National Library of Energy BETA

Sample records for hepa high efficiency

  1. High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) DOE-STD-3020-2015 Specification for HEPA Filters Used by DOE Contractors The purpose of this standard is to establish specifications and quality assurance (QA) requirements for the procurement, packaging, shipping and storage of high efficiency particulate air (HEPA) filters. DOE-STD-3025-2007 Quality Assurance Inspection and Testing of HEPA

  2. ALTERNATE HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTRATION SYSTEM

    SciTech Connect (OSTI)

    Bruce Bishop; Robert Goldsmith; Karsten Nielsen; Phillip Paquette

    2002-08-16

    In Phase IIA of this project, CeraMem has further developed and scaled up ceramic HEPA filters that are appropriate for use on filtration of vent gas from HLW tanks at DOE sites around the country. This work included procuring recrystallized SiC monoliths, developing membrane and cement materials, and defining a manufacturing process for the production of prototype full sizes HEPA filters. CeraMem has demonstrated that prototype full size filters can be manufactured by producing 9 full size filters that passed DOP aerosol testing at the Oak Ridge Filter Test Facility. One of these filters was supplied to the Savannah River Technical Center (SRTC) for process tests using simulated HLW tank waste. SRTC has reported that the filter was regenerable (with some increase in pressure drop) and that the filter retained its HEPA retention capability. CeraMem has also developed a Regenerable HEPA Filter System (RHFS) design and acceptance test plan that was reviewed by DOE personnel. The design and acceptance test plan form the basis of the system proposal for follow-on work in Phase IIB of this project.

  3. Operating Experience Level 3, Update to Requalification Test Failure of Certain High Efficiency Particulate Air (HEPA) Filters

    Broader source: Energy.gov [DOE]

    Operating Experience Level 3 (OE-3) document provides information regarding the previous requalification test failure and subsequent successful requalification, of certain high efficiency particulate air (HEPA) Filters models manufactured by Flanders Corporation.

  4. Criteria for calculating the efficiency of HEPA filters during and after design basis accidents

    SciTech Connect (OSTI)

    Bergman, W.; First, M.W.; Anderson, W.L.; Gilbert, H.; Jacox, J.W.

    1994-12-01

    We have reviewed the literature on the performance of high efficiency particulate air (HEPA) filters under normal and abnormal conditions to establish criteria for calculating the efficiency of HEPA filters in a DOE nonreactor nuclear facility during and after a Design Basis Accident (DBA). The literature review included the performance of new filters and parameters that may cause deterioration in the filter performance such as filter age, radiation, corrosive chemicals, seismic and rough handling, high temperature, moisture, particle clogging, high air flow and pressure pulses. The deterioration of the filter efficiency depends on the exposure parameters; in severe exposure conditions the filter will be structurally damaged and have a residual efficiency of 0%. Despite the many studies on HEPA filter performance under adverse conditions, there are large gaps and limitations in the data that introduce significant error in the estimates of HEPA filter efficiencies under DBA conditions. Because of this limitation, conservative values of filter efficiency were chosen when there was insufficient data.

  5. HEPA filter dissolution process

    DOE Patents [OSTI]

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  6. Hepa filter dissolution process

    DOE Patents [OSTI]

    Brewer, Ken N. (Arco, ID); Murphy, James A. (Idaho Falls, ID)

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  7. Criteria for calculating the efficiency of deep-pleated HEPA filters with aluminum separators during and after design basis accidents

    SciTech Connect (OSTI)

    Bergman, W.; First, M.W.; Anderson, W.L.; Gilbert, H.; Jacox, J.W.

    1995-02-01

    The authors have reviewed the literature on the performance of high efficiency particulate air (HEPA) filters under normal and abnormal conditions to establish criteria for calculating the efficiency of HEPA filters in a DOE nonreactor nuclear facility during and after a Design Basis Accident (DBA). This study is only applicable to the standard deep-pleated HEPA filter with aluminum separators as specified in ASME N509. The literature review included the performance of new filters and parameters that may cause deterioration in the filter performance such as filter age, radiation, corrosive chemicals, seismic and rough handling, high temperature, moisture, particle clogging, high air flow and pressure pulses. The deterioration of the filter efficiency depends on the exposure parameters; in severe exposure conditions the filter will be structurally damaged and have a residual efficiency of 0%. Despite the many studies on HEPA filter performance under adverse conditions, there are large gaps and limitations in the data that introduce significant error in the estimates of HEPA filter efficiencies under DBA conditions. Because of this limitation, conservative values of filter efficiency were chosen when there was insufficient data.

  8. Water washable stainless steel HEPA filter

    DOE Patents [OSTI]

    Phillips, Terrance D.

    2001-01-01

    The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.

  9. Stabilization void-fill encapsulation high-efficiency particulate filters

    SciTech Connect (OSTI)

    Alexander, R.G.; Stewart, W.E.; Phillips, S.J.; Serkowski, M.M.; England, J.L.; Boynton, H.C.

    1994-05-01

    This report discusses high-efficiency particulate air (HEPA) filter systems that which are contaminated with radionuclides are part of the nuclear fuel processing systems conducted by the US Department of Energy (DOE) and require replacement and safe and efficient disposal for plant safety. Two K-3 HEPA filters were removed from service, placed burial boxes, buried, and safely and efficiently stabilized remotely which reduced radiation exposure to personnel and the environment.

  10. Indestructible Ultra-filtration: Ceramic HEPA Filters - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Indestructible Ultra-filtration: Ceramic HEPA Filters Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary High Efficiency Particulate Air (HEPA) filters are widely used commercial products to remove airborne particulates from a gas stream in a gas process system or ventilation system. Filter life span is

  11. Highly insulating Residential Windows Using Smart Automated Shading

    Energy Savers [EERE]

    Department of Energy High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) DOE-STD-3020-2015 Specification for HEPA Filters Used by DOE Contractors The purpose of this standard is to establish specifications and quality assurance (QA) requirements for the procurement, packaging, shipping and storage of high efficiency particulate air (HEPA) filters. DOE-STD-3025-2007 Quality Assurance Inspection and Testing of HEPA

  12. Technology development: HEPA filter service life test plan

    SciTech Connect (OSTI)

    Kirchner, K.N.; Cummings, K.G.; Leck, W.C.; Fretthold, J.K.

    1995-05-31

    Rocky Flats Environmental Technology Site (the Site) has approximately 10,000 High Efficiency Particulate Air (HEPA) Filters installed in a variety of filter plenums. These ventilation/filtration plenum systems are used to control the release of airborne particulate contaminates to the environment during normal operations and also during potential design-based accidents. The operational integrity of the HEPA filter plenums is essential to maintaining the margins of safety as required by building specific Final Safety Analysis Reports (FSARS) for protection of the public and environment. An Unreviewed Safety Question Determination (USQD), USDQ-RFP94.0615-ARS, was conducted in 1994 addressing the potential inadequacy of the safety envelope for Protected Area building HEPA plenums. While conducting this USQD, questions were raised concerning the maximum service life criteria for HEPA filters. Accident scenarios in existing FSARs identify conditions that could potentially cause plugging or damage of down stream HEPA filters as a result of impaction from failed filters. Additionally, available data indicates that HEPA filters experience structural degradation due to the effects of age. The Unresolved Safety Question (USQ) compensatory measures thus require testing and analysis of used HEPA filters in order to determine and implement service life criteria.

  13. Evaluation of HEPA filter service life

    SciTech Connect (OSTI)

    Fretthold, J.K.; Stithem, A.R.

    1997-07-14

    Rocky Flats Environmental Technology Site (RFETS), has approximately 10,000 High Efficiency Particulate Air (HEPA) Filters installed in a variety of filter plenums. These ventilation/filtration plenum systems are used to control the release of airborne particulate contaminates to the environment during normal operations and potential accidents. This report summarizes the results of destructive and non-destructive tests on HEPA filters obtained from a wide variety of ages and service conditions. These tests were performed to determine an acceptable service life criteria for HEPA filters used at Rocky Flats Environmental Technology Site (RFETS). A total of 140 filters of various ages (1972 to 1996) and service history (new, aged unused, used) were tested. For the purpose of this report, filter age from manufacture date/initial test date to the current sample date was used, as opposed to the actual time a filter was installed in an operating system.

  14. In-place HEPA filter penetration test

    SciTech Connect (OSTI)

    Bergman, W.; Wilson, kK.; Elliott, J.; Bettencourt, B.; Slawski, J.W.

    1997-01-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in- place penetration test is practical.

  15. Operating Experience Level 3, Laboratory Tests Indicate Conditions that Could Potentially Impact Certain Type of HEPA Filter Performance

    Broader source: Energy.gov [DOE]

    OE-3: 2013-02 This Operating Experience Summary provides new information on a potential performance issue associated with certain axial flow high efficiency particulate air (HEPA) filters that do not contain separators in the folded media (separatorless).

  16. Safety evaluation for packaging (onsite) for the Pacific Northwest National Laboratory HEPA filter box

    SciTech Connect (OSTI)

    McCoy, J.C.

    1998-07-15

    This safety evaluation for packaging (SEP) evaluates and documents the safe onsite transport of eight high-efficiency particulate air (HEPA) filters in the Pacific Northwest National Laboratory HEPA Filter Box from the 300 Area of the Hanford Site to the Central Waste Complex and on to burial in the 200 West Area. Use of this SEP is authorized for 1 year from the date of release.

  17. Potential for Hepa filter damage from water spray systems in filter plenums

    SciTech Connect (OSTI)

    Bergman, W.; Fretthold, J.K.; Slawsld, J.W.

    1997-01-01

    The water spray systems in high efficiency particulate air (HEPA) filter plenums that are used in nearly all Department of Energy (DOE) facilities for protection against fire was designed under the assumption that the HEPA filters would not be damaged by the water sprays. The most likely scenario for filter damage involves filter plugging by the water spray, followed by the fan blowing out the filter medium. A number of controlled laboratory tests that were previously conducted in the late 1980s are reviewed in this paper to provide a technical basis for the potential HEPA filter damage by the water spray system in HEPA filter plenums. In addition to the laboratory tests, the scenario for HEPA filter damage during fires has also occurred in the field. Afire in a four-stage, HEPA filter plenum at Rocky Flats in 1980 caused the first three stages of HEPA filters to blow out of their housing and the fourth stage to severely bow. Details of this recently declassified fire are presented in this paper. Although these previous findings suggest serious potential problems exist with the current water spray system in filter plenum , additional studies are required to confirm unequivocally that DOE`s critical facilities are at risk.

