National Library of Energy BETA

Sample records for hev fleet testing

  1. AVTA: 2013 Chevrolet Malibu HEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Chevy Malibu HEV (a hybrid electric vehicle).

  2. AVTA: 2013 Honda Civic HEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Honda Civic HEV (a hybrid electric vehicle).

  3. AVTA: 2013-2014 Volkswagen Jetta HEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Volkswagen Jetta HEV (a hybrid electric vehicle).

  4. AVTA: 2013 Ford C-MAX HEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford C-MAX HEV (a hybrid electric vehicle).

  5. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  6. AVTA: 2011 Honda CRZ HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2011 Honda CRZ hybrid electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  7. AVTA: 2011 Hyundai Sonata HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2011 Hyundai Sonata hybrid electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  8. AVTA: 2010 Ford Fusion HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  9. AVTA: 2010 Honda Insight HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Honda Insight hybrid-electric vehicle. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  10. AVTA: 2010 Toyota Prius Gen III HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Toyota Prius III hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  11. NREL: Transportation Research - Fleet Test and Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With Us NRELVehicleResearchFleet Test

  12. AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice |4-01r2.pdfATVM Guidance for5EnergyAUGEnergy HEV, NEV,

  13. P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing

    SciTech Connect (OSTI)

    J. Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

  14. AVTA: 2013 Ford C-Max Energi Fleet PHEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

  15. AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Civic hybrid electric vehicle with an advanced experimental ultra-lead acid battery, an experimental vehicle not for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  16. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  17. NREL: Transportation Research - Fleet Test and Evaluation Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With Us NRELVehicleResearchFleet

  18. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01

    This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  19. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  20. Benchmarking EV and HEV Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc |Bartlesville EnergyDepartmentonPersistent,EV and HEV

  1. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  2. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect (OSTI)

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

  3. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  4. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  5. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  6. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  7. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  8. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  9. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  10. Fleet Management | Department of Energy

    Energy Savers [EERE]

    Property Fleet Management Fleet Management Fleet management includes commercial and agency owned motor vehicles such as cars, vans, trucks, and buses. Fleet (vehicle) management...

  11. Goodyear Testing Self-Inflating Tire Systems in U.S. Trucking Fleets |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information1Department of Energy Goodyear Testing

  12. Battery Choices for Different Plug-in HEV Configurations (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2006-07-12

    Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

  13. Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)

    SciTech Connect (OSTI)

    Cosgrove, J.; Gonder, J.; Pesaran, A.

    2013-11-01

    The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

  14. Fleet DNA (Presentation)

    SciTech Connect (OSTI)

    Walkokwicz, K.; Duran, A.

    2014-06-01

    The Fleet DNA project objectives include capturing and quantifying drive cycle and technology variation for the multitude of medium- and heavy-duty vocations; providing a common data storage warehouse for medium- and heavy-duty vehicle fleet data across DOE activities and laboratories; and integrating existing DOE tools, models, and analyses to provide data-driven decision making capabilities. Fleet DNA advantages include: for Government - providing in-use data for standard drive cycle development, R&D, tech targets, and rule making; for OEMs - real-world usage datasets provide concrete examples of customer use profiles; for fleets - vocational datasets help illustrate how to maximize return on technology investments; for Funding Agencies - ways are revealed to optimize the impact of financial incentive offers; and for researchers -a data source is provided for modeling and simulation.

  15. CleanFleet. Final report: Executive summary

    SciTech Connect (OSTI)

    NONE

    1995-12-01

    CleanFleet, formally known as the South Coast Alternative Fuels Demonstration, was a comprehensive demonstration of alternative fuel vehicles (AFVs) in daily commercial service. Between April 1992 and September 1994, five alternative fuels were tested in 84 panel vans: compressed natural gas (CNG), propane gas, methanol as M-85, California Phase 2 reformulated gasoline (RFG), and electricity. The AFVs were used in normal FedEx package delivery service in the Los Angeles basin alongside 27 {open_quotes}control{close_quotes} vans operating on regular gasoline. The liquid and gaseous fuel vans were model year 1992 vans from Ford, Chevrolet, and Dodge. The two electric vehicles (EVs) were on loan to FedEx from Southern California Edison. The AFVs represented a snapshot in time of 1992 technologies that (1) could be used reliably in daily FedEx operations and (2) were supported by the original equipment manufacturers (OEMs). A typical van is shown in Figure 2. The objective of the project was to demonstrate and document the operational, emissions, and economic status of alternative fuel, commercial fleet delivery vans in the early 1990s for meeting air quality regulations in the mid to late 1990s. During the two-year demonstration, CleanFleet`s 111 vehicles travelled more than three million miles and provided comprehensive data on three major topics: fleet operations, emissions, and fleet economics. Fleet operations were examined in detail to uncover and resolve problems with the use of the fuels and vehicles in daily delivery service. Exhaust and evaporative emissions were measured on a subset of vans as they accumulated mileage. The California Air Resources Board (ARB) measured emissions to document the environmental benefits of these AFVs. At the same time, CleanFleet experience was used to estimate the costs to a fleet operator using AFVs to achieve the environmental benefits of reduced emissions.

  16. Addendum to the Closure Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, December 1997 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 12-19-01, A12 Fleet Ops Steam Cleaning Efflu. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

  17. Federal Methanol Fleet Project final report

    SciTech Connect (OSTI)

    West, B.H.; McGill, R.N.; Hillis, S.L.; Hodgson, J.W.

    1993-03-01

    The Federal Methanol Fleet Project concluded with the termination of data collection from the three fleet sites in February 1991. The Lawrence Berkeley Laboratory (LBL) completed five years of operation, Argonne National Laboratory (ANL) completed its fourth year in the project, and Oak Ridge National Laboratory (ORNL) completed its third. Twenty of the thirty-nine vehicles in the fleet were powered by fuel methanol (typically M85, 85 % methanol, 15 % unleaded gasoline, although the LBL fleet used M88), and the remaining control vehicles were comparable gasoline vehicles. Over 2.2 million km (1.4 million miles) were accumulated on the fleet vehicles in routine government service. Data collected over the years have included vehicle mileage and fuel economy, engine oil analysis, emissions, vehicle maintenance, and driver acceptance. Fuel economies (on an energy basis) of the methanol and gasoline vehicles of the same type were comparable throughout the fleet testing. Engine oil analysis has revealed higher accumulation rates of iron and other metals in the oil of the methanol vehicles, although no significant engine damage has been attributed to the higher metal content. Vehicles of both fuel types have experienced degradation in their emission control systems, however, the methanol vehicles seem to have degraded their catalytic converters at a higher rate. The methanol vehicles have required more maintenance than their gasoline counterparts, in most cases, although the higher levels of maintenance cannot be attributed to ``fuel-related`` repairs. According to the daily driver logs and results from several surveys, drivers of the fleet vehicles at all three sites were generally satisfied with the methanol vehicles.

  18. Federal Methanol Fleet Project final report

    SciTech Connect (OSTI)

    West, B.H.; McGill, R.N. ); Hillis, S.L.; Hodgson, J.W. )

    1993-03-01

    The Federal Methanol Fleet Project concluded with the termination of data collection from the three fleet sites in February 1991. The Lawrence Berkeley Laboratory (LBL) completed five years of operation, Argonne National Laboratory (ANL) completed its fourth year in the project, and Oak Ridge National Laboratory (ORNL) completed its third. Twenty of the thirty-nine vehicles in the fleet were powered by fuel methanol (typically M85, 85 % methanol, 15 % unleaded gasoline, although the LBL fleet used M88), and the remaining control vehicles were comparable gasoline vehicles. Over 2.2 million km (1.4 million miles) were accumulated on the fleet vehicles in routine government service. Data collected over the years have included vehicle mileage and fuel economy, engine oil analysis, emissions, vehicle maintenance, and driver acceptance. Fuel economies (on an energy basis) of the methanol and gasoline vehicles of the same type were comparable throughout the fleet testing. Engine oil analysis has revealed higher accumulation rates of iron and other metals in the oil of the methanol vehicles, although no significant engine damage has been attributed to the higher metal content. Vehicles of both fuel types have experienced degradation in their emission control systems, however, the methanol vehicles seem to have degraded their catalytic converters at a higher rate. The methanol vehicles have required more maintenance than their gasoline counterparts, in most cases, although the higher levels of maintenance cannot be attributed to fuel-related'' repairs. According to the daily driver logs and results from several surveys, drivers of the fleet vehicles at all three sites were generally satisfied with the methanol vehicles.

  19. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  20. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Energy Savers [EERE]

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE...

  1. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  2. BROADBAND IDENTIFICATION OF BATTERY ELECTRICAL IMPEDANCE FOR HEV

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    battery performances and assessment of its condition in order to increase the reliability of EV and HEVBROADBAND IDENTIFICATION OF BATTERY ELECTRICAL IMPEDANCE FOR HEV R. Al-Nazer, V. Cattin, M. Montaru ­ CEA LETI/LITEN; P. Granjon ­ GIPSA-Lab; Abstract -- In recent years, Li-ion batteries have been

  3. Hydraulic HEV Fuel Consumption Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls - BuildingofDepartmentHybirdNDEHydraulic HEV Fuel

  4. Fleet Evaluation and Factory Installation of Aerodynamic Heavy...

    Office of Scientific and Technical Information (OSTI)

    of refinement. The fleet test undertaken showed an improvement of 5.5 - 7.8% fuel economy with the devices (This does not include tire contribution). Authors: Beck, Jason ;...

  5. Executive Order 13514: Comprehensive Federal Fleet Management...

    Office of Environmental Management (EM)

    Federal Agencies on E.O. 13514 Section 12, Federal Fleet Management Fleet Briefings U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008...

  6. Cell fleet planning : an industry case study

    E-Print Network [OSTI]

    Silva, Armando C.

    1984-01-01

    The objective of this thesis is to demonstrate the practical use of the Cell Fleet Planning Model in planning the fleet for the U.S. airline industry. The Cell Model is a cell theory, linear programming approach to fleet ...

  7. HEV, PHEV, EV Test Standard Development and Validation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. HEV, PHEV, BEV Test Standard Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs |Reference Station DesignEnergyHEP BPI QCIHEV,

  9. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Citation Details In-Document Search Title: Controlled Hydrogen Fleet and Infrastructure...

  10. Advanced HEV/PHEV Concepts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department ofHigh2Energy AdvancedHEV/PHEV

  11. Cask fleet operations study

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system.

  12. Development of a 55 kW 3X DC-DC Converter for HEV Systems

    E-Print Network [OSTI]

    Tolbert, Leon M.

    efficiency provide the great potential for the very high temperature operation. The circuit parameter design converter and a traction motor to drive the vehicle. In most commercial HEV systems, the power converter, 37996 Abstract--The design of a 55 kW 3X dc-dc converter is presented for hybrid electric vehicle (HEV

  13. Fleet DNA Project (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    The Fleet DNA Project - designed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in partnership with Oak Ridge National Laboratory - aims to accelerate the evolution of advanced vehicle development and support the strategic deployment of market-ready technologies that reduce costs, fuel consumption, and emissions. At the heart of the Fleet DNA Project is a clearinghouse of medium- and heavy-duty commercial fleet transportation data for optimizing the design of advanced vehicle technologies or for selecting a given technology to invest in. An easy-to-access online database will help vehicle manufacturers and fleets understand the broad operational range for many of today's commercial vehicle vocations.

  14. Fleet Briefings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » ProgramPolicySenate AppropriationsFleet Briefings Fleet

  15. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

  16. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    1999 in accordance to the directives set forth by congress through the AFA. Our objective is to reduce Council March 31, 2014 Prepared by: Sylver Fishing Company Sylvia Ettefagh P.O. Box 2281 Wrangell, AK A. MEMBERSHIP The Unalaska Fleet Cooperative was formed in December of 1999 to obtain a specific

  17. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    cooperatives formed in December 1999 in accordance to the directives set forth by congress through the AFA. Our Council February 1 2010 Prepared by: Sylver Fishing Company Sylvia Ettefagh P.O. Box 2281 Wrangell, AK The Unalaska Fleet Cooperative was formed in December of 1999 to obtain a specific allocation of Pollock

  18. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  19. EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG

    E-Print Network [OSTI]

    Kockelman, Kara M.

    more significant effects on energy dependence and greenhouse gas emissions. INTRODUCTION AND MOTIVATION all #12;scenarios. And HEVs, PHEVs and Smart Cars are estimated to represent a major share

  20. Motor Fleet Request/Authorization Page 1 UNCW Travel System

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    Motor Fleet Request/Authorization Page 1 UNCW Travel System Motor Fleet Request/Travel Authorization ENTER THE MOTOR FLEET REQUEST IN THE TRANSPORTATION SECTION OF THE TRAVEL AUTHORIZATION. PRESS CLICK TO ADD AND SELECT MOTOR FLEET FROM THE DROP-DOWN BOX. #12;Motor Fleet Request/Authorization Page 2

  1. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  2. Case Study - Compressed Natural Gas Refuse Fleets

    SciTech Connect (OSTI)

    Laughlin, M; Burnham, A.

    2014-02-01

    This case study explores the use of heavy-duty refuse trucks fueled by compressed natural gas highlighting three fleets from very different types of organizations.

  3. 16.11 Fleet Management Page 1 of 2 Fleet Management

    E-Print Network [OSTI]

    Hung, I-Kuai

    16.11 Fleet Management Page 1 of 2 Fleet Management Original Implementation: January 30, 2001 Last Revision: July 28, 2015 Stephen F. Austin State University (SFA) has adopted the Fleet Management Plan to increase state use and efficiency, reduce maintenance, and reduce operating costs. SFA manager

  4. Abstract--Control strategies have been developed for Hybrid Electric Vehicles (HEV) that minimize fuel consumption while

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    sum of fuel consumption and tailpipe emissions for an HEV equipped with a dual mode Electrically fuel consumption while satisfying a charge sustaining constraint. Since one of the components of an HEV, dynamic programming, fuel economy, powertrain control I. INTRODUCTION The problem of maximizing fuel

  5. 2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV

    E-Print Network [OSTI]

    Tolbert, Leon M.

    drive schedules. These life cycle costs include the initial manufacturing cost of components, fuel cost2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV John W. McKeever, Sujit defined the peak power ratings for each HEV drive system's electric components: batteries, battery cables

  6. Clean Cities Helps Fleets Go Green (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01

    Green fleet programs, like those in Ohio and Illinois, certify vehicle fleets based on environmental and fuel-use requirements. The programs encourage the use of alternative fuels and provide a way to recognize fleets for participating.

  7. GREET Fleet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock Co LtdWiegandGEXAUmweltGREET Fleet Jump

  8. Fleet Vehicles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) |Final ReporttheHouseNew venture acceleration62 16 30Fleet

  9. Fleet Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWindUpcoming eventsFleet management includes commercial and

  10. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01

    energy through regenerative braking. In contrast, PHEVs canfrom a stop, and regenerative braking—signaled to HEV owners

  11. Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    1 Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage reserves. A power balancing strategy based on a local energy storage system (ESS) is proposed in this paper], [8]. The aim of this paper is to address the problem by intro- ducing a dedicated energy storage

  12. Geographic Information System for Visualization of PHEV Fleet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geographic Information System for Visualization of PHEV Fleet Data Geographic Information System for Visualization of PHEV Fleet Data 2010 DOE Vehicle Technologies and Hydrogen...

  13. Business Case for CNG in Municipal Fleets (Presentation)

    SciTech Connect (OSTI)

    Johnson, C.

    2010-07-27

    Presentation about compressed natural gas in municipal fleets, assessing investment profitability, the VICE model, base-case scenarios, and pressing questions for fleet owners.

  14. Merit Review: EPAct State and Alternative Fuel Provider Fleets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Merit Review: EPAct State and Alternative Fuel Provider Fleets 2012 Merit Review: EPAct State and Alternative Fuel Provider Fleets Vehicle...

  15. Hoover Police Fleet Reaches Alternative Fuel Milestone

    Broader source: Energy.gov [DOE]

    When Tony Petelos became the mayor of Hoover in 2004, the police fleet was run down. Within the next year, Petelos, with support from the community, called for a big change: switch out the old police fleet with new, flexible-fueled vehicles.

  16. fleet

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile material9

  17. Motor Fleet Approval Process Page 1 UNCW Travel System

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    Motor Fleet Approval Process Page 1 UNCW Travel System Motor Fleet Approval Process Preparer submits the motor fleet vehicle request; and the request is automatically routed to the traveler an e-mail notifying them there are pending motor fleet signatures. If you are both supervisor

  18. Stochastic ship fleet routing with inventory limits 

    E-Print Network [OSTI]

    Yu, Yu

    2010-01-01

    This thesis describes a stochastic ship routing problem with inventory management. The problem involves finding a set of least costs routes for a fleet of ships transporting a single commodity when the demand for ...

  19. Testing Low-Energy, High-Power Energy Storage Alternatives in a Full-Hybrid Vehicle (Presentation)

    SciTech Connect (OSTI)

    Cosgrove, J.; Gonger, J.

    2014-01-01

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle gasoline use. However, the battery cost in HEVs contribute to higher incremental cost of HEVs (a few thousand dollars) than the cost of comparable conventional vehicles, which has limited HEV market penetration. Significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost vs. benefit relationship for HEVs. Such an improvement could lead to larger HEV market penetration and greater aggregate gasoline savings. After significant analysis by the National Renewable Energy Laboratory (NREL), the United States Advanced Battery Consortium (USABC) and Department of Energy (DOE) Energy Storage program suggested a new set of requirements for ESS for power-assist HEVs for cost reduction without impacting performance and fuel economy significantly. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This poster will describe development of the LEESS HEV test platform, and LEESS laboratory as well as in-vehicle evaluation results. The first LEESS technology tested was lithium-ion capacitors (LICs) - i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). We will discuss the performance and fuel saving results with LIC with comparison with original NiMH battery.

  20. Contributing Data to the Fleet DNA Project (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    The Fleet DNA clearinghouse of commercial fleet transportation data helps vehicle manufacturers and developers optimize vehicle designs and helps fleet managers choose advanced technologies for their fleets. This online tool - available at www.nrel.gov/fleetdna - provides data summaries and visualizations similar to real-world 'genetics' for medium- and heavy-duty commercial fleet vehicles operating within a variety of vocations. To contribute your fleet data, please contact Adam Duran of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) at adam.duran@nrel.gov or 303-275-4586.

