National Library of Energy BETA

Sample records for heterotrophic algae cxs

  1. Algae Biotechnology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for advancements in algae biotechnology and bioengineering to support algae feedstock logistics operations; and - will help position the algae biofuels industry for further growth....

  2. BROWN ALGAE Colpomenia sinuosa

    E-Print Network [OSTI]

    Sullivan, Matthew B.

    BROWN ALGAE Colpomenia sinuosa GREEN ALGAE Dictyosphaeria cavernosa Amphiroa fragilissima Gelidiopsis intricata Botryocladia pyriformis RED ALGAE CYANOBACTERIA Oscillitoria acuminata Schizothrix sp. "ALGAE"­ A DIVERSE ASSORTMENT OF LIFE FORMS Photosynthesis is performed by a taxonomically diverse

  3. Algae Biodiesel: Commercialization

    E-Print Network [OSTI]

    Tullos, Desiree

    Algae Biodiesel: A Path to Commercialization Algae Biodiesel: A Path to Commercialization Center conservation and biomonitoring · Algae biodiesel is largest CEHMM project #12;Project Overview: The Missing replace petroleum #12;Project Overview: Local Resources for Algae Biodiesel Project Overview: Local

  4. Brown blob (algae?) (Native) 

    E-Print Network [OSTI]

    James R. Manhart

    2011-08-10

    | pg. 20 cientists at three Texas universities investigating golden algae, its explosive growth, and its deadly toxins have dis- covered an apparent competition between golden algae and blue green algae in certain Texas lakes. Understanding... this competition could lead them closer to controlling this harmful algae, the researchers said. ?Our biggest finding so far,? said Dr. Daniel Roelke of Texas AgriLife Research and one of the investigators, ?is that there appears to be a chemical warfare...

  5. Biogeography of Marine Algae

    E-Print Network [OSTI]

    Biogeography of Marine Algae David J Garbary, St Francis Xavier University, Antigonish, Nova Scotia and vicariance in establishing distributions and as factors associated with speciation. Since eukaryotic algae. There are many species that are virtually cosmopolitan (e.g. the green alga Enteromorpha intestinalis, the red

  6. Algae Protein Fermentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of microalgal proteins to mixed alcohol liquid fuels * Increase the yield of algae biofuel intermediates by integrated conversion of all of the major algal biochemical...

  7. Realization of Algae Potential Algae Biomass Yield Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Realization of Algae Potential Algae Biomass Yield Program March 25, 2015 Technology Area Review Peter Lammers, P.I. New Mexico State University -> Arizona State University This...

  8. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages

    E-Print Network [OSTI]

    Marin, R.

    Oscillating diurnal rhythms of gene transcription, metabolic activity, and behavior are found in all three domains of life. However, diel cycles in naturally occurring heterotrophic bacteria and archaea have rarely been ...

  9. Potential for Biofuels from Algae (Presentation)

    SciTech Connect (OSTI)

    Pienkos, P. T.

    2007-11-15

    Presentation on the potential for biofuels from algae presented at the 2007 Algae Biomass Summit in San Francisco, CA.

  10. 15 Mycorrhizal Specificity and Function in Myco-heterotrophic Plants

    E-Print Network [OSTI]

    Taylor, Lee

    15 Mycorrhizal Specificity and Function in Myco-heterotrophic Plants D.L. Taylor, T.D. Bruns, J . . . . . . . . . . . . . . . 000 15.3.1.6 Molecular Studies of Wild Plants . . . . . . . . . . . . . . . 000 15.3.2 Overview diverse fungi co-exist with the plant. Moreover, in one case, genetic influences of the host plant have

  11. Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon?

    E-Print Network [OSTI]

    Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon? Marc-Andre´ Selosse1 ISYEB), CP 50, 45 rue Buffon, 75005 Paris, France 2 School of Life Sciences, University of Kwa with mycorrhizal fungi, the rhizoctonias, which are considered to exchange min- eral nutrients against plant carbon

  12. BRANCHED ALKANES FROM BLUE-GREEN ALGAE

    E-Print Network [OSTI]

    Han, Jerry; Calvin, Melvin.

    2008-01-01

    ALKANES FROM BLUE-GREEN ALGAE RECEIV r -· LAWREW RADIATIONAlkanes From Blue-Green Algae by Jerry Han and Oep~rtment l~alkanes from blue-green algae were separated on a The

  13. Metabolism of Thioctic Acid in Algae

    E-Print Network [OSTI]

    Grisebach, Hans; Fuller, R.C.; Calvin, M.

    1956-01-01

    METABOLISM OF THlOCTlC ACID IN ALGAE TWO-WEEK LOAN COPY ThisMETABOLISM OF THIOCTIC ACID IN ALGAE Hans Grisebach, R. , C.METABOLISM OF THIOCTIC ACID IN ALGAE Hans Grisebach, R. C.

  14. Algae to Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R Othe NuMIAlAlgae to

  15. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  16. Transgenic algae engineered for higher performance

    DOE Patents [OSTI]

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  17. Testing for Toxic Algae By Tadd Barrow

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Testing for Toxic Algae By Tadd Barrow UNL Extension Educator, Water Quality Algae is a microscopic plant that occurs in all water. However, only certain conditions bring algae to the surface, making it toxic to animals, especially humans and dogs. Toxic algae often are naturally occurring from high

  18. A modeling study of benthic detritus flux's impacts on heterotrophic processes in Lake Michigan

    E-Print Network [OSTI]

    Chen, Changsheng

    ] Effects of sediment resuspension-induced benthic detrital flux on the heterotrophic part of the microbial resuspension events in southern Lake Michigan raise a fundamental question regarding the effect of benthic revealed that heterotrophic bacterial productivity increased significantly during the resuspension events

  19. Analytical approaches to photobiological hydrogen production in unicellular green algae

    E-Print Network [OSTI]

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01

    monas reinhardtii (green alga). Planta 214:552–561. doi:adaptation in the green alga Chlamydomonas reinhardtii. Eurhydrogenase from the green alga Chlamydomonas reinhardtii.

  20. Common benthic algae and cyanobacteria in southern California tidal wetlands

    E-Print Network [OSTI]

    Janousek, Christopher N

    2011-01-01

    Janousek Janousek 2011: Algae and cyanobacteria of southernto the Marine Bluegreen Algae. John Wiley and Sons, NewDistribution of bluegreen algae in a Mississippi gulf coast

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and...

    Office of Environmental Management (EM)

    Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner...

  2. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01

    enclosures for growing algae (OMEGA). J. Sustainableenclosures for growing algae (OMEGA). Bioresour. Technol.enclosures for growing algae (OMEGA). Journal of Sustainable

  3. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of...

  4. Wastewater Reclamation and Biofuel Production Using Algae | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wastewater Reclamation and Biofuel Production Using Algae Wastewater Reclamation and Biofuel Production Using Algae Breakout Session 2-A: The Future of Algae-Based Biofuels...

  5. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01

    of biodiesel and biogas from algae: A review of processof Biodiesel and Biogas from Algae: A Review of Processof biodiesel and biogas from algae: A review of process

  6. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect (OSTI)

    Gharagozloo, Patricia E.; Drewry, Jessica L.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  7. School of Engineering and Science Algae Biofuels

    E-Print Network [OSTI]

    Fisher, Frank

    School of Engineering and Science Algae Biofuels BY: Alessandro Faldi, Ph.D. Section Head is algae- based biofuels, which we believe could be a meaningful part of the energy mix in the future. Algae biofuels have potential to be an economically viable, low-net carbon transportation fuel

  8. Reduced models of algae growth Heikki Haario,

    E-Print Network [OSTI]

    Bardsley, John

    Reduced models of algae growth Heikki Haario, Leonid Kalachev Marko Laine, Lappeenranta University of the phenomena studied. Here, in the case of algae growth modelling, we show how a systematic model reduction may: Algae growth modelling, asymptotic methods, model reduction, MCMC, Adaptive Markov chain Monte Carlo. 1

  9. Siderophore production by heterotrophic bacterial isolates from the Costa Rica upwelling dome

    E-Print Network [OSTI]

    Krey, Whitney B. (Whitney Blair)

    2008-01-01

    (cont) An increased understanding of heterotrophic bacterial strategies for acquiring nutrients and trace elements is critical for elucidating their impact on biogeochemical cycling in the ocean. It is estimated that iron ...

  10. The ecology, life history, and phylogeny of the marine thecate heterotrophic dinoflagellates Protoperidinium and Diplopsalidaceae (Dinophyceae)

    E-Print Network [OSTI]

    Gribble, Kristin Elizabeth

    2006-01-01

    Marine thecate heterotrophic dinoflagellates likely play an important role in the consumption of primary productivity and in the trophic structure of the plankton, yet we know little about these species. This thesis expanded ...

  11. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    E-Print Network [OSTI]

    Prochnik, Simon E.

    2011-01-01

    in the multicellular green alga Volvox carteri One-sentencegenome reveals that this green alga’s increased organismal16 P. Volvocine algae-specific protein

  12. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect (OSTI)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  13. Energy 101 | Algae-to-Fuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel.

  14. Whole Algae Hydrothermal Liquefaction Technology Pathway | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Whole Algae Hydrothermal...

  15. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    E-Print Network [OSTI]

    Grigoriev, Igor

    2011-01-01

    Niche of harmful alga Aureococcus anophagefferens revealedc consensus. Harmful Algae 8:3–13. 2. Sunda WG, Graneli E,of the United States. Harmful Algae 8:39–53. 4. Smayda TJ (

  16. FAS4932: ALGAE BIOLOGY AND ECOLOGY Instructor: Professor Edward Phlips

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    FAS4932: ALGAE BIOLOGY AND ECOLOGY Instructor: Professor Edward Phlips Main Office: Program algae, including evolution, classification, structure, photosynthesis, growth, and reproduction. Emphasis on the ecological role of algae in different aquatic ecosystems (e.g. open ocean, estuaries, coral

  17. BOTANICAL BRIEFING Streptophyte algae and the origin of embryophytes

    E-Print Network [OSTI]

    BOTANICAL BRIEFING Streptophyte algae and the origin of embryophytes Burkhard Becker* and Birger March 2009 Background Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli

  18. 7 Systematics of the green algae: conflict of classic

    E-Print Network [OSTI]

    123 7 Systematics of the green algae: conflict of classic and modern approaches Thomas Pröschold ....................................................................................................................................124 How are green algae classified ....................................................................................................................................144 Biodiversity of green algae based on taxonomic revision using polyphasic approaches

  19. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01

    Production of biodiesel and biogas from algae: A review ofProduction of Biodiesel and Biogas from Algae: A Review ofProduction of biodiesel and biogas from algae: A review of

  20. Algae Biotecnologia | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts:RenewableIncAlcorn CountyAlgae

  1. Florida Algae | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flats 100k.pdf JumpFlemington, NewFloodplains JumpAlgae

  2. Multi-Scale Characterization of Improved Algae Strains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (BETO) 2015 Project Peer Review Multi-Scale Characterization of Improved Algae Strains March 23, 2015 Algae Technology Area Review Dr. Taraka Dale Los Alamos...

  3. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient...

    Office of Environmental Management (EM)

    Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater...

  4. Crow Nation Students Participate in Algae Biomass Research Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project October 22, 2012 - 3:44pm Addthis Crow Nation...

  5. Nanotechnology and algae biofuels exhibits open July 26 at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

  6. BETO Deputy Director Publishes Commentary on Development of Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO Deputy Director Publishes Commentary on Development of Algae as Renewable Energy Source BETO Deputy Director Publishes Commentary on Development of Algae as Renewable Energy...

  7. Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvani...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania August 6, 2010 - 2:00pm Addthis A...

  8. Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling October 19, 2015 - 3:40pm Addthis Ryan Davis...

  9. Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling October 5, 2015 - 12:16pm Addthis Ryan Davis...

  10. Flocculation of model algae under shear.

    SciTech Connect (OSTI)

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  11. Heterotrophic microbial activity in lake sediments: effects of organic electron donors

    E-Print Network [OSTI]

    Florida, University of

    respiration per unit of microbial biomass, 0.008 ± 0.001) indicating inefficient use of energy. The low qCO2Heterotrophic microbial activity in lake sediments: effects of organic electron donors Isabela C in benthic sediments are mineralized by microbial communities, resulting in release of nutrients to the water

  12. Heterotrophic microbial activity in lake sediments: effects of organic electron donors

    E-Print Network [OSTI]

    Florida, University of

    Heterotrophic microbial activity in lake sediments: effects of organic electron donors Isabela C organic matter deposited in benthic sediments are mineralized by microbial communities, resulting in release of nutrients to the water column. Lakes with different trophic states may have sediments

  13. Method and apparatus for processing algae

    DOE Patents [OSTI]

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  14. Triassic origin and early radiation of multicellular volvocine algae

    E-Print Network [OSTI]

    Triassic origin and early radiation of multicellular volvocine algae Matthew D. Herron1 , Jeremiah-studied ETIs is the origin of multicellularity in the green alga Volvox, a model system for the evolution occurred dozens of times independently, for example in the red algae, brown algae, land plants, animals

  15. Aridity and Algae: Biodiesel Production in Arizona Jenna Bloxom

    E-Print Network [OSTI]

    Fay, Noah

    Aridity and Algae: Biodiesel Production in Arizona Jenna Bloxom Advisor: Dr. Scott Whiteford Center resources. Often excluded from the typical water- related concerns associated with biofuels as algae as the best location in the world to grow algae, the state of Arizona is now home to several premier algae

  16. Analysis of Land Suitable for Algae State of Hawaii

    E-Print Network [OSTI]

    Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele Chillingworth Scott of Hawaii at Manoa August 2011 #12;i Executive Summary Algae are considered to be a viable crop for biofuel for biofuels has increased interest in growing algae in Hawaii for biofuels. An analysis of algae production

  17. HARMFUL ALGAE POSE ADDITIONAL CHALLENGES FOR OYSTER RESTORATION: IMPACTS OF THE HARMFUL ALGAE KARLODINIUM VENEFICUM AND PROROCENTRUM

    E-Print Network [OSTI]

    North, Elizabeth W.

    HARMFUL ALGAE POSE ADDITIONAL CHALLENGES FOR OYSTER RESTORATION: IMPACTS OF THE HARMFUL ALGAE deformed within 48 h in one experimental trial, but not in a second trial in which algae were difficult. KEY WORDS: oysters, larvae, harmful algae, HABs, Chesapeake Bay, oyster restoration, Karlodinium

  18. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect (OSTI)

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  19. Algae Biomass Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslieAlgae Biomass Summit Algae Biomass Summit

  20. Transcriptional Regulation in Algae, Fungi and Plants: Mating Loci, Splicing, and miRNAs

    E-Print Network [OSTI]

    Douglass, Stephen Michael

    2014-01-01

    from organisms ranging from algae to fungi and plants. WeTranscriptional Regulation in Algae, Fungi and Plants:Transcriptional Regulation in Algae, Fungi and Plants:

  1. Synthesis and Metabolism of Carbonyl-C14 Pyruvic and Hydroxypyruvic Acids in Algae

    E-Print Network [OSTI]

    Milhaud, Gerhard; Benson, Andrew A.; Calvin, M.

    1955-01-01

    AND HYDROXYPYRUVIC ACIDS IN ALGAE Cerhard Milhaud, Andrew A.HYDROXYPYRUYIC ACIDS IN ALGAE Gerhard Milhaud, * - Andrew A.AND HYDROXYPYRUVIC ACIDS IN ALGAE Gerhard Milhaud, Andrew A.

  2. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    E-Print Network [OSTI]

    Ngan, Chew Yee

    2014-01-01

    Chromatin landscaping in algae reveals novel regulationChromatin landscaping in algae reveals novel regulationis known about the algae lipid biosynthetic regulatory

  3. Turning Algae into Energy in New Mexico

    SciTech Connect (OSTI)

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  4. Turning Algae into Energy in New Mexico

    ScienceCinema (OSTI)

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2014-06-24

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  5. Micro-scale interactions between chemotactic bacteria and algae

    E-Print Network [OSTI]

    Vahora, Nisha

    2010-01-01

    Traditional views of marine environments describe the ocean pelagic zone as a homogeneous nutrient-poor environment. Heterotrophic marine bacteria that have evolved high-energy mechanisms for swimming abilities and sensing ...

  6. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 14 novembre 2011 Compitino (2 ore)

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 14 novembre 2011­ Compitino (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  7. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 2 febbraio 2012 Compitino (2 ore)

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 2 febbraio 2012­ Compitino (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  8. A golden opportunity: Researchers making progress in understanding toxic algae 

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01

    | pg. 20 cientists at three Texas universities investigating golden algae, its explosive growth, and its deadly toxins have dis- covered an apparent competition between golden algae and blue green algae in certain Texas lakes. Understanding... this competition could lead them closer to controlling this harmful algae, the researchers said. ?Our biggest finding so far,? said Dr. Daniel Roelke of Texas AgriLife Research and one of the investigators, ?is that there appears to be a chemical warfare...

  9. ORIGINAL ARTICLE Phagotrophy by the picoeukaryotic green alga

    E-Print Network [OSTI]

    ORIGINAL ARTICLE Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic, is well established for most photosynthetic lineages. However, green algae, including prasinophytes, were of Micromonas suggest that these green algae may have significant impact on prokaryote populations in several

  10. Biosorption of Lead and Nickel by Biomass of Marine Algae

    E-Print Network [OSTI]

    Volesky, Bohumil

    Biosorption of Lead and Nickel by Biomass of Marine Algae Z.R. Holan and B. Volesky" Department 22, 1993 Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales

  11. Update on Genomic Studies of Algae Paths toward Algal Genomics

    E-Print Network [OSTI]

    Update on Genomic Studies of Algae Paths toward Algal Genomics Arthur R. Grossman* The Carnegie the expression of genes. In this introductory manuscript, I discuss select algae and how genomics is impacting our understanding of these organisms. Four algae for which near-full genome information has become

  12. CORALLINE ALGA STANDS THE TEST OF TIME ON SHORELINE

    E-Print Network [OSTI]

    Martone, Patrick T.

    Inside JEB i CORALLINE ALGA STANDS THE TEST OF TIME ON SHORELINE No one likes getting bashed about, the coralline algae, which have calcified most of their cells and essentially turned themselves into living, and thus most of force, occurring at the small joints (they make up just 15% of the alga), Denny wondered

  13. INHIBITION OF PHOTOSYNTHESIS IN CERTAIN ALGAE BY EXTREME RED LIGHT

    E-Print Network [OSTI]

    Govindjee

    INHIBITION OF PHOTOSYNTHESIS IN CERTAIN ALGAE BY EXTREME RED LIGHT GOVINDJEE, EUGENE RABINOWITCH. INTRODUCTION It was shown in preceding papers (9, 10) that when the unicellular red alga Por- phyridium), these algae, when exposed to monochromatic light (bands isolated by a grating monochromator, band half

  14. FAS6176 ALGAE BIOLOGY AND ECOLOGY Instructor: Professor Edward Phlips

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    FAS6176 ALGAE BIOLOGY AND ECOLOGY Instructor: Professor Edward Phlips 7922 NW 71st Street the biology and ecology of aquatic algae, including evolution, classification, structure, photosynthesis, growth, and reproduction. Emphasis on the ecological role of algae in different aquatic ecosystems (e

  15. Sedimentation of algae: relationships with biomass and size distribution1

    E-Print Network [OSTI]

    Mazumder, Asit

    Sedimentation of algae: relationships with biomass and size distribution1 Isabelle Larocque, A distribution of epilimnetic algae on patterns of algal sedimentation was determined in lake enclosures under the mean length of algae in fish-free enclosures and reduced the mean length in the enclosures to which

  16. Environmental Life Cycle Comparison of Algae to Other Bioenergy

    E-Print Network [OSTI]

    Clarens, Andres

    Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks A N D R E S F . C L A R December 6, 2009. Accepted December 15, 2009. Algae are an attractive source of biomass energy since. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from

  17. Gille-STPA 35 1 Noxious Algae in Carlsbad

    E-Print Network [OSTI]

    Gille, Sarah T.