  18. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect (OSTI)

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.

  19. Further development of the cleanable steel HEPA filter, cost/benefit analysis, and comparison with competing technologies

    SciTech Connect (OSTI)

    Bergman, W.; Larsen, G.; Lopez, R.; Wilson, K.; Witherell, C.; McGregor, M.

    1997-01-01

    We have made further progress in developing a cleanable steel fiber HEPA filter. We fabricated a pleated cylindrical cartridge using commercially available steel fiber media that is made with 1 {mu}m stainless steel fibers and sintered into a sheet form. Test results at the Department of Energy (DOE) Filter Test Station at Oak Ridge show the prototype filter cartridge has 99.99% efficiency for 0.3 {mu}m dioctyl phthalate (DOP) aerosols and a pressure drop of 1.5 inches. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned using reverse air pulses. Our analysis of commercially optimized filters suggest that cleanable steel HEPA filters need to be made from steel fibers less than 1 {mu}m, and preferably 0.5 {mu}m, to meet the standard HEPA filter requirements in production units. We have demonstrated that 0.5 {mu}m steel fibers can be produced using the fiber bundling and drawing process. The 0.5 {mu}m steel fibers are then sintered into small filter samples and tested for efficiency and pressure drop. Test results on the sample showed a penetration of 0.0015% at 0.3 {mu}m and a pressure drop of 1.15 inches at 6.9 ft/min (3.5 cm/s) velocity. Based on these results, steel fiber media can easily meet the requirements of 0.03% penetration and 1.0 inch of pressure drop by using less fibers in the media. A cost analysis of the cleanable steel HEPA filter shows that, although the steel HEPA filter costs much more than the standard glass fiber HEPA filter, it has the potential to be very cost effective because of the high disposal costs of contaminated HEPA filters. We estimate that the steel HEPA filter will save an average of $16,000 over its 30 year life. The additional savings from the clean-up costs resulting from ruptured glass HEPA filters during accidents was not included but makes the steel HEPA filter even more cost effective. We also present the results of our evaluation of competing technologies with metallic and ceramic powder filters, ceramic fiber falters, and reinforced glass fiber filters. In general, the metallic and ceramic powder filters have pressure drops in excess of 25 inches of water for HEPA grade efficiencies and are therefore not viable candidates. The ceramic fiber filters cannot meet the HEPA efficiency because the fiber diameters are too large. The reinforced glass fiber filter is a promising candidate for the cleanable HEPA filter but requires additional development and testing to confirm its potential to be repeatedly cleaned. This report is based upon material extracted from a DOE technical review of the Mixed Waste Integrated Program and from the final report of a systems analysis of cleanable steel HEPA filters.

  20. Ceramic HEPA Filter Program

    SciTech Connect (OSTI)

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  1. HEPA filter encapsulation

    DOE Patents [OSTI]

    Gates-Anderson, Dianne D.; Kidd, Scott D.; Bowers, John S.; Attebery, Ronald W.

    2003-01-01

    A low viscosity resin is delivered into a spent HEPA filter or other waste. The resin is introduced into the filter or other waste using a vacuum to assist in the mass transfer of the resin through the filter media or other waste.

  2. HEPA filter fire (and subsequent unfiltered release)

    SciTech Connect (OSTI)

    Ryan, G.W., Westinghouse Hanford

    1996-08-12

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: HEPA Filter Failure - Exposure to High Temperature or Pressure. The calculations needed to quantify the risk associated with this accident scenario are included within.

  3. Improved HEPA Filter Technology for Flexible and Rigid Containment Barriers

    SciTech Connect (OSTI)

    P. A. Pinson

    1998-07-01

    Safety and reliability in glovebox operations can be significantly improved and waste packaging efficiencies can be increased by inserting flexible, lightweight, high capacity HEPA filters into the walls of plastic sheet barriers. This HEPA filter/barrier technology can be adapted to a wide variety of applications: disposable waste bags, protective environmental barriers for electronic equipment, single or multiple use glovebag assemblies, flexible glovebox wall elements, and room partitions. These reliable and inexpensive filtered barriers have many uses in fields such as radioactive waste processing, HVAC filter changeout, vapor or grit blasting, asbestos cleanup, pharmaceutical, medical, biological, and electronic equipment containment. The applications can result in significant cost savings, improved operational reliability and safety, and total waste volume reduction. This technology was developed at the Argonne National Laboratory-West (ANL-W) in 1993 and has been used at ANL-W since then at the TRU Waste Characterization Chamber Gloveboxes. Another 1998 AGS Conference paper titled "TRU Waste Characterization Gloveboxes", presented by Mr. David Duncan of ANL-W, describes these boxes.

  4. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  5. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B20 (biodiesel). (5) To further improve the brake thermal efficiency of the engine as integrated into the vehicle. To demonstrate robustness and commercial viability of the HECC engine technology as integrated into the vehicles. The Cummins HECC program supported the Advanced Combustion Engine R&D and Fuels Technology initiatives of the DoE Vehicle Technologies Multi-Year Program Plan (MYPP). In particular, the HECC project goals enabled the DoE Vehicle Technologies Program (VTP) to meet energy-efficiency improvement targets for advanced combustion engines suitable for passenger and commercial vehicles, as well as addressing technology barriers and R&D needs that are common between passenger and commercial vehicle applications of advanced combustion engines.

  6. Development and evaluation of a HEPA filter for increased strength and resistance to elevated temperature. Revision 1

    SciTech Connect (OSTI)

    Gilbert, H.; Bergman, W.; Fretthold, J.K.

    1993-01-01

    We have completed a preliminary study of an improved HEPA filter for increased strength and resistance to elevated temperature to improve the reliability of the standard deep pleated HEPA filter under accident conditions. The improvements to the HEPA filter consist of a silicone rubber sealant and a new HEPA medium reinforced with a glass cloth. Three prototype filters were built and evaluated for temperature and pressure resistance and resistance to rough handling. The temperature resistance test consisted of exposing the HEPA filter to 1,000 scan (1,700 m{sup 3}/hr) at 700{degrees}F (371{degrees}C) for five minutes.The pressure resistance test consisted of exposing the HEPA filter to a differential pressure of 10 in. w.g. (2.5 kPa) using a water saturated air flow at 95{degrees}F (35{degrees}C). For the rough handling test, we used a vibrating machine designated the Q110. DOP filter efficiency tests were performed before and after each of the environmental tests. In addition to following the standard practice of using a separate new filter for each environmental test, we also subjected the same filter to the elevated temperature test followed by the pressure resistance test. The efficiency test results show that the improved HEPA filter is significantly better than the standard HEPA filter. Further studies are recommended to evaluate the improved HEPA filter and to assess its performance under more severe accident conditions.

  7. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  8. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  9. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect (OSTI)

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.

  10. High-efficiency CARM

    SciTech Connect (OSTI)

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B.

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  11. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

  12. Computationally Efficient Modeling of High-Efficiency Clean Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion ...

  13. High Efficiency Recoil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Recoil Spectrometer for Superheavy Element Factory Super H eavy N uclei 2 015, C ollege S ta8on, T exas, M arch 3 1 - A pril 0 2, 2 015 G. Chubarian T exas A &M U niversity, C yclotron I ns7tute Signal / Noise Efficiency Super H eavy N uclei 2 015, C ollege S ta8on, T exas, M arch 3 1 - A pril 0 2, 2 015 Peter J . T win a nd F rancis B eck --- Eurogam P roject (late 8 0's) Signal Number of Events Energy Resolution Time Resolution Space Resolution etc. Noise Background Counts and

  14. High efficiency gas burner

    DOE Patents [OSTI]

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  15. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

  16. High efficiency and high concentration in photovoltaics

    SciTech Connect (OSTI)

    Yamaguchi, Masafumi; Luque, A.

    1999-10-01

    In this paper, the authors present the state-of-the-art of multijunction solar cells and the future prospects of this technology. Their use in terrestrial applications will likely be for concentrators operating at very high concentrations. Some trends are also discussed and the authors present a cost calculation showing that highly efficient cells under very high concentration would be able to produce electricity at costs competitive with electricity generation costs for some utilities.

  17. Enabling High Efficiency Ethanol Engines

    SciTech Connect (OSTI)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  18. Computationally Efficient Modeling of High-Efficiency Clean Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace012_flowers_2012_o.pdf More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development

  19. Highly Efficient Solar Thermochemical Reaction Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Efficient, Solar Thermochemical Reaction Systems (2014 R&D 100 Award Winner) U.S. ...andfuelcells.energy.gov HIGHLY EFFICIENT, SOLAR THERMOCHEMICAL REACTION SYSTEMS Robert S ...

  20. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have...

  1. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  2. High-efficiency photovoltaic cells

    DOE Patents [OSTI]

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  3. High efficiency laser spectrum conditioner

    DOE Patents [OSTI]

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  4. High efficiency shale oil recovery

    SciTech Connect (OSTI)

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  5. High efficiency turbine blade coatings.

    SciTech Connect (OSTI)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered periodic microstructures in the coating, the Direct Simulation Monte Carlo (DSMC) modeling of particle transport in the PVD plume, functional graded layer development, the deposition of all layers to form a complete coating, and materials characterization including thermal testing. Ion beam-assisted deposition, beam sharing through advanced digital rastering, substrate pivoting, hearth calorimetry, infrared imaging, fiber optic-enabled optical emission spectroscopy and careful thermal management were used to achieve all the milestones outlined in the FY02 LDRD proposal.

  6. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  7. Webinar: Highly Efficient Solar Thermochemical Reaction Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highly Efficient Solar Thermochemical Reaction Systems Webinar: Highly Efficient Solar Thermochemical Reaction Systems Below is the text version of the webinar titled "Highly Efficient Solar Thermochemical Reaction Systems," originally presented on January 13, 2015. In addition to this text version of the audio, you can access the presentation slides. Amit Talapatra: Hello, everyone, and thanks for joining today's webinar. Today's webinar is being recorded, so

  8. Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Highly Efficient Solar Thermochemical Reaction Systems" held on January 13, 2015.

  9. Efficient high density train operations

    DOE Patents [OSTI]

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  10. Promising Technology: High-Efficiency Rooftop Units

    Broader source: Energy.gov [DOE]

    High-efficiency rooftop air conditioning units (RTUs) can significantly reduce heating, cooling, and ventilation energy consumption. High efficiency RTUs incorporate variable speed controls to minimize fan and compressor energy while capturing and reusing heat, cold, and humidity from a building’s exhaust air.