  1. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01

    Early Market for Hybrid Electric Vehicles. ” TransportationVehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyAssessment for Battery Electric Vehicles, Power Assist

  2. Barwood CNG Cab Fleet Study: Final Results

    SciTech Connect (OSTI)

    Whalen, P.; Kelly, K.; John, M.

    1999-05-03

    This report describes a fleet study conducted over a 12-month period to evaluate the operation of dedicated compress natural gas (CNG) Ford Crown Victoria sedans in a taxicab fleet. In the study, we assess the performance and reliability of the vehicles and the cost of operating the CNG vehicles compared to gasoline vehicles. The study results reveal that the CNG vehicles operated by this fleet offer both economic and environmental advantages. The total operating costs of the CNG vehicles were about 25% lower than those of the gasoline vehicles. The CNG vehicles performed as well as the gasoline vehicles, and were just as reliable. Barwood representatives and drivers have come to consider the CNG vehicles an asset to their business and to the air quality of the local community.

  3. Fleet Tools; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-04-01

    From beverage distributors to shipping companies and federal agencies, industry leaders turn to the National Renewable Energy Laboratory (NREL) to help green their fleet operations. Cost, efficiency, and reliability are top priorities for fleets, and NREL partners know the lab’s portfolio of tools can pinpoint fuel efficiency and emissions-reduction strategies that also support operational the bottom line. NREL is one of the nation’s foremost leaders in medium- and heavy-duty vehicle research and development (R&D) and the go-to source for credible, validated transportation data. NREL developers have drawn on this expertise to create tools grounded in the real-world experiences of commercial and government fleets. Operators can use this comprehensive set of technology- and fuel-neutral tools to explore and analyze equipment and practices, energy-saving strategies, and other operational variables to ensure meaningful performance, financial, and environmental benefits.

  4. The Fleet DNA Project (Fact Sheet), NREL (National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of market-ready technologies that reduce costs, fuel consumption, and emissions. At the heart of the Fleet DNA Project is a clearinghouse of medium- and heavy-duty commercial fleet...

  5. Clean Cities Launches Improved Tool to Help Fleets Evaluate CNG...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Cities Launches Improved Tool to Help Fleets Evaluate CNG Investments Clean Cities Launches Improved Tool to Help Fleets Evaluate CNG Investments January 21, 2014 - 12:00am...

  6. Incorporating cycle time uncertainty to improve railcar fleet sizing

    E-Print Network [OSTI]

    Jagatheesan, Jay

    2011-01-01

    This thesis involves railcar fleet sizing strategies with a specific company in the chemical industry. We note that the identity of the company in this report has been disguised, and some portions of the fleets have been ...

  7. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Wipke, K.; Spirk, S.; Kurtz, J.; Ramsden, T.

    2010-09-01

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2010.

  8. Fleet Management Procedure Policy number 001 -September 2013

    E-Print Network [OSTI]

    Thompson, Michael

    Fleet Management Procedure Policy number 001 - September 2013 Complete Policy Title: Facility Services Fleet and Non- Fleet Maintenance/Operations Policy Number: 001 Approved by: VP Administration Date program that will extend the safety, quality and longevity of all vehicles and equipment owned

  9. A Chronological History of Federal Fleet Actions and Mandates

    SciTech Connect (OSTI)

    2011-04-22

    This chronological history of Federal fleet actions and mandates provides a year-by-year timeline of the acts, amendments, executive orders, and other regulations that affect Federal fleets. The fleet actions and mandates included in the timeline span from 1988 to 2009.

  10. Chronological History of Federal Fleet Actions and Mandates (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    This chronological history of Federal fleet actions and mandates provides a year-by-year timeline of the acts, amendments, executive orders, and other regulations that affect Federal fleets. The fleet actions and mandates included in the timeline span from 1988 to 2009.

  11. Incorporating Pricing Decisions into the Stochastic Dynamic Fleet Management Problem

    E-Print Network [OSTI]

    Topaloglu, Huseyin

    their expected values. A second class of fleet management models try to treat the randomness in the load arrivalsIncorporating Pricing Decisions into the Stochastic Dynamic Fleet Management Problem Huseyin This paper shows how to coordinate the pricing and fleet management decisions of a freight carrier. We

  12. Incorporating the Pricing Decisions into the Dynamic Fleet Management Problem

    E-Print Network [OSTI]

    Topaloglu, Huseyin

    and fleet management decisions of a freight carrier. We consider a setting where the loads faced, Pricing. There is a rich body of literature on how to manage a fleet of vehicles to serve the loads that the future load arrivals are known in advance. The majority of the commercial fleet management models used

  13. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Glenn Research Center

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2014-10-01

    The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report focuses on the NASA Glenn Research Center (GRC) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  14. cDNA encoding a polypeptide including a hev ein sequence

    DOE Patents [OSTI]

    Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

    2000-07-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  15. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  16. Fleet DNA Project Data Summary Report (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.; Duran, A.; Burton, E.

    2014-04-01

    This presentation includes graphical data summaries that highlight statistical trends for medium- and heavy-duty commercial fleet vehicles operating in a variety of vocations. It offers insight for the development of vehicle technologies that reduce costs, fuel consumption, and emission.

  17. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    SciTech Connect (OSTI)

    Barlow, F.D.; Elshabini, A.

    2006-11-30

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.

  18. CleanFleet. Final report: Volume 7, vehicle emissions

    SciTech Connect (OSTI)

    1995-12-01

    Measurements of exhaust and evaporative emissions from Clean Fleet vans running on M-85, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), propane gas, and a control gasoline (RF-A) are presented. Three vans from each combination of vehicle manufacturer and fuel were tested at the California Air Resources Board (ARB) as they accumulated mileage in the demonstration. Data are presented on regulated emissions, ozone precursors, air toxics, and greenhouse gases. The emissions tests provide information on in-use emissions. That is, the vans were taken directly from daily commercial service and tested at the ARB. The differences in alternative fuel technology provide the basis for a range of technology options. The emissions data reflect these differences, with classes of vehicle/fuels producing either more or less emissions for various compounds relative to the control gasoline.

  19. AVTA: Transit Vehicle Specifications and Test Procedures

    Broader source: Energy.gov [DOE]

    All Advanced Vehicle Testing Activity transit projects follow a rigorous data collection and analysis protocol. Refer to "General Evaluation Plan: Fleet Test and Evaluation Projects" for...

  20. Vehicle Technologies Office: AVTA- Evaluating Military Bases and Fleet Readiness for Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. Through the AVTA, Idaho National Laboratory also does fleet and other analysis to evaluate readiness for plug-in electric vehicles and other advanced technology vehicles. The following reports describe analysis studies Idaho National Laboratory conducted for the military to evaluate readiness for plug-in electric vehicles.

  1. Sustainable Federal Fleets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctoberSustainable Federal Fleets Catalog

  2. LNG fleet increases in size and capabilities

    SciTech Connect (OSTI)

    Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A.

    1997-06-02

    The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

  3. A nautical archaeological study of Kublai Khan's fleets 

    E-Print Network [OSTI]

    Inoue, Takahiko

    1991-01-01

    , and Korea, as well as secondary sources, have been consulted. Chinese ships were the most advanced seagoing vessels in the world at the end of 13th century. However, little is known about Kublai Khan's fleets. Although many general works on the history... of Kublai's invasions of Japan are available in the literature, there are no detailed studies of Kublai's fleets that combine data from both historical and artistic representations. Discovery and excavation of one or more ships from Kublai Khan's fleets...

  4. Large Fleets Lead in Petroleum Reduction (Fact Sheet)

    SciTech Connect (OSTI)

    Proc, H.

    2011-03-01

    Fact sheet describes Clean Cities' National Petroleum Reduction Partnership, an initiative through which large private fleets can receive support from Clean Cities to reduce petroleum consumption.

  5. Federal Fleet Files, FEMP, Vol. 2, No. 5 - March 2010

    SciTech Connect (OSTI)

    2010-03-02

    March 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  6. Federal Fleet Files, FEMP, Vol. 2, No. 9 - July 2010

    SciTech Connect (OSTI)

    2010-07-06

    July 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  7. Federal Fleet Files, FEMP, Vol. 2, No. 8 - June 2010

    SciTech Connect (OSTI)

    None

    2010-06-10

    June 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  8. State and Alternative Fuel Provider Fleet Compliance Methods (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01

    Fact sheet describes the difference between Standard and Alternative Compliance requirements for state and alternative fuel provider fleets covered under the Energy Policy Acts of 1992 and 2005.

  9. State and Alternative Fuel Provider Fleet Compliance Methods (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    This fact sheet describes the difference between Standard and Alternative Compliance requirements for state and alternative fuel provider fleets covered by the Energy Policy Act.

  10. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. vssarravt068miyasato2010p.pdf More Documents & Publications Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Vehicle...

  11. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation arravt068vssmiyasato2011o .pdf More Documents & Publications Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation SCAQMD:Plug-In...

  12. RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

  13. Fleet DNA Project - Data Dictionary for Public Download Files

    SciTech Connect (OSTI)

    Duran, A.; Burton, E.; Kelly, K.; Walkowicz, K.

    2014-09-01

    Reference document for the Fleet DNA results data shared on the NREL public website. The document includes variable definitions and descriptions to assist users in understanding data.

  14. Merit Review: EPAct State and Alternative Fuel Provider Fleets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications 2012 Merit Review: EPAct State and Alternative Fuel Provider Fleets Vehicle Technologies Office Merit Review 2014: EPAct State and Alternative...

  15. Federal Fleet Files: Vol. , No. 1 - October 2009

    SciTech Connect (OSTI)

    2009-10-04

    October 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  16. New National Clean Fleets Partners Build New Roads to Sustainability...

    Broader source: Energy.gov (indexed) [DOE]

    fuel by 2015. | Photo courtesy of Republic Services Republic Services is one of three new companies participating in the National Clean Fleets Partnership. The company aims to have...

  17. green fleet | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afed feed families|fleet |

  18. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  19. Risk Management Guide SFU Fleet Vehicle Insurance Renewal

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Risk Management Guide SFU Fleet Vehicle Insurance Renewal SFU fleet vehicle insurance is renewed a police report and contact Risk Management in order to obtain a new one. · Ensure that all decals decals please return them to Risk Management immediately. · Review the VEHICLE USE & INSURANCE GUIDE

  20. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  1. Clean Cities Offers Fleets New Tool to Evaluate Benefits of Alternative Fuel Vehicles

    Broader source: Energy.gov [DOE]

    The AFLEET Tool allows fleets to calculate payback periods and emissions benefits of alternative fuel vehicles.

  2. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook

    SciTech Connect (OSTI)

    2010-06-17

    Comprehensive Federal fleet management guide offered as a companion to Executive Order 13514 Section 12 guidance.

  3. CleanFleet. Final report: Volume 1, summary

    SciTech Connect (OSTI)

    NONE

    1995-12-01

    The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the control fuel, unleaded gasoline. The alternative fuels were propane gas, compressed natural gas, California Phase 2 reformulated gasoline (RFG), methanol with 15 percent RFG (called M-85), and electricity. This volume of the eight volume CleanFleet final report is a summary of the project design and results of the analysis of data collected during the demonstration on vehicle maintenance and durability, fuel economy, employee attitudes, safety and occupational hygiene, emissions, and fleet economics.

  4. A model for sensitivity analysis of aircraft fleet evolution forecasting

    E-Print Network [OSTI]

    Mugica, Edward A., Jr

    2015-01-01

    As demand for the long range and high speed travel of commercial aviation continues to grow, the economic and environmental impacts of the industry are being scrutinized. One fleet performance metric that provides insight ...

  5. Electrifying the BC Vehicle Fleet Opportunities and Challenges for

    E-Print Network [OSTI]

    Pedersen, Tom

    Electrifying the BC Vehicle Fleet Opportunities and Challenges for Plug-in Hybrid, Extended Range & Pure Electric Vehicles Liam Kelly, Trevor Williams, Brett Kerrigan and Curran Crawford Institute ................................................................................. 13 3.1 BC Hydro and Vehicle

  6. Fleet Compliance Results for MY 2011/FY 2012 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-02-01

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2011/fiscal year 2012.

  7. Biofuels, Climate Policy and the European Vehicle Fleet

    E-Print Network [OSTI]

    Rausch, Sebastian

    We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

  8. Business Case for Compressed Natural Gas in Municipal Fleets

    SciTech Connect (OSTI)

    Johnson, C.

    2010-06-01

    This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

  9. Dynamic incentive scheme for rental vehicle fleet management

    E-Print Network [OSTI]

    Zhou, SiZhi

    2012-01-01

    Mobility on Demand is a new transportation paradigm aimed to provide sustainable transportation in urban settings with a fleet of electric vehicles. Usage scenarios prpopsed by Mobility on Demand systems must allow one-way ...

  10. Vehicle Testing and Analysis Group: Center for Transportation Technologies and Systems (CTTS) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    Describes NREL's Vehicle Testing and Analysis Group's work in vehicle and fleet evaluations, testing, data, and analysis for government and industry partners.

  11. Structural analysis of the endogenous glycoallergen Hev b 2 (endo-?-1,3-glucanase) from Hevea brasiliensis and its recognition by human basophils

    SciTech Connect (OSTI)

    Rodríguez-Romero, Adela, E-mail: adela@unam.mx; Hernández-Santoyo, Alejandra; Fuentes-Silva, Deyanira [Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04310 Coyoacán, DF (Mexico); Palomares, Laura A. [Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, MOR (Mexico); Muñoz-Cruz, Samira; Yépez-Mulia, Lilian [Centro Médico Nacional Siglo XXI, IMSS, Avenida Cuauhtémoc 330, Colonia Doctores, Mexico, DF (Mexico); Orozco-Martínez, Socorro [Instituto Nacional de Pediatría, Insurgentes Sur 3700C, 04530 Cuicuilco, DF (Mexico); Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04310 Coyoacán, DF (Mexico)

    2014-02-01

    This study describes the three-dimensional structure of the endogenous glycosylated allergen Hev b 2 (endo-?-1,3-glucanase), which exhibits three post-translational modifications that form a patch on the surface of the molecule that is proposed to be an allergenic IgE epitope. Endogenous glycosylated Hev b 2 (endo-?-1,3-glucanase) from Hevea brasiliensis is an important latex allergen that is recognized by IgE antibodies from patients who suffer from latex allergy. The carbohydrate moieties of Hev b 2 constitute a potentially important IgE-binding epitope that could be responsible for its cross-reactivity. Here, the structure of the endogenous isoform II of Hev b 2 that exhibits three post-translational modifications, including an N-terminal pyroglutamate and two glycosylation sites at Asn27 and at Asn314, is reported from two crystal polymorphs. These modifications form a patch on the surface of the molecule that is proposed to be one of the binding sites for IgE. A structure is also proposed for the most important N-glycan present in this protein as determined by digestion with specific enzymes. To analyze the role of the carbohydrate moieties in IgE antibody binding and in human basophil activation, the glycoallergen was enzymatically deglycosylated and evaluated. Time-lapse automated video microscopy of basophils stimulated with glycosylated Hev b 2 revealed basophil activation and degranulation. Immunological studies suggested that carbohydrates on Hev b 2 represent an allergenic IgE epitope. In addition, a dimer was found in each asymmetric unit that may reflect a regulatory mechanism of this plant defence protein.

  12. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Golden Gate National Recreation Area

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.

  13. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

  14. NREL: Transportation Research - Alternative Fuel Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With Us NREL works with

  15. NREL: Transportation Research - Hybrid Electric Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With UsSimulator FutureHybrid

  16. NREL: Transportation Research - Hydraulic Hybrid Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With UsSimulator

  17. REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY

    SciTech Connect (OSTI)

    Blau, P.J.

    2003-02-03

    The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the TMC meeting. Twenty-one responses were received, spanning fleet sizes between 12 and 170,000 vehicles. Responses are summarized in a series of tables separated into responses from small (100 or fewer powered vehicles), medium (101-1000 vehicles), and large fleets (>1000 vehicles). The vast majority of fleets do their own brake maintenance, relying primarily on experience and lining manufactures to select aftermarket linings. At least half of the responders are familiar to some extent with TMC Recommended Practice 628 on brake linings, but most do not use this source of test data as the sole criterion to select linings. Significant shortfalls in the applicability of TMC RP 628 to certain types of brake systems were noted.

  18. Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell Technologies Program (FCTP) (Fact Sheet) Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel...

  19. Clean Cities Coordinators and Stakeholders Awarded at the Green Fleet Conference and Expo

    Broader source: Energy.gov [DOE]

    At the 2013 Green Fleet Conference and Expo, a number of Clean Cities coordinators and stakeholders received awards for their dedication to increasing the environmental sustainability of vehicle fleets.

  20. Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell Technologies Program (FCTP) (Fact Sheet) Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell...

  1. Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences...

    Office of Environmental Management (EM)

    Buses in U.S. Transit Fleets: Summary of Experiences and Current Status Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status This report reviews past...

  2. U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008 U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008 U.S....

  3. EPRI-DOE Joint Report Focuses on Fossil Fleet Transition with...

    Office of Environmental Management (EM)

    EPRI-DOE Joint Report Focuses on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration EPRI-DOE Joint Report Focuses on Fossil Fleet Transition...

  4. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel

  5. EPAct Requirements and Clean Cities Resources for Fleets (Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This fact sheet explains resources provided by the Clean Cities program to help fleet managers meet EPAct requirements.

  6. CleanFleet. Final report: Volume 4, fuel economy

    SciTech Connect (OSTI)

    1995-12-01

    Fuel economy estimates are provided for the CleanFleet vans operated for two years by FedEx in Southern California. Between one and three vehicle manufacturers (Chevrolet, Dodge, and Ford) supplied vans powered by compressed natural gas (CNG), propane gas, California Phase 2 reformulated gasoline (RFG), methanol (M-85), and unleaded gasoline as a control. Two electric G-Vans, manufactured by Conceptor Corporation, were supplied by Southern California Edison. Vehicle and engine technologies are representative of those available in early 1992. A total of 111 vans were assigned to FedEx delivery routes at five demonstration sites. The driver and route assignments were periodically rotated within each site to ensure that each vehicle would experience a range of driving conditions. Regression analysis was used to estimate the relationships between vehicle fuel economy and factors such as the number of miles driven and the number of delivery stops made each day. The energy adjusted fuel economy (distance per energy consumed) of the alternative fuel vans operating on a typical FedEx duty cycle was between 13 percent lower and 4 percent higher than that of control vans from the same manufacturer. The driving range of vans operating on liquid and gaseous alternative fuels was 1 percent to 59 percent lower than for vans operating on unleaded gasoline. The driving range of the electric G-Vans was less than 50 miles. These comparisons are affected to varying degrees by differences in engine technology used in the alterative fuel and control vehicles. Relative fuel economy results from dynamometer emissions tests were generally consistent with those obtained from FedEx operations.