    Gille-STPA 35 1 Noxious Algae in Carlsbad Spanish explorers of this region came across a lagoon Woodfield Dubbed "killer algae," the alien seaweed Caulerpa taxifolia was discovered in June 2000. Caulerpa taxifolia is a green alga native to tropical waters that typically grows to small size

  18. Global Dynamics of Zooplankton and Harmful Algae in Flowing Habitats

    E-Print Network [OSTI]

    Hsu, Sze-Bi

    Global Dynamics of Zooplankton and Harmful Algae in Flowing Habitats Sze-Bi Hsu Feng-Bin Wang Xiao from the dynamics of harmful algae and zooplankton in flowing- water habitats where a main channel. For the system modeling the dynamics of algae and their toxin that contains little limiting nutrient, we

  19. Intracellular invasion of green algae in a salamander host

    E-Print Network [OSTI]

    Intracellular invasion of green algae in a salamander host Ryan Kerneya,1 , Eunsoo Kimb , Roger P) and green algae ("Oophila amblystomatis" Lamber ex Printz) has been considered an ectosymbiotic mutu- alism tracts, consistent with oviductal transmission of algae from one salamander generation to the next

  20. AQU 04 Portable Algae Flow Cytometer Team Members

    E-Print Network [OSTI]

    Soatto, Stefano

    AQU 04 Portable Algae Flow Cytometer Team Members · David Caron, Faculty · Han-Chieh Chang · Yu-Chong Tai, Faculty, PI* * Primary Contact Overview The portable algae flow cytometer is a project that aims to expedite research in algae biology using microfluid-based and state-of-the-art detection

  1. Analysis of Land Suitable for Algae State of Hawaii

    E-Print Network [OSTI]

    Analysis of Land Suitable for Algae Production State of Hawaii Prepared for the U.S. Department agency thereof. #12;Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele University of Hawaii at Manoa August 2011 #12;i Executive Summary Algae are considered to be a viable crop

  2. FAS6932: ALGAE BIOLOGY AND ECOLOGY Instructor: Professor Edward Phlips

    E-Print Network [OSTI]

    Watson, Craig A.

    FAS6932: ALGAE BIOLOGY AND ECOLOGY Instructor: Professor Edward Phlips Main Office: Program-mail: phlips@ufl.edu Office Hours: Mondays 4pm-5pm Course Description: The biology and ecology of aquatic algae on the ecological role of algae in different aquatic ecosystems (e.g. open ocean, estuaries, coral reefs, rocky

  3. Seeing Toxic Algae Before it Blooms By Steve Ress

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Seeing Toxic Algae Before it Blooms By Steve Ress Researchers at the University of Nebraska of toxic blue-green algae before the bacteria that produce it can grow into a full-scale bloom. Now UNL and monitor in real-time, the water-borne agents that can cause toxic blue- green algae to flourish and become

  4. Responses of Heterotrophic and Autotrophic Pico- and Nano-Plankton to Nutrient Availability and Enrichment across Marine Systems in the Northern Gulf of Mexico 

    E-Print Network [OSTI]

    Shepard, Alicia Kail

    2015-08-13

    relationships between inorganic nutrients and marine microbial communities. Correlations specifically indicated the importance of temperature, salinity and inorganic nutrients to changes in microbial physiological community structure. Heterotrophic microbes...

  5. Algae 2011, 26(2): 181-192 DOI: 10.4490/algae.2011.26.2.181

    E-Print Network [OSTI]

    Meyers, Steven D.

    Algae 2011, 26(2): 181-192 DOI: 10.4490/algae.2011.26.2.181 Open Access Research Article Copyright © The Korean Society of Phycology 181 http://e-algae.kr pISSN: 1226-2617 eISSN: 2093-0860 Methods for sampling, distribution, and reproduction in any medium, provided the original work is properly cited. #12;Algae 2011, 26

  6. Battling Golden Algae: Results suggest preventative lake management approaches 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2011-01-01

    stream_source_info Battling Golden Algae.pdf.txt stream_content_type text/plain stream_size 10626 Content-Encoding ISO-8859-1 stream_name Battling Golden Algae.pdf.txt Content-Type text/plain; charset=ISO-8859-1 14 tx H2...O Winter 2011 Story by Danielle Supercinski Battling golden algae Results suggest preventative lake management approaches Golden algae blooms, or the explosive growth of algae, are known to be toxic, but recent ?ndings from three university...

  7. Battling golden algae: Results suggest preventative lake managment approaches 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2011-01-01

    stream_source_info Battling Golden Algae.pdf.txt stream_content_type text/plain stream_size 10626 Content-Encoding ISO-8859-1 stream_name Battling Golden Algae.pdf.txt Content-Type text/plain; charset=ISO-8859-1 14 tx H2...O Winter 2011 Story by Danielle Supercinski Battling golden algae Results suggest preventative lake management approaches Golden algae blooms, or the explosive growth of algae, are known to be toxic, but recent ?ndings from three university...

  8. Whole Algae Hydrothermal Liquefaction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy Costs by IncreasingWhole Algae Hydrothermal

  9. Flowing with the Tide:Epiphytic Host-Specificity and Phenotypic Plasticity of the Brown Alga Padina boryana

    E-Print Network [OSTI]

    Flynn, Sierra Michelle

    2011-01-01

    PLASTICITY OF THE BROWN ALGA PADINA BORYANA SIERRA M. FLYNN94720 USA Abstract. Epiphytic algae form complex communitiesmacroalgae hosts. The brown alga Padina boryana acts as a

  10. Stable isotopic records of bleaching and endolithic algae blooms in the skeleton of the boulder forming coral Montastraea faveolata

    E-Print Network [OSTI]

    Hartmann, A. C.; Carilli, J. E.; Norris, R. D.; Charles, C. D.; Deheyn, D. D.

    2010-01-01

    of bleaching and endolithic algae blooms in the skeleton ofa lesser extent, endolithic algae within the coral skeleton.Endolithic algae produce distinctive green bands in the

  11. RESEARCH ARTICLE Open Access Origin of land plants: Do conjugating green algae

    E-Print Network [OSTI]

    RESEARCH ARTICLE Open Access Origin of land plants: Do conjugating green algae hold the key? Sabina (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms

  12. Mass Production of Biodiesel From Algae UROP Summer 2008 Project Proposal

    E-Print Network [OSTI]

    Minnesota, University of

    1 Mass Production of Biodiesel From Algae UROP Summer 2008 Project Proposal Steven A. Biorn Faculty energy products from algae. The first step in this process is to select species of algae with high growth of green algae. Once the oils have been extracted, the remnants of the algae contain protein, starches

  13. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape-building desert plant species

    SciTech Connect (OSTI)

    Zhang, Jinxin [Chinese Academy of Forestry; Gu, Lianhong [ORNL

    2014-01-01

    A longstanding puzzle in isotopic studies of C3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C3 species that has an exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotopic ratios and nitrogen and phosphorous concentrations of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotopic ratios on nearby intact plants of N. tangutorum. We found that higher nitrogen concentrations in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous concentrations had no effect on the enrichment. In addition, new leaves had carbon isotopic ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, probably the refixation of respiratory CO2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs while processes within leaves or during phloem loading may contribute to the overall autotrophic heterotrophic difference in carbon isotopic compositions.

  14. Using CO2 & Algae to Treat Wastewater and

    E-Print Network [OSTI]

    Keller, Arturo A.

    Using CO2 & Algae to Treat Wastewater and Produce Biofuel Feedstock Tryg Lundquist Cal Poly State of the Industry and Growth · Algae's Role in WW Treatment · CO2's New Role · Research at Cal Poly · Future Work/MG 0.3 MGD average flow per facility #12;Reclaimed Algae Bacteria O2 CO2 N Organics N P CO2 P CO2 Waste

  15. Method for producing hydrogen and oxygen by use of algae

    DOE Patents [OSTI]

    Greenbaum, Elias (Oak Ridge, TN)

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  16. Method for producing hydrogen and oxygen by use of algae

    DOE Patents [OSTI]

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  17. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect (OSTI)

    Elliott, Doug

    2013-12-17

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  18. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema (OSTI)

    Elliott, Doug

    2014-06-02

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  19. Toxic and deadly: Working to manage algae in Lake Granbury 

    E-Print Network [OSTI]

    Wythe, Kathy

    2011-01-01

    Working to manage algae in Lake Granbury Lake Granbury, located about 33 miles southwest of Fort Worth, is a recreation haven for water enthusiasts. In recent years, however, bacteria and golden algae have threatened the lake?s water quality.... Educating citizens about water quality issues affecting Lake Granbury and determining ways to manage the deadly algae are the focus of two Texas Water Resources Institute (TWRI) projects. Lake Granbury, a critical water supply in North Central Texas...

  20. Toxic and deadly: Working to manage algae in Lake Granbury 

    E-Print Network [OSTI]

    Wythe, Kathy

    2010-01-01

    Working to manage algae in Lake Granbury Lake Granbury, located about 33 miles southwest of Fort Worth, is a recreation haven for water enthusiasts. In recent years, however, bacteria and golden algae have threatened the lake?s water quality.... Educating citizens about water quality issues affecting Lake Granbury and determining ways to manage the deadly algae are the focus of two Texas Water Resources Institute (TWRI) projects. Lake Granbury, a critical water supply in North Central Texas...

  1. Real Time Diagnostics for Algae-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories is developing a suite of complementary technologies to help the emerging algae industry detect and quickly recover from algal pond crashes, an obstacle to...

  2. Sandia Energy - The National Algae Testbed Public-Private Partnership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Algae Testbed Public-Private Partnership Kick-Off Meeting at Arizona State University Home Renewable Energy Energy Biofuels Partnership News News & Events Systems...

  3. Method and apparatus for lysing and processing algae

    DOE Patents [OSTI]

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  4. BETO Deputy Director Publishes Commentary on Development of Algae...

    Broader source: Energy.gov (indexed) [DOE]

    challenge of using algae for biofuel production. "Algal lipids are useful for the production of biodiesel, bioethanol, renewable diesel and biogasoline, biohydrogen, and...

  5. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01

    2011). Production of biodiesel and biogas from algae: A2007). Y. Chisti, Biodiesel from microalgae. Biotechnologyas a potential source for biodiesel production. Applied

  6. Analytical approaches to photobiological hydrogen production in unicellular green algae

    E-Print Network [OSTI]

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01

    Photofermentation and hydrogen production upon sulphurG, Happe T (2008) Hydrogen production by ChlamydomonasA, Happe T (2001) Hydrogen production. Green algae as a

  7. The Algae Foundation Announces New DOE Funded Education Initiative...

    Energy Savers [EERE]

    industry through research, education, and outreach, announced plans at the 2015 Algae Biomass Organization Summit to develop an innovative formal degree program. The Department of...

  8. Whole Turf Algae to biofuels-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turf algae polyculture maximizes fuels, chemicals and nutrients New Approach to Algal Biomass Production Sandia National Laboratories in partnership with the Smithsonian Institute...

  9. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01

    Evaluation of Algal Biofuel Production: Experimental andon investment for algal biofuel production coupled withAssessment of Algae Biofuel Production” Energy Biosciences

  10. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect (OSTI)

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in the same photobioreactor system should be similar at light limited growth conditions based on photon flux. It is how the algae 'allocate' this energy captured that will vary: Data will be presented that shows that Botryococcus invests greater energy in oil production than Chlorella under these growth conditions. In essence, the Chlorella can grow 'fast and lean' or can be slowed to grow 'slow and fat'. The overall energy potential between the Chlorella and Botryococcus, then, becomes much more equivalent on a per-photon basis. This work will indicate an interesting relationship between two very different algae species, in terms of growth rate, lipid content and composition, and energy efficiency of the overall process. The presentation will indicate that in light-limited growth, it cannot be assumed that either rapid growth rate or lipid production rate can be used as stand-alone indicators of which species-lipid relationships will truly be more effective in algae-to-fuels scenarios.

  11. Micro-algae come of age as a platform for recombinant protein production

    E-Print Network [OSTI]

    Specht, Elizabeth; Miyake-Stoner, Shigeki; Mayfield, Stephen

    2010-01-01

    et al. 2008), chlorophyta alga Ulva pertusa Table 1 Recentprotein production in algae Expression level achieved010-0326-5 REVIEW Micro-algae come of age as a platform for

  12. Streptophyte Algae and the Origin of Land Plants Revisited Using Heterogeneous Models with Three New Algal

    E-Print Network [OSTI]

    Davis, Charles

    Letter Streptophyte Algae and the Origin of Land Plants Revisited Using Heterogeneous Models algae, but different lineages of streptophytes have been suggested to be the sister group of land plants chloroplast genomes from streptophyte algae: Coleochaetae orbicularis (Coleochaetales), Nitella hookeri

  13. Field Study of Growth and Calcification Rates of Three Species of Articulated Coralline Algae in

    E-Print Network [OSTI]

    Martone, Patrick T.

    Field Study of Growth and Calcification Rates of Three Species of Articulated Coralline Algae of coralline algae. Decreases in coralline abundance may have cascading effects on marine ecosys- tems- mon species of articulated coralline algae (Bossiella plu- mosa, Calliarthron tuberculosum

  14. Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae from subaerial corticolous biofilms

    E-Print Network [OSTI]

    Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae. Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae from subaerial the Parachloroidium strains from other similar green algae. However, ultrastructural characteristics and molecular

  15. CONTRIBUTION TO THE KNOWLEDGE OF SOIL ALGAE OF TWO ABANDONED INDUSTRIAL

    E-Print Network [OSTI]

    CONTRIBUTION TO THE KNOWLEDGE OF SOIL ALGAE OF TWO ABANDONED INDUSTRIAL SEDIMENTATION BASINS Sixty three species of soil algae and Cyanoprocaryota were recovered from eight investigated sites sites in Chvaletice suggests soil toxicity of these biotopes. Keywords Soil algae, Chlorophyta

  16. Commercial Algae Management | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to:Information9176632°,Information SWIR andAlgae

  17. Update on Genomic Studies of Algae Paths toward Algal Genomics

    E-Print Network [OSTI]

    Update on Genomic Studies of Algae Paths toward Algal Genomics Arthur R. Grossman* The Carnegie of genomic information that is being used to help researchers understand the gene content of organisms, how the expression of genes. In this introductory manuscript, I discuss select algae and how genomics is impacting

  18. Start | View At a Glance | Author Index 219-5 Coupled Biotic and Abiotic Arsenite Oxidation Kinetics with Heterotrophic Soil Bacteria and a Poorly Crystalline

    E-Print Network [OSTI]

    Sparks, Donald L.

    Kinetics with Heterotrophic Soil Bacteria and a Poorly Crystalline Manganese Oxide. See more from rates in batch experiments with a mixture of poorly crystalline manganese oxide (-MnO2) and four strains

  19. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    SciTech Connect (OSTI)

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  20. Photobiological hydrogen production with switchable photosystem-II designer algae

    DOE Patents [OSTI]

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  1. SEN 02 Portable Algae Flow Cytometer SEN 02.1 Overview

    E-Print Network [OSTI]

    Soatto, Stefano

    SEN 02 Portable Algae Flow Cytometer SEN 02.1 Overview The portable algae flow cytometer is a project that aims to expedite research in algae biology using microfluid-based and state is to develop a portable flow cytometer that is suitable for on-field monitoring of algae population and reduce

  2. LIFETIME OF THE EXCITED STATE IN VIVO I. CHLOROPHYLL a IN ALGAE, AT ROOM

    E-Print Network [OSTI]

    Govindjee

    LIFETIME OF THE EXCITED STATE IN VIVO I. CHLOROPHYLL a IN ALGAE, AT ROOM AND AT LIQUID NITROGEN decay of chloro- phyll (Chl) a in the green alga Chlorella pyrenoidosa, the red alga Porphyridium cruentum, and the blue-green alga Anacystis nidulans was measured by the phase- shift method under

  3. Plant & CellPhysiol. 14: 1081-1097 (1973) Photophosphorylation in intact algae: Effects of

    E-Print Network [OSTI]

    Govindjee

    1973-01-01

    Plant & CellPhysiol. 14: 1081-1097 (1973) Photophosphorylation in intact algae: Effects alga Chlorella pyrenoidosa and of the blue-green alga Anacystis nidulans. A few measurements in extracts from intact cells of the green alga Chlorella in the early 1950's (3, 4), few workers measured

  4. MID-LATE DEVONIAN CALCIFIED MARINE ALGAE AND CYANOBACTERIA, SOUTH CHINA

    E-Print Network [OSTI]

    Riding, Robert

    MID-LATE DEVONIAN CALCIFIED MARINE ALGAE AND CYANOBACTERIA, SOUTH CHINA QI FENG,1 YI-MING GONG,1 contain microfossils generally regarded as calcified algae and cyanobacteria. These are present in 61 out with differing degrees of confidence, and placed in algae, cyanobacteria or microproblematica. Algae: Halysis

  5. Phylogeny of ulotrichalean algae from extreme high-altitude and high-latitude ecosystems

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Phylogeny of ulotrichalean algae from extreme high-altitude and high-latitude ecosystems S. K the terrestrial algae that are found in these systems. Here, we show that terrestrial algae in the Ulotrichales and the high Himalayas. We further show that these ulotrichalean algae are closely related (using 18S, ITS/5.8S

  6. THE POTENTIAL FOR MICRO-ALGAE AND OTHER "MICRO-CROPS" TO PRODUCE

    E-Print Network [OSTI]

    Edwards, Paul N.

    THE POTENTIAL FOR MICRO-ALGAE AND OTHER "MICRO-CROPS" TO PRODUCE SUSTAINABLE BIOFUELS A REVIEW INTRODUCTION Biofuel derived from algae and other micro-crops has been proposed as an environmentally benign transportation fuel. Algae can be cultivated on low productivity lands using low quality water. Interest in algae

  7. Evaluation of defatted and whole algae as feed ingredients for the marine shrimp, litopenaeus vannamei

    SciTech Connect (OSTI)

    Morgan, J. L.; Patnaik, S.; Gatlin, III, D. M.; Lawrence, A. L.

    2012-06-13

    Evaluation of defatted and whole algae as feed ingredients for the marine shrimp, litopenaeus vannamei

  8. ATP3 Algae Testbed Public-Private Partnership

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy ATP3 Algae Testbed Public-Private Partnership John A. McGowen, Director of Operations and Program, Arizona State University, AzCATI and ATP3

  9. Devonian Fungi: Interactions with the Green Alga Palaeonitella

    E-Print Network [OSTI]

    Taylor, Thomas N.; Hass, Hagen; Remy, Winfried

    1992-11-01

    This paper describes three new taxa of fossil aquatic fungi preserved in 400-million-year-old Lower Devonian Rhynie Chert. All of the fungal morphotypes are attached to cells of the green alga Palaeonitella cranii. Milleromyces rhyniensis...

  10. Soil and Plant Responses to Lipid-Extracted Algae 

    E-Print Network [OSTI]

    Lewis, Katie

    2014-08-25

    following lipid extraction that might be used as a soil amendment for agricultural production. The overall objective of this series of experiments was to determine the feasibility and management strategies required to best utilize lipid-extracted algae...

  11. Algae culture for cattle feed and water purification. Final report

    SciTech Connect (OSTI)

    Varani, F.T.; Schellenbach, S.; Veatch, M.; Grover, P.; Benemann, J.

    1980-05-16

    The feasibility of algae growth on centrate from anaerobic digester effluent and the refeed of both effluent solids and the algae to feedlot cattle were investigated. The digester was operated with dirt feedlot manure. The study serves as a supplement for the work to design a utility sized digester for the City of Lamar to convert local feedlot manure into a fuel gas. The biogas produced would power the electrical generation plant already in service. Previous studies have established techniques of digester operation and the nutritional value for effluent solids as fed to cattle. The inclusion of a single-strain of algae, Chlorella pyrenidosa in the process was evaluated here for its capability (1) to be grown in both open and closed ponds of the discharge water from the solids separation part of the process, (2) to purify the discharge water, and (3) to act as a growth stimulant for cattle feed consumption and conversion when fed at a rate of 6 grams per head per day. Although it was found that the algae could be cultured and grown on the discharge water in the laboratory, the study was unable to show that algae could accomplish the other objectives successfully. However, the study yielded supplementary information useful to the overall process design of the utility plant. This was (1) measurement of undried digester solids fed to cattle in a silage finishing ration (without algae) at an economic value of $74.99 per dry ton based on nutritional qualities, (2) development of a centrate treatment system to decolorize and disinfect centrate to allow optimum algae growth, and (3) information on ionic and mass balances for the digestion system. It is the recommendation of this study that algae not be used in the process in the Lamar bioconversion plant.

  12. Development of Green Fuels From Algae - The University of Tulsa

    SciTech Connect (OSTI)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on â??green fuelsâ? which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PIâ??s have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  13. Salinity controls on trophic interactions among invertebrates and algae of solar evaporation ponds in the Mojave Desert and relation to shorebird foraging and selenium risk

    E-Print Network [OSTI]

    Herbst, David B

    2006-01-01

    AMONG INVERTEBRATES AND ALGAE OF SOLAR EVAPORATION PONDS INplanktonic invertebrates and algae present along with avianof invertebrates and algae, and avian foraging were examined

  14. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    DOE Patents [OSTI]

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  15. Method to transform algae, materials therefor, and products produced thereby

    DOE Patents [OSTI]

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  16. Method to transform algae, materials therefor, and products produced thereby

    DOE Patents [OSTI]

    Dunahay, Terri Goodman (2710 Arbor Glen Pl., Boulder, CO 80304); Roessler, Paul G. (15905 Ellsworth Pl., Golden, CO 80401); Jarvis, Eric E. (3720 Smuggler Pl., Boulder, CO 80303)

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  17. The Tropical Brown Alga Lobophora variegata (Lamouroux) Womersley: A Prospective Bioindicator for Ag Contamination in Tropical Coastal Waters

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The Tropical Brown Alga Lobophora variegata (Lamouroux) Womersley: A Prospective Bioindicator determined in the brown alga Lobophora variegata, using radiotracer techniques. Results indicate that this widely distributed alga could be a useful bioindicator species for surveying silver contamination

  18. Designer proton-channel transgenic algae for photobiological hydrogen production

    DOE Patents [OSTI]

    Lee, James Weifu (Knoxville, TN)

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  19. The Competition between Calcification and Photosynthesis in Coccolithophorid Algae Conditions Their Response to Past and Future CO2 Changes

    E-Print Network [OSTI]

    Einat, Aharonov

    The Competition between Calcification and Photosynthesis in Coccolithophorid Algae Conditions Their Response to Past and Future CO2 Changes H. Stoll University of Oviedo The marine calcifying algae

  20. Hydrodynamic Synchronization and Metachronal Waves on the Surface of the Colonial Alga Volvox carteri

    E-Print Network [OSTI]

    Goldstein, Raymond E.