  11. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect (OSTI)

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  12. Advanced CFD Models for High Efficiency Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CFD Models for High Efficiency Compression Ignition Engines Advanced CFD Models for High Efficiency Compression Ignition Engines Advanced CFD models for high efficiency ...

  13. Computationally Efficient Modeling of High-Efficiency Clean Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace012_aceves_2011_o.pdf More Documents & Publications Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC Improved Solvers for Advanced Engine Combustion Simulation

  14. Liberty Utilities Iowa High Efficiency Equipment Rebate

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers a rebate to its Iowa residential and small business customers for the purchase of high efficiency ENERGY STAR natural gas home heating and water heating equipment....

  15. Webinar: Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

  16. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations ...

  17. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  18. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  19. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  20. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  1. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  2. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  3. Nanostructured Thermoelectric Materials and High Efficiency Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Modules | Energy Frontier Research Centers Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007 Abstract: For thermoelectric applications, the best materials have high electrical conductivity and thermopower and, simultaneously, low thermal conductivity. Such a combination of properties is usually found in heavily doped semiconductors. Renewed interest in this

  4. Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Building Energy ... Return to Search Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs ... gaps will lead to efficient power conversion. ...

  5. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  6. DOE-STD-3022-98; DOE Standard DOE HEPA Filter Test Program

    Energy Savers [EERE]

    DOE STANDARD DOE HEPA FILTER TEST PROGRAM U.S. Department of Energy FSC 4460 Washington, ... predecessor, entitled "Operating Policy of DOE HEPA Filter Test Programs" (NE F 3-42). ...

  7. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect (OSTI)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  8. Electrical and Thermal Transport Optimization of High Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Work on ...

  9. Department of Energy Lauds Highly Efficient Industrial Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year ...

  10. Technology and System Level Demonstration of Highly Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean, ...

  11. Band Alignment Engineering in Highly Efficient Planar Perovskite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Band Alignment Engineering in Highly Efficient Planar Perovskite Solar Cells* September ... In this study, I show a low-temperature process for producing highly efficient planar ...

  12. Materials-Enabled High-Efficiency Diesel Engines (CRADA with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA ... More Documents & Publications Materials-Enabled High-Efficiency Diesel Engines ...

  13. Progress toward Development of a High-Efficiency Zonal Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

  14. Tailored Materials for High Efficiency CIDI Engines (Caterpillar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency CIDI Engines (Caterpillar CRADA) Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  15. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to design ...

  16. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air ...

  17. Los Alamos develops new technique for growing high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technique for growing high-efficiency perovskite ... growth of highly efficient and reproducible solar cells from large-area ... clean global energy solutions for the ...

  18. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  19. Enabling High Efficiency Ethanol Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  20. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine...

  1. White LED with High Package Extraction Efficiency (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: White LED with High Package Extraction Efficiency Citation Details In-Document Search Title: White LED with High Package Extraction Efficiency The goal of this ...

  2. Challenging Conventional Wisdom: A Clean and Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston Two-Stroke Engine Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston ...

  3. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant ...

  4. Technology Development for High Efficiency Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deer09stanton.pdf More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency...

  5. Novel Materials for High Efficiency Direct Methanol Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for High Efficiency Direct Methanol Fuel Cells Novel Materials for High Efficiency Direct Methanol Fuel Cells Presented at the Department of Energy Fuel Cell Projects ...

  6. Integrated Solar Thermochemical Reaction System for High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of ...

  7. 2008 Annual Merit Review Results Summary - 8. High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8. High Efficiency Clean Combustion and Enabling Technologies 2008 Annual Merit Review Results Summary - 8. High Efficiency Clean Combustion and Enabling Technologies DOE Vehicle...

  8. Selective ammonia slip catalyst enabling highly efficient NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    slip catalyst enabling highly efficient NOx removal requirements of the future Selective ammonia slip catalyst enabling highly efficient NOx removal requirements of the future A ...

  9. Transmural Catalysis - High Efficiency Catalyst Systems for NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation ...

  10. Developments in High Efficiency Engine Technologies and an Introductio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Developments in High Efficiency Engine Technologies and an Introduction to...

  11. Energy Efficiency Opportunities in Federal High Performance Computing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study describes...

  12. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect (OSTI)

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of thousands of hours of LED operation. Once the LED phosphor lifetime specifications are met, these nanocrystals will enable white LEDs for solid state lighting to simultaneously have increased efficiency and improved light quality, in addition to enabling the creation of custom light spectrums. These improvements to white LEDs will help accelerate the adoption of SSL, leading to large savings in US and worldwide energy costs.

  13. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect (OSTI)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  14. White LED with High Package Extraction Efficiency

    Office of Scientific and Technical Information (OSTI)

    WHITE LED WITH HIGH PACKAGE EXTRACTION EFFICIENCY Final Report Report Period Start Date: 10/01/2006 Report Period End Date: 09/30/2008 Authors: Yi Zheng and Matthew Stough Report Submission Date: November 2008 DOE Award Number: DE-FC26-06NT42935 Project Manager: Ryan Egidi OSRAM SYLVANIA Product Inc Central Research and Service Laboratory 71 Cherry Hill Dr., Beverly, MA 01915 2 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.

  15. High Efficiency Microturbine with Integral Heat Recovery

    SciTech Connect (OSTI)

    2010-10-01

    Fact sheet: this project will develop a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency.

  16. Thermal Strategies for High Efficiency Thermoelectric Power Generation

    Broader source: Energy.gov [DOE]

    Developing integrated TE system configurations that can achieve high heat exchange effectiveness and thus, high TE system efficiency

  17. Charge Trapping in High Efficiency Alternating Copolymers: Implications in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaic Device Efficiency | ANSER Center | Argonne-Northwestern National Laboratory Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency Home > Research > ANSER Research Highlights > Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency

  18. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect (OSTI)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temperature, color rendering and luminous efficacy) while keeping the properties of the underlying blue OLED constant. The success of the downconversion approach is ultimately based upon the ability to produce efficient emission in the blue. Table 1 presents a comparison of the current performance of the conjugated polymer, dye-doped polymer, and dendrimer approaches to making a solution-processed blue OLED as 2006. Also given is the published state of the art performance of a vapor-deposited blue OLED. One can see that all the approaches to a blue OLED give approximately the same external quantum efficiency at 500 cd/m{sup 2}. However, due to its low operating voltage, the fluorescent conjugated polymer approach yields a superior power efficiency at the same brightness.

  19. DOE FACT SHEET: Transition to High Efficiency Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE FACT SHEET: Transition to High Efficiency Space Heating Overview The City of Seattle ... in spring of 2015 of advanced efficient space heating options available for commercial ...

  20. Unregulated Emissions from High-Efficiency Clean Combustion Modes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). ...

  1. High-Efficiency Multijunction Photovoltaics | Center for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high photovoltaic energy conversion efficiencies. This goal requires development of new techniques for the efficient ... design of multijunction cells, yielding a very rich ...

  2. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

  3. High efficiency Brayton cycles using LNG

    DOE Patents [OSTI]

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  4. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect (OSTI)

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in. deep that showed significant grain refinement and homogeneous microstructures favorable to increased fracture toughness and fatigue performance. The final tasks of the project demonstrated that the FSP concept can be applied to a relevant part geometry by fabricating diesel piston crowns with FSP regions applied selectively to the edge of the bowl rim. This area of the piston typically suffers from conditions at high PCP that cause severe thermal fatigue issues. It is expected that, given the data from coupon testing, the durability of pistons modified by FSP will allow much higher fatigue lifetime and potentially also greater resistance to elevated stress-level effects on fatigue.

  5. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiencies. This makes them attractive candidates for producing green chemical feedstocks and biofuels, particularly oil-based aviation fuels. However, there...

  6. High-Efficiency Engine Technologies Session Introduction

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  7. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Broader source: Energy.gov (indexed) [DOE]

    targeted 'Solar Cogeneration' technologies to maximize energy generation & energy efficiency from the building's solar insolation resources. Project presents a novel, low-cost...

  8. High efficiency, radiation-hard solar cells

    SciTech Connect (OSTI)

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  9. Excitons in Highly Efficient Organic Devices | MIT-Harvard Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excitons in Highly Efficient Organic Devices November 29, 2012 at 3pm36-428 Karl Leo ... In this talk, I will discuss some of the recent progress on highly efficient OLED and ...

  10. Development of High-Efficiency Clean Combustion Engines Designs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle...

  11. High-efficiency Low Global-Warming Potential (GWP) Compressor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to demonstrate a high-efficiency compressor design that is critical to enabling low direct-GWP high-efficiency small-commercial rooftop and residential systems (1.5 TR to 10 TR). ...

  12. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell ...

  13. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for...

  14. High Efficiency Multiple-Junction Solar Cells

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-03-19

    Single junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific spectral region. Higher efficiency and optical to electrical energy conversion is achieved by stacking semiconductor p-n junction layers to capture energy from all spectral regions. ...

  15. Energy Efficiency Opportunities in Federal High Performance Computing Data Centers

    Broader source: Energy.gov [DOE]

    Case study describes an outline of energy efficiency opportunities in federal high-performance computing data centers.

  16. High Efficiency Organic Light Emitting Devices for Lighting

    SciTech Connect (OSTI)

    So, Franky; Tansu, Nelson; Gilchrist, James

    2013-06-30

    Incorporate internal scattering layers and microlens arrays in high efficiency OLED to achieve up to 70% EQE.

  17. High Engine Efficiency at 2010 Emissions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Achieving High Efficiency at 2010 Emissions Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Technology Development for High ...

  18. High Efficiency Driving Electronics for General Illumination LED Luminaires

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: High Efficiency Driving Electronics for General Illumination LED Luminaires Citation Details In-Document Search Title: High Efficiency Driving Electronics for General Illumination LED Luminaires New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (≥90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in

  19. High Efficiency Multiple-Junction Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect High Efficiency Driving Electronics for General Illumination LED Luminaires Citation Details In-Document Search Title: High Efficiency Driving Electronics for General Illumination LED Luminaires New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (≥90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in millions of units). And these products are very

  20. Technology Development for High Efficiency Clean Diesel Engines and a

    Broader source: Energy.gov (indexed) [DOE]

    Pathway to 50% Thermal Efficiency | Department of Energy Cost reduction is a key area of emphasis for the Cummins 2nd Generation ORC WHR System. PDF icon deer09_stanton.pdf More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency Clean Combustion

  1. Vehicle Technologies Office Merit Review 2015: High-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency High-Density GaN-Based 6.6kW Bidirectional On-Board Charger for PEVs Vehicle Technologies Office Merit Review 2015: High-Efficiency High-Density GaN-Based 6.6kW ...

  2. Energy efficiency indicators for high electric-load buildings

    SciTech Connect (OSTI)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  3. High Efficiency Solar Fuels Reactor Concept | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Capstone Turbine Corporation, in collaboration with Oak Ridge National Laboratory and NASA Glenn Research Center, is developing a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency. The microturbine technology will maximize usable exhaust energy and achieve ultra-low emissions levels. PDF icon High Efficiency Microturbine with Integral Heat Recovery More Documents & Publications High Efficiency Microturbine

  4. High Temperature Electrolysis for Efficient Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Electrolysis Project History and Background * INL served as the lead ... technology for continued development toward early deployment (based on the ...

  5. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract: For thermoelectric applications, the best materials have high electrical conductivity and thermopower and, simultaneously, low thermal conductivity. Such a combination...

  6. Vehicle Technologies Office: Materials for High-Efficiency Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve the efficiency of advanced internal combustion engines for automotive, light trucks, and heavy-truck applications by 25% to 50%. However, many of these combustion strategies require high operating temperatures and pressures that exceed current materials' abilities to reliably operate

  7. New methods for tightly regulated gene expression and highly efficient

    Office of Scientific and Technical Information (OSTI)

    chromosomal integration of cloned genes for Methanosarcina species (Journal Article) | SciTech Connect New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species Citation Details In-Document Search Title: New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species A highly efficient method for chromosomal integration of cloned DNA into

  8. Enabling High Efficiency Ethanol Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_12_wagner.pdf More Documents & Publications Ignition Control for HCCI High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines Expanding Robust HCCI Operation (Delphi CRADA)

  9. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Meeting arravt081vssnewhouse2012o.pdf More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8...

  10. Highly Efficient, Scalable Microbial Fuel Cell - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Highly Efficient, ...

  11. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  12. Development of Enabling Technologies for High Efficiency, Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  13. High Efficiency Combustion and Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Controls High Efficiency Combustion and Controls 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010...

  14. Evaluation of High Efficiency Clean Combustion (HECC) Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of High Efficiency Clean Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Presentation given at DEER 2006, August 20-24, 2006, ...

  15. High Efficiency Microturbine with Integral Heat Recovery - Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 Presentation on ...

  16. Achieving High Efficiency at 2010 Emissions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon 2006deernelson.pdf More Documents & Publications High Engine Efficiency at 2010 Emissions Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Exhaust ...

  17. Simulation of High Efficiency Clean Combustion Engines and Detailed...

    Broader source: Energy.gov (indexed) [DOE]

    ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance PDF icon ...

  18. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Broader source: Energy.gov (indexed) [DOE]

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Impact of Variable Valve Timing on Low Temperature Combustion Multicylinder Diesel Engine Design for ...

  19. High-Efficiency Commercial Cold Climate Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Commercial Cold Climate Heat Pump 2014 Building Technologies Office Peer ... performance cold climate commercial heat pump system 2) Execute a Technology Readiness ...

  20. Enabling High Efficiency Clean Combustion with Micro-Variable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel Injector and Adaptive PCCI Enabling High Efficiency Clean Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel ...

  1. High-Efficiency Rooftop Air Conditioners: Innovative Procurement...

    Office of Scientific and Technical Information (OSTI)

    Advances in Technology Citation Details In-Document Search Title: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology The U.S. ...

  2. Los Alamos develops new technique for growing high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos develops new technique for growing high-efficiency perovskite solar cells Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 ...

  3. Greensburg Implements High-Efficiency Building Codes to Achieve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term Energy Savings ... would sustain the local economy for the long term, the city began working with ...

  4. Project Profile: High-Efficiency Thermal Energy Storage System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: High-Efficiency Thermal Energy Storage ... partner Ohio Aerospace Institute, under the National ... the capital costs. Publications, Patents, and Awards At ...

  5. High Efficiency Engine Systems Development and Evaluation | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace017_briggs_2011_o.pdf More Documents & Publications Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones Identification and Evaluation of Near-term Opportunities for Efficiency Improvement High Efficiency Engine Systems Development and Evaluation

  6. Enabling High Efficiency Clean Combustion | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    9 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_40_stanton.pdf More Documents & Publications Advanced Diesel Engine Technology Development for HECC Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Light Duty Efficient Clean Combustion

  7. A Natural Gas, High Compression Ratio, High Efficiency ICRE

    Broader source: Energy.gov [DOE]

    Using natural gas and gasoline modeling, indications are that a free piston-floating stroke engine configuration can realize engine efficiency greater than 60 percent.

  8. High Efficiency Cold Climate Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Problem Statement: * Typical HPs don't work well at low ambient temps due to very high discharge temp and pressure ratio * HP heating capacity not sufficient to match ...

  9. High Efficiency Cold Climate Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Problem Statement: 1. Typical HPs don't work well at low ambient temps due to very high discharge temp and pressure ratio 2. HP heating capacity not sufficient to match ...

  10. Specification for HEPA Filters Used By DOE Contractors

    Energy Savers [EERE]

    DOE-STD-3020-2005 December 2005 Supersedes DOE-STD-3020-97 January 1997 DOE TECHNICAL STANDARD Specification for HEPA Filters Used by DOE Contractors U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited FOREWARD This U.S. Department of Energy (DOE) standard supersedes DOE-STD-3020-97 and is approved for use by DOE and its contractors. This standard was developed primarily for application in DOE programs. It

  11. Specification for HEPA Filters Used by DOE Contractors

    Energy Savers [EERE]

    3020-2015 June 2015 Supersedes DOE-STD-3020-2005 December 2005 DOE TECHNICAL STANDARD Specification for HEPA Filters Used by DOE Contractors U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-3020-2015 i This document is available on the Department of Energy Technical Standards Program Web page at http://www.energy.gov/ehss/services/nuclear-safety/department-energy-technical-standards- program

  12. Method of treating contaminated HEPA filter media in pulp process

    DOE Patents [OSTI]

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  13. Compact and highly efficient laser pump cavity

    DOE Patents [OSTI]

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  14. Developments in High Efficiency Engine Technologies and an Introduction to

    Broader source: Energy.gov (indexed) [DOE]

    SwRI's Dedicated EGR Concept | Department of Energy Provides overview of high efficiency engine technologies and introduces a dedicated exhaust gas recirculation concept where EGR production and gas stream is separate from the rest of the exhaust2012-11-06 PDF icon deer12_alger.pdf More Documents & Publications SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in

  15. Preliminary studies to determine the shelf life of HEPA filters

    SciTech Connect (OSTI)

    Gilbert, H.; Fretthold, J.K.; Rainer, F.; Bergman, W.; Beason, D.

    1994-07-18

    We have completed a preliminary study using filter media tests and filter qualification tests to investigate the effect of shelf-life on HEPA filter performance. Our media studies showed that the tensile strength decreased with age, but the data were not sufficient to establish a shelf-life. Thermogravimetric analyses demonstrated that one manufacturer had media with low tensile strength due to insufficient binder. The filter qualification tests (heated air and overpressure) conducted on different aged filters showed that filter age is not the primary factor affecting filter performance; materials and the construction design have a greater effect. An unexpected finding of our study was that sub-standard HEPA filters have been installed in DOE facilities despite existing regulations and filter qualification tests. We found that the filter with low tensile strength failed the overpressure test. The same filter had passed the heated air test, but left the filter so structurally weak, it was prone to blowout. We recommend that DOE initiate a filter qualification program to prevent this occurrence.

  16. City of High Point Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of High Point offers the Hometown Green Program to help customers reduce energy use. Under this program, rebates are available for newly constructed energy efficient homes, heat pumps, and...

  17. Webinar January 13: Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

  18. High Efficiency Clean Combustion for Heavy-Duty Engine | Department...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon deer09zhang.pdf More Documents & Publications Heavy Truck Engine Development & HECC High Efficiency Clean Combustion for Heavy-Duty Engine Heavy-Duty Engine Combustion ...

  19. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon deer07zhang.pdf More Documents & Publications High Efficiency Clean Combustion for Heavy-Duty Engine Heavy Truck Engine Development & HECC A Micro-Variable Circular ...

  20. Path to High Efficiency Gasoline Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Partially Premixed Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Advanced Lean-Burn DI ...

  1. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  2. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012. progressreportsunshotbraytonfy12q4.pdf More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1...

  3. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  4. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve

    Office of Scientific and Technical Information (OSTI)

    Advances in Technology (Journal Article) | SciTech Connect Journal Article: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology Citation Details In-Document Search Title: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of

  5. High-Efficiency Window Air Conditioners - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air conditioning unit in place in a window frame. Window air conditioners are inexpensive, portable, and can be installed by home occupants, making them a good solution for spot cooling and for installing air conditioning into homes that lack ductwork. However, window air conditioners have low

  6. Field Demonstration of High Efficiency Gas Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Demonstration of High Efficiency Gas Heaters Field Demonstration of High Efficiency Gas Heaters For many buildings that do not require space cooling, non-centralized equipment such as unit heaters provide space heating to building occupants. Unit heaters are a major source of energy use nationally, accounting for nearly 18% of primary space heating energy use for commercial buildings, and most prominently appear in warehouses, distribution centers, loading docks, etc. Several

  7. Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar

    Office of Scientific and Technical Information (OSTI)

    Cells based on Transparent Conducting Oxides (Journal Article) | SciTech Connect Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides Citation Details In-Document Search Title: Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides We describe the design, fabrication and results of passivated contacts to n-type silicon utilizing thin SiO2 and transparent conducting

  8. High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_35_patton.pdf More Documents & Publications High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Expanding Robust HCCI Operation (Delphi CRADA)

  9. Polycrystalline silicon passivated tunneling contacts for high efficiency

    Office of Scientific and Technical Information (OSTI)

    silicon solar cells (Journal Article) | SciTech Connect Journal Article: Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells Citation Details In-Document Search Title: Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells Authors: Nemeth, Bill ; Young, David L. ; Page, Matthew R. ; LaSalvia, Vincenzo ; Johnston, Steve ; Reedy, Robert ; Stradins, Paul Publication Date: 2016-03-01 OSTI Identifier: 1247961 Report

  10. Advanced CFD Models for High Efficiency Compression Ignition Engines |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion. PDF icon p-19_raja.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems Advanced Combustion Modeling with STAR-CD using Transient Flemelet Models: TIF and TPV Numerical Modeling of PCCI Combustion

  11. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Broader source: Energy.gov [DOE]

    This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Brayton Energy, aims to develop and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle engines have the potential to increase conversion efficiency to more than 50%. This high conversion efficiency drives down the cost of the supporting solar field, tower, and thermal storage systems, which could significantly reduce the lifetime costs of a CSP system to achieve the SunShot goal.