  7. Sensitivity Analysis of a Dynamic Fleet Management Model Using Approximate Dynamic Programming

    E-Print Network [OSTI]

    Topaloglu, Huseyin

    of fleet management models is to make the vehicle repositioning and vehicle-to-load assignment decisions soSensitivity Analysis of a Dynamic Fleet Management Model Using Approximate Dynamic Programming present tractable algorithms to assess the sensitivity of a stochastic dynamic fleet management model

  8. A Parallelizable and Approximate Dynamic Programming-Based Dynamic Fleet Management Model with

    E-Print Network [OSTI]

    Topaloglu, Huseyin

    -based dynamic fleet management model that can handle random load arrivals, random travel times and multiple-based model for the dynamic fleet management problem with random load arrivals, random travel times-based models for fleet management problems with random load arrivals, deterministic travel times and a single

  9. A Library of SIMULINK Blocks for Real-Time Control of HEV Traction John Chiasson1

    E-Print Network [OSTI]

    Tolbert, Leon M.

    of Automotive Engineers, Inc. ABSTRACT This paper describes the development of advanced control and modeling. REAL-TIME TEST BED A real-time computing platform has been developed as a test bed to efficiently

  10. Continuous time analysis of fleeting discrete price moves Neil Shephard

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    ) a high proportion of price changes are reversed in a fraction of a second. Our model is analytically`adl`ag price process is a piecewise constant semimartingale with finite activity, finite variation change in continuous time; (iii) a high proportion of price changes are fleeting, reversed in a fraction

  11. Major Corporate Fleets Align to Reduce Oil Consumption

    Broader source: Energy.gov [DOE]

    President Obama launches the National Clean Fleets Partnership, an initiative that helps large companies reduce with fuel usage by incorporating electric vehicles, alternative fuels and conservation techniques into their operations. Charter partners include AT&T, FedEx, Pepsi-Co, UPS and Verizon.

  12. SuperShuttle CNG Fleet Evaluation--Final Report

    SciTech Connect (OSTI)

    Eudy, L.

    2000-12-07

    The mission of the US Department of Energy's Office of Transportation Technologies is to promote the development and deployment of transportation technologies that reduce US dependence on foreign oil, while helping to improve the nation's air quality and promoting US competitiveness. In support of this mission, DOE has directed the National Renewable Energy Laboratory to conduct projects to evaluate the performance and acceptability of alternative fuel vehicles. NREL has undertaken several fleet study projects, which seek to provide objective real-world fleet experiences with AFVs. For this type of study we collect, analyze, and report on operational, cost, emissions, and performance data from AFVs being driven in a fleet application. The primary purpose of such studies is to make real-world information on AFVs available to fleet managers and other potential AFV purchasers. For this project, data was collected from 13 passenger vans operating in the Boulder/Denver, Colorado area. The study vehicles were all 1999 Ford E-350 passenger vans based at SuperShuttle's Boulder location. Five of the vans were dedicated CNG, five were bi-fuel CNG/gasoline, and three were standard gasoline vans that were used for comparison.

  13. Hydrogen bonds in liquid water are broken only fleetingly

    E-Print Network [OSTI]

    Geissler, Phillip

    Hydrogen bonds in liquid water are broken only fleetingly J. D. Eaves* , J. J. Loparo* , C. J that the local structure of liquid water has tetrahedral arrangements of molecules ordered by hydrogen bonds, the mechanism by which water molecules switch hydrogen-bonded partners remains unclear. In this mechanism

  14. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the United States Forest Service: Caribou-Targhee National Forest

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort; Ian Nienhueser

    2014-06-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Caribou-Targhee National Forest (CTNF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements. ITSNA acknowledges the support of Idaho National Laboratory and CTNF for participation in the study. ITSNA is pleased to provide this report and is encouraged by enthusiasm and support from the Forest Service and CTNF personnel.

  15. Fleet vehicles in the Unites States: composition, operating characteristics, and fueling practices

    SciTech Connect (OSTI)

    Miaou, S.P.; Hu, P.S. [Oak Ridge National Lab., TN (United States); Young, J.R. [Tennessee Univ., Knoxville, TN (United States)

    1992-05-01

    As fleets become a larger proportion of the new vehicle population on the road, they have more influence on the characteristics of the total US motor vehicle population. One of the characteristics which fleets are expected to have the most influence on is the overall vehicle fuel economy. In addition, because of the relatively large market share and the high turnover rate of fleet vehicles, fleets have been considered as a useful initial market for alternative fuel vehicles. In order to analyze fleet market potential and likely market penetration of alternative fuel vehicles and to infrastructure requirements for successful operations of these vehicles in the future, information on fleet sizes and composition, fleet vehicle operating characteristics (such as daily/annual miles of travel), fuel efficiency, and refueling practices, is essential. The purpose of this report is to gather and summarize information from the latest data sources available pertaining to fleet vehicles in the US This report presents fleet vehicle data on composition, operating characteristics, and fueling practices. The questions these data are intended to address include: (1) How are fleet vehicles operated? (2) Where are they located? and (3) What are their usual fueling practices? Since a limited number of alternative fuel fleet vehicles are already in use, data on these vehicles are also included in this report. 17 refs.

  16. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook (Book)

    SciTech Connect (OSTI)

    Daley, R.; Ahdieh, N.; Bentley, J.

    2014-01-01

    A comprehensive Federal Fleet Management Handbook that builds upon the "Guidance for Federal Agencies on E.O. 13514 Section 12-Federal Fleet Management" and provides information to help fleet managers select optimal greenhouse gas and petroleum reduction strategies for each location, meeting or exceeding related fleet requirements, acquiring vehicles to support these strategies while minimizing fleet size and vehicle miles traveled, and refining strategies based on agency performance.

  17. Alternative fueled vehicle fleet safety experience. Summary report. Report for September 1994-March 1995

    SciTech Connect (OSTI)

    Morris, J.B.

    1995-03-01

    The study was initiated to gather information on the safety performance of alternative fueled vehicles from fleet operators experienced in the day to day operation of these vehicles. Eight fleets and one compressed natural gas (CNG) vehicle converter were visited during the course of the study. The types of fleets visited consisted of these with vehicles fueled with CNG, liquefied natural gas (LNG), liquefied petroleum gas (LPG), and electric vehicles (EVs). Three CNG fleets, two LNG fleets, one EV fleet, and two LPG fleets were visitied in addition to one CNG converter. Items discussed with the fleet operators included fuel system performance in the crash environment as well as safety related problems encountered during the refueling operation and when maintaining the vehicles. The fleets visited have experienced no accidents where the fuel system has been jeopardized and no injury to personnel that can be attributed to the alternative fuel system. However, the accident experience of the fleets visited is very limited. Many of the problems with alternative fueled vehicles experienced in the past have been corrected by advances in the state of the art and improvements in system components. Improvements continue to be made.

  18. Alternative fueled vehicle fleet safety experience. Final report, September 1994-March 1995

    SciTech Connect (OSTI)

    Morris, J.B.

    1995-03-01

    The study was initiated to gather information on the safety performance of alternative fueled vehicles from fleet operators experienced in the day to day operation of these vehicles. Eight fleets and one compressed natural gas (CNG) vehicle converter were visitied during the course of the study. The types of fleets visited consisted of these with vehicles fueled with CNG, liquefied natural gas (LNG), liquefied petroleum gas (LPG), and electric vehicles (EVs). Three CNG fleets, two LNG fleets, one EV fleet, and two LPG fleets were visitied in addition to one CNG converter. Items discussed with the fleet operators included fuel system performance in the crash environment as well as safety related problems encountered during the refueling operation and when maintaining the vehicles. The fleets visited have experienced no accidents where the fuel system has been jeopardized and no injury to personnel that can be attributed to the alternative fuel system. However, the accident experience of the fleets visited is very limited. Many of the problems with alternative fueled vehicles experienced in the past have been corrected by advances in the state of the art and improvements in system components. Improvements continue to be made.

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  20. Sustainable Federal Fleets Catalog of Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctoberSustainable Federal Fleets Catalog of

  1. First interim report of the Federal Fleet Conversion Task Force

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The Federal Fleet Conversion Task Force was created by Executive Order 12844, signed by President Clinton on April 21, 1993. In the Order, the President directed that purchases of alternative fueled vehicles by the Federal Government be substantially increased beyond the levels required by current law. The President charged the Task Force with developing recommendations for carrying out the Executive Order, with special emphasis on setting a course that will lead to the widespread use of alternative fueled vehicles by Federal, State, and local government fleets, by private fleets and, ultimately, by individuals. The chief recommendation of the Task Force is the establishment of a Presidential Clean Cities Initiative. To support creation of the Presidential Initiative, the Task Force identified 38 cities and regions, prioritized into three tiers, for concentrating the Initiative`s efforts in Fiscal Years 1994 through 1996. This concentration of effort is key to the effectiveness of the Initiative. The 38 cities and regions would receive priority funding for Federal vehicle purchases and for infrastructure development. In addition, the Task Force has made specific recommendations for overcoming numerous regulatory, economic, and technical barriers that have slowed the introduction of alternative fueled vehicles into general use.

  2. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  3. Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  4. Federal Fleet Files, FEMP, Vol. 2, No. 11 - October 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    October 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  5. Federal Fleet Files, FEMP, Vol. 2, No. 12 - November 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    November 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  6. Federal Fleet Files, FEMP, Vol. 2, No. 7 - May 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    May 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  7. Federal Fleet Files, FEMP, Vol. 2, No. 10 - September 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    September 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  8. Federal Fleet Files, FEMP, Vol. 2, No. 4 - January 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    January 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  9. Federal Fleet Files, FEMP, Vol. 2, No. 9 - July 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    July 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  10. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Questions and Answers

    Broader source: Energy.gov [DOE]

    Questions and answers from the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003, in Southfield, Michigan.

  11. Clean Cities Launches Improved Tool to Help Fleets Evaluate CNG Investments

    Broader source: Energy.gov [DOE]

    The popular VICE Model is newly updated to allow fleets greater flexibility in determining payback periods for natural gas vehicles and fueling infrastructure.

  12. Federal Fleet Files, FEMP, Vol. 2, No. 13 - December 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    December 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to federal agencies.

  13. Federal Fleet Files, FEMP, Vol. 2, No. 8 - June 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    June 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  14. Vehicle Technologies Office Merit Review 2015: Fleet DNA Phase 1 Refinement & Phase 2 Implementation

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Fleet...

  15. U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition...

    Broader source: Energy.gov (indexed) [DOE]

    Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008. doefleetreport2008.pdf More Documents & Publications Audit Report: IG-0896 The Compelling Case for...

  16. Federal Fleet Files, FEMP, Vol. 2, No. 3 - December 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01

    December 2009 update of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  17. Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics

    E-Print Network [OSTI]

    Heiser, Gernot

    Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics in logistics and supply chain management. · We are seeking customers and financial partners to scale a stand

  18. National Clean Fleets Partners Get the Best of Both Worlds with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can also benefit from incorporating hybrid technology in their fleet of medium- and heavy-duty vehicles. In fact, medium-duty delivery vehicles with hybrid technology can...

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Supporting Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    Supporting information and objectives for the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003 in Southfield, Michigan.

  20. Federal Fleet Files, FEMP, Vol. 1, No. 4 - September 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    September 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  1. Federal Fleet Files, FEMP, Vol. 2, No. 5 - March 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    March 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  2. Federal Fleet Files, FEMP, Vol. 2, No. 1 - October 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    October 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  3. Technologies for a Sustainable Heavy-Duty On-Road Fleet

    Broader source: Energy.gov [DOE]

    Only selected energy pathways for the heavy-duty on-road fleet are consistent with the joint objectives of reducing petroleum dependence and mitigating climate change

  4. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleets: Frequently Asked Questions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    This brochure provides answers to frequently asked questions about the EPAct Alternative Fuel Transportation Program's State and Alternative Fuel Provider Fleets.

  5. Fleet Compliance Results for MY 2010/FY 2011, EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2010/fiscal year 2011. The U.S. Department of Energy (DOE) regulates covered state and alternative fuel provider (SFP) fleets under the Energy Policy Act of 1992 (EPAct), as amended. For model year (MY) 2010, the compliance rate for the 2911 covered SFP fleets was 100%. Fleets used either Standard Compliance or Alternative Compliance. The 279 fleets that used Standard Compliance exceeded their aggregate MY 2010 acquisition requirements by 61%. The 12 covered fleets that complied using Alternative Compliance exceeded their aggregate MY 2010 petroleum-use-reduction requirements by 89%. Overall, DOE saw modest decreases from MY 2009 in biodiesel fuel use credits earned and in the number of light-duty vehicles (LDVs) acquired. Compared to years before MY 2009, these rates were far lower. Because covered fleets acquired fewer new vehicles overall in MY 2010, the requirement for alternative fuel vehicles (AFVs), which is proportional to new acquisitions, also dropped.

  6. Fractional-Slot Surface Mounted PM Motors with Concentrated Windings for HEV Traction Drives

    SciTech Connect (OSTI)

    Bailey, J.M.

    2005-10-24

    High-power density and efficiency resulting from elimination of rotor windings and reduced magnetic-flux losses have made the rare earth permanent magnet (PM) motor a leading candidate for the Department of Energy's Office of FreedomCAR and Vehicle Technologies (FCVTs) traction drive motor. These traction drives are generally powered by radial-gap motors, having the magnets on or embedded in a rotating cylinder separated from the inside surface of a slotted cylindrical stator by an annular gap. The two main types of radial-gap PM rotors are those with magnets mounted on the surface of a supporting back iron, called PM surface mounted (PMSM) motors, and those with magnets mounted in slots in the rotor, called interior PM (IPM) motors. Most early PM motor research was on the PMSM motor, which was thought to have an inherently low stator inductance. A low stator inductance can lead to currents dangerously exceeding rated current as the back-emf across the inductance increases with speed; consequently, part of the attempted solution has been to increase the stator inductance to reduce the rate of current rise. Although analysis suggested that there should be no problem designing sufficiently high stator inductance into PMSMs, attempts to do so were often not successful and a motor design was sought that would have a higher intrinsic inductance. Commercial research at Toyota has focused on IPM motors because they can achieve a high-saliency ratio, which helps them operate over a high constant power speed ratio (CPSR), but they are more difficult to fabricate. The Oak Ridge National Laboratory's (ORNL) position has been to continue research on brushless direct current (dc) motors (BDCMs) because of ease of fabrication and increased power output. Recently there has been a revival of interest in a fractional-slot PMSMs [15] made with concentrated windings because they possess three important features. First, they can increase the motor's inductance sufficiently to reduce the characteristic current to value of the rated current, which will enable them to operate at high CPSR. This feature also limits short-circuit fault currents. Second, their segmented structure simplifies assembly problems and is expected to reduce assembly costs. Third, the back-emf waveform is nearly sinusoidal with low cogging. To examine in depth this design ORNL entered into a collaborative agreement with the University of Wisconsin to build and test a 6 kW laboratory demonstration unit. Design, fabrication, and testing of the unit to 4000 rpm were completed during FY 2005. The motor will be sent to ORNL to explore ways to control its inverter to achieve higher efficiency during FY 2006. This paper first reviews the concept of characteristic current and what is meant by optimal flux weakening. It then discusses application of the fractional-slot concentrated winding technique to increase the d-axis inductance of a PMSM showing how this approach differs from an integral-slot motor with sinusoidal-distributed windings. This discussion is followed by a presentation of collaborative analyses and comparison with the University of Wisconsin's measured data on a 6 kW, 36-slot, 30-pole motor with concentrated windings. Finally ORNL presents a PMSM design with integral-slot windings that appears to meet the FreedomCAR Specifications, but has some disadvantages. Further collaboration with the University of Wisconsin is planned for FY 2006 to design a motor that meets FreedomCAR specifications.

  7. SuperShuttle CNG Fleet Start-Up Experience

    SciTech Connect (OSTI)

    Leslie Eudy.

    1999-05-18

    The Gas Research Institute (GRI) and the U.S. Department of Energy (DOE), along with several industry partners, are collaborating with SuperShuttle of Denver, Colorado, to evaluate natural gas vans added to the SuperShuttle fleet in 1999. Brand new (1999 model year) dedicated and bi-fuel compressed natural gas (CNG) vans manufactured by Ford Motor Company will be operated side-by-side with several similar gasoline vehicles in normal revenue service. Once the study is complete, DOE's National Renewable Energy Laboratory will analyze and compile the results for release.

  8. Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoans TheCounty Schools BiodieselCNG Fleets

  9. Vehicle Technologies Office: Resources for Fleet Managers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950Department of Energy Past FundingEnergy Fleet

  10. 1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    Research Board, January 2011 29 30 ABSTRACT 31 With environmental degradation and energy security-year simulations predicted the highest market share for PHEVs, HEVs, 40 and Smart Cars under pivot point, to motivate significant 45 behavioral shifts and a lower pivot point to achieve revenue

  11. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report, Fleet Compliance Results for MY 2009/FY 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2009/fiscal year 2010.

  12. Dynamics in Behavioral Response to a Fuel Cell Vehicle Fleet and Hydrogen Fueling Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2007-01-01

    Driver Preferences for Fuel Cell Taxis. Energy Policy, vol.IN BEHAVIORAL RESPONSE TO A FUEL CELL VEHICLE FLEET ANDIN BEHAVIORAL RESPONSE TO A FUEL CELL VEHICLE FLEET AND

  13. Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    SciTech Connect (OSTI)

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  14. Optimal Fleet Management Plan Excerpt from the Vehicle Allocation Methodology (VAM) required by

    E-Print Network [OSTI]

    US Army Corps of Engineers

    's Alternative Fuels and Advanced Vehicles Data Center: http://www.afdc.energy.gov/afdc/locator/stations/ which by Presidential Memorandum ­ Federal Fleet Performance, 24 May 2011 Alternative Fuel Vehicles (AFV): A) USACE hasOptimal Fleet Management Plan Excerpt from the Vehicle Allocation Methodology (VAM) required

  15. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2009-09-01

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

  16. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook, July 2011, Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Comprehensive Federal fleet management guide offered as a companion to Executive Order 13514 Section 12 guidance.

  17. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook, June 2010, Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Comprehensive Federal fleet management guide offered as a companion to Executive Order 13514 Section 12 guidance.

  18. Analysis of volatile contaminants in US Navy fleet soda lime. Technical report, August 1992-May 1995

    SciTech Connect (OSTI)

    Lillo, R.S.; Ruby, R.; Gummin, D.D.; Porter, W.R.; Caldwell, J.M.

    1995-06-01

    Contamination was suspected of U.S. Navy Fleet soda lime (High Performance Sodasorb(R)) when an ammonia-like odor was reported during its use in August 1992. This material contained indicator dye and was used for carbon dioxide absorption during diving. This incident had a major impact on the U.S Navy diving program when the Navy temporarily banned use of Sodasorb(R) and authorized Sofnolime(R) as an interim replacement. The Naval Medical Research Institute was immediately assigned to investigate. Testing involved sampling from the headspace (gas space) inside closed buckets and from an apparatus simulating conditions during operational diving. Volatile organic compounds were analyzed by gas chromatography and mass spectrometry; ammonia and amines were measured by infrared spectroscopy. Significant amounts of ammonia (up to 30 ppm), ethyl and diethyl amines (up to several ppm), and various aliphatic hydrocarbons (up to 60 ppm) were detected during testing of both Sodasorb(R) and Sofnolime(R). Contaminants were slowly removed by gas flow and did not return. The source(s) of the ammonia and amines are unknown, although they may result from the breakdown of the indicator dye. Hydrocarbon contamination appeared to result from the materials of which the bucket is constructed. Based on these findings, the U.S. Navy is expected to phase in non-indicating soda lime that will be required to meet defined contaminant limits.

  19. List of Attendees at the Controlled Hydrogen Fleet and Infrastructure Demonstation and Pre-Solicitation Meeting

    Broader source: Energy.gov [DOE]

    This list of attendees represents those that attended the Controlled Hydrogen Fleet and Infrastructure Demonstation and Pre-Solicitation Meeting pre-solicitation meeting in Detroit, Michigan, on March 19, 2003.

  20. t is 2030, and a fleet of ten Gulfstream business jets have been converted to a

    E-Print Network [OSTI]

    Chen, Yiling

    I t is 2030, and a fleet of ten Gulfstream business jets have been converted to a new purpose concept of cooling the world by deflecting sunlight.UnlikejournalistEliKintisch's2010 book Hack the Planet

  1. Pre-solicitation Meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    This presentation was given to attendees of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project pre-solicitation meeting held in Detroit, Michigan, on March 19, 2003.

  2. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2008/fiscal year 2009.

  3. Web Card - Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    SciTech Connect (OSTI)

    2012-07-01

    A 2" x 3-1/4" web card which has a quick response code for accessing the PEV Handbook for Fleet Managers via a smart phone. The cards are intended to be handed out instead of the handbook.

  4. Best available practices for LNG fueling of fleet vehicles

    SciTech Connect (OSTI)

    Midgett, D.E. II; Echterhoff, L.W. [M.W. Kellogg Co., Houston, TX (United States); Oppenheimer, A.J. [Gas Research Inst., Chicago, IL (United States)

    1996-12-31

    For many years, natural gas has been promoted as a preferred alternative vehicle fuel. There are a variety of incentives to use natural gas including: improving national security by reducing reliance on foreign oil imports, meeting stringent air emissions guidelines, and utilizing a lower-cost fuel which is in ample domestic supply. Although liquefied natural gas (LNG) was first demonstrated as a vehicle fuel in 1965, compressed natural gas (CNG) has been the fuel with the widest use to date. However, LNG is now gaining popularity as a vehicle fuel because of its higher energy density and transportability. Known LNG projects were polled to determine a list of representative sites. These were studied in depth. Data gathered from the representative sites were summarized to describe current industry practices, and a consensus was formed of best available practices for the industry. A summary of the results of the industry assessment is presented here. Problems and successes of the industry are candidly discussed. The full results of this work and other related studies will be made available to the industry as part of GRI`s ``Best Practices for Natural Gas Transit and Fleet Operations``. The purpose of these documents is to provide the LNG vehicle industry with design and operating information, which, in turn, will improve the safety and benefits of using natural gas vehicles (NGV).

  5. Dynamics in Behavioral Response to a Fuel Cell Vehicle Fleet and Hydrogen Fueling Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2007-01-01

    the Acceptance of Hydrogen Fuel. International Journal oftechnologies, such as hydrogen fuel cell vehicles (FCVs) andof an exploratory F-Cell hydrogen fuel vehicle fleet study,

  6. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  7. BurbankBus' clean fuel fleet now includes a zero-emission hydrogen-fueled bus. BurbankBus, which provides transit

    E-Print Network [OSTI]

    Bus fixed-route fleet consists of 17 compressed natural gas (CNG) buses. This fleet has been running on 100% CNG for about two years. The city's trash trucks are also run on CNG, and its light- duty vehicle

  8. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for National Institute of Health

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2014-11-01

    This report focuses on the National Institute of Health (NIH) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  9. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  10. Analysis of aircraft fleets of U.S. major airlines since deregulation

    E-Print Network [OSTI]

    Ferrer José

    The purpose of this thesis is to relate the U.S. Major airlines changing use of aircraft to aviation policy and technology since deregulation of the U.S. airline industry enacted in 1978. First, a study of the airline fleet ...

  11. Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-11-07

    In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

  12. FLEET SERVICES -FACILTIES MANAGEMENT -UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY VEHICLE USE AUTHORIZATION FORM

    E-Print Network [OSTI]

    Russell, Lynn

    FLEET SERVICES - FACILTIES MANAGEMENT - UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY VEHICLE USE/destination________________________________________________________ ____________________________________________________________________________ Undersigned fully understands and acknowledges that the vehicle released pursuant to this authorization shall driver states that he/she has a valid driver's license for the vehicle being operated. Damage related

  13. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    SciTech Connect (OSTI)

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  14. Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines 

    E-Print Network [OSTI]

    Wang, T.; Braquet, L.

    2008-01-01

    An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

  15. Applying engineering and fleet detail to represent passenger vehicle transport in

    E-Print Network [OSTI]

    efficiency Alternative fuel vehicles A well-known challenge in computable general equilibrium (CGE) modelsApplying engineering and fleet detail to represent passenger vehicle transport in a computable for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR

  16. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect (OSTI)

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  17. A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS

    E-Print Network [OSTI]

    Dessouky, Maged

    A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS Marco a demand responsive transit service with a predetermined quality for the user in terms of waiting time models; Continuous approximation models; Paratransit services; Demand responsive transit systems. #12;3 1

  18. SuperShuttle CNG Fleet Study Summary: Clean Cities Alternative Fuel Information Series, Alternative Fuel Case Study

    SciTech Connect (OSTI)

    Eudy, L.

    2001-03-05

    An account of the successful use of alternative fuels in a fleet of SuperShuttle passenger vans, which offer shared-rides between Boulder and Denver International Airport.

  19. Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet

    E-Print Network [OSTI]

    Bandivadekar, Anup P

    2008-01-01

    The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

  20. Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    McAulay, Jeffrey L. (Jeffrey Lewis)

    2009-01-01

    Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

  1. Audit Report VEHICLE FLEET MANAGEMENT AT THE IDAHO NATIONALENGINEERING AND ENVIRONMENTAL LABORATORY, WR-B-99-02

    Broader source: Energy.gov [DOE]

    In a prior report, Audit of Light Vehicle Fleet Management at the Idaho National Engineering Laboratory, WR-B-93-7, September 29, 1993, the Office of Inspector General (OIG) concluded that vehicle...

  2. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Grand Canyon National Park

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort; Ian Nienhueser

    2014-08-01

    This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.

  3. An evaluation of a weight-lifting belt and back injury prevention training class for fleet service clerks 

    E-Print Network [OSTI]

    Reddell, Cheryl Renee?

    1991-01-01

    AN EVALUATION OF A WEIGHT-LIFTING BELT AND BACK INJURY PREVENTION TRAINING CLASS FOR FLEET SERVICE CLERKS A Thesis by CHERYL RENEE REDDELL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1991 Major Subject: Industrial Engineering AN EVALUATION OF A WEIGHT-LIFTING BELT AND BACK INJURY PREVENTION TRAINING CLASS FOR FLEET SERVICE CLERKS A Thesis by Cheryl Rene' Reddell Approved...

  4. Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter to

  5. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-01-01

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  6. Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

  7. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    ScienceCinema (OSTI)

    None

    2013-05-28

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  8. Benchmarking EV and HEV Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy andandBeforeof Energy Beforeoffor the US

  9. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    SciTech Connect (OSTI)

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  10. Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnable Low Temperature Combustion(EVSE) Testing Data

  11. Office of Inspector General audit report on vehicle fleet management at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    NONE

    1999-03-01

    In a prior report, Audit of Light Vehicle Fleet Management at the Idaho National Engineering Laboratory, WR-B-93-7, September 29, 1993, the Office of Inspector General (OIG) concluded that vehicle fleet operations might be done more cost effectively by the General Services Administration (GSA) than by Idaho Operations Office (Idaho) and its contractor. The report also concluded that a significant number of vehicles were underused and the fleet was too large. Accordingly, the report contained recommendations that a cost comparison study be conducted to ascertain the most economical and efficient method of managing fleet operations and that vehicle usage data be reviewed periodically by the contractor, with prompt reassignment or disposal of significantly underused vehicles. Thus, the purpose of this audit was to determine if action has been taken to implement recommendations in the prior report. Specifically, the objectives of the current audit were to determine whether a cost comparison had been performed and whether the fleet was still too large. In this report, the authors recommend that Idaho annually review individual vehicle use against mileage standards and promptly dispose of or reassign vehicles not meeting the standards. The authors also recommend that the Idaho Deputy Manager be provided a vehicle assignment report for review and approval.

  12. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  13. Guidance. Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246

    SciTech Connect (OSTI)

    none,

    2011-04-01

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  14. Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMaryland Conserves FuelStationNew Hampshire Fleet

  15. Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as Reliable Fleet Fuel to someone by

  16. Best available practices for lng fueling of fleet vehicles. Topical report, March-November 1995, tasks 85 and 86

    SciTech Connect (OSTI)

    Midgett, D.E.

    1996-02-01

    The report provides essential information on the design and operation of liquefied natural gas (LNG) fueling stations for fleet vehicles. The report serves to evaluate current practices in LNG fleet vehicle fueling station designs, and provide fleet operators with a tool for use in discussions with permitting agencies, engineering firms, fabricators, and contractors who permit, design, or construct LNG fueling stations. Representative sites (i.e., LNG fueling stations) were evaluated for technical feasibility, customer satisfaction, economics, operating and maintenance history, problems encountered/overcome, and regulatory environment. The compiled information in this report reveals that LNG fueling stations have advanced to the point where LNG is a viable alternative to gasoline and/or diesel fuel.

  17. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  18. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  19. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  20. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for Department of Veterans Affairs – VA Manhattan Campus

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01

    This report focuses on the Department of Veterans Affairs, VA Manhattan Campus (VA- Manhattan) fleet to identify the daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support successful introduction of plug-in electric vehicles (PEVs) into the agency’s fleet. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively called PEVs) can fulfill the mission requirements.

  1. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Sleeping Bear Dunes National Lakeshore

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-11-01

    This report focuses on the Sleeping Bear Dunes National Lakeshore (SLBE) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  2. Alternative fuel vehicles for the state fleets: Results of the 5-year planning process

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report documents the first attempt by the Department of Energy (DOE) to work with states to prepare five-year Alternative Fuel Vehicle (AFV) acquisition plans to identify alternative fuels and vehicles that they are planning on or would like to acquire. The DOE Regional Support Offices (RSOs) met with representatives from the states in their regions and assisted in the preparation of the plans. These plans will be used in conjunction with previously gathered Federal five-year plans to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. By identifying the needs and requirements of state fleets, DOE can begin to describe the specific nature of the future state fleets, and establish a defined market for OEMs and fuel suppliers. DOE initiated the development and collection of the state five-year plans before the signing of the Energy Policy Act, to raise the awareness of states that they will be required by law to acquire AFVs. As a result, several states that had no AFV acquisition plan when queried have developed or are in the process of developing plans. The DOE and its RSOs are still working with the states to develop and refine acquisition plans, and this report should be treated as documentation of work in progress.

  3. green fleet

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile4/%2A

  4. Fleet Services Fleet Services Facility

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    · 287 rental vehicles: economy, hybrid, standard and large cars, mini and 12 passenger and cargo vans, pickup trucks, buses, and police cars. · 2 buses with drivers: 20 passenger and 44passenger · 10

  5. Economic and Environmental Optimization of Vehicle Fleets: A Case Study of the Impacts of Policy, Market, Utilization, and

    E-Print Network [OSTI]

    Bertini, Robert L.

    of utilization (mileage per year per vehicle) and gasoline prices on fleet management decisions estimating energy in scenarios with high gasoline prices and/or utilization, (b) current European CO2 cap and trade emissions with high gasoline prices and vehicle utilization. This research indicates that the proposed model can

  6. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  7. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  8. A comparative analysis of alternative fuels for the INEL vehicle fleet

    SciTech Connect (OSTI)

    Priebe, S.; Boyer, W.; Church, K.

    1992-11-01

    This report summarizes the results of a comparative systems analysis of various alternative fuels for use in the buses, mid-size vehicles, and automobiles that make up the vehicle fleet at the Idaho National Engineering Laboratory (INEL). The study was performed as part of the Laboratory Directed Research and Development (LDRD) Program for EG G Idaho, Inc. Regulations will require the INEL to reduce total gasoline and diesel fuel use 10% by 1995 compared with 1991 levels, and will require that 50% of all new vehicles be fueled by some type of alternative fuel by 1998. A model was developed to analyze how these goals could be achieved, and what the cost would be to implement the goals.

  9. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for United States Coast Guard Headquarters

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-05-01

    Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which the United States Coast Guard Headquarters (USCG HQ) could convert part or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.

  10. Grouping Entities in a Fleet by Community Detection in Network of Regression Models

    E-Print Network [OSTI]

    Pansari, Pankaj; Sundararajan, Ramasubramanian

    2015-01-01

    This paper deals with grouping of entities in a fleet based on their behavior. The behavior of each entity is characterized by its historical dataset, which comprises a dependent variable, typically a performance measure, and multiple independent variables, typically operating conditions. A regression model built using this dataset is used as a proxy for the behavior of an entity. The validation error of the model of one unit with respect to the dataset of another unit is used as a measure of the difference in behavior between two units. Grouping entities based on their behavior is posed as a graph clustering problem with nodes representing regression models and edge weights given by the validation errors. Specifically, we find communities in this graph, having dense edge connections within and sparse connections outside. A way to assess the goodness of grouping and finding the optimum number of divisions is proposed. The algorithm and measures proposed are illustrated with application to synthetic data.

  11. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Stennis Space Center

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-05-01

    Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which NASA Stennis Space Center (Stennis) could convert part or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.

  12. Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    This fact sheet reports on the City of Burbank, California's fuel cell bus demonstration project and the U.S. Department of Energy's (DOE) involvement. Included are specifications for the fuel cell bus and information about its operation. BurbankBus, the city's mass transit entity, received a grant from the California Air Resources Board to fund its zero-emission bus demonstration and is collaborating with DOE's Fuel Cell Technologies Program to evaluate the bus performance. DOE's National Renewable Energy Laboratory will collect and analyze performance and operations data for at least one year. Researchers will use the data to better understand the technology and determine future development work. In addition, demonstration information will help fleets make informed purchase decisions.

  13. CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants

    SciTech Connect (OSTI)

    NONE

    2007-01-15

    To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

  14. Fossil fleet transition with fuel changes and large scale variable renewable integration

    SciTech Connect (OSTI)

    James, Revis; Hesler, Stephen; Bistline, John

    2015-03-31

    Variability in demand as seen by grid-connected dispatchable generators can increase due to factors such as greater production from variable generation assets (for example, wind and solar), increased reliance on demand response or customer-driven automation, and aggregation of loads. This variability results a need for these generators to operate in a range of different modes, collectively referred to as “flexible operations.” This study is designed to inform power companies, researchers, and policymakers of the scope and trends in increasing levels of flexible operations as well as reliability challenges and impacts for dispatchable assets. Background Because there is rarely a direct monetization of the value of operational flexibility, the decision to provide such flexibility is typically dependent on unit- and region-specific decisions made by asset owners. It is very likely that much greater and more widespread flexible operations capabilities will be needed due to increased variability in demand seen by grid-connected generators, uncertainty regarding investment in new units to provide adequate operational flexibility, and the retirement of older, uncontrolled sub-critical pulverized coal units. Objective To enhance understanding of the technical challenges and operational impacts associated with dispatchable assets needed to increase operational flexibility and support variable demand. Approach The study approach consists of three elements: a literature review of relevant prior studies, analysis of detailed scenarios for evolution of the future fleet over the next 35 years, and engineering assessment of the degree and scope of technical challenges associated with transformation to the future fleet. The study approach integrated two key elements rarely brought together in a single analysis—1) long-term capacity planning, which enables modeling of unit retirements and new asset investments, and 2) unit commitment analysis, which permits examination of hourly unit dispatch while considering operational limitations relevant to flexible operations capabilities.

  15. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    SciTech Connect (OSTI)

    Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

    2013-10-01

    This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

  16. SuperShuttle CNG Fleet Study Summary; Resumen de Estuidio de la Flotilla de GNC de la Empresa SuperShuttle

    SciTech Connect (OSTI)

    Eudy, L.

    2001-10-01

    An account of the successful use of alternative fuels in a fleet of SuperShuttle passenger vans, which offer shared-rides between Boulder and Denver International Airport.

  17. Building a business case for corporate fleets to adopt vehicle-to-grid technology (V2G) and participate in the regulation service market

    E-Print Network [OSTI]

    De los Ríos Vergara, Andrés

    2011-01-01

    Electric (EV) and Plug-in Hybrid Electric vehicles (PHEV) continue to gain attention and market share, not only as options for consumers but also for corporate fleets. EVs and PHEVs can contribute to lower operating costs ...

  18. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  19. NGV fleet fueling station business plan: A public, private and utility partnership to identify economical business options for implementation of CNG fueling infrastructure

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The City of Long Beach recently incorporated an additional 61 natural gas vehicles (NGV) within its own fleet, bringing the City`s current NGV fleet to 171 NGVs. During January 1992, the City opened its first public access compressed natural gas (CNG) fueling station (86 CFM). This action served as the City`s first step toward developing the required CNG infrastructure to accommodate its growing NGV fleet, as well as those of participating commercial and private fleet owners. The City of Long Beach is committed to promoting NGVs within its own fleet, as well as encouraging NGV use by commercial and private fleet owners and resolving market development barriers. The NGV Business Plan provides recommendations for priority locations, station size and design, capital investment, partnership and pricing options. The NGV Business Plan also includes an econometric model to calculate CNG infrastructure cost recovery options, based on CNG market research within the City of Long Beach and Southern California area. Furthermore, the NGV Business Plan provides the City with a guide regarding CNG infrastructure investment, partnerships and private fueling programs. Although the NGV Business Plan was developed to address the prevailing CNG-related issues affecting the City of Long Beach, the methodology used within the NGV Business Plan and, more significantly, the accompanying econometric model will assist local governments, nation-wide, in the successful implementation of similar CNG infrastructures required for effective market penetration of NGVs.

  20. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements HEVs and EVs are exempt from state motor vehicle inspection and maintenance...

  1. Battery Technology Life Verification Test Manual Revision 1

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2012-12-01

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  2. Crystallization and Identification of the Glycosylated Moieties of Two Isoforms of the Main Allergen Hev b 2 and Preliminary X-ray Analysis of Two Polymorphs of Isoform ll

    SciTech Connect (OSTI)

    Fuentes-Silva,D.; Mendoza-Hernandez, G.; Stojanoff, V.; Palomares, L.; Zenteno, E.; Torres-Larios, A.; Rodriguez-Romero, A.

    2007-01-01

    Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a {beta}-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content consisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapor-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 {angstrom} were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 {angstrom}, {beta}= 113.6{sup o}. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  3. Crystallization and identification of the glycosylated moieties of two isoforms of the main allergen Hev b 2 and preliminary X-ray analysis of two polymorphs of isoform II

    SciTech Connect (OSTI)

    Fuentes-Silva, D. [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Mendoza-Hernández, G. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Stojanoff, V. [Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY (United States); Palomares, L. A. [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Zenteno, E. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Torres-Larios, A. [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Rodríguez-Romero, A., E-mail: adela@servidor.unam.mx [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico)

    2007-09-01

    Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a ?-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, ? = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  4. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  5. Guidance: Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246: Federal Fleet Program, Federal Energy Management Program, U.S. Department of Energy, March 2011

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  6. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    SciTech Connect (OSTI)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  7. Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.

    SciTech Connect (OSTI)

    Plotkin, S.

    1999-01-01

    The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

  8. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    SciTech Connect (OSTI)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  9. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter toTRUCKSConsumersFleet

  10. Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan

    SciTech Connect (OSTI)

    Robert Youngblood

    2011-02-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse gas emitting domestic electricity production. Extending the operating lifetimes of current plants beyond 60 years and, where possible, making further improvements in their productivity will generate early benefits from research, development, and demonstration investments in nuclear power. DOE’s role in Objective 1 is to partner with industry and the Nuclear Regulatory Commission in appropriate ways to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The DOE research, development, and demonstration role will focus on aging phenomena and issues that require long-term research and are generic to reactor type. Cost-shared demonstration activities will be conducted when appropriate.

  11. Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan

    SciTech Connect (OSTI)

    Robert Youngblood

    2011-01-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse gas emitting domestic electricity production. Extending the operating lifetimes of current plants beyond 60 years and, where possible, making further improvements in their productivity will generate early benefits from research, development, and demonstration investments in nuclear power. DOE’s role in Objective 1 is to partner with industry and the Nuclear Regulatory Commission in appropriate ways to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The DOE research, development, and demonstration role will focus on aging phenomena and issues that require long-term research and are generic to reactor type. Cost-shared demonstration activities will be conducted when appropriate.

  12. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for Department of Veterans Affairs. James J. Peters VA Medical Center, Bronx, NY

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2014-10-01

    This report focuses on the Department of Veterans Affairs, James J. Peters VA Medical Center (VA - Bronx) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  13. Technical Issues Associated With the Use of Intermediate Ethanol Blends (>E10) in the U.S. Legacy Fleet

    SciTech Connect (OSTI)

    Rich, Bechtold; Thomas, John F; Huff, Shean P; Szybist, James P; West, Brian H; Theiss, Timothy J; Timbario, Tom; Goodman, Marc

    2007-08-01

    The Oak Ridge National Laboratory (ORNL) supports the U.S. Department of Energy (DOE) in assessing the impact of using intermediate ethanol blends (E10 to E30) in the legacy fleet of vehicles in the U.S. fleet. The purpose of this report is to: (1) identify the issues associated with intermediate ethanol blends with an emphasis on the end-use or vehicle impacts of increased ethanol levels; (2) assess the likely severity of the issues and whether they will become more severe with higher ethanol blend levels, or identify where the issue is most severe; (3) identify where gaps in knowledge exist and what might be required to fill those knowledge gaps; and (4) compile a current and complete bibliography of key references on intermediate ethanol blends. This effort is chiefly a critical review and assessment of available studies. Subject matter experts (authors and selected expert contacts) were consulted to help with interpretation and assessment. The scope of this report is limited to technical issues. Additional issues associated with consumer, vehicle manufacturer, and regulatory acceptance of ethanol blends greater than E10 are not considered. The key findings from this study are given.

  14. NO. HEV. tlO. PAGE ---OF -----

    E-Print Network [OSTI]

    Rathbun, Julie A.

    -------·------·------ This memorandum presents the current inventory of con1n1ands applicable to the Passive Seismic Experiment Package inventory of commands applicable to the Passive Seismic Experiment Package. The initial issue has been (housekeeping status may change) #12;PSEP Command List ~PA:::c~r::..::3==~o:F..:UL.__ DATE 25 April 1969

  15. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  16. Follow Water Quality Robots on Twitter On May 9, 2012, UC Berkeley researchers launched a fleet of 100 water quality sensors into

    E-Print Network [OSTI]

    with water control boards. #12;Up to Top Nature Art: Patterns A Massive Starling Murmuration Becomes "A Real05/22/2012 Follow Water Quality Robots on Twitter On May 9, 2012, UC Berkeley researchers launched a fleet of 100 water quality sensors into Northern California's Sacramento River. Designed to track water

  17. Autonomous Monitoring and Control (ASMAC) -An AUV Fleet Controller Sai S. Mupparapu, Steven G. Chappell, Rick J. Komerska, D. Richard Blidberg

    E-Print Network [OSTI]

    to verify reception of commands - ability to begin the mission execution · Provide an environment to monitorAutonomous Monitoring and Control (ASMAC) - An AUV Fleet Controller Sai S. Mupparapu, Steven G Institute, Troy, NY popa@cat.rpi.edu sandea@rpi.edu Abstract ­ Monitoring and controlling multiple

  18. Emissions Effects of Using B20 in the Current Transit Bus Fleet

    Broader source: Energy.gov [DOE]

    Transit buses using diesel and biodiesel blends were tested for fuel consumption and emissions on the UDDS, OCTA, and Man duty cycles.

  19. Energy efficiency dynamometer testing at the 1996 American Tour de Sol

    SciTech Connect (OSTI)

    Sluder, S.; Duoba, M.; Buitrago, C.; Leblanc, N.; Larsen, R.

    1996-08-01

    In 1995, the U.S. Department of Energy through Argonne National Laboratory`s Center for Transportation Research sponsored energy efficiency data collection from the student, private, and professional vehicles during the American Tour de Sol. The American Tour de Sol is a multiple-day road rally event run from New York City to Washington, D.C. As part of this efficiency testing, a number of vehicles were tested on a chassis dynamometer utilizing three common drive cycles: the LA-4, the New York City Cycle, and the Highway Fuel Economy Test. The results demonstrate remarkable efficiency increases over a gasoline control vehicle and significant cycle-sensitivity information. Two series hybrid electric vehicles (HEVs) were shown to have fuel efficiencies which were less sensitive to drive cycle than either a gasoline or an electric vehicle.

  20. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  1. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    SciTech Connect (OSTI)

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the trucking industry. By providing unbiased, third-party assessment of this “hybrid without batteries” technology, this report offers relevant, timely and valuable information to the industry.

  2. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes. [Public fleet groups--information needs

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF's) and alternative fuel vehicles (AFV's) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV'S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available practical''. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  3. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  4. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  5. NREL: Transportation Research - Electric and Plug-In Hybrid Electric Fleet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With Us NRELVehicle Testing

  6. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Ronald Grasman

    2011-12-31

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan ranging from governmental organizations, for-profit to and non-profit entities. All vehicles were equipped with a data acquisition system that automatically collected statistically relevant data for submission to National Renewable Energy Laboratory (NREL), which monitored the progress of the fuel cell vehicles against the DOE technology validation milestones. The Mercedes Team also provided data from Gen-II vehicles under the similar operations as Gen I vehicles to compare technology maturity during program duration.

  7. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  8. 2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS

    SciTech Connect (OSTI)

    Gray, Tyler; Shirk, Matthew; Wishart, Jeffrey

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  9. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    SciTech Connect (OSTI)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  10. Field Testing: Independent, Accredited Testing and Validation for the Wind Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    This fact sheet describes the field testing capabilities at the National Wind Technology Center (NWTC). NREL's specialized facilities and personnel at the NWTC provide the U.S. wind industry with scientific and engineering support that has proven critical to the development of wind energy for U.S. energy needs. The NWTC's specialized field-testing capabilities have evolved over 30 years of continuous support by the U.S. Department of Energy Wind and Hydropower Technologies Program and long standing industry partnerships. The NWTC provides wind industry manufacturers, developers, and operators with turbine and component testing all in one convenient location. Although industry utilizes sophisticated modeling tools to design and optimize turbine configurations, there are always limitations in modeling capabilities, and testing is a necessity to ensure performance and reliability. Designs require validation and testing is the only way to determine if there are flaws. Prototype testing is especially important in capturing manufacturing flaws that might require fleet-wide retrofits. The NWTC works with its industry partners to verify the performance and reliability of wind turbines that range in size from 400 Watts to 3 megawatts. Engineers conduct tests on components and full-scale turbines in laboratory environments and in the field. Test data produced from these tests can be used to validate turbine design codes and simulations that further advance turbine designs.

  11. Management of Fleet Inventory

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-27

    In fulfillment of Executive Order 13514, DOE began a 3-year, 3-phase strategy to reduce greenhouse gas emissions and decrease petroleum use.

  12. Julie Crenshaw Van Fleet

    Broader source: Energy.gov (indexed) [DOE]

    in any of the emitted pollutants, harm to health, or a nuisance that causes people to cough? During December of 2006 the PRGS did operate at full capacity due to a PEPCO repair....

  13. Julie Crenshaw Van Fleet

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public CommentInverted Attic9: JohnofReactoronJoyceJulie

  14. Clean Fleet Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is onis3 Annual41 Spring2 P r

  15. Clean Fleet Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is onis3 Annual41 Spring2 P r3

  16. Clean Fleet Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is onis3 Annual41 Spring2 P

  17. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  18. The United States Department of Energy (DOE) has always held the safety and reliability of the nation's nuclear reactor fleet as a top priority. Continual improvements and advancements in nuclear fuels have

    E-Print Network [OSTI]

    of the nation's nuclear reactor fleet as a top priority. Continual improvements and advancements in nuclear fuels have been instrumental in maximizing energy generation from nuclear power plants and minimizing the mechanical properties of uranium dioxide (UO2) for nuclear fuel applications. In an effort to improve

  19. Ashland oil, Inc. v. Sonford Products Corp., Kelley v. Tiscornia, and United States v. Fleet Factors Corp.: Upholding EPA`s lender liability rule

    SciTech Connect (OSTI)

    Evans, W.D. Jr. [San Francisco`s Graham & James, Washington, DC (United States)

    1993-12-31

    John Grisham`s novel The Firm relates the story of Mitchell McDeere, a young law school graduate who believes that he is joining a {open_quotes}white shoe{close_quotes} Memphis, Tennessee, firm but discovers that the firm is controlled by the Mob. A similar, but different, {open_quotes}surprise{close_quotes} has befallen banks as a result of toxic waste cleanup cost claims. When the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) was passed in 1980, banks had no cause for alarm because the Act provided an exemption from its ownership-based liability for any lender holding {open_quotes}indicia of ownership primarily to protect his security interest{close_quotes} in a hazardous waste facility. Based on the statutory language, it seemed reasonably clear that Congress did not intend to impose liability on secured creditors merely for securing a debt with a deed of trust or mortgage. Unfortunately, lender liability for CERCLA claims arose in the mid-1980s out of two lower federal court decisions and the Eleventh Circuit`s controversial, to say the least, 1990 decision in United States v. Fleet Factors Corp (Fleet Factors II). The major issues currently confronting lenders under CERCLA are (1) the extent to which a secured creditor may involve itself in the debtor`s operations, especially during a loan workout program, without becoming liable for cleanup costs as a CERCLA {open_quotes}owner or operator{close_quotes} and (2) whether a lender who forecloses on collateral and takes title is liable under CERCLA. 94 refs.

  20. Wireless Roadside Inspection Proof of Concept Test Final Report

    SciTech Connect (OSTI)

    Capps, Gary J; Franzese, Oscar; Knee, Helmut E; Plate, Randall S; Lascurain, Mary Beth

    2009-03-01

    The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness -- Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.

  1. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect (OSTI)

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  2. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth S.

    2001-01-01

    tn Sttuation Two HEV ¯ RG~ 3 + 2- NGV ÷ 1 .NEV ,REV ¯ CEV 1HEV ©REV m CEVLII x2 R8 n NGV i i c2 l I Note. Tnp purposesgas powered sedan is an NGV an EVbody style. Bodystyles are

  3. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  4. MyUni Tests Tests.............................................................................................................................................. 2

    E-Print Network [OSTI]

    Balasuriya, Sanjeeva

    MyUni ­ Tests Tests.............................................................................................................................................. 2 Test question types.................................................................................................................... 2 Create a test

  5. Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-04-01

    This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

  6. Current Source Inverters for HEVs and FCVs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department of Energy Whole-Home Gas8of|Heavy-DutyCurrent Source

  7. Assessment of Nanofluids for HEV Cooling Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartment of EnergyOF THEJulyEnergy Assessment

  8. Vehicle Technologies Office Merit Review 2015: Benchmarking EV and HEV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,BiofuelsLetEnergy Vehicle

  9. High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGHofWaste HeatPower

  10. USABC HEV and PHEV Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateofEnergyof EnergyEnergyUS-IndiaJapan11 DOE

  11. USABC HEV and PHEV Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateofEnergyof EnergyEnergyUS-IndiaJapan11 DOE0

  12. Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 TimelineUtility-Scale

  13. Hydrogen as a transportation fuel: Costs and benefits

    SciTech Connect (OSTI)

    Berry, G.D.

    1996-03-01

    Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

  14. Benchmarking of Advanced HEVs and PHEVs over a Wide Range of Ambient Temperatures

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  15. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  16. Meatiness Testing 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    The purpose of this research was to investigate the ignition phenomena of selected polymeric materials using the Hot Wire Ignition Test. This test is prescribed by Underwriters Laboratories as one of various requirements ...

  17. Verification Testing Test Driven Development Testing with JUnit Verification

    E-Print Network [OSTI]

    Peters, Dennis

    Verification Testing Test Driven Development Testing with JUnit Verification Any activity should be verified. #12;Verification Testing Test Driven Development Testing with JUnit Approaches to verification 1 Testing 2 Static Analysis · Peer review · Insepction/Walk-through/Structured review · Formal

  18. PHASE II CHARACTERIZATION SURVEY OF THE USNS BRIDGE (T AOE 10), MILITARY SEALIFT FLEET SUPPORT COMMAND, NAVAL STATION, NORFOLK, VIRGINIA DCN 5180-SR-01-0

    SciTech Connect (OSTI)

    NICK A. ALTIC

    2012-08-30

    In March 2011, the USNS Bridge was deployed off northeastern Honshu, Japan with the carrier USS Ronald Reagan to assist with relief efforts after the 2011 T?hoku earthquake and tsunami. During that time, the Bridge was exposed to air-borne radioactive materials leaking from the damaged Fukushima I Nuclear Power Plant. The proximity of the Bridge to the air-borne impacted area resulted in the contamination of the ship’s air-handling systems and the associated components, as well as potential contamination of other ship surfaces due to either direct intake/deposition or inadvertent spread from crew/operational activities. Preliminary surveys in the weeks after the event confirmed low-level contamination within the heating, ventilation, and air conditioning (HVAC) ductwork and systems, and engine and other auxiliary air intake systems. Some partial decontamination was performed at that time. In response to the airborne contamination event, Military Sealift Fleet Support Command (MSFSC) contracted Oak Ridge Associated Universities (ORAU), under provisions of the Oak Ridge Institute for Science and Education (ORISE) contract, to assess the radiological condition of the Bridge. Phase I identified contamination within the CPS filters, ventilation systems, miscellaneous equipment, and other suspect locations that could not accessed at that time (ORAU 2011b). Because the Bridge was underway during the characterization, all the potentially impacted systems/spaces could not be investigated. As a result, MSFSC contracted with ORAU to perform Phase II of the characterization, specifically to survey systems/spaces previously inaccessible. During Phase II of the characterization, the ship was in port to perform routine maintenance operations, allowing access to the previously inaccessible systems/spaces.

  19. Design change management in regulation of nuclear fleets: World nuclear association's working groups on Cooperation in Reactor Design Evaluation and Licensing (CORDEL)

    SciTech Connect (OSTI)

    Swinburn, R. [CORDEL DCM Task Force, Rolls-Royce Plc (United Kingdom); Borysova, I. [CORDEL, WNA, 22a St.James Sq., London SW1Y 4JH (United Kingdom); Waddington, J. [CORDEL Group (United Kingdom); Head, J. G. [CORDEL Group, GE-Hitachi Nuclear Energy (United Kingdom); Raidis, Z. [CORDEL Group, Candu Energy (United Kingdom)

    2012-07-01

    The 60 year life of a reactor means that a plant will undergo change during its life. To ensure continuing safety, changes must be made with a full understanding of the design intent. With this aim, regulators require that each operating organisation should have a formally designated entity responsible for complete design knowledge in regard to plant safety. INSAG-19 calls such an entity 'Design Authority'. This requirement is difficult to achieve, especially as the number of countries and utilities operating plants increases. Some of these operating organisations will be new, and some will be small. For Gen III plants sold on a turnkey basis, it is even more challenging for the operating company to develop and retain the full knowledge needed for this role. CORDEL's Task Force entitled 'Design Change Management' is investigating options for effective design change management with the aim to support design standardization throughout a fleet's lifetime by means of enhanced international cooperation within industry and regulators. This paper starts with considering the causes of design change and identifies reasons for the increased beneficial involvement of the plant's original vendor in the design change process. A key central theme running through the paper is the definition of responsibilities for design change. Various existing mechanisms of vendor-operator interfaces over design change and how they are managed in different organisational and regulatory environments around the world are considered, with the functionality of Owners Groups and Design Authority being central. The roles played in the design change process by vendors, utilities, regulators, owners' groups and other organisations such as WANO are considered The aerospace industry approach to Design Authority has been assessed to consider what lessons might be learned. (authors)

  20. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  1. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  2. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  3. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van - Hydrogen/CNG Operations Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-16

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.

  4. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.

  5. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  6. Photomultiplier Tube Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp in the AirPhotoexcitationNews

  7. NREL: Transportation Research - Fleet DNA: Commercial Fleet Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologies

  8. Test Comparability

    E-Print Network [OSTI]

    Keller, Christine; Shulenburger, David E.

    2010-01-01

    stream_size 3106 stream_content_type text/plain stream_name Test Comparability ChangeJuly (2).pdf.txt stream_source_info Test Comparability ChangeJuly (2).pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... KU ScholarWorks | http://kuscholarworks.ku.edu Test Comparability 2010 by Christine Keller and David Shulenburger This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Please share...

  9. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    cooperatives formed in December 1999 in accordance to the directives set forth by congress through the AFA. Our Council March 30, 2013 Prepared by: Sylver Fishing Company Sylvia Ettefagh P.O. Box 2281 Wrangell, AK. Salmon Management Plan 15 #12;2 ! D. Bering Sea Directed Cod ­ Catch and Bycatch 17 E. Gulf of Alaska

  10. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    cooperatives formed in December 1999 in accordance to the directives set forth by congress through the AFA. Our Council March 30, 2012 Prepared by: Sylver Fishing Company Sylvia Ettefagh P.O. Box 2281 Wrangell, AK. Salmon Management Plan 15 #12;2 ! D. Bering Sea Directed Cod ­ Catch and Bycatch 17 E. Gulf of Alaska

  11. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    cooperatives formed in December 1999 in accordance to the directives set forth by congress through the AFA. Our Council March 30,2011 Prepared by: Sylver Fishing Company Sylvia Ettefagh P.O. Box 2281 Wrangell, AK 99929 ufc@arctic.net #12;1 #12;D. Bering Sea Directed Cod ­ Catch and Bycatch 17 E. Gulf of Alaska Directed

  12. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    in December 1999 in accordance to the directives set forth by congress in the AFA. Our objective is to reduce Council January 26 2007 Prepared by Sylvia Ettefagh #12;1 TABLE OF CONTENTS PAGE I. INTRODUCTION 1 II 13 4. Transfers 13 5. Chum Salmon Management Plan 13 #12;2 G. Bering Sea Directed Cod ­ Catch

  13. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    in December 1999 in accordance to the directives set forth by congress through the AFA. Our objective Council February 1 2009 Prepared by: Sylver Fishing Company Sylvia Ettefagh P.O. Box 2281 Wrangell, AK. Bering Sea Directed Cod ­ Catch and Bycatch 17 H. Gulf of Alaska Directed Pollock ­ Catch and Bycatch 18

  14. Fleet Services PoliciesandProcedures

    E-Print Network [OSTI]

    Gasoline and oil purchases . . . . . . . . . . . . . . . . . . . . . 7 Storage vehicle must be at least eighteen years of age and have a valid driver's license recognized by Michigan

  15. fleet | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afed feed families |fff

  16. Fleet Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flats 100k.pdf Jump

  17. Fleet Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial Opportunities Financial OpportunitiesJobs Find

  18. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth

    1995-01-01

    HEV) - Natural Gas Vehicle (NGV) 140 or 180 80 or 120EV, and 20 percent chose an NGV. All EVs, including hybridHouseholds that wanted an NGV had a choice of two range

  19. Test Automation Ant JUnit Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

  20. Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Gonder, J.; Keyser, M.

    2009-04-01

    Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

  1. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  2. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  3. Vehicle Technologies Office: Alternative Fuels Research and Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (mainly state and utility fleets) under the Energy Policy Act of 1992, while the Federal Energy Management Program works with federal fleets. Test alternative fuel vehicles: VTO...

  4. Verifying Test Hypotheses -HOL/TestGen Verifying Test Hypotheses -HOL/TestGen

    E-Print Network [OSTI]

    Verifying Test Hypotheses - HOL/TestGen Verifying Test Hypotheses - HOL/TestGen An Experiment in Test and Proof Thomas Malcher January 20, 2014 1 / 20 #12;Verifying Test Hypotheses - HOL/TestGen HOL/TestGen Outline Introduction Test Hypotheses HOL/TestGen - Demo Verifying Test Hypotheses Conclusion 2 / 20 #12

  5. Report on the Field Performance of A123Systems’s HymotionTM Plug-in Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    Huang Iu; John Smart

    2009-04-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

  6. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect (OSTI)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  7. Infrastructure for large-scale tests in marine autonomy

    E-Print Network [OSTI]

    Hummel, Robert A. (Robert Andrew)

    2012-01-01

    This thesis focuses on the development of infrastructure for research with large-scale autonomous marine vehicle fleets and the design of sampling trajectories for compressive sensing (CS). The newly developed infrastructure ...

  8. Prototype to Test WHY prototype to test

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    Prototype to Test METHOD WHY prototype to test HOW to prototype to test Prototyping to test or design space. The fundamental way you test your prototypes is by letting users experience them and react to them. In creating prototypes to test with users you have the opportunity to examine your solution

  9. Testing with JUnit Testing with JUnit

    E-Print Network [OSTI]

    Peters, Dennis

    Testing with JUnit Testing with JUnit Running a test case: 1 Get the component to a known state (set up). 2 Cause some event (the test case). 3 Check the behaviour. · Record pass/fail · Track statistics · Typically we want to do a lot of test cases so it makes sense to automate. · Test cases

  10. Development and Testing of an UltraBattery-Equipped Honda Civic

    SciTech Connect (OSTI)

    Donald Karner

    2012-04-01

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  11. Orion Flight Test Exploration Flight Test-1

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Orion Flight Test Exploration Flight Test-1 PRESS KIT/December 2014 www.nasa.gov NP-2014-11-020-JSC National Aeronautics and Space Administration #12;#12;Orion Flight Test December 2014 Contents Section Page ........................................................................................... 28 i #12;Orion Flight Test ii December 2014 #12;Orion Flight Test December 2014 Flight Overview

  12. Test and Test Equipment Joshua Lottich

    E-Print Network [OSTI]

    Patel, Chintan

    Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

  13. Test Preparation Options Free Test Prep Websites

    E-Print Network [OSTI]

    Stowell, Michael

    Test Preparation Options Free Test Prep Websites ACT: http: http://www.collegeboard.com/student/testing/sat/prep_one/test.html http://www.number2.com://testprep.princetonreview.com/CourseSearch/Search.aspx?itemCode=17&productType=F&rid=1&zip=803 02 Test Prep Classes Front Range Community College: Classes

  14. Intro Temporal Tests Declustering Methods Tests on SCEC data Spatiotemporal Test Discussion Testing for Poisson Behavior

    E-Print Network [OSTI]

    Stark, Philip B.

    Intro Temporal Tests Declustering Methods Tests on SCEC data Spatiotemporal Test Discussion Testing Seismological Society of America Annual Meeting San Diego, CA #12;Intro Temporal Tests Declustering Methods Tests on SCEC data Spatiotemporal Test Discussion Quake Physics versus Quake Statistics · Distribution

  15. Paired t testsPaired t tests Paired (dependent) t-testPaired (dependent) t test

    E-Print Network [OSTI]

    Wolverton, Steve

    Paired t testsPaired t tests #12;Paired (dependent) t-testPaired (dependent) t test · Compares test means from matched pairsCompares test means from matched pairs or two different samples from the same individualsindividuals ­ e.g., pretest & post test scores for the same group of students Ho: d = 0 d is thedifference

  16. CNP_TEST_SUITE

    Energy Science and Technology Software Center (OSTI)

    002854MLTPL00 Automated Nuclear Data Test Suite  file:///usr/gapps/CNP_src/us/RR/test_suite_cz/cnp_test_suite 

  17. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results

    SciTech Connect (OSTI)

    John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

    2009-09-01

    Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting “raw” fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such “raw” PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

  18. CMVO Drug Testing Program Reasonable Suspicion Testing

    E-Print Network [OSTI]

    Sin, Peter

    CMVO Drug Testing Program Reasonable Suspicion Testing CMVO Revised Suspicion Form (Revised 6/08) Guidelines for Reasonable Suspicion Drug and Alcohol Testing: A supervisor, trained in accordance with 49 CFR involved in an incident that requires drug/alcohol testing as set forth in 382.307. Remember: Reasonable

  19. TEST STATION SALE OF PERFORMANCE TESTED BULLS

    E-Print Network [OSTI]

    Tennessee, University of

    in the test had to meet minimum performance requirements. Those were: CREEP NON-CREEP Adj 205 day wt. 560 520AS-B428 U T BULL TEST STATION SALE OF PERFORMANCE TESTED BULLS THURSDAY, MARCH 8, 2012 12:00 NOON IN GREENEVILLE AND KNOXVILLE LIVESTOCK CENTER http://animalscience.ag.utk.edu/ (For video) #12;UT BULL TEST

  20. Bull Test ID 1181 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1181 2013 Florida Bull Test #12;Bull Test ID 1182 2013 Florida Bull Test #12;Bull Test ID 1183 2013 Florida Bull Test #12;Bull Test ID 1184 2013 Florida Bull Test #12;Bull Test ID 1185 2013 Florida Bull Test #12;Bull Test ID 1186 2013 Florida Bull Test #12;Bull Test ID 1187 2013 Florida

  1. Bull Test ID 1140 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1140 2013 Florida Bull Test #12;Bull Test ID 1141 2013 Florida Bull Test #12;Bull Test ID 1142 2013 Florida Bull Test #12;Bull Test ID 1143 2013 Florida Bull Test #12;Bull Test ID 1144 2013 Florida Bull Test #12;Bull Test ID 1145 2013 Florida Bull Test #12;Bull Test ID 1146 2013 Florida

  2. Bull Test ID 1077 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    14th Annual Florida Bull Test #12;Bull Test ID 1077 2013 Florida Bull Test #12;Bull Test ID 1078 2013 Florida Bull Test #12;Bull Test ID 1079 2013 Florida Bull Test #12;Bull Test ID 1080 2013 Florida Bull Test #12;Bull Test ID 1081 2013 Florida Bull Test #12;Bull Test ID 1082 2013 Florida Bull Test #12

  3. Bull Test ID 1098 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1098 2013 Florida Bull Test #12;Bull Test ID 1099 2013 Florida Bull Test #12;Bull Test ID 1100 2013 Florida Bull Test #12;Bull Test ID 1101 2013 Florida Bull Test #12;Bull Test ID 1102 2013 Florida Bull Test #12;Bull Test ID 1103 2013 Florida Bull Test #12;Bull Test ID 1104 2013 Florida

  4. Bull Test ID 1118 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1118 2013 Florida Bull Test #12;Bull Test ID 1119 2013 Florida Bull Test #12;Bull Test ID 1120 2013 Florida Bull Test #12;Bull Test ID 1121 2013 Florida Bull Test #12;Bull Test ID 1122 2013 Florida Bull Test #12;Bull Test ID 1123 2013 Florida Bull Test #12;Bull Test ID 1124 2013 Florida

  5. Bull Test ID 1160 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1160 2013 Florida Bull Test #12;Bull Test ID 1161 2013 Florida Bull Test #12;Bull Test ID 1162 2013 Florida Bull Test #12;Bull Test ID 1163 2013 Florida Bull Test #12;Bull Test ID 1164 2013 Florida Bull Test #12;Bull Test ID 1165 2013 Florida Bull Test #12;Bull Test ID 1166 2013 Florida

  6. Unit Testing Discussion C

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Unit Testing Discussion C #12;Unit Test public Method is smallest unit of code Input/output transformation Test if the method does what it claims Not exactly black box testing #12;Test if (actual result Expected Computed Input #12;Functionality Computation ­ Easy to test Time based Asynchronous interaction

  7. Pittsburg: Immune Myopathy Testing Tests performed

    E-Print Network [OSTI]

    Baloh, Bob

    . Packaging will include a sealed watertight primary vessel as well as a watertight secondary vesselPittsburg: Immune Myopathy Testing Tests performed Myositis associated antibodies: Jo-1; PL-12; PL for autoantibody testing. For adults: please draw two 10 ml red top or serum separator tubes. For children

  8. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect (OSTI)

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H.

    2007-01-01

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  9. ZiaTest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZiaTest ZiaTest Description This test executes a new proposed standard benchmark method for MPI startup that is intended to provide a realistic assessment of both launch and wireup...

  10. Major Partner Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Test Partners Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding...

  11. Directed random testing

    E-Print Network [OSTI]

    Pacheco, Carlos, Ph.D. Massachusetts Institute of Technology

    2009-01-01

    Random testing can quickly generate many tests, is easy to implement, scales to large software applications, and reveals software errors. But it tends to generate many tests that are illegal or that exercise the same parts ...

  12. Sandia Energy - Experimental Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Testing Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Experimental Testing Experimental TestingTara Camacho-Lopez2015-05-11T18:46:46+00:0...

  13. AVTA … PHEV Demonstrations and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice |4-01r2.pdfATVM Guidance for5EnergyAUGEnergy HEV,…

  14. Sandia Energy - Mechanical Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Testing Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Nuclear Energy Systems Laboratory (NESL) Brayton Lab Mechanical Testing Mechanical...

  15. Vendor System Vulnerability Testing Test Plan

    SciTech Connect (OSTI)

    James R. Davidson

    2005-01-01

    The Idaho National Laboratory (INL) prepared this generic test plan to provide clients (vendors, end users, program sponsors, etc.) with a sense of the scope and depth of vulnerability testing performed at the INL’s Supervisory Control and Data Acquisition (SCADA) Test Bed and to serve as an example of such a plan. Although this test plan specifically addresses vulnerability testing of systems applied to the energy sector (electric/power transmission and distribution and oil and gas systems), it is generic enough to be applied to control systems used in other critical infrastructures such as the transportation sector, water/waste water sector, or hazardous chemical production facilities. The SCADA Test Bed is established at the INL as a testing environment to evaluate the security vulnerabilities of SCADA systems, energy management systems (EMS), and distributed control systems. It now supports multiple programs sponsored by the U.S. Department of Energy, the U.S. Department of Homeland Security, other government agencies, and private sector clients. This particular test plan applies to testing conducted on a SCADA/EMS provided by a vendor. Before performing detailed vulnerability testing of a SCADA/EMS, an as delivered baseline examination of the system is conducted, to establish a starting point for all-subsequent testing. The series of baseline tests document factory delivered defaults, system configuration, and potential configuration changes to aid in the development of a security plan for in depth vulnerability testing. The baseline test document is provided to the System Provider,a who evaluates the baseline report and provides recommendations to the system configuration to enhance the security profile of the baseline system. Vulnerability testing is then conducted at the SCADA Test Bed, which provides an in-depth security analysis of the Vendor’s system.b a. The term System Provider replaces the name of the company/organization providing the system being evaluated. This can be the system manufacturer, a system user, or a third party organization such as a government agency. b. The term Vendor (or Vendor’s) System replaces the name of the specific SCADA/EMS being tested.

  16. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  17. Application of Robust Design and Advanced Computer Aided Engineering Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-04-143

    SciTech Connect (OSTI)

    Thornton, M.

    2013-06-01

    Oshkosh Corporation (OSK) is taking an aggressive approach to implementing advanced technologies, including hybrid electric vehicle (HEV) technology, throughout their commercial and military product lines. These technologies have important implications for OSK's commercial and military customers, including fleet fuel efficiency, quiet operational modes, additional on-board electric capabilities, and lower thermal signature operation. However, technical challenges exist with selecting the optimal HEV components and design to work within the performance and packaging constraints of specific vehicle applications. SK desires to use unique expertise developed at the Department of Energy?s (DOE) National Renewable Energy Laboratory (NREL), including HEV modeling and simulation. These tools will be used to overcome technical hurdles to implementing advanced heavy vehicle technology that meet performance requirements while improving fuel efficiency.

  18. ZEST flight test experiments, Kauai Test Facility, Hawaii. Test report

    SciTech Connect (OSTI)

    Cenkci, M.J.

    1991-07-01

    The Strategic Defense Initiative Organization (SDIO) is proposing to execute two ZEST flight experiments to obtain information related to the following objectives: validation of payload modeling; characterization of a high energy release cloud; and documentation of scientific phenomena that may occur as a result of releasing a high energy cloud. The proposed action is to design, develop, launch, and detonate two payloads carrying high energy explosives. Activities required to support this proposal include: (1) execution of component assembly tests at Space Data Division (SDD) in Chandler, Arizona and Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, and (2) execution of pre-flight flight test activities at Kauai Test Facility.

  19. Accelerated Stress Testing, Qualification Testing, HAST, Field...

    Office of Environmental Management (EM)

    Testing, HAST, Field Experience This presentation, which was the opening session of the NREL 2013 Photovoltaic Module Reliability Workshop held on February 26, 2013 in Golden, CO,...

  20. Dynamometer Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes the dynamometer and its testing capabilities at the National Wind Technology Center.

  1. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartmentDeveloping new U.S. Department offor HEVs

  2. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    Broader source: Energy.gov [DOE]

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today’s nuclear power reactor fleet and affects critical structural components within the reactor core. The...

  3. Goodyear Testing Self-Inflating Tire Systems in U.S. Trucking...

    Office of Environmental Management (EM)

    in U.S. Trucking Fleets April 7, 2015 - 4:52pm Addthis This graphic shows how Goodyear's new Air Maintenance Technology -- also called the self-regulating tire -- works. | Graphic...

  4. Check for peroxides every 6 months. opened test 1 test 2 test 3

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Check for peroxides every 6 months. opened test 1 test 2 test 3 date initials Check for peroxides every 6 months. opened test 1 test 2 test 3 date initials Check for peroxides every 6 months. Test strips can be obtained from EH&S, 5-8200 opened test 1 test 2 test 3 date initials Check for peroxides

  5. MA 266 Practice Test

    E-Print Network [OSTI]

    2015-04-12

    Spring 2015. Test 2: April 15, 2015. INSTRUCTIONS in the Test. 1. Do not open this exam booklet until told to do so. 2. There are 6 or 7 problems - one per page.

  6. MA 266 Practice Test

    E-Print Network [OSTI]

    2015-02-26

    Test 1: March 4, 2015. INSTRUCTIONS in the Test. 1. Do not open this exam booklet until told to do so. 2. There are 6 or 7 problems - one per page. 3. Show all ...

  7. High Explosives Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Los Alamos. August 1, 2013 The design and testing for "Little Boy" took place at Gun Site The design and testing for "Little Boy" took place at Gun Site. RELATED IMAGES...

  8. Blade Testing Trends (Presentation)

    SciTech Connect (OSTI)

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  9. Coaxial test fixture

    DOE Patents [OSTI]

    Praeg, W.F.

    1984-03-30

    This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.

  10. Testing Monotonicity Oded Goldreich

    E-Print Network [OSTI]

    Goldreich, Oded

    to query an unknown function f : {0, 1}n {0, 1} at arguments of its choice, the test always accepts of the function to any monotone function. 1.1 Perspective Property Testing, as explicitly defined by Rubinfeld), and that such tests can be defined and performed also for other error-correcting codes such as the Hadamard code [ALM

  11. SOFTWARE TESTING Tester's Job

    E-Print Network [OSTI]

    Kundu, Sukhamay

    allows multiple different acceptable outputs for some inputs. #12;8.4 BLACK-BOX TESTING · Based a requirement of category 5 w.r.t this test case. #define WORDLEN 20 void WordCharCounts(FILE *inFile) { int iSOFTWARE TESTING Tester's Job: · Find as many faults of different kinds as he can. · Certify some

  12. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  13. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  14. Raley's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-05-03

    Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  15. DOE Railcar Fleet Asset Planning & Lessons Learned

    Broader source: Energy.gov [DOE]

    Presented by Dave Lojek - US DOE for the Environmental Management Consolidated Business Center (EMCBC).

  16. DOE Railcar Fleet Asset Planning & Lessons Learned

    Office of Environmental Management (EM)

    Campaigns - LLW -Fernald, Mound, Savannah River *In Progress - LLW -Savannah River, Brookhaven, Moab *ForeCast - LLW -Portsmouth, Paducah, D&D, DUF6 2 *Lessons Learned F ld Cl P j...

  17. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by Todd Ramsden of the National Renewable Energy Laboratory at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cngh2workshop13ramsden.p...

  18. Case Study - Propane School Bus Fleets

    SciTech Connect (OSTI)

    Laughlin, M; Burnham, A.

    2014-08-31

    As part of the U.S. Department of Energy’s (DOE’s) effort to deploy transportation technologies that reduce U.S. dependence on imported petroleum, this study examines five school districts, one in Virginia and four in Texas, successful use of propane school buses. These school districts used school buses equipped with the newly developed liquid propane injection system that improves vehicle performance. Some of the school districts in this study saved nearly 50% on a cost per mile basis for fuel and maintenance relative to diesel. Using Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool developed for the DOE’s Clean Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty vehicles, the results showed payback period ranges from 3—8 years, recouping the incremental cost of the vehicles and infrastructure. Overall, fuel economy for these propane vehicles is close to that of displaced diesel vehicles, on an energy-equivalent basis. In addition, the 110 propane buses examined demonstrated petroleum displacement, 212,000 diesel gallon equivalents per year, and GHG benefits of 770 tons per year.

  19. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  20. Nuclear Engineer (Senior Technical Advisor, Fleet Submarines)

    Broader source: Energy.gov [DOE]

    This position is being concurrently advertised to Status Applicants under vacancy announcement #16-NA30-07-MP. You must apply to the vacancy for which you wish to receive consideration. If you wish...

  1. Fleet Services Program Policy Manual For Drivers

    E-Print Network [OSTI]

    Brown, Sally

    · Schedules vehicles for preventative maintenance · Repair services · Fuel, and car wash services for all

  2. HyFLEET:CUTE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto, Texas: Energy ResourcesHy9

  3. FleetAtlas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpA JumpGmbHFerrisFillmoreChoiceGenerationJump

  4. Sustainable Federal Fleets Catalog of Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs, Before theFebruary 1, 2006ofWorkshopSheet),Sustainable Federal

  5. Executive Fleet Vehicles Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartmentDeveloping11,Branch Management

  6. Barwood CNG Cab Fleet Study: Final Results

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is on

  7. Case Study - Compressed Natural Gas Refuse Fleets

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is onis aTechnicalNatural

  8. Case Study … Propane School Bus Fleets

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is onis

  9. UPS CNG Truck Fleet Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatClean Cities Technical4® ® ®

  10. Clean Fleets Announcement | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV) chargingWASHINGTON, DC -October 14,ofofHorseOnClean

  11. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  12. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01

    HYBRID) EXAMPLE 2004 Volkswagen Golf June 2004 New 3. AreYear (HYBRID) EXAMPLE Volkswagen Golf 12,000 miles/yearSince Dave had bought a used Volkswagen Passat just a year

  13. Control of Cascaded Multilevel Converters with Unequal Voltage Sources for HEVs

    E-Print Network [OSTI]

    Tolbert, Leon M.

    can be chosen to achieve a required fundamental voltage and not generate specified higher order and Electric Machinery Research Center Oak Ridge National Laboratory, NTRC, 2360 Cherahala Boulevard, Knoxville, TN 37932 Abstract­ One promising technology to interface battery packs in electric and hybrid

  14. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01

    Bradford, S. (2003) Are Hybrid Cars Worth It? Smartmoney 28p. C1. Hakim, D. (2005b) Hybrid-Car Tinkerers Scoff at No-Dollars and Sense of Hybrid Cars. Available from: http://

  15. Final Report Development and Evaluation of a Plug-in HEV with

    E-Print Network [OSTI]

    Firestone, Jeremy

    .....................................................................................................................................8 3.1 The Connected Car...................................................................................................................................35 6.1 Emissions and Energy Benefits

  16. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01

    electric, diesel, fuel-cell, and plug-in hybrid-electric,Hybrid Electric Vehicle 2X mileage of previous vehicle (full-size dieselhybrid and conventional gasoline powertrains, but very few articulated meanings for diesel

  17. Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV

    SciTech Connect (OSTI)

    O'Keefe. M. P.; Markel, T.

    2006-11-01

    This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

  18. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01

    including conspicuous consumption, self-congruity theory,s theory of conspicuous consumption, self-congruity theoryconspicuous consumption from economics, self-congruity

  19. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    SciTech Connect (OSTI)

    Dr. Malgorzata Gulbinska

    2009-08-24

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  20. Study of Advantages of PM Drive Motor with Selectable Windings for HEVs

    SciTech Connect (OSTI)

    Otaduy, Pedro J; Hsu, John S; Adams, Donald J

    2007-11-01

    The gains in efficiency and reduction in battery costs that can be achieved by changing the effective number of stator turns in an electric motor are demonstrated by simulating the performance of an electric vehicle on a set of eight standard driving cycles.

  1. Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report

    SciTech Connect (OSTI)

    None

    2007-09-30

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  2. Technology and Cost of the MY 2007 toyota Camry HEV -- A Subcontract Report

    SciTech Connect (OSTI)

    Marlino, Laura D [ORNL

    2007-09-01

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  3. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01

    2003) Incentives for Alternate Fuel Vehicles: A Large-ScaleThis wasn't some sort of alternate-fuel vehicle pointing the

  4. Review of A123s HEV and PHEV USABC Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,BreakoutRetooling Michigan:Energy Systems

  5. U.S. Based HEV and PHEV Transaxle Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy| Department ofAttacks2 DOE Hydrogen and

  6. U.S. Based HEV and PHEV Transaxle Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy| Department ofAttacks2 DOE Hydrogen and1

  7. U.S. Based HEV and PHEV Transaxle Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy| Department ofAttacks2 DOE Hydrogen and10

  8. Drum drop test report

    SciTech Connect (OSTI)

    McBeath, R.S.

    1995-02-28

    Testing was performed to determine actual damage to drums when dropped from higher than currently stacked elevations. The drum configurations were the same as they are placed in storage; single drums and four drums banded to a pallet. Maximum drop weights were selected based on successful preliminary tests. Material was lost from each of the single drum tests while only a small amount of material was lost from one of the pelletized drums. The test results are presented in this report. This report also provides recommendations for further testing to determine the appropriate drum weight which can be stored on a fourth tier.

  9. Pendulum detector testing device

    DOE Patents [OSTI]

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  10. Sample Proficiency Test exercise

    SciTech Connect (OSTI)

    Alcaraz, A; Gregg, H; Koester, C

    2006-02-05

    The current format of the OPCW proficiency tests has multiple sets of 2 samples sent to an analysis laboratory. In each sample set, one is identified as a sample, the other as a blank. This method of conducting proficiency tests differs from how an OPCW designated laboratory would receive authentic samples (a set of three containers, each not identified, consisting of the authentic sample, a control sample, and a blank sample). This exercise was designed to test the reporting if the proficiency tests were to be conducted. As such, this is not an official OPCW proficiency test, and the attached report is one method by which LLNL might report their analyses under a more realistic testing scheme. Therefore, the title on the report ''Report of the Umpteenth Official OPCW Proficiency Test'' is meaningless, and provides a bit of whimsy for the analyses and readers of the report.

  11. STRUCTURES AND MATERIALS TEST LABORATORY

    E-Print Network [OSTI]

    Russell, Jeffrey S.

    of the test program described here was to measure the shrinkage and creep characteristics of SCC mixes used. Creep tests ................................................. 4 3. Other tests ........................... 13 Shrinkage Test Results ................................... 16 Creep test Results

  12. NREL & DOE Activities: Update (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2009-10-28

    Describes results to date of NREL's real-world fleet testing of medium- and heavy-duty hybrid vehicles.

  13. Picture of the Week: The Trinity Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp inrd IEEE(Journal138 Nuclear504667

  14. Partition Testing versus Random Testing: the Influence of Uncertainty

    E-Print Network [OSTI]

    Gutjahr, Walter

    detection, partition test­ ing, program testing, random testing, software testing. I. Introduction Few topics in software testing methodology seem to be more controversial than the question whetherPartition Testing versus Random Testing: the Influence of Uncertainty Walter J. Gutjahr Department

  15. Hybrid Power Test Bed

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    This document describes efforts by the National Renewable Energy Laboratory to simulate hybrid power systems. Hybrid power systems combine multiple power sources such as wind turbines, photovoltaic (PV) arrays, diesel generators, and battery storage systems. They typically are used in remote areas, away from major electric grids. The Hybrid Power Test Bed is designed to assist the U.S. wind industry in developing and testing hybrid power generation systems. Test bed capabilities, features, and equipment are described.

  16. Wind Technology Testing Center Acquires New Blade Fatigue Test...

    Broader source: Energy.gov (indexed) [DOE]

    multimegawatt wind turbine blade flap fatigue test. Addthis Related Articles DOE's New Large Blade Test Facility in Massachusetts Completes First Commercial Blade Tests...

  17. Regional Test Centers (RTCs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has established five Regional Test Centers (RTCs) across the United States to independently validate the performance and reliability of photovoltaic (PV) systems in different...

  18. Leak test fitting

    DOE Patents [OSTI]

    Pickett, Patrick T. (Kettering, OH)

    1981-01-01

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  19. Test 1 Solutions

    E-Print Network [OSTI]

    Microsoft account

    2015-03-03

    Mar 1, 2015 ... Test 1. Spring 2015. February 18, 2015. 1. (30 points) Christian has started to work today at Spears Corporation. Today is Christian's 42nd.

  20. Standard Test Method for Sandwich Corrosion Test

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method defines the procedure for evaluating the corrosivity of aircraft maintenance chemicals, when present between faying surfaces (sandwich) of aluminum alloys commonly used for aircraft structures. This test method is intended to be used in the qualification and approval of compounds employed in aircraft maintenance operations. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information. 1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements appear in Section 9.

  1. Testing of the structural evaluation test unit

    SciTech Connect (OSTI)

    Ammerman, D.J.; Bobbe, J.G.

    1995-12-31

    In the evaluation of the safety of radioactive material transportation it is important to consider the response of Type B packages to environments more severe than that prescribed by the hypothetical accident sequence in Title 10 Part 71 of the Code of Federal Regulations (NRC 1995). The impact event in this sequence is a 9-meter drop onto an essentially unyielding target, resulting in an impact velocity of 13.4 m/s. The behavior of 9 packages when subjected to impacts more severe than this is not well known. It is the purpose of this program to evaluate the structural response of a test package to these environments. Several types of structural response are considered. Of primary importance is the behavior of the package containment boundary, including the bolted closure and 0-rings. Other areas of concern are loss of shielding capability due to lead slump and the deceleration loading of package contents, that may cause damage to them. This type of information is essential for conducting accurate risk assessments on the transportation of radioactive materials. Currently very conservative estimates of the loss of package protection are used in these assessments. This paper will summarize the results of a regulatory impact test and three extra-regulatory impact tests on a sample package.

  2. Coaxial test fixture

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1986-01-01

    An assembly is provided for testing one or more contact material samples in a vacuum environment. The samples are positioned as an inner conductive cylinder assembly which is mounted for reciprocal vertical motion as well as deflection from a vertical axis. An outer conductive cylinder is coaxially positioned around the inner cylinder and test specimen to provide a vacuum enclosure therefor. A power source needed to drive test currents through the test specimens is connected to the bottom of each conductive cylinder, through two specially formed conductive plates. The plates are similar in form, having a plurality of equal resistance current paths connecting the power source to a central connecting ring. The connecting rings are secured to the bottom of the inner conductive assembly and the outer cylinder, respectively. A hydraulic actuator is also connected to the bottom of the inner conductor assembly to adjust the pressure applied to the test specimens during testing. The test assembly controls magnetic forces such that the current distribution through the test samples is symmetrical and that contact pressure is not reduced or otherwise disturbed.

  3. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  4. Testing for Subcellular Randomness

    E-Print Network [OSTI]

    Babatunde O. Okunoye

    2008-01-29

    Statistical tests were conducted on 1,000 numbers generated from the genome of Bacteriophage T4, obtained from GenBank with accession number AF158101.The numbers passed the non-parametric, distribution-free tests.Deoxyribonucleic acid was discovered to be a random number generator, existent in nature.

  5. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  6. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  7. Nanomechanical testing system

    DOE Patents [OSTI]

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2014-07-08

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  8. Edit Test Options Page 1 Edit Test Options

    E-Print Network [OSTI]

    Xu, Shouhuai

    Edit Test Options Page 1 Edit Test Options Format Test Information 1. Enter a Name for the Test. 2. Choose a color for the title text of the Test. (Optional) 3. Enter a Description in the Text Box. The description is visible to Students before they click on the link to take the Test. (Optional) 4. If you want

  9. Report on PV Test Sites and Test Prepared for the

    E-Print Network [OSTI]

    Report on PV Test Sites and Test Protocols Prepared for the U.S. Department of Energy Office`i Distributed Energy Resource Technologies for Energy Security Revised Task 8 Deliverable PV Test Sites and Test. #12;1 Report on PV Test Sites and Test Protocols Table of Contents 1. Introduction

  10. CC Pressure Test

    SciTech Connect (OSTI)

    Dixon, K.; /Fermilab

    1990-07-12

    The inner vessel heads including bypass and beam tubes had just been welded into place and dye penetrant checked. The vacuum heads were not on at this time but the vacuum shell was on covering the piping penetrating into the inner vessel. Signal boxes with all feed through boards, the instrumentation box, and high voltage boxes were all installed with their pump outs capped. All 1/4-inch instrumentation lines were terminated at their respective shutoff valves. All vacuum piping used for pumping down the inner vessel was isolated using o-ring sealed blind flanges. PV215A (VAT Series 12), the 4-inch VRC gate valve isolating the cyropump, and the rupture disk had to be removed and replaced with blind flanges before pressurizing due to their pressure limitations. Stresses in plates used as blind flanges were checked using Code calcualtions. Before the CC test, vacuum style blanks and clamps were hydrostatically pressure tested to 150% of the maximum test pressure, 60 psig. The Code inspector and Research Division Safety had all given their approval to the test pressure and procedure prior to filling the vessel with argon. The test was a major success. Based on the lack of any distinguishable pressure drop indicated on the pressure gages, the vessel appeared to be structurally sound throughout the duration of the test (approx. 3 hrs.). A major leak in the instrumentation tubing was discovered at half of the maximum test pressure and was quickly isolated by crimping and capping with a compression fitting. There were some slight deviations in the actual procedure used. The 44 psig relief valve located just outside the cleanroom had to be capped until the pressure in the vessel indicated 38 psi. This was to allow higher supply pressures and hence, higher flows through the pressurizing line. Also, in order to get pressure readings at the cryostat without exposing any personnel to the potentially dangerous stored energy near the maximum test pressure, a camera was installed at the top of the vessel to view the indicator mounted there. The monitor was viewed at the ante room adjacent to the cleanroom. The holding pressure of 32 psig (4/5 of the maximum test pressure) was only maintained for about 20 minutes instead of the half hour recommendation in the procedure. We felt that this was sufficient time to Snoop test and perform the pressure drop test. After the test was completed, the inspector for CBI Na-Con and the Research Divison Safety Officer signed all of required documentation.

  11. Rapid prototype and test

    SciTech Connect (OSTI)

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  12. Soil Testing Lab 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Friction factor data are important for better prediction of leakage and rotordynamic coefficients of gas annular seals. A flat-plate test rig is used to determine friction factor of hole-pattern/honeycomb flat-plate surfaces ...

  13. Solutions to Test 3

    E-Print Network [OSTI]

    jeffb_000

    2014-08-16

    Math 373. Test 3. Spring 2014. April 8, 2014. 1. Yujin can buy each of the following bonds for a price of P . The bonds are: a. A 10 year zero coupon bond ...

  14. Solutions to Test 2

    E-Print Network [OSTI]

    Microsoft account

    2015-08-05

    Math 373. Spring 2015. Test 2. March 10, 2015. 1. Linhan borrows 100,000 at an annual effective interest rate of 5%. Linhan will repay the loan with level annual ...

  15. Testing existence of antigravity

    E-Print Network [OSTI]

    Dragan Slavkov Hajdukovic

    2006-02-12

    After a brief review of arguments in favor of antigravity (as gravitational repulsion between matter and antimatter) we present a simple idea for an experimental test using antiprotons. Different experimental realizations of the same basic idea are considered

  16. Solutions to Test 2

    E-Print Network [OSTI]

    Microsoft account

    2015-01-14

    Jan 14, 2015 ... Test 2. Fall 2014. October 28, 2014. 1. Joon is going to buy a 10 year callable bond. The bond matures for 15,000 and pays semi-annual.

  17. Solutions to Test 3

    E-Print Network [OSTI]

    Microsoft account

    2015-04-02

    Apr 2, 2015 ... Test 3. Fall 2014. November 18, 2014. 1. The preferred stock of Oldham Company pays a quarterly dividend of 8. The next dividend is due in 1 ...

  18. Solutions to Test 1

    E-Print Network [OSTI]

    Microsoft account

    2015-08-05

    Math 373. Test 1. Spring 2015. February 17, 2015. 1. Hannah is the beneficiary of a trust that will pay her an annual payment of 10,000 with the first payment ...

  19. Testing of GFL Geosiphon

    SciTech Connect (OSTI)

    Steimke, J.L.

    2001-07-10

    A full-scale, transparent replica of a GeoSiphon was constructed in the TFL to test a new concept, using a solar powered vacuum pump to remove accumulated gases from the air chamber. It did not have a treatment cell containing iron filings as do the actual TNX GeoSiphons in the field, but it was accurate in all other respects. The gas generation that is observed in an actual GeoSiphon was simulated by air injection at the inlet of the TFL GeoSiphon. After facility shakedown, three stages of testing were conducted: verification testing, parametric testing and long term testing. In verification testing, the TFL GeoSiphon was used to reproduce a particular test at TNX in which the water flowrate decreased gradually as the result of air accumulation at the crest of a siphon without an air chamber. For this test the vacuum pump was not used and the air chamber was initially filled with air rather than water. Agreement between data from the TNX GeoSiphon and the TFL GeoSiphon was good, which gave confidence that the TFL GeoSiphon was a good hydraulic representation of the TNX GeoSiphon. For the remaining tests, the solar powered vacuum pump and air chamber were used. In parametric testing, steady state runs were made for water flowrates ranging from 1 gpm to 19 gpm, air injection rates ranging from 0 to 77 standard cc/min and outfall line angles ranging from vertical to 60 degrees from vertical. In all cases, the air chamber and vacuum pump removed nearly all of the air and the GeoSiphon operated without problems. In long term testing, the GeoSiphon was allowed to run continuously for 21 days at one set of conditions. During this time the solar cell kept the storage battery fully charged at all times and the control circuit for the vacuum pump operated reliably. The solar panel was observed to have a large excess capacity when used with the vacuum pump. With two changes, the concept of using a solar powered vacuum pump attached to an air chamber should be ready for long term use in the field. Those changes are to insulate the air chamber of the GeoSiphon so it will not freeze in the winter and to make the tank from steel rather than transparent plastic.

  20. Low Power Test-Compression for High Test-Quality and Low Test-Data Volume

    E-Print Network [OSTI]

    Low Power Test-Compression for High Test-Quality and Low Test-Data Volume Vasileios Tenentes,kabousia}@cs.uoi.gr Abstract--Test data decompressors targeting low power scan testing introduce significant amount. In addition, low power decompression needs additional control data which increase the overall volume of test

  1. Architectures of Test Automation 1 High Volume Test AutomationHigh Volume Test Automation

    E-Print Network [OSTI]

    Architectures of Test Automation 1 High Volume Test AutomationHigh Volume Test Automation Cem Kaner Institute of Technology October 2003 #12;Architectures of Test Automation 2 Acknowledgements developed a course on test automation architecture, and in the Los Altos Workshops on Software Testing

  2. Test Anxiety Tips to Ease Your Test Anxiety

    E-Print Network [OSTI]

    Kunkle, Tom

    Test Anxiety Tips to Ease Your Test Anxiety Adapted from: Study Guides and Strategies website, Overcoming test anxiety Test taking can be overwhelming and can cause a lot of anxiety. Try these tips to ease your anxiety through the testing process! Before Approach the exam with confidence Be prepared

  3. Mining Test Cases To Improve Software Maintenance

    E-Print Network [OSTI]

    Ziftci, Celal

    Finding TestTracing Features to Test Cases . . . . . . . . . . . . . . .5.4.2 Finding Test Intents Using

  4. Corrosion testing using isotopes

    DOE Patents [OSTI]

    Hohorst, F.A.

    1995-12-05

    A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.

  5. Bus Fleet Type and Age Replacement Optimization: A case study utilizing King County Metro fleet data

    E-Print Network [OSTI]

    Bertini, Robert L.

    and fuel economy. Fuel price, emissions costs, and initial bus age have little impact on optimal replacement policies. However, discount rate and diesel bus price, annual utilization (in 0% FTA subsidy scenario) and fuel price (in 80% FTA subsidy scenario) have the highest impacts on per-mile costs. #12;2 1

  6. Federal Express CleanFleet Final Report Volume 8: Fleet Economics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is and

  7. Pseudofunctional Delay Tests For High Quality Small Delay Defect Testing 

    E-Print Network [OSTI]

    Lahiri, Shayak

    2012-02-14

    Testing integrated circuits to verify their operating frequency, known as delay testing, is essential to achieve acceptable product quality. The high cost of functional testing has driven the industry to automatically-generated ...

  8. Directed Random Testing Carlos Pacheco

    E-Print Network [OSTI]

    testing can quickly generate many tests, is easy to implement, scales to large software applications, and reveals software errors. But it tends to generate many tests that are illegal or that exercise the same approach to test generation that overcomes these limitations, by combining a bottom-up generation of tests

  9. RF test bench automation Description

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    RF test bench automation Description: Callisto would like to implement automated RF test bench. Three RF test benches have to be studied and automated: LNA noise temperature test bench LNA gain phase of the test benches and an implementation of the automation phase. Tasks: Noise temperature

  10. TESTING SERVICES 1600 Holloway Avenue

    E-Print Network [OSTI]

    TESTING SERVICES 1600 Holloway Avenue SSB One Stop San Francisco, CA 94132 Tel: 415/338-2271 Fax: 415/338-0589 e-mail: testing@sfsu.edu web: www.sfsu.edu/~testing TESTING ACCOMMODATIONS REQUEST FORM) Email Address: Social Security or SF State ID: (not both) Name of Test to be Taken

  11. Request for Information: Operation of Regional Test Center Test...

    Broader source: Energy.gov (indexed) [DOE]

    Contact Us Offices Solicitation Title: Request for Information: Operation of Regional Test Center Test Bed Located at SolarTAC Funding Number: DE-FOA-0001454 Description: The...

  12. Duct Leakage Repeatability Testing

    SciTech Connect (OSTI)

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  13. Micromachine friction test apparatus

    DOE Patents [OSTI]

    deBoer, Maarten P. (Albuquerque, NM); Redmond, James M. (Albuquerque, NM); Michalske, Terry A. (Cedar Crest, NM)

    2002-01-01

    A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.

  14. TEAM PROJECT: USER TESTING

    E-Print Network [OSTI]

    TEAM PROJECT: USER TESTING Due: Wed April 21 (section 2) Thu April 22 (section 1) Now that you have: usability inspection, Neilsen's heuristic evaluation, pluralistic walk through, or GOMS analysis (without part of your project. You might consider a joint session with another team! Format: 3-4 page report

  15. Audiometry (hearing test)

    Broader source: Energy.gov [DOE]

    The audiogram is an evaluation of how well an individual can hear. Sounds are presented to the individual through earphones during the test. These sounds are presented at different levels of frequency and intensity. The human ear responds to the frequency or pitch of a sound and the intensity or loudness of the sound.

  16. Bell Tests for Histories

    E-Print Network [OSTI]

    Jodan Cotler; Frank Wilczek

    2015-03-22

    We describe a procedure to create entangled history states and measurements that would enable one to check for temporal entanglement. The checks take the form of inequalities among observable quantities. They are similar in spirit, but different in detail, to Bell tests for ordinary entanglement.

  17. SMVCIR Dimensionality Test 

    E-Print Network [OSTI]

    Lindsey, Charles D.

    2011-08-08

    : : 134 13 Ex. 5.C.1, Tests for d, n = 5000 : : : : : : : : : : : : : : : : : : : : : 135 14 Output: SMVCIR D1-D4 Correlation : : : : : : : : : : : : : : : : : : 135 15 Output: SMVCIR Eigenvectors : : : : : : : : : : : : : : : : : : : : : 137 16 d = 0..., Normal : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 149 17 d = 0, T10 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 149 18 d = 0, Standardized Exponential(1) : : : : : : : : : : : : : : : : : : : 150 19 d = 1...

  18. GAP TESTS; COMPARISON BETWEEN UN GAP TEST AND CARD GAP TEST

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    98-36 GAP TESTS; COMPARISON BETWEEN UN GAP TEST AND CARD GAP TEST by R. BRANKA and C. MICHOT, FRANCE (tel.: 33 3 44 55 65 19, fax: 33 3 44 55 65 10) ABSTRACT: UN gap test, type 1(a) or 2(a), is the recommended test in the acceptance procedure for transport of explosives in class 1. Up to the revision

  19. Copyright (c) Cem Kaner, Automated Testing. 1 Software Test Automation:Software Test Automation

    E-Print Network [OSTI]

    Copyright (c) Cem Kaner, Automated Testing. 1 Software Test Automation:Software Test Automation: A RealA Real--World ProblemWorld Problem Cem Kaner, Ph.D., J.D. #12;Copyright (c) Cem Kaner, Automated Testing. 2 This TalkThis Talk The most widely used class of automated testing tools leads senior software

  20. Laser-Based Nondestructive Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Laser-Based Nondestructive Testing High speed, non-contact NDT for bridging the gap between traditional nondestructive testing and embedded structural health...

  1. SPECTR System Operational Test Report

    SciTech Connect (OSTI)

    W.H. Landman Jr.

    2011-08-01

    This report overviews installation of the Small Pressure Cycling Test Rig (SPECTR) and documents the system operational testing performed to demonstrate that it meets the requirements for operations. The system operational testing involved operation of the furnace system to the design conditions and demonstration of the test article gas supply system using a simulated test article. The furnace and test article systems were demonstrated to meet the design requirements for the Next Generation Nuclear Plant. Therefore, the system is deemed acceptable and is ready for actual test article testing.

  2. Test-aware Combinatorial Interaction Testing Cemal Yilmaz

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    a configuration model that defines the valid configuration space for the software under test. This model typicallyTest-aware Combinatorial Interaction Testing Cemal Yilmaz Faculty of Engineering and Natural interaction testing (CIT) approaches system- atically sample a given configuration space and select a set

  3. Structured Testing: A Testing Methodology Using the Cyclomatic Complexity Metric

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    The purpose of this document is to describe the structured testing methodology for software testing, also uses the control flow structure of software to establish path cover- age criteria. The resultant testCabe, object oriented, software development, software diagnostic, software metrics, software testing

  4. SOFTWARE TESTING, VERIFICATION AND RELIABILITY Softw. Test. Verif. Reliab. (2014)

    E-Print Network [OSTI]

    2014-01-01

    SOFTWARE TESTING, VERIFICATION AND RELIABILITY Softw. Test. Verif. Reliab. (2014) Published online. INTRODUCTION As software evolves, engineers regression test it to validate new features and detect whether new in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.1562 Directed test suite augmentation

  5. Test Access Mechanism Optimization, Test Scheduling, and Tester Data Volume

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    Test Access Mechanism Optimization, Test Scheduling, and Tester Data Volume Reduction for System Marinissen, Senior Member, IEEE Abstract--We describe an integrated framework for system-on-chip (SOC) test automation. Our framework is based on a new test access mechanism (TAM) architecture consisting of flexible

  6. INVERSE-SQUARE LAW TESTS 1 TESTS OF THE GRAVITATIONAL

    E-Print Network [OSTI]

    Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

    INVERSE-SQUARE LAW TESTS 1 TESTS OF THE GRAVITATIONAL INVERSE-SQUARE LAW E.G.Adelberger, B-1560 KEYWORDS: gravitation, experimental tests of inverse-square law, quantum gravity, extra dimensions ABSTRACT: We review recent experimental tests of the gravitational inverse-square law, and the wide variety

  7. Measuring Test Case Similarity to Support Test Suite Understanding

    E-Print Network [OSTI]

    Zaidman, Andy

    Measuring Test Case Similarity to Support Test Suite Understanding Michaela Greiler, Arie van.e.zaidman}@tudelft.nl Abstract. In order to support test suite understanding, we investigate whether we can automatically derive relations between test cases. In par- ticular, we search for trace-based similarities between (high

  8. Sparkr Blade Test Centre Static tests of wind turbine blades

    E-Print Network [OSTI]

    Sparkær Blade Test Centre Static tests of wind turbine blades Static blade tests are performed down- and up-wind direction, and in the rotor thrust direction and opposite to that, respectively-4000 Roskilde Denmark www.risoe.dk Wind Energy Department Sparkær Blade test Centre vea@risoe.dk Tel

  9. Test factoring with amock: generating readable unit tests from system tests

    E-Print Network [OSTI]

    Glasser, David Samuel

    2007-01-01

    Automated unit tests are essential for the construction of reliable software, but writing them can be tedious. If the goal of test generation is to create a lasting unit test suite (and not just to optimize execution of ...

  10. Soil Testing Lab 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Panels To enhance apparent thermal conductivity we have chosen to use aluminium fins under the form of honeycombs to ensure efficient heat conduction and good PCM incorporation. Commercial honeycomb panels were provided by the SMCI Company.... Honeycombs were 2 cm deep, and after being carefully filled covered with a 1 mm thick aluminium sheet (Figure 2) stuck on the honeycomb tips. Test samples with 15 cm x 15 cm dimension were realized together with a box of identical volume filled with water...

  11. Tests of CPT

    E-Print Network [OSTI]

    Shmuel Nussinov

    2009-07-17

    The ongoing experimental efforts in the high energy and high precision communities keep providing evidence for CPT, a fundamental symmetry holding in any local Lorentz invariant theory. We suggest possible interconnections between different CPT violating parameters. Specifically, the very precise test of CPT in the $K^0-\\bar K^0$ system suggests--though definitely does not imply--that CPT violations in other observable parameters (mass, width, charge, magnetic moments, etc.) are much smaller than the directly measured bounds.

  12. Alfalfa Seed Testing

    E-Print Network [OSTI]

    Ball, O. M. (Oscar Melville)

    1905-01-01

    ....................................... Curled Dock 9 .................... Seeds Sometin~es Used As Adultera~lts 9 Bur Clover ....................................... 10 Sweet Clover ....................................... 10 ............................... Samples Tested for Purity I I... development during the past year or two of the use of falfa as a forage crop makes the matter of purity of the seed to be kwn of peculiar importance to the planter. Alfalfa seed, like those clover, timothy and other similar forage plants, are very small...

  13. Fusion Test Facilities John Sheffield

    E-Print Network [OSTI]

    Fusion Test Facilities John Sheffield ISSE - University of Tennessee FPA meeting Livermore December Stambaugh, and their colleagues #12;Destructive Testing · It is common practice to test engineered components to destruction prior to deployment of a system e.g., - Automobile crash tests - Airplane wing

  14. Hydroshear Simulation Lab Test 2

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bauer, Steve

    2014-08-01

    This data file is for test 2. In this test a sample of granite with a pre cut (man made fracture) is confined, heated and differential stress is applied. max temperature in this this system development test is 95C. test details on the spreadsheets--note thta there are 2 spreadsheets

  15. Online Test Proctoring Request Procedures

    E-Print Network [OSTI]

    Stuart, Steven J.

    Online Test Proctoring Request Procedures #12;Documentation last updated: Friday, January 17, 2014 Page | 2 of 10 Online Test Proctoring Request Form Procedures Contents Test Proctoring Center (TPC............................................................................................................................... 10 #12;Documentation last updated: Friday, January 17, 2014 Page | 3 of 10 Test Proctoring Center

  16. CERTS Microgrid Laboratory Test Bed

    E-Print Network [OSTI]

    Lasseter, R. H.

    2010-01-01

    design and testing of power converters and direct-drive permanent magnet generator technology for wind

  17. Hydroshear Simulation Lab Test 2

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bauer, Steve

    This data file is for test 2. In this test a sample of granite with a pre cut (man made fracture) is confined, heated and differential stress is applied. max temperature in this this system development test is 95C. test details on the spreadsheets--note thta there are 2 spreadsheets

  18. Placement Testing with Justin Gray

    E-Print Network [OSTI]

    Placement Testing with LON-CAPA Justin Gray Dept. of Mathematics SFU #12;Problem Develop reliable placement tests for students who wish to challenge prerequisites for calculus (Calculus Readiness Test) and other quantitative courses (Q Placement Test). #12;Stages Selecting an assessment system Developing

  19. Micro-tensile testing system

    DOE Patents [OSTI]

    Wenski, Edward G.

    2006-01-10

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  20. Micro-tensile testing system

    DOE Patents [OSTI]

    Wenski, Edward G. (Lenexa, KS)

    2007-07-17

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.