    Hydrodynamic Synchronization and Metachronal Waves on the Surface of the Colonial Alga Volvox of metachronal waves on the surface of the colonial alga Volvox carteri, whose large size and ease

  1. "The Promise and Challenge of Algae as Renewable Sources of Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "The Promise and Challenge of Algae as Renewable Sources of Biofuels" 9-8-2010 - Transcript "The Promise and Challenge of Algae as Renewable Sources of Biofuels" 9-8-2010 -...

  2. Florida company looks to put algae in your gas tank | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Florida company looks to put algae in your gas tank Florida company looks to put algae in your gas tank January 5, 2010 - 4:02pm Addthis What will the project do? As a result of...

  3. How ATP3 is Addressing the Challenges of Scale-up in Algae Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How ATP3 is Addressing the Challenges of Scale-up in Algae Technology R&D How ATP3 is Addressing the Challenges of Scale-up in Algae Technology R&D Breakout Session 2-A: The Future...

  4. Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production

    E-Print Network [OSTI]

    Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

  5. BETO-Funded Algae Project at NREL Named a Finalist for 2015 R...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Home BETO-Funded Algae Project at NREL Named a Finalist for 2015 R&D 100 Awards BETO-Funded Algae Project at NREL Named a Finalist for 2015 R&D 100 Awards August...

  6. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 11 luglio 2012 Compito di esame (2.5 ore)

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 11 luglio 2012­ Compito di esame (2.5 ore) Giustificare ogni affermazione Salvare il file Co

  7. Micro-algae come of age as a platform for recombinant protein production

    E-Print Network [OSTI]

    Specht, Elizabeth; Miyake-Stoner, Shigeki; Mayfield, Stephen

    2010-01-01

    in therapeutic protein production in algae Expression levelrecombinant protein production Elizabeth Specht • Shigekirecombinant protein production in Chlamydomonas, including

  8. PHYLOGENETIC DIVERSITY OF TRENTEPOHLIALEAN ALGAE ASSOCIATED WITH LICHEN-FORMING FUNGI1

    E-Print Network [OSTI]

    PHYLOGENETIC DIVERSITY OF TRENTEPOHLIALEAN ALGAE ASSOCIATED WITH LICHEN-FORMING FUNGI1 Matthew P 60605-2496, USA Nearly one-fourth of the lichen-forming fungi asso- ciate with trentepohlialean algae algae has provided a phy- logenetic context within which questions regarding the lichenization

  9. Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength

    E-Print Network [OSTI]

    Buehler, Markus J.

    Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness algae that is mainly composed of amorphous silica, which features a hierarchical structure that ranges in diatom algae as a basis to study a bioinspired nanoporous material implemented in crystalline silica. We

  10. DESICCATION PROTECTION AND DISRUPTION: A TRADE-OFF FOR AN INTERTIDAL MARINE ALGA1

    E-Print Network [OSTI]

    Denny, Mark

    DESICCATION PROTECTION AND DISRUPTION: A TRADE-OFF FOR AN INTERTIDAL MARINE ALGA1 Luke J. H. Hunt2, California 93950, USA For marine algae, the benefits of drying out are often overshadowed by the stresses of desiccation in the intertidal turf alga Endocladia muricata (Endlichter) J. Agardh. Laboratory experiments

  11. Red Algae Lose Key Mitochondrial Genes in Response to Becoming Parasitic

    E-Print Network [OSTI]

    Lane, Chris

    Red Algae Lose Key Mitochondrial Genes in Response to Becoming Parasitic Lillian Hancock1 , Lynda independently evolved hundreds of times among the floridiophyte red algae. Much is known about the life history class of red algae, Plocamiocolax puvinata, has lost the atp8 gene entirely, indicating that this gene

  12. HOLARCTIC ECOLOGY 4: 201-207. Copenhagen 1981 Microcommunities of algae on a Sphagnum mat

    E-Print Network [OSTI]

    Notre Dame, University of

    HOLARCTIC ECOLOGY 4: 201-207. Copenhagen 1981 Microcommunities of algae on a Sphagnum mat Celia A. Hooper Hooper, C, A, 1981, Microcommunities of algae on a Sphagnum mat, - Holarct, Ecol, 4: 201 and nutrient parameters, with lower, moister plots having more algae, higher algal diver- sity, and lower

  13. Xylochloris irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga

    E-Print Network [OSTI]

    green alga JIR I´ NEUSTUPA 1 *, MAREK ELIA´ S1 , PAVEL SKALOUD 1 , YVONNE NE MCOVA´ 1 AND LENKA irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phycologia 50: 57­66. DOI: 10.2216/08-64.1 The phylogenetic diversity of subaerial coccoid green algae remains

  14. Energy From Algae Using Microbial Fuel Cells Sharon B. Velasquez-Orta,1

    E-Print Network [OSTI]

    ARTICLE Energy From Algae Using Microbial Fuel Cells Sharon B. Velasquez-Orta,1 Tom P. Curtis,1 with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable

  15. PHYSIOLOGICAL PERFORMANCE OF INTERTIDAL CORALLINE ALGAE DURING A SIMULATED TIDAL CYCLE1

    E-Print Network [OSTI]

    Martone, Patrick T.

    PHYSIOLOGICAL PERFORMANCE OF INTERTIDAL CORALLINE ALGAE DURING A SIMULATED TIDAL CYCLE1 Rebecca J, Lobban and Harrison 1997, Helmuth and Hofmann 2001). During high tide, intertidal algae are underwater algae may be emerged and exposed to increased light stress, elevated air tem- peratures, and increased

  16. 428 BIOCHIMICAET BIOPHYSICAACTA pH CONTROL OF THE CHLOROPHYLL a FLUORESCENCE IN ALGAE

    E-Print Network [OSTI]

    Govindjee

    428 BIOCHIMICAET BIOPHYSICAACTA BBA 46126 pH CONTROL OF THE CHLOROPHYLL a FLUORESCENCE IN ALGAE on the "slow" (min) time course of Chlorophyll a fluorescence yield in the green alga Chlorella pyrenoidosa and in the blue-green alga Anacystis nidulans. In Chlorella, the decay of fluorescence yield, in the I- to 5-rain

  17. GENOMIC DNA ISOLATION FROM GREEN AND BROWN ALGAE (CAULERPALES AND FUCALES) FOR MICROSATELLITE LIBRARY CONSTRUCTION1

    E-Print Network [OSTI]

    Borges, Rita

    NOTE GENOMIC DNA ISOLATION FROM GREEN AND BROWN ALGAE (CAULERPALES AND FUCALES) FOR MICROSATELLITE A method for isolating high-quality DNA is pre- sented for the green algae Caulerpa sp. (C. racemosa, C. prolifera, and C. taxifolia) and the brown alga Sargassum muticum. These are introduced, and in- vasive

  18. Kalinella bambusicola gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid Chlorella-like subaerial alga

    E-Print Network [OSTI]

    -like subaerial alga from Southeast Asiapre_534 159..169 Jirí Neustupa,* Yvonne Nemcová, Marek Eliás and Pavel, Czech Republic SUMMARY The traditional green algal genus Chlorella, which com- prised coccoid algae lineage of the trebouxiophycean Watanabea clade, dissimilar from other members of this group. The alga has

  19. Phylogeny and Nucleomorph Karyotype Diversity of Chlorarachniophyte Algae TIA D. SILVER,a,1

    E-Print Network [OSTI]

    Archibald, John

    Phylogeny and Nucleomorph Karyotype Diversity of Chlorarachniophyte Algae TIA D. SILVER,a,1 SAYAKA/or reticulopod-forming marine algae with chlorophyll a- and b-containing plastids of secondary endosymbiotic. THE chlorarachniophytes are an enigmatic group of unicellular marine algae with diverse morphologies and a widespread

  20. Formation of Radioactive Citrulline During Photosynthetic C14O2-Fixation by Blue-Green Algae

    E-Print Network [OSTI]

    Linko, Pekka; Holm-Hansen, O.; Bassham, J.A.; Calvin, M.

    1956-01-01

    ClTRULLlNE BY BLUE-GREEN ALGAE TWO-WEEK LOAN COPY This is aC~~O~-FIXATION BLUE-GREEN ALGAE Pekka Linko, 0. Holm-Hansen,C~~O~-FIXATION BLUE-GREEN ALGAE BY Pelcka Linlc~,'~ Holm-

  1. Ghana: Western Ghana's Fisherfolk Starve Amid Algae Infestation BY JESSICA MCDIARMID, 18 APRIL 2012

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Ghana: Western Ghana's Fisherfolk Starve Amid Algae Infestation BY JESSICA MCDIARMID, 18 APRIL 2012 not to continue fishing." Sargassum is the algae after which the Sargasso Sea - an elongated region in the middle down while tonnes of the algae were removed. In some areas people were warned not to swim due

  2. Dancing Volvox: Hydrodynamic Bound States of Swimming Algae Knut Drescher,1

    E-Print Network [OSTI]

    Goldstein, Raymond E.

    Dancing Volvox: Hydrodynamic Bound States of Swimming Algae Knut Drescher,1 Kyriacos C. Leptos,1 April 2009) The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells marvels [1]. This was the freshwater alga which, years later, in the very last entry of his great work

  3. Early Cretaceous benthic associations (foraminifera and calcareous algae) of a shallow tropical-water platform

    E-Print Network [OSTI]

    Husinec, Antun

    Early Cretaceous benthic associations (foraminifera and calcareous algae) of a shallow tropical of benthic foraminifera and calcareous algae in order to establish a precise, combined benthic biozonation species of calcareous algae, distributed among 11 genera, were recovered from the Lower Cretaceous shallow

  4. Optical microplates for high-throughput screening of photosynthesis in lipid-producing algae{,

    E-Print Network [OSTI]

    Basu, Amar S.

    Optical microplates for high-throughput screening of photosynthesis in lipid- producing algae-producing algae of interest in 2nd generation biofuels. By conducting 96 experiments in parallel, photoirradiance the study of photosynthesis in algae. Societal challenges in energy sustainability have renewed interest

  5. Micro-Raman Spectroscopy of Algae: Composition Analysis and Fluorescence Background Behavior

    E-Print Network [OSTI]

    ARTICLE Micro-Raman Spectroscopy of Algae: Composition Analysis and Fluorescence Background performed using Stokes Raman scattering for compositional analysis of algae. Two algal species, Chlorella while acquiring Raman signals from the algae. The time dependence of fluorescence background is char

  6. INTRODUCTION Cryptomonad algae are postulated to be a chimaera of two

    E-Print Network [OSTI]

    McFadden, Geoff

    INTRODUCTION Cryptomonad algae are postulated to be a chimaera of two different eukaryotic cells incorporating cryptomonad endosymbiont gene sequences ally them loosely with red algae (Douglas et al., 1991a that the endosymbiont was an early evolutionary intermediate that pre-dates the red algae (Cavalier-Smith, 1992

  7. Photoprotection in the brown alga Macrocystis pyrifera: Evolutionary implications Ernesto Garcia-Mendoza a,

    E-Print Network [OSTI]

    Govindjee

    Photoprotection in the brown alga Macrocystis pyrifera: Evolutionary implications Ernesto Garcia xxxx Keywords: Brown algae Evolution Macrocystis pyrifera Non-photochemical quenching Photoprotection-photochemical quenching, NPQ) in the brown alga Macrocystis pyrifera with that of Ficus sp., a higher plant to examine

  8. A Framework to Report the Production of Renewable Diesel from Algae

    E-Print Network [OSTI]

    A Framework to Report the Production of Renewable Diesel from Algae Colin M. Beal & Colin H. Smith(s) 2010. This article is published with open access at Springerlink.com Abstract Recently, algae have algae are a viable source for renewable diesel, three questions that must be answered are (1) how much

  9. Red Algae Respond to Waves: Morphological and Mechanical Variation in Mastocarpus papillatus Along

    E-Print Network [OSTI]

    Denny, Mark

    Red Algae Respond to Waves: Morphological and Mechanical Variation in Mastocarpus papillatus Along Grove, California, 93950 Abstract. Intertidal algae are exposed to the potentially severe drag forces generated by crashing waves, and several species of brown algae respond, in part, by varying the strength

  10. Impact of Benthic Algae on Dissolved Organic Nitrogen in a Temperate, Coastal Lagoon

    E-Print Network [OSTI]

    Lawrence, Deborah

    Impact of Benthic Algae on Dissolved Organic Nitrogen in a Temperate, Coastal Lagoon Anna Christina-released to the water column on short time scales (minutes-hours). Benthic algae thus clearly influence benthic Introduction: Impact of benthic algae on dissolved organic nitrogen dynamics in temperate, coastal lagoons

  11. BIOCHIMICA ET BIOPHYSICA ACTA 213 ACTION OF HYDROXYLAMINE IN THE RED ALGA PORPHYRIDIUM

    E-Print Network [OSTI]

    Govindjee

    BIOCHIMICA ET BIOPHYSICA ACTA 213 BBA 46182 ACTION OF HYDROXYLAMINE IN THE RED ALGA PORPHYRIDIUM CR and fluorescence transient studies, made with the intact cells of red alga Porphyridium cruentum, suggest earlier with spinach chloroplasts and green alga Chlorella by other workers. Fluorescence transient data

  12. FAS6932: BIOLOGY AND ECOLOGY OF ALGAE Instructor: Professor Edward Phlips

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    FAS6932: BIOLOGY AND ECOLOGY OF ALGAE Instructor: Professor Edward Phlips Main Office: Program-mail: phlips@ufl.edu Office Hours: 2-4 PM Thursdays Course Description: Biology and ecology of algae in aquatic in different aquatic ecosystems, and impacts (e.g. toxic algae). Prerequisites: Undergraduate course in biology

  13. Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae,

    E-Print Network [OSTI]

    Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae characterization of an autosporic coccoid green alga isolated from decaying wood in a natural forest in Singapore. Depending on culture conditions, this alga formed globular to irregularly oval solitary cells

  14. Investigation of Flow Characteristics in an Airlift-Driven Raceway Reactor for Algae Cultivation

    E-Print Network [OSTI]

    Investigation of Flow Characteristics in an Airlift-Driven Raceway Reactor for Algae Cultivation are the most common choice for outdoor algae cultivation due to their low cost relative to enclosed. Algae require adequate mixing in order to maximize exposure to essential nutrients for growth

  15. Complex Patterns of Plastid 16S rRNA Gene Evolution in Nonphotosynthetic Green Algae

    E-Print Network [OSTI]

    Nedelcu, Aurora M.

    Complex Patterns of Plastid 16S rRNA Gene Evolution in Nonphotosynthetic Green Algae Aurora M AT values are increased in nonphotosynthetic green algae compared to their closest photosynthetic relatives "green plants," both land plants and green algae, are known. Among such lineages are the parasitic

  16. Climate implications of algae-based bioenergy systems Andres Clarens, PhD

    E-Print Network [OSTI]

    Walter, M.Todd

    Climate implications of algae-based bioenergy systems Andres Clarens, PhD Assistant Professor Civil of algae and other nonconventional feedstocks, are being developed. This talk will explore several systems priorities. This is an especially challenging problem for algae-based biofuels because production pathways

  17. Effect of non-ageing and ageing ceria nanoparticles suspensions on fresh water micro-algae

    E-Print Network [OSTI]

    Boyer, Edmond

    Effect of non-ageing and ageing ceria nanoparticles suspensions on fresh water micro-algae Manier nanoparticle (nCeO2) suspensions, towards freshwater micro-algae assessing the effect nCeO2 suspensions microscopy (TEM). In addition, the interaction between NPs and algae were investigated using flow

  18. Observations on the measurement of total antimony and antimony species in algae, plant and animal tissuesw

    E-Print Network [OSTI]

    Canberra, University of

    Observations on the measurement of total antimony and antimony species in algae, plant and animal of total antimony and antimony speciation in algae, plant and animal tissues. Digestion with nitric acid.g. some plants and algae, the addition of tetrafluorboric acid is required to dissolve silica as some

  19. 1128 volume 27 number 12 december 2009 nature biotechnology square meter per day of algae containing

    E-Print Network [OSTI]

    Cai, Long

    1128 volume 27 number 12 december 2009 nature biotechnology square meter per day of algae, such as triglycerides from algae or cellulosic biomass from higher plants, as feedstocks for biofuel production. The algal program sought to develop high-oil-content algae that grow at very fast rates. In our report

  20. ACARYOCHLORIS EXPLAINING THE RIDDLE OF CHLOROPHYLL D IN RED ALGAE AND EXPANDING PAR FOR OXYGENIC PHOTOSYNTHESIS

    E-Print Network [OSTI]

    Oregon, University of

    ACARYOCHLORIS ­ EXPLAINING THE RIDDLE OF CHLOROPHYLL D IN RED ALGAE AND EXPANDING PAR FOR OXYGENIC strain is shown to live epi- phytically on the red alga Gelidium caulacantheum, which itself is harvested by the red alga. Availability of far red light, however, is relatively unaffected by DOM or red

  1. Are Algae Relevant to the Detritus-Based Food Web in Tank-Bromeliads?

    E-Print Network [OSTI]

    Boyer, Edmond

    Are Algae Relevant to the Detritus-Based Food Web in Tank-Bromeliads? Olivier Brouard1 , Anne, Universite´ Paul Sabatier, UMR CNRS 5245, Toulouse, France Abstract We assessed the occurrence of algae and with regard to the structure of other aquatic microbial communities held in the tanks. Algae were retrieved

  2. The Seattle Times: Nation & World: Algae gives professor a taste of immortality Home delivery

    E-Print Network [OSTI]

    Jeong, Hae Jin

    The Seattle Times: Nation & World: Algae gives professor a taste of immortality Home delivery, 2005 - Page updated at 12:00 AM Algae gives professor a taste of immortality By David A. Fahrenthold The Washington Post E-mail article Print view Search Most e-mailed Most read RSS Sometimes, algae can

  3. Author's personal copy A novel ocean color index to detect oating algae in the global oceans

    E-Print Network [OSTI]

    Meyers, Steven D.

    Author's personal copy A novel ocean color index to detect oating algae in the global oceans December 2008 Received in revised form 15 May 2009 Accepted 23 May 2009 Keywords: Floating Algae Index (FAI Remote sensing Ocean color Climate data record Various types of oating algae have been reported in open

  4. Biomass from Cyanobacteria:Opportunities for the Proposed Algae Biotechnology and Biofuels

    E-Print Network [OSTI]

    Tullos, Desiree

    Biomass from Cyanobacteria:Opportunities for the Proposed Algae Biotechnology and Biofuels CLOSED DUE TO ALGAE BLOOM AND GENERAL ADVISORY REMAINS FOR HILLS CREEK RESERVOIR August 2, 2002 Larison. For the entire Reservoir, one should avoid high con centrations of blue-green algae both on the water surface

  5. FL47CH15-Goldstein ARI 25 November 2014 9:45 Green Algae as Model

    E-Print Network [OSTI]

    Goldstein, Raymond E.