  12. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have recently developed more efficient microalgae. March 25, 2013 Shown here is a model for light absorption and use by algae as a function of antenna size. Shown here is a model for light absorption and use by algae as a function of antenna size. The team's work in this area is reported in a paper

  13. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have recently developed more efficient microalgae. March 25, 2013 Shown here is a model for light absorption and use by algae as a function of antenna size. Shown here is a model for light absorption and use by algae as a function of antenna size. The team's work in this area is reported in a paper

  14. Modeling and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE

    Broader source: Energy.gov [DOE]

    performance of a high compression ratio (32:1 to 74:1) high efficiency (50 to 60% BTE) ICRE operating on natural gas and gasoline

  15. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  16. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect (OSTI)

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  17. DOE FACT SHEET: Transition to High Efficiency Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE FACT SHEET: Transition to High Efficiency Space Heating Overview The City of Seattle was recognized as a Climate Action Champion (CAC) by The White House and the Department of Energy (DOE) in December 2014. In 2015, DOE released a Notice of Technical Assistance (NOTA) to provide CACs with additional opportunities for financial and technical assistance to support and advance their greenhouse gas emissions reduction and climate resilience objectives. DOE's Office of Energy Efficiency and

  18. LBNL High-Tech Buildings Energy Efficiency Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNL High-tech Buildings Energy Efficiency Activities August 14, 2007 Dale Sartor & Bill Tschudi LBNL High LBNL High - - tech Building tech Building Sponsors Sponsors „ „ California Energy Commission California Energy Commission - - PIER program PIER program „ „ Pacific Gas and Electric Company Pacific Gas and Electric Company „ „ New York State Energy and Development New York State Energy and Development Agency (NYSERDA) Agency (NYSERDA) „ „ US US - - Environmental Protection Agency

  19. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  20. Investigation of beat-waves generation with high efficiency

    SciTech Connect (OSTI)

    Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G.

    2013-10-21

    A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.

  1. Evaluation of High Efficiency Clean Combustion (HECC) Strategies for

    Broader source: Energy.gov (indexed) [DOE]

    Meeting Future Emissions Regulations in Light-Duty Engines | Department of Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_wagner.pdf More Documents & Publications Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Measurement and Characterization of

  2. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect (OSTI)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantums then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel systems performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of smart tanks that could monitor health of tank thus allowing for lower design safety factor, and the development of Cool Fuel technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  3. High extraction efficiency ultraviolet light-emitting diode

    DOE Patents [OSTI]

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  4. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    SciTech Connect (OSTI)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  5. High-quantum efficiency, long-lived luminescing refractory oxides

    DOE Patents [OSTI]

    Chen, Y.; Gonzalez, R.; Summers, G.P.

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.

  6. High-quantum efficiency, long-lived luminescing refractory oxides

    DOE Patents [OSTI]

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  7. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect (OSTI)

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  8. Combustion Targets for Low Emissions and High Efficiency | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_ryan.pdf More Documents & Publications Diesel Engine Alternatives An Experimental Investigation of Low Octane Gasoline in Diesel Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines

  9. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect (OSTI)

    Guha, S. )

    1991-12-01

    This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

  10. Ultra-Compact High-Efficiency Luminaire for General Illumination

    SciTech Connect (OSTI)

    Ted Lowes

    2012-04-08

    Cree has developed a new ultra-compact light emitting diode (LED) luminaire capable of providing high efficacy with excellent color quality that can lead to significant energy savings in today??s commercial and retail applications. This success was based on an integrated development effort tailoring the LED component characteristics, optics, thermal management and driver design for the small footprint to achieve an overall system efficiency of ? 70%. A new LED component was designed to provide high brightness and efficacy in a form factor that allowed for a small directional beam with a luminaire housing design able to dissipate the heat effectively using a small physical envelope. A very compact, 90% efficient driver was developed to meet the system performance while not taking away any thermal mass from the heat sink. A 91% efficient secondary optics was designed to maximize efficiency while providing a smooth beam. The reliability of the new LED component was robust under accelerated testing conditions. Luminaires were assembled integrating the novel LED component, secondary optics, heat sink and driver technology to demonstrate the system improvement. Cree has successfully completed this project by developing an ultra-compact LED luminaire that provided 380 lumens at a correlated color temperature (CCT) of 2822 K and color rendering index (CRI) of 94 with an efficacy of 94 lumens per watt (LPW) when operating at 4 W input power (steady state) with an overall system efficiency of 81%. At a higher input power of 9 Watts, the lamp provided 658 lumens at 71 LPW.

  11. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect (OSTI)

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  12. A Perspective on the Future of High Efficiency Engines

    SciTech Connect (OSTI)

    Wagner, Robert M; Curran, Scott; Green Jr, Johney Boyd

    2013-01-01

    New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

  13. High Quality Down Lighting Luminaire with 73% Overall System Efficiency

    SciTech Connect (OSTI)

    Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

    2010-08-31

    This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion <10%. Two styles of downlights using the LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

  14. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    SciTech Connect (OSTI)

    Read, Michael; Ives, Robert Lawrence

    2014-03-26

    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  15. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect (OSTI)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  16. High-efficiency solar cell and method for fabrication

    DOE Patents [OSTI]

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  17. High-efficiency solar cell and method for fabrication

    DOE Patents [OSTI]

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  18. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect (OSTI)

    De Wolf, S.; Geissbuehler, J.; Loper, P.; Martin de Nicholas, S.; Seif, J.; Tomasi, A.; Ballif, C.

    2015-05-11

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The validity of this approach was convincingly demonstrated by Panasonic, Japan in 2014, reporting on an interdigitated back-contacted HJT cell with an efficiency of 25.6%, setting the new single-junction c-Si record. Finally, given the virtually perfect surface passivation and excellent red response of HJT solar cells, we anticipate these devices will also become the preferred bottom cell in ultra-high efficiency c-Si-based tandem devices, exploiting better the solar spectrum. Such tandem cells have the potential to overcome the fundamental single-junction limit of silicon solar cells (29.4%). Combining HJT cells with perovskite solar cells as top cell appears to be particularly appealing.

  19. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect (OSTI)

    De Wolf, S.

    2015-04-27

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The validity of this approach was convincingly demonstrated by Panasonic, Japan in 2014, reporting on an interdigitated back-contacted HJT cell with an efficiency of 25.6%, setting the new single-junction c-Si record. Finally, given the virtually perfect surface passivation and excellent red response of HJT solar cells, we anticipate these devices will also become the preferred bottom cell in ultra-high efficiency c-Si-based tandem devices, exploiting better the solar spectrum. Such tandem cells have the potential to overcome the fundamental single-junction limit of silicon solar cells (29.4%). Combining HJT cells with perovskite solar cells as top cell appears to be particularly appealing.

  20. Modelling and fabrication of high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    Rohatgi, A.; Smith, A.W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

  1. Blanket options for high-efficiency fusion power

    SciTech Connect (OSTI)

    Usher, J L; Lazareth, O W; Fillo, J A; Horn, F L; Powell, J R

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500/sup 0/C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO/sub 2/ interior (cooled by argon) utilizing Li/sub 2/O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230/sup 0/C leading to an overall efficiency estimate of 55 to 60% for this reference case.

  2. High resolution PET breast imager with improved detection efficiency

    DOE Patents [OSTI]

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  3. High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices

    SciTech Connect (OSTI)

    Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

    2005-01-01

    Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

  4. Highly Efficient Multigap Solar Cell Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Efficient Multigap Solar Cell Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Yu, K. M., Walukeiwicz, W., Wu J., Shan, W., Beeman, J. W., Scarpulla, M. A., Dubon, O. D., Becla, P. "Diluted II-VI Oxide Semiconductors with Multiple Band Gaps," Physical Review Letters, Vo. 91, No. 24, Dec. 12, 2003. (178 KB) Technology Marketing Summary Scientists at Berkeley Lab have invented multiband gap semiconducting

  5. OSRAM SYLVANIA Develops High-Efficiency LED Troffer Replacement

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, OSRAM SYLVANIA is developing a high-efficiency LED 2'x2' troffer replacement that is expected to be commercially available in the spring of 2012 and to be cost-competitive with existing troffers of that size. It is projected to have a light output of up to 4,000 lumens, an efficacy of more than 100 lm/W, and a CCT of 3500K.

  6. Recent Progress in the Development of High Efficiency Thermoelectrics |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy PDF icon 2003_deer_bass.pdf More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of Si/Si0.8GE0.2 and B4C/B9C Superlattices for Harvesting of Waste Heat in Diesel Engines

  7. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect (OSTI)

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  8. High-Efficiency Absorber for Damping the Transverse Wake Fields

    SciTech Connect (OSTI)

    Novokhatski, A.; Seeman, J.; Weathersby, S.; /SLAC

    2007-02-28

    Transverse wake fields generated by intense beams may propagate long distances in the vacuum chamber and dissipate power in different shielded elements such as bellows, vacuum valves or vacuum pumps. Induced heating in these elements may be high enough to deteriorate vacuum conditions. We have developed a broadband water-cooled bellows-absorber to capture and damp these harmful transverse fields without impacting the longitudinal beam impedance. Experimental results at the PEP-II SLAC B-factory demonstrate high efficiency of this device. This absorber may be useful in other machines like synchrotron light sources or International Linear Collider.

  9. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells ...

  10. NASA's Marshall Space Flight Center Saves Water with High-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and Urinal Program NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and ...

  11. Synergies of High-Efficiency Clean Combustion and Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts investigation of potential ...

  12. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect (OSTI)

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  13. Challenging Conventional Wisdom: A Clean and Highly Efficient

    Broader source: Energy.gov (indexed) [DOE]

    Opposed-Piston Two-Stroke Engine | Department of Energy Measured indicated TE values of an opposed-piston, two-stroke engine are all near or exceeding 50%fuel; engine-out emissions levels are well within range, with modern aftertreatment systems, of 2010 EPA levels. PDF icon p-11_wahl.pdf More Documents & Publications The Opposed-Piston Two-Stroke Engine Alternative: Performance and Emissions Results in a Medium-Duty Application Two-Stroke Engines: New Frontier in Engine Efficiency High

  14. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  15. Analysis of highly-efficient electric residential HPWHs

    SciTech Connect (OSTI)

    Baxter, Van D; Murphy, Richard W; Rice, C Keith; Shen, Bo; Gao, Zhiming

    2011-09-01

    A scoping level analysis was conducted to identify electric HPWH concepts that have the potential to achieve or exceed 30% source energy savings compared to a gas tankless water heater (GTWH) representative of the type represented in version 0.9.5.2 beta of the BEopt software developed by the National Renewable Energy Laboratory. The analysis was limited to evaluation of options to improve the energy efficiency of electric HPWH product designs currently on the market in the US. The report first defines the baseline GTWH system and determines its efficiency (source-energy-based adjusted or derated EF of ~0.71). High efficiency components (compressors, pumps, fans, heat exchangers, etc.) were identified and applied to current US HPWH products and analyzed to determine the viability of reaching the target EF. The target site-based energy factor (EF) required for an electric HPWH necessary to provide 30% source energy savings compared to the GTWH baseline unit is then determined to be ~3.19.

  16. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficiency and cost, from the high-temperature capabilities of advanced nuclear reactors. The more promising cycles were then analyzed in depth as to their adaptability to advanced high-temperature nuclear reactors. As a result, the Sulfur-Iodine (S-I) cycle was selected for integration into the advanced nuclear reactor system. In Phases 2 and 3, alternative flowsheets were developed and compared. This effort entailed a considerable effort into developing the solution thermodynamics pertinent to the S-I cycle.

  17. High Efficiency Microturbine with Integral Heat Recovery- Fact Sheet, 2014

    Broader source: Energy.gov [DOE]

    Fact sheet: this project will develop a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency

  18. Design of Bulk Nanocomposites as High Efficiency Thermoelectric...

    Office of Science (SC) Website

    that more efficiently convert heat to electricity. Research Details Thermoelectric materials directly generate electrical power from heat, but suffer from low efficiency, ...

  19. High-Efficiency Deflection of High-Energy Protons through Axial Channeling

    Office of Scientific and Technical Information (OSTI)

    in a Bent Crystal (Journal Article) | SciTech Connect High-Efficiency Deflection of High-Energy Protons through Axial Channeling in a Bent Crystal Citation Details In-Document Search Title: High-Efficiency Deflection of High-Energy Protons through Axial Channeling in a Bent Crystal Beam deflection due to axial channeling in a silicon crystal bent along the <111> axis was observed with 400 GeV/c protons at the CERN Super Proton Synchrotron. The condition for doughnut scattering of

  20. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

  1. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  2. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect (OSTI)

    2011-01-31

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well-to-wheels analysis of the energy flows in a mobile vehicle system and a 2nd Law thermodynamic analysis of the engine system were also completed under this program.

  3. Technology Development for Light Duty High Efficient Diesel Engines

    Broader source: Energy.gov [DOE]

    Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization.

  4. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  5. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  6. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  7. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  8. Highly Efficient Small Form Factor LED Retrofit Lamp

    SciTech Connect (OSTI)

    Steven Allen; Fred Palmer; Ming Li

    2011-09-11

    This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

  9. Efficient binning for bitmap indices on high-cardinality attributes

    SciTech Connect (OSTI)

    Rotem, Doron; Stockinger, Kurt; Wu, Kesheng

    2004-11-17

    Bitmap indexing is a common technique for indexing high-dimensional data in data warehouses and scientific applications. Though efficient for low-cardinality attributes, query processing can be rather costly for high-cardinality attributes due to the large storage requirements for the bitmap indices. Binning is a common technique for reducing storage costs of bitmap indices. This technique partitions the attribute values into a number of ranges, called bins, and uses bitmap vectors to represent bins (attribute ranges) rather than distinct values. Although binning may reduce storage costs, it may increase the access costs of queries that do not fall on exact bin boundaries (edge bins). For this kind of queries the original data values associated with edge bins must be accessed, in order to check them against the query constraints.In this paper we study the problem of finding optimal locations for the bin boundaries in order to minimize these access costs subject to storage constraints. We propose a dynamic programming algorithm for optimal partitioning of attribute values into bins that takes into account query access patterns as well as data distribution statistics. Mathematical analysis and experiments on real life data sets show that the optimal partitioning achieved by this algorithm can lead to a significant improvement in the access costs of bitmap indexing systems for high-cardinality attributes.

  10. High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management Higher-Efficiency...

  11. High Efficiency Clean Combustion for Heavy-Duty Engine

    Broader source: Energy.gov [DOE]

    Innovative dual mode combustion strategy enabled by variable fuel injection offers emission reduction and efficiency improvement advantages.

  12. High Efficiency Engine Systems Development and Evaluation | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace017_edwards_2012_o.pdf More Documents & Publications Defining engine efficiency limits Identification and Evaluation of Near-term Opportunities for Efficiency Improvement Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones

  13. High-efficiency photovoltaics based on semiconductor nanostructures

    SciTech Connect (OSTI)

    Yu, Paul K.L.; Yu, Edward T.; Wang, Deli

    2011-10-31

    The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

  14. Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics

    SciTech Connect (OSTI)

    Murray, Ian P.; Lou, Sylvia J.; Cote, Laura J.; Loser, Stephen; Kadleck, Cameron J.; Xu, Tao; Szarko, Jodi M.; Rolczynski, Brian S.; Johns, James E.; Huang, Jiaxing; Yu, Luping; Chen, Lin X.; Marks, Tobin J.; Hersam, Mark C.

    2012-02-07

    Organic photovoltaic (OPV) materials have recently garnered significant attention as enablers of high power conversion efficiency (PCE), low-cost, mechanically flexible solar cells. Nevertheless, further understanding-based materials developments will be required to achieve full commercial viability. In particular, the performance and durability of many current generation OPVs are limited by poorly understood interfacial phenomena. Careful analysis of typical OPV architectures reveals that the standard electron-blocking layer, poly-3,4-ethylenedioxy-thiophene:poly(styrene sulfonate) (PEDOT:PSS), is likely a major factor limiting the device durability and possibly performance. Here we report that a single layer of electronically tuned graphene oxide is an effective replacement for PEDOT:PSS and that it significantly enhances device durability while concurrently templating a performance-optimal active layer {pi}-stacked face-on microstructure. Such OPVs based on graphene oxide exhibit PCEs as high as 7.5% while providing a 5x enhancement in thermal aging lifetime and a 20x enhancement in humid ambient lifetime versus analogous PEDOT:PSS-based devices.

  15. Designing and optimizing highly efficient grating for high-brightness laser based on spectral beam combining

    SciTech Connect (OSTI)

    Yang, Ying-Ying E-mail: yangyy@semi.ac.cn; Zhao, Ya-Ping; Wang, Li-Rong; Zhang, Ling; Lin, Xue-Chun E-mail: yangyy@semi.ac.cn

    2015-03-14

    A highly efficient nano-periodical grating is theoretically investigated for spectral beam combining (SBC) and is experimentally implemented for attaining high-brightness laser from a diode laser array. The rigorous coupled-wave analysis with the S matrix method is employed to optimize the parameters of the grating. According the optimized parameters, the grating is fabricated and plays a key role in SBC cavity. The diffraction efficiency of this grating is optimized to 95% for the output laser which is emitted from the diode laser array. The beam parameter product of 3.8 mm mrad of the diode laser array after SBC is achieved at the output power of 46.3 W. The optical-to-optical efficiency of SBC cavity is measured to be 93.5% at the maximum operating current in the experiment.

  16. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally, the transient demonstration was performed in Phase IV. The project demonstrated the achievement of meeting US10 emissions without NOx aftertreatment. The successful execution of the project has served to highlight the effectiveness of closely matched combustion predictive tools to engine testing. It has further served to highlight the importance of key technologies and future areas of research and development. In this regard, recommendations are made towards further improvements in the areas of engine hardware, fuel injection systems, controls and fuels.

  17. High Efficiency Microturbine Leads to Increased Market Share

    Broader source: Energy.gov [DOE]

    EERE-supported microturbine research and development for a device that increased electrical efficiency of the unit from about 17%-22% to 33%.

  18. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brayton Energy's supercritical carbon dioxide (s-CO 2 ) solar receiver has the potential to significantly improve reliability, increase efficiency, and reduce costs of CSP systems. ...

  19. High Efficiency Microturbine Leads to Increased Market Share...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    supported microturbine research and development for a combined heat and power system that led to the commercialization of that product. Capstone increased electrical efficiency of...

  20. EERE Success Story-High Efficiency Microturbine Leads to Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manufacturing jobs and enhance the global competitiveness of the United States. The Office of Energy Efficiency and Renewable Energy (EERE) success stories highlight the ...

  1. Missouri Gas Energy (MGE)- Residential High Efficiency Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Missouri Gas Energy (MGE), a division of Laclede Gas Company, offers various rebates to residential customers for investing in energy efficient equipment and appliances. All individually metered...

  2. High Efficiency Motors for Refrigerated Open Display Cases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Distinctive Characteristics: Q-Sync obtains the efficiency advantages of permanent magnets without the losses associated with continual power conversions from ECM designs. 5 Real ...

  3. Field Demonstration of High-Efficiency Ultra-Low-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Alliance Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy By: Rebecca Legett, Navigant Consulting, Inc....

  4. High Efficient Clean Combustion for SuperTruck

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  5. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identify a technical and business approach to accelerate the deployment of light-duty automotive TE HVAC technology, maintain occupant comfort, and improve energy efficiency. PDF ...

  6. CdTe portfolio offers commercial ready high efficiency solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The combination of low cost and increasing efficiencies have ... both by radio frequency sputtering at ambient temperature. ... telluride, and heat treatment to convert the cadmium ...

  7. Carrier Selective, Passivated Contacts for High Efficiency Silicon...

    Office of Scientific and Technical Information (OSTI)

    Research Org: National Renewable Energy Lab. (NREL), Golden, CO (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies ...

  8. Carrier Selective, Passivated Contacts for High Efficiency Silicon...

    Office of Scientific and Technical Information (OSTI)

    ... Research Org: National Renewable Energy Lab. (NREL), Golden, CO (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies ...

  9. Building America Top Innovations 2013 Profile … High-Efficiency...

    Energy Savers [EERE]

    Comprehensive performance tests lead to affordable methods for increasing the energy efficiency of window air conditioners. Window air conditioners are an inexpensive, portable ...

  10. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect (OSTI)

    Ghosh, M.; DelCueto, J.: Kampas, F.; Xi, J. )

    1993-02-01

    This report describes results from the first phase of a three-phase contract for the development of stable, high-efficiency, same-band-gap, amorphous silicon (a-Si) multijunction photovoltaic (PV) modules. The program involved improving the properties of individual layers of semiconductor and non-semiconductor materials and small-area single-junction and multijunction devices, as well as the multijunction modules. The semiconductor materials research was performed on a-Si p, i, and n layers, and on microcrystalline silicon n layers. These were deposited using plasma-enhanced chemical vapor deposition. The non-semiconductor materials studied were tin oxide, for use as a transparent-conducting-oxide (TCO), and zinc oxide, for use as a back reflector and as a buffer layer between the TCO and the semiconductor layers. Tin oxide was deposited using atmospheric-pressure chemical vapor deposition. Zinc oxide was deposited using magnetron sputtering. The research indicated that the major challenge in the fabrication of a-Si multijunction PV modules is the contact between the two p-i-n cells. A structure that has low optical absorption but that also facilitates the recombination of electrons from the first p-i-n structure with holes from the second p-i-n structure is required. Non-semiconductor layers and a-Si semiconductor layers were tested without achieving the desired result.

  11. High efficient ZnO nanowalnuts photocatalyst: A case study

    SciTech Connect (OSTI)

    Yan, Feng; Zhang, Siwen; Liu, Yang; Liu, Hongfeng; Qu, Fengyu; Cai, Xue; Wu, Xiang

    2014-11-15

    Highlights: Walnut-like ZnO nanostructures are synthesized through a facile hydrothermal method. Morphologies and microstructures of the as-obtained ZnO products were investigated. The photocatalytic results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. - Abstract: Walnut-like ZnO nanostructures are successfully synthesized through a facile hydrothermal method. The structure and morphology of the as-synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic properties of ZnO nanowalnuts are investigated by photodegradating several organic dyes, such as Congo red (CR), methyl orange (MO) and eosin red aqueous solutions under UV irradiation, respectively. The results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. In addition, eosin red and Congo red (CR) aqueous solution degradation experiments are also conducted in the same condition, respectively. It showed that ZnO nanowalnuts represent high photocatalytic activities with a degradation efficiency of 87% for CR with 115 min of irradiation and 97% for eosin red with 55 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  12. High efficiency proportional neutron detector with solid liner internal structures

    DOE Patents [OSTI]

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  13. Microsoft PowerPoint - 15.1130_Jeff Baker_Final Ultra-High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings Microsoft PowerPoint - 15.1130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings PDF icon Microsoft...

  14. Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission Engines Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission Engines Presentation given at DEER ...

  15. Advanced Nanomaterials for High-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Chen, Junhong

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these nanomaterials in solar cells (both as photoanodes and counter electrodes), gas sensors, and energy storage devices. This research is potentially transformative since the availability of affordable hybrid nanostructures and their fundamental properties will enable various innovative applications of the multifunctional hybrid nanostructures and thus will accelerate new discoveries and inventions in nanoscience and nanotechnology.

  16. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    SciTech Connect (OSTI)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special machining and heat treatment. Timken designed and manufactured all of the roller bearing related components such as the thrust bearing package. The production connecting rods and camshafts could not be used for the roller bearing engine, so new ones were produced according to the team’s designs using Timken steel. The remaining miscellaneous components were designed and procured by FEV. Timken prepared a display version of the crankshaft portion of the production engine without connecting rods which could be driven by a motor through a cogged-belt and electrically actuated clutch arrangement. A modified version was also made in which the engine was outfitted with roller bearings on the main bearing positions. Preliminary tests showed that the rollerized engine was running with 1/3 less friction than the standard display engine. Additional friction testing and noise characterization was cut short because of shipping damage to the rollerized engine display and because of other project priorities. The team did successfully demonstrate the ability to package roller bearings satisfactorily in numerous locations in a typical automotive engine. The scope of this project did not include durability demonstration and that subject would have to be addressed in any follow-on work. In the actual test phase, the rollerized engine did show significantly less friction in motored dynamometer tests compared to its production equivalent. The 5-10% improvement measured in this study was about half that seen in other studies. However, the fired test results did not show a reduction in friction which did not match prior experience or expectations. Subsequent teardown and inspection of the rollerized engine revealed potential sources of excessive friction in the experimental application. These features would be eliminated in a design not based on modification of production parts. The team is confident (based on experience) that friction reduction would be realized with proper modifications.

  17. High Efficiency Full Expansion (FEx) Engine for Automotive Applications

    Broader source: Energy.gov [DOE]

    Large increases in engine thermal efficiency result from a new method of large reductions in both heat energy normally lost to the cooling medium and in heat energy in the exhaust system.

  18. High Efficiency Full Expansion (FEx) Engine for Automotive Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon p-18taylor.pdf More Documents & Publications Two-Stroke Uniflow Turbo-Compound IC Engine Two-Stroke Engines: New Frontier in Engine Efficiency Challenging Conventional ...

  19. Webinar January 13: Highly Efficient Solar Thermochemical Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency, converting methane and water into syngas-a mix of hydrogen and carbon monoxide-and the technology received an R&D 100 Award in 2014. As the solar energy is stored...

  20. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer ... High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High ...

  1. High-Efficiency Solar Thermochemical Reactor for Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Solar Thermochemical Reactor for Hydrogen Production - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  2. Approach towards high efficiency polycrystalline silicon solar cells

    SciTech Connect (OSTI)

    Rohatgi, A.; Sana, P.; Chen, Z.; Salami, J. )

    1992-12-01

    A combination of theoretical modelling, gettering and passivation, and cell fabrication is presented in this paper to provide guidelines for improving efficiency of polycrystalline solar cells. Theoretical modelling was performed to show that grain boundary barrier height decreases and carrier diffusion length increases with illumination level ([le]50 suns) in those polycrystalline materials where grain boundary dominates the recombination. Model calculations show that the efficiency spread due to grain boundary defect density ([ital N][sub [ital st

  3. High Bandgap III-V Alloys for High Efficiency Optoelectronics - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal 221326 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search High Bandgap III-V

  4. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650C to 1000C. Selective efficiency (?sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ?sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000C in environments of nitrogen and forming gas.

  5. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (ηsel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  6. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiencysel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.

  7. High-Efficiency, Commercial Ready CdTe Solar Cells

    SciTech Connect (OSTI)

    Sites, James R.

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  8. Highly efficient 6-stroke engine cycle with water injection

    DOE Patents [OSTI]

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  9. High efficiency thin-film multiple-gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L.

    1983-01-01

    A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

  10. Webinar: Award-Winning LEEP Campaign Sites Demonstrate Big Savings in High Efficiency Parking Lighting

    Broader source: Energy.gov [DOE]

    The Lighting Energy Efficiency in Parking (LEEP) Campaign is saving nearly 45 million kilowatt-hours and $4 million annually by upgrading its partners to high efficiency lighting in over 500,000 parking spaces.

  11. Low Temperature Combustion Demonstrator for High Efficiency Clean

    Broader source: Energy.gov (indexed) [DOE]

    Combustion | Department of Energy Applied low temperature combustion to the Navistar 6.4L V8 engine with 0.2g NOx/bhp-hr operation attained at the rated 16.5 BMEP PDF icon deer09_deojeda.pdf More Documents & Publications Multicylinder Diesel Engine for Low Temperature Combustion Operation Impact of Variable Valve Timing on Low Temperature Combustion Development of Advanced Combustion Technologies for Increased Thermal Efficiency

  12. Enabling High Efficiency Clean Combustion with Micro-Variable

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy young man sitting on a couch, looking at the camera, dressed in jeans and polo shirt. Progressive Building Solutions, an energy efficiency contractor participating in Seattle, Washington's Community Power Works program, has an intriguing model to help its employees feel connected to the company's success-employees are part owners. The company's creator, Suraj Lobo, built Progressive Energy Solutions around three pillars: employee ownership; development of energy

  13. Enabling the Next Generation of High Efficiency Engines | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Discusses challenges and opportunities for next generation internal combustion engines, and developments for further pushing the limits of engine efficiency and vehicle fuel economy PDF icon deer12_wagner.pdf More Documents & Publications Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine Ignition Control for HCCI Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine

  14. Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation

    SciTech Connect (OSTI)

    Hanna, M. C.; Ellingson, R. J.; Beard, M.; Yu, P.; Micic, O. I.; Nozik, A. J.; c.

    2005-01-01

    Impact ionization is a process in which absorbed photons in semiconductors that are at least twice the bandgap can produce multiple electron-hole pairs. For single-bandgap photovoltaic devices, this effect produces greatly enhanced theoretical thermodynamic conversion efficiencies that range from 45-85%, depending upon solar concentration, the cell temperature, and the number of electron-hole pairs produced per photon. For quantum dots (QDs), electron-hole pairs exist as excitons. We have observed astoundingly efficient multiple exciton generation (MEG) in QDs of PbSe (bulk Eg = 0.28 eV), ranging in diameter from 3.9 to 5.7nm (Eg = 0.73, 0.82, and 0.91 eV, respectively). The effective masses of electron and holes are about equal in PbSe, and the onset for efficient MEG occurs at about three times the QD HOMO-LUMO transition (its ''bandgap''). The quantum yield rises quickly after the onset and reaches 300% at 4 x Eg (3.64 eV) for the smallest QD; this means that every QD in the sample produces three electron-hole pairs/photon.

  15. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect (OSTI)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  16. Analyses Guided Optimization of Wide Range and High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    development for diesel HCCILTC applications Optimization of a turbocharger for high EGR applications Automotive Turbocharging: Industrial Requirements and Technology Developments

  17. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    SciTech Connect (OSTI)

    Koo, John Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  18. Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

  19. Fabrication and analysis of high efficiency multicrystalline silicon solar cells

    SciTech Connect (OSTI)

    Rohatgi, A.; Sana, P.; Cai, L.; Doolittle, W.A.; Kamra, S.; Doshi, P.; Krygowski, T.; Crotty, G.

    1996-01-01

    A detailed investigation of quality enhancement techniques, such as plasma enhanced chemical vapor deposition (PECVD) of SiO{sub 2}/SiN coating, forming gas anneal (FGA) and Al gettering was conducted to improve the performance of cells fabricated on several promising multicrystalline silicon (mcs) materials. A large amount of hydrogen and positive charge in the PECVD SiN antireflection (AR) coating play an important role in passivating surface and bulk defects in silicon. Appropriate post-PECVD deposition anneal was found to be important in maximizing the benefit from PECVD AR coating. Low temperature anneal at 350{degree}C/20 min improves the short wavelength response due to surface passivation along with some increase in the long wavelength response due to bulk defect passivation in certain mcs materials. Post-PECVD rapid thermal anneals (RTA) in the range of 350 to 750{degree}C significantly improve the long wavelength response of certain materials such as EFG silicon. However, this comes at the expense of short wavelength response due to increased absorption in the SiN film. Electron beam induced current (EBIC) measurements revealed significant increase in the intragrain response of these cells after post-PECVD anneal. Al gettering of mcs showed a significant improvement in bulk lifetime and cell efficiency. Forming gas anneal, after phosphorus and Al diffusions, resulted in additional improvements in bulk lifetime in certain materials due to hydrogen passivation. Cells fabricated on cast mcs from Osaka Titanium Corporation (OTC) and Crystal Systems gave cell efficiencies in the range of 17 to 18{percent}. Without the appropriate gettering and passivation techniques these materials give cell efficiencies in the range of 14.5 to 15.5{percent}. {copyright} {ital 1996 American Institute of Physics.}

  20. High-efficiency solar cells using HEM silicon

    SciTech Connect (OSTI)

    Khattak, C.P.; Schmid, F.; Schubert, W.K.

    1994-12-31

    Developments in Heat Exchanger Method (HEM) technology for production of multicrystalline silicon ingot production have led to growth of larger ingots (55 cm square cross section) with lower costs and reliability in production. A single reusable crucible has been used to produce 18 multicrystalline 33 cm square cross section 40 kg ingots, and capability to produce 44 cm ingots has been demonstrated. Large area solar cells of 16.3% (42 cm{sup 2}) and 15.3% (100 cm{sup 2}) efficiency have been produced without optimization of the material production and the solar cell processing.

  1. Overview of High-Efficiency Engine Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ft000_stork_2011_o.pdf More Documents & Publications Fuels & Lubricants R&D Overview of DOE Fuel & Lubricant

    Perspective on past and current status, and future directions in heavy- and light-duty diesel engines PDF icon deer11_eckerle.pdf More Documents & Publications Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction

  2. Current-matched high-efficiency, multijunction monolithic solar cells

    DOE Patents [OSTI]

    Olson, Jerry M.; Kurtz, Sarah R.

    1993-01-01

    The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0

  3. Method and Apparatus for High-Efficiency Direct Contact Condensation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    steam during the removal of non-condensable gases and creating high back pressures that decreased turbine performance. ... modeling method for predicting the chemical, physical, ...

  4. High Thermal Efficiency and Low Emissions with Supercritical...

    Broader source: Energy.gov (indexed) [DOE]

    Gasoline Injection-Ignition in a Light Duty Engine An Experimental Investigation of Low Octane Gasoline in Diesel Engines Low Temperature Combustion Demonstrator for High ...

  5. Fabrication of Organic-inorganic Perovskites for Highly Efficient...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solution process-ability at low temperature as well as its extraordinary device performance. ... quality films with the toluene treatment, including high surface coverage, ...

  6. High-Power Batteries | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Batteries Our goal is to develop and apply a new biologically inspired, low cost, ... exceptionally high power and stability as anodes and cathodes for lithium ion batteries. ...

  7. Multi-petascale highly efficient parallel supercomputer (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Multi-petascale highly efficient parallel supercomputer Citation Details In-Document Search Title: Multi-petascale highly efficient parallel supercomputer A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many

  8. NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Urinal Program | Department of Energy NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and Urinal Program NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and Urinal Program NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and Urinal Program Case study details Marshall Space Flight Center's innovative replacement program for toilets and urinals by researching appropriate fixtures, demonstrating technologies,

  9. High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2

    Broader source: Energy.gov (indexed) [DOE]

    Recompression Cycle | Department of Energy 313_sullivan.pdf More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles - FY13 Q3 Final Report - High-Efficiency Low-Cost Solar Receiver for use in a Supercritical CO2 Recompression Cycle

  10. Los Alamos develops new technique for growing high-efficiency perovskite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar cells Growing high-efficiency perovskite solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new solution-based hot-casting technique that allows growth of highly efficient and reproducible solar cells from large-area perovskite crystals. January 29, 2015 Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells at Los Alamos

  11. DOE Zero Energy Ready Home Low Load High Efficiency HVAC Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014.

  12. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, ...

  13. High Efficiency CdTe and CIGS Thin Film Solar Cells: Highlights...

    Office of Scientific and Technical Information (OSTI)

    High Efficiency CdTe and CIGS Thin Film Solar Cells: Highlights of the Technologies Challenges Acknowledgement: Work performed at NREL for US DOE under contract No....

  14. Vehicle Technologies Office Merit Review 2015: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  15. Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  16. Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development

    Broader source: Energy.gov [DOE]

    Discusses ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance

  17. Final Report - High efficiency heterojunction solar cell on 30μm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    c-Si substrates using novel exfoliation technology Final Report - High efficiency heterojunction solar cell on 30m thin c-Si substrates using novel exfoliation technology ...

  18. Multi-scale framework for the accelerated design of high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-scale framework for the accelerated design of high-efficiency organic photovoltaic cells Organic and hybrid organicinorganic solar cells (OSC) offer a promising low-cost...

  19. Scientists Confirm Robustness of Key Component in Ultra-High-Efficiency Solar Cell (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Scientists developed and tested a new, stable 1-eV metamorphic junction for a high efficiency multijunction III-V solar cell for CPV application.

  20. New results of development on high efficiency high gradient superconducting rf cavities

    SciTech Connect (OSTI)

    Geng, Rongli; Li, Z.; Hao, K.; Liu, K.-X.; Zhao, H.-Y.; Adolphsen, C.

    2015-09-01

    We report on the latest results of development on high efficiency high gradient superconducting radio frequency (SRF) cavities. Several 1-cell cavities made of large-grain niobium (Nb) were built, processed and tested. Two of these cavities are of the Low Surface Field (LSF) shape. Series of tests were carried out following controlled thermal cycling. Experiments toward zero-field cooling were carried out. The best experimentally achieved results are Eacc = 41 MV/m at Q0 = 6.5×1010 at 1.4 K by a 1-cell 1.3 GHz large-grain Nb TTF shape cavity and Eacc = 49 MV/m at Q0 = 1.5×1010 at 1.8 K by a 1-cell 1.5 GHz large-grain Nb CEBAF upgrade low-loss shape cavity.

  1. Field Demonstration of High Efficiency Ultra-Low-Temperature Laboratory Freezers

    Broader source: Energy.gov [DOE]

    Ultra-low temperature laboratory freezers (ULTs) are some of the most energy-intensive pieces of equipment in a scientific research laboratory, yet there are several barriers to user acceptance and adoption of high-efficiency ULTs. One significant barrier is a relative lack of information on ULT efficiency to help purchasers make informed decisions with respect to efficient products.

  2. High-Efficiency Solar Cells for Large-Scale Electricity Generation

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.; Kibbler, A.; Kramer, C.; Bertness, K.; Ward, S.; Duda, A.; Young, M.; Carapella, J.; Steiner, M.

    2008-09-26

    One strategy for helping the solar industry to grow faster is to use very high efficiency cells under concentrating optics. By using lenses or mirrors to concentrate the light, very small solar cells can be used, reducing the amount of semiconductor material and allowing use of higher efficiency cells, which are now >40% efficient.

  3. High-efficiency spectral purity filter for EUV lithography

    DOE Patents [OSTI]

    Chapman, Henry N.

    2006-05-23

    An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

  4. High-efficiency neutron detectors and methods of making same

    DOE Patents [OSTI]

    McGregor, Douglas S.; Klann, Raymond

    2007-01-16

    Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.

  5. EERE Success Story-High Efficiency Microturbine Leads to Increased Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Share | Department of Energy High Efficiency Microturbine Leads to Increased Market Share EERE Success Story-High Efficiency Microturbine Leads to Increased Market Share April 18, 2013 - 12:00am Addthis Partnering with Capstone Turbine Corporation of Chatsworth, EERE supported microturbine research and development for a combined heat and power system that led to the commercialization of that product. Capstone increased electrical efficiency of the unit from about 17%-22% to 33%, and it has

  6. The Importance of Domain Size and Purity in High-Efficiency Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Importance of Domain Size and Purity in High-Effi... Why are efficient and affordable solar cells so highly coveted? Volume. The amount of solar energy lighting up ...

  7. Power efficiency for very high temperature solar thermal cavity receivers

    DOE Patents [OSTI]

    McDougal, Allan R.; Hale, Robert R.

    1984-01-01

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

  8. Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pm_06_kass.pdf More Documents & Publications Materials-Enabled High-Efficiency Diesel Engines Materials-Enabled High-Efficiency Diesel Engines Durability of ACERT Engine Components

  9. A High Efficiency Rare Earth-Free Orange Emitting Phosphor

    SciTech Connect (OSTI)

    Polikarpov, Evgueni; Catalini, David; Padmaperuma, Asanga B.; Das, Partha; Lemmon, Teresa L.; Arey, Bruce W.; Fernandez, Carlos A.

    2015-04-01

    This work reports the synthesis at relatively low temperatures of a highly emissive AlN:Mn2+ emitter. Though the AlN matrix shows an emission peak at a similar position to the emission peak observed for AlN:Mn product, the Mn-containing species generates red emission by a different mechanism, which was supported by the emission life time studies. The PLQY of the AlN:Mn emitter was measured to be 82%, the highest ever reported on a RE free-based phosphor.

  10. High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries

    SciTech Connect (OSTI)

    Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

    2005-11-15

    In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

  11. New approaches for high-efficiency solar cells. Final report

    SciTech Connect (OSTI)

    Bedair, S.M.; El-Masry, N.A.

    1997-12-01

    This report summarizes the activities carried out in this subcontract. These activities cover, first the atomic layer epitaxy (ALE) growth of GaAs, AlGaAs and InGaP at fairly low growth temperatures. This was followed by using ALE to achieve high levels of doping both n-type and p-type required for tunnel junctions (Tj) in the cascade solar cell structures. Then the authors studied the properties of AlGaAs/InGaP and AlGaAