National Library of Energy BETA

Sample records for hertz single phase

  1. Workplace Charging Challenge Partner: Hertz | Department of Energy

    Energy Savers [EERE]

    Hertz currently offers employee PEV charging at its global headquarters in New Jersey, with plans to install charging stations at its offices in Oklahoma City. As a rental company, ...

  2. Microstructural Effects on Void Nucleation in Single-Phase Copper...

    Office of Scientific and Technical Information (OSTI)

    in Single-Phase Copper Polycrystals Citation Details In-Document Search Title: Microstructural Effects on Void Nucleation in Single-Phase Copper Polycrystals You are ...

  3. System and method for single-phase, single-stage grid-interactive...

    Office of Scientific and Technical Information (OSTI)

    Title: System and method for single-phase, single-stage grid-interactive inverter The present invention provides for the integration of distributed renewable energy sources...

  4. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems

    SciTech Connect (OSTI)

    Thacker, Timothy; Boroyevich, Dushan; Burgos, Rolando; Wang, Fei

    2011-01-01

    A crucial component of grid-connected converters is the phase-locked loop (PLL) control subsystem that tracks the grid voltage's frequency and phase angle. Therefore, accurate fast-responding PLLs for control and protection purposes are required to provide these measurements. This paper proposes a novel feedback mechanism for single-phase PLL phase detectors using the estimated phase angle. Ripple noise appearing in the estimated frequency, most commonly the second harmonic under phase-lock conditions, is reduced or eliminated without the use of low-pass filters, which can cause delays to occur and limits the overall performance of the PLL response to dynamic changes in the system. The proposed method has the capability to eliminate the noise ripple entirely and, under extreme line distortion conditions, can reduce the ripple by at least half. Other modifications implemented through frequency feedback are shown to decrease the settling time of the PLL up to 50%. Mathematical analyses with the simulated and experimental results are provided to confirm the validity of the proposed methods.

  5. Factors Affecting HCCI Combustion Phasing for Fuels with Single- and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual-Stage Chemistry | Department of Energy Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry Factors Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Sandia National Laboratories 2004_deer_dec.pdf (185.71 KB) More Documents & Publications Microsoft PowerPoint - DEER03-P.ppt HCCI and Stratified-Charge CI Engine Combustion Research Improving Efficiency

  6. Nonlinear, noniterative, single-distance phase retrieval and developmental biology

    SciTech Connect (OSTI)

    Moosmann, Julian; Altapova, Venera; Haenschke, Daniel; Hofmann, Ralf; Baumbach, Tilo

    2012-05-17

    For coherent X-ray imaging, based on phase contrast through free-space Fresnel propagation, we discuss two noniterative, nonlinear approaches to the phase-retrieval problem from a single-distance intensity map of a pure-phase object. On one hand, a perturbative set-up is proposed where nonlinear corrections to the linearized transport-of-intensity situation are expanded in powers of the object-detector distance z and are evaluated in terms of the linear estimate. On the other hand, a nonperturbative projection algorithm, which is based on the (linear and local) contrast-transfer function (CTF), works with an effective phase in Fourier space. This effective phase obeys a modified CTF relation between intensity contrast at z > 0 and phase contrast at z= 0: Unphysical singularities of the local CTF model are cut off to yield 'quasiparticles' in analogy to the theory of the Fermi liquid. By identifying the positions of the zeros of the Fourier transformed intensity contrast as order parameters for the dynamical breaking of scaling symmetry we investigate the phase structure of the forward-propagation problem when interpreted as a statistical system. Results justify the quasiparticle approach for a wide range of intermediary phase variations. The latter algorithm is applied to data from biological samples recorded at the beamlines TopoTomo and ID19 at ANKA and ESRF, respectively.

  7. Permanent split capacitor single phase electric motor system

    DOE Patents [OSTI]

    Kirschbaum, Herbert S.

    1984-01-01

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation.

  8. Permanent split capacitor single phase electric motor system

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-08-14

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

  9. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect (OSTI)

    Anand, A. Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Faridian, A.; Pedrini, G.; Osten, W.; Dubey, S. K.; Javidi, B.

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  10. Note: Phase retrieval method for analyzing single-phase displacement interferometry data

    SciTech Connect (OSTI)

    Chen, X. H.; Zeng, X. L.; Fan, D.; Liu, Q. C.; Bie, B. X.; Zhou, X. M. Luo, S. N.

    2014-02-15

    We present a phase retrieval method (PRM) for analyzing single-phase displacement interferometry measurements on rapidly changing velocity histories, including photon Doppler velocimetry (PDV). PRM identifies the peaks and valleys as well as zero-crossing points in a PDV time series, performs normalization and extracts point-by-point phase and thus velocity information. PRM does not require a wide time window as in sliding window Fourier transformation, and thus improves the effective temporal resolution. This method is implemented in analyzing PDV data obtained from gas gun experiments, and validated against simultaneous measurements with velocity interferometer system for any reflector.

  11. An Evaluation of Single Phase Ceramic Formulations for Plutonium Disposition

    SciTech Connect (OSTI)

    Stennett, Martin C.; Hyatt, Neil C.; Maddrell, Ewan R.; Scales, Charlie R.; Livens, Francis R.; Gilbert, Matthew

    2007-07-01

    Ceramics are promising potential hosts for the immobilization of actinide containing wastes. Work has been reported in the literature on multiphase systems, such as SYNROC [1], and on single phase systems such as pyrochlores [2] and zirconia [3], but assessment of the different waste-forms by direct comparison of literature data is not always easy due to the different processing and fabrication routes employed. In this study a potential range of different ceramic systems were investigated for plutonium disposition using the same processing scheme. Durable actinide containing minerals exist in nature and provided excellent target phases for the titanate, zirconate, silicate and phosphate based formulations examined here [4]. The Ce solid solution limits for each particular substitution mechanism were established and the processing parameters required to produce high quality ceramic specimens were optimised. Importantly, this was achieved within the constraints of a generic processing route suitable for fabrication of Pu bearing samples. (authors)

  12. Single phase two pole/six pole motor

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-09-25

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis. 12 figs.

  13. Single phase two pole/six pole motor

    DOE Patents [OSTI]

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis.

  14. Single phase four pole/six pole motor

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-10-09

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups each including the series connection of three coils. These coil groups can be connected in series for six pole operation and in parallel for four pole operation. The coils are approximately equally spaced around the periphery of the machine but are not of equal numbers of turns. The two coil groups are identically wound and spaced 180 mechanical degrees apart. One coil of each group has more turns and a greater span than the other two coils. 10 figs.

  15. Six pole/eight pole single-phase motor

    DOE Patents [OSTI]

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included.

  16. Single phase four pole/six pole motor

    DOE Patents [OSTI]

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups each including the series connection of three coils. These coil groups can be connected in series for six pole operation and in parallel for four pole operation. The coils are approximately equally spaced around the periphery of the machine but are not of equal numbers of turns. The two coil groups are identically wound and spaced 180 mechanical degrees apart. One coil of each group has more turns and a greater span than the other two coils.

  17. Six pole/eight pole single-phase motor

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-07-31

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included. 10 figs.

  18. Single-flavor CSL phase in compact stars

    SciTech Connect (OSTI)

    Blaschke, David; Sandin, Fredrik; Klaehn, Thomas; Berdermann, Jens

    2008-08-29

    We suggest a scenario where the three light quark flavors are sequentially deconfined under increasing pressure in cold asymmetric nuclear matter as, e.g., in neutron stars. The basis for our analysis is a chiral quark matter model of Nambu-Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single flavor (CSL), spin-0 two flavor (2SC) and three flavor (CFL) channels. We find that nucleon dissociation sets in at about the saturation density, n{sub 0}, when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor asymmetry induced by {beta}-equilibrium and charge neutrality. At about 3n{sub 0} u-quarks appear and a two-flavor color superconducting (2SC) phase is formed. The s-quark Fermi sea is populated only at still higher baryon density, when the quark chemical potential is of the order of the dynamically generated strange quark mass. We construct two different hybrid equations of state (EoS) using the Dirac-Brueckner Hartree-Fock (DBHF) approach and the EoS by Shen et al. in the nuclear matter sector. The corresponding hybrid star sequences have maximum masses of, respectively, 2.1 and 2.0 M{sub {center_dot}}. Two- and three-flavor quark-matter phases exist only in gravitationally unstable hybrid star solutions in the DBHF case, while the Shen-based EoS produce stable configurations with a 2SC phase component in the core of massive stars. Nucleon dissociation due to d-quark drip at the crust-core boundary fulfills basic criteria for a deep crustal heating process which is required to explain superbusts as well as cooling of X-ray transients.

  19. Method of manufacture of single phase ceramic superconductors

    DOE Patents [OSTI]

    Singh, J.P.; Poeppel, R.B.; Goretta, K.C.; Chen, N.

    1995-03-28

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of about 4 {mu}m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity. 25 figures.

  20. Method of manufacture of single phase ceramic superconductors

    DOE Patents [OSTI]

    Singh, Jitrenda P.; Poeppel, Roger B.; Goretta, Kenneth C.; Chen, Nan

    1995-01-01

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C resulted in a fine-grain microstructure, with an average grain size of about 4 .mu.m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity.

  1. Compact, Light-Weight, Single-Phase, Liquid-Cooled Cold Plate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation PDF icon ape039narumanchi2011p.pdf More Documents & Publications Compact, Light-Weight, Single-Phase, Liquid-Cooled Cold Plate Advanced Liquid Cooling R&D

  2. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  3. Light-Weight, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  4. Phase Behavior of a Single Structured Ionomer Chain in Solution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aryal, Dipak; Etampawala, Thusitha; Perahia, Dvora; Grest, Gary S.

    2014-08-14

    Structured polymers offer a means to tailor transport pathways within mechanically stable manifolds. Here we examine the building block of such a membrane, namely a single large pentablock co-polymer that consist of a center block of a randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability,using molecular dynamics simulations. The polymer structure in a cyclohexane-heptane mixture, a technologically viable solvent, and in water, a poor solvent for all segments and a ubiquitous substance is extracted. In all solvents the pentablock collapsed into nearly spherical aggregates where the ionic block is segregated. Inmore » hydrophobic solvents, the ionic block resides in the center, surrounded by swollen intermix of flexible and end blocks. In water all blocks are collapsed with the sulfonated block residing on the surface. Our results demonstrate that solvents drive different local nano-segregation, providing a gateway to assemble membranes with controlled topology.« less

  5. Phase Behavior of a Single Structured Ionomer Chain in Solution

    SciTech Connect (OSTI)

    Aryal, Dipak; Etampawala, Thusitha; Perahia, Dvora; Grest, Gary S.

    2014-08-14

    Structured polymers offer a means to tailor transport pathways within mechanically stable manifolds. Here we examine the building block of such a membrane, namely a single large pentablock co-polymer that consist of a center block of a randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability,using molecular dynamics simulations. The polymer structure in a cyclohexane-heptane mixture, a technologically viable solvent, and in water, a poor solvent for all segments and a ubiquitous substance is extracted. In all solvents the pentablock collapsed into nearly spherical aggregates where the ionic block is segregated. In hydrophobic solvents, the ionic block resides in the center, surrounded by swollen intermix of flexible and end blocks. In water all blocks are collapsed with the sulfonated block residing on the surface. Our results demonstrate that solvents drive different local nano-segregation, providing a gateway to assemble membranes with controlled topology.

  6. System and method for single-phase, single-stage grid-interactive inverter

    DOE Patents [OSTI]

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  7. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations D. D. Turner University of Wisconsin-Madison Madison, Wisconsin and Pacific Northwest National Laboratory Richland, Washington Abstract A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance

  8. Vacuum-induced Berry phases in single-mode Jaynes-Cummings models

    SciTech Connect (OSTI)

    Liu, Yu; Wei, L. F.; Jia, W. Z. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Liang, J. Q. [Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006 (China)

    2010-10-15

    Motivated by work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode JCM, certain atom-field states also acquired photon-number-dependent Berry phases after the parameter slowly changed and eventually returned to its initial value. This geometric effect related to the field quantization still exists, even if the field is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with a cavity quantum electrodynamics system is designed to detect the vacuum-induced Berry phase.

  9. Phase coexistence and transformations in field-cooled ternary piezoelectric single crystals near the morphotropic phase boundary

    SciTech Connect (OSTI)

    Luo, Chengtao; Wang, Yaojin Wang, Zhiguang; Ge, Wenwei; Li, Jiefang; Viehland, D.; Luo, Haosu

    2014-12-08

    Structural phase transformations in (100)-oriented Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} single crystals have been investigated by X-ray diffraction. A cubic (C) → tetragonal (T) → monoclinic-C (M{sub C}) transformation sequence was observed in the field-cooled condition. Two phase coexistence regions of C + T and T + M{sub C} were found. In addition to an increase in the C → T phase transition temperature and a decrease of the T → M{sub C} one, a broadening of the coexistence regions was also found with increasing field. This broadening can be explained by the presence of polar nano regions within the C, T, and M{sub C} phase regions.

  10. Initial phase zone for phase locking to the resonance, using main condition of phase stability in DC-biased single-sided multipactor

    SciTech Connect (OSTI)

    Mostajeran, M., E-mail: mostajeran@yazd.ac.ir [Faculty of Physics, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2014-05-15

    In the present work, the concept of accurate phase stability is employed to study a DC-biased single-sided multipactor. A main condition of phase stability was introduced in our previous studies of two-sided multipactors [M. Mostajeran, J. Instrum. 8, P04024 (2013); M. Mostajeran and M. Lamehi Rachti, Nucl. Instrum. Methods Phys. Res. A 615, 15 (2010)]. Using the same condition and assuming zero initial velocity for the secondary electrons, a regime of multipactors outside the resonance zones is found. The theoretical results are then verified by numerical simulation.

  11. Single-reactor process for producing liquid-phase organic compounds from biomass

    DOE Patents [OSTI]

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  12. Single-reactor process for producing liquid-phase organic compounds from biomass

    SciTech Connect (OSTI)

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2015-12-08

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  13. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan; Miao, Jianwei; Nadler, Boaz; Oron, Dan; Dudovich, Nirit; Raz, Oren

    2016-02-22

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  14. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing

    SciTech Connect (OSTI)

    Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.; Gore, R. A.; Ristorcelli, J. R.

    2015-09-08

    A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales, as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.

  15. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    SciTech Connect (OSTI)

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  16. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOE Patents [OSTI]

    Apley, Walter J. (Pasco, WA); Cliff, William C. (Richland, WA); Creer, James M. (Richland, WA)

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  17. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.; Gore, R. A.; Ristorcelli, J. R.