    FL47CH15-Goldstein ARI 25 November 2014 9:45 Green Algae as Model Organisms for Biological Fluid green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model of flagellar synchronization. Green algae are well suited to the study of such problems because of their range

  6. Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and daylength

    E-Print Network [OSTI]

    Bossard, Peter

    Photosynthetic and growth responses of three freshwater algae to phosphorus limitation., green alga Sphaerocystis schroeteri and cyanobacterium Phormidium luridum, were grown under contrasting of the green alga S. schroeteri decreased the most (ca. sixfold) under P limitation compared with the other two

  7. HoustonChronicle.com -Tiny honor a big deal for algae scientist HoustonChronicle.

    E-Print Network [OSTI]

    Jeong, Hae Jin

    HoustonChronicle.com - Tiny honor a big deal for algae scientist HoustonChronicle. com Section-mail this story June 18, 2005, 5:48PM Tiny honor a big deal for algae scientist By DAVID A. FAHRENTHOLD Washington Post Sometimes, algae can be the highest form of flattery. ADVERTISEMENTSo it was for Diane K. Stoecker

  8. Toward Systems Biology in Brown Algae to Explore Acclimation and Adaptation to the Shore Environment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Toward Systems Biology in Brown Algae to Explore Acclimation and Adaptation to the Shore,2 Catherine Boyen,1,2 and Anne Siegel4,5 Abstract Brown algae belong to a phylogenetic lineage distantly siliculosus as a model organism for brown algae has represented a framework in which several omics techniques

  9. One-Two-Three Punch Clobbers Toxic Algae, Restores Fremont Lake

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    One-Two-Three Punch Clobbers Toxic Algae, Restores Fremont Lake Final Report Fremont Lake #20 Water-two-three punch to knockout toxic algae and restore water quality in Nebraska's numerous sandpit lakes. "It seems to help rid the too-often toxic algae prone Fremont State Lakes of the oily green scum that can close them

  10. The central role of the green alga Chlamydomonas reinhardtii in revealing the mechanism of state transitions

    E-Print Network [OSTI]

    The central role of the green alga Chlamydomonas reinhardtii in revealing the mechanism of state Abstract This review focuses on the essential role played by the green alga Chlamydomonas reinhardtii of the two photo- systems with changes in the spectral composition of light. In plants and green algae, state

  11. Chile, 2009 HYDRAULIC MANAGEMENT OF FILAMENTOUS ALGAE IN

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    7 th ISE & 8 th HIC Chile, 2009 HYDRAULIC MANAGEMENT OF FILAMENTOUS ALGAE IN OPEN-CHANNEL NETWORKS channels which are specific eco-systems for many reasons. Firstly, they have to fulfill hydraulic, artificial channels have a relatively simple geometry and their hydraulic variables are easier to monitor

  12. Introduction slide 2 Biofuels and Algae Markets, Systems,

    E-Print Network [OSTI]

    Algae Market Potential US Military is #1 Consumer of Diesel Fuel in The World Industrial Diesel Markets · Traditional use of waste vegetable oil · Plans for bigger plants using non-food sources such as jatropha, recycled waste and sewage feedstock · China is Installing Two 500 MW Coal-Fired Power Plants

  13. Analysis of Land Suitable for Algae State of Hawaii

    E-Print Network [OSTI]

    Analysis of Land Suitable for Algae Production State of Hawaii Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC26-06NT42847 Hawai`i on Bioenergy Analyses By the Hawai`i Natural Energy Institute School of Ocean and Earth Science and Technology

  14. BACTERIA, FUNGI, AND UNICELLULAR ALGAE Blank page retained for pagination

    E-Print Network [OSTI]

    CHAPTER VI BACTERIA, FUNGI, AND UNICELLULAR ALGAE #12;Blank page retained for pagination #12;MARINE BACTERIA AND FUNGI IN THE GULF OF MEXICO I By CLAUDE E. ZOBELL, Scripps lrutitution of Oceano; Bavendamm 1932), there are very few published reports on bacteria and fungi in the nearby Gulf of Mexico

  15. Switchable photosystem-II designer algae for photobiological hydrogen production

    DOE Patents [OSTI]

    Lee, James Weifu (Knoxville, TN)

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  16. EA-1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal, through a cooperative agreement with Phycal, Inc., to partially fund implementing and evaluating new technology for the reuse of Carbon dioxide (CO2) emissions from industrial sources for green energy products. This project would use CO2 to grow algae for the production of algal oil and subsequent conversion to fuel.

  17. Modeling and control of algae detachment in regulated canal networks Ophelie Fovet, Xavier Litrico and Gilles Belaud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling and control of algae detachment in regulated canal networks Ophelie Fovet, Xavier Litrico and Gilles Belaud Abstract-- Algae development in open-channel networks in- duce major disturbances because these algae developments consists in flushing the fixed algae. The flush is carried out by increasing

  18. Carnets de Gologie / Notebooks on Geology -Article 2006/03 (CG2006_A03) Are the green algae (phylum Viridiplantae)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Carnets de Géologie / Notebooks on Geology - Article 2006/03 (CG2006_A03) 1 Are the green algae planet, A.H. KNOLL states that the first documented fossils of green algae date back 750 Ma. However" and of a primitive clade of green algae, the Pyramimonadales. A paraphyletic group of unicellular green algae, named

  19. Project EARTH-11-RR2: Co-evolution of iodine antioxidant mechanism in marine algae and Earth-surface

    E-Print Network [OSTI]

    Henderson, Gideon

    Project EARTH-11-RR2: Co-evolution of iodine antioxidant mechanism in marine algae and Earth algae (yet they are lacking in green algae) ­ but the phylogenetic distribution of iodine accumulation haloperoxidases. The first appearance and important divergence of brown algae occurred within the last 200 myr

  20. Green Algae as Model Organisms for Biological Fluid Dynamics

    E-Print Network [OSTI]

    Goldstein, Raymond E

    2014-01-01

    In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these re...

  1. Green Algae as Model Organisms for Biological Fluid Dynamics

    E-Print Network [OSTI]

    Raymond E. Goldstein

    2014-09-08

    In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  2. Algal Lipids and Omega-3 Production via Autotrophic and Heterotrophic Pathways at Cellana?s Kona Demonstration Facility, Hawaii

    SciTech Connect (OSTI)

    Bai, Xuemei; Knurek, Emily; Goes, Nikki; Griswold, Lynn

    2012-05-05

    Cellana?s Kona Demonstration Facility (KDF) is a 2.5 hectare facility, with 17,000 sq. ft. under roof and 1 hectare of cultivation systems. KDF is designed to execute and support all stages of the production process at pilot scale, from cultivation through extraction. Since Feb. 2009, KDF has been producing up to 0.7MT dry weight of algal biomass per month, while at the same time optimizing processes of cultivation, harvesting, dewatering and extraction. The cultivation system at KDF uses ALDUO? technology, a hybrid system of photobioreactors (PBRs) and open ponds. All fluid transfers related to KDF cultivation and harvesting processes are operated and monitored by a remote Process-Control System. Fluid transfer data, together with biochemical data, enable the mass balance calculations necessary to measure productivity. This poster summarizes methods to improve both biomass and lipids yield by 1) alleviating light limitation in open ponds, 2) de-oxygenation and 3) heterotrophic lipid production for post-harvesting cultures.

  3. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 18 giugno 2012 Esame (2.5 ore)

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 18 giugno 2012­ Esame (2.5 ore) Giustificare ogni affermazione Salvare il file CoCoA come cognome

  4. Hierarchical and size dependent mechanical properties of silica and silicon nanostructures inspired by diatom algae

    E-Print Network [OSTI]

    García, Andre Phillipé

    2010-01-01

    Biology implements fundamental principles that allow for attractive mechanical properties, as observed in biomineralized structures. For example, diatom algae contain nanoporous hierarchical silicified shells that provide ...

  5. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 7 luglio 2011 Compito di esame (2 ore)

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 7 luglio 2011­ Compito di esame (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  6. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 19 aprile 2011 Compito di esame (2 ore)

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 19 aprile 2011­ Compito di esame (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  7. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 16 giugno 2011 Compito di esame (2 ore)

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 16 giugno 2011­ Compito di esame (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  8. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater

    Broader source: Energy.gov [DOE]

    Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste FeedstocksAlgae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and...

  9. How ATP3 is Addressing the Challenges of Scale-up in Algae Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cal Poly Tryg Lundquist Braden Crowe Eric Nicolai Commercial Algae Management Albert Vitale Robert Vitale Georgia Tech Yongsheng Chen Steven Van Ginkel Thomas Igou Zixuan Hu ASU...

  10. Riding, R. 2005. Secular variations in abundance of calcified algae and cyanobacteria: how biomineralization can reflect global changes in temperature and water chemistry.

    E-Print Network [OSTI]

    Riding, Robert

    Riding, R. 2005. Secular variations in abundance of calcified algae and cyanobacteria: how: 312. Secular variations in abundance of calcified algae and bacteria: how biomineralization can algae and cyanobacteria, cellular site and mineralogy of calcification, together with biogeographic

  11. THE EFFECT OF HERBIVORY BY THE LONG-SPINED SEA URCHIN, DIADEMA SAVIGNYI, ON ALGAE GROWTH IN THE CORAL REEFS OF MOOREA, FRENCH POLYNESIA

    E-Print Network [OSTI]

    Hoey, Jennifer

    2008-01-01

    between corals and algae on coral reefs: a review of4: 16-24. Wilder, R.M. Algae-Herbivore Interactions on theURCHIN, DIADEMA SAVIGNYI, ON ALGAE GROWTH IN THE CORAL REEFS

  12. ORGANIC GEOCHEMICAL STUDIES. II. THE DISTRIBUTION OF ALIPHATIC HYDROCARBONS IN ALGAE, BACTERIA, AND IN A RECENT LAKE SEDIMENT: A PRELIMINARY REPORT

    E-Print Network [OSTI]

    Han, Jerry; McCarthy, E.D.; Van Hoeven Jr., William; Calvin, Melvin; Bradley, W. H.

    2008-01-01

    ALIPHATIC HYDROCARBONS IN ALGAE, BACTERIA, AND IN A RECENTH F A PRELIMINARY REPORT IN ALGAE, BACTERIA, AKD IN A RECENTrests on the finding that algae have less cellulose and a

  13. Measuring Oscillatory Velocity Fields Due to Swimming Algae

    E-Print Network [OSTI]

    Guasto, Jeffrey S; Gollub, J P

    2010-01-01

    In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.

  14. Dancing Volvox: Hydrodynamic Bound States of Swimming Algae

    E-Print Network [OSTI]

    Knut Drescher; Kyriacos C. Leptos; Idan Tuval; Takuji Ishikawa; Timothy J. Pedley; Raymond E. Goldstein

    2009-01-14

    The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size make it a model organism for studying the fluid dynamics of multicellularity. Remarkably, when two nearby Volvox swim close to a solid surface, they attract one another and can form stable bound states in which they "waltz" or "minuet" around each other. A surface-mediated hydrodynamic attraction combined with lubrication forces between spinning, bottom-heavy Volvox explains the formation, stability and dynamics of the bound states. These phenomena are suggested to underlie observed clustering of Volvox at surfaces.

  15. Multi-scale Characterization of Improved Algae Strains

    SciTech Connect (OSTI)

    Dale, Taraka T.

    2015-04-01

    This report relays the important role biofuels such as algae could have in the energy market. The report cites that problem of crude oil becoming less abundant while the demand for energy continues to rise. There are many benefits of producing energy with biofuels such as fewer carbon emissions as well as less land area to produce the same amount of energy compared to other sources of renewable fuels. One challenge that faces biofuels right now is the cost to produce it is high.

  16. Potential consequences of GM algae escape on ecosystem services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits theCommitteeCrystalline SiliconofDepartment of EnergyGM algae; a

  17. Energy 101: Algae-to-Fuel | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureElyElectro NitrationEnergetics |Algae-to-Fuel

  18. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | DepartmentPeer20InsulatedofBEST OFFERJuneAlgae Biofuel

  19. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz - Interactive Content BETOEnergyAlgae

  20. Chromista is a major eukaryotic kingdom comprising algae and former protozoa that is evolutionarily entirely distinct from the kingdoms Plantae and Protozoa (Cavalier-Smith 2007). Chromist chloroplasts

    E-Print Network [OSTI]

    Goldschmidt, Christina

    1 Chromista is a major eukaryotic kingdom comprising algae and former protozoa chloroplasts were acquired secondarily by enslavement of a red alga, itself a member of kingdom Plantae

  1. Optimal engineered algae composition for the integrated simultaneous production of bioethanol

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    2009, Martin & Grossmann 2011 a,b,c,d) in terms of energy and water consumption and low production cost1 Optimal engineered algae composition for the integrated simultaneous production of bioethanol of the algae for the simultaneous production of bioethanol and biodiesel. We consider two alternative

  2. Green Pacific Biologicals Rapid & stable nuclear genetic engineering of eukaryotic algae

    E-Print Network [OSTI]

    · Algae-to-biofuels, big oil, Ag-biotech, High-margin products · Proprietary solutions for higher ­ metabolic engineering High-margin product ­ metabolic engineering 200% higher oils ­ metabolic engineering Partnership/M&A ­ Big oil, Algae biofuel, Ag oil Early Revenue- Strategic Partnership for high margin product

  3. Manipulating RuBisCO accumulation in the green alga, Chlamydomonas reinhardtii

    E-Print Network [OSTI]

    Manipulating RuBisCO accumulation in the green alga, Chlamydomonas reinhardtii Xenie Johnson in algal mrl1 mutants leads to a complete absence of RuBisCO large subunit protein and thus a lack of accu between green algae (Chlamydomonas X. Johnson (&) Centre National de la Recherche Scientifique, Unite

  4. Marine algae and land plants share conserved phytochrome signaling systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; et al

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (more »phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.« less

  5. Marine algae and land plants share conserved phytochrome signaling systems

    SciTech Connect (OSTI)

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia -Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  6. Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

    SciTech Connect (OSTI)

    Lacey, Ph.D, P.E., Ronald E.

    2012-07-16

    Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

  7. MOLECULAR CHARACTERIZATION OF THE ASSIMILATORY NITRATE REDUCTASE GENE AND ITS EXPRESSION IN THE MARINE GREEN ALGA DUNALIELLA

    E-Print Network [OSTI]

    Ward, Bess

    IN THE MARINE GREEN ALGA DUNALIELLA TERTIOLECTA (CHLOROPHYCEAE)1 Bongkeun Song2 and Bess B. Ward Department from a marine phytoplankton, the green alga Dunaliella tertiolecta Butcher. Its sequence is very similar to that of the other green algae, but its intron structure and transcriptional regulation differ

  8. JENUFA GEN. NOV.: A NEW GENUS OF COCCOID GREEN ALGAE (CHLOROPHYCEAE, INCERTAE SEDIS) PREVIOUSLY RECORDED BY ENVIRONMENTAL SEQUENCING1

    E-Print Network [OSTI]

    JENUFA GEN. NOV.: A NEW GENUS OF COCCOID GREEN ALGAE (CHLOROPHYCEAE, INCERTAE SEDIS) PREVIOUSLY of unicellular green algae from algal biofilms growing on tree bark in a Southeast Asian tropical rainforest: AU, approximately unbiased; BBM, Bold basal medium; CAUP, Culture Collection of algae at Charles

  9. DISTINCT PATTERNS OF NITRATE REDUCTASE ACTIVITY IN BROWN ALGAE: LIGHT AND AMMONIUM SENSITIVITY IN LAMINARIA DIGITATA IS ABSENT IN

    E-Print Network [OSTI]

    Berges, John A.

    DISTINCT PATTERNS OF NITRATE REDUCTASE ACTIVITY IN BROWN ALGAE: LIGHT AND AMMONIUM SENSITIVITY and lowest in summer. This is the first report of NR activity in any alga that is not strongly regulated the regulation of NR by light that has been observed in other algae and higher plants. Key index words: ammonium

  10. Inhibition of Photosynthesis in Some Algae by Extreme-Red Light Author(s): Eugene Rabinowitch, Govindjee, Jan B. Thomas

    E-Print Network [OSTI]

    Govindjee

    Inhibition of Photosynthesis in Some Algae by Extreme-Red Light Author(s): Eugene Rabinowitch://www.jstor.org #12;Inhibition of Photosynthesis in Some Algae by Extreme"Red Light Abstract. Photosynthesis produced by far-red light (about 700 m,b) is reversibly inhibited in some algae by extreme-red light ( 750 m

  11. International Journal of Systematic and Evolutionary Microbiology (2001), 51, 737749 Printed in Great Britain Phylogenetic relationships among algae based

    E-Print Network [OSTI]

    Gent, Universiteit

    2001-01-01

    in Great Britain Phylogenetic relationships among algae based on complete large-subunit rRNA sequences 1 of the different groups of algae, and in particular to study the relationships among the different classes of heterokont algae. In LSU rRNA phylogenies, the chlorarachniophytes, cryptomonads and haptophytes seem to form

  12. Hyperbolic chemotaxis Hyperbolic chemotaxis on networks Models for biofilms Models for algae Some issues in the modeling of movement

    E-Print Network [OSTI]

    Ribot, Magali

    Hyperbolic chemotaxis Hyperbolic chemotaxis on networks Models for biofilms Models for algae Some issues in the modeling of movement of cells : chemotaxis, biofilms, algae, etc... Magali Ribot;Hyperbolic chemotaxis Hyperbolic chemotaxis on networks Models for biofilms Models for algae Hyperbolic

  13. SYMBIOSIS (2008) 46, 153160 2008 Balaban, Philadelphia/Rehovot ISSN 0334-5114 Changes in chloroplast structure in lichenized algae

    E-Print Network [OSTI]

    2008-01-01

    in chloroplast structure in lichenized algae Ond ej Peksa1,2* and Pavel kaloud2 1 The West Bohemian Museum in the systematic classification of trebouxioid algae. However, in different ontogenetic, physiological the lichen thallus. Keywords: Confocal laser scanning microscopy, green algae, isolation, Lecanorales

  14. Modulation of Light-Enhancement to Symbiotic Algae by Light-Scattering in Corals and Evolutionary Trends in

    E-Print Network [OSTI]

    Ottino, Julio M.

    Modulation of Light-Enhancement to Symbiotic Algae by Light-Scattering in Corals and Evolutionary that the cost of enhancing light-amplification to the algae is revealed in decreased resilience) Modulation of Light-Enhancement to Symbiotic Algae by Light-Scattering in Corals and Evolutionary Trends

  15. The Abundance, Habitat Selection, and Feeding Behavior of the Brittle Star, Ophioderma brevispinum, in Eelgrass-vs. Algae-

    E-Print Network [OSTI]

    Vallino, Joseph J.

    , in Eelgrass- vs. Algae- Dominated Habitats in a Nutrient Enriched Estuary Amanda Keledjian Grinnell College to a shift from pristine eelgrass meadows to drifting algae mats that induce episodic hypoxia. To understand the lifestyle and role of this elusive animal, I sampled the abundance within eelgrass, algae, mud, and sandy

  16. Fottea 8(2): 133146, 2008 133 Epipelic cyanobacteria and algae: a case study from Czech ponds

    E-Print Network [OSTI]

    Fottea 8(2): 133­146, 2008 133 Epipelic cyanobacteria and algae: a case study from Czech ponds Petr and algae (particularly desmids). Altogether 45 sediment samples were taken at ponds covering a p and various protozoa, feeding on epipelic algae (Amoeba, Urceolus cyclostomus). Key words: epipelon

  17. D-Amino Acid Utilization in Algae Jennifer Meoni1, Farrah Moazeni2, Gaosen Zhang, Ph.D.2,

    E-Print Network [OSTI]

    Walker, Lawrence R.

    D-Amino Acid Utilization in Algae Jennifer Meoni1, Farrah Moazeni2, Gaosen Zhang, Ph.D.2, Henry Sun are derived primarily from cell wall (peptidoglycan) remnants of bacteria. Algae, which are composed environment so that we are not exposed. However, racemases are not known to be present in algae. So

  18. Stream ecological processes are modeled through a simple predator-prey model, which reproduces benthic algae and macro-invertebrates dynamics.

    E-Print Network [OSTI]

    reproduces benthic algae and macro-invertebrates dynamics. Algae biomass = growth - death loss - predation influences on algae and macro-invertebrates dynamics will be introduced in the predator-prey model: - at increasing flow velocity high nutrient availability, algae erosion and macro-invertebrate drag

  19. Florida Sea Grant College Program http://www.flseagrant.org SGEF155 March 2009 rev. CAN WE STOP "KILLER ALGAE" FROM INVADING FLORIDA?

    E-Print Network [OSTI]

    Watson, Craig A.

    STOP "KILLER ALGAE" FROM INVADING FLORIDA? by Charles Jacoby 1 and Linda Walters 2 What is "killer algae"? The Mediterranean strain of Caulerpa taxifolia earned the name "killer algae" because of its devastating effects on the Mediterranean coast. The story of this algae or seaweed represents one of the best

  20. Application of Hedonic Price Modeling to Estimate the Value of Algae Meal 

    E-Print Network [OSTI]

    Gogichaishvili, Ilia

    2012-10-19

    High productivity rates, usage of nonproductive land, renewability and recovery of waste nutrients and potential for CO2 emission reduction represent some of the advantages that selected algae species might have over competing products. Many...

  1. Microsoft Word - PhycalAlgaePilotProject_NEPAFinalEA_October2011...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology for the reuse of carbon dioxide (CO 2 ) emissions from industrial sources for green energy products. This project would use CO 2 to grow algae for the production of...

  2. Top Five Things You Should Know About Algae | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    agent for ice cream, pastries, and other desserts, as well as a clarifying agent for brewing beer. Algae are an ingredient in several cosmetics, as well as sustainable animal...

  3. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    SciTech Connect (OSTI)

    Joseph, Brian

    2013-12-31

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The pond with the PCM material was consistently 2 to 5°C warmer than the control pond. This difference did not seem to increase significantly over time. During phase transitions for the PCM, the magnitude of the difference between the daily minimum and maximum temperatures decreased, resulting in smaller daily temperature fluctuations. A thin layer of PCM material reduced overall water loss by 74% and consistently provided algae densities that were 80% greater than the control pond.

  4. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia

    E-Print Network [OSTI]

    Conway Morris, S.; Robison, Richard A.

    1988-12-29

    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS December 29, 1988 Paper 122 MORE SOFT-BODIED ANIMALS AND ALGAE FROM THE MIDDLE CAMBRIAN OF UTAH AND BRITISH COLUMBIA' Simon Conway Morris and R. A. Robison Department of Earth Sciences..., University of Cambridge, Downing Street, Cambridge CB2 3EQ, and Department of Geology, The University of Kansas, Lawrence, Kansas 66045 Abstract—Remains of noncalcareous algae and soft-bodied metazoans from Middle Cambrian strata of Utah (Spence, Wheeler...

  5. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    SciTech Connect (OSTI)

    Gobler, C J; Grigoriev, I V; Berry, D L; Dyhrman, S T; Wilhelm, S W; Salamov, A; Lobanov, A V; Zhang, Y; Collier, J L; Wurch, L L; Kustka, A B; Dill, B D; Shah, M; VerBerkomes, N C; Kuo, A; Terry, A; Pangilinan, J; Lindquist, E A; Lucas, S; Paulsen, I; Hattenrath-Lehmann, T K; Talmage, S; Walker, E A; Koch, F; Burson, A M; Marcoval, M A; Tang, Y; LeCleir, G R; Coyne, K J; Berg, G M; Bertrand, E M; Saito, M A; Gladyshev, V N

    2011-03-02

    Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.

  6. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    SciTech Connect (OSTI)

    Grigoriev, Igor; Gobler, Christopher; Salamov, Asaf; Kuo, Alan; Terry, Astrid; Pangillian, Jasmyn; Lindquist, Erika; Lucas, Susan; Berry, Dianna; Dyhrman, Sonya; Wilhelm, Steven; Lobanov, Alexei; Zhang, Yan; Collier, Jackie; Wurch, Louie; Kusta, Adam; Dill, Brian; Shsh, Manesh; VerBerkmoes, Nathan; Paulsen, Ian; Hattenrath-Lehmann, Theresa; Talmage, Stephanie; Walker, Elyse; Koch, Florian; Burson, Amanda; Marcoval, Maria; Tang, Yin-Zhong; LeCleir, Gary; Coyne, Kathyrn; Berg, Gry; Bertrand, Erin; Saito, Mak; Gladyshev, Vadim

    2011-02-18

    Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.

  7. THE GREEN ALGA CHLAMYDOMONAS REINHARDTII: A NEW MODEL SYSTEM TO UNRAVEL THE ASSEMBLY PROCESS OF RESPIRATORY COMPLEXES

    E-Print Network [OSTI]

    Hamel, Patrice

    THE GREEN ALGA CHLAMYDOMONAS REINHARDTII: A NEW MODEL SYSTEM TO UNRAVEL THE ASSEMBLY PROCESS process. I propose to use the green alga Chlamydomonas reinhardtii as a novel model system to carry out thoughts with a warm cup of tea (I should also extend my gratitude to Birgit Alber, our scientific tea chat

  8. Fact Sheet on Toxic Blue-green Algae Carole A. Lembi Department of Botany and Plant Pathology

    E-Print Network [OSTI]

    Fact Sheet on Toxic Blue-green Algae Carole A. Lembi Department of Botany and Plant Pathology Purdue University What are blue-green algae? Blue-greens are very primitive organisms that are not really as "cyanobacteria" to acknowledge that they are bacteria. "Cyan" means "blue", which refers to the fact

  9. Electrolytic Methods as a Cost and Energy Effective Alternative of Harvesting Algae for Biofuel 

    E-Print Network [OSTI]

    Morrison, Taylor 1986-

    2012-08-30

    METHODS AS A COST AND ENERGY EFFECTIVE ALTERNATIVE OF HARVESTING ALGAE FOR BIOFUEL A Thesis by TAYLOR LEE MORRISON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of Energy through the National Alliance for Advanced Biofuels and Bioproducts. The Texas A&M campus facilities available were Dr. Ron Lacey?s micro-algae lab, Dr. Nikolov?s bio-separations lab and Dr. Karthi?s water quality lab. The offsite facility...

  10. ALDUO(TM) Algae Cultivation Technology for Delivering Sustainable Omega-3s, Feed, and Fuel

    SciTech Connect (OSTI)

    Bai, Xuemei

    2012-09-24

    * ALDUO(TM) Algae Production Technology Cellana?s Proprietary, Photosynthetic, & Proven * ALDUO(TM) Enables Economic Algae Production Unencumbered by Contamination by Balancing Higher-Cost PBRs with Lower-Cost Open Ponds * ALDUO(TM) Advantages * ALDUO(TM) Today o Large collection of strains for high value co-products o Powerful Mid-scale Screening & Optimization System o Solution to a Conflicting Interest o Split Pond Yield Enhancement o Heterotrophy & mixotrophy as a "finishing step" o CO2 Mitigation-flue Gas Operation o Worldwide Feed Trials with Livestock & Aquatic Species * ALDUO(TM) Technology Summarized

  11. PhotochemisfvondPhofobiology. 1971 . Vol. 14,pp. 667-682. PergamonPress. Printed in Great Britain FLUORESCENCE INDUCTION IN THE RED ALGA

    E-Print Network [OSTI]

    Govindjee

    FLUORESCENCE INDUCTION IN THE RED ALGA PORPHYRIDIUM CRUENTUM P. MOHANTY, G. PAPAGEORGIOU* and GOVINDJEE in the red alga Porphyridium cruentum. Both the fast and the slow fluorescence yield changes are affected algae both in the fast (sec) and in the slow (min) region (see Refs. [l-31). Characteristic points

  12. Antagonist effect between violaxanthin and de-epoxidated pigments in nonphotochemical quenching induction in the qE deficient brown alga

    E-Print Network [OSTI]

    Govindjee

    induction in the qE deficient brown alga Macrocystis pyrifera Héctor Ocampo-Alvarez a , Ernesto GarcíaZ) De-epoxidation rate control Brown alga Macrocystis pyrifera Nonphotochemical quenching (NPQ quenching (qE), is not present in this alga. In contrast to higher plants, NPQ in this organism is much more

  13. In Vivo Characterization of the Electrochemical Proton Gradient Generated in Darkness in Green Algae and Its Kinetic Effects on Cytochrome b6f Turnover

    E-Print Network [OSTI]

    Algae and Its Kinetic Effects on Cytochrome b6f Turnover Giovanni Finazzi*, and Fabrice Rappaport CNRSV) fits well with estimations based on the ATP/ADP ratio measured in green algae under the same conditions dark incubation of algae, the electrochemical transmembrane potential is determined only

  14. The tropical brown alga Lobophora variegata as a bioindicator of mining1 contamination in the New Caledonia lagoon: a field transplantation study2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The tropical brown alga Lobophora variegata as a bioindicator of mining1 contamination in the New field and laboratory studies have identified the alga Lobophora variegata as a good21 candidate key contaminants, i.e. Ag, As, Cd, Co, Cr,25 Cu, Mn, Ni and Zn. Algae from clean and contaminated

  15. NATIONAL PRESS RELEASE I PARIS I 30 AUGUST 2013 Brown algae contain phlorotannins, aromatic (phenolic) compounds that are unique in the plant

    E-Print Network [OSTI]

    Canet, Léonie

    NATIONAL PRESS RELEASE I PARIS I 30 AUGUST 2013 Brown algae contain phlorotannins, aromatic elucidated the key step in the production of these compounds in Ectocarpus siliculosus, a small brown alga phlorotannins from brown algae for use in industry was a complex process, and the biosynthesis pathways

  16. Supplemental Feeding of Clam Seed in Land-based Nurseries Shellfish Algae Diet is a commercially available, super-concentrated mix of four marine micro-

    E-Print Network [OSTI]

    Florida, University of

    Supplemental Feeding of Clam Seed in Land-based Nurseries Shellfish Algae Diet is a commercially available, super-concentrated mix of four marine micro- algae that provide a nutritional profile for shellfish. Although the algal cells are intact, the algae are not alive. The diet does not contain

  17. Algae: The Source of Reliable, Scalable, and Sustainable Liquid Transportation Fuels

    Broader source: Energy.gov [DOE]

    At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Brian Goodall (Sapphire Energy) spoke on Continental Airlines’ January 7th Biofuels Test. The flight was fueled, in part, by Sapphire’s algae-based jet fuel.

  18. Change in biomass of benthic and planktonic algae along a disturbance gradient for 24 Great

    E-Print Network [OSTI]

    McMaster University

    Change in biomass of benthic and planktonic algae along a disturbance gradient for 24 Great Lakes. The PC1 site score was significantly related to both periphyton and phytoplankton biomass, respectively accounted for 18% of the variation in epiphyton biomass. Periphytic and epiphytic biomass were negatively

  19. Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species

    E-Print Network [OSTI]

    Sachs, Julian P.

    Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species Zhaohui in media containing different concentrations of deuterium. The hydrogen isotopic ratios of lipids that lipid dD values can be used to determine water dD values, hydrogen isotope fractionation was found

  20. Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited growth rate effects

    E-Print Network [OSTI]

    Sachs, Julian P.

    Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited Accepted 7 November 2008 Available online 17 November 2008 a b s t r a c t Zhang and Sachs [Hydrogen. Introduction Hydrogen isotope ratios in plant and algal lipids from sediments are increasingly used

  1. Algae Biofuels Collaborative Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-371

    SciTech Connect (OSTI)

    French, R. J.

    2012-04-01

    The goal of this project is to advance biofuels research on algal feedstocks and NREL's role in the project is to explore novel liquid extraction methods, gasification and pyrolysis as means to produce fuels from algae. To that end several different extraction methods were evaluated and numerous gasification and pyrolysis conditions were explored. It was found that mild hydrothermal treatment is a promising means to improve the extraction and conversion of lipids from algae over those produced by standard extraction methods. The algae were essentially found to gasify completely at a fairly low temperature of 750 degrees C in the presence of oxygen. Pyrolysis from 300-550 degrees C showed sequential release of phytene hydrocarbons, glycerides, and aromatics as temperature was increased. It appears that this has potential to release the glycerides from the non-fatty acid groups present in the polar lipids to produce a cleaner lipid. Further research is needed to quantify the pyrolysis and gasification yields, analyze the liquids produced and to test strategies for removing organic-nitrogen byproducts produced because of the high protein content of the feed. Possible strategies include use of high-lipid/low-protein algae or the use of catalytic pyrolysis.

  2. Development of a Nuclear Transformation System for Oleaginous Green Alga Lobosphaera (Parietochloris)

    E-Print Network [OSTI]

    , progress in transformation and metabolic engineering of this high value alga could be exploited a platform for the successful genetic engineering of L. incisa and its long-chain PUFA metabolism. Citation of a Mutant Strain, Deficient in Arachidonic Acid Biosynthesis. PLoS ONE 9(8): e105223. doi:10. 1371/journal

  3. Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated

    E-Print Network [OSTI]

    Berges, John A.

    suggest that, in contrast to the tight relationship between N and C metabo- lism in many microalgae, N biomass and 95% of productivity (Birkett, Dring & Savidge, unpublished results).The vast majority of the macroalgal biomass in the Lough is fucoid algae (Fucus and Ascophyllum species) and kelps (Laminaria species

  4. Harmful algae and their potential impacts on desalination operations off southern California

    E-Print Network [OSTI]

    Caron, David

    Harmful algae and their potential impacts on desalination operations off southern California David Available online 30 June 2009 Keywords: Harmful algal blooms Desalination Red tides Phytoplankton Phytotoxins a b s t r a c t Seawater desalination by reverse osmosis (RO) is a reliable method for augmenting

  5. A Model for Signal Transduction during Gamete Release in the Fucoid Alga Pelvetia compressa1

    E-Print Network [OSTI]

    Borges, Rita

    ., 1996]). Natural populations of fucoid algae release gametes into SW in the light during periods of low addition of excess inorganic carbon to SW under calm conditions blocked gamete release; conversely, gamete release occurred in in- organic carbon-free SW independently of the hydrody- namic conditions (Pearson et

  6. An original adaptation of photosynthesis in the marine green alga Ostreococcus

    E-Print Network [OSTI]

    An original adaptation of photosynthesis in the marine green alga Ostreococcus Pierre Cardol, 2008 (received for review December 15, 2007) Adaptation of photosynthesis in marine environment has and nonphotochemical quenching when RCC809 cells are exposed to excess excitation energy. We propose that the diver

  7. Dietary supplementation of marine algae and the modification of thrombocyte aggregation parameters in avian pulmonary hypertension syndrome 

    E-Print Network [OSTI]

    Carpenter, Amy Renee

    1999-01-01

    Studies were conducted to investigate the effects of dietary supplementation with marine algae (MA) as a source of omega-3 fatty acids on thrombocyte aggregation and the incidence of pulmonary hypertension syndrome (PHS) in the broiler chicken...

  8. L\\'evy Fluctuations and Tracer Diffusion in Dilute Suspensions of Algae and Bacteria

    E-Print Network [OSTI]

    Zaid, Irwin M; Yeomans, Julia M

    2010-01-01

    Swimming microorganisms rely on effective mixing strategies to achieve efficient nutrient influx. Recent experiments, probing the mixing capability of unicellular biflagellates, revealed that passive tracer particles exhibit anomalous non-Gaussian diffusion when immersed in a dilute suspension of self-motile Chlamydomonas reinhardtii algae. Qualitatively, this observation can be explained by the fact that the algae induce a fluid flow that may occasionally accelerate the colloidal tracers to relatively large velocities. A satisfactory quantitative theory of enhanced mixing in dilute active suspensions, however, is lacking at present. In particular, it is unclear how non-Gaussian signatures in the tracers' position distribution are linked to the self-propulsion mechanism of a microorganism. Here, we develop a systematic theoretical description of anomalous tracer diffusion in active suspensions, based on a simplified tracer-swimmer interaction model that captures the typical distance scaling of a microswimmer'...

  9. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hunsperger, Heather M.; Randhawa, Tejinder; Cattolico, Rose Ann

    2015-02-10

    Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages.

  10. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae

    SciTech Connect (OSTI)

    Hunsperger, Heather M. [Univ. of Washington, Seattle, WA (United States); Randhawa, Tejinder [Univ. of Washington, Seattle, WA (United States); Cattolico, Rose Ann [Univ. of Washington, Seattle, WA (United States)

    2015-01-01

    Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages.

  11. Benthic algae as bioindicators of agricultural pollution in the streams and rivers of southern Quebec (Canada)

    E-Print Network [OSTI]

    Vincent, Warwick F.

    Benthic algae as bioindicators of agricultural pollution in the streams and rivers of southern Qu´ebec´epartement de biologie, Universit´e Laval, Qu´ebec, G1K 7P4 Canada 2Centre d' ´Etudes Nordiques, Universit´e Laval, Qu´ebec, G1K 7P4 Canada 3D´epartement de g´eographie, Universit´e Laval, Qu´ebec, G1K 7P4 Canada

  12. Photocatalytic Inhibition of Algae Growth Using TiO2, WO3, and

    E-Print Network [OSTI]

    Ouellette, Anthony J. A.

    Photocatalytic Inhibition of Algae Growth Using TiO2, WO3, and Cocatalyst Modifications C L O V I Road, Cocoa, Florida 32922-5703 TiO2 and WO3, with and without noble metal cocatalysts, were employed structures. Introduction Wide band gap metal oxides such as TiO2 and WO3 (Eg ) 3.1 and 2.7 eV, respectively

  13. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Albrecht, Karl O.; Hallen, Richard T.; Holladay, Johnathan E.

    2013-10-01

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 ?C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating was effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.

  14. Developing New Alternative Energy in Virginia: Bio-Diesel from Algae

    SciTech Connect (OSTI)

    Hatcher, Patrick

    2012-03-29

    The overall objective of this study was to select chemical processing equipment, install and operate that equipment to directly convert algae to biodiesel via a reaction patented by Old Dominion University (Pat. No. US 8,080,679B2). This reaction is a high temperature (250- 330{degrees}C) methylation reaction utilizing tetramethylammonium hydroxide (TMAH) to produce biodiesel. As originally envisioned, algal biomass could be treated with TMAH in methanol without the need to separately extract triacylglycerides (TAG). The reactor temperature allows volatilization and condensation of the methyl esters whereas the spent algae solids can be utilized as a high-value fertilizer because they are minimally charred. During the course of this work and immediately prior to commencing, we discovered that glycerol, a major by-product of the conventional transesterification reaction for biofuels, is not formed but rather three methoxylated glycerol derivatives are produced. These derivatives are high-value specialty green chemicals that strongly upgrade the economics of the process, rendering this approach as one that now values the biofuel only as a by-product, the main value products being the methoxylated glycerols. A horizontal agitated thin-film evaporator (one square foot heat transfer area) proved effective as the primary reactor facilitating the reaction and vaporization of the products, and subsequent discharge of the spent algae solids that are suitable for supplementing petrochemicalbased fertilizers for agriculture. Because of the size chosen for the reactor, we encountered problems with delivery of the algal feed to the reaction zone, but envision that this problem could easily disappear upon scale-up or can be replaced economically by incorporating an extraction process. The objective for production of biodiesel from algae in quantities that could be tested could not be met, but we implemented use of soybean oil as a surrogate TAG feed to overcome this limitation. The positive economics of this process are influenced by the following: 1. the weight percent of dry algae in suspension that can be fed into the evaporator, 2. the alga species’ ability to produce a higher yield of biodiesel, 3. the isolation of valuable methoxylated by-products, 4. recycling and regeneration of methanol and TMAH, and 5. the market value of biodiesel, commercial agricultural fertilizer, and the three methoxylated by-products. The negative economics of the process are the following: 1. the cost of producing dried, ground algae, 2. the capital cost of the equipment required for feedstock mixing, reaction, separation and recovery of products, and reactant recycling, and 3. the electrical cost and other utilities. In this report, the economic factors and results are assembled to predict the commercialization cost and its viability. This direct conversion process and equipment discussed herein can be adapted for various feedstocks including: other algal species, vegetable oil, jatropha oil, peanut oil, sunflower oil, and other TAG containing raw materials as a renewable energy resource.

  15. ORGANIC GEOCHEMICAL STUDIES. II. THE DISTRIBUTION OF ALIPHATIC HYDROCARBONS IN ALGAE, BACTERIA, AND IN A RECENT LAKE SEDIMENT: A PRELIMINARY REPORT

    E-Print Network [OSTI]

    Han, Jerry; McCarthy, E.D.; Van Hoeven Jr., William; Calvin, Melvin; Bradley, W. H.

    2008-01-01

    significantly to the hydrocarbons of higher molecular weightDISTRIBUTION OF ALIPHATIC HYDROCARBONS IN ALGAE, BACTERIA,T E DISTRIBUTION O ALIPHATIC HYDROCARBONS H F A PRELIMINARY

  16. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

    2012-07-26

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

  17. Surface complexation of neptunium (V) onto whole cells and cell componets of Shewanella alga

    SciTech Connect (OSTI)

    Reed, Donald Timothy; Deo, Randhir P; Rittmann, Bruce E; Songkasiri, Warinthorn

    2008-01-01

    We systematically quantified surface complexation of neptunium(V) onto whole cells of Shewanella alga strain BrY and onto cell wall and extracellular polymeric substances (EPS) of S. alga. We first performed acid and base titrations and used the mathematical model FITEQL with constant-capacitance surface-complexation to determine the concentrations and deprotonation constants of specific surface functional groups. Deprotonation constants most likely corresponded to a carboxyl site associated with amino acids (pK{sub a} {approx} 2.4), a carboxyl group not associated with amino acids (pK{sub a} {approx} 5), a phosphoryl site (pK{sub a} {approx} 7.2), and an amine site (pK{sub a} > 10). We then carried out batch sorption experiments with Np(V) and each of the S. alga components at different pHs. Results show that solution pH influenced the speciation of Np(V) and each of the surface functional groups. We used the speciation sub-model of the biogeochemical model CCBATCH to compute the stability constants for Np(V) complexation to each surface functional group. The stability constants were similar for each functional group on S. alga bacterial whole cells, cell walls, and EPS, and they explain the complicated sorption patterns when they are combined with the aqueous-phase speciation of Np(V). For pH < 8, NpO{sub 2}{sup +} was the dominant form of Np(V), and its log K values for the low-pK{sub a} carboxyl, other carboxyl, and phosphoryl groups were 1.75, 1.75, and 2.5 to 3.1, respectively. For pH greater than 8, the key surface ligand was amine >XNH3+, which complexed with NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-}. The log K for NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-} complexed onto the amine groups was 3.1 to 3.6. All of the log K values are similar to those of Np(V) complexes with aqueous carboxyl and N-containing carboxyl ligands. These results point towards the important role of surface complexation in defining key actinide-microbiological interactions in the subsurface.

  18. Study: Algae Could Replace 17% of U.S. Oil Imports | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority for anStudy: Algae Could Replace 17% of U.S. Oil

  19. Lévy Fluctuations and Tracer Diffusion in Dilute Suspensions of Algae and Bacteria

    E-Print Network [OSTI]

    Irwin M. Zaid; Jörn Dunkel; Julia M. Yeomans

    2010-09-20

    Swimming microorganisms rely on effective mixing strategies to achieve efficient nutrient influx. Recent experiments, probing the mixing capability of unicellular biflagellates, revealed that passive tracer particles exhibit anomalous non-Gaussian diffusion when immersed in a dilute suspension of self-motile Chlamydomonas reinhardtii algae. Qualitatively, this observation can be explained by the fact that the algae induce a fluid flow that may occasionally accelerate the colloidal tracers to relatively large velocities. A satisfactory quantitative theory of enhanced mixing in dilute active suspensions, however, is lacking at present. In particular, it is unclear how non-Gaussian signatures in the tracers' position distribution are linked to the self-propulsion mechanism of a microorganism. Here, we develop a systematic theoretical description of anomalous tracer diffusion in active suspensions, based on a simplified tracer-swimmer interaction model that captures the typical distance scaling of a microswimmer's flow field. We show that the experimentally observed non-Gaussian tails are generic and arise due to a combination of truncated L\\'evy statistics for the velocity field and algebraically decaying time correlations in the fluid. Our analytical considerations are illustrated through extensive simulations, implemented on graphics processing units to achieve the large sample sizes required for analyzing the tails of the tracer distributions.

  20. Structure and scintillation yield of Ce-doped Al–Ga substituted yttrium garnet

    SciTech Connect (OSTI)

    Sidletskiy, Oleg; Kononets, Valerii; Lebbou, Kheirreddine; Neicheva, Svetlana; Voloshina, Olesya; Bondar, Valerii; Baumer, Vyacheslav; Belikov, Konstantin; Gektin, Alexander; Grinyov, Boris; Joubert, Marie-France

    2012-11-15

    Highlights: ? Range of Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce solid solution crystals are grown from melt by the Czochralski method. ? Light yield of mixed crystals reaches 130% of the YAG:Ce value at x ? 0.4. ? ?1% of antisite defects is formed in YGG:Ce, but no evidence of this is obtained for the rest of crystals. -- Abstract: Structure and scintillation yield of Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce solid solution crystals are studied. Crystals are grown from melt by the Czochralski method. Distribution of host cations in crystal lattice is determined. Quantity of antisite defects in crystals is evaluated using XRD and atomic emission spectroscopy data. Trend of light output at Al/Ga substitution in Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce is determined for the first time. Light output in mixed crystals reaches 130% comparative to Ce-doped yttrium–aluminum garnet. Luminescence properties at Al/Ga substitution are evaluated.

  1. The concept of "Green" has always been understood as expensive and not competitive. The new technologies that allow the efficient use of carbon atoms from inexpensive biomasses, even before the utilization of algae,

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    the utilization of algae, have provided the opportunity to be "green and competitive" for the first time

  2. PHYLOGENETIC ANALYSIS OF PSEUDOCHLORODESMIS STRAINS REVEALS CRYPTIC DIVERSITY ABOVE THE FAMILY LEVEL IN THE SIPHONOUS GREEN ALGAE

    E-Print Network [OSTI]

    LEVEL IN THE SIPHONOUS GREEN ALGAE (BRYOPSIDALES, CHLOROPHYTA)1 Heroen Verbruggen,2 Caroline Vlaeminck siphons of extreme mor- phological simplicity. The discovery of Pseudochlo- rodesmis-like juveniles of this genus. Confronted with this uncertainty, taxonomists transferred many simple siphons into a new genus

  3. As corn-based biofuels reach their practical limits, advanced algae-based biofuels are poised to supply

    E-Print Network [OSTI]

    Reisslein, Martin

    SEMTE abstract As corn-based biofuels reach their practical limits, advanced algae-based biofuels of Energy, General Electric, Algenol Biofuels, and Southern Company. Currently a post-doctoral fellow working for Algenol Biofuels, Dr. Lively is expanding his expertise in gas and liquid separations

  4. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  5. Unique Regulation of the Calvin Cycle in the Ultrasmall Green Alga Ostreococcus Steven Robbens,1,2

    E-Print Network [OSTI]

    Gent, Universiteit

    , Germany 4 De´ partement de Biochimie, Universite´ de Montre´ al, C.P. 6128, Montreal, Canada 5 Laboratoire and algae transform light energy into ATP and NADPH. This chemical energy fuels the Calvin cycle, where anabolic and catabolic metabolism exemplified by starch production and degradation. A general metabolic

  6. Cell body rocking is a dominant mechanism for flagellar synchronization in a swimming algae

    E-Print Network [OSTI]

    Geyer, Veikko; Howard, Jonathon; Friedrich, Benjamin M

    2013-01-01

    The unicellular green algae Chlamydomonas swims with two flagella, which can synchronize their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not understood. Here, we present realistic hydrodynamic computations and high-speed tracking experiments of swimming cells that show how a perturbation from the synchronized state causes rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic friction forces and rapidly restores the synchronized state in our theory. We calculate that this `cell body rocking' provides the dominant contribution to synchronization in swimming cells, whereas direct hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed the coupling between flagellar beating and cell body rocking predicted by our theory. We propose that the interplay of flagellar beating a...

  7. Dispersion of swimming algae in laminar and turbulent channel flows: theory and simulations

    E-Print Network [OSTI]

    Croze, O A; Ahmed, M; Bees, M A; Brandt, L

    2012-01-01

    Algal swimming is often biased by environmental cues, e.g. gravitational and viscous torques drive cells towards downwelling fluid (gyrotaxis). In view of biotechnological applications, it is important to understand how such biased swimming affects cell dispersion in a flow. Here, we study the dispersion of gyrotactic swimming algae in laminar and turbulent channel flows. By direct numerical simulation (DNS) of cell motion within upwelling and downwelling channel flows, we evaluate time-dependent measures of dispersion for increasing values of the flow Peclet (Reynolds) numbers, Pe (Re). Furthermore, we derive an analytical `swimming Taylor-Aris dispersion' theory, using flow-dependent transport parameters given by existing microscopic models. In the laminar regime, DNS results and analytical predictions compare very well, providing the first confirmation that cells' response to flow is best described by the generalized-Taylor-dispersion microscopic model. We predict that cells drift along a channel faster th...

  8. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    SciTech Connect (OSTI)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  9. Cell body rocking is a dominant mechanism for flagellar synchronization in a swimming alga

    E-Print Network [OSTI]

    Veikko Geyer; Frank Jülicher; Jonathon Howard; Benjamin M Friedrich

    2013-11-23

    The unicellular green algae Chlamydomonas swims with two flagella, which can synchronize their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not understood. Here, we present realistic hydrodynamic computations and high-speed tracking experiments of swimming cells that show how a perturbation from the synchronized state causes rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic friction forces and rapidly restores the synchronized state in our theory. We calculate that this `cell body rocking' provides the dominant contribution to synchronization in swimming cells, whereas direct hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed the coupling between flagellar beating and cell body rocking predicted by our theory. This work appeared also in the Proceedings of the National Academy of Science of the U.S.A as: Geyer et al., PNAS 110(45), p. 18058(6), 2013.

  10. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.; Umen, James G.

    2015-04-30

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.

  11. Use of prolines for improving growth and other properties of plants and algae

    DOE Patents [OSTI]

    Unkefer, Pat J. (Los Alamos, NM); Knight, Thomas J. (Portland, ME); Martinez, Rodolfo A. (Santa Fe, NM)

    2003-04-29

    Increasing the concentration of prolines such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that overexpress glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramnate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  12. Use of prolines for improving growth and other properties of plants and algae

    DOE Patents [OSTI]

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-07-15

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  13. Use of prolines for improving growth and other properties of plants and algae

    DOE Patents [OSTI]

    Unkefer, Pat J. (Los Alamos, NM); Knight, Thomas J. (Portland, ME); Martinez, Rodolfo A. (Santa Fe, NM)

    2004-12-14

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  14. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Junjing; Vine, David J.; Chen, Si; Nashed, Youssef S. G.; Jin, Qiaoling; Phillips, Nicholas W.; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris J.

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore »beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub–30-nm resolution structural images and ~90-nm–resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less

  15. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cornish, Adam J.; Michigan State Univ., East Lansing, MI; Green, Robin; Michigan State Univ., East Lansing, MI; Gärtner, Katrin; Michigan State Univ., East Lansing, MI; Mason, Saundra; Michigan State Univ., East Lansing, MI; Hegg, Eric L.; Michigan State Univ., East Lansing, MI

    2015-04-30

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobicmore »conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.« less

  16. CX-100059 Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pilot-Scale Mixotrophic Algae Integrated Biorefinery Award Number: DE-EE0006245 CX(s) Applied: A9, B5.15 Date: 09/15/2014 Location(s): IA Office(s): Golden Field Office

  17. CX-010749: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot-Scale Mixotrophic Algae Integrated Biorefinery CX(s) Applied: A9, B5.15 Date: 08/15/2013 Location(s): Illinois Offices(s): Golden Field Office

  18. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    SciTech Connect (OSTI)

    Huang, Shi; Fulbright, Scott P; Zeng, Xiaowei; Yates, Tracy; Wardle, Greg; Chisholm, Stephen T; Xu, Jian; Lammers, Peter

    2011-03-16

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We apply a principal component analysis across the initial sample set to draw correlations between sample variables and changes in microbiome populations.

  19. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    SciTech Connect (OSTI)

    Sikes, K.; McGill, R.; Van Walwijk, M.

    2011-05-15

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be used in an algal biofuel cycle before it is released into the atmosphere 6) Ability to be cultivated on land that that is unsuitable for agriculture, so it does not directly compete with farmland Given microalgae's high lipid content and rapid growth rates, maximum oil yields of 20,000--115,000 L/ha/yr (2,140-13,360 gal/ac/yr) have been estimated. xiv 7) Ability to thrive in seawater, wastewater, or other non-potable sources, so it does not directly compete with fresh water resources. In fact, wastewater can provide algae with some essential nutrients, such as nitrogen, so algae may contribute to cleaning up wastewater streams. 8) Non-toxic and biodegradable 9) Co-products that may present high value in other markets, including nutriceuticals and cosmetics Given microalgae's high lipid content and rapid growth rate, maximum oil yields of 20,000 -- 115,000 liters per hectare per year (L/ha/yr) (2,140 -- 13,360 gallons per acre per year) (Baldos, 2009; Wijffels, 2008) have been estimated, which is considerably higher than any other competing feedstock. Although algae species collectively present many strong advantages (although one specific species is unlikely to possess all of the advantages listed), a sustainable algal biofuel industry is at least one or two decades away from maturity, and no commercial scale operations currently exist. Several barriers must first be overcome before algal biofuels can compete with traditional petroleum-based fuels. Production chains with net energy output need to be identified, and continued R&D is needed to reduce the cost in all segments of the production spectrum (e.g., harvesting, dewatering, extracting of oil). Further research to identify strains with high production rates and/or oil yields may also improve competitiveness within the market. Initiatives to seamlessly integrate algal biofuels into the existing transportation infrastructure may increase their convenience level.

  20. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    SciTech Connect (OSTI)

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  1. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  2. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    SciTech Connect (OSTI)

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

    2014-09-16

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae, biofuels, resource assessment, geographic information systems, techno-economics

  3. Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

  4. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Molnár, István; Lopez, David; Wisecaver, Jennifer H.; Devarenne, Timothy P.; Weiss, Taylor L.; Pellegrini, Matteo; Hackett, Jeremiah D.

    2012-10-30

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. The biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga thatmore »compete for photosynthetic carbon and energy.« less

  5. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Molnár, István [Univ. of Arizona, Tucson, AZ (United States). Natural Products Center and Bio5 Institute; Lopez, David [Univ. of California, Los Angeles, CA (United States). Dept. of Molecular, Cell and Developmental Biology; Wisecaver, Jennifer H. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Ecology and Evolutionary Biology; Devarenne, Timothy P. [Texas A & M Univ., College Station, TX (United States). Dept. of Biochemistry and Biophysics; Weiss, Taylor L. [Texas A & M Univ., College Station, TX (United States). Dept. of Biochemistry and Biophysics; Pellegrini, Matteo [Univ. of California, Los Angeles, CA (United States). Dept. of Molecular, Cell and Developmental Biology; Hackett, Jeremiah D. [Univ. of Arizona, Tucson, AZ (United States). Bio5 Institute and Dept. of Ecology and Evolutionary Biology

    2012-01-01

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy.

  6. Mixing by Swimming Algae

    E-Print Network [OSTI]

    Guasto, Jeffrey S; Gollub, J P; Pesci, Adriana I; Goldstein, Raymond E

    2009-01-01

    In this fluid dynamics video, we demonstrate the microscale mixing enhancement of passive tracer particles in suspensions of swimming microalgae, Chlamydomonas reinhardtii. These biflagellated, single-celled eukaryotes (10 micron diameter) swim with a "breaststroke" pulling motion of their flagella at speeds of about 100 microns/s and exhibit heterogeneous trajectory shapes. Fluorescent tracer particles (2 micron diameter) allowed us to quantify the enhanced mixing caused by the swimmers, which is relevant to suspension feeding and biogenic mixing. Without swimmers present, tracer particles diffuse slowly due solely to Brownian motion. As the swimmer concentration is increased, the probability density functions (PDFs) of tracer displacements develop strong exponential tails, and the Gaussian core broadens. High-speed imaging (500 Hz) of tracer-swimmer interactions demonstrates the importance of flagellar beating in creating oscillatory flows that exceed Brownian motion out to about 5 cell radii from the swimm...

  7. ATP3 Algae Testbed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and consultation services to academia, industry and national labs * Project Categories: fee-for service activities, sponsored research, and subsidized projects through ATP 3...

  8. Experimental Substantiation of the Possibility of Developing Selenium- and Iodine-Containing Pharmaceuticals Based on Blue-Green Algae Spirulina Platensis

    E-Print Network [OSTI]

    Mosulishvili, L M; Belokobylsky, A I; Khisanishvili, L A; Frontasyeva, M V; Pavlov, C C; Gundorina, S F

    2001-01-01

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using -reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loding of the above elements was characterised. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  9. A National-Scale Comparison of Resource and Nutrient Demands for Algae-Based Biofuel Production by Lipid Extraction and Hydrothermal Liquefaction

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-01

    Algae’s high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relative to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.

  10. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    SciTech Connect (OSTI)

    Molnár, István; Lopez, David; Wisecaver, Jennifer H.; Devarenne, Timothy P.; Weiss, Taylor L.; Pellegrini, Matteo; Hackett, Jeremiah D.

    2012-10-30

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. The biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy.

  11. CX-100014: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Realization of Algae Potential CX(s) Applied: A9, B3.6, B5.15 Date: 08/19/2014 Location(s): New Mexico Offices(s): Golden Field Office Technology Office: Bioenergy Program Award Number: DE-EE0006313

  12. CX-100111 Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrothermal Liquefaction Pathways for Low-Nitrogen Biocrude from Wet Algae Award Number: DE-EE0006635 CX(s) Applied: A9, B3.16, B3.6 Date: 10/29/2014 Location(s): CA Office(s): Golden Field Office

  13. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure

    SciTech Connect (OSTI)

    Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

    2014-02-21

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

  14. Algae R&D Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    be deposited, but this will require additional resources for preparation of strains and preservation. Further, NAABB established a contract with UTEX for three years for...

  15. Characterization of the Kootenai River Algae Community and Primary Productivity Before and After Experimental Nutrient Addition, 2004–2007 [Chapter 2, Kootenai River Algal Community Characterization, 2009 KTOI REPORT].

    SciTech Connect (OSTI)

    Holderman, Charlie; Anders, Paul; Shafii, Bahman

    2009-07-01

    The Kootenai River ecosystem (spelled Kootenay in Canada) has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam on the river near Libby Montana, completed in 1972. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel downstream in Idaho and British Columbia (B.C.) severely reducing natural biological productivity and habitat diversity crucial to large river-floodplain ecosystem function. Libby Dam greatly reduces sediment and nutrient transport to downstream river reaches, and dam operations cause large changes in the timing, duration, and magnitude of river flows. These and other changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to large scale loss of nutrients, experimental nutrient addition was initiated in the North Arm of Kootenay Lake in 1992, in the South Arm of Kootenay Lake in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes baseline chlorophyll concentration and accrual (primary productivity) rates and diatom and algal community composition and ecological metrics in the Kootenai River for four years, one (2004) before, and three (2005 through 2007) after nutrient addition. The study area encompassed a 325 km river reach from the upper Kootenay River at Wardner, B.C. (river kilometer (rkm) 445) downstream through Montana and Idaho to Kootenay Lake in B.C. (rkm 120). Sampling reaches included an unimpounded reach furthest upstream and four reaches downstream from Libby Dam affected by impoundment: two in the canyon reach (one with and one without nutrient addition), a braided reach, and a meandering reach. The study design included 14 sampling sites: an upstream, unimpounded reference site (KR-14), four control (non-fertilized) canyon sites downstream from Libby Dam, but upstream from nutrient addition (KR-10 through KR-13), two treatment sites referred to collectively as the nutrient addition zone (KR-9 and KR-9.1, located at and 5 km downstream from the nutrient addition site), two braided reach sites (KR-6 and KR-7), and four meander reach sites (KR-1 through KR-4). A series of qualitative evaluations and quantitative analyses were used to assess baseline conditions and effects of experimental nutrient addition treatments on chlorophyll, primary productivity, and taxonomic composition and metric arrays for the diatom and green algae communities. Insufficient density in the samples precluded analyses of bluegreen algae taxa and metrics for pre- and post-nutrient addition periods. Chlorophyll a concentration (mg/m{sup 2}), chlorophyll accrual rate (mg/m{sup 2}/30d), total chlorophyll concentration (chlorophyll a and b) (mg/m{sup 2}), and total chlorophyll accrual rate (mg/m{sup 2}/30d) were calculated. Algal taxa were identified and grouped by taxonomic order as Cyanophyta (blue-greens), Chlorophyta (greens), Bacillariophyta (diatoms), Chrysophyta (goldens), and dominant species from each sample site were identified. Algal densities (number/ml) in periphyton samples were calculated for each sample site and sampling date. Principal Component Analysis (PCA) was performed to reduce the dimension of diatom and algae data and to determine which taxonomic groups and metrics were contributing significantly to the observed variation. PCA analyses were tabulated to indicate eigenvalues, proportion, and cumulative percent variation, as well as eigenvectors (loadings) for each of the components. Biplot graphic displays of PCA axes were also generated to characterize the pattern and structure of the underlying variation. Taxonomic data and a series of biological and ecological metrics were used with PCA for diatoms and algae. Algal metrics included

  16. Blue-green algae Flagellates Rotifers

    E-Print Network [OSTI]

    birds. The mouth is large with many large and hair-like teeth. Northern Pike (Esox lucius drum (Aplodinotus grunniens). Gets its name from the odd grunting noises produced by muscles vibrating

  17. Whole Algae Hydrothermal Liquefaction Technology Pathway Biddy...

    Office of Scientific and Technical Information (OSTI)

    MICROALGAL-DERIVED BIOFUEL; HYDROCARBON FUEL; BIOMASS TECHNOLOGIES OFFICE; NATIONAL RENEWABLE ENERGY LABORATORY; PACIFIC NORTHWEST NATIONAL LABORATORY; Bioenergy MICROALGAE;...

  18. Wastewater Reclamation and Biofuel Production Using Algae

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Africa, New Zealand (but not designed for nutrient removal). 9 Typical Electro-Mechanical Treatment Plant 10 Aeration Basins with Air Blowers Sludge Settling Tanks -100,000 0...

  19. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  20. Algae Testbed Public-Private Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    methods and variables to provide data to further enrich the model inputs 16 Cellana UFS ponds Cellana Large Scale Ponds 17 Standardization of processes and systems is key to...

  1. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Available electronically at http:www.osti.govbridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of...

  2. Sustainable Development of Algae for Biofuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep clay from phosphate-mined lands Phase I Mar-June 2015 flow flow flow Water Chemistry Treatments Initial soil Particle Size Distributions Lab experiments: Measure effect of...

  3. RESEARCH ARTICLE Algae production on pig sludge

    E-Print Network [OSTI]

    Boyer, Edmond

    . However, there are several other methods of treating liquid manure, such as making compost, biogas

  4. Carbon2Algae, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:Fund for Spanish Firms FC2EPowerTrust

  5. BioProcess Algae | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC Jump to:BioGas Energy

  6. Algae Biofuels Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie

  7. International Algae Symposium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | DepartmentDepartment ofInsuranceof

  8. A Study on Biological Threats to Texas Freshwater Resources 

    E-Print Network [OSTI]

    Neisch, Michael

    2014-01-15

    ). Recent research showed that even under light and nutrient replete conditions, P. parvum can function heterotrophically, phagocytizing bacteria (Martin-Cereceda et al., 2003; Burkholder et al. 2008; Carvalho and Granéli 2010). In fact, P. parvum grew... mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae, 8, 77-93. Carvalho, W. F. & Granéli, E. (2010) Contribution of phagotrophy versus autotrophy to Prymnesium parvum growth under nitrogen and phosphorus sufficiency...

  9. Genome Sequence of Chthoniobacter flavus Ellin428, an aerobic heterotrophic soil bacterium

    SciTech Connect (OSTI)

    Kant, Ravi [University of Helsinki; Van Passel, Mark W.J. [Wageningen University and Research Centre, The Netherlands; Palva, Airi [University of Helsinki; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; De Vos, Willem M. [Wageningen University and Research Centre, The Netherlands; Janssen, Peter H. [AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand; Smidt, Hauke [Wageningen University and Research Centre, The Netherlands

    2011-01-01

    Chthoniobacter flavusis Ellin428 is the first isolate from subdivision 2 of the bacterial phylum Verrucomicrobia. C. flavusis Ellin428 can metabolize many of the saccharide components of plant biomass but does not grow with amino acids or organic acids other than pyruvate.

  10. Cycling of DOC and DON by Novel Heterotrophic and Photoheterotrophic Bacteria in the Ocean: Final Report

    SciTech Connect (OSTI)

    Kirchman, David L

    2008-12-09

    The flux of dissolved organic matter (DOM) through aquatic bacterial communities is a major process in carbon cycling in the oceans and other aquatic systems. Our work addressed the general hypothesis that the phylogenetic make-up of bacterial communities and the abundances of key types of bacteria are important factors influencing the processing of DOM in aquatic ecosystems. Since most bacteria are not easily cultivated, the phylogenetic diversity of these microbes has to be assessed using culture-independent approaches. Even if the relevant bacteria were cultivated, their activity in the lab would likely differ from that under environmental conditions. This project found variation in DOM uptake by the major bacterial groups found in coastal waters. In brief, the data suggest substantial differences among groups in the use of high and molecular weight DOM components. It also made key discoveries about the role of light in affecting this uptake especially by cyanobacteria. In the North Atlantic Ocean, for example, over half of the light-stimulated uptake was by the coccoid cyanobacterium, Prochlorococcus, with the remaining uptake due to Synechococcus and other photoheterotrophic bacteria. The project also examined in detail the degradation of one organic matter component, chitin, which is often said to be the second most abundant compound in the biosphere. The findings of this project contribute to our understanding of DOM fluxes and microbial dynamics supported by those fluxes. It is possible that these findings will lead to improvements in models of the carbon cycle that have compartments for dissolved organic carbon (DOC), the largest pool of organic carbon in the oceans.

  11. CX-100363 Categorical Exclusion Determination | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA) LLC CX(s) Applied:Low CostDesign:Algae

  12. CX-100364 Categorical Exclusion Determination | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA) LLC CX(s) Applied:Low CostDesign:AlgaeProduction

  13. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria

    SciTech Connect (OSTI)

    Thomas, Dennis G.; Jaramillo Riveri, Sebastian I.; Baxter, Douglas J.; Cannon, William R.

    2014-12-15

    We have applied a new stochastic simulation approach to predict the metabolite levels, energy flow, and material flux in the different oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on equations of state and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the selforganization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals, such as biofuels.

  14. Tracking changes in bioavailable Fe within high-nitrate low-chlorophyll oceanic waters: A first estimate using a heterotrophic

    E-Print Network [OSTI]

    Wilhelm, Steven W.

    . Ellwood,3 Michael R. Twiss,4 R. Michael L. McKay,5 Philip W. Boyd,6 and Steven W. Wilhelm1 Received 10. M. Handy, M. J. Ellwood, M. R. Twiss, R. M. L. McKay, P. W. Boyd, and S. W. Wilhelm (2005), Tracking

  15. Linking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate using stable isotope probing in contaminated subsurface sediments

    SciTech Connect (OSTI)

    Akob, Denise M. [Florida State University; Kerkhof, Lee [Rutgers University; Kusel, Kirsten [Friedrich Schiller University Jena, Jena Germany; Watson, David B [ORNL; Palumbo, Anthony Vito [ORNL; Kostka, Joel [Florida State University

    2011-01-01

    Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [{sup 13}C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions.

  16. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    E-Print Network [OSTI]

    Bertrand, Erin Marie

    Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the ...

  17. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01

    discharge side of a centrifugal pump (Model 1MC1D5D0, ITT-2.3). The speed of the centrifugal pump was adjusted using aconnected to a centrifugal circulation pump. (Bottom) A

  18. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    E-Print Network [OSTI]

    Grigoriev, Igor

    2011-01-01

    organic matter and turbidity (6), whereas high concentrations of metals have been attributed to maritime paints

  19. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    silicon air battery development (DARPA) * Alane (AlH 3 ), hydrogen storage for fuel cells (DOE) * Low energy nuclear reaction (commercial client) * Selective separation...

  20. CEC-500-2010-FS-001 Algae OMEGA

    E-Print Network [OSTI]

    biosynthetic technologies that demonstrate the potential to supply transportation fuels for California in order. · Develop new fuel sources with lower net GHG emissions, and with potential to help stabilize atmospheric ENERGY RESEARCH PIER Transportation Research www.energy.ca.gov/research/ transportation/ March 2010

  1. Energy 101: Algae-to-Fuel | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sequence of cars, trains, and planes in motion. Extract that oil, and you have the raw materials to make fuel for cars, trucks, trains, and planes. In the future, anything that...

  2. Magnetic mesoporous material for the sequestration of algae

    SciTech Connect (OSTI)

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  3. Analytical approaches to photobiological hydrogen production in unicellular green algae

    E-Print Network [OSTI]

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01

    Cournac, Gilles Peltier, De partment d’Ecophysiologie Vege345–378 Cournac L, Guedeney G, Peltier G, Vignais PM (2004)Pruvost J, Legrand J, Happe T, Peltier G, Cournac L (2005)

  4. Whole Algae Hydrothermal Liquefaction: 2014 State of Technology

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Snowden-Swan, Lesley J.; Anderson, Daniel; Hallen, Richard T.; Schmidt, Andrew J.; Albrecht, Karl O.; Elliott, Douglas C.

    2014-07-30

    This report describes the base case yields and operating conditions for converting whole microalgae via hydrothermal liquefaction and upgrading to liquid fuels. This serves as the basis against which future technical improvements will be measured.

  5. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01

    Figure 2.9. Components of the SCADA system. Inputs from theThe HMI screen of the OMEGA SCADA system. The HMI displayedthe settling chamber. The SCADA system modulates a pneumatic

  6. Magneto-optical properties of biogenic photonic crystals in algae

    SciTech Connect (OSTI)

    Iwasaka, M.; Mizukawa, Y.

    2014-05-07

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0?T and 5?T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering from a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4?T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror.

  7. Enzyme Fusions Optimize Photosynthetic Hydrogen Production in Algae (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Research at NREL is demonstrating that engineering enzymes has the potential to improve efficiencies.

  8. Cultivation of macroscopic marine algae and fresh water aquatic weeds

    SciTech Connect (OSTI)

    Ryther, J.H.

    1982-02-01

    The ORCA clone of the red seaweed Gracilaria tikvahiae has been in culture continuously for over two years. Yield for the past year has averaged 12 g ash-free dry wt/m/sup 2/ .day (17.5 t/a.y) in suspended 2600-1 aluminum tank cultures with four exchanges of enriched seawater per day and continuous aeration. Yields from nonintensive pond-bottom culture, similar to commercial Gracilaria culture methods in Taiwan, averaged 3 g afdw/m/sup 2/.day in preliminary experiments. Rope and spray cultures were not successful. Yields of water hyacinths from March 1978 to March 1979 averaged 25 g afdw/m/sup 2/.day (37 t/a.y). Season, nutrient availability (form and quantity) and stand density were found to affect the relative proportions of structural and nonstructural tissue in water hyacinths and thereby significantly affect digestibility of and methane production by the plants. Pennywort (Hydrocotyle) grew poorly in winter and its annual yield averaged only one-third that of water hyacinth. Water lettuce (Pistia) appears more comparable to hyacinths in preliminary studies and its yields will be monitored throughout a complete year. Stable, continuous anaerobic digestion of both water hyacinths and Gracilaria has been maintained with an average gas production from both species of 0.4 1/g volatile solids at 60% methane.

  9. Common benthic algae and cyanobacteria in southern California tidal wetlands

    E-Print Network [OSTI]

    Janousek, Christopher N

    2011-01-01

    2001b. Form-genus VIII. Gloeocapsa. In: Bergey’s Manual ® of1969. Nitrogen fixation by Gloeocapsa. Science 165:908-909.Chroococcus sp(p). Gloeocapsa sp(p). Synechocystis *

  10. Common benthic algae and cyanobacteria in southern California tidal wetlands

    E-Print Network [OSTI]

    Janousek, Christopher N

    2011-01-01

    dynamics of benthic microalgae in salt marshes. In: Conceptsand composition of microalgae and photosynthetic bacteria innotable cyanobacteria, microalgae and macroalgae observed in

  11. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01

    and J. Trent (2013). Microalgae cultivation using offshoreJ. Trent, Harvesting Microalgae by Forward Osmosis. The Open5, 1943 (2012). E. W. Becker, Microalgae: Biotechnology and

  12. Analytical approaches to photobiological hydrogen production in unicellular green algae

    E-Print Network [OSTI]

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01

    E, Melis A (2000) Microalgae: a green source of renewable Hmany species of green microalgae. Moreover, it has attractedutili- zation of green microalgae and the process of

  13. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01

    Microalgae cultivation using offshore membrane enclosuresbiofouling on the proposed offshore membrane enclosures forMicroalgae cultivation using offshore membrane enclosures

  14. DOE Announces Webinars on Genetically Modified Algae, NREL's...

    Broader source: Energy.gov (indexed) [DOE]

    Ready Homes, Building Stronger More Efficient Homes, and More DOE Announces Webinars on Fuel Cells at NASCAR, an Advanced Energy Retrofit Guide for Healthcare Facilities, and...

  15. A Realistic Technology and Engineering Assessment of Algae Biofuel Production

    E-Print Network [OSTI]

    Quinn, Nigel

    microalgae biofuel technologies for both oil and biogas production, provides an initial assessment of the US or wastewater treatment, (2) biofuel outputs--either biogas only or biogas plus oil, and (3) farm size

  16. Crow Nation Students Participate in Algae Biomass Research Project...

    Office of Environmental Management (EM)

    their possible use in energy applications. The project focused on an integrated coal-to-liquid (ICTL) technology developed by Accelergy, which reforms local Montana...

  17. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01

    G. Schaub, Microalgae and terrestrial biomass as source forBiomass collected in the settling chamber is removed, whereas suspended microalgaeBiomass collected in the settling chamber is removed, whereas suspended microalgae

  18. CHECKLIST AND BIBLIOGRAPHY OF THE MARINE BENTHIC ALGAE

    E-Print Network [OSTI]

    Mcilwain, Jenny

    (Pokak, Taongi), Likiep, Majuro, and Utrik (Utirik) in the Ratak Chain, and Bikini, Enewetak (Eniwetok

  19. June 2012 News Blast: Algae on the Mind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment ofEnergyJoe Olencz AboutJune 17, 2015 - SEABMeetingJune

  20. PetroAlgae formerly Dover Glen Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio ProgramInformationMissouri:Partnership

  1. Energy 101 | Algae-to-Fuel | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES ScienceInformationInformation Administration FinancialEnergy

  2. Research Leads to Improved Fuel Yields from Smaller Antenna Algae |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7, 2015Verizon andSection 12227-2008

  3. Pilot-Scale MixotrophicAlgae Integrated Biorefinery(IBR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-Compatible Cumulative Damage

  4. Reviving Algae from the (Almost) Dead - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serial codesReversingproved reserves of

  5. Sandia Energy - Better Monitoring and Diagnostics Tackle Algae Biofuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI ProgramPhysical SocietylasersPond Crash

  6. Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectDataSecretaryDepartment ofLocalDepartment of

  7. 2011 Biomass Program Platform Review Report: Algae | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014Conferenceof Energy Los AlamosDepartment of

  8. Real Time Diagnostics for Algae-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2RateCaseElementsOxideTransformations

  9. The Arizona Center for Algae Technology and Innovation | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind Resources < TexasThank You! Home

  10. DOE Announces Webinars on Genetically Modified Algae, NREL's Fuel Cell

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pState Efficiency, Renewables InitiativesResearchBuildingsGuide

  11. California: Breakthrough in Algae Biology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA) LLCAdministration ofSmallEnergy

  12. Whole Algae Hydrothermal Liquefaction Technology Pathway (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonfor DirectSciTech ConnectConnect WavecoordinatesArticle)|

  13. Whole Algae Hydrothermal Liquefaction Technology Pathway (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonfor DirectSciTech ConnectConnect WavecoordinatesArticle)||

  14. Whole Algae Hydrothermal Liquefaction Technology Pathway (Technical Report)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA? The FOIA,DepartmentWho do I contact|

  15. Whole Turf Algae to biofuels-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA? The FOIA,DepartmentWho do I

  16. Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummary of Reported DataJose,Department

  17. Whole Algae Hydrothermal Liquefaction Technology Pathway | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherize » Airare the EnergyEnergy Where

  18. Energy 101: Algae-to-Fuel | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureElyElectro NitrationEnergetics

  19. BETO Deputy Director Publishes Commentary on Development of Algae as

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | DepartmentPeer20InsulatedofBEST OFFER EVERRenewable

  20. EERE Assistant Secretary and BETO Director Confirmed Speakers for Algae

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |SectorforOXFORD ICP-DRIEEERE Annual Website

  1. The Algae Foundation Announces New DOE Funded Education Initiative to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopmentDepartment ofTestimony by theTheEnhance

  2. Webinar: Genetically Modified Algae: A Risk-Benefit Assessment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWave Energy Prize NarrowedofWebinars|of

  3. Sandia Energy - The National Algae Testbed Public-Private Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization andStochasticunique wind measurements

  4. Sandia Energy - Sandia's Algae Nutrient Recycling Project Is a Triple

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompaniesMODE, and EnergyLosREMOTEWin

  5. Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesA TokenCommercialSTEM VolunteerSafetyEfficiency

  6. Crow Nation Students Participate in Algae Biomass Research Project |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June2012environment 3D printer

  7. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz - Interactive Content

  8. Heterotrophic microbial activities and nutritional status of microbial communities in tropical marsh sediments of different salinities: the effects of phosphorus addition and plant species

    E-Print Network [OSTI]

    Pivni?ková, Barbora; Rejmánková, Eliška; Snyder, Jenise M.; Šantr??ková, Hana

    2010-01-01

    deal of energy is needed to support microbial growth andenergy demand under salinity stress. In conclusion, we found that nutrient in microbialenergy) availability (Kieft et al. 1997). Since the quantity of microbial

  9. Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report

    SciTech Connect (OSTI)

    Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

    2010-06-10

    The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with

  10. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    SciTech Connect (OSTI)

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F.C.

    2014-03-31

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

  11. Molecular and Biochemical Characterization of Hydrocarbon Production in the Green Microalga Botryococcus braunii 

    E-Print Network [OSTI]

    Weiss, Taylor Leigh

    2012-10-19

    .................................................................................................... xiv CHAPTER I INTRODUCTION ................................................................................ 1 Algae biofuels ................................................................................ 1 Algae... ........................................................................ 39 viii CHAPTER Page Culturing of algae ........................................................................... 42...

  12. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae

    E-Print Network [OSTI]

    Avinash Kolli; Edward J. O'Reilly; Gregory D. Scholes; Alexandra Olaya-Castro

    2012-10-10

    The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.

  13. BioenergizeME Virtual Science Fair: Is Algae the Next Big Thing

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Daniel Boone Area High School in Birdsboro, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  14. Development of Hydrothermal Liquefaction and Upgrading Technologies for Lipid-Extracted Algae Conversion to Liquid Fuels

    SciTech Connect (OSTI)

    Zhu, Yunhua; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Jones, Susanne B.

    2013-10-01

    Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrotreating liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available test results. The system assumes an LEA feed rate of 608 dry metric ton/day and that the feedstock is converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid hydrocarbon fuels, mainly alkanes. Performance and cost results demonstrate that HTL would be an effective option to convert LEA to liquid fuel. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent and the overall energy efficiency at higher heating value basis was estimated to be 69.5%. The minimum fuel selling price (MFSP) was estimated to be $0.75/L with LEA feedstock price at $33.1 metric ton at dry basis and 10% internal rate of return. A sensitivity analysis indicated that the largest effects to production cost would come from the final products yields and the upgrading equipments cost. The impact of plant scale on MFSP was also investigated.

  15. Observations and seasonal periodicity of the benthic algae of Galveston Island, Texas 

    E-Print Network [OSTI]

    Lowe, Glenn Curtis

    1975-01-01

    /arum U/vellu Ien'v Order Ulvales 8/Id'I n pi u m o r gi n a I a ry, minima Fnleromorpha cia/brain F. f/ enu o so f, lingu/ala f. prolifera -F. rumulusa F. salina f. linea Ulva fascia/a U. /nclucu Pseudaclon/um submari num Order Cladophorales...

  16. "The Promise and Challenge of Algae as Renewable Sources of Biofuels...

    Broader source: Energy.gov (indexed) [DOE]

    This session also discussed highlights from the National Algal Biofuels Technology Roadmap, which was released by DOE in June 2010. transcriptalgaewebinar9-8-10.doc More...

  17. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    E-Print Network [OSTI]

    Prochnik, Simon E.

    2011-01-01

    library containing all 129 domains necessary for the TAP classification.library did not, then the complex repeat that was found was used for the classification.

  18. MARINE ALGAE OF BEAUFORT, N. C., AND ADJACENT By W. D. Hoyt

    E-Print Network [OSTI]

    , such as gelatins. They constitute the raw materials from which are derived valuable commercial products for the manufacture of food for fishes out of the inorganic materials which are otherwise useless or unavailable

  19. Mallomonas kalinae (Synurophyceae), a new species of alga from northern Bohemia, Czech Republic

    E-Print Network [OSTI]

    recorded as M. cf. rasilis from Malaysia, Australia and Papua New Guinea (Dürrschmidt & Croome 1985, Vyverman & Cronberg 1993), and as M. rasilis from Australia and Central Europe (Croome & Tyler 1988 with distilled water and the cells on the fil- ter were dehydrated through a graded ethanol series. The filter

  20. SELECTIVE ELIMINATION OF CHLOROPLASTIDIAL DNA FOR METAGENOMICS OF BACTERIA ASSOCIATED WITH THE GREEN ALGA CAULERPA TAXIFOLIA

    E-Print Network [OSTI]

    Borges, Rita

    , Spain The UWA Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia Sophie Arnaud-Haond2 CCMAR ­ Center for Marine Sciences, CIMAR, FCT, University of Algarve of metagenomics approaches. A simple and inexpensive method is presented, based on ethanol and bleach treatments

  1. Supplementation of Organic Acids and Algae Extracts in Aqua Feeds: Immunological Impacts 

    E-Print Network [OSTI]

    Mendoza Rodriguez, Maria G

    2013-12-02

    stocked into 110-L aquaria operated as a recirculating system with each diet assigned to three replicate aquaria containing either 15 fish (7-week trial) or 9 fish per aquarium (3-week trial). All fish were fed their respective diets at the same fixed...

  2. Demonstration of the feasibility of milking lipids from algae for biodiesel production

    E-Print Network [OSTI]

    Coiner, Ryan Lee

    2011-12-31

    . The propidium iodide (PI) staining procedure involved dosing 2 mL of algal suspension with 4 µL of PI (PI final concentration: 2 13 µg/mL). After 10 min of exposure, the suspensions were centrifuged at 4000 rpm (3,220 g) for 10 min, decanted, washed... with WC media and then centrifuged and decanted again. All samples were frozen at -20°C until counting was performed; cells were resuspended in media at the time of counting. PI was excited at 540–550 nm and the emission was measured at 590 nm...

  3. The Promise and Challenge of Algae as Renewable Sources of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ample - Nutrients non-fresh water) - Electricity - Sugar Waste Streams (ex. pulp and paper) Proximity, sustainable availability, and cost of all resources will effect price of...

  4. Simulation and Life Cycle Assessment of Algae Gasification Process in Dual Fluidized Bed Gasifiers

    E-Print Network [OSTI]

    Azadi, Pooya; Brownbridge, George; Mosbach, Sebastian; Inderwildi, Oliver; Kraft, Markus

    2015-01-01

    , Switzerland. and thus vastly different chemical structures — within a par- ent biomass feedstock: i) focusing on direct conversion of, at least, one of the fractions to molecules with a similar carbon number and chemical structure to that of the desired...

  5. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    E-Print Network [OSTI]

    Ngan, Chew Yee

    2014-01-01

    regulation pathway for biofuels production Chew Yee Ngan ,regulation pathway for biofuels production Chew Yee Ngan,for the development of biofuels. Biofuels are produced from

  6. A.L.G.A. I prova intermedia 2 febbraio 2012

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    determinato da e che `e parallelo all'asse z . 2. Sia C la curva data da x = t - t3 y = t3 + 1 z = 2t (a attorno all'asse z e determinare, se esiste, un punto A di C che cos`i ruotando descrive una circonferenza

  7. Micro-algae come of age as a platform for recombinant protein production

    E-Print Network [OSTI]

    Specht, Elizabeth; Miyake-Stoner, Shigeki; Mayfield, Stephen

    2010-01-01

    Extraction of bio-oils from microalgae. Sep Purif Rev 38:vol 616: transgenic microalgae as green cell factories.of foreign genes in microalgae. Transgenic Microalgae as

  8. MOLECULAR TOOLS FOR MONITORING HARMFUL ALGAL BLOOMS Seasonal and annual dynamics of harmful algae and algal

    E-Print Network [OSTI]

    Caron, David

    series . Microalgae Introduction Substantial increases in microalgal biomass in planktonic ecosystems) produced by a few species of microalgae can have negative impacts on local food webs as well as threaten human health. Nearly 300 of the >4,000 currently described species of marine microalgae are con- sidered

  9. Ecology of the Invasive Red Alga Gracilaria salicornia (Rhodophyta) on O`ahu, Hawai`i

    E-Print Network [OSTI]

    Smith, Jennifer E.

    Oceanic and Atmospheric Administration Hawai`i Coral Reef Initiative Research Program Grant no. NA160A1449 intentionally to two reefs on O`ahu, Hawai`i, in the 1970s for experi- mental aquaculture for the agar industry. salicornia become dislodged from the reef during large wave events and period- ically become deposited onto

  10. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    E-Print Network [OSTI]

    Prochnik, Simon E.

    2011-01-01

    2003). K. J. Green, D. L. Kirk, J Cell Biol 91, 743 (1981).361 (2003). S. M. Miller, D. L. Kirk, Development 126, 649 (I. Nishii, S. Ogihara, D. L. Kirk, Cell 113, 743 (2003). Q.

  11. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    SciTech Connect (OSTI)

    McGill, Ralph

    2008-05-15

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  12. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    E-Print Network [OSTI]

    Prochnik, Simon E.

    2011-01-01

    Ddi Tth Pra Pso Neurospora crassa Prochlorococcus marinusPra, Phytophthora ramorum; Pso, Phytophthora sojae; Ncr,Au9.Cre12.g517400 Cme Ddi Tth Pra Pso Ncr Ath Hsa Cel Ota

  13. Lateral Transfer and Recompartmentalization of Calvin Cycle Enzymes of Plants and Algae

    E-Print Network [OSTI]

    Keeling, Patrick

    ) are also used in glycolysis, gluconeogenesis, or the pentose phosphate pathway, and many of these J Mol

  14. Harmful Algae 4 (2005) 651672 The proliferation of the toxic cyanobacterium Planktothrix

    E-Print Network [OSTI]

    Jacquet, Stéphan

    2005-01-01

    water residence time), local conditions (the nutrient load and charge) and global changes (global. rubescens in Lac du Bourget is probably due to increased transparency and a longer stratified period

  15. Algae fed Artemia salina Nauplii as a food source for larval Cynoscion nebulosus 

    E-Print Network [OSTI]

    McGeachin, Robert Bruce

    1977-01-01

    of Cpnoscion proximate analysis. . . . . 22 Table 4. ArCemia salina nauplii size (Tl in rrrn). . . . . . . 24 Table 5. Ar tera SaLina nauplii proximate analysis. Table 6. Average caloric values for Aztemia salina nauplii. . 3O Tabl e 7. Compari son of naupl...) substantiated this with proximate analysis and calorimetry, comparing newly-hatched with one day old nauplii. He reported a 22K decrease in organic substances and a 24/ decrease in the caloric content within 24 hours. Morris (1956) related that in some cases...

  16. Dynamics of radionuclide exchange in the calcareous algae Halimeda at Enewetak Atoll

    SciTech Connect (OSTI)

    Spies, R.B.; Marsh, K.V.; Kercher, J.R.

    1981-01-01

    Measurements of /sup 239 +240/Pu in the detrital inclusions and in acid-soluble and acid-insoluble fractions of Halimeda macrophysa showed a 10-fold higher concentration in the acid-insoluble coenocytic filaments than in the acid-soluble fraction. In a depuration experiment with Halimeda incrassata at Enewetak Atoll the loss rate of six radionuclides was measured. Data for /sup 60/Co, /sup 137/Cs, and /sup 102//sup m/Rh were fit to loss curves by using one term for exponential loss; data for /sup 155/Eu, /sup 239 +240/Pu, and /sup 241/Am required two terms. For each radionuclide, compartment size and transfer functions were determined for the apropriate one- and two-compartment models. Of 26 possible two-compartment models, only seven gave solutions with our data. Nearly identical loss rates were obtained for /sup 155/Eu, /sup 239 +240/Pu, and /sup 241/Am in the fast-exchanging compartments for all seven models. The uptake rates for these nuclides were also similar when uptake rates were normalized to local sediment concentrations. The fast-exchanging compartment probably corresponds to the mucilage surface layer of the coenocytic filaments. The identity of the slow-exchanging compartment is less certain but it may correspond to the skeletal surface.

  17. Dynamics of radionuclide exchange in the calcareous algae Halimeda at Enewetak Atoll

    SciTech Connect (OSTI)

    Spies, R.B.; Marsh, K.V.; Kercher, J.R.

    1981-01-01

    Measurements of /sup 239+240/Pu in the detrital inclusions and in acid-soluble and acid-insoluble fractions of Halimeda macrophysa showed a 10-fold higher concentration in the acid-insoluble coenocytic filaments than in the acid-soluble fraction. In a depuration experiment with Halimeda incrassata at Enewetak Atoll the loss rate of six radionuclides was measured. Data for /sup 60/Co, /sup 137/Cs, and /sup 102m/Rh were fit to loss curves by using one term for exponential loss; data for /sup 155/Eu, /sup 239+240/Pu, and /sup 241/Am required two terms. For each radionuclide, compartment size and transfer functions were determined for the appropriate one- and two-compartment models. Of 26 possible two-compartment models, only seven gave solutions with our data. Nearly identical loss rates were obtained for /sup 155/Eu, /sup 239+240/Pu, and /sup 241/Am in the fast-exchanging compartments for all seven models. The uptake rates for these nuclides were also similar when uptake rates were normalized to local sediment concentrations. The fast-exchanging compartment probably corresponds to the mucilage surface layer of the coenocytic filaments. The identity of the slow-exchanging compartment is less certain but it may correspond to the skeletal surface.

  18. Comments on: Sandia's Algae Nutrient Recycling Project Is a Triple Win

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11

  19. World's First Algae Surfboard Makes Waves in San Diego | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0PhotosPresentations

  20. Microsoft Word - PhycalAlgaePilotProject_NEPAFinalEA_October2011.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection of Hydrates on Gas5 15NEWSQuickMaythPhycal

  1. Algae-Based Biofuels: Applications and Co-Products | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts:RenewableIncAlcorn

  2. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make Fuels andfor itsEnergyand

  3. UTEX The Culture Collection of Algae at The University of Texas at Austin |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP)BioGen LLCAND HYDROLOGIC STRUCTUREOpen

  4. Top Five Things You Should Know About Algae | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority J-I-12TiffanyEnergy Today:ofTopaboutTop Five

  5. The Promise and Challenge of Algae as Renewable Sources of Biofuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The6,Category 2 Nuclear Facility

  6. Improved Algae-based Biorefining and High-throughput Screening of Algal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218 58 84 168 167 164 1982-2016ARM-SGP

  7. 3 Reasons We're Closer to an Algae Future than You Think | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department ofApplianceU.S. Departmentthreethe 8:00AM EDTEnergy Paul

  8. Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications The NREL windTeacherNanoscaleNanoscientist

  9. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement at theproduceƈHydrothermal

  10. June 2012 News Blast: Algae on the Mind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | International Nuclear EnergyatJobsJointJoyceJune 2012

  11. Science on the Hill: Driving toward an algae-powered future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| StanfordOffice of Science (SC) SULIPhysicsJanuary »on the

  12. Lipid Extraction from Wet-Algae for Biofuel Production - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015TrayDevices -Portal Biomass

  13. "The Promise and Challenge of Algae as Renewable Sources of Biofuels"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration of NREL'sWind Wind WindDepartment9-8-2010

  14. 3 Reasons We're Closer to an Algae Future than You Think | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration ofDepartment1of5 Webinar

  15. Response of photosynthesis to ocean acidification

    E-Print Network [OSTI]

    Mackey, KRM; Morris, JJ; Morel, FMM; Kranz, SA

    2015-01-01

    concentrating mech- anisms in the algae. Canadian Journal ofcrustose coralline algae. Limnology and Oceanography 48:temperatures. Harmful Algae 37:110–116, http://dx.doi.org/

  16. Corals and Ocean Acidification: Insights on Reef Community Development and Coral Calcification in an Acidified Ocean

    E-Print Network [OSTI]

    Crook, Elizabeth Derse

    2015-01-01

    rapidly overgrown by fleshy algae in acidified conditions;interactions between fleshy algae and calcifying speciessuggests that non-calcareous algae appear to benefit in low

  17. Oceanographic and ecological consequences of iron localization in phytoplankton photosystems

    E-Print Network [OSTI]

    Hopkinson, Brian Matthew

    2007-01-01

    energy conversion processes in eukaryotic marine algae.energy conversion processes in eukaryotic marine algae.energy conversion processes in eukaryotic marine algae.

  18. Carbon flow and ecosystem dynamics in the Mississippi River plume described by inverse analysis 

    E-Print Network [OSTI]

    Breed, Greg Allen

    2002-01-01

    excess organic carbon from autotrophic regions to heterotrophic regions. In contrast, the winter result indicated a plume that was net-heterotrophic in all 4 subregions with high aerobic bacterial respiration and relatively low primary production...

  19. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOE Patents [OSTI]

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  20. VOL. 59, NO. 4 (DECEMBER 2006) P. 365 369 An Early Collection of the Red Alga Mikamiella ruprechtiana

    E-Print Network [OSTI]

    Wynne, Michael J.

    by W.G. Tilesius, surgeon-naturalist-artist on the Krusenstern Expedition (1803­06). One Australie. Ces illustrations ont été réalisées par W.G. Tilesius, chirurgien, naturaliste et artiste de l the purchase of the personal herbarium of O.W. Sonder (Ducker, 1981). The plates were executed by Wilhelm

  1. IDENTIFICATION OF A PSYCHROPHILIC GREEN ALGA FROM LAKE BONNEY ANTARCTICA: CHLAMYDOMONAS RAUDENSIS ETTL. (UWO 241) CHLOROPHYCEAE1

    E-Print Network [OSTI]

    Priscu, John C.

    . These data were compared with those of previously de- scribed taxa. We identified UWO 241 as a strain and extreme environments, and despite the general increase in air temperature at the Earth's surface, the air than 10 cm, and the average annual air temperature is approximately À 201 C (Priscu et al. 1999). Lake

  2. Cultivation of macroscopic marine algae and freshwater aquatic needs. Progress report, May 1, 1979-December 15, 1979

    SciTech Connect (OSTI)

    Ryther, J H

    1980-01-01

    Progress for the period May 1979 to December 1979 is reported in the following subject areas: (1) the ORCA clone of the red seaweed Gracilaria tikvakiae has now been grown continuously in tank culture for two years; (2) studies were continued on the culture of freshwater plants such as water hyacinth, pennywort, water lettuce, and duckweed; (3) the loss of water from evapotranspiration of freshwater plants was measured and compared with water loss from evaporation from open water; and (4) experiments were conducted to investigate the possibility of recycling the chemicals left in the solid and liquid residues following anaerobic digestion and methane production as a source of nutrients for new plant production. (ACR)

  3. Whole-Cell Sensing for a Harmful Bloom-Forming Microscopic Alga by Measuring Antibody-Antigen Forces

    E-Print Network [OSTI]

    2006-01-01

    I. I NTRODUCTION INGLE-CELLED microalgae play an essentialabundance of speci?c microalgae [10]–[13]. Early applicationand prokary- otic microalgae [3], [14]–[17]. These

  4. ANSP Protocols for Analysis of NAWQA Algae Samples Protocol P-13-57 Patrick Center for Environmental Research 117

    E-Print Network [OSTI]

    Charles, Donald

    hoods. 3.1.4. Gas suspension tables. 3.1.5. Slide warmers/hot plates. 3.2. Chemistry Laboratory. 3-57 118 Academy of Natural Sciences of Philadelphia immersion lenses and oil condensers of oil build and/or inhibit the work environment. 4.4. Gas suspension tables. 4.4.1. Gas suspension

  5. NREL Discovers Novel Protein Interaction in Green Algae that Suggests New Strategies to Improve Hydrogen Photoproduction (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    A research team at the National Renewable Energy Laboratory (NREL) discovered a specific interaction between the protein ferredoxin - responsible for distributing reductants from photosynthesis to different metabolic pathways - and the HYDA2 hydrogenase, suggesting a role for HYDA2 in photohydrogen production.

  6. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALof Energy Proceedings ofEnergy

  7. 2010-09-08 14.03 The Promise and Challenges of Algae as a Renewable Sources of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12Simulation and Testing2010dynamics

  8. BETO-Funded Algae Project at NREL Named a Finalist for 2015 R&D 100 Awards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStatesA Case Study from the3Management »|

  9. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 2006, p. 41844191 Vol. 72, No. 6 0099-2240/06/$08.00 0 doi:10.1128/AEM.02882-05

    E-Print Network [OSTI]

    Seitzinger, Sybil

    cycles of other elements (3, 14). Heterotrophic bacteria pro- cess and reprocess some of this DOM (2

  10. Phylogenetic and chemical diversity of marine-derived actinomycetes from Southern California sediments

    E-Print Network [OSTI]

    Prieto-Davó, Alejandra

    2008-01-01

    heterotrophic marine microbes utilizing energy inputs intoenergy obtained from oceanic primary production was being consumed through bacterial (marine

  11. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  12. CX-007571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pulaski County - Wastewater CX(s) Applied: B5.1 Date: 12/29/2011 Location(s): Missouri Offices(s): Golden Field Office

  13. CX-007596: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership CX(s) Applied: B5.23 Date: 01/25/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  14. CX-012729: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydrogen Sulfide Scavenger BOA (Multiple) CX(s) Applied: B5.2Date: 41880 Location(s): LouisianaOffices(s): Strategic Petroleum Reserve Field Office

  15. CX-008588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Petersburg Solar Pilot Project CX(s) Applied: B5.1 Date: 07/19/2012 Location(s): Florida Offices(s): Golden Field Office

  16. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  17. CX-010148: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Merritt Radio Station Upgrade CX(s) Applied: B1.19 Date: 04/18/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  18. CX-008706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tunk Mountain Radio Station Upgrade CX(s) Applied: B1.19 Date: 05/30/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-012716: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    General Scientific Infrastructure Support for University of Wisconsin CX(s) Applied: B1.31Date: 41844 Location(s): WisconsinOffices(s): Nuclear Energy

  20. CX-008543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Colorado State Energy Plan 2012 CX(s) Applied: A9, A11 Date: 06/25/2012 Location(s): Colorado Offices(s): Golden Field Office

  1. CX-012333: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Support Buildings CX(s) Applied: B1.15 Date: 06/03/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  2. CX-011165: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-012817: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bell Maintenance Headquarters Access Road Maintenance CX(s) Applied: B1.3Date: 41890 Location(s): WashingtonOffices(s): Bonneville Power Administration

  4. CX-006225: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Upgrades - Materials and Fuel Complex (MFC)- Irradiated Materials Characterization Laboratory (IMCL) CX(s) Applied: B3.6 Date: 06072011 Location(s): Idaho Falls,...

  5. CX-010791: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect CX(s) Applied: A9, A11 Date: 08142013 Location(s): Texas...

  6. Categorical Exclusion Determinations: Science | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Establishment of an Easement for Enhanced Electrical Service to the Computational Sciences Facility CX(s) Applied: B1.7 Date: 08302011 Location(s):...

  7. CX-011634: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office

  8. CX-008993: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-008993: Categorical Exclusion Determination "Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets CX(s) Applied: A9, B3.6 Date: 0822...

  9. CX-012776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Processing, KCP14-05 CX(s) Applied: NOT NOTEDDate: 41857 Location(s): MissouriOffices(s): Kansas City Site Office

  10. CX-008146: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Formation Evaluator Tools (Haliburton) CX(s) Applied: B3.7 Date: 09/11/2011 Location(s): Wyoming Offices(s): RMOTC

  11. CX-004095: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-004095: Categorical Exclusion Determination Thermal Transport Properties of Nanostructured Materials for Energy Conversion CX(s) Applied: B3.6 Date: 09...

  12. CX-008144: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Planned Repair of Flow Lines CX(s) Applied: B5.4 Date: 08/09/2011 Location(s): Wyoming Offices(s): RMOTC

  13. CX-009420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  14. CX-003164: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination CX-003164: Categorical Exclusion Determination Optimization of Biomass Production Across a Landscape CX(s) Applied: A9 Date: 07262010...

  15. CX-012730: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace West Hackberry Radio Tower CX(s) Applied: B1.19Date: 41880 Location(s): LouisianaOffices(s): Strategic Petroleum Reserve Field Office

  16. CX-011069: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Induction Furnace Melting CX(s) Applied: B3.6 Date: 08/29/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  17. CX-010057: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Protective Relay Installation CX(s) Applied: B1.7 Date: 01/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  18. CX-011214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office

  19. CX-012795: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Bonneville Substation 23- Kilovolt Line Retermination CX(s) Applied: B4.11Date: 41926 Location(s): WashingtonOffices(s): Bonneville Power Administration

  20. CX-010618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  1. CX-012789: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 440 CNM Clean Room Expansion CX(s) Applied: B3.15Date: 41906 Location(s): IllinoisOffices(s): Argonne Site Office

  2. CX-008438: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 06/27/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  3. CX-008282: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 05/01/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  4. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  5. CX-012311: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Accelerator Test Facility II CX(s) Applied: B3.10 Date: 05/28/2014 Location(s): New York Offices(s): Brookhaven Site Office

  6. CX-008799: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Jack Case Showers Projects CX(s) Applied: B1.3 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  7. CX-010763: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-010763: Categorical Exclusion Determination Nevada Desert Research Institute- Photovoltaic Installation CX(s) Applied: B5.16 Date: 07172013 Location(s): Nevada Offices(s):...

  8. CX-003976: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-003976: Categorical Exclusion Determination Development of a High-Concentration Low-Cost Parabolic Trough System for Baseload Concentrated Solar Power Generation CX(s)...

  9. CX-012254: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydro Research Foundation University Research Awards - Vanderbilt CX(s) Applied: A9 Date: 05/28/2014 Location(s): Tennessee Offices(s): Golden Field Office

  10. CX-012253: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydro Research Foundation University Research Awards - OSU CX(s) Applied: A9 Date: 05/27/2014 Location(s): Oregon Offices(s): Golden Field Office

  11. CX-004351: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4351: Categorical Exclusion Determination CX-004351: Categorical Exclusion Determination Center for Development of Math, Science and Technology CX(s) Applied: B1.15 Date: 1029...

  12. CX-002671: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    1: Categorical Exclusion Determination CX-002671: Categorical Exclusion Determination Vegetation Management - Routine Maintenance Along Captain Jack-Olinda Transmission Line CX(s)...

  13. CX-003959: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    59: Categorical Exclusion Determination CX-003959: Categorical Exclusion Determination Federal Bureau of Investigation Radiological Dispersion Device Training CX(s) Applied: B1.2...

  14. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  15. CX-005987: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    87: Categorical Exclusion Determination CX-005987: Categorical Exclusion Determination Stion Corporation - Superstrate Device for High Efficiency Tandem Modules CX(s) Applied: A9,...

  16. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Environmental Management (EM)

    (CX) Determinations By Date Categorical Exclusion (CX) Determinations By Date August 25, 2015 CX-012469: Categorical Exclusion Determination Gas Analysis Services CX(s) Applied:...

  17. CX-100022: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-100022: Categorical Exclusion Determination CX-100022: Categorical Exclusion Determination EERE Demonstration for Advanced Retro-Commissioning Technology CX(s) Applied: A9,...

  18. CX-001378: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    378: Categorical Exclusion Determination CX-001378: Categorical Exclusion Determination Wackenhut Services, Incorporated Training Facility CX(s) Applied: B1.2 Date: 10282009...

  19. CX-012664: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SBIR/STTR Phase 0 Outreach and Assistance Program CX(s) Applied: A8Date: 41844 Location(s): IllinoisOffices(s): Chicago Office

  20. CX-007826: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    007826: Categorical Exclusion Determination CX-007826: Categorical Exclusion Determination "Crittenden City Facilities Re-Roofing CX(s) Applied: B5.1 Date: 01312012 Location(s):...