAL FACILITATOR HIRED BY 12 AGENCIES

158

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

159

Public Scoping Meeting Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Scoping Meeting Materials Public Scoping Meeting Materials Public Scoping Meeting Materials Fact sheets, presentations, and other information from the Conversion EIS Public Scoping Meetings. The following materials were made available during the DUF6 Conversion EIS public scoping meetings held near Portsmouth, Ohio, Oak Ridge, Tennessee, and Paducah, Kentucky, November - December, 2001. Notice of Intent PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details Presentation PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program 5.97 MB details DUF6 Fact Sheets PDF Icon Overview of Depleted Uranium Hexafluoride Management Program 174 KB details PDF Icon NEPA Activities for the Depleted Uranium Hexafluoride Management Program

160

Depleted Uranium Hexafluoride Materials Use Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 U.S. Department of Energy DUF 6 MATERIALS USE ROADMAP Edited by: M. Jonathan Haire Allen G. Croff August 27, 2001 DUF 6 Materials Use Workshop Participants August 24-25, 1999 Name Organization Halil Avci ANL Bob Bernero Consultant Lavelle Clark PNNL Carl Cooley DOE/EM-50 Allen Croff ORNL Juan Ferrada ORNL Charles Forsberg ORNL John Gasper ANL Bob Hightower ORNL Julian Hill PNNL Ed Jones LLNL Asim Khawaja PNNL George Larson Consultant Paul Lessing INEEL Dan O'Connor ORNL Robert Price DOE/NE-30 Nancy Ranek ANL Mark Senderling DOE/RW-46 Roger Spence ORNL John Tseng DOE/EM-21 John Warren DOE/NE-30 Ken Young LLNL iii CONTENTS ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . .

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EM News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2013 6, 2013 DUF6 Project Doubles Production in 2013 LEXINGTON, Ky. - The conversion plants at EM's Paducah and Portsmouth sites surpassed a fiscal year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier. November 26, 2013 BWCS employees from all departments of the DUF6 project at the Portsmouth site come together to mark five years without a lost-time accident. Portsmouth Site Plant Surpasses Five Years Without Lost-Time Accident PIKETON, Ohio - The depleted uranium hexafluoride (DUF6) conversion plant at EM's Portsmouth site marked five years without a lost-time accident this month, equating to 1,826 workdays or 1,916,103 work hours. November 26, 2013 Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive.

162

How DUF6 is Stored  

NLE Websites -- All DOE Office Websites (Extended Search)

cylinder combines with the iron on the inner surfaces to form a surface layer of iron fluoride that inhibits internal corrosion. A new depleted UF6 cylinder Cylinders that exhibit...

163

Health Effects Associated with Uranium Hexafluoride (UF6)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hexafluoride (UF6) UF6 Health Effects Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Health Effects Associated with Uranium Hexafluoride (UF6) Uranium...

164

Video: The Depleted Uranium Hexafluoride Story  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Story The Depleted Uranium Hexafluoride Story An overview of Uranium, its isotopes, the need and history of diffusive separation, the handling of the Depleted Uranium...

165

FAQ 12-What are the hazards associated with uranium hexafluoride...  

NLE Websites -- All DOE Office Websites (Extended Search)

hazards associated with uranium hexafluoride? What are the hazards associated with uranium hexafluoride? The characteristics of UF6 pose potential health risks, and the material is...

166

FAQ 14-What does a depleted uranium hexafluoride cylinder look...  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted uranium hexafluoride cylinder look like? What does a depleted uranium hexafluoride cylinder look like? A picture is worth a thousand words The pictures below show typical...

167

Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process  

Science Conference Proceedings (OSTI)

A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

1983-03-01T23:59:59.000Z

168

EIS-0360: Draft Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Draft Environmental Impact Statement EIS-0360: Draft Environmental Impact Statement Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site The U.S. Department of Energy (DOE) proposes, via a contract awarded at the direction of Congress (Public Law 107-206), to design, construct, and operate two conversion facilities for converting depleted uranium hexafluoride (commonly referred to as DUF6): one at Portsmouth, Ohio, and one at Paducah, Kentucky. DOE intends to use the proposed facilities to convert its inventory of DUF6 to a more stable chemical form suitable for beneficial use or disposal. This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed DUF6 conversion facility at three

169

EIS-0359: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0359: Final Environmental Impact Statement Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site The U.S. Department of Energy (DOE) proposes, via a contract awarded at the direction of Congress (Public Law 107-206), to design, construct, and operate two conversion facilities for converting depleted uranium hexafluoride (commonly referred to as DUF6): one at Portsmouth, Ohio, and one at Paducah, Kentucky. DOE intends to use the proposed facilities to convert its inventory of DUF6 to a more stable chemical form suitable for beneficial use or disposal. This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed DUF6 conversion facility at three

170

REDUCTION OF URANIUM HEXAFLUORIDE RETENTION ON BEDS OF MAGNESIUM FLUORIDE USED FOR REMOVAL OF TECHNETIUM HEXAFLUORIDE  

SciTech Connect

The excessive loss of uranium incurred when discarding magnesium fluoride, (the adsorber used to selectively remove technetium hexafluoride from uranium hexafluoride streams) is a problem common to all volatility processes for recovering enriched uranium fuels. As a result of the work described, two schemes for the release of the uranium hexafluoride from the magnesium fluoride and its separation from the technetium hexafluoride are proposed. One scheme depends on preferential thermal desorption of the uranium hexafluoride at 350 deg C and the other on selective adsorption of the uranium hexafluoride on sodium fluoride pellets following the codesorption of the two hexafluorides with fluorine at 500 deg C from the magnesium fluoride pellets. These proposals are aimed at reducing the amount of retained uranium to less than 1 g per 1000 g of discardable magnesium fluoride. In the work reported, the deposition of uranium on magnesium fluoride as a function of heating, fluorination, and hydrogen fluoride pretreatment of the magnesium fluoride pellets prior to exposure to uranium hexafluoride was characterized in a series of gasometric studies. The dependence of the quantity of uranium hexafluoride adsorbed on pressure and temperature was also determined. The data show that physical adsorption is the mechanism for the deposition of most of the uranium hexafluoride on well- stabilized magnesium fluoride pellets. More than 90% of the adsorbate can be removed by heating to 350 deg C. Chemisorption (formation of a double salt) is probably not involved because of the small (<0.05) mole ratio of UF/sub 6//MgF/ sub 2/ observed. (auth)

Katz, S.

1964-01-31T23:59:59.000Z

171

FAQ 19-Is storage of uranium hexafluoride safe?  

NLE Websites -- All DOE Office Websites (Extended Search)

storage of uranium hexafluoride safe? Is storage of uranium hexafluoride safe? The advanced age of some of the steel cylinders in which the depleted UF6 is contained, and the way...

172

FAQ 9-Where does uranium hexafluoride come from?  

NLE Websites -- All DOE Office Websites (Extended Search)

hexafluoride come from? Where does uranium hexafluoride come from? The gaseous diffusion process used to enrich uranium requires uranium in the form of UF6. In the first step of...

173

BASIC STUDIES OF THE SEPARATION OF URANIUM HEXAFLUORIDE FROM MIXTURES CONTAINING CHLORINE TRIFLUORIDE AND HYDROGEN FLUORIDE  

SciTech Connect

Processes for the conversion of uranium compounds or uranium metal to uranium hexafluoride ordinarily involve the use of a powerful fluorinating agent. Elemental fluorine is used when the scale of operations justifies the construction of a fluorine generating plant, but for smaller operation the use of the interhalogens of fluorine has definite advantages. These compounds provide a high concentration of fluorinating power at moderate temperatures and pressures and are more easily stored and transported than fluorine. In addition, fluorinations in the liquid phase often proceed more smoothly than those with gaseous fluorine. However, the use of . the interhalogens introduces the problem of separating the uranium hexafluoride from the unreacted reagent and from any by-products which may have been formed. The present work is concerned with the determination of the phase equilibrai among the materials uranium hexafluoride, chlorine trifluoride, and hydrogen fluoride. metal with chlorine trifluoride-hydrogen fluoride solutions or as a result of treating many uranium compounds and ores with chlorine trifluoride. These phase equilibria define the physical conditions necessary for separating the components by the processes of crystallization or distillation and have made possinle the successful Operation of a pilot plant for the direct recovery of uranium hexafluoride from spent metallic uranium fuel elements. (auth)

Bernhardt, H.A.; Barber, E.J.; Davis, W. Jr.; McGill, R.M.

1958-10-31T23:59:59.000Z

174

Reducing Sulfur Hexafluoride Use at LANSCE  

NLE Websites -- All DOE Office Websites (Extended Search)

U N C L A S S I F I E D U N C L A S S I F I E D Reducing Sulfur Hexafluoride Use at LANSCE Hank Alvestad presents to the Fugitive Emissions Working Group September 8, 2011...

175

DEVELOPMENT OF THE CONTINUOUS METHOD FOR THE REDUCTION OF URANIUM HEXAFLUORIDE WITH HYDROGEN-PROCESS DEVELOPMENT. HOT WALL REACTOR  

DOE Green Energy (OSTI)

>A continuous process for the reduction of uranium hexafluoride to uranium tetrafluoride was developed and proved on a pilot-plant scale. Complete conversion to uranium tetrafluoride was realized by contacting gaseous uranium hexafluoride with hydrogen in a heated, vertical, open-tube reactor. The purity and density of the solid product met metal grade uranium tetrafluoride specifications. Some difficulty with the accumulation of fused uranium fluorides in the tower was encountered, however, and it was necessary to stop and desing the unit about every 8 to 24 hours. The reaction of uranium hexafluoride with gaseous trichloroethylene was stadied before the tests with hydrogen were made. Although the reduction to uranium tetrafluoride was complete, the solid product was highly contaminated with the organic by-products of the reaction and was quite low in density. Tests of this method were discontinued when promising results were obtained with hydrogen as the reductant. (auth)

Smiley, S H; Brater, D C

1958-06-27T23:59:59.000Z

176

EIS-0329: Advance Notice of Intent To Prepare an Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

329: Advance Notice of Intent To Prepare an Environmental 329: Advance Notice of Intent To Prepare an Environmental Impact Statement EIS-0329: Advance Notice of Intent To Prepare an Environmental Impact Statement Depleted Uranium Hexafluoride Conversion Facilities The U.S. Department of Energy (DOE) is providing advance notice of its intent to prepare an Environmental Impact Statement (EIS) on the proposed construction, operation, and decontamination/decommissioning of two depleted uranium hexafluoride (DUF6) conversion facilities, at Portsmouth, Ohio and Paducah, Kentucky. DOE intends to use the proposed facilities to convert its inventory of DUF6 to a more stable chemical form suitable for storage, beneficial use or disposal. Advance Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities, DOE/EIS-0329 (May

177

Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride  

E-Print Network (OSTI)

1.1 These test methods cover procedures for subsampling and for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride UF6. Most of these test methods are in routine use to determine conformance to UF6 specifications in the Enrichment and Conversion Facilities. 1.2 The analytical procedures in this document appear in the following order: Note 1—Subcommittee C26.05 will confer with C26.02 concerning the renumbered section in Test Methods C761 to determine how concerns with renumbering these sections, as analytical methods are replaced with stand-alone analytical methods, are best addressed in subsequent publications. Sections Subsampling of Uranium Hexafluoride 7 - 10 Gravimetric Determination of Uranium 11 - 19 Titrimetric Determination of Uranium 20 Preparation of High-Purity U3O 8 21 Isotopic Analysis 22 Isotopic Analysis by Double-Standard Mass-Spectrometer Method 23 - 29 Determination of Hydrocarbons, Chlorocarbons, and Partially Substitut...

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

178

PROCESS FOR PRODUCTION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for the manufacture of uranium bexafluoride which consists in contacting an oxide of uranium simultaneously with elemental carbon and elemental fluorine at an elevated temperature, using a proportion of the carbon to the oxide about 50% in excess of that theoretically required to combine with f the oxygen as C0/.sub 2/. The process has the advantage that the uranium oxide is reduced by tbe carbon aad converted to the hexafluoride in a single operation.

Fowler, R.D.

1958-11-01T23:59:59.000Z

179

Selection of a management strategy for depleted uranium hexafluoride  

Science Conference Proceedings (OSTI)

A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

1995-09-06T23:59:59.000Z

180

Press Release: DOE Seeks Public Input for Depleted Uranium Hexafluorid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Perry, (865) 576-0885 September 24, 2001 www.oakridge.doe.gov DOE SEEKS PUBLIC INPUT FOR DEPLETED URANIUM HEXAFLUORIDE ENVIRONMENTAL IMPACT STATEMENT Public Meetings Planned in...

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

FAQ 20-How is uranium hexafluoride being managed now?  

NLE Websites -- All DOE Office Websites (Extended Search)

being managed now? How is uranium hexafluoride being managed now? Since 1990, DOE has conducted a program of cylinder inspections, recoatings, and relocations to assure that...

182

Depleted UF6 Internet Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home Internet Resources Depleted UF6 Internet Resources Links...

183

DUF6 EIS Public Comment Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Comment Form Public Comment Form The public comment period for the Depleted UF6 Supplemental Analysis is closed. The public comment form is no longer available. Sorry The...

184

Conversion of depleted uranium hexafluoride to a solid uranium compound  

DOE Patents (OSTI)

A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2001-01-01T23:59:59.000Z

185

Moderation control in low enriched {sup 235}U uranium hexafluoride packaging operations and transportation  

Science Conference Proceedings (OSTI)

Moderation control is the basic parameter for ensuring nuclear criticality safety during the packaging and transport of low {sup 235}U enriched uranium hexafluoride before its conversion to nuclear power reactor fuel. Moderation control has permitted the shipment of bulk quantities in large cylinders instead of in many smaller cylinders and, therefore, has resulted in economies without compromising safety. Overall safety and uranium accountability have been enhanced through the use of the moderation control. This paper discusses moderation control and the operating procedures to ensure that moderation control is maintained during packaging operations and transportation.

Dyer, R.H. [USDOE Oak Ridge Operations Office, TN (United States); Kovac, F.M. [Oak Ridge National Lab., TN (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

1993-10-01T23:59:59.000Z

186

Depleted UF6 Management Information Network - A resource for...  

NLE Websites -- All DOE Office Websites (Extended Search)

is an online repository of information about the U.S. Department of Energy's (DOE's) inventory of depleted uranium hexafluoride (DUF6), a product of the uranium enrichment...

187

FAQ 8-What is uranium hexafluoride (UF6)?  

NLE Websites -- All DOE Office Websites (Extended Search)

is uranium hexafluoride (UF6)? is uranium hexafluoride (UF6)? What is uranium hexafluoride (UF6)? Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. Liquid UF6 is formed only at temperatures greater than 147° F (64° C) and at pressures greater than 1.5 times atmospheric pressure (22 psia). At atmospheric pressure, solid UF6 will transform directly to UF6 gas (sublimation) when the temperature is raised to 134° F (57° C), without going through a liquid phase.

188

Trifluoromethyl Sulfur Pentafluoride (SF5CF3) and Sulfur Hexafluoride...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Pentafluoride (SF5CF3) and Sulfur Hexafluoride (SF6) from Dome Concordia graphics Graphics data Data Investigators W. T. Sturges,1 T. J. Wallington,2 M. D. Hurley,2 K....

189

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 24690 of 29,416 results. 81 - 24690 of 29,416 results. Page January 15, 2013: Developing PV Projects with RFPs and PPAs This webinar was held January 15, 2013, and provided information on how the cities of Tucson, Arizona, and Minneapolis, Minnesota, utilized requests for proposals (RFPs) and power purchase... http://energy.gov/eere/january-15-2013-developing-pv-projects-rfps-and-ppas Article DUF6 Project Doubles Production in 2013 LEXINGTON, Ky. - The conversion plants at EM's Paducah and Portsmouth sites surpassed a fiscal year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier. http://energy.gov/em/articles/duf6-project-doubles-production-2013 Article EM National Laboratory's Solvent to Save an Estimated $1.35

190

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 18670 of 28,905 results. 61 - 18670 of 28,905 results. Download CX-009893: Categorical Exclusion Determination 25A2034 - Lightweight Thermal Energy Recovery (LighTER) System CX(s) Applied: B3.6 Date: 12/15/2009 Location(s): Michigan, California Offices(s): Advanced Research Projects Agency-Energy http://energy.gov/nepa/downloads/cx-009893-categorical-exclusion-determination Article Milestones Keep DUF6 Plants Moving Ahead PADUCAH, Ky. - The depleted uranium hexafluoride (DUF6) conversion plants in Portsmouth, Ohio, and Paducah, Ky., celebrated two significant milestones this year. http://energy.gov/em/articles/milestones-keep-duf6-plants-moving-ahead Download DOE Strategic Human Capital Plan (FY 2011- 2015) The Strategic Human Capital Plan sets forth the framework for managing the

191

EIS-0360: EPA Notice of Availability of the Draft Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Draft Environmental Impact Statement EIS-0360: EPA Notice of Availability of the Draft Environmental Impact Statement Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site The U.S. Department of Energy (DOE) proposes, via a contract awarded at the direction of Congress (Public Law 107-206), to design, construct, and operate two conversion facilities for converting depleted uranium hexafluoride (commonly referred to as DUF6): one at Portsmouth, Ohio, and one at Paducah, Kentucky. DOE intends to use the proposed facilities to convert its inventory of DUF6 to a more stable chemical form suitable for beneficial use or disposal. This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and

192

EIS-0360: EPA Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: EPA Notice of Availability of the Final Environmental 60: EPA Notice of Availability of the Final Environmental Impact Statement EIS-0360: EPA Notice of Availability of the Final Environmental Impact Statement Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site The U.S. Department of Energy (DOE) proposes, via a contract awarded at the direction of Congress (Public Law 107-206), to design, construct, and operate two conversion facilities for converting depleted uranium hexafluoride (commonly referred to as DUF6): one at Portsmouth, Ohio, and one at Paducah, Kentucky. DOE intends to use the proposed facilities to convert its inventory of DUF6 to a more stable chemical form suitable for beneficial use or disposal. Final Environmental Impact Statement for Construction and Operation of a

193

EIS-0360: EPA Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Final Environmental EPA Notice of Availability of the Final Environmental Impact Statement EIS-0360: EPA Notice of Availability of the Final Environmental Impact Statement Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site The U.S. Department of Energy (DOE) proposes, via a contract awarded at the direction of Congress (Public Law 107-206), to design, construct, and operate two conversion facilities for converting depleted uranium hexafluoride (commonly referred to as DUF6): one at Portsmouth, Ohio, and one at Paducah, Kentucky. DOE intends to use the proposed facilities to convert its inventory of DUF6 to a more stable chemical form suitable for beneficial use or disposal. Final Environmental Impact Statement for Construction and Operation of a

194

FAQ 17-Where is uranium hexafluoride stored in the United States...  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is uranium hexafluoride stored in the United States? Where is uranium hexafluoride stored in the United States? Most of the depleted UF6 accumulated since the 1940s is stored...

195

FAQ 22-What is going to happen to the uranium hexafluoride stored...  

NLE Websites -- All DOE Office Websites (Extended Search)

going to happen to the uranium hexafluoride stored in the United States? What is going to happen to the uranium hexafluoride stored in the United States? The DOE has been...

196

PLATINUM HEXAFLUORIDE AND METHOD OF FLUORINATING PLUTONIUM CONTAINING MIXTURES THERE-WITH  

DOE Patents (OSTI)

The preparation of platinum hexafluoride and its use as a fluorinating agent in a process for separating plutonium from fission products is presented. According to the invention, platinum is reacted with fluorine gas at from 900 to 1100 deg C to form platinum hexafluoride. The platinum hexafluoride is then contacted with the plutonium containing mixture at room temperature to form plutonium hexafluoride which is more volatile than the fission products fluorides and therefore can be isolated by distillation.

Malm, J.G.; Weinstock, B.; Claassen, H.H.

1959-07-01T23:59:59.000Z

197

Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site in Support of Site-Specific NEPA Requirements for Continued Cylinder Storage, Cylinder Preparation, Conversion, and Long-Term Storage Activities Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering

198

RADIATION EFFECTS OF ALPHA PARTICLES ON URANIUM HEXAFLUORIDE  

SciTech Connect

Alpha irradiation of uranium hexafluoride results in the formation of fluorine and intermediate, solid uranium fluorides: these products react with each other, apparently by a radiation-induced process. to reform uranium hexifluoride. The number of molecules of uranium hexafluoride decomposed, excluding recombiapproximately 1 in the temperature range 21 to 87 deg C. Irradiation of a mixture of fluorine and uranium hexafluoride in a vessel containing uranium fluorides substantistes the postulated mechanism. At fluorine pressures of 50 to 100 mm Hg, there is an increase, rather than a decrease, in uranium hexafluoride pressure. Rates of both decomposition and recombination processes appear to depend only on the rates of radiation energy absorption. Equations formnulated to describe the combined decomposition and reformation reactions can be used to calculate equilibrium concentrations of uranium hexfluoride and fluorine when the intensity of the radiation source is defined. The effects of three diluent gases, helium, nitrogen and oxygen, were studied in an attempt to find possible electron transfer processes. (auth)

Bernhardt, H.A.; Davis, W. Jr.; Shiflett, C.H.

1958-06-01T23:59:59.000Z

199

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 18370 of 26,764 results. 61 - 18370 of 26,764 results. Page EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. http://energy.gov/nepa/eis-0359-uranium-hexafluoride-conversion-facility-paducah-kentucky-site Page EIS-0393: Montanore Project, Montana

200

Video: Part of the 'Hole' Story (of Uranium Hexafluoride Cylinders)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hole Story Hole Story Part of the "Hole" Story (of Uranium Hexafluoride Cylinders) Holes in the depleted Uranium Hexafluoride storage cylinders are investigated. It is shown that corrosion products cause the openings to be self-healing. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:00 Part of the 'Hole' Story Video 00:05 One of the depleted UF6 cylinder storage lots at Portsmouth Video 00:28 48G cylinders, each containing 14 tons of depleted UF6, in storage Video 00:52 Stacked 48G cylinders Video 01:35 UF6 sealed in glass tube Video 02:01 A lifting lug of one cylinder damaging a neighboring cylinder Video 02:37 Damage to small hole cylinder from impact with a lifting lub of an adjoining cylinder

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Video: The Inside Story (of a Depleted Uranium Hexafluoride Cylinder)  

NLE Websites -- All DOE Office Websites (Extended Search)

Inside Story Inside Story The Inside Story The Inside Story (of a Depleted Uranium Hexafluoride Cylinder) Probes are used to look at the inside of a Uranium Hexafluoride cylinder. The distribution and structure of the contents are discussed. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:42 10 ton 48Xcylinder of UF6 Video 01:19 Liquid UF6 filling 95% of cylinder volume Video 02:15 Liquid UF6 Video 02:23 Beginning of UF6 phase change from liquid to solid Video 02:32 Solid UF6 Video 03:00 Probe and instrument to investigate inside cylinder Video 04:09 Workers preparing to insert TV camera probe into 48X cylinder containing 10 tons of solid UF6 Video 04:28 Inner surface of head of cylinder showing no corrosion

202

Criticality concerns in cleaning large uranium hexafluoride cylinders  

SciTech Connect

Cleaning large cylinders used to transport low-enriched uranium hexafluoride (UF{sub 6}) presents several challenges to nuclear criticality safety. This paper presents a brief overview of the cleaning process, the criticality controls typically employed and their bases. Potential shortfalls in implementing these controls are highlighted, and a simple example to illustrate the difficulties in complying with the Double Contingency Principle is discussed. Finally, a summary of recommended criticality controls for large cylinder cleaning operations is presented.

Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

1995-06-01T23:59:59.000Z

203

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 13770 of 31,917 results. 61 - 13770 of 31,917 results. Page EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Paducah site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as

204

Nitrous oxide as a substitute for sulfur hexafluoride in the ANSI/ASHRAE 110 Method of hood performance evaluation  

E-Print Network (OSTI)

The ANSI/ASHRAE 110 Method is the standard test for laboratory hood containment performance. Sulfur hexafluoride is specified as the gas most suitable for this test and is most commonly used. Sulfur hexafluoride use has ...

Guffey, Eric J. (Eric Jemison)

2011-01-01T23:59:59.000Z

205

EIS-0329: Notice of Intent to Prepare an Environmental Impact Statement |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29: Notice of Intent to Prepare an Environmental Impact 29: Notice of Intent to Prepare an Environmental Impact Statement EIS-0329: Notice of Intent to Prepare an Environmental Impact Statement Depleted Uranium Hexafluoride Conversion Facilities The U.S. Department of Energy (DOE) announces its intention to prepare an Environmental Impact Statement (EIS) for a proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky. Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities (DOE/EIS-0329) (September 2001) More Documents & Publications EIS-0360: Draft Environmental Impact Statement EIS-0360: Final Environmental Impact Statement

206

Environmental Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

207

DUF6 Management Technology Assessment Report (TAR) Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

'(3/(7('85$1,80+(;$)/825,'( '(3/(7('85$1,80+(;$)/825,'( 0$1$*(0(17352*5$0 6800$5<2)7+( 7(&+12/2*<$66(660(175(3257 )257+(/21*7(500$1$*(0(172) '(3/(7('85$1,80+(;$)/825,'( K 1RYHPEHU 3UHSDUHGIRUWKH'HSDUWPHQWRI(QHUJ\E\ /DZUHQFH/LYHUPRUH1DWLRQDO/DERUDWRU\ DQG 6FLHQFH$SSOLFDWLRQV,QWHUQDWLRQDO&RUSRUDWLRQ  1RYHPEHU 6800$5<2)7+(7(&+12/2*<$66(660(175(3257)257+(/21* 7(500$1$*(0(172)'(3/(7('85$1,80+(;$)/825,'( ,1752'8&7,21 7KH 7HFKQRORJ\ $VVHVVPHQW 5HSRUW IRU WKH /RQJ7HUP 0DQDJHPHQW RI 'HSOHWHG 8UDQLX

208

DUF6 Managment Engineering Analysis Report (EAR) Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

gas is corrosive. To neutralize it, or make it harmless, lime would be added, forming calcium fluoride (CaF ). The analysis assumes that the cleaned, emptied cylinders will be...

209

Peer Review of Strategy for Characterizing Contamination in DUF6...  

NLE Websites -- All DOE Office Websites (Extended Search)

plant (GDP) sites. Therefore, the assumption in Smith 1984 that 25percent (4.6 kilograms) of the neptunium received (18.4 kilograms) in the UO 3 will enter the cascade,...

210

DUF6 Management Cost Analysis Report (CAR): Part 1  

NLE Websites -- All DOE Office Websites (Extended Search)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..ll8 6.3.1 Disposal of CaF2 By-product from HF Neutralization Options . . . . . . . . . . . . . . . . . . . . . ....

211

Final DUF6 PEIS: Volume 2: Appendix J; Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Depleted UF 6 PEIS J-i APPENDIX J: ENVIRONMENTAL IMPACTS OF TRANSPORTATION OF UF 6 CYLINDERS, URANIUM OXIDE, URANIUM METAL, AND ASSOCIATED MATERIALS Transportation Depleted UF 6 PEIS J-ii Transportation Depleted UF 6 PEIS J-iii CONTENTS (APPENDIX J) NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-vi J.1 SUMMARY OF TRANSPORTATION OPTION IMPACTS . . . . . . . . . . . . . . . . . . J-3 J.2 TRANSPORTATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-8 J.2.1 Truck Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-8 J.2.2 Rail Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-9 J.2.3 Transportation Options Considered But Not Analyzed in Detail . . . . . . . . . . J-9 J.3 IMPACTS OF OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-10 J.3.1

212

Depleted uranium hexafluoride (DUF{sub 6}) management system--a decision tool  

Science Conference Proceedings (OSTI)

The Depleted Uranium Hexafluoride (DUF{sub 6}) Management System (DMS) is being developed as a decision tool to provide cost and risk data for evaluation of short-and long-term management strategies for depleted uranium. It can be used to assist decision makers on a programmatic or site-specific level. Currently, the DMS allows evaluation of near-term cylinder management strategies such as storage yard improvements, cylinder restocking, and reconditioning. The DMS has been designed to provide the user with maximum flexibility for modifying data and impact factors (e.g., unit costs and risk factors). Sensitivity analysis can be performed on all key parameters such as cylinder corrosion rate, inspection frequency, and impact factors. Analysis may be conducted on a system-wide, site, or yard basis. The costs and risks from different scenarios may be compared in graphic or tabular format. Ongoing development of the DMS will allow similar evaluation of long-term management strategies such as conversion to other chemical forms. The DMS is a Microsoft Windows 3.1 based, stand-alone computer application. It can be operated on a 486 or faster computer with VGA, 4 MB of RAM, and 10 MB of disk space.

Gasper, J.R.; Sutter, R.J.; Avci, H.I. [and others

1995-12-31T23:59:59.000Z

213

Management and Uses Conversion Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Conversion DOE is planning to build two depleted UF6 conversion facilities, and site-specific environmental impact statements (EISs) to evaluate project alternatives. The Final Plan for Conversion and the Programmatic EIS The eventual disposition of depleted UF6 remains the subject of considerable interest within the U.S. Congress, and among concerned citizens and other stakeholders. Congress stated its intentions in Public Law (P. L.) 105-204, signed by the President in July 1998. P. L. 105-204 required DOE to develop a plan to build two depleted UF6 conversion facilities, one each at Portsmouth, Ohio, and Paducah, Kentucky. DOE submitted the required plan, Final Plan for the Conversion of Depleted Uranium Hexafluoride, to Congress in July 1999. This document provided a discussion of DOE's technical approach and schedule to implement this project. Although much of the information provided in this report is still valid, a few aspects of this plan have changed since its publication.

214

In-line assay monitor for uranium hexafluoride  

DOE Patents (OSTI)

An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.

Wallace, S.A.

1980-03-21T23:59:59.000Z

215

What is going to happen to the uranium hexafluoride stored in...  

NLE Websites -- All DOE Office Websites (Extended Search)

What is going to happen to the uranium hexafluoride stored in the United States? The DOE has been evaluating the alternative strategies for long-term management and use of the...

216

Nitrous oxide as a substitute for sulfur hexafluoride in the ANSI/ASHRAE 110 Method of hood performance evaluation.  

E-Print Network (OSTI)

??The ANSI/ASHRAE 110 Method is the standard test for laboratory hood containment performance. Sulfur hexafluoride is specified as the gas most suitable for this test… (more)

Guffey, Eric J. (Eric Jemison)

2011-01-01T23:59:59.000Z

217

Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Weight of DOE DUF6 Inventory The 704,000 metric tons of uranium hexafluoride in the Department's inventory is over 1.5 BILLION pounds For comparison, the Great Pyramid of Egypt...

218

Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

123 123 Federal Register / Vol. 66, No. 181 / Tuesday, September 18, 2001 / Notices Section 615-Procedural Safeguards Topic Addressed: Due Process Hearings * Letter dated April 19, 2001 to Virginia Department of Education Director Judith A. Douglas, regarding whether a State educational agency is required to convene a due process hearing initiated by someone other than the parent of a child with a disability or a public agency. Topic Addressed: Surrogate Parents * Letter dated April 16, 2001 to Pinal County, Arizona Deputy County Attorney Linda L. Harant, regarding the appointment of surrogate parents for children who are wards of a tribal court. Topic Addressed: Student Discipline * Letter dated April 16, 2001 to Professor Perry A. Zirkel, regarding the calculation of disciplinary removals of

219

In-line assay monitor for uranium hexafluoride  

DOE Patents (OSTI)

An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.

Wallace, Steven A. (Knoxville, TN)

1981-01-01T23:59:59.000Z

220

Uranium hexafluoride: A manual of good handling practices. Revision 7  

SciTech Connect

The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

NONE

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Including environmental concerns in management strategies for depleted uranium hexafluoride  

Science Conference Proceedings (OSTI)

One of the major programs within the Office of Nuclear Energy, Science, and Technology of the US Department of Energy (DOE) is the depleted uranium hexafluoride (DUF{sub 6}) management program. The program is intended to find a long-term management strategy for the DUF{sub 6} that is currently stored in approximately 46,400 cylinders at Paducah, KY; Portsmouth, OH; and Oak Ridge, TN, USA. The program has four major components: technology assessment, engineering analysis, cost analysis, and the environmental impact statement (EIS). From the beginning of the program, the DOE has incorporated the environmental considerations into the process of strategy selection. Currently, the DOE has no preferred alternative. The results of the environmental impacts assessment from the EIS, as well as the results from the other components of the program, will be factored into the strategy selection process. In addition to the DOE`s current management plan, other alternatives continued storage, reuse, or disposal of depleted uranium, will be considered in the EIS. The EIS is expected to be completed and issued in its final form in the fall of 1997.

Goldberg, M. [Argonne National Laboratory, Washington, DC (United States); Avci, H.I. [Argonne National Lab., IL (United States); Bradley, C.E. [USDOE, Washington, DC (United States)

1995-12-31T23:59:59.000Z

222

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

223

NEPA Activities for the Depleted Uranium Hexafluoride Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

ETTP) to some other stable chemical form acceptable for transportation, beneficial usereuse, andor disposal. Conversion facilities will be constructed at Paducah and...

224

FAQ 16-How much depleted uranium hexafluoride is stored in the United  

NLE Websites -- All DOE Office Websites (Extended Search)

How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? U.S. DOE's inventory of depleted UF6 consists of approximately 700,000 metric tons of depleted UF6, containing about 470,000 metric tons of uranium, currently stored at the Paducah Site in Kentucky, the Portsmouth Site in Ohio, and the East Tennessee Technology Park (ETTP) in Tennessee (formerly known as the K-25 Site). This inventory of depleted UF6 is stored in about 57,000 steel cylinders. The inventory is listed in the table below. DOE Inventory of Depleted UF6 Location Total Cylinders Total Depleted UF6 (metric tons) Paducah, Kentucky 36,191 436,400 Portsmouth, Ohio 16,109 195,800 Oak Ridge, Tennessee 4,822 54,300

225

A PILOT PLANT FOR THE REDUCTION OF URANIUM HEXAFLUORIDE TO URANIUM TETRAFLUORIDE WITH TRICHLOROETHYLENE  

SciTech Connect

Pilot plant experiments are described in which trichloroethylene was used for the reduction of uranium hexafluoride to uranium tetrafluoride. After unsatisfactory preliminary results with liquid phase reduction, satisfactory results were obtained with a vapor phase reduction system. It was found that vapor phase reduction at approximately 450 deg F, produced a low density product which contained only small quantities of uranium(VI); sintering the uranium tetrafluoride in a hydrogen fluoride atmosphere increased the product density to approximately 3 g/cc. The reduction was essentially complete, and the effluent gas contained less than 1 ppm of uranium hexafluoride. The purity of the uranium tetrafluoride produced was equivalent to that of the uranium hexafluoride used as feed. A complete discussion is given of the operation of the various parts of the system. (auth)

Baker, J.E.; Klaus, H.V.; Schmidt, R.A.; Smiley, S.H.

1956-05-31T23:59:59.000Z

226

Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride  

SciTech Connect

The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

Dubrin, J.W., Rahm-Crites, L.

1997-09-01T23:59:59.000Z

227

EIS-0360-SA-01: Draft Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-SA-01: Draft Supplement Analysis -SA-01: Draft Supplement Analysis EIS-0360-SA-01: Draft Supplement Analysis Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted Uranium Hexafluoride (DOE/EIS-0359-SA-01 and DOE/EIS-0360-SA-01) Pursuant to the National Environmental Policy Act (NEPA), the Department of Energy (DOE or the Department) has prepared this Draft Supplement Analysis (SA) in order to determine whether it must supplement two site-specific Environmental Impact Statements (EISs), or prepare any new EISs, for depleted uranium hexafluoride (DUF6) conversion facilities at Paducah, Kentucky, and Portsmouth, Ohio, in order to decide where it will dispose of the depleted uranium oxide product from these facilities. EIS-0359-SA-01_EIS-0360-SA-01-2007.pdf

228

EIS-0359-SA-01: Draft Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

59-SA-01: Draft Supplement Analysis 59-SA-01: Draft Supplement Analysis EIS-0359-SA-01: Draft Supplement Analysis Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted Uranium Hexafluoride (DOE/EIS-0359-SA-01 and DOE/EIS-0360-SA-01) Pursuant to the National Environmental Policy Act (NEPA), the Department of Energy (DOE or the Department) has prepared this Draft Supplement Analysis (SA) in order to determine whether it must supplement two site-specific Environmental Impact Statements (EISs), or prepare any new EISs, for depleted uranium hexafluoride (DUF6) conversion facilities at Paducah, Kentucky, and Portsmouth, Ohio, in order to decide where it will dispose of the depleted uranium oxide product from these facilities. This document includes EIS-0360-SA-01.

229

FAQ 15-What are the dimensions of a depleted uranium hexafluoride cylinder?  

NLE Websites -- All DOE Office Websites (Extended Search)

are the dimensions of a depleted uranium hexafluoride cylinder? are the dimensions of a depleted uranium hexafluoride cylinder? What are the dimensions of a depleted uranium hexafluoride cylinder? Several different cylinder types are in use, although the vast majority of cylinders are designed to contain 14-tons (12-metric tons) of depleted UF6. The 14-ton-capacity cylinders are 12 ft (3.7 m) long by 4 ft (1.2 m) in diameter, with most having an initial wall thickness of 5/16 in. (0.79 cm) of steel. The cylinders have external stiffening rings that provide support. Lifting lugs for handling are attached to the stiffening rings. A small percentage of the cylinders have skirted ends (extensions of the cylinder walls past the rounded ends of the cylinder). Each cylinder has a single valve for filling and emptying located on one end at the 12 o'clock position. Similar, but slightly smaller, cylinders designed to contain 10 tons (9 metric tons) of depleted UF6 are also in use. Cylinders are manufactured in accordance with an American National Standards Institute standard (ANSI N14.1, American National Standard for Nuclear Materials - Uranium Hexafluoride - Packaging for Transport) as specified in 49 CFR 173.420, the federal regulations governing transport of depleted UF6.

230

Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

1995-12-01T23:59:59.000Z

231

Unit Conversion  

Science Conference Proceedings (OSTI)

Unit Conversion. ... Unit Conversion Example. "If you have an amount of unit of A, how much is that in unit B?"; Dimensional Analysis; ...

2012-12-04T23:59:59.000Z

232

Web Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Help » Web Site Map Help » Web Site Map Web Site Map The links listed below include all pages on the site except document topic pages. Home Privacy/Security Help Web Site Map Mailing Services Remove me from the List Contact Us About Us News and Events News Archives News/Media FAQs Internet Resources Documents DUF6 EIS Historical Context What is an EIS? Why EIS is Needed Who is Responsible? EIS Process EIS Topics EIS Alternatives EIS Schedule Public Involvement Opportunities Public Comment Form For More Info DUF6 Management and Uses Management Responsibilities DUF6 Storage How DUF6 is Stored Where DUF6 is Stored Cylinder Leakage DUF6 Storage Safety DUF6 PEIS Cylinder Surveillance and Maintenance Conversion Potential DU Uses "Business Case" for R&D on Beneficial Uses of DU Catalysts for Destruction of Air Pollutants

233

Portsmouth Gaseous Diffusion Plant - Enforcement Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Inc. related to Installation and Inspection of Penetration Fire Seals at the DUF6 Conversion Building at the Portsmouth Gaseous Diffusion Plant, March 26, 2010 Consent...

234

Orientation Visit to the Portsmouth Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Activity (UESA) Storage Building and Associated Outside Storage, and the DUF6 Conversion Facility. The tours gave the site lead the opportunity to interact with...

235

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fee September, 2013 Site: Portsmouth Paducah Project Office Contract Name: Operation of DUF6 Contractor: Babcock & Wilcox Conversion Services, LLC Contract Number:...

236

Enforcement Letter, Geiger Brothers Mechanical Contractors, INC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. related to Installation and Inspection of Penetration Fire Seals at the DUF6 Conversion Building at the Portsmouth Gaseous Diffusion Plant This letter refers to the...

237

Health Risks Associated with Disposal of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Disposal of Depleted Uranium A discussion of risks associated with disposal...

238

Waste Disposition Update by Doug Tonkay  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for disposal operations over next decade Planned Waste-Related Accomplishments * Begin treatment of Idaho's sodium bearing waste * Begin full operations of the DUF6 Conversion...

239

SF6 (Sulfur Hexafluoride) Computer-Based Training Module 4.0  

Science Conference Proceedings (OSTI)

The SF6 (Sulfur Hexafluoride): Computer-Based Training Modules consist of four sub-modules that each provide approximately one hour of instruction to users on SF6 topics. A browser interface helps the user navigate through the interactive training. As the user moves through the module, it provides instruction and assessment. At the end of the module, the user receives a final scored assessment and a pass/fail result. Four SF6 sub-modules are included in the ...

2013-11-26T23:59:59.000Z

240

Occupational Hygiene Aspects of Sulfur Hexafluoride Decomposition By-Products: Workshop Summary  

Science Conference Proceedings (OSTI)

Sulfur hexafluoride (SF6) is an inert gas that is present in many different types of electrical utility equipment. While the environmental concerns about this gas have been widely addressed, worker exposure aspects of SF6 decomposition by-products have not been fully explored. To address this knowledge gap, EPRI conducted a workshop on March 12, 2013, in Charlotte, North Carolina. This workshop was designed to 1) address the perspectives of occupational hygiene and engineering ...

2013-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Conversion Factor  

Gasoline and Diesel Fuel Update (EIA)

Conversion Factor (Btu per cubic foot) Production Marketed... 1,110 1,106 1,105 1,106 1,109 Extraction Loss ......

242

SF6 (Sulfur Hexafluoride) Computer-Based Training (CBT) Module Version 3.0  

Science Conference Proceedings (OSTI)

The SF6 (Sulfur Hexafluoride): Computer-Based Training Modules consist of four sub-modules that each provide approximately one hour of instruction to users on SF6 topics. A browser interface helps the user navigate through the interactive training. As the user moves through the module, it provides instruction and assessment. At the end of the module, the user receives a final scored assessment and a pass/fail result.The four SF6 sub-modules are included in the ...

2012-11-20T23:59:59.000Z

243

SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS  

SciTech Connect

Reactive Gas Recycling (RGR) technology development has been initiated at Savannah River National Laboratory (SRNL), with a stretch-goal to develop a fully dry recycling technology for Used Nuclear Fuel (UNF). This approach is attractive due to the potential of targeted gas-phase treatment steps to reduce footprint and secondary waste volumes associated with separations relying primarily on traditional technologies, so long as the fluorinators employed in the reaction are recycled for use in the reactors or are optimized for conversion of fluorinator reactant. The developed fluorination via SF{sub 6}, similar to the case for other fluorinators such as NF{sub 3}, can be used to address multiple fuel forms and downstream cycles including continued processing for LWR via fluorination or incorporation into a aqueous process (e.g. modified FLUOREX) or for subsequent pyro treatment to be used in advanced gas reactor designs such metal- or gas-cooled reactors. This report details the most recent experimental results on the reaction of SF{sub 6} with various fission product surrogate materials in the form of oxides and metals, including uranium oxides using a high-temperature DTA apparatus capable of temperatures in excess of 1000{deg}C . The experimental results indicate that the majority of the fission products form stable solid fluorides and sulfides, while a subset of the fission products form volatile fluorides such as molybdenum fluoride and niobium fluoride, as predicted thermodynamically. Additional kinetic analysis has been performed on additional fission products. A key result is the verification that SF{sub 6} requires high temperatures for direct fluorination and subsequent volatilization of uranium oxides to UF{sub 6}, and thus is well positioned as a head-end treatment for other separations technologies, such as the volatilization of uranium oxide by NF{sub 3} as reported by colleagues at PNNL, advanced pyrochemical separations or traditional full recycle approaches. Based on current results of the research at SRNL on SF{sub 6} fluoride volatility for UNF separations, SF{sub 6} treatment renders all anticipated volatile fluorides studied to be volatile, and all non-volatile fluorides studied to be non-volatile, with the notable exception of uranium oxides. This offers an excellent opportunity to use this as a head-end separations treatment process because: 1. SF{sub 6} can be used to remove volatile fluorides from a UNF matrix while leaving behind uranium oxides. Therefore an agent such as NF{sub 3} should be able to very cleanly separate a pure UF{sub 6} stream, leaving compounds in the bottoms such as PuF{sub 4}, SrF{sub 2} and CsF after the UNF matrix has been pre-treated with SF{sub 6}. 2. Due to the fact that the uranium oxide is not separated in the volatilization step upon direct contact with SF{sub 6} at moderately high temperatures (? 1000{deg}C), this fluoride approach may be wellsuited for head-end processing for Gen IV reactor designs where the LWR is treated as a fuel stock, and it is not desired to separate the uranium from plutonium, but it is desired to separate many of the volatile fission products. 3. It is likely that removal of the volatile fission products from the uranium oxide should simplify both traditional and next generation pyroprocessing techniques. 4. SF{sub 6} treatment to remove volatile fission products, with or without treatment with additional fluorinators, could be used to simplify the separations of traditional aqueous processes in similar fashion to the FLUOREX process. Further research should be conducted to determine the separations efficiency of a combined SF{sub 6}/NF{sub 3} separations approach which could be used as a stand-alone separations technology or a head-end process.

Gray, J.; Torres, R.; Korinko, P.; Martinez-Rodriguez, M.; Becnel, J.; Garcia-Diaz, B.; Adams, T.

2012-09-25T23:59:59.000Z

244

FAQ 32-What are the potential health risks from conversion of depleted  

NLE Websites -- All DOE Office Websites (Extended Search)

conversion of depleted uranium hexafluoride to other forms? conversion of depleted uranium hexafluoride to other forms? What are the potential health risks from conversion of depleted uranium hexafluoride to other forms? Accidental release of UF6 during processing activities could result in injuries. The most immediate hazard from a release would be lung injury or death from inhalation of hydrogen fluoride (HF), a highly corrosive gas formed when UF6 reacts with moisture in air. Uranyl fluoride is also formed. Uranyl fluoride is a particulate that can be dispersed in air and inhaled. Once inhaled, uranyl fluoride is easily absorbed into the bloodstream because it is soluble. If large quantities are inhaled, kidney toxicity will result. Conversion of uranium hexafluoride to oxide or metal may involve hazardous chemicals in addition to UF6; specifically, ammonia (NH3) may be used in the process, and HF may be produced from the process. In the PEIS, the conversion accidents estimated to have the largest potential consequences were accidents involving the rupture of tanks containing either anhydrous HF or ammonia. Such an accident could be caused by a large earthquake. The probability of large earthquakes depends on the location of the facility, and the probability of damage depends on the structural characteristics of the buildings. In the PEIS, the estimated frequency of this type of accident was less than once in one million years. However, if such an extremely unlikely accident did occur, it was estimated that up to 41,000 members of the general public around the conversion facility might experience adverse effects from chemical exposures (mostly mild and temporary effects, such as respiratory irritation or temporary decrease in kidney function). Of these, up to 1,700 individuals might experience irreversible adverse effects (such as lung damage or kidney damage), with the potential for about 30 fatalities. In addition, irreversible or fatal effects among workers very near the accident scene would be possible. (Note: The actual numbers of injuries among the general public would depend on the size and proximity of the population around the conversion facility).

245

Summary of the cost analysis report for the long-term management of depleted uranium hexafluoride  

SciTech Connect

This report is a summary of the Cost Analysis Report which provides comparative cost data for the management strategy alternatives. The PEIS and the Cost Analysis Report will help DOE select a management strategy. The Record of Decision, expected in 1998, will complete the first part of the Depleted Uranium Hexafluoride Management Program. The second part of the Program will look at specific sites and technologies for carrying out the selected strategy. The Cost Analysis Report estimates the primary capital and operating costs for the different alternatives. It reflects the costs of technology development construction of facilities, operation, and decontamination and decommissioning. It also includes potential revenues from the sale of by-products such as anhydrous hydrogen fluoride (ABF). These estimates are based on early designs. They are intended to help in comparing alternatives, rather than to indicate absolute costs for project budgets or bidding purposes. More detailed estimates and specific funding sources will be considered in part two of the Depleted Uranium Hexafluoride Management Program.

Dubrin, J.W.; Rahm-Crites, L.

1997-09-01T23:59:59.000Z

246

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

247

Conversion of Yellow Cake to UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Yellow cake is converted to uranium hexafluoride through a multi-step chemical process using nitric acid, ammonium hydroxide, hydrogen, hydrofluoric acid (HF) and fluorine (F2)....

248

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

249

Portsmouth, Paducah Project Leaps Past Shipment Milestone, Delivering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth, Paducah Project Leaps Past Shipment Milestone, Portsmouth, Paducah Project Leaps Past Shipment Milestone, Delivering Economic Benefit to U.S. Portsmouth, Paducah Project Leaps Past Shipment Milestone, Delivering Economic Benefit to U.S. September 1, 2012 - 12:00pm Addthis Pictured here are railcars carrying tanks of hydrofluoric acid for shipment from the Portsmouth site to Solvay Fluorides for industrial use. Pictured here are railcars carrying tanks of hydrofluoric acid for shipment from the Portsmouth site to Solvay Fluorides for industrial use. LEXINGTON, Ky. - The company that operates DOE's depleted uranium hexafluoride (DUF6) conversion facilities marked a milestone in September when it shipped the one millionth gallon of hydrofluoric acid. Babcock & Wilcox Conversion Services (BWCS) continues to deliver more of

250

A concept of a nonfissile uranium hexafluoride overpack for storage, transport, and processing of corroded cylinders  

SciTech Connect

There is a need to develop a means of safely transporting breached 48-in. cylinders containing depleted uranium hexafluoride (UF{sub 6}) from current storage locations to locations where the contents can be safely removed. There is also a need to provide a method of safely and easily transporting degraded cylinders that no longer meet the US Department of Transportation (DOT) and American National Standards Institute, Inc., (ANSI) requirements for shipments of depleted UF{sub 6}. A study has shown that an overpack can be designed and fabricated to satisfy these needs. The envisioned overpack will handle cylinder models 48G, 48X, and 48Y and will also comply with the ANSI N14.1 and the American Society of Mechanical Engineers (ASME) Sect. 8 requirements.

Pope, R.B.; Cash, J.M. [Oak Ridge National Lab., TN (United States); Singletary, B.H. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)

1996-06-01T23:59:59.000Z

251

Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1  

SciTech Connect

The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

Becker, D.L.; Green, D.J.; Lindquist, M.R.

1993-07-01T23:59:59.000Z

252

Precious Metals Conversion Information  

Science Conference Proceedings (OSTI)

Precious Metals Conversion Information. The Office of Weights and Measures (OWM) has prepared a Conversion Factors ...

2012-11-21T23:59:59.000Z

253

Final DUF6 PEIS: Volume 2: Appendix I; Disposal of Oxide  

NLE Websites -- All DOE Office Websites (Extended Search)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-80 TABLES I.1 Summary of Depleted Uranium Chemical Forms and Disposal Options Considered . . . . . . . . . . . . ....

254

Final DUF6 PEIS: Volume 1: Chapter 4; Assessment Approach and...  

NLE Websites -- All DOE Office Websites (Extended Search)

of people historically exposed to large doses of radiation, such as the Japanese atomic bomb survivors. The factors used for the analysis in this PEIS were 0.0004 LCFperson-rem of...

255

Final DUF6 PEIS: Volume 2: Appendix H; Manufacture and Use  

NLE Websites -- All DOE Office Websites (Extended Search)

uses exist for depleted uranium. Depleted uranium could be mixed with highly enriched uranium from retired nuclear weapons to produce nuclear reactor fuel. This process is...

256

Final DUF6 PEIS: Volume 2: Appendix D: Continued Cylinder Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

data of 55 to 196 mremyr (Hodges 1996) because of the more vigorous inspection and maintenance activities planned to be implemented. The radiation dose to noninvolved workers...

257

Final DUF6 PEIS: Volume 2, Appendix G; Long-Term Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

LLNL Lawrence Livermore National Laboratory LLMW low-level mixed waste LLW low-level radioactive waste MEI maximally exposed individual NEPA National Environmental Policy Act...

258

MHD compressor---expander conversion system integrated with GCR inside a deployable reflector  

DOE Green Energy (OSTI)

This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statement of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.

Tuninetti, G. (Ansaldo S.p.A., Genoa (Italy). Research Div.); Botta, E.; Criscuolo, C.; Riscossa, P. (Ansaldo S.p.A., Genoa (Italy). Nuclear Div.); Giammanco, F. (Pisa Univ. (Italy). Dipt. di Fisica); Rosa-Clot, M. (Florence Univ. (Italy). Dipt. di Fisica)

1989-04-20T23:59:59.000Z

259

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 - 4530 of 26,777 results. 21 - 4530 of 26,777 results. Download Semiannual Report to Congress: April 1, 2010- September 30, 2010, DOE/IG-0059 2010 Inspector General Semiannual Report to Congress http://energy.gov/ig/downloads/semiannual-report-congress-april-1-2010-september-30-2010-doeig-0059 Download Semiannual Report to Congress Semiannual Report to Congress for the Period of April 1, 2010 through September 30, 2010 http://energy.gov/ig/downloads/semiannual-report-congress Download EIS-0359: Notice of Change in National Environmental Policy (NEPA) Compliance Approach Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project http://energy.gov/nepa/downloads/eis-0359-notice-change-national-environmental-policy-nepa-compliance-approach Page EA-1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii

260

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 www.em.doe.gov 1 1 www.em.doe.gov 1 Portsmouth/Paducah Project Office Briefing to The Nuclear Cleanup Caucus March 22, 2012 Dennis Carr Deputy Project Director Fluor-B&W Portsmouth William E. Murphie Manager Portsmouth/Paducah Project Office PPPO Environmental Management Mark Duff Project Manager LATA Environmental Services of Kentucky www.em.doe.gov 2 www.em.doe.gov 2 Portsmouth Site Demographics: * Approximately 2,700 employees * 3,777 acres Cleanup Activities: * DOE Decontamination and Decommissioning (D&D) Project * DOE Depleted Uranium Hexafluoride (DUF6) Conversion Project Portsmouth Site Ohio Portsmouth/Paducah Project Office Vision: "Safely accelerate cleanup, ensuring protection of the public and environment." www.em.doe.gov 3 www.em.doe.gov 3

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Context: Destruction/Conversion  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Context: Destruction/Conversion. ... Process for Conversion of Halon 1211.. Tran, R.; Kennedy, EM; Dlugogorski, BZ; 2000. ...

2011-11-17T23:59:59.000Z

262

Standard specification for uranium hexafluoride enriched to less than 5 % 235U  

E-Print Network (OSTI)

1.1 This specification covers nuclear grade uranium hexafluoride (UF6) that either has been processed through an enrichment plant, or has been produced by the blending of Highly Enriched Uranium with other uranium to obtain uranium of any 235U concentration below 5 % and that is intended for fuel fabrication. The objectives of this specification are twofold: (1) To define the impurity and uranium isotope limits for Enriched Commercial Grade UF6 so that, with respect to fuel design and manufacture, it is essentially equivalent to enriched uranium made from natural UF6; and (2) To define limits for Enriched Reprocessed UF6 to be expected if Reprocessed UF6 is to be enriched without dilution with Commercial Natural UF6. For such UF6, special provisions, not defined herein, may be needed to ensure fuel performance and to protect the work force, process equipment, and the environment. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched UF6 that is to be used in the pro...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

263

Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride  

SciTech Connect

The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.

Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

1998-09-01T23:59:59.000Z

264

Containment and storage of uranium hexafluoride at US Department of Energy uranium enrichment plants  

Science Conference Proceedings (OSTI)

Isotopically depleted UF{sub 6} (uranium hexafluoride) accumulates at a rate five to ten times greater than the enriched product and is stored in steel vessels at the enrichment plant sites. There are approximately 55,000 large cylinders now in storage at Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee. Most of them contain a nominal 14 tons of depleted UF{sub 6}. Some of these cylinders have been in the unprotected outdoor storage environment for periods approaching 40 years. Storage experience, supplemented by limited corrosion data, suggests a service life of about 70 years under optimum conditions for the 48-in. diameter, 5/16-in.-wall pressure vessels (100 psi working pressure), using a conservative industry-established 1/4-in.-wall thickness as the service limit. In the past few years, however, factors other than atmospheric corrosion have become apparent that adversely affect the serviceability of small numbers of the storage containers and that indicate the need for a managed program to ensure maintenance ofcontainment integrity for all the cylinders in storage. The program includes periodic visual inspections of cylinders and storage yards with documentation for comparison with other inspections, a group of corrosion test programs to permit cylinder life forecasts, and identification of (and scheduling for remedial action) situations in which defects, due to handling damage or accelerated corrosion, can seriously shorten the storage life or compromise the containment integrity of individual cylinders. The program also includes rupture testing to assess the effects of certain classes of damage on overall cylinder strength, aswell as ongoing reviews of specifications, procedures, practices, and inspection results to effect improvements in handling safety, containment integrity, and storage life.

Barlow, C.R.; Alderson, J.H.; Blue, S.C.; Boelens, R.A.; Conkel, M.E.; Dorning, R.E.; Ecklund, C.D.; Halicks, W.G.; Henson, H.M.; Newman, V.S.; Philpot, H.E.; Taylor, M.S.; Vournazos, J.P. [Oak Ridge K-25 Site, TN (United States). UEO Enrichment Technical Operations Div.; Russell, J.R. [USDOE Oak Ridge Field Office, TN (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States); Ziehlke, K.T. [MJB Technical Associates (United States)

1992-07-01T23:59:59.000Z

265

Results of the remote sensing feasibility study for the uranium hexafluoride storage cylinder yard program  

Science Conference Proceedings (OSTI)

The US DOE manages the safe storage of approximately 650,000 tons of depleted uranium hexafluoride remaining from the Cold War. This slightly radioactive, but chemically active, material is contained in more than 46,000 steel storage cylinders that are located at Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Some of the cylinders are more than 40 years old, and approximately 17,500 are considered problem cylinders because their physical integrity is questionable. These cylinders require an annual visual inspection. The remainder of the 46,000-plus cylinders must be visually inspected every four years. Currently, the cylinder inspection program is extremely labor intensive. Because these inspections are accomplished visually, they may not be effective in the early detection of leaking cylinders. The inspection program requires approximately 12--14 full-time-equivalent (FTE) employees. At the cost of approximately $125K per FTE, this translates to $1,500K per annum just for cylinder inspection. As part of the technology-development portion of the DOE Cylinder Management Program, the DOE Office of Facility Management requested the Remote Sensing Laboratory (RSL) to evaluate remote sensing techniques that have potential to increase the effectiveness of the inspection program and, at the same time, reduce inspection costs and personnel radiation exposure. During two site visits (March and May 1996) to the K-25 Site at Oak Ridge, TN, RSL personnel tested and characterized seven different operating systems believed to detect leakage, surface contamination, thickness and corrosion of cylinder walls, and general area contamination resulting from breached cylinders. The following techniques were used and their performances are discussed: Laser-induced fluorescent imaging; Long-range alpha detection; Neutron activation analysis; Differential gamma-ray attenuation; Compton scatterometry; Active infrared inspection; and Passive thermal infrared imaging.

Balick, L.K.; Bowman, D.R. [Bechtel Nevada, Las Vegas, NV (United States). Remote Sensing Lab.; Bounds, J.H. [Los Alamos National Lab., NM (United States)] [and others

1997-02-01T23:59:59.000Z

266

Depleted Uranium De-conversion  

E-Print Network (OSTI)

This Environmental Report (ER) constitutes one portion of an application being submitted by International Isotopes Fluorine Products (IIFP) to construct and operate a facility that will utilize depleted DUF6 to produce high purity inorganic fluorides, uranium oxides, and anhydrous hydrofluoric acid. The proposed IIFP facility will be located near Hobbs, New Mexico. IIFP has prepared the ER to meet the requirements specified in 10 CFR 51, Subpart A, particularly those requirements set forth in 10 CFR 51.45(b)-(e). The organization of this ER is generally consistent with NUREG-1748, “Environmental Review Guidance for Licensing Actions Associated with NMSS Programs, Final Report.” The Environmental Report for this proposed facility provides information that is specifically required by the NRC to assist it in meeting its obligations under the National Environmental Policy Act (NEPA) of 1969 and the agency’s NEPA-implementing regulations. This ER demonstrates that the environmental protection measures proposed by IIFP are adequate to protect both the environment and the health and safety of the public. This Environmental Report evaluates the potential environmental impacts of the Proposed Action and its reasonable alternatives. This ER also describes the environment potentially affected by IIEF’s proposal,

Fluorine Extraction Process

2009-01-01T23:59:59.000Z

267

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

W _7405-eng- 4B QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvint r UCRL-9 533 QUANrUM CONVERSION IN PHWOSYNTHESIS * Melvinitself. The primary quantum conversion act is an ionization

Calvin, Melvin

2008-01-01T23:59:59.000Z

268

Produced Conversion Coatings  

Science Conference Proceedings (OSTI)

Chemical conversion coatings are commonly applied to Mg alloys as paint bases and in some cases as stand-alone protection. Traditional conversion coatings ...

269

Library Conversion Tool  

Science Conference Proceedings (OSTI)

Library Conversion Tool. ... The LIB2NIST mass spectral data conversion program consists of the following files (which are contained in a ZIP archive): ...

2013-06-24T23:59:59.000Z

270

Conversion of Legacy Data  

Science Conference Proceedings (OSTI)

... Conversion of Legacy Data. Conversion of legacy data can be one of the most difficult and challenging components in an SGML environment. ...

271

Biofuel Conversion Process  

Energy.gov (U.S. Department of Energy (DOE))

The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers...

272

Conversion Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Plan Conversion Plan This template is used to document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation...

273

Indirect NMR detection of 235U in gaseous uranium hexafluoride National Center for Physics, P.O. Box MG-6, Bucharest, Romania  

E-Print Network (OSTI)

L-493 Indirect NMR detection of 235U in gaseous uranium hexafluoride I. Ursu National Center- vation of235 U NMR signal in liquid UF6 at B = 11.747 T has been recently reported [7]. The aim of this Letter is to investigate the effect of the 23 5U enrichment on the 19F NMR spectra in gaseous UF6. Using

Paris-Sud XI, Université de

274

Orientation Visit to the Paducah Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Low-Level Waste Storage Facility (HC-2), C- 410 D&D Project Complex (HC-2), and DUF6 Conversion Project (HC-3). The tours gave the site lead the opportunity to interact...

275

Technical considerations in materials management policy development  

Science Conference Proceedings (OSTI)

Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE`s DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized.

Avci, H.; Goldberg, M.

1996-05-01T23:59:59.000Z

276

Conversion Between Implicit - CECM  

E-Print Network (OSTI)

Conversion Between Implicit and Parametric Representation of Differential Varieties. Xiao-Shan Gao, Institute of Systems Science, Chinese Academy of ...

277

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

278

Beneficial Conversion Features or Contingently Adjustable Conversion  

E-Print Network (OSTI)

1. An entity may issue convertible debt with an embedded conversion option that is required to be bifurcated under Statement 133 if all of the conditions in paragraph 12 of that Statement are met. An embedded conversion option that initially requires separate Copyright © 2008, Financial Accounting Standards Board Not for redistribution Page 1accounting as a derivative under Statement 133 may subsequently no longer meet the conditions that would require separate accounting as a derivative. A reassessment of whether an embedded conversion option must be bifurcated under Statement 133 is required each reporting period. When an entity is no longer required to bifurcate a conversion option pursuant to Statement 133, there are differing views on how an entity should recognize that change.

Bifurcation Criteria; Fasb Statement No; Stock Purchase Warrants

2006-01-01T23:59:59.000Z

279

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biofuel Conversion Processes The conversion of...

280

Iterated multidimensional wave conversion  

Science Conference Proceedings (OSTI)

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Benchmark Gamma Spectroscopy Measurements of Uranium Hexafluoride in Aluminmum Pipe with a Sodium Iodide Detector  

SciTech Connect

The expected increased demand in fuel for nuclear power plants, combined with the fact that a significant portion of the current supply from the blend down of weapons-source material will soon be coming to an end, has led to the need for new sources of enriched uranium for nuclear fuel. As a result, a number of countries have announced plans, or are currently building, gaseous centrifuge enrichment plants (GCEPs) to supply this material. GCEPs have the potential to produce uranium at enrichments above the level necessary for nuclear fuel purposes-enrichments that make the uranium potentially usable for nuclear weapons. As a result, there is a critical need to monitor these facilities to ensure that nuclear material is not inappropriately enriched or diverted for unintended use. Significant advances have been made in instrument capability since the current International Atomic Energy Agency (IAEA) monitoring methods were developed. In numerous cases, advances have been made in other fields that have the potential, with modest development, to be applied in safeguards applications at enrichment facilities. A particular example of one of these advances is the flow and enrichment monitor (FEMO). (See Gunning, J. E. et al., 'FEMO: A Flow and Enrichment Monitor for Verifying Compliance with International Safeguards Requirements at a Gas Centrifuge Enrichment Facility,' Proceedings of the 8th International Conference on Facility Operations - Safeguards Interface. Portland, Oregon, March 30-April 4th, 2008.) The FEMO is a conceptual instrument capable of continuously measuring, unattended, the enrichment and mass flow of {sup 235}U in pipes at a GCEP, and consequently increase the probability that the potential production of HEU and/or diversion of fissile material will be detected. The FEMO requires no piping penetrations and can be installed on pipes containing the flow of uranium hexafluoride (UF{sub 6}) at a GCEP. This FEMO consists of separate parts, a flow monitor (FM) and an enrichment monitor (EM). Development of the FM is primarily the responsibility of Oak Ridge National Laboratory, and development of the EM is primarily the responsibility of Los Alamos National Laboratory. The FM will measure {sup 235}U mass flow rate by combining information from measuring the UF{sub 6} volumetric flow rate and the {sup 235}U density. The UF{sub 6} flow rate will be measured using characteristics of the process pumps used in product and tail UF{sub 6} header process lines of many GCEPs, and the {sup 235}U density will be measured using commercially available sodium iodide (NaI) gamma ray scintillation detectors. This report describes the calibration of the portion of the FM that measures the {sup 235}U density. Research has been performed to define a methodology and collect data necessary to perform this calibration without the need for plant declarations. The {sup 235}U density detector is a commercially available system (GammaRad made by Amptek, www.amptek.com) that contains the NaI crystal, photomultiplier tube, signal conditioning electronics, and a multichannel analyzer (MCA). Measurements were made with the detector system installed near four {sup 235}U sources. Two of the sources were made of solid uranium, and the other two were in the form of UF{sub 6} gas in aluminum piping. One of the UF{sub 6} gas sources was located at ORNL and the other at LANL. The ORNL source consisted of two pipe sections (schedule 40 aluminum pipe of 4-inch and 8-inch outside diameter) with 5.36% {sup 235}U enrichment, and the LANL source was a 4-inch schedule 40 aluminum pipe with 3.3% {sup 235}U enrichment. The configurations of the detector on these test sources, as well as on long straight pipe configurations expected to exist at GCEPs, were modeled using the computer code MCNP. The results of the MCNP calculations were used to define geometric correction factors between the test source and the GCEP application. Using these geometric correction factors, the experimental 186 keV counts in the test geometry were extrapolated to the expected GCEP ge

March-Leuba, Jose A [ORNL; Uckan, Taner [ORNL; Gunning, John E [ORNL; Brukiewa, Patrick D [ORNL; Upadhyaya, Belle R [ORNL; Revis, Stephen M [ORNL

2010-01-01T23:59:59.000Z

282

Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities (DOE/EIS-0329) (9/18/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23 23 Federal Register / Vol. 66, No. 181 / Tuesday, September 18, 2001 / Notices Section 615-Procedural Safeguards Topic Addressed: Due Process Hearings * Letter dated April 19, 2001 to Virginia Department of Education Director Judith A. Douglas, regarding whether a State educational agency is required to convene a due process hearing initiated by someone other than the parent of a child with a disability or a public agency. Topic Addressed: Surrogate Parents * Letter dated April 16, 2001 to Pinal County, Arizona Deputy County Attorney Linda L. Harant, regarding the appointment of surrogate parents for children who are wards of a tribal court. Topic Addressed: Student Discipline * Letter dated April 16, 2001 to Professor Perry A. Zirkel, regarding the calculation of disciplinary removals of

283

Notice of Availability of a Draft Supplement Analysis for Disposal of Depleted Uranium Oxide Conversion Produce Generated from DOE's Inventory of Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

69 Federal Register 69 Federal Register / Vol. 72, No. 63 / Tuesday, April 3, 2007 / Notices DEPARTMENT OF EDUCATION The Historically Black Colleges and Universities Capital Financing Advisory Board AGENCY: The Historically Black Colleges and Universities Capital Financing Board, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming open meeting of the Historically Black Colleges and Universities Capital Financing Advisory Board. The notice also describes the functions of the Board. Notice of this meeting is required by Section 10(a)(2) of the Federal Advisory Committee Act and is intended to notify the public of their opportunity to attend. DATES: Friday, April 20, 2007. Time: 10 a.m.-2 p.m.

284

Record of Decision for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) (07/20/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49 49 Federal Register / Vol. 69, No. 143 / Tuesday, July 27, 2004 / Notices halseypj@oro.doe.gov or check the Web site at www.oakridge.doe.gov/em/ssab. SUPPLEMENTARY INFORMATION: Purpose of the Board: The purpose of the Board is to make recommendations to DOE in the areas of environmental restoration, waste management, and related activities. Tentative Agenda 8 a.m.-Introductions, overview of meeting agenda and logistics (Dave Mosby) 8:15 a.m.-Past year evaluation-Board and stakeholder survey results, what worked, what can be improved (Facilitator) 9:50 a.m.-Break 10:05 a.m.-Past year evaluation continued 10:45 a.m.-Summaries and Q&A on the most important issues to DOE, TN Department of Environment & Conservation, and EPA (Facilitator) 11:30 a.m.-Lunch

285

Advance Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities (DOE/EIS-0329) (5/7/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

010 010 Federal Register / Vol. 66, No. 88 / Monday, May 7, 2001 / Notices centers. The commenter believes that by working independently of schools, the centers can better assist families who do not feel connected with the schools and provide families with the tools needed to create change in the schools. Discussion: The Secretary is not requiring non-profit organizations to apply in consortium with one or more LEAs. However, the Secretary believes that strengthening school-community- family partnerships will help children in low-performing schools succeed in school. Under the priority, the parent centers still will have considerable autonomy in designing proposals that best meet local needs and in coordinating with low-performing schools in implementing comprehensive strategies to assist children in these

286

Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

Science Conference Proceedings (OSTI)

The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

NONE

1996-07-01T23:59:59.000Z

287

Polymeric and Conversion Coatings  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Ongoing research reveals that the search for appropriate conversion ... of the coated alloy was ~ 250 mV more noble compared to bare alloy.

288

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

289

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to… (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

290

NUCLEAR CONVERSION APPARATUS  

DOE Patents (OSTI)

A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.

Seaborg, G.T.

1960-09-13T23:59:59.000Z

291

Chemical Conversion Coating  

Science Conference Proceedings (OSTI)

Table 16   Applications of aluminum using chemical conversion coatings...doors 6063 Acrylic paint (b) Cans 3004 Sanitary lacquer Fencing 6061 None applied Chromate conversion coatings Aircraft fuselage skins 7075 clad with 7072 Zinc chromate primer Electronic chassis 6061-T4 None applied Cast missile bulkhead 356-T6 None applied Screen 5056 clad with 6253 Clear varnish...

292

ADEPT: Efficient Power Conversion  

SciTech Connect

ADEPT Project: In today’s increasingly electrified world, power conversion—the process of converting electricity between different currents, voltage levels, and frequencies—forms a vital link between the electronic devices we use every day and the sources of power required to run them. The 14 projects that make up ARPA-E’s ADEPT Project, short for “Agile Delivery of Electrical Power Technology,” are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

None

2011-01-01T23:59:59.000Z

293

Direct energy conversion systems  

SciTech Connect

The potential importance of direct energy conversion to the long-term development of fusion power is discussed with stress on the possibility of alleviating waste heat problems. This is envisioned to be crucial for any central power station in the 21st century. Two approaches to direct conversion, i.e., direct collection and magnetic expansion, are reviewed. While other techniques may be possible, none have received sufficient study to allow evaluation. It is stressed that, due to the intimate connection between the type of fusion fuel, the confinement scheme, direct conversion, and the coupling technique, all four element must be optimized simultaneously for high overall efficiency.

Miley, G.H.

1978-01-01T23:59:59.000Z

294

Solar Thermal Conversion  

DOE Green Energy (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

295

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

296

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

297

Solar Hydrogen Conversion Background  

E-Print Network (OSTI)

Solar Hydrogen Conversion Background: The photoelectrochemical production of hydrogen has drawn properties In order to develop better materials for solar energy applications, in-depth photoelectrochemical simulated solar irradiance. Hydrogen production experiments are conducted in a sealed aluminum cell

Raftery, Dan

298

Photovoltaic Cell Conversion Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

299

Tungsten Cladding of Tungsten-Uranium Dioxide (W-UO2) Composites by Deposition from Tungsten Hexafluoride (WF6)  

DOE Green Energy (OSTI)

?A program is being conducted to develop a process for cladding tungsten and tungsten cermet fuels with tungsten deposited from the vapor state by the hydrogen reduction of tungsten hexafluoride. Early work was performed using recrystallized, high purity, commercial tungsten as the substrate material. Temperatures in the range 660 to 12950F (350 to 1700°C) and pressures from 10 to 350 mm Hg were investigated. Hydrogen to WF 6 ratios of 10: 1 to 150: 1 were utilized. Efforts were directed toward optimizing deposition process parameters to attain control of qualities such as coating thickness, uniformity, density, impurity content, and surface quality. Substrate penetration methods have been investigated in the interest of completely eliminating the interface between the fueled substrate and cladding. In addition, the effects of process parameters and post-cladding heat treatments on the fuel retention properties of clad composites at 4500 degrees F (2480 degrees C) in hydrogen for 2 hours have been evaluated. As a result of work performed during the first phase of the program it has been shown that the rate of deposition of tungsten from WF 6 and the uniformity of the deposit can be varied in a predictable and reproducible manner by exercising control over the temperature, pressure, and gas flow rates at which the deposits are produced. A significant result of the study is the discovery that substrate nucleation and epitaxial growth in deposits made on both unfueled tungsten and fueled substrates may be effected by pretreating the substrates in hydrogen. High temperature fuel retention testing of tungsten clad W-U02 at 45000F (2480 degrees C) in hydrogen for 2 hours has demonstrated that the vapor deposited layer effectively and consistently restricts fuel loss.

Lamartine, J.T.; Hoppe, A.W.

1965-02-15T23:59:59.000Z

300

Structured luminescence conversion layer  

SciTech Connect

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

302

46 | NewScientist | 14 July 2007 www.newscientist.com Earlier this year an Iranian  

E-Print Network (OSTI)

scientist at the uranium conversion facility at Isfahan died from poisoning with uranium hexafluoride gas

Valero-Cuevas, Francisco

303

EIS-0360: Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

304

EIS-0359: Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

305

EIS-0360: Record of Decision  

Energy.gov (U.S. Department of Energy (DOE))

Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

306

EIS-0359: Record of Decision  

Energy.gov (U.S. Department of Energy (DOE))

Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

307

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

308

Overview of coal conversion  

SciTech Connect

The structure of coal and the processes of coal gasification and coal liquefaction are reviewed. While coal conversion technology is not likely to provide a significant amount of synthetic fuel within the next several years, there is a clear interest both in government and private sectors in the development of this technology to hedge against ever-diminishing petroleum supplies, especially from foreign sources. It is evident from this rather cursory survey that there is some old technology that is highly reliable; new technology is being developed but is not ready for commercialization at the present state of development. The area of coal conversion is ripe for exploration both on the applied and basic research levels. A great deal more must be understood about the reactions of coal, the reactions of coal products, and the physics and chemistry involved in the various stages of coal conversion processes in order to make this technology economically viable.

Clark, B.R.

1981-03-27T23:59:59.000Z

309

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

310

Direct conversion technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

1992-01-07T23:59:59.000Z

311

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conservation Technologies thrust area supports initiatives that enhance the core competencies of the Lawrence Livermore National Laboratory (LLNL) Engineering Directorate in the area of solid-state power electronics. Through partnerships with LLNL programs, projects focus on the development of enabling technologies for existing and emerging programs that have unique power conversion requirements. This year, a multi-disciplinary effort was supported which demonstrated solid-state, high voltage generation by using a dense, monolithic photovoltaic array. This effort builds upon Engineering's strengths in the core technology areas of power conversion, photonics, and microtechnologies.

Haigh, R E

1998-01-01T23:59:59.000Z

312

Direct Conversion Technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

313

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

314

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

315

Links to on-line unit conversions  

Science Conference Proceedings (OSTI)

... Basic physical quantities. General unit, currency, and temperature conversion. ... Many conversions, including unusual and ancient units. ...

316

Model Energy Conversion Efficiency of Biological Systems  

Science Conference Proceedings (OSTI)

MML Researchers Model Energy Conversion Efficiency of Biological Systems. Novel, highly efficient energy conversion ...

2013-03-15T23:59:59.000Z

317

Standard test method for the analysis of refrigerant 114, plus other carbon-containing and fluorine-containing compounds in uranium hexafluoride via fourier-transform infrared (FTIR) spectroscopy  

E-Print Network (OSTI)

1.1 This test method covers determining the concentrations of refrigerant-114, other carbon-containing and fluorine-containing compounds, hydrocarbons, and partially or completely substituted halohydrocarbons that may be impurities in uranium hexafluoride. The two options are outlined for this test method. They are designated as Part A and Part B. 1.1.1 To provide instructions for performing Fourier-Transform Infrared (FTIR) spectroscopic analysis for the possible presence of Refrigerant-114 impurity in a gaseous sample of uranium hexafluoride, collected in a "2S" container or equivalent at room temperature. The all gas procedure applies to the analysis of possible Refrigerant-114 impurity in uranium hexafluoride, and to the gas manifold system used for FTIR applications. The pressure and temperatures must be controlled to maintain a gaseous sample. The concentration units are in mole percent. This is Part A. 1.2 Part B involves a high pressure liquid sample of uranium hexafluoride. This method can be appli...

American Society for Testing and Materials. Philadelphia

2004-01-01T23:59:59.000Z

318

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Buy Solar Energy Stocks? Make Photovoltaics your Profession! #12;Challenges Make solar cells more and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth #12;Take Advantage of Solar Megatrend

Glashausser, Charles

319

ENERGY CONVERSION Spring 2011  

E-Print Network (OSTI)

in this course: Week 1: Review Week 2: Entropy and exergy Week 3: Power cycles, Otto and Diesel Week 4 resources including: wind, wave energy conversion devices, and fuel cell technologies Week12: Introduction will work in groups as assigned. Experiment: Diesel Engine Assessment: Projects 20% Lab Reports

Bahrami, Majid

320

Documents: Program Planning and Decision Making  

NLE Websites -- All DOE Office Websites (Extended Search)

documents Program Planning and Decision Making PDF Icon Final Plan for the Conversion of Depleted Uranium Hexafluoride 345 KB details PDF Icon Depleted Uranium Hexafluoride...

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solar energy conversion.  

SciTech Connect

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

322

Question detection in spoken conversations using textual conversations  

Science Conference Proceedings (OSTI)

We investigate the use of textual Internet conversations for detecting questions in spoken conversations. We compare the text-trained model with models trained on manually-labeled, domain-matched spoken utterances with and without prosodic features. ...

Anna Margolis; Mari Ostendorf

2011-06-01T23:59:59.000Z

323

A Korarchael Genome Reveals Insights into the Evolution of the Archaea  

E-Print Network (OSTI)

protein of unknown function DUF6, transmembrane hypotheticalprotein of unknown function DUF6, transmembrane Gene Nameprotein of unknown function DUF6, transmembrane hypothetical

Elkins, James G.

2008-01-01T23:59:59.000Z

324

Functional genomics of the bacterial degradation of the emerging water contaminants: 1,4-dioxane and N-nitrosodimethylamine (NDMA)  

E-Print Network (OSTI)

drugs protein of unknown function DUF6 trans- drugs membraneprotein of unknown function DUF6 trans- drugs membraneprotein of unknown function DUF6 trans- putative membrane

Sales, Christopher Michael

2012-01-01T23:59:59.000Z

325

Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities  

SciTech Connect

Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of density, concentration and enrichment. A detailed uncertainty analysis will be presented providing insights into instrumentation limitations to spoofing.

Dewji, Shaheen A [ORNL; Lee, Denise L [ORNL; Croft, Stephen [ORNL; McElroy, Robert Dennis [ORNL; Hertel, Nolan [Georgia Institute of Technology; Chapman, Jeffrey Allen [ORNL; Cleveland, Steven L [ORNL

2013-01-01T23:59:59.000Z

326

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

327

Session: Energy Conversion  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

328

Natural gas conversion process  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-01-01T23:59:59.000Z

329

Uranium hexafluoride public risk  

SciTech Connect

The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

1994-08-01T23:59:59.000Z

330

Conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents, For your convenience, you may convert energies online below. Or display factors as: ...

331

Energy Conversion/Fuel Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Sponsorship, MS&T Organization.

332

Conversion of Questionnaire Data  

SciTech Connect

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL; Elwood Jr, Robert H [ORNL

2011-01-01T23:59:59.000Z

333

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

334

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

notably energy conversion. As research continues in thisnanowires for energy conversion. Chemical Reviews, 2010.for solar energy conversion. Physical Review Letters, 2004.

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

335

: Package gov.nist.nlpir.irf.conversion  

Science Conference Proceedings (OSTI)

gov.nist.nlpir.irf.conversion Classes Ascii2HtmlConverter ConversionRule ConversionRules IrfConverter Sgml2AppDocConverter.

336

Zinc phosphate conversion coatings  

DOE Patents (OSTI)

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

337

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

338

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

339

Basis of conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Basis of conversion factors for energy equivalents Conversion factors for energy equivalents are derived from the following relations: ...

340

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents Return to online conversions. Next page of energy equivalents. Definition of uncertainty ...

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Catalytic Conversion of Bioethanol to Hydrocarbons ...  

Conventional biomass to hydrocarbon conversion is generally not commercially feasible, due to costs of the conversion process.

342

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

Newton, M. A.

1997-02-01T23:59:59.000Z

343

Quantum optical waveform conversion  

E-Print Network (OSTI)

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

Kielpinski, D; Wiseman, HM

2010-01-01T23:59:59.000Z

344

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

345

Wideband Wavelength Conversion Using Cavity ...  

Science Conference Proceedings (OSTI)

... The researchers use the interaction of two ... bands that are frequently used in telecommunications. ... conversion should be possible using the same ...

2013-08-27T23:59:59.000Z

346

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from the EERE Bioenergy Technologies Office. Thermochemical Conversion Processes Heat energy and chemical catalysts can be used to break down biomass into intermediate compounds...

347

Thermal Conversion Factor Source Documentation  

U.S. Energy Information Administration (EIA)

national annual quantity-weighted average conversion factors for conventional, reformulated, and oxygenated motor gasolines (see Table A3). The factor ...

348

PRIMARY QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

Reactions in,Bacterial Photosynthesis. I, Nature of lightReactions in Bacterial Photosynthesis. 111. Reactions ofQUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin and G. M.

Calvin, Melvin; Androes, G.M.

1962-01-01T23:59:59.000Z

349

Alternative Fuels Data Center: Conversion Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversion Regulations Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on AddThis.com... Conversion Regulations All vehicle and engine conversions must meet standards instituted by the U.S. Environmental Protection Agency (EPA), the National Highway Traffic Safety Administration (NHTSA), and state agencies like the California Air Resources Board (CARB).

350

MEDICAL IMAGE CONVERSION Peter Stanchev  

E-Print Network (OSTI)

MEDICAL IMAGE CONVERSION Peter Stanchev Institute of Mathematics, Bulgarian Academy of Sciences with the problem of converting medical images from one format to another. In solving it the structure of the most commonly used medical image formats are studied and analysed. A mechanism for medical image file conversion

Stanchev, Peter

351

Visualization components for persistent conversations  

Science Conference Proceedings (OSTI)

An appropriately designed interface to persistent, threaded conversations could reinforce socially beneficial behavior by prominently featuring how frequently and to what degree each user exhibits such behaviors. Based on the data generated by the Netscan ... Keywords: Usenet, asynchronous threaded discussions, newsgroup, persistent conversation, social cyberspaces, visualization

Marc A. Smith; Andrew T. Fiore

2001-03-01T23:59:59.000Z

352

Alcohol fuel conversion apparatus  

Science Conference Proceedings (OSTI)

This patent describes an alcohol fuel conversion apparatus for internal combustion engines comprising: fuel storage means for containing an alcohol fuel; primary heat exchange means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchange means; a heat source for heating the primary heat exchange means; pressure relief valve means in closed fluid communication with the primary heat exchange means for releasing heated pressurized alcohol into an expansion chamber; converter means including the expansion chamber in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; fuel injection means in fluid communication with the converter means for injecting vaporized alcohol into the cylinders of an internal combustion engine for mixing with air within the cylinders for proper combustion; and pump means for pressurized pumping of alcohol from the 23 fuel storage means to the primary heat exchanger means, converter means, fuel injector means, and to the engine.

Carroll, B.I.

1987-12-08T23:59:59.000Z

353

$?- e$ Conversion With Four Generations  

E-Print Network (OSTI)

We study $\\mu - e$ conversion with sequential four generations. A large mass for the fourth generation neutrino can enhance the conversion rate by orders of magnitude. We compare constraints obtained from $\\mu - e$ conversion using experimental bounds on various nuclei with those from $\\mu \\to e \\gamma$ and $\\mu \\to e\\bar e e$. We find that the current bound from $\\mu - e$ conversion with Au puts the most stringent constraint in this model. The relevant flavor changing parameter $\\lambda_{\\mu e} = V^*_{\\mu 4}V_{e4}^{}$ is constrained to be less than $1.6\\times 10^{-5}$ for the fourth generation neutrino mass larger than 100 GeV. Implications for future $\\mu -e$ conversion, $\\mu \\to e\\gamma$ and $\\mu \\to e\\bar e e$ experiments are discussed.

N. G. Deshpande; T. Enkhbat; T. Fukuyama; X. -G. He; L. -H. Tsai; K. Tsumura

2011-06-25T23:59:59.000Z

354

Hydrothermal Energy Conversion Technology  

SciTech Connect

The goal of the Hydrothermal Program is to develop concepts which allow better utilization of geothermal energy to reduce the life-cycle cost of producing electricity from liquid-dominated, hydrothermal resources. Research in the program is currently ongoing in three areas: (1) Heat Cycle Research, which is looking at methods to increase binary plant efficiencies; (2) Materials Development, which is developing materials for use in geothermal associated environments; and (3) Advanced Brine Chemistry, with work taking place in both the brine chemistry modeling area and waste disposal area. The presentations during this session reviewed the accomplishments and activities taking place in the hydrothermal energy conversion program. Lawrence Kukacka, Brookhaven National Laboratory, discussed advancements being made to develop materials for use in geothermal applications. This research has identified a large number of potential materials for use in applications from pipe liners that inhibit scale buildup and reduce corrosion to elastomers for downhole use. Carl J. Bliem, Idaho National Engineering Laboratory, discussed preparations currently underway to conduct field investigations of the condensation behavior of supersaturated turbine expansions. The research will evaluate whether the projected 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Eugene T. Premuzic, Brookhaven National Laboratory, discussed advancements being made using biotechnology for treatment of geothermal residual waste; the various process options were discussed in terms of biotreatment variables. A treatment scenario and potential disposal costs were presented. John H. Weare, University of California, San Diego, discussed the present capabilities of the brine chemistry model he has developed for geothermal applications and the information it can provide a user. This model is available to industry. The accomplishments from the research projects presented in this session have been many. It is hoped that these accomplishments can be integrated into industrial geothermal power plant sites to assist in realizing the goal of reducing the cost of energy produced from the geothermal resource.

Robertson, David W.; LaSala, Raymond J.

1992-03-24T23:59:59.000Z

355

Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery of Uranium Discovery of Uranium Uranium was discovered in 1789 by Martin Klaproth, a German chemist, who isolated an oxide of uranium while analyzing pitchblende samples from the Joachimsal silver mines in the former Kingdom of Bohemia located in the present day Czech Republic. more facts >> Mailing List Signup Receive e-mail updates about this project and web site. your e-mail address Sign Me Up Search: OK Button DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home » Documents Search Documents: Search PDF Documents View a list of all documents Depleted UF6 Management Program Documents Downloadable documents about depleted UF6 management and related topics, including Depleted UF6 Conversion and Programmatic EIS documents

356

Barn ConversionBarn Conversion DiscussionDiscussion  

E-Print Network (OSTI)

B.G.S.A.C Stats ·· 2500 square foot insulated pole barn2500 square foot insulated pole barn ·· concrete neededhouse the system needed ·· Is the conversion cost worthIs the conversion cost worth while when compared installedNo vapor barrier installed ·· Rains in barnRains in barn ·· Up to 75 gallons per dayUp to 75

357

Thermal Conversion Process (TCP) Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

358

EPA Redesigns Conversion Certification Policies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EPA Redesigns EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's Enforcement Office. The meeting, attended by representatives of more than 60 organizations, was held to discuss actions addressing AFV emission certification. Specifically, topics included * Conversion emissions perfor- mance data * Status of environmental laws pertaining to alternative fuel

359

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

DOE-EPA Working Group on Ocean TherUial Energy Conversion,Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversion

Sands, M.Dale

2013-01-01T23:59:59.000Z

360

Ocean Thermal Energy Conversion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Ocean Thermal Energy Conversion August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in...

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuels Data Center: Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversions on AddThis.com... Vehicle Conversions Photo of converted to run on propane. What kinds of conversions are available? Natural Gas Propane Electric Hybrid Ethanol An aftermarket conversion is a vehicle or engine modified to operate using

362

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

363

Tidal Conversion by Supercritical Topography  

E-Print Network (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

Balmforth, Neil J.

364

Conversion to the Metric System  

U.S. Energy Information Administration (EIA)

Appendix C Conversion to the Metric System Public Law 100–418, the Omnibus Trade and Competitiveness Act of 1988, states: “It is the declared policy of the United ...

365

Tidal Conversion by Supercritical Topography  

Science Conference Proceedings (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of periodic obstructions; a ...

Neil J. Balmforth; Thomas Peacock

2009-08-01T23:59:59.000Z

366

Conversion coefficients for superheavy elements  

E-Print Network (OSTI)

In this paper we report on internal conversion coefficients for Z = 111 to Z = 126 superheavy elements obtained from relativistic Dirac-Fock (DF) calculations. The effect of the atomic vacancy created during the conversion process has been taken into account using the so called "Frozen Orbital" approximation. The selection of this atomic model is supported by our recent comparison of experimental and theoretical conversion coefficients across a wide range of nuclei. The atomic masses, valence shell electron configurations, and theoretical atomic binding energies required for the calculations were adopted from a critical evaluation of the published data. The new conversion coefficient data tables presented here cover all atomic shells, transition energies from 1 keV up to 6000 keV, and multipole orders of 1 to 5. A similar approach was used in our previous calculations [1] for Z = 5 - 110.

T. Kibédi; M. B. Trzhaskovskaya; M. Gupta; A. E. Stuchbery

2011-03-03T23:59:59.000Z

367

Cosmopolitanism - Conversation with Stuart Hall  

E-Print Network (OSTI)

Conversation between Stuart Hall and Pnina Werbner on the theme of Cosmopolitanism (to be shown at the Association of Social Anthropologists Silver Jubilee conference in 2006), in March 2006...

Hall, Stuart

2006-09-27T23:59:59.000Z

368

Unsupervised modeling of Twitter conversations  

Science Conference Proceedings (OSTI)

We propose the first unsupervised approach to the problem of modeling dialogue acts in an open domain. Trained on a corpus of noisy Twitter conversations, our method discovers dialogue acts by clustering raw utterances. Because it accounts for the sequential ...

Alan Ritter; Colin Cherry; Bill Dolan

2010-06-01T23:59:59.000Z

369

Biological conversion of synthesis gas  

DOE Green Energy (OSTI)

A continuous stirred tank reactor with and without sulfur recovery has been operated using Chlorobium thiosulfatophilum for the conversion of H[sub 2]S to elemental sulfur. In operating the reactor system with sulfur recovery, a gas retention time of 40 min was required to obtain a 100 percent conversion of H[sub 2]S to elemental sulfur. Essentially no SO[sub 4][sup 2[minus

Clausen, E.C.

1993-04-10T23:59:59.000Z

370

Fast Conversion Algorithms for Orthogonal Polynomials - Computer ...  

E-Print Network (OSTI)

Nov 13, 2008 ... a known conversion algorithm from an arbitrary orthogonal basis to the ... Fast algorithms, transposed algorithms, basis conversion, orthogonal.

371

Photocatalytic Conversion of Carbon Dioxide to Methanol.  

E-Print Network (OSTI)

??The photocatalytic conversion of carbon dioxide (CO2) to methanol was investigated. The procedure for the carbon dioxide conversion was carried out using a small scale… (more)

Okpo, Emmanuel

2009-01-01T23:59:59.000Z

372

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion to someone by E-mail Share Vehicle Technologies Office: Solid State Energy Conversion on Facebook Tweet about Vehicle Technologies Office: Solid State Energy...

373

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Energy Conversion The Solid State Energy Conversion R&D activity is focused on developing advanced thermoelectric technologies for utilizing engine waste heat by...

374

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Conversion A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when...

375

Energy Conversion – Photovoltaic, Concentrating Solar Power, and ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and  ...

376

Biochemical Conversion Pilot Plant (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

377

Frequency Conversion of Entangled State  

E-Print Network (OSTI)

The quantum characteristics of sum-frequency process in an optical cavity with an input signal optical beam, which is a half of entangled optical beams, are analyzed. The calculated results show that the quantum properties of the signal beam can be maintained after its frequency is conversed during the intracavity nonlinear optical interaction. The frequency-conversed output signal beam is still in an entangled state with the retained other half of initial entangled beams. The resultant quantum correlation spectra and the parametric dependences of the correlations on the initial squeezing factor, the optical losses and the pump power of the sum-frequency cavity are calculated. The proposed system for the frequency conversion of entangled state can be used in quantum communication network and the calculated results can provide direct references for the design of experimental systems.

Aihong Tan; Xiaojun Jia; Changde Xie

2006-03-01T23:59:59.000Z

378

EIS-0269: Record of Decision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

69: Record of Decision 69: Record of Decision EIS-0269: Record of Decision Long-Term Management and Use of Depleted Uranium Hexafluoride, Paduch, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee The Department of Energy (''DOE'' or ''the Department'') issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF6). DOE has decided to promptly convert the depleted UF6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both.

379

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

380

Conversion of the Barotropic Tide  

Science Conference Proceedings (OSTI)

Using linear wave theory, the rate at which energy is converted into internal gravity waves by the interaction of the barotropic tide with topography in an ocean is calculated. Bell's formula for the conversion rate is extended to the case of an ...

Stefan G. Llewellyn Smith; W. R. Young

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Conversion and Storage Program  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

382

Independent Oversight Assessment, Portsmouth/Paducah Project Office- May 2012  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants

383

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

384

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

385

EFFECT OF DENTAL POLYMER DEGREE OF CONVERSION ...  

Science Conference Proceedings (OSTI)

Effect of Dental Polymer Degree of Conversion on Oral Biofilms. Alison Kraigsley, Sheng Lin-Gibson, Nancy J. Lin. National ...

386

Appendix B Metric and Thermal Conversion Tables  

U.S. Energy Information Administration (EIA)

2011 U.S. Energy Information Administration | Natural Gas Annual 193 Appendix B Metric and Thermal Conversion Tables

387

Conversion of Levulinic Acid to Methyl Tetrahydrofuran ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Conversion of Levulinic Acid to Methyl Tetrahydrofuran. Battelle ...

388

Energy Storage, Transport, and Conversion in CNST  

Science Conference Proceedings (OSTI)

Energy Storage, Transport, and Conversion in CNST. Nanotribology ... Theory and Modeling of Materials for Renewable Energy. Nanostructures ...

2013-05-02T23:59:59.000Z

389

Conversion of Levulinic Acid to Methyl Tetrahydrofuran ...  

Biomass and Biofuels Conversion of Levulinic Acid to Methyl Tetrahydrofuran Pacific Northwest National Laboratory. Contact PNNL About This Technology ...

390

Cost analysis guidelines  

Science Conference Proceedings (OSTI)

The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

Strait, R.S.

1996-01-10T23:59:59.000Z

391

High resolution A/D conversion based on piecewise conversion at lower resolution  

SciTech Connect

Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

Terwilliger, Steve (Albuquerque, NM)

2012-06-05T23:59:59.000Z

392

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network (OSTI)

and Friedman, S. ,"Conversion of Anthraxylon - Kinetics ofiv- LBL 116807 CATALYTIC CONVERSION OF SOLVENT REFINED COALand Mechanisms of Coal Conversion to Clean Fuel,iI pre-

Tanner, K.I.

2010-01-01T23:59:59.000Z

393

STRIPPING OF PROCESS CONDENSATES FROM SOLID FUEL CONVERSION  

E-Print Network (OSTI)

Aqueous from Fossil Fuel Conversion Processes", ~l:;_£J. _and Pollution Control in Coal Conversion Processes", U. s.By-Product Waters from Coal Conversion Processes", American

Hill, Joel David

2013-01-01T23:59:59.000Z

394

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENTOcean Thermal Energy Conversion Draft Programmatic Environ-Ocean Thermal Energy Conversion. U.S. DOE Assistant Secre-

Sands, M.Dale

2013-01-01T23:59:59.000Z

395

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Thermal Energy Conversion Conference. Ocean Systems Branch,Thermal Energy Conversion Conference. Ocean Systems Branch,thermal energy conversion, June 18, 1979. Ocean Systems

Sands, M. D.

2011-01-01T23:59:59.000Z

396

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Nanoporous Thermal-to-Electrical Energy Conversion System (hand, the indirect energy conversion systems tend to beIn a direct energy conversion system, heat can be converted

Lim, Hyuck

2011-01-01T23:59:59.000Z

397

NREL-Ocean Energy Thermal Conversion | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Thermal Conversion Jump to: navigation, search Logo: NREL-Ocean Energy Thermal Conversion Name NREL-Ocean Energy Thermal Conversion AgencyCompany Organization...

398

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

399

NREL: Biomass Research - Biochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

400

Biomass thermochemical conversion program: 1987 annual report  

DOE Green Energy (OSTI)

The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Biomass thermochemical conversion program. 1985 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1986-01-01T23:59:59.000Z

402

Mode conversion studies in TFTR  

SciTech Connect

Mode converted Ion Bernstein Waves (IBW) have important potential applications in tokamak reactors. These applications include on or off axis electron heating and current drive and the channeling of alpha particle power for both current drive and increased reactivity. Efficient mode conversion electron heating with a low field side antenna, with both on and off axis power deposition, has been demonstrated for the first time in TFTR in D{sup 3}He-{sup 4}He plasmas. Up to 80% of the Ion Cyclotron Range of Frequency (ICRF) power is coupled to electrons at the mode conversion surface. Experiments during deuterium and tritium neutral beam injection (NBI) indicate that good mode conversion efficiency can be maintained during NBI if sufficient {sup 3}He is present. No evidence of strong alpha particle heating by the IBW is seen. Recent modeling indicates that if the mode converted IBW is preferentially excited off the horizontal midplane then the resultant high poloidal mode number wave may channel alpha particle power to either electrons or ions. In TFTR both the propagation of the IBW and its effect on the alpha particle population is being investigated. Experiments with 2 MW of ICRF power launched with {+-} 90{degree} antenna phasing for current drive show that electron heating and sawtooth activity depend strongly on the direction of the launched wave. The noninductively driven current could not be experimentally determined in these relatively high plasma current, short pulse discharges. Experiments at higher RF power and lower plasma current are planned to determine on and off axis current drive efficiency.

Majeski, R.; Fisch, N.J.; Adler, H.

1995-03-01T23:59:59.000Z

403

Tagging explosives with sulfur hexafluoride  

DOE Patents (OSTI)

Method and apparatus for tagging explosives with a source of SF.sub.6 permitting the detection of their presence utilizing sensitive sniffing apparatus.

Dietz, Russell N. (Shoreham, NY); Cote, Edgar A. (Yaphank, NY); Vogel, William (East Islip, NY); Dempsey, John C. (Frederick, MD)

1976-11-16T23:59:59.000Z

404

ENVIRONMENTAL MANAGEMENT SITE-SPECIFIC ADVISORY BOARD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington, D.C. 20585 Washington, D.C. 20585 April 25, 2013 2 Environmental Management Site-Specific Advisory Board - April 25, 2013 Meeting Minutes LIST OF ACRONYMS AB - Advisory Board ANL - Argonne National Laboratory ARP - Accelerator Retrieval Project BNL - Brookhaven National Laboratory BRC - Blue Ribbon Commission CAB - Citizens Advisory Board D&D - Decontamination & Decommissioning DDFO - Deputy Designated Federal Officer DOE - Department of Energy DUF6 - Depleted Uranium Hexafluoride DWPF - Defense Waste Processing Facility EIS - Environmental Impact Statement EM - DOE Office of Environmental Management EM SSAB - DOE Office of Environmental Management Site-Specific Advisory Board EPA - U.S. Environmental Protection Agency FY - Fiscal Year

405

Formation of alcohol conversion catalysts  

DOE Patents (OSTI)

The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

Wachs, Israel E. (Bridgewater, NJ); Cai, Yeping (Louisville, KY)

2001-01-01T23:59:59.000Z

406

Biomass Thermochemical Conversion Program: 1986 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1987-01-01T23:59:59.000Z

407

Transportation Impact Assessment for Shipment of Uranium Hexafluoride (UF<sub>6</sub>) Cylinders from the East Tennessee Technology Park to the Portsmouth and Paducah Gaseous Diffusion  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Transportation Impact Assessment for Shipment of Uranium Hexafluoride (UF 6 ) Cylinders from the East Tennessee Technology Park to the Portsmouth and Paducah Gaseous Diffusion Plants Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering

408

Biological conversion of synthesis gas  

DOE Green Energy (OSTI)

Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. R. rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H[sub 2]0 [yields] CO[sub 2] + H[sub 2]. C. thiosulfatophilum is also a H[sub 2]S and COS to elemental sulfur. The growth of R. rubrum may be satisfactorily carried out at 25[degree] and 30[degree]C, while CO uptake and thus the conversion of CO best occurs at temperatures of either 30[degree], 32[degree] or 34[degree]C. The rate of conversion of COs and H[sub 2]O to CO[sub 2] and H[sub 2]S may be modeled by a first order rate expression. The rate constant at 30[degree]C was found to be 0.243 h[sup [minus]1]. The growth of C. thiosulfatophilum may be modeled in terms of incoming light intensity using a Monod equation: [mu] = [sub 351] + I[sub o]/[sup 0.152]I[sub o]. Comparisons of the growth of R. rubrum and C. thiosulfatophilum shows that the specific growth rate of C. thiosulfatophilum is much higher at a given light intensity.

Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

1992-03-01T23:59:59.000Z

409

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

of Novel Energy Conversion and Storage Systems By Andrewof Novel Energy Conversion and Storage Systems by Andrew

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

410

Microturbine Power Conversion Technology Review  

SciTech Connect

In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to accept a varying dc voltage source. The study will also look at technical issues pertaining to the interconnection and coordinated/compatible operation of multiple microturbines. It is important to know today if modifications to provide improved operation and additional services will entail complete redesign, selected component changes, software modifications, or the addition of power storage devices. This project is designed to provide a strong technical foundation for determining present technical needs and identifying recommendations for future work.

Staunton, R.H.

2003-07-21T23:59:59.000Z

411

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

412

Power conversion apparatus and method  

DOE Patents (OSTI)

A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

Su, Gui-Jia (Knoxville, TN)

2012-02-07T23:59:59.000Z

413

Cleanup of hydrocarbon conversion system  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of a substantially contaminant-free second hydrocarbon feed using a second reforming catalyst, in a catalytic-reforming system having equipment contaminated through contact with a contaminant-containing prior feed. It comprises: contacting the first hydrocarbon feed in the catalytic-reforming system at first reforming conditions with a first reforming catalyst until contaminant removal from the conversion system is substantially completed and the system is contaminant-free; thereafter replacing the first reforming catalyst in the contaminant-free catalytic-reforming system with a second reforming catalyst; and thereafter contacting the second hydrocarbon feed in the contaminant-free catalytic-reforming system with the second reforming catalyst at second reforming conditions.

Peer, R.L.; Russ, M.B.

1990-07-10T23:59:59.000Z

414

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

415

Introduction to Solar Photon Conversion  

SciTech Connect

The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

Nozik, A.; Miller, J.

2010-11-10T23:59:59.000Z

416

Frequency Conversion Interfaces for Photonic Quantum ...  

Science Conference Proceedings (OSTI)

... by nearly two orders of magnitude while maintaining equal conversion efficiency. ... focused on developing approaches to tune the energy levels of ...

2013-07-02T23:59:59.000Z

417

Novel Nitride-Modified Multielectron Conversion Electrode ...  

Novel Nitride-Modified Multielectron Conversion Electrode Materials for Lithium Ion Batteries Note: The technology described above is an early stage opportunity.

418

Share of Conversion Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the early to mid 1980’s, Atlantic Basin refiners rapidly expanded their conversion capacity as a consequence of the belief that world crude production would get ...

419

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically converting an alcohol ...

420

Direct Conversion of Biomass into Transportation Fuels  

Direct Conversion of Biomass into Transportation Fuels . Return to Marketing Summary. Skip footer navigation to end of page. Contacts | Web Site Policies | U.S ...

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Conversion of Ultra High Performance Carbon Fiber  

Conversion of Ultra High Performance Carbon Fiber Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

422

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

423

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically ...

424

Converse, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Converse, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

425

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network (OSTI)

465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

426

Bioenergy Technologies Office: Processing and Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sugar-rich stream (hydrolyzate) is fed to organisms that ferment the sugars to fuel precursor molecules. The biochemical conversion platform also has a large stake in some...

427

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

428

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

429

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Previous page of energy equivalents. Definition of uncertainty notation eg, 123(45) | Basis of conversion factors for energy equivalents. Top. ...

430

Generative conversation tool for game writers  

Science Conference Proceedings (OSTI)

Conversation is an important part of many games, whether it is there to provide information or entertainment. In the current state of commercial game development, almost all conversation is hand-authored. Further, different authoring approaches are used ... Keywords: authoring tools, dialogue generation, game development

Christina R. Strong; Michael Mateas; Dave Grossman

2009-04-01T23:59:59.000Z

431

Heat to electricity thermoacoustic-magnetohydrodynamic conversion  

E-Print Network (OSTI)

In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

A. A. Castrejon-Pita; G. Huelsz

2006-10-12T23:59:59.000Z

432

1982 annual report: Biomass Thermochemical Conversion Program  

DOE Green Energy (OSTI)

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

433

Biomass thermal conversion research at SERI  

DOE Green Energy (OSTI)

SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

1980-09-01T23:59:59.000Z

434

1982 annual report: Biomass Thermochemical Conversion Program  

SciTech Connect

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

435

Catalytic conversion of light alkanes  

DOE Green Energy (OSTI)

The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

Lyons, J.E.

1992-06-30T23:59:59.000Z

436

Interdigitated photovoltaic power conversion device  

DOE Patents (OSTI)

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

1999-01-01T23:59:59.000Z

437

Interdigitated photovoltaic power conversion device  

DOE Patents (OSTI)

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

1999-04-27T23:59:59.000Z

438

Utilizing Nature's Designs for Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

439

Energy Conversion & Storage Program, 1993 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1994-06-01T23:59:59.000Z

440

Energy conversion & storage program. 1994 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Helical rays in two-dimensional resonant wave conversion  

E-Print Network (OSTI)

2] D.G. Swanson, Theory of Mode Conversion and Tunneling inin two-dimensional resonant wave conversion Allan N. KaufmanThe process of resonant wave conversion (often called linear

Kaufman, Allan N.; Tracy, Eugene R.; Brizard, Alain J.

2004-01-01T23:59:59.000Z

442

Automatic recognition of personality in conversation  

Science Conference Proceedings (OSTI)

The identification of personality by automatic analysis of conversation has many applications in natural language processing, from leader identification in meetings to partner matching on dating websites. We automatically train models of the main five ...

François Mairesse; Marilyn Walker

2006-06-01T23:59:59.000Z

443

NREL: Biomass Research - Thermochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Capabilities Conversion Capabilities NREL researchers are developing gasification and pyrolysis processes for the cost-effective thermochemical conversion of biomass to biofuels. Gasification-heating biomass with about one-third of the oxygen necessary for complete combustion-produces a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis-heating biomass in the absence of oxygen-produces a liquid bio-oil. Both syngas and bio-oil can be used directly or can be converted to clean fuels and other valuable chemicals. Areas of emphasis in NREL's thermochemical conversion R&D are: Gasification and fuel synthesis R&D Pyrolysis R&D Thermochemical process integration. Gasification and Fuel Synthesis R&D Get the Adobe Flash Player to see this video.

444

NREL: Biomass Research - Biochemical Conversion Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

445

Energy Conversion Materials Through Chemical Synthesis Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Materials Through Chemical Synthesis Route Speaker(s): Lionel Vayssieres Date: April 27, 2004 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Samuel Mao The...

446

Practical Conversion of Pressure to Depth  

Science Conference Proceedings (OSTI)

A conversion formula between pressure and depth is obtained employing the recently adopted equation of state for seawater (Millero et al., 1980). Assuming the ocean of uniform salinity 35 NSU and temperature 0°C the following equation is proposed,...

Peter M. Saunders

1981-04-01T23:59:59.000Z

447

Catalytic Conversion Probabilities for Bipartite Pure States  

E-Print Network (OSTI)

For two given bipartite-entangled pure states, an expression is obtained for the least upper bound of conversion probabilities using catalysis. The attainability of the upper bound can also be decided if that bound is less than one.

S. Turgut

2007-06-25T23:59:59.000Z

448

Radio frequency dc-dc power conversion  

E-Print Network (OSTI)

THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations ...

Rivas, Juan, 1976-

2007-01-01T23:59:59.000Z

449

Assessment of ocean thermal energy conversion  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

450

Hybrid staging of geothermal energy conversion process  

DOE Green Energy (OSTI)

Progress in the demonstration of the feasibility of hybrid staging in geothermal energy conversion is described, particularly processes involving the Lysholm engine. The performance limitations of the Lysholm engine were studied. (MHR)

Steidel, R.F. Jr.

1984-05-07T23:59:59.000Z

451

Tidal Conversion at a Submarine Ridge  

Science Conference Proceedings (OSTI)

The radiative flux of internal wave energy (the “tidal conversion”) powered by the oscillating flow of a uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation method. The problem is characterized ...

François Pétrélis; Stefan Llewellyn Smith; W. R. Young

2006-06-01T23:59:59.000Z

452

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Surface spontaneous parametric down-conversion  

E-Print Network (OSTI)

Surface spontaneous parametric down-conversion is predicted as a consequence of continuity requirements for electric- and magnetic-field amplitudes at a discontinuity of chi2 nonlinearity. A generalization of the usual two-photon spectral amplitude is suggested to describe this effect. Examples of nonlinear layered structures and periodically-poled nonlinear crystals show that surface contributions to spontaneous down-conversion can be important.

Jan Perina Jr; Antonin Luks; Ondrej Haderka; Michael Scalora

2009-07-21T23:59:59.000Z

454

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

455

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

456

Method for the Photocatalytic Conversion of Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

the Photocatalytic Conversion of Gas Hydrates Opportunity Research is currently active on the patented technology "Method for the Photocatalytic Conversion of Gas Hydrates." The...

457

University of Delaware Institute of Energy Conversion | Open...  

Open Energy Info (EERE)

Energy Conversion Jump to: navigation, search Name University of Delaware Institute of Energy Conversion Place Delaware Product String representation "University rese ... dium tin...

458

U-058: Apache Struts Conversion Error OGNL Expression Injection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Apache Struts Conversion Error OGNL Expression Injection Vulnerability U-058: Apache Struts Conversion Error OGNL Expression Injection Vulnerability December 12, 2011 - 9:00am...

459

Conversion of Strontium Sulfate to Strontium Oxalate in Solutions ...  

Science Conference Proceedings (OSTI)

The effect of stirring speed, ammonium oxalate concentration, particle size and temperature on the conversion rate were investigated. During the conversion ...

460

Strategy for conversion of CO2 isotopic measurements to delta ...  

Science Conference Proceedings (OSTI)

... The conversion algorithm described here may utilize user-selected values or the ... The conversions to ?13C and ?18O values are then performed via ...

2013-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

North Dakota Energy Conversion and Transmission Facility Siting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility...

462

: gov.nist.nlpir.irf.conversion Class Hierarchy  

Science Conference Proceedings (OSTI)

Hierarchy For Package gov.nist.nlpir.irf.conversion. ... Class Hierarchy. class java.lang.Object: class gov.nist.nlpir.irf.conversion.Ascii2HtmlConverter; ...

463

Method for conversion of .beta.-hydroxy carbonyl compounds ...  

A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated ...

464

BPD Conversion in a Thin SiC Buffer Layer  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Power Electronics, Power Conditioning, and Power Conversion. Presentation Title, BPD Conversion in a Thin SiC Buffer ...

465

CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS Purpose This procedure provides guidance on the...

466

EIS-0045: Coal Conversion Program, Continental Forest Industries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

45: Coal Conversion Program, Continental Forest Industries, Combustors 1,2, and 3, Port Wentworth, Chatham County, Georgia EIS-0045: Coal Conversion Program, Continental Forest...

467

Changes related to "Coal Conversion Facility Privilege Tax Exemptions...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Conversion Facility Privilege Tax Exemptions (North Dakota)" Coal Conversion...

468

Pages that link to "Coal Conversion Facility Privilege Tax Exemptions...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Conversion Facility Privilege Tax Exemptions (North Dakota)" Coal Conversion...

469

CRAD, Safety Basis - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Safety Basis - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to...

470

CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE...

471

CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G...

472

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

473

Focus Area 2 - Biomass Deconstruction and Conversion : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deconstruction and Conversion BESC research in biomass deconstruction and conversion targets CBP by studying model organisms and thermophilic anaerobes to understand novel...

474

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name Penrose Landfill Gas Conversion LLC Place Los Angeles, California Product Owner of landfill gas plant....

475

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

476

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

477

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

energy conversion systems ..on thermal energy conversion systems As energy demandsefficient energy conversion in power systems," in Thermal

Ho, Tony

2012-01-01T23:59:59.000Z

478

Alternative Fuels Data Center: Natural Gas Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Conversions Related Information Conversion Basics

479

The Effects of Ingot Composition and Conversion on the Mechanical ...  

Science Conference Proceedings (OSTI)

THE EFFECTS OF INGOT COMPOSITION AND CONVERSION ON THE MECHANICAL PROPERTIES AND. MICROSTRUCTURAL RESPONSE OF GTD-

480

Modeling facial expression of uncertainty in conversational animation  

Science Conference Proceedings (OSTI)

Building animated conversational agents requires developing a fine-grained analysis of the motions and meanings available to interlocutors in face-to-face conversation and implementing strategies for using these motions and meanings to communicate effectively. ... Keywords: embodied conversational agents, face-to-face conversation, facial displays, uncertainty

Matthew Stone; Insuk Oh

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hexafluoride duf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy conversion & storage program. 1995 annual report  

DOE Green Energy (OSTI)

The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

Cairns, E.J.

1996-06-01T23:59:59.000Z

482

Graphene to Graphane: Novel Electrochemical Conversion  

E-Print Network (OSTI)

A novel electrochemical means to generate atomic hydrogen, simplifying the synthesis and controllability of graphane formation on graphene is presented. High quality, vacuum grown epitaxial graphene (EG) was used as starting material for graphane conversion. A home-built electrochemical cell with Pt wire and exposed graphene as the anode and cathode, respectively, was used to attract H+ ions to react with the exposed graphene. Cyclic voltammetry of the cell revealed the potential of the conversion reaction as well as oxidation and reduction peaks, suggesting the possibility of electrochemically reversible hydrogenation. A sharp increase in D peak in the Raman spectra of EG, increase of D/G ratio, introduction of a peak at ~2930 cm-1 and respective peak shifts as well as a sharp increase in resistance showed the successful hydrogenation of EG. This conversion was distinguished from lattice damage by thermal reversal back to graphene at 1000{\\deg}C.

Daniels, Kevin M; Zhang, R; Chowdhury, I; Obe, A; Weidner, J; Williams, C; Sudarshan, T S; Chandrashekhar, MVS

2010-01-01T23:59:59.000Z

483

NETL: Gasification Systems - Conversion and Fouling  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion and Fouling Conversion and Fouling NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 3 Project Description The objective for this NETL in-house conversion and fouling project is to improve the reliability, availability and maintainability (RAM) of gasification plants by providing tools that can be used to evaluate the impact that fuel properties have on slag and refractory interaction, and to reduce plugging and fouling throughout the syngas cooling system. Utilizing these tools will aid in minimizing plugging and fouling-increasing overall plant efficiency due to improved heat transfer in heat exchangers. Particle deposition experimental schematic Particle deposition experimental schematic (click to enlarge) Project Details Program Background and Project Benefits

484

Energy Conversion | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion Group Energy Conversion Group The Energy Conversion Group offers advanced technical solutions to achieve reduced fossil fuel use in geothermal power and building energy applications. Focus is on advanced materials, biofuel end use, combustion and system concepts. We seek to continuously improve the capabilities of relevant research tools being applied in collaborative initiatives to achieving these goals. Capabilities The group conducts research in a number of energy-related areas. These include advanced materials for geothermal energy, applications of biofuels and alternative fuels, efficiency in heating/cooling equipment, advanced oil burner development and particulate emissions for wood boilers. Advanced Materials for Geothermal Energy Supercritical carbon dioxide has properties midway between a gas and a

485

Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Electric Aftermarket Electric Vehicle (EV) Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on AddThis.com... More in this section...

486

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Conversion Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

487

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on AddThis.com... More in this section... Federal State

488

Tunable Up-Conversion Photon Detector  

E-Print Network (OSTI)

We introduce a simple approach for a tunable up-conversion detector. This scheme is relevant for both single photon detection or anywhere where low light levels at telecom wavelengths need to be detected with a high degree of temporal resolution or where high count rates are desired. A system combining a periodically poled Lithium niobate waveguide for the nonlinear wavelength conversion and a low jitter Silicon avalanche photodiode are used in conjunction with a tunable pump source. We report more than a ten-fold increase in the detectable bandwidth using this tuning scheme.

R. T. Thew; H. Zbinden; N. Gisin

2008-07-22T23:59:59.000Z

489

Atom-molecule conversion with particle losses  

E-Print Network (OSTI)

Based on the mean-field approximation and the phase space analysis, we study the dynamics of an atom-molecule conversion system subject to particle loss. Starting from the many-body dynamics described by a master equation, an effective nonlinear Schr\\"odinger equation is introduced. The classical phase space is then specified and classified by fixed points. The boundary, which separate different dynamical regimes have been calculated and discussed. The effect of particle loss on the conversion efficiency and the self-trapping is explored.

B. Cui; L. C. Wang; X. X. Yi

2011-03-01T23:59:59.000Z

490

Lower Hybrid to Whistler Wave Conversion  

Science Conference Proceedings (OSTI)

In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

Winske, Dan [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

491

Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity  

DOE Green Energy (OSTI)

We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} interme