    2015-09-08

    A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less

  18. A grid-connected photovoltaic power conversion system with single-phase multilevel inverter

    SciTech Connect (OSTI)

    Beser, Ersoy; Arifoglu, Birol; Camur, Sabri; Beser, Esra Kandemir

    2010-12-15

    This paper presents a grid-connected photovoltaic (PV) power conversion system based on a single-phase multilevel inverter. The proposed system fundamentally consists of PV arrays and a single-phase multilevel inverter structure. First, configuration and structural parts of the PV assisted inverter system are introduced in detail. To produce reference output voltage waves, a simple switching strategy based on calculating switching angles is improved. By calculated switching angles, the reference signal is produced as a multilevel shaped output voltage wave. The control algorithm and operational principles of the proposed system are explained. Operating PV arrays in the same load condition is a considerable point; therefore a simulation study is performed to arrange the PV arrays. After determining the number and connection types of the PV arrays, the system is configured through the arrangement of the PV arrays. The validity of the proposed system is verified through simulations and experimental study. The results demonstrate that the system can achieve lower total harmonic distortion (THD) on the output voltage and load current, and it is capable of operating synchronous and transferring power values having different characteristic to the grid. Hence, it is suitable to use the proposed configuration as a PV power conversion system in various applications. (author)

  19. Elastic-plastic and phase transition of zinc oxide single crystal under shock compression

    SciTech Connect (OSTI)

    Liu, Xun; Mashimo, Tsutomu Li, Wei; Zhou, Xianming; Sekine, Toshimori

    2015-03-07

    The Hugoniot data for zinc oxide (ZnO) single crystals were measured up to 80 GPa along both the 〈112{sup ¯}0〉 (a-axis) and 〈0001〉 (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun and two-stage light gas gun. The Hugoniot-elastic limits of ZnO were determined to be 10.5 and 11.5 GPa along the a- and c-axes, respectively. The wurtzite (B4) to rocksalt (B1) phase transition pressures along the a- and c-axes are 12.3 and 14.4 GPa, respectively. Shock velocity (U{sub s}) versus particle velocity (U{sub p}) relation of the final phase is given by the following relationship: U{sub s} (km/s) = 2.76 + 1.51U{sub p} (km/s). Based on the Debye-Grüneisen model and Birch-Murnaghan equation of state (EOS), we discuss the EOS of the B1 phase ZnO. The bulk modulus (K{sub 0}) and its pressure derivative (K{sub 0}′) are estimated to be K{sub 0} = 174 GPa and K{sub 0}′ = 3.9, respectively.

  20. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    SciTech Connect (OSTI)

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-05-01

    Highlights: Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.56.2. Energy yield was lower by 33% for two-phase system compared to the single-phase system. Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.56.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during

  1. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    SciTech Connect (OSTI)

    Vernieres, Jerome Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  2. Single-shot high-resolution characterization of optical pulses by temporal phase diversity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dorrer, C.; Waxer, L. J.; Kalb, A.; Hill, E. M.; Bromage, J.

    2015-01-01

    The concept of temporal phase diversity is proposed and applied to the temporal characterization of optical pulses. The experimental trace is composed of the measured power of a plurality of ancillary optical pulses derived from the pulse under test by adding known amounts of chromatic dispersion. The spectral phase of the pulse under test is retrieved by minimizing the error between the experimental trace and a trace calculated from the optical spectrum using the known diagnostic parameters. An assembly composed of splitters and dispersive delay fibers has been used to generate 64 ancillary pulses whose instantaneous power can be detectedmorein a single shot with a high-bandwidth photodiode and oscilloscope. Pulse-shape reconstruction for pulses shorter than the photodetection impulse response has been demonstrated.The diagnostic is experimentally shown to accurately characterize pulses from a chirped-pulseamplification system when its stretcher is detuned from the position for optimal recompression. Various investigations of the performance with respect to the number of ancillary pulses and the range of chromatic dispersion generated in the diagnostic are presented.less

  3. NUMERICAL VERIFICATION OF THE RELAP-7 CORE CHANNEL SINGLE-PHASE MODEL

    SciTech Connect (OSTI)

    Haihua Zhao; Ling Zou; Hongbin Zhang; Richard Martineau

    2014-06-01

    The RELAP-7 code is the next generation of nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). All the physics in RELAP-7 are fully coupled and the errors resulted from the traditional operator-splitting approach are eliminated. By using 2nd order methods in both time and space and eliminating operator-splitting errors, the numerical error of RELAP-7 can be minimized. Numerical verification is the process to verify the orders of numerical methods. It is an important part of modern verification and validation process. The core channel component in RELAP-7 is designed to simulate coolant flow as well as the conjugated heat transfer between coolant flow and the fuel rod. A special treatment at fuel centerline to avoid numerical singularity for the cylindrical heat conduction in the continuous finite element mesh is discussed. One steady state test case and one fast power up transient test case are utilized for the verification of the core channel model with single-phase flow. Analytical solution for the fuel pin temperature and figures of merit such as peak clad temperature and peak fuel temperature are used to define numerical errors. These cases prove that the mass and energy are well conserved and 2nd order convergence rates for both time and space are achieved in the core channel model.

  4. A new friction factor correlation for laminar, single-phase flows through rock fractures

    SciTech Connect (OSTI)

    Nazridoust, K. (Clarkson Univ., Potsdam, NY); Ahmadi, G. (Clarkson Univ., Potsdam, NY); Smith, D.H.

    2006-09-30

    Single-phase flow through fractured media occurs in various situations, such as transport of dissolved contaminants through geological strata, sequestration of carbon dioxide in depleted gas reservoirs, and in primary oil recovery. In the present study, fluid flows through a rock fracture were simulated. The fracture geometry was obtained from the CT scans of a rock fracture produced by the Brazilian method in a sandstone sample. A post-processing code using a CAD package was developed and used to generate the three-dimensional fracture from the CT scan data. Several sections along the fracture were considered and the GambitTM code was used to generate unstructured grids for flow simulations. FLUENTTM was used to analyze the flow conditions through the fracture section for different flow rates. Because of the small aperture of the fractures, the gravitational effects could be neglected. It was confirmed that the pressure drop was dominated by the smallest aperture passages of the fracture. The accuracy of parallel plate models for estimating the pressure drops through fractures was studied. It was shown that the parallel plate flow model with the use of an appropriate effective fracture aperture and inclusion of the tortuosity factor could provide reasonable estimates for pressure drops in the fracture. On the basis of the CFD simulation data, a new expression for the friction factor for flows through fractures was developed. The new model predictions were compared with the simulation results and favorable agreement was found. It was shown that when the length of the fracture and the mean and standard deviation of the fracture are known, the pressure loss as a function of the flow rate could be estimated. These findings may prove useful for design of lab experiments, computational studied of flows through real rock fractures, or inclusions in simulators for large-scale flows in highly fractured rocks.

  5. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation

    SciTech Connect (OSTI)

    Wu, Mengjie; Xiao, Feng; Johnson-Paben, Rebecca; Retterer, Scott T; Yin, Xiaolong; Neeves, Keith B

    2012-01-01

    The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by a highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.

  6. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect (OSTI)

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  7. Sustained phase separation and spin glass in Co-doped KxFe2?ySe2 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, Hyejin; Wang, Kefeng; Opacic, M.; Lazarevic, N.; Warren, J. B.; Popovic, Z. V.; Bozin, Emil S.; Petrovic, C.

    2015-11-19

    We describe Co substitution effects in KxFe2-y-zCozSe2 (0.06 ? z ? 1.73) single crystal alloys. By 3.5% of Co doping superconductivity is suppressed whereas phase separation of semiconducting K2Fe4Se5 and superconducting/metallic KxFe2Se2 is still present. We show that the arrangement and distribution of superconducting phase (stripe phase) is connected with the arrangement of K, Fe and Co atoms. Semiconducting spin glass is found in proximity to superconducting state, persisting for large Co concentrations. At high Co concentrations ferromagnetic metallic state emerges above the spin glass. This is coincident with changes of the unit cell, arrangement and connectivity of stripemoreconducting phase.less

  8. Sustained phase separation and spin glass in Co-doped KxFe2-ySe2 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, Hyejin; Wang, Kefeng; Opacic, M.; Lazarevic, N.; Warren, J. B.; Popovic, Z. V.; Bozin, Emil S.; Petrovic, C.

    2015-11-19

    We describe Co substitution effects in KxFe2-y-zCozSe2 (0.06 ≤ z ≤ 1.73) single crystal alloys. By 3.5% of Co doping superconductivity is suppressed whereas phase separation of semiconducting K2Fe4Se5 and superconducting/metallic KxFe2Se2 is still present. We show that the arrangement and distribution of superconducting phase (stripe phase) is connected with the arrangement of K, Fe and Co atoms. Semiconducting spin glass is found in proximity to superconducting state, persisting for large Co concentrations. At high Co concentrations ferromagnetic metallic state emerges above the spin glass. This is coincident with changes of the unit cell, arrangement and connectivity of stripemore » conducting phase.« less

  9. Quantitative evaluation of single-shot inline phase contrast imaging using an inverse compton x-ray source

    SciTech Connect (OSTI)

    Oliva, P.; Carpinelli, M.; Golosio, B.; Delogu, P.; Endrizzi, M.; Park, J.; Pogorelsky, I.; Yakimenko, V.; Williams, O.; Rosenzweig, J.

    2010-09-27

    Inverse compton scattering (ICS) x-ray sources are of current interest in biomedical imaging. We present an experimental demonstration of inline phase contrast imaging using a single picosecond pulse of the ICS source located at the BNL Accelerator Test Facility. The phase contrast effect is clearly observed. Its qualities are shown to be in agreement with the predictions of theoretical models through comparison of experimental and simulated images of a set of plastic wires of differing composition and size. Finally, we display an application of the technique to a biological sample, confirming the possibility of time-resolved imaging on the picosecond scale.

  10. A grating-based single-shot x-ray phase contrast and diffraction method for in vivo imaging

    SciTech Connect (OSTI)

    Bennett, Eric E.; Kopace, Rael; Stein, Ashley F.; Wen Han

    2010-11-15

    Purpose: The purpose of this study is to develop a single-shot version of the grating-based phase contrast x-ray imaging method and demonstrate its capability of in vivo animal imaging. Here, the authors describe the principle and experimental results. They show the source of artifacts in the phase contrast signal and optimal designs that minimize them. They also discuss its current limitations and ways to overcome them. Methods: A single lead grid was inserted midway between an x-ray tube and an x-ray camera in the planar radiography setting. The grid acted as a transmission grating and cast periodic dark fringes on the camera. The camera had sufficient spatial resolution to resolve the fringes. Refraction and diffraction in the imaged object manifested as position shifts and amplitude attenuation of the fringes, respectively. In order to quantify these changes precisely without imposing a fixed geometric relationship between the camera pixel array and the fringes, a spatial harmonic method in the Fourier domain was developed. The level of the differential phase (refraction) contrast as a function of hardware specifications and device geometry was derived and used to guide the optimal placement of the grid and object. Both ex vivo and in vivo images of rodent extremities were collected to demonstrate the capability of the method. The exposure time using a 50 W tube was 28 s. Results: Differential phase contrast images of glass beads acquired at various grid and object positions confirmed theoretical predictions of how phase contrast and extraneous artifacts vary with the device geometry. In anesthetized rats, a single exposure yielded artifact-free images of absorption, differential phase contrast, and diffraction. Differential phase contrast was strongest at bone-soft tissue interfaces, while diffraction was strongest in bone. Conclusions: The spatial harmonic method allowed us to obtain absorption, differential phase contrast, and diffraction images, all from a

  11. Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy

    SciTech Connect (OSTI)

    Lim, S.-H.; Caster, Allison G.; Leone, Stephen R.

    2005-10-15

    In coherent anti-Stokes Raman scattering (CARS) spectroscopy experiments, usually the amplitude of the signal is measured and the phase information is lost. With a polarization- and phase-controlled pulse shaping technique, the relative phase between the resonant and nonresonant CARS signals is controlled, and spectral interferometry is performed without an interferometer. Both the real and imaginary parts of the background-free resonant CARS spectrum are measured via spectral interferometry between the resonant and nonresonant signals from the same sample. The resonant signal is amplified significantly by homodyne mixing with the nonresonant signal as a local oscillator, greatly improving the detection limit.

  12. Single pulse phase-control interferometric coherent anti-StokesRaman scattering spectroscopy (CARS)

    SciTech Connect (OSTI)

    Lim, Sang-Hyun; Caster, Allison G.; Leone, Stephen R.

    2005-09-28

    In coherent anti-Stokes Raman scattering spectroscopy (CARS) experiments, usually the amplitude of the signal is measured and the phase information is lost. With a polarization- and phase-controlled pulse shaping technique, the relative phase between the resonant and non-resonant CARS signals is controlled, and spectral interferometry is performed without an interferometer. Both the real and imaginary parts of the background-free resonant CARS spectrum are measured via spectral interferometry between the resonant and non-resonant signals from the same sample. The resonant signal is amplified significantly by homodyne mixing with the non-resonant signal as a local oscillator, greatly improving the detection limit.

  13. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    SciTech Connect (OSTI)

    MCCARTHY, M.M.

    1999-08-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  14. Single and two-photon fluorescence control of Er{sup 3+} ions by phase-shaped femtosecond laser pulse

    SciTech Connect (OSTI)

    Zhang, Shian Ding, Jingxin; Lu, Chenhui; Jia, Tianqing; Sun, Zhenrong; Xu, Shuwu; Qiu, Jianrong

    2014-01-06

    We experimentally demonstrate the control of the single and two-photon fluorescence (SPF and TPF) in Er{sup 3+} ions by shaping the femtosecond laser pulse with a π or square phase modulation. With the low laser intensity (8.4 × 10{sup 10} W/cm{sup 2}), SPF keeps a constant while TPF is effectively suppressed by the two control schemes. With the high laser intensity (1.2 × 10{sup 13} W/cm{sup 2}), both SPF and TPF are simultaneously enhanced or suppressed by the π phase modulation, and SPF is enhanced while TPF is effectively suppressed by the square phase modulation. The up/down-conversion fluorescence enhancement, suppression, or tuning by the optical control method can greatly expand its applications in various related fields.

  15. Phase transformation as the single-mode mechanical deformation of silicon

    SciTech Connect (OSTI)

    Wong, Sherman; Haberl, Bianca; Williams, James S.; Bradby, Jodie E.

    2015-06-25

    The mixture of the metastable body-centered cubic (bc8) and rhombohedral (r8) phases of silicon that is formed via nanoindentation of diamond cubic (dc) silicon exhibits properties that are of scientifc and technological interest. This letter demonstrates that large regions of this mixed phase can be formed in crystalline Si via nanoindentation without signifcant damage to the surrounding crystal. Cross-sectional transmission electron microscopy is used to show that volumes 6 μm wide and up to 650 nm deep can be generated in this way using a spherical tip of ~21.5 μm diameter. The phase transformed region is characterised using both Raman microspectroscopy and transmission electron microscopy. It is found that uniform loading using large spherical indenters can favor phase transformation as the sole deformation mechanism as long as the maximum load is below a critical level. We suggest that the sluggish nature of the transformation from the dc-Si phase to the metallic (b-Sn) phase normally results in competing deformation mechanisms such as slip and cracking but these can be suppressed by controlled loading conditions.

  16. Phase transformation as the single-mode mechanical deformation of silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wong, Sherman; Haberl, Bianca; Williams, James S.; Bradby, Jodie E.

    2015-06-25

    The mixture of the metastable body-centered cubic (bc8) and rhombohedral (r8) phases of silicon that is formed via nanoindentation of diamond cubic (dc) silicon exhibits properties that are of scientifc and technological interest. This letter demonstrates that large regions of this mixed phase can be formed in crystalline Si via nanoindentation without signifcant damage to the surrounding crystal. Cross-sectional transmission electron microscopy is used to show that volumes 6 μm wide and up to 650 nm deep can be generated in this way using a spherical tip of ~21.5 μm diameter. The phase transformed region is characterised using both Ramanmore » microspectroscopy and transmission electron microscopy. It is found that uniform loading using large spherical indenters can favor phase transformation as the sole deformation mechanism as long as the maximum load is below a critical level. We suggest that the sluggish nature of the transformation from the dc-Si phase to the metallic (b-Sn) phase normally results in competing deformation mechanisms such as slip and cracking but these can be suppressed by controlled loading conditions.« less

  17. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    SciTech Connect (OSTI)

    Turner, David D.

    2003-06-01

    A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

  18. Characterization of single-crystal diamond grown from the vapor phase on substrates of natural diamond

    SciTech Connect (OSTI)

    Altukhov, A. A.; Vikharev, A. L.; Gorbachev, A. M.; Dukhnovsky, M. P.; Zemlyakov, V. E.; Ziablyuk, K. N.; Mitenkin, A. V.; Muchnikov, A. B. Radishev, D. B.; Ratnikova, A. K.; Fedorov, Yu. Yu.

    2011-03-15

    The results of studies of single-crystal diamond layers with orientation (100) grown on substrates of IIa-type natural diamond by chemical-vapor deposition and of semiconductor diamond obtained subsequently by doping by implantation of boron ions are reported. Optimal conditions of postimplantation annealing of diamond that provide the hole mobility of 1150 cm{sup 2} V{sup -1} s{sup -1} (the highest mobility obtained so far for semiconductor diamond after ion implantation) are given.

  19. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; Slusar, Tetiana V.; Kong, Tai; Bud'ko, Sergey L.; Kittiwatanakul, Salinporn; Qazilbash, M. M.; McLeod, Alexander; Fei, Zhe; et al

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for a comprehensive understanding ofmore » complex energy landscapes that may not be readily determined by macroscopic approaches.« less

  20. A search for neutrons in single-phase palladium-deuterium

    SciTech Connect (OSTI)

    Ehrlich, A.C.; Gillespie, D.J.; Kamm, G.N. )

    1989-12-01

    A palladium rod is charged to relatively high levels of deuterium without passing through the two-phase region of this system. This is accomplished by a combination of gaseous high-temperature-high-pressure initial charging followed by electrolytic charging to a final deuterium/palladium ratio of 0.88. Attempts of detect neutron production during low-temperature thermal cycling and room-temperature slow discharge of deuterium have yielded negative results. Data collected during more rapid discharge of deuterium are statistically unconvincing, but weakly suggestive of some possible neutron production.

  1. Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability

    SciTech Connect (OSTI)

    Li, Huijuan; Xu, Yan; Adhikari, Sarina; Rizy, D Tom; Li, Fangxing; Irminger, Philip

    2012-01-01

    Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

  2. SiC MOSFET Based Single Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    SciTech Connect (OSTI)

    Onar, Omer C; Tang, Lixin; Chinthavali, Madhu Sudhan; Campbell, Steven L; Miller , John M.

    2014-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.

  3. Formation mechanism of superconducting phase and its three-dimensional architecture in pseudo-single-crystal KxFe2-ySe2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.; Marshman, Jeff; Pedersen, Pal; McLaughlin, Richard; Lograsso, Thomas A.

    2016-02-11

    Here, we report how the superconducting phase forms in pseudo-single-crystal KxFe2-ySe2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition. It should bemore » emphasized that the phase separation in pseudo-single-crystal KxFe2-ySe2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.« less

  4. How the main condition of phase stability can explain the effect of the velocity deviation of secondary electrons in DC-biased single-sided multipactors

    SciTech Connect (OSTI)

    Mostajeran, M.

    2014-11-15

    In this work, a main condition for phase stability has been employed to investigate the effects of the velocity deviation of the electrons in DC-biased single-sided multipactors (MPs). In a previous study [M. Mostajeran, Phys. Plasmas 21, 053108 (2014)], a stability equation was derived, where the secondary electron was assumed to have zero initial velocity and the phase deviation from the resonant phase was considered. In this work, both deviations in phase and velocity from the resonant condition are taken into account, assuming nonzero initial velocity for the secondary electrons. Using the main condition for stability, it is shown that MP discharge can rise in situations, where large velocity deviations from initial velocity and large phase deviations from resonant phase exist. This is contrary to what can be predicted on the basis of the simple stability condition. This result is further confirmed by numerical simulations.

  5. High-pressure single-crystal elasticity study of CO{sub 2} across phase I-III transition

    SciTech Connect (OSTI)

    Zhang, Jin S. Bass, Jay D.; Shieh, Sean R.; Dera, Przemyslaw; Prakapenka, Vitali

    2014-04-07

    Sound velocities and elastic moduli of solid single-crystal CO{sub 2} were measured at pressures up to 11.7(3) GPa by Brillouin spectroscopy. The aggregate adiabatic bulk modulus (K{sub S}), shear modulus (G), and their pressure derivatives for CO{sub 2} Phase I are K{sub S0}?=?3.4(6) GPa, G{sub 0}?=?1.8(2) GPa, (dK{sub S}/dP){sub 0}?=?7.8(3), (dG/dP){sub 0}?=?2.5(1), (d{sup 2}K{sub S}/dP{sup 2}){sub 0}?=??0.23(3) GPa{sup ?1}, and (d{sup 2}G/dP{sup 2}){sub 0}?=??0.10(1) GPa{sup ?1}. A small increase of elastic properties was observed between 9.8(1) and 10.5(3) GPa, in agreement with the CO{sub 2} I-III transition pressure determined from previous x-ray diffraction experiments. Above the transition pressure P{sub T}, we observed a mixture dominated by CO{sub 2}-I, with minor CO{sub 2}-III. The CO{sub 2}-I + III mixture shows slightly increased sound velocities compared to pure CO{sub 2}-I. Elastic anisotropy calculated from the single-crystal elasticity tensor exhibits a decrease with pressure beginning at 7.9(1) GPa, which is lower than P{sub T}. Our results coincide with recent X-ray Raman observations, suggesting that a pressure-induced electronic transition is related to local structural and optical changes.

  6. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7

    SciTech Connect (OSTI)

    David Andrs; Ray Berry; Derek Gaston; Richard Martineau; John Peterson; Hongbin Zhang; Haihua Zhao; Ling Zou

    2012-05-01

    The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7 is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to

  7. Transition to collapsed tetragonal phase in CaFe2As2 single crystals as seen by 57Fe Mössbauer spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.

    2016-01-21

    Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent at low temperaturesmore » in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Furthermore, based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.« less

  8. A Five-Level Three-Phase Cascade Multilevel Inverter Using a Single DC Source for a PM Synchronous Motor Drive

    SciTech Connect (OSTI)

    Ozpineci, Burak; Chiasson, John N; Tolbert, Leon M

    2007-01-01

    The interest here is in using a single DC power source to construct a 3-phase 5-level cascade multilevel inverter to be used as a drive for a PM traction motor. The 5-level inverter consists of a standard 3-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg, which use a capacitor as a DC source. It is shown that one can simultaneously maintain the regulation of the capacitor voltage while achieving an output voltage waveform which is 25% higher than that obtained using a standard 3-leg inverter by itself.

  9. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality.

  10. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy

    SciTech Connect (OSTI)

    Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin

    2015-07-25

    To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [110] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tensioncompression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSSs strong temperature dependence is abnormal.

  11. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin

    2015-07-25

    To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.

  12. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    ROGERS, P.M.

    2000-06-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

  13. A study of the phase transition and magnetocaloric effect in multiferroic La{sub 2}MnNiO{sub 6} single crystals

    SciTech Connect (OSTI)

    Balli, M. Jandl, S.; Fournier, P.; Gospodinov, M. M.

    2014-05-07

    Magnetic and magnetocaloric properties of single crystal double perovskite La{sub 2}MnNiO{sub 6} have been investigated in details. Its ordered phase with a high Curie temperature (T{sub C} = 280 K) exhibits a significant refrigerant capacity around room temperature. A model based on the mean field theory approximation has been used in order to quantify the magnetic and magnetocaloric properties in the ordered La{sub 2}MnNiO{sub 6}. The magnetization and entropy changes were satisfactorily simulated as a function of temperature and magnetic field. On the other hand, the presence of cationic disorder in La{sub 2}MnNiO{sub 6} phases allows to shift the Curie point to low temperature without a significant change in the magnetocaloric performance.

  14. Single phase synthesis and room temperature neutron diffraction studies on multiferroic PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}

    SciTech Connect (OSTI)

    Matteppanavar, Shidaling; Angadi, Basavaraj; Rayaprol, Sudhindra

    2013-02-05

    The lead-iron-niobate, (PbFe{sub 0.5}Nb{sub 0.5}O{sub 3} or PFN) was synthesized by low temperature sintering Single Step / Solid State Reaction Method. The 700 Degree-Sign C/2 hrs. calcined powder was sintered at 1050 Degree-Sign C/1 hr. The sintered pellets were characterized through X-Ray Diffraction and Neutron Diffraction at room temperature. It is found from the XRD pattern that the materials is in single phase with no traces of pyrochlore phase. It was also confirmed from the neutron diffraction pattern, the structure of PFN to be monoclinic, space group Cm. Structural studies has been carried out by refining the obtained neutron diffraction data by Rietveld refinement method using Fullprof program. The neutron diffraction pattern at 300 K (room temperature) was selected to refine the structure. The lattice parameters obtained are; a = 5.6709 A, b = 5.6732 A, c = 4.0136 A, and {alpha}= 90, {beta}= 89.881, {gamma}= 90. The P-E measurements showed hysteretic behavior with high remnant polarization.

  15. Spatially resolved study of polarized micro-photoluminescence spectroscopy on single GaAs nanowires with mixed zincblende and wurtzite phases

    SciTech Connect (OSTI)

    Mukherjee, Amlan; Ghosh, Sandip; Breuer, Steffen; Jahn, Uwe; Geelhaar, Lutz; Grahn, Holger T.

    2015-02-07

    Localized and polarized photoluminescence spectra are observed in single GaAs nanowires with mixed zincblende and wurtzite phases, grown using molecular beam epitaxy. For low excitation intensities, the photoluminescence emission exhibits narrow spectral features predominantly polarized perpendicular to the nanowire axis. For high excitation intensities, the photoluminescence spectra transform into dominant broadened features, which exhibit different peak energies and polarization properties. The strongly polarized emission at high excitation intensities is identified as being due to a spatially direct transition in wurtzite sections of the nanowires. The analysis, including band structure calculations suggests that carriers in the wurtzite sections diffuse into regions where the average low-temperature peak emission energy and crystal field parameter are 1.535?eV and 20?meV, respectively.

  16. A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO{sub 2} doped with transition metal cations

    SciTech Connect (OSTI)

    Kernazhitsky, L.; Shymanovska, V.; Gavrilko, T.; Naumov, V.; Kshnyakin, V.; Khalyavka, T.

    2013-02-15

    The effect of nanocrystalline TiO{sub 2} doping with transition metal cations (Cu{sup 2+}, Fe{sup 3+}, Co{sup 2+}, Cr{sup 3+}) on their optical absorption and photocatalytic properties was investigated. The obtained metal-doped TiO{sub 2} samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-vis absorption spectroscopy. It is shown that doping effect on anatase (A) and rutile (R) properties is quite different, being much stronger and complicated on A than on R. Contrary to doped R, doped A revealed a significant red shift of the absorption edge along with the band gap narrowing. Photocatalytic activity of anatase increases upon doping in the order: AR/Co>R/Cu>R/Fe>R/Cr, indicating the inhibitory effect of impurity cations. This fact correlates with the decrease in the UV absorption of the doped rutile in the region of the Hg-lamp irradiation at 4.88 eV. - Graphical abstract: A red shift of the absorption edge of nanocrystalline single-phase anatase after doping with transition metal cations. Highlights: Black-Right-Pointing-Pointer Single-phase anatase and rutile powders surface-doped with transition metal cations. Black-Right-Pointing-Pointer Absorption edge and band gap of rutile do not change with surface doping. Black-Right-Pointing-Pointer Band gap of surface-doped anatase reduces being the lowest for A/Fe. Black-Right-Pointing-Pointer The surface-doping improves photocatalytic activity of anatase. Black-Right-Pointing-Pointer The surface-doping inhibits photocatalytic activity of rutile.

  17. Single Phase Melt Processed Powellite (Ba,Ca) MoO{sub 4} For The Immobilization Of Mo-Rich Nuclear Waste

    SciTech Connect (OSTI)

    Brinkman, Kyle; Marra, James; Fox, Kevin; Reppert, Jason; Crum, Jarrod; Tang, Ming

    2012-09-17

    Crystalline and glass composite materials are currently being investigated for the immobilization of combined High Level Waste (HLW) streams resulting from potential commercial fuel reprocessing scenarios. Several of these potential waste streams contain elevated levels of transition metal elements such as molybdenum (Mo). Molybdenum has limited solubility in typical silicate glasses used for nuclear waste immobilization. Under certain chemical and controlled cooling conditions, a powellite (Ba,Ca)MoO{sub 4} crystalline structure can be formed by reaction with alkaline earth elements. In this study, single phase BaMoO{sub 4} and CaMoO{sub 4} were formed from carbonate and oxide precursors demonstrating the viability of Mo incorporation into glass, crystalline or glass composite materials by a melt and crystallization process. X-ray diffraction, photoluminescence, and Raman spectroscopy indicated a long range ordered crystalline structure. In-situ electron irradiation studies indicated that both CaMoO{sub 4} and BaMoO{sub 4} powellite phases exhibit radiation stability up to 1000 years at anticipated doses with a crystalline to amorphous transition observed after 1 X 10{sup 13} Gy. Aqueous durability determined from product consistency tests (PCT) showed low normalized release rates for Ba, Ca, and Mo (<0.05 g/m{sup 2}).

  18. Single phase melt processed powellite (Ba,Ca)MoO4 for the immobilization of Mo-rich nuclear waste

    SciTech Connect (OSTI)

    Brinkman, Kyle; Fox, Kevin M.; Marra, James C.; Reppert, Jason; Crum, Jarrod V.; Tang, Ming

    2012-10-02

    Crystalline and glass composite materials are currently being investigated for the immobilization of combined High Level Waste (HLW) streams resulting from potential commercial fuel reprocessing scenarios. Several of these potential waste streams contain elevated levels of transition metal elements such as molybdenum (Mo). Molybdenum has limited solubility in typical silicate glasses used for nuclear waste immobilization. Under certain chemical and controlled cooling conditions, a powellite (Ba,Ca)MoO4 crystalline structure can be formed by reaction with alkaline earth elements. In this study, single phase BaMoO4 and CaMoO4 were formed from carbonate and oxide precursors demonstrating the viability of Mo incorporation into glass, crystalline or glass composite materials by a melt and crystallization process. X-ray diffraction, photoluminescence, and Raman spectroscopy indicated a long range ordered crystalline structure. In situ electron irradiation studies indicated that both CaMoO4 and BaMoO4 powellite phases exhibit radiation stability up to 1000 years at anticipated doses with a crystalline to amorphous transition observed after 1 x 1013 Gy. Aqueous durability determined from product consistency tests (PCT) showed low normalized release rates for Ba, Ca, and Mo (<0.05 g/m2).

  19. Phase transformation between Cu(In,Sn){sub 2} and Cu{sub 2}(In,Sn) compounds formed on single crystalline Cu substrate during solid state aging

    SciTech Connect (OSTI)

    Tian, Feifei; Liu, Zhi-Quan Guo, Jingdong

    2014-01-28

    Interfacial reactions between eutectic SnIn and single crystalline Cu during solid-state aging at low temperature were investigated systematically. Three types of phase transformations between Cu(In,Sn){sub 2} layer and Cu{sub 2}(In,Sn) layer were observed, which are Cu(In,Sn){sub 2} grows and Cu{sub 2}(In,Sn) consumes at 40?C, Cu(In,Sn){sub 2} and Cu{sub 2}(In,Sn) grow simultaneously at 60?C, as well as Cu(In,Sn){sub 2} consumes and Cu{sub 2}(In,Sn) grows at 80 and 100?C. According to physicochemical approach, the chemical reactions at Cu/Cu{sub 2}(In,Sn)/Cu(In,Sn){sub 2}/SnIn interfaces were discussed in detail. It was concluded that the diffusion ability of Cu and In atoms dominated different phase transformations. When diffusion constants k{sub 1In2}?>?8/3k{sub 1Cu2} Cu(In,Sn){sub 2} will grow, and if k{sub 1Cu2}???k{sub 1In2} Cu{sub 2}(In,Sn) will grow. Both Cu(In,Sn){sub 2} and Cu{sub 2}(In,Sn) can grow in the condition of k{sub 1In2} ? k{sub 1Cu2}. The values of k{sub 1Cu2} and k{sub 1In2} at different temperatures on (100)Cu and (111)Cu substrate were also calculated or estimated by analyzing the growth kinetics of the compound layers.

  20. Results of Phase I groundwater quality assessment for single-shell tank waste management Area S-SX at the Hanford Site

    SciTech Connect (OSTI)

    Johnson, V.G.; Chou, C.J.

    1998-01-01

    Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL), in accordance with the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Area (WMA) S-SX has impacted groundwater quality. The WMA is located in the southern portion of the 200 West Area of the Hanford Site and consists of the 241-S and 241-SX tank farms and ancillary waste systems. The unit is regulated under RCRA interim-status regulations (40 CFR 265, Subpart F) and was placed in assessment groundwater monitoring (40 CFR 265.93 [d]) in August 1996 because of elevated specific conductance and technetium-99, a non-RCRA co-contaminant, in downgradient monitoring wells. Major findings of the assessment are summarized below: (1) Distribution patterns for radionuclides and RCRA/dangerous waste constituents indicate WMA S-SX has contributed to groundwater contamination observed in downgradient monitoring wells. (2) Drinking water standards for nitrate and technetium-99 are currently exceeded in one RCRA-compliant well (299-W22-46) located at the southeastern comer of the SX tank farm. (3) Technetium-99, nitrate, and chromium concentrations in downgradient well 299-W22-46 (the well with the highest current concentrations) appear to be declining after reaching maximum concentrations in May 1997. (4) Cesium-137 and strontium-90, major constituents of concern in single-shell tank waste, were not detected in any of the RCRA-compliant wells in the WMA network, including the well with the highest current technetium-99 concentrations (299-W22-46). (5) Low but detectable strontium-90 and cesium-137 were found in one old well (2-W23-7), located inside and between the S and SX tank farms.

  1. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    SciTech Connect (OSTI)

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    2008-11-01

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

  2. Navigation and vessel inspection circular No. 10-94. Guidance for determination and documentation of the Oil Pollution Act of 1990 (OPA 90) phase-out schedule for existing single hull vessels carrying oil in bulk. Final report

    SciTech Connect (OSTI)

    1994-12-22

    The purpose of this Circular is to provide guidance regarding the determination and documentation of phase-out dates for single hull vessels subject to chapter 37 of Title 46, U.S. Code, constructed or adapted to carry or that carry oil in bulk as cargo or cargo residue and operating on waters subject to the jurisdiction of the United States.

  3. CATALYST ACTIVITY MAINTENANCE FOR THE LIQUID PHASE SYNTHESIS GAS-TO-DIMETHYL ETHER PROCESS PART II: DEVELOPMENT OF ALUMINUM PHOSPHATE AS THE DEHYDRATION CATALYST FOR THE SINGLE-STEP LIQUID PHASE SYNGAS-TO-DME PROCESS

    SciTech Connect (OSTI)

    Xiang-Dong Peng

    2002-05-01

    At the heart of the single-step liquid phase syngas-to-DME process (LPDME{trademark}) is a catalyst system that can be active as well as stable. In the Alternative Fuels I program, a dual-catalyst system containing a Cu-based commercial methanol synthesis catalyst (BASF S3-86) and a commercial dehydration material ({gamma}-alumina) was demonstrated. It provided the productivity and selectivity expected from the LPDME process. However, the catalyst system deactivated too rapidly to warrant a viable commercial process [1]. The mechanistic investigation in the early part of the DOE's Alternative Fuels II program revealed that the accelerated catalyst deactivation under LPDME conditions is due to detrimental interaction between the methanol synthesis catalyst and methanol dehydration catalyst [2,3]. The interaction was attributed to migration of Cu- and/or Zn-containing species from the synthesis catalyst to the dehydration catalyst. Identification of a dehydration catalyst that did not lead to this detrimental interaction while retaining adequate dehydration activity was elusive. Twenty-nine different dehydration materials were tested, but none showed the desired performance [2]. The search came to a turning point when aluminum phosphate was tested. This amorphous material is prepared by precipitating a solution containing Al(NO{sub 3}){sub 3} and H{sub 3}PO{sub 4} with NH{sub 4}OH, followed by washing, drying and calcination. The aluminum phosphate catalyst has adequate dehydration activity and good stability. It can co-exist with the Cu-based methanol synthesis catalyst without negatively affecting the latter catalyst's stability. This report documents the details of the development of this catalyst. These include initial leads, efforts in improving activity and stability, investigation and development of the best preparation parameters and procedures, mechanistic understanding and resulting preparation guidelines, and the accomplishments of this work.

  4. PHASE DETECTOR

    DOE Patents [OSTI]

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  5. Second order phase transition temperature of single crystals of Gd5Si1.3Ge2.7 and Gd5Si1.4Ge2.6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hadimani, R. L.; Melikhov, Y.; Schlagel, D. L.; Lograsso, T. A.; Dennis, K. W.; McCallum, R. W.; Jiles, D. C.

    2015-01-30

    Gd5(SixGe1–x)4 has mixed phases in the composition range 0.32 < x < 0.41, which have not been widely studied. In this paper, we have synthesized and indexed single crystal samples of Gd5Si1.3Ge2.7 and Gd5Si1.4Ge2.6. In this study, we have investigated the first order and second order phase transition temperatures of these samples using magnetic moment vs. temperature and magnetic moment vs. magnetic field at different temperatures. We have used a modified Arrott plot technique that was developed and reported by us previously to determine the “hidden” second order phase transition temperature of the orthorhombic II phase.

  6. Porosity, single-phase permeability, and capillary pressure data from preliminary laboratory experiments on selected samples from Marker Bed 139 at the Waste Isolation Pilot Plant. Volume 1 of 3: Main report, appendix A

    SciTech Connect (OSTI)

    Howarth, S.M.; Christian-Frear, T.

    1997-08-01

    Three groups of core samples from Marker Bed 139 of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) were analyzed to provide data to support the development of numerical models used to predict the long-term hydrologic and structural response of the WIPP repository. These laboratory experiments, part of the FY93 Experimental Scoping Activities of the Salado Two-Phase Flow Laboratory Program, were designed to (1) generate WIPP-specific porosity and single-phase permeability data, (2) provide information needed to design and implement planned tests to measure two-phase flow properties, including threshold pressure, capillary pressure, and relative permeability, and (3) evaluate the suitability of using analog correlations for the Salado Formation to assess the long-term performance of the WIPP. This report contains a description of the boreholes core samples, the core preparation techniques used, sample sizes, testing procedures, test conditions, and results of porosity and single-phase permeability tests performed at three laboratories: TerraTek, Inc. (Salt Lake City, UT), RE/SPEC, Inc. (Rapid City, SD), and Core Laboratories-Special Core Analysis Laboratory (Carrollton, TX) for Rock Physics Associates. In addition, this report contains the only WIPP-specific two-phase-flow capillary-pressure data for twelve core samples. The WIPP-specific data generated in this laboratory study and in WIPP field-test programs and information from suitable analogs will form the basis for specification of single- and two-phase flow parameters for anhydrite markers beds for WIPP performance assessment calculations.

  7. Vacancy-induced nanoscale phase separation in KxFe2–ySe₂ single crystals evidenced by Raman scattering and powder x-ray diffraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lazarević, N.; Abeykoon, M.; Stephens, P. W.; Lei, Hechang; Bozin, E. S.; Petrovic, C.; Popović, Z. V.

    2012-08-06

    Polarized Raman scattering spectra of KxFe2–ySe₂ were analyzed in terms of peculiarities of both I4/m and I4/mmm space group symmetries. The presence of the Raman active modes from both space group symmetries (16 Raman-active modes of the I4/m phase and two Raman-active modes of the I4/mmm phase) confirmed the existence of two crystallographic domains with different space group symmetry in a KxFe2–ySe₂ sample. High-resolution synchrotron powder x-ray diffraction structural refinement of the same sample confirmed the two-phase description, and determined the atomic positions and occupancies for both domains.

  8. CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

    SciTech Connect (OSTI)

    Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter; Austin, Phillip A.; Bacmeister, J.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; Del Genio, Anthony D.; De Roode, Stephan R.; Endo , Satoshi; Franklin, Charmaine N.; Golaz, Jean-Christophe; Hannay, Cecile; Heus, Thijs; Isotta, Francesco A.; Jean-Louis, Dufresne; Kang, In-Sik; Kawai, Hideaki; Koehler, M.; Larson, Vincent E.; Liu, Yangang; Lock, Adrian; Lohmann, U.; Khairoutdinov, Marat; Molod, Andrea M.; Neggers, Roel; Rasch, Philip J.; Sandu, Irina; Senkbeil, Ryan; Siebesma, A. P.; Siegenthaler-Le Drian, Colombe; Stevens, Bjorn; Suarez, Max; Xu, Kuan-Man; Von Salzen, Knut; Webb, Mark; Wolf, Audrey; Zhao, M.

    2013-12-26

    Large Eddy Models (LES) and Single Column Models (SCM) are used in a surrogate climate change 101 to investigate the physical mechanism of low cloud feedbacks in climate models. Enhanced surface-102 driven boundary layer turbulence and shallow convection in a warmer climate are found to be 103 dominant mechanisms in SCMs.

  9. Integrated quasi-phase-matched second-harmonic generator and electrooptic scanner on LiTaO{sub 3} single crystals

    SciTech Connect (OSTI)

    Gopalan, V.; Kawas, M.J.; Schlesinger, T.E.; Stancil, D.D.; Gupta, M.C.

    1996-12-01

    The authors report the first integrated quasi-phase-matched second-harmonic generator and electrooptic scanner on ferroelectric Z-cut LiTaO{sub 3}. The quasi-phase-matched second-harmonic generation device frequency doubles the infrared light at 829.7 nm into blue at 414.85 nm with a bulk conversion efficiency of 0.52%/W-cm. The blue light generated in the bulk then passes through an electrooptic scanner, consisting of a series of lithographically defined triangular-shaped domain-inverted regions extending through the thickness of the crystal. A deflection of 12 mrad/kv for the output blue light and 7.4 mrad/kv for the infrared light was observed at the scanner output.

  10. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging

    SciTech Connect (OSTI)

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; Slusar, Tetiana V.; Kong, Tai; Bud'ko, Sergey L.; Kittiwatanakul, Salinporn; Qazilbash, M. M.; McLeod, Alexander; Fei, Zhe; Abreu, Elsa; Zhang, Jingdi; Goldflam, Michael; Dai, Siyuan; Ni, Guang -Xin; Lu, Jiwei; Bechtel, Hans A.; Martin, Michael C.; Raschke, Markus B.; Averitt, Richard D.; Wolf, Stuart A.; Kim, Hyun -Tak; Canfield, Paul C.; Basov, D. N.

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for a comprehensive understanding of complex energy landscapes that may not be readily determined by macroscopic approaches.

  11. Phase coexistence and transformations in field-cooled ternary...

    Office of Scientific and Technical Information (OSTI)

    Phase coexistence and transformations in field-cooled ternary piezoelectric single ... Title: Phase coexistence and transformations in field-cooled ternary piezoelectric single ...

  12. Parameter Selection and Longitudinal Phase Space Simulation for a Single Stage X-Band FEL Driver at 250 MeV

    SciTech Connect (OSTI)

    Sun, Yipeng; Raubenheimer, Tor; Wu, Juhao; ,

    2011-08-19

    Hard x-ray Free electron lasers (FEL) are being built or proposed at many accelerator laboratories as it supports wide range of applications in many aspects. Most of the hard x-ray FEL design is similar with the SLAC Linac Coherent Light Source (LCLS), which features a two (or multiple) stage bunch compression. For the first stage of the bunch compression, usually the beam is accelerated in a lower-frequency RF section (such as S-band for LCLS), and then the longitudinal phase space is linearized by a higher-frequency RF section (harmonic RF, such as X-band for LCLS). In this paper, a compact hard x-ray FEL design is proposed, which is based on X-band RF acceleration and eliminating the need of a harmonic RF. The parameter selection and relation is discussed, and the longitudinal phase space simulation is presented. The FEL coherence condition of the electron beam in the undulators requires a large charge density, a small emittance and small energy spread. The RMS electron bunch length from the injector is in the ps scale, with a bunch charge in the range of hundreds pC to several nC, which means that the current is roughly 0.1 kA. According to the requirement from soft x-ray lasing and hard x-ray lasing, a peak current of 1 kA and 3 kA is needed respectively. Thus the bunch has to be compressed. Usually a two stage bunch compression or multipole stage bunch compression is adopted. The z-correlated energy chirp is normally established by letting the beam pass through a section of RF cavities, with a RF phase off crest. As stated above, S-band RF (3 GHz) acceleration could be applied in this section. Due to the nature of RF acceleration wave, the chirp on the bunch is not linear, but has the RF curvature on it. In order to linearize the energy chirp, a harmonic RF section with higher frequency is needed. For LCLS a short X-band RF section (12 GHz) is used which is a fourth order harmonic. The linearized bunch is then passing by a dispersive region, in which the

  13. Symmetry of piezoelectric (1–x)Pb(Mg1/3Nb2/3)O₃-xPbTiO₃ (x=0.31) single crystal at different length scales in the morphotropic phase boundary region

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Kyou-Hyun; Payne, David A.; Zuo, Jian-Min

    2012-11-29

    We use probes of three different length scales to examine symmetry of (1–x)Pb(Mg1/3Nb2/3)O₃-xPbTiO₃ (PMN-xPT) single crystals in the morphotropic phase boundary (MPB) region at composition x = 0.31 (PMN-31% PT). On the macroscopic scale, x-ray diffraction (XRD) shows a mixture of strong and weak diffraction peaks of different widths. The closest match to XRD peak data is made with monoclinic Pm (MC) symmetry. On the local scale of a few nanometers, convergent beam electron diffraction (CBED) studies, with a 1.6-nm electron probe, reveal no obvious symmetry. These CBED experimental patterns can be approximately matched with simulations based on monoclinic symmetry,more » which suggests locally distorted monoclinic structure. A monoclinic Cm (MA or MB)-like symmetry could also be obtained from certain regions of the crystal by using a larger electron probe size of several tens of nanometers in diameter. Thus the monoclinic symmetry of single crystal PMN-31%PT is developed only in parts of the crystal by averaging over locally distorted structure on the scale of few tens of nanometers. The macroscopic symmetry observed by XRD is a result of averaging from the local structure in PMN-31%PT single crystal. The lack of local symmetry at a few nanometers scale suggests that the polarization switching results from a change in local displacements, which are not restricted to specific symmetry planes or directions.« less

  14. Project Home Again Phase II

    SciTech Connect (OSTI)

    2010-01-30

    Phase II is a continuation of a charitable residential community project in New Orleans that builds affordable and energy efficient single detached residences that are storm resistant.

  15. General single phase wellbore flow model

    SciTech Connect (OSTI)

    Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.

    1997-02-05

    A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.

  16. Phasing of Debuncher Stochastic Cooling Transverse Systems

    SciTech Connect (OSTI)

    Pasquinelli, Ralph; /Fermilab

    2000-03-09

    With the higher frequency of the cooling systems in the Debuncher, a modified method of making transfer functions has been developed for transverse systems. (Measuring of the momentum systems is unchanged.) Speed in making the measurements is critical, as the beam tends to decelerate due to vacuum lifetime. In the 4-8 GHz band, the harmonics in the Debuncher are 6,700 to 13,400 times the revolution frequency. Every Hertz change in revolution frequency is multiplied by this harmonic number and becomes a frequency measurement error, which is an appreciable percent of the momentum width of the beam. It was originally thought that a momentum cooling system would be phased first so that the beam could be kept from drifting in revolution frequency. As it turned out, the momentum cooling was so effective (even with the gain turned down) that the momentum width normalized to fo became less than one Hertz on the Schottky pickup. A beam this narrow requires very precise measurement of tune and revolution frequency. It was difficult to get repeatable results. For initial measuring of the transverse arrays, relative phase and delay is all that is required, so the measurement settings outlined below will suffice. Once all input and output arrays are phased, a more precise measurement of all pickups to all kickers can be done with more points and both upper and lower side bands, as in figure 1. Settings on the network analyzer were adjusted for maximum measurement speed. Data is not analyzed until a complete set of measurements is taken. Start and stop frequencies should be chosen to be just slightly wider than the band being measured. For transverse systems, select betatron USB for the measurement type. This will make the measurement two times faster. Select 101 for the number of points, sweep time of 5 seconds, IF bandwidth 30 Hz, averages = 1. It is important during the phasing to continually measure the revolution frequency and beam width of the beam for transverse systems

  17. Photothermal single particle microscopy using a single laser beam

    SciTech Connect (OSTI)

    Selmke, Markus; Heber, André; Braun, Marco; Cichos, Frank

    2014-07-07

    We introduce a single-laser-beam photothermal microscopy scheme for the detection of single absorbing nano-objects. Here, a modulated incident laser beam with a constant intensity offset serves as pump and probe beam at the same time. Using the out-of-phase scattering response of the retarded thermorefractive wave field, the method provides a selective contrast for absorbers over a possible background of scatterers. The use of a single wavelength and a single beam, considerably simplifies the setup and integration of photothermal detection in existing microscopy schemes.

  18. Second order phase transition temperature of single crystals of Gd5Si1.3Ge2.7 and Gd5Si1.4Ge2.6

    SciTech Connect (OSTI)

    Hadimani, R. L.; Melikhov, Y.; Schlagel, D. L.; Lograsso, T. A.; Dennis, K. W.; McCallum, R. W.; Jiles, D. C.

    2015-01-30

    Gd5(SixGe1–x)4 has mixed phases in the composition range 0.32 < x < 0.41, which have not been widely studied. In this paper, we have synthesized and indexed single crystal samples of Gd5Si1.3Ge2.7 and Gd5Si1.4Ge2.6. In this study, we have investigated the first order and second order phase transition temperatures of these samples using magnetic moment vs. temperature and magnetic moment vs. magnetic field at different temperatures. We have used a modified Arrott plot technique that was developed and reported by us previously to determine the “hidden” second order phase transition temperature of the orthorhombic II phase.

  19. Sustained phase separation and spin glass in Co-doped KxFe2-ySe2 single crystals

    SciTech Connect (OSTI)

    Ryu, Hyejin; Wang, Kefeng; Opacic, M.; Lazarevic, N.; Warren, J. B.; Popovic, Z. V.; Bozin, Emil S.; Petrovic, C.

    2015-11-19

    We describe Co substitution effects in KxFe2-y-zCozSe2 (0.06 ≤ z ≤ 1.73) single crystal alloys. By 3.5% of Co doping superconductivity is suppressed whereas phase separation of semiconducting K2Fe4Se5 and superconducting/metallic KxFe2Se2 is still present. We show that the arrangement and distribution of superconducting phase (stripe phase) is connected with the arrangement of K, Fe and Co atoms. Semiconducting spin glass is found in proximity to superconducting state, persisting for large Co concentrations. At high Co concentrations ferromagnetic metallic state emerges above the spin glass. This is coincident with changes of the unit cell, arrangement and connectivity of stripe conducting phase.

  20. Magnetoelasticity of Fe-Si single crystals

    SciTech Connect (OSTI)

    Xing, Q; Wu, D.; Lograsso, T. A.

    2010-04-20

    The tetragonal magnetostriction constant, (3/2){lambda}{sub 100}, of Fe-Si single crystals was measured and was found to be structure dependent. Similar to that of Fe-Ge single crystals, (3/2){lambda}{sub 100} is positive in the single phase A2 regime, becomes negative in the single phase D0{sub 3} regime, and changes from positive to negative between the two regimes. Short-range order in the A2 regime decreases the magnetostriction prior to the onset of long range order. In the single phase regions of both A2 and D0{sub 3}, thermal history does not show any obvious effect on the magnetostriction, contrary to that found for Fe-Ga alloys. However, in the regions of phase mixture involving A2, B2, and D0{sub 3} phases, quenching pushes the change in magnetostriction from positive to negative to higher Si contents.

  1. PPO Single

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    40,001 to 80,000 58.50 105.50 122.50 169.50 80,001 to 120,000* 63.50 113.50 132.50 182.50 More than 120,000 77.50 139.00 162.00 223.50 HDHP Single Adult +...

  2. PPO Single

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPO Single Adult + Children Two Adults Family Salary range less than or = $40,000 $53.50 $96.00 $112.00 $154.50 $40,001 to $80,000 $58.50 $105.50 $122.50 $169.50 $80,001 to $120,000* $63.50 $113.50 $132.50 $182.50 More than $120,000 $77.50 $139.00 $162.00 $223.50 HDHP Single Adult + Children Two Adults Family Salary range less than or = $40,000 $38.50 $69.00 $80.50 $111.00 $40,001 to $80,000 $42.50 $75.50 $88.50 $121.50 $80,001 to $120,000* $45.50 $81.00 $95.00 $131.00 More than $120,000 $55.50

  3. Phase-sensitive flow cytometer

    DOE Patents [OSTI]

    Steinkamp, John A.

    1993-01-01

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  4. Phase-sensitive flow cytometer

    DOE Patents [OSTI]

    Steinkamp, J.A.

    1993-12-14

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.

  5. ELECTRONIC PHASE CONTROL CIRCUIT

    DOE Patents [OSTI]

    Salisbury, J.D.; Klein, W.W.; Hansen, C.F.

    1959-04-21

    An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.

  6. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    SciTech Connect (OSTI)

    Wu, Chaoxing; Li, Fushan E-mail: gtl-fzu@hotmail.com; Wu, Wei; Chen, Wei; Guo, Tailiang E-mail: gtl-fzu@hotmail.com

    2014-12-15

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (?8 ?/?), high transmittance (?81% at 550?nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated.

  7. SPIDERS Phase III

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SPIDERS Phase III John Bothof Burns & McDonnell Definition The U.S. Department of Energy's official definition of a microgrid is "a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid [and can] connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode." Definition The U.S. Department of Energy's official definition of a

  8. Intercomparison of model simulations of mixed-phase clouds observed...

    Office of Scientific and Technical Information (OSTI)

    Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud Citation Details In-Document ...

  9. Phase II Final Report

    SciTech Connect (OSTI)

    Schuknecht, Nate; White, David; Hoste, Graeme

    2014-09-11

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  10. On-demand generation of aqueous two-phase microdroplets with...

    Office of Scientific and Technical Information (OSTI)

    Reversible phase transitions between single-phase, two-phase, and core-shell microgel states were obtained via evaporation-induced dehydration and on-demand water rehydration. In ...

  11. Microstructural Effects on Void Nucleation in Single-Phase Copper...

    Office of Scientific and Technical Information (OSTI)

    Authors: Lieberman, Evan 1 ; Lebensohn, Ricardo A. 1 ; Kober, Edward Martin 1 ; Rollett, Anthony 2 + Show Author Affiliations Los Alamos National Lab. (LANL), Los Alamos, ...

  12. Factors Affecting HCCI Combustion Phasing for Fuels with Single...

    Broader source: Energy.gov (indexed) [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Sandia National Laboratories 2004deerdec.pdf (185.71 KB) More Documents & Publications Microsoft PowerPoint ...

  13. ARM - Measurement - Hydrometeor phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Hydrometeor phase Hydrometeor phase such as liquid ice or mixed phase Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  14. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  15. NGNP PHASE I REVIEW

    Broader source: Energy.gov (indexed) [DOE]

    NGNP PHASE I REVIEW NEAC REACTOR TECHNOLOGY SUBCOMMITTEE CURRENT STATUS DECEMBER 9, 2010 EPACT 2005 REQUIREMENTS * FIRST PROJECT PHASE REVIEW-On a determination by the Secretary...

  16. CrowdPhase: crowdsourcing the phase problem

    SciTech Connect (OSTI)

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2014-06-01

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it

  17. Single Top Quark

    SciTech Connect (OSTI)

    Heidi Schellman and Ann Heinson

    2009-03-12

    Fermilab researchers Heidi Schellman and Ann Heinson take a whimsical look at the recent announcement of the discovery of the single top quark, by Fermilab's CDF and DZero experiments.

  18. Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity Single Cell Cavity This single cell cavity was made from a single crystal of niobium. Made in the same shape as the low-loss design proposed as an improvement to the baseline for the International Linear Collider (ILC), this cavity performs much better than the ILC design goal. Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity May 18, 2005 Jefferson Lab's Institute for Superconducting

  19. Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity Single Cell Cavity This single cell cavity was made from a single crystal of niobium. Made in the same shape as the low-loss design proposed as an improvement to the baseline for the International Linear Collider (ILC), this cavity performs much better than the ILC design goal. Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity Jefferson Lab's Institute for Superconducting Radiofrequency Science

  20. Single casing reheat turbine

    SciTech Connect (OSTI)

    Matsushima, Tatsuro; Nishimura, Shigeo

    1999-07-01

    For conventional power plants, regenerative reheat steam turbines have been accepted as the most practical method to meet the demand for efficient and economical power generation. Recently the application of reheat steam turbines for combined cycle power plant began according to the development of large-capacity high temperature gas turbine. The two casing double flow turbine has been applied for this size of reheat steam turbine. The single casing reheat turbine can offer economical and compact power plant. Through development of HP-LP combined rotor and long LP blading series, Mitsubishi Heavy Industries, Ltd. had developed a single casing reheat steam turbine series and began to use it in actual plants. Six units are already in operation and another seven units are under manufacturing. Multiple benefits of single casing reheat turbine are smaller space requirements, shorter construction and erection period, equally good performance, easier operation and maintenance, shorter overhaul period, smaller initial investment, lower transportation expense and so on. Furthermore, single exhaust steam turbine makes possible to apply axial exhaust type, which will lower the height of T/G foundation and T/G housing. The single casing reheat turbine has not only compact and economical configuration itself but also it can reduce the cost of civil construction. In this paper, major developments and design features of the single casing reheat turbine are briefly discussed and operating experience, line-up and technical consideration for performance improvement are presented.

  1. Single event mass spectrometry

    DOE Patents [OSTI]

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  2. Phase equilibria in the quasiternary system Ag{sub 2}S–Ga{sub 2}S{sub 3}–In{sub 2}S{sub 3} and optical properties of (Ga{sub 55}In{sub 45}){sub 2}S{sub 300}, (Ga{sub 54.59}In{sub 44.66}Er{sub 0.75}){sub 2}S{sub 300} single crystals

    SciTech Connect (OSTI)

    Ivashchenko, I.A.; Danyliuk, I.V.; Olekseyuk, I.D.; Pankevych, V.Z.; Halyan, V.V.

    2015-07-15

    The quasiternary system Ag{sub 2}S–Ga{sub 2}S{sub 3}–In{sub 2}S{sub 3} was investigated by differential thermal, X-ray diffraction analyses. The phase diagram of the Ga{sub 2}S{sub 3}–In{sub 2}S{sub 3} system and nine polythermal sections, isothermal section at 820 K and the liquidus surface projection were constructed. The existence of the large solid solutions ranges of binary and ternary compounds was established. The range of the existence of the quaternary phase AgGa{sub x}In{sub 5−x}S{sub 8} (2.25≤x≤2.85) at 820 K was determined. The single crystals (Ga{sub 55}In{sub 45}){sub 2}S{sub 300} and (Ga{sub 54.59}In{sub 44.66}Er{sub 0.75}){sub 2}S{sub 300} were grown by a directional crystallization method from solution-melt. Optical absorption spectra in the 500–1600 nm range were recorded. The luminescence of the (Ga{sub 54.59}In{sub 44.66}Er{sub 0.75}){sub 2}S{sub 300} single crystal shows a maximum at 1530 nm for the excitation wavelengths of 532 and 980 nm at 80 and 300 K. - Graphical abstract: Isothermal section of the quasiternary system Ag{sub 2}S–Ga{sub 2}S{sub 3}–In{sub 2}S{sub 3} at 820 K and normalized photoluminescence spectra of the single crystal (Ga{sub 54.59}In{sub 44.66}Er{sub 0.75}){sub 2}S{sub 300} at 300 K. - Highlights: • Isothermal section at 820 K, liquidus surface projection were built for Ag{sub 2}S–Ga{sub 2}S{sub 3}–In{sub 2}S{sub 3}. • Optical properties of single crystals were studied.

  3. In-line phase shift tomosynthesis

    SciTech Connect (OSTI)

    Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.; Donnelly, Edwin F.

    2013-08-15

    Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 1607416089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 ?m. The digital detector uses CsI/CMOS with a pixel size of 50 50 ?m. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a 25 arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (?1600 rad vs ?2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.

  4. Phase equilibria in the quasi-ternary system Ag{sub 2}Se–Ga{sub 2}Se{sub 3}–In{sub 2}Se{sub 3} and physical properties of (Ga{sub 0.6}In{sub 0.4}){sub 2}Se{sub 3}, (Ga{sub 0.594}In{sub 0.396}Er{sub 0.01}){sub 2}Se{sub 3} single crystals

    SciTech Connect (OSTI)

    Ivashchenko, I.A.; Danyliuk, I.V.; Olekseyuk, I.D.; Halyan, V.V.

    2014-02-15

    The quasi-ternary system Ag{sub 2}Se–Ga{sub 2}Se{sub 3}–In{sub 2}Se{sub 3} was investigated by differential thermal, X-ray phase, X-ray structure, microstructure analysis and microhardness measurements. Five quasi-binary phase diagrams, six polythermal sections, isothermal section at 820 K and the liquidus surface projection were constructed. The character and temperature of the invariant processes were determined. The specific resistance of the single crystals (Ga{sub 0.6}In{sub 0.4}){sub 2}Se{sub 3}, (Ga{sub 0.594}In{sub 0.396}Er{sub 0.01}){sub 2}Se{sub 3} was measured, 7.5×10{sup 5} and 3.15×10{sup 5} Ω m, respectively, optical absorption spectra in the 600–1050 nm range were recorded at room temperature, and the band gap energy was estimated which is 1.95±0. 01 eV for both samples. - Graphical abstract: The article reports for the first time the investigated liquidus surface projection of the Ag{sub 2}Se–Ga{sub 2}Se{sub 3}–In{sub 2}Se{sub 3} system and isothermal section at 820 K of the system. Five phase diagrams, six polythermal sections, isothermal section at 820 K and the liquidus surface projection were built at the first time. The existence of the large region of the solid solutions based on AgIn{sub 5}Se{sub 8}, Ga{sub 2}Se{sub 3} and AgGa{sub 1−x}In{sub x}Se{sub 2} was investigated. The existence of two ternary phases was established in the Ga{sub 2}Se{sub 3}–In{sub 2}Se{sub 3} system. Two single crystals (Ga{sub 0.6}In{sub 0.4}){sub 2}Se{sub 3}, (Ga{sub 0.594}In{sub 0.396}Er{sub 0.01}){sub 2}Se{sub 3} were grown and some of optical properties of them were studied at first time. Display Omitted - Highlights: • Liquidus surface projection was built for Ag{sub 2}Se–Ga{sub 2}Se{sub 3}–In{sub 2}Se{sub 3} system. • Solid solution ranges of AgIn{sub 5}Se{sub 8}, Ga{sub 2}Se{sub 3} and AgGa{sub 1−x}In{sub x}Se{sub 2} were investigated. • Two single crystals (Ga{sub 0.6}In{sub 0.4}){sub 2}Se{sub 3}, (Ga{sub 0.594}In{sub 0.396}Er

  5. Single-exciton nanocrystal laser

    DOE Patents [OSTI]

    Klimov, Victor I.; Ivanov, Sergei A.

    2012-01-17

    A laser system employing amplification via a single exciton regime and to optical gain media having single exciton amplification is provided.

  6. Digital quadrature phase detection

    DOE Patents [OSTI]

    Smith, James A.; Johnson, John A.

    1992-01-01

    A system for detecting the phase of a frequency of phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2.pi. when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2.pi. when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention.

  7. RACEE Phase 2 Documents

    Office of Energy Efficiency and Renewable Energy (EERE)

    In Phase 2 of the Remote Alaskan Communities Energy Efficiency (RACEE) Competition, the U.S. Department of Energy provided targeted technical assistance to up to 20 selected Community Efficiency Champions. The documents below are resources for Phase 2.

  8. Digital quadrature phase detection

    DOE Patents [OSTI]

    Smith, J.A.; Johnson, J.A.

    1992-05-26

    A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.

  9. Single Bunch Monopole Instability

    SciTech Connect (OSTI)

    Podobedov, B.; Heifets, S.; /SLAC

    2005-09-12

    We study single bunch stability with respect to monopole longitudinal oscillations in electron storage rings. Our analysis is different from the standard approach based on the linearized Vlasov equation. Rather, we reduce the full nonlinear Fokker-Planck equation to a Schroedinger-like equation which is subsequently analyzed by perturbation theory. We show that the Haissinski solution [3] may become unstable with respect to monopole oscillations and derive a stability criterion in terms of the ring impedance.

  10. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  11. Structures of two intermediate phases between the B1 and B2 phases of PbS under high pressure

    SciTech Connect (OSTI)

    Li, Yanchun E-mail: liuj@ihep.ac.cn; Lin, Chuanlong; Li, Xiaodong; Liu, Jing E-mail: liuj@ihep.ac.cn; Xu, Jian; Li, Gong

    2014-12-15

    The structural transitions of PbS were investigated at pressures up to 50 GPa using synchrotron powder and single crystal X-ray diffraction (XRD) methods in diamond anvil cells. We found two intermediate phases between the B1 phase under atmospheric pressure and the B2 phase at 21.1 GPa, which is different to previous reports. The structures of these two intermediate phases were indexed as B27 and B33, respectively. Their structural parameters were investigated using density functional theory (DFT) calculations. Our results provide a new insight into understanding the transition pathway between the B1 and B2 phases in PbS.

  12. Synthesis of alloys with controlled phase structure

    DOE Patents [OSTI]

    Guthrie, Stephen Everett; Thomas, George John; Bauer, Walter; Yang, Nancy Yuan Chi

    1999-04-20

    A method for preparing controlled phase alloys useful for engineering and hydrogen storage applications. This novel method avoids melting the constituents by employing vapor transport, in a hydrogen atmosphere, of an active metal constituent, having a high vapor pressure at temperatures .apprxeq.300 C. and its subsequent condensation on and reaction with the other constituent (substrate) of an alloy thereby forming a controlled phase alloy and preferably a single phase alloy. It is preferred that the substrate material be a metal powder such that diffusion of the active metal constituent, preferably magnesium, and reaction therewith can be completed within a reasonable time and at temperatures .apprxeq.300 C. thereby avoiding undesirable effects such as sintering, local compositional inhomogeneities, segregation, and formation of unwanted second phases such as intermetallic compounds.

  13. Synthesis of alloys with controlled phase structure

    DOE Patents [OSTI]

    Guthrie, S.E.; Thomas, G.J.; Bauer, W.; Yang, N.Y.C.

    1999-04-20

    A method is described for preparing controlled phase alloys useful for engineering and hydrogen storage applications. This novel method avoids melting the constituents by employing vapor transport, in a hydrogen atmosphere, of an active metal constituent, having a high vapor pressure at temperatures {approx_equal}300 C and its subsequent condensation on and reaction with the other constituent (substrate) of an alloy thereby forming a controlled phase alloy and preferably a single phase alloy. It is preferred that the substrate material be a metal powder such that diffusion of the active metal constituent, preferably magnesium, and reaction therewith can be completed within a reasonable time and at temperatures {approx_equal}300 C thereby avoiding undesirable effects such as sintering, local compositional inhomogeneities, segregation, and formation of unwanted second phases such as intermetallic compounds. 4 figs.

  14. Preliminary Phase Field Computational Model Development

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Xu, Ke; Suter, Jonathan D.; McCloy, John S.; Johnson, Bradley R.; Ramuhalli, Pradeep

    2014-12-15

    This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in

  15. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Two Phase Transitions Make a High-Temperature Superconductor Print Wednesday, 30 November 2011 00:00 Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally

  16. Method for thermal processing alumina-enriched spinel single crystals

    DOE Patents [OSTI]

    Jantzen, Carol M.

    1995-01-01

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

  17. Method for thermal processing alumina-enriched spinel single crystals

    DOE Patents [OSTI]

    Jantzen, C.M.

    1995-05-09

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.

  18. Phase-field Modeling of Displacive Phase Transformations in Elasticall...

    Office of Scientific and Technical Information (OSTI)

    Phase-field Modeling of Displacive Phase Transformations in Elastically Anisotropic and Inhomogeneous Polycrystals Citation Details In-Document Search Title: Phase-field Modeling...

  19. Quasi-single

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    single helicity spectra in the Madison Symmetric Torus L. Marrelli Consorzio RFX, Associazione EURATOM-ENEA per la fusione, Corso Stati Uniti, 4-35127 Padova, Italy P. Martin and G. Spizzo Consorzio RFX, Associazione EURATOM-ENEA per la fusione, Corso Stati Uniti, 4-35127 Padova, Italy and Istituto Nazionale di Fisica della Materia, UdR Padova, Italy P. Franz Consorzio RFX, Associazione EURATOM-ENEA per la fusione, Corso Stati Uniti, 4-35127 Padova, Italy B. E. Chapman, D. Craig, J. S. Sarff, T.

  20. Crystal phase identification

    DOE Patents [OSTI]

    Michael, Joseph R.; Goehner, Raymond P.; Schlienger, Max E.

    2001-01-01

    A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.

  1. Cori Phase II Preparations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcements » Cori Phase II Preparations Cori Phase II Preparations May 9, 2016 by Rebecca Hartman-Baker We expect the first cabinets of Cori Phase II to arrive in CRT/Wang Hall on the LBL campus in July. NERSC personnel will immediately get to work on bringing the machine into production. Before the machine can be released to the NERSC user community, a number of tasks must be completed, some of which will have a direct impact on NERSC users. We've created the Cori Phase II Schedule page to

  2. Cori Phase I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Phase 1 system provides approximately 750 GBsecond of IO performance and about 750TB of storage. > 12 logininteractive nodes SLURM workload manager Better support for ...

  3. Quantum phase transitions in Bose-Fermi systems

    SciTech Connect (OSTI)

    Petrellis, D.; Leviatan, A.; Iachello, F.

    2011-04-15

    Research Highlights: > We study quantum phase transitions in a system of N bosons and a single-j fermion. > Classical order parameters and correlation diagrams of quantum levels are determined. > The odd fermion strongly influences the location and nature of the phase transition. > Experimental evidence for the U(5)-SU(3) transition in odd-even nuclei is presented. - Abstract: Quantum phase transitions in a system of N bosons with angular momentum L = 0, 2 (s, d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.

  4. UPVG phase 2 report

    SciTech Connect (OSTI)

    1995-08-01

    The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG`s efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG`s Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative.

  5. Three phase AC motor controller

    DOE Patents [OSTI]

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  6. Transient liquid phase ceramic bonding

    DOE Patents [OSTI]

    Glaeser, Andreas M. (Berkeley, CA)

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  7. Growing intermetallic single crystals using in situ decanting

    SciTech Connect (OSTI)

    Petrovic, Cedomir; Canfield, Paul; Mellen, Jonathan

    2012-05-16

    High temperature metallic solution growth is one of the most successful and versatile methods for single crystal growth, and is particularly suited for exploratory synthesis. The method commonly utilizes a centrifuge at room temperature and is very successful for the synthesis of single crystal phases that can be decanted from the liquid below the melting point of the silica ampoule. In this paper, we demonstrate the extension of this method that enables single crystal growth and flux decanting inside the furnace at temperatures above 1200C. This not only extends the number of available metallic solvents that can be used in exploratory crystal growth but also can be particularly well suited for crystals that have a rather narrow exposed solidification surface in the equilibrium alloy phase diagram.

  8. Melt Processed Single Phase Hollandite Waste Forms For Nuclear Waste Immobilization: Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16}; A = Cr, Fe, Al

    SciTech Connect (OSTI)

    Brinkman, Kyle; Marra, James; Amoroso, Jake; Conradson, Steven D.; Tang, Ming

    2013-09-23

    Cs is one of the more problematic fission product radionuclides to immobilize due to its high volatility at elevated temperatures, ability to form water soluble compounds, and its mobility in many host materials. The hollandite structure is a promising crystalline host for Cs immobilization and has been traditionally fabricated by solid state sintering methods. This study presents the structure and performance of Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16}; A = Cr, Fe, Al hollandite fabricated by melt processing. Melt processing is considered advantageous given that melters are currently in use for High Level Waste (HLW) vitrification in several countries. This work details the impact of Cr additions that were demonstrated to i) promote the formation of a Cs containing hollandite phase and ii) maintain the stability of the hollandite phase in reducing conditions anticipated for multiphase waste form processing.

  9. FORGE Phase Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase Infographic FORGE Phase Infographic FORGE Phase Infographic More Documents & Publications FORGE Infographic FORGE Phase Infographic EERE Strategic Plan Infographic FORGE Phase Infographic Milford, Utah FORGE Map

  10. Dual echelon femtosecond single-shot spectroscopy

    SciTech Connect (OSTI)

    Shin, Taeho; Wolfson, Johanna W.; Teitelbaum, Samuel W.; Kandyla, Maria; Nelson, Keith A.

    2014-08-15

    We have developed a femtosecond single-shot spectroscopic technique to measure irreversible changes in condensed phase materials in real time. Crossed echelons generate a two-dimensional array of time-delayed pulses with one femtosecond probe pulse. This yields 9 ps of time-resolved data from a single laser shot, filling a gap in currently employed measurement methods. We can now monitor ultrafast irreversible dynamics in solid-state materials or other samples that cannot be flowed or replenished between laser shots, circumventing limitations of conventional pump-probe methods due to sample damage or product buildup. Despite the absence of signal-averaging in the single-shot measurement, an acceptable signal-to-noise level has been achieved via background and reference calibration procedures. Pump-induced changes in relative reflectivity as small as 0.2%?0.5% are demonstrated in semimetals, with both electronic and coherent phonon dynamics revealed by the data. The optical arrangement and the space-to-time conversion and calibration procedures necessary to achieve this level of operation are described. Sources of noise and approaches for dealing with them are discussed.

  11. PHYSICAL SCIENCES, Physics Phase

    Office of Scientific and Technical Information (OSTI)

    SCIENCES, Physics Phase competition in trisected superconducting dome I. M. Vishik, 1, 2 M Hashimoto, 3 R.-H. He, 4 W. S. Lee, 1, 2 F. Schmitt, 1, 2 D. H. Lu, 3 R. G. Moore, 1...

  12. Electron microscope phase enhancement

    DOE Patents [OSTI]

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  13. Computational prediction and characterization of single-layer CrS{sub 2}

    SciTech Connect (OSTI)

    Zhuang, Houlong L.; Blonsky, Michael N.; Hennig, Richard G.; Johannes, Michelle D.

    2014-01-13

    Using first-principles calculations, we predict a previously unreported bulk CrS{sub 2} phase that is stable against competing phases and a low energy dynamically stable single-layer CrS{sub 2} phase. We characterize the electronic, optical, and piezoelectric properties of this single-layer material. Like single-layer MoS{sub 2}, CrS{sub 2} has a direct bandgap and valley polarization. The optical bandgap of CrS{sub 2} is 1.3?eV, close to the ideal bandgap of 1.4?eV for photovoltaic applications. Applying compressive strain increases the bandgap and optical absorbance, transforming it into a promising photocatalyst for solar water splitting. Finally, we show that single-layer CrS{sub 2} possesses superior piezoelectric properties to single-layer MoS{sub 2}.

  14. Combustion 2000: Phase II

    SciTech Connect (OSTI)

    Unknown

    1999-11-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This Phase, Phase 2, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase 3. As part of a descoping initiative, the Phase 3 program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase 2 Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4,and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.1 HITAF Combustors; Task 2.2 HITAF Air Heaters; and Task 6 HIPPS Commercial Plant Design Update.

  15. Electrical heating of soils using high efficiency electrode patterns and power phases

    DOE Patents [OSTI]

    Buettner, Harley M.

    1999-01-01

    Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.

  16. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOE Patents [OSTI]

    Todt, Volker; Miller, Dean J.; Shi, Donglu; Sengupta, Suvankar

    1998-01-01

    A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.

  17. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  18. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  19. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  20. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  1. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  2. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  3. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  4. Non-Equilibrium Pathways during Electrochemical Phase Transformations in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution | Stanford Synchrotron Radiation Lightsource Non-Equilibrium Pathways during Electrochemical Phase Transformations in Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution Friday, February 27, 2015 The energy density of current batteries is limited by the practical capacity of the positive electrode, which is the determined by the properties of the active material and its concentration in the

  5. 2-Phase Fluid Flow & Heat Transport

    Energy Science and Technology Software Center (OSTI)

    1993-03-13

    GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmore » can simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.« less

  6. 2-Phase Fluid Flow & Heat Transport

    Energy Science and Technology Software Center (OSTI)

    1993-03-13

    GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmorecan simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.less

  7. Linear phase compressive filter

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  8. Linear phase compressive filter

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  9. Helical Phase Inflation and Monodromy in Supergravity Theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V.

    2015-01-01

    We smore » tudy helical phase inflation which realizes “monodromy inflation” in supergravity theory. In the model, inflation is driven by the phase component of a complex field whose potential possesses helicoid structure. We construct phase monodromy based on explicitly breaking global U ( 1 ) symmetry in the superpotential. By integrating out heavy fields, the phase monodromy from single complex scalar field is realized and the model fulfills natural inflation. The phase-axion alignment is achieved from explicitly symmetry breaking and gives super-Planckian phase decay constant. The F -term scalar potential provides strong field stabilization for all the scalars except inflaton, which is protected by the approximate global U ( 1 ) symmetry. Besides, we show that helical phase inflation can be naturally realized in no-scale supergravity with S U ( 2,1 ) / S U ( 2 ) × U ( 1 ) symmetry since the supergravity setup needed for phase monodromy is automatically provided in the no-scale Kähler potential. We also demonstrate that helical phase inflation can be reduced to another well-known supergravity inflation model with shift symmetry. Helical phase inflation is free from the UV-sensitivity problem although there is super-Planckian field excursion, and it suggests that inflation can be effectively studied based on supersymmetric field theory while a UV-completed framework is not prerequisite.« less

  10. Observation of a single spin by transferring its coherence to a high level macroscopic pure state

    SciTech Connect (OSTI)

    Kawamura, Minaru

    2014-12-04

    We discuss about quantum measurement of a single spin in a superconducting RF resonator, where amplification of coherence of the spin is enabled by transferring its coherence to the harmonic oscillator in an non-coherent state with high energy level. This quantum amplification allows that a single spin can induce macroscopic current to permits observation of a single spin state in the number and phase uncertainty relation.

  11. Growth of Sb-Bi gradient single crystals

    SciTech Connect (OSTI)

    Kozhemyakin, G. N. Lutskiy, D. V.; Rom, M. A.; Mateychenko, P. V.

    2008-12-15

    The growth conditions and structural quality of Sb-Bi gradient single crystals with Bi content from 2 to 18 at %, grown by the Czochralski method with solid phase feed, are investigated. Bi distribution in the crystals along their pulling direction are studied by electron probe microanalysis and the change in the interplanar spacing is analyzed by double-crystal X-ray diffraction. It is established that the pulling rate and feed mass affect the Bi distribution in Sb-Bi single crystals.

  12. Phase change compositions

    DOE Patents [OSTI]

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  13. Phase change compositions

    DOE Patents [OSTI]

    Salyer, Ival O.

    1989-01-01

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  14. DELTA PHASE PLUTONIUM ALLOYS

    DOE Patents [OSTI]

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  15. Phase contrast and operation regimes in multifrequency atomic force microscopy

    SciTech Connect (OSTI)

    Santos, Sergio

    2014-04-07

    In amplitude modulation atomic force microscopy the attractive and the repulsive force regimes induce phase shifts above and below 90°, respectively. In the more recent multifrequency approach, however, multiple operation regimes have been reported and the theory should be revisited. Here, a theory of phase contrast in multifrequency atomic force microscopy is developed and discussed in terms of energy transfer between modes, energy dissipation and the kinetic energy and energy transfer associated with externally driven harmonics. The single frequency virial that controls the phase shift might undergo transitions in sign while the average force (modal virial) remains positive (negative)

  16. Analysisi Benchmark of the Single Heater Test

    SciTech Connect (OSTI)

    H.M. Wade; H. Marr; M.J. Anderson

    2006-07-27

    The Single Heater Test (SHT) is the first of three in-situ thermal tests included in the site characterization program for the potential nuclear waste monitored geologic repository at Yucca Mountain. The heating phase of the SHT started in August 1996 and was concluded in May 1997 after 9 months of heating. Cooling continued until January 1998, at which time post-test characterization of the test block commenced. Numerous thermal, hydrological, mechanical, and chemical sensors monitored the coupled processes in the unsaturated fractured rock mass around the heater (CRWMS M&O 1999). The objective of this calculation is to benchmark a numerical simulation of the rock mass thermal behavior against the extensive data set that is available from the thermal test. The scope is limited to three-dimensional (3-D) numerical simulations of the computational domain of the Single Heater Test and surrounding rock mass. This calculation supports the waste package thermal design methodology, and is developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 0, ICN 3, BSCN 1, Calculations.

  17. Adiabatic two-phase frictional pressure drops in microchannels

    SciTech Connect (OSTI)

    Revellin, Remi; Thome, John R. [EPFL, STI ISE LTCM, ME Gl 464, Station 9, CH-1015 Lausanne (Switzerland)

    2007-07-15

    Two-phase pressure drops were measured over a wide range of experimental test conditions in two sizes of microchannels (sight glass tubes 0.509 and 0.790 mm) for two refrigerants (R-134a and R-245fa). Similar to the classic Moody diagram in single-phase flow, three zones were distinguishable when plotting the variation of the two-phase friction factor versus the two-phase Reynolds number: a laminar regime for Re{sub TP} < 2000, a transition regime for 2000 {<=} Re{sub TP} < 8000 and a turbulent regime for Re{sub TP} {>=} 8000. The laminar zone yields a much sharper gradient than in single-phase flow. The transition regime is not predicted well by any of the prediction methods for two-phase frictional pressure drops available in the literature. This is not unexpected since only a few data are available for this region in the literature and most methods ignore this regime, jumping directly from laminar to turbulent flow at Re{sub TP} = 2000. The turbulent zone is best predicted by the Mueller-Steinhagen and Heck correlation. Also, a new homogeneous two-phase frictional pressure drop has been proposed here with a limited range of application. (author)

  18. Single nanoparticle tracking spectroscopic microscope

    DOE Patents [OSTI]

    Yang, Haw; Cang, Hu; Xu, Cangshan; Wong, Chung M.

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  19. Operation Periods: Single Column Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled- down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve

  20. Optical phased arrays with evanescently-coupled antennas

    DOE Patents [OSTI]

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  1. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect (OSTI)

    Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.

    2009-08-26

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  2. Phase shifting diffraction interferometer

    DOE Patents [OSTI]

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  3. Phase shifting interferometer

    DOE Patents [OSTI]

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  4. Phase shifting diffraction interferometer

    DOE Patents [OSTI]

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  5. Phase shifting interferometer

    DOE Patents [OSTI]

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  6. Gas-Phase Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Diagnostics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  7. Solid phase extraction membrane

    DOE Patents [OSTI]

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  8. Phase Field Fracture Mechanics.

    SciTech Connect (OSTI)

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  9. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm

    SciTech Connect (OSTI)

    Cooke, Gary A.

    2015-03-09

    The Enclosure to this memo discusses the solid phase characterization of a solid sample that was retrieved from the single-shell Tank 241-C-111 extended reach sluicer #2. This sluicer, removed from riser #3 on September 25, 2014, was found to have approximately 0.4 gallons of solid tank waste adhering to the nozzle area.

  10. Two-phase convective CO2 dissolution in saline aquifers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  11. Single atom impurity in a single molecular transistor

    SciTech Connect (OSTI)

    Ray, S. J.

    2014-10-21

    The influence of an impurity atom on the electrostatic behaviour of a Single Molecular Transistor was investigated through Ab-initio calculations in a double-gated geometry. The charge stability diagram carries unique signature of the position of the impurity atom in such devices which together with the charging energy of the molecule could be utilised as an electronic fingerprint for the detection of such impurity states in a nano-electronic device. The two gated geometry allows additional control over the electrostatics as can be seen from the total energy surfaces (for a specific charge state), which is sensitive to the positions of the impurity. These devices which are operational at room temperature can provide significant advantages over the conventional silicon based single dopant devices functional at low temperature. The present approach could be a very powerful tool for the detection and control of individual impurity atoms in a single molecular device and for applications in future molecular electronics.

  12. Single Helix to Double Gyroid in Chiral Block Copolymers

    SciTech Connect (OSTI)

    C Chen; H Hsueh; Y Chiang; R Ho; S Akasaka; H Hasegawa

    2011-12-31

    An order-order phase transition of chiral block copolymers (BCPs*) from single helix to double gyroid (H* {yields} G) through a nucleation and growth process was demonstrated. The H* and G phases can be obtained by solution casting from fast and slow solvent evaporation, respectively, suggesting that the H* phase is a metastable phase. Consequently, the coexistence of H* and G phases can be found in the solution-cast samples from intermediate solvent evaporation. To truly examine the transition mechanism of the H* {yields} G, electron tomography was carried out to directly visualize the morphological evolution in real space, in particular, the transition zone at interface. Unlike the mechanisms for the transitions of block copolymers (BCPs) by considering the interdomain spacing matching, a significant mismatch in the lattices for the H* {yields} G was found. Consequently, the transition may require an adjustment on the geometric dimensions to justify corresponding lattice mismatch. As a result, the morphological observations from electron tomography offer new insights into BCP phase transitions.

  13. Fluid-elastic Instability of Helical Tubes Subjected to Single-Phase External Flow and Two-Phase Internal Flow

    SciTech Connect (OSTI)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2004-07-01

    This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)

  14. Compensation for phase mismatch of high harmonics by the group-velocity mismatch

    SciTech Connect (OSTI)

    Kulagin, I A; Kim, V V; Usmanov, T

    2011-09-30

    A mechanism providing an essential enhancement of the conversion efficiency of a single high harmonic in gaseous media is first proposed using an appropriate change in the phase mismatch and group-velocity mismatch in the vicinity of resonance.

  15. Phase-shifting point diffraction interferometer mask designs

    DOE Patents [OSTI]

    Goldberg, Kenneth Alan

    2001-01-01

    In a phase-shifting point diffraction interferometer, different image-plane mask designs can improve the operation of the interferometer. By keeping the test beam window of the mask small compared to the separation distance between the beams, the problem of energy from the reference beam leaking through the test beam window is reduced. By rotating the grating and mask 45.degree., only a single one-dimensional translation stage is required for phase-shifting. By keeping two reference pinholes in the same orientation about the test beam window, only a single grating orientation, and thus a single one-dimensional translation stage, is required. The use of a two-dimensional grating allows for a multiplicity of pinholes to be used about the pattern of diffracted orders of the grating at the mask. Orientation marks on the mask can be used to orient the device and indicate the position of the reference pinholes.

  16. Phase-field modeling of diffusional phase behaviors of solid...

    Office of Scientific and Technical Information (OSTI)

    case study of phase-separating LiXFePO4 electrode particles Citation Details In-Document ... case study of phase-separating LiXFePO4 electrode particles You are accessing a ...

  17. Process for phase separation

    DOE Patents [OSTI]

    Comolli, Alfred G.

    1979-01-01

    This invention provides a continuous process for separating a gaseous phase from a hydrocarbon liquid containing carbonaceous particulates and gases. The liquid is fed to a cylindrical separator, with the gaseous phase being removed therefrom as an overhead product, whereas the hydrocarbon liquid and the particulates are withdrawn as a bottoms product. By feeding the liquid tangentially to the separator and maintaining a particulate-liquid slurry downward velocity of from about 0.01 to about 0.25 fps in the separator, a total solids weight percent in the slurry of from about 0.1 to about 30%, a slurry temperature of from about 550.degree. to about 900.degree. F., a slurry residence time in the separator of from about 30 to about 360 seconds, and a length/diameter ratio for the separator of from about 20/1 to about 50/1, so that the characterization factor, .alpha., defined as ##STR1## DOES NOT EXCEED ABOUT 48 (.degree.R sec.sup.2)/ft, the deposit of carbonaceous materials on the interior surface of the separator may be substantially eliminated.

  18. Single Cystal Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Cystal Services We are a leader in the preparation of high-quality single crystals of rare earth and refractory metals and their alloys. High-purity single crystals of rare...

  19. Pseudo-Single-Bunch Expands Experimental Scope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pseudo-Single-Bunch Expands Experimental Scope Pseudo-Single-Bunch Expands Experimental Scope Print Wednesday, 25 September 2013 00:00 Initial tests of a new pseudo-single-bunch...

  20. Single element laser beam shaper

    DOE Patents [OSTI]

    Zhang, Shukui; Michelle D. Shinn

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  1. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns (CXIDB ID 20)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Starodub, D.

    2013-03-25

    This deposition includes the diffraction images generated by the paired polystyrene spheres in random orientations. These images were used to determine and phase the single particle diffraction volume from their autocorrelation functions.

  2. Press Pass - Press Release - Single top quark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphics and photos are available at: http:www.fnal.govpubpresspassimagesSingle-Top-Quark-2009.html Fermilab collider experiments discover rare single top quark Batavia, ...

  3. ARM - Midlatitude Continental Convective Clouds - Single Column...

    Office of Scientific and Technical Information (OSTI)

    - Single Column Model Forcing (xie-scmforcing) Title: ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scmforcing) The constrained variational ...

  4. Helical Nanofilament Phases

    SciTech Connect (OSTI)

    L Hough; H Jung; D Kruerke; M Heberling; M Nakata; C Jones; D Chen; D Link; N Clark; et al.

    2011-12-31

    In the formation of chiral crystals, the tendency for twist in the orientation of neighboring molecules is incompatible with ordering into a lattice: Twist is expelled from planar layers at the expense of local strain. We report the ordered state of a neat material in which a local chiral structure is expressed as twisted layers, a state made possible by spatial limitation of layering to a periodic array of nanoscale filaments. Although made of achiral molecules, the layers in these filaments are twisted and rigorously homochiral - a broken symmetry. The precise structural definition achieved in filament self-assembly enables collective organization into arrays in which an additional broken symmetry - the appearance of macroscopic coherence of the filament twist-produces a liquid crystal phase of helically precessing layers.

  5. A model for heterogeneous materials including phase transformations

    SciTech Connect (OSTI)

    Addessio, F.L.; Clements, B.E.; Williams, T.O.

    2005-04-15

    A model is developed for particulate composites, which includes phase transformations in one or all of the constituents. The model is an extension of the method of cells formalism. Representative simulations for a single-phase, brittle particulate (SiC) embedded in a ductile material (Ti), which undergoes a solid-solid phase transformation, are provided. Also, simulations for a tungsten heavy alloy (WHA) are included. In the WHA analyses a particulate composite, composed of tungsten particles embedded in a tungsten-iron-nickel alloy matrix, is modeled. A solid-liquid phase transformation of the matrix material is included in the WHA numerical calculations. The example problems also demonstrate two approaches for generating free energies for the material constituents. Simulations for volumetric compression, uniaxial strain, biaxial strain, and pure shear are used to demonstrate the versatility of the model.

  6. Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor

    SciTech Connect (OSTI)

    Baker, Kevin

    2015-12-08

    A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.

  7. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOE Patents [OSTI]

    Todt, V.; Miller, D.J.; Shi, D.; Sengupta, S.

    1998-07-07

    A method of fabricating bulk YBa{sub 2}Cu{sub 3}O{sub x} where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa{sub 2}Cu{sub 3}O{sub x} are heated in the presence of a Nd{sub 1+x}Ba{sub 2{minus}x}Cu{sub 3}O{sub y} seed crystal to a temperature sufficient to form a liquid phase in the YBa{sub 2}Cu{sub 3}O{sub x} while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa{sub 2}Cu{sub 3}O{sub x} material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material. 7 figs.

  8. A single-molecule approach to ZnO defect studies: Single photons and single defects

    SciTech Connect (OSTI)

    Jungwirth, N. R.; Pai, Y. Y.; Chang, H. S.; MacQuarrie, E. R.; Nguyen, K. X.; Fuchs, G. D.

    2014-07-28

    Investigations that probe defects one at a time offer a unique opportunity to observe properties and dynamics that are washed out of ensemble measurements. Here, we present confocal fluorescence measurements of individual defects in ZnO nanoparticles and sputtered films that are excited with sub-bandgap energy light. Photon correlation measurements yield both antibunching and bunching, indicative of single-photon emission from isolated defects that possess a metastable shelving state. The single-photon emission is in the range of ?560720?nm and typically exhibits two broad spectral peaks separated by ?150?meV. The excited state lifetimes range from 1 to 13?ns, consistent with the finite-size and surface effects of nanoparticles and small grains. We also observe discrete jumps in the fluorescence intensity between a bright state and a dark state. The dwell times in each state are exponentially distributed and the average dwell time in the bright (dark) state does (may) depend on the power of the exciting laser. Taken together, our measurements demonstrate the utility of a single-molecule approach to semiconductor defect studies and highlight ZnO as a potential host material for single-defect based applications.

  9. Single wire drift chamber design

    SciTech Connect (OSTI)

    Krider, J.

    1987-03-30

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 ..mu..m rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles.

  10. Single-bunch synchrotron shutter

    DOE Patents [OSTI]

    Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion

    1993-01-01

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.

  11. Single lens laser beam shaper

    DOE Patents [OSTI]

    Liu, Chuyu; Zhang, Shukui

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  12. Non-Aqueous Phase Liquid Calculator

    Energy Science and Technology Software Center (OSTI)

    2004-02-19

    Non-Aqueous Phase Liquid or "NPAL" is a term that most environmental professionals are familiar with because NAPL has been recognized in the literature as a significant source of groundwater contamination. There are two types of NAPL: DNAPL and LNAPL. DNAPL is a ‘dense’ non-aqueous phase liquid. In this context, dense means having a density greater than water (1.0 kg/L). Trichloroethylene (TCE) and tetrachioroethylene (PCE) are examples of DNAPL compounds. A compound that is heaver thanmore » water means this type of NAPL will sink in an aquifer. Conversely, LNAPL is a ‘light’ non-aqueous phase liquid with a density less than water, and will float on top of the aquifer. Examples of LNAPL’s are benzene and toluene. LNAPL or DNAPL often manifest as a complex, multi-component mixture of organic compounds that can occur in environmental media. Complex multi-component mixtures distributed in soil pore-air, pore-water, soil particles and in free phase complicate residual saturation of single and multi component NAPL compounds in soil samples. The model output also includes estimates of the NAPL mass and volume and other physical and chemical properties that may be useful for characterization, modeling, and remedial system design and operation. The discovery of NAPL in the aquifer usually leads to a focused characterization for possible sources of NAPL in the vadose zone using a variety of innovative technologies and characterization methods. Often, the analytical data will indicated the presence of NAPL, yet, the NAPL will go unrecognized. Failure to recognize the NAPL can be attributed to the complicated processes of inter-media transfer or a general lack of knowledge about the physical characteristics of complex organic mixtures in environmental samples.« less

  13. Single-fiber multi-color pyrometry

    DOE Patents [OSTI]

    Small, IV, Ward; Celliers, Peter

    2000-01-01

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  14. Single-fiber multi-color pyrometry

    DOE Patents [OSTI]

    Small, IV, Ward; Celliers, Peter

    2004-01-27

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  15. Phase-shifting point diffraction interferometer phase grating designs

    DOE Patents [OSTI]

    Naulleau, Patrick (Oakland, CA)

    2001-01-01

    Diffraction phase gratings are employed in phase-shifting point diffraction interferometers to improve the interferometric fringe contrast. The diffraction phase grating diffracts a zeroth-order diffraction of light at a first power level to the test-beam window of a mask that is positioned at the image plane and a first-order diffraction at a second power to the reference-beam pinhole. The diffraction phase grating is preferably selected to yield a desired ratio of the first power level to second power level.

  16. Interstitially stabilized phases in the zirconium-nickel system

    SciTech Connect (OSTI)

    MacKay, R.A.

    1993-07-01

    Addition of nonmetal interstitial atoms to Zr-Ni compounds has resulted in several new phases. A single-crystal x-ray study was carried out for Zr{sub 3}NiO. Zr{sub 4}Ni{sub 2}O is a high- temperature phase, forming in samples annealed at 1250 C. Huekel band calculations led to prediction and confirmation of additional phases in more electron rich systems. Other phases studied by XRD are Zr{sub 6}Ni{sub 4}Ti{sub 2}O{sub 0.6}, Nb{sub 6}Ni{sub 6}O, and Nb{sub 6}Ni{sub 4}Ta{sub 2}O{sub 2}. Phases identified by powder diffraction are Nb{sub 4}Ni{sub 2}O, Zr{sub 4}Cu{sub 2}O, and Zr{sub 6}Co{sub 4}Ti{sub 2}O. New Zr kappa phases in space group P6s{sub 3}/mmc were found: Zr{sub 9}Mo{sub 4}SO{sub x} and Zr{sub 9}W{sub 4}(S,Ni)O{sub 3}. A new structure type was discovered with Zr{sub 6}Ni{sub 6}TiSiO{sub 1.8}. In all these interstitially stabilized phases, O is coordinated in Zr octahedral; there are no Ni-O interactions.

  17. Epitaxial stabilization and phase instability of VO2 polymorphs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-20

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. Bymore » investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. In conclusion, our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.« less

  18. Solano Phase 3 | Open Energy Information

    Open Energy Info (EERE)

    Phase 3 Jump to: navigation, search Name Solano Phase 3 Facility Solano Phase 3 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento...

  19. Windy Flats Phase III | Open Energy Information

    Open Energy Info (EERE)

    Phase III Jump to: navigation, search Name Windy Flats Phase III Facility Windy Flats Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed...

  20. Cleveland Project Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase 2 Jump to: navigation, search Name Cleveland Project Phase 2 Facility Cleveland Project Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status...

  1. Tillamook Windfloat Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    Windfloat Phase 1 Jump to: navigation, search Name Tillamook Windfloat Phase 1 Facility Tillamook Windfloat Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status...

  2. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  3. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, Eduard

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  4. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOE Patents [OSTI]

    Muljadi, Eduard

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  5. Digitally controlled distributed phase shifter

    DOE Patents [OSTI]

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  6. Digitally controlled distributed phase shifter

    DOE Patents [OSTI]

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  7. Method for aqueous phase reactions

    DOE Patents [OSTI]

    Elliott, Douglas C.; Hart, Todd R.

    2000-01-01

    A method for converting liquid organic material in a mixture into a product utilizing a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  8. SINGLE HEATER TEST FINAL REPORT

    SciTech Connect (OSTI)

    J.B. Cho

    1999-05-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between

  9. Single crystalline mesoporous silicon nanowires

    SciTech Connect (OSTI)

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  10. Phase-locked loop with controlled phase slippage

    DOE Patents [OSTI]

    Mestha, L.K.

    1994-03-29

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency is described. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem. 10 figures.

  11. Phase-locked loop with controlled phase slippage

    DOE Patents [OSTI]

    Mestha, Lingappa K. (Cedar Hill, TX)

    1994-01-01

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem.

  12. Tailoring the physical properties of Ni-based single-phase equiatomic...

    Office of Scientific and Technical Information (OSTI)

    Authors: Jin, Ke 1 ; Sales, Brian C 1 ; Stocks, George Malcolm 1 ; Samolyuk, German D. 1 ; Daene, Markus 2 ; Weber, William J. 3 ; Zhang, Yanwen 3 ; Bei, Hongbin 1 ...

  13. Single-Phase, Turbulent Heat-Transfer Friction-Factor Data Base Flow Enhanced Tb

    Energy Science and Technology Software Center (OSTI)

    1994-01-21

    Heat-exchanger designers need to know what type of performance improvement can be obtained before they will consider enhanced tubes. In particular, they need access to the heat-transfer coefficients and friction-factor values of enhanced tube types that are commercially available. To compile these data from the numerous publications and reports in the open literature is a formidable task that can discourage the designer from using them. A computer program that contains a comprehensive data base withmore » a search feature would be a handy tool for the designer to obtain an estimate of the performance improvement that can be obtained with a particular enhanced tube geometry. In addition, it would be a valuable tool for researchers who are developing and/or validating new prediction methods. This computer program can be used to obtain friction-factor and/or heat-transfer data for a broad range of internally enhanced tube geometries with forced-convective turbulent flow. The program has search features; that is the user can select data for tubes with a particular enhancement geometry range or data obtained from a particular source or publication. The friction factor data base contains nearly 5,000 points and the heat-transfer data base contains more than 4,700 points. About 360 different tube geometries are included from the 36 different sources. Data for tubes with similar geometries and the same and/or different types can be easily extracted with the sort feature of this data base and compared. Users of the program are heat-exchanger designers, enhanced tubing suppliers, and research organizations or academia who are developing or validating prediction methods.« less

  14. Compact, Light-Weight, Single-Phase, Liquid-Cooled Cold Plate

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Compact, Light-Weight, Single-Phase, Liquid-Cooled Cold Plate

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. The miniCLEAN single-phase noble liquid dark mater experiment...

    Office of Scientific and Technical Information (OSTI)

    which observes scintillation light from a 150kg fiducial mass liquid argon target. This detector design strategy emphasizes scalability to target masses of order 10 tons or more. ...

  17. Single-Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Onar, Omer C; Miller, John M; Tang, Lixin

    2013-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance. To understand the power flow through the system this paper presents a novel approach to the system model and the impact of different control parameters on the load power. The implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation is also discussed.

  18. Self-excitation of a single-phase induction pulse-excited generator

    SciTech Connect (OSTI)

    Romanov, Y.A.; Sipaylov, G.A.

    1985-10-10

    The question of the power feed of electromagnets which require high reserves of reactive energy takes on great urgency with the development and creation of powerful accelerators of charged particles. Both a continuous- and pulsed-power feed of the apparatuses is possible. Both forms of power supply can be accomplished if the storage devices of reactive energy, capacitive banks or electrical machine apparatus are used. In the development of electric-machine energy storage devices with the use of synchronous and homopolar generators, attention began to be paid to the induction (asynchronous) machine. Investigations on the use of induction generators in pulsed systems for the charging of capacitors are being conducted; These experimental studies are indicative of the prospect of similar synthetic schemes. Use of the induction generator with a capacitive excitation as the source of high pulsed power is indicated, and the possibility of the complete conversion of kinetic energy of the rotating masses into electromagnetic energy during one pulse is examined.

  19. The miniCLEAN single-phase noble liquid dark mater experiment...

    Office of Scientific and Technical Information (OSTI)

    provide a unique test of the expected A squared dependence of the WIMP interaction rate. ... Language: English Subject: 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ARGON; DESIGN; ...

  20. Single-Phase Self-Oscillating Jets for Enhanced Heat Transfer: Preprint

    SciTech Connect (OSTI)

    Narumanchi, S.; Kelly, K.; Mihalic, M.; Gopalan, S.; Hester, R.; Vlahinos, A.

    2008-06-01

    Self-oscillating jets have potential to cool insulated gate bipolar transistors in vehicle power electronics modules.

  1. Numerical simulation of single-phase and multiphase non-Darcy...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2000-06-02 OSTI Identifier: 861175 Report Number(s): LBNL--45855 Journal ID: TPMEEI; R&D Project: G30301; BnR: EB4001000; TRN: US200601%%693 DOE Contract Number: ...

  2. Onset of chaos in a single-phase power electronic inverter

    SciTech Connect (OSTI)

    Avrutin, Viktor; Mosekilde, Erik; Zhusubaliyev, Zhanybai T.; Gardini, Laura

    2015-04-15

    Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map derived from a non-autonomous ordinary differential equation with discontinuous right-hand side. By construction, this stroboscopic map has a high number of border points. It is shown that the onset of chaos occurs stepwise, via irregular cascades of different border collisions, some of which lead to bifurcations while others do not.

  3. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  4. Two-phase uninterruptible power supply

    SciTech Connect (OSTI)

    Severinsky, A.J.; Rajagopalan, S.

    1991-12-24

    This patent describes a two-phase AC power supply. It comprises AC systems; connectors; electric currents; and phase shift.

  5. Three phase downhole separator process

    DOE Patents [OSTI]

    Cognata, Louis John (Baytown, TX)

    2008-06-24

    Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

  6. Phase stable RF transport system

    DOE Patents [OSTI]

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  7. Thermotropic Uniaxial and Biaxial Nematic and Smectic Phases in Bent-Core Mesogens

    SciTech Connect (OSTI)

    Prasad, Venna; Kang, Shin-Woong; Suresh, K.A.; Joshi, Leela; Wang, Qingbing; Kumar, Satyendra

    2010-07-20

    Two azo substituted achiral bent-core mesogens have been synthesized. Optical polarizing microscopy and synchrotron X-ray scattering studies of both compounds reveal the existence of the thermotropic uniaxial and biaxial nematic and three smectic phases at different temperatures in these single component small molecule systems. The transition from the uniaxial to biaxial nematic phase is confirmed to be second order. The transitions from the biaxial nematic to the underlying smectic phase and between the smectic phases have barely discernible heat capacity signatures and thus are also second order.

  8. Single-contact tunneling thermometry

    DOE Patents [OSTI]

    Maksymovych, Petro

    2016-02-23

    A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.

  9. Single System Image Cluster Management

    Energy Science and Technology Software Center (OSTI)

    2004-02-13

    Cluster computing has quickly proven itself to be a capable workhorse for a wide variety of production computing tasks; however, setting up and maintaining a cluster still requires significantly more effort than administrating just a single machine. As computing hardware descreases in price and cluster sizes grow, it is becoming increasingly important to manage clusters cleverly so that a system administration effort can "scale" as well. To ease the task of mananging many machines, administratorsmore » often deploy an environment that is homogeneous across all nodes of a cluster, and maintain a snapshot of the filesystem as a 'master image'. However due to operational, behavioral, and physical constraints, many nodes often require numerous deviations from the master image in order to operate as desired.« less

  10. Development of Counted Single Donor Devices using in-situ Single...

    Office of Scientific and Technical Information (OSTI)

    Development of Counted Single Donor Devices using in-situ Single Ion Detectors on the SNL NanoImplanter. Citation Details In-Document Search Title: Development of Counted Single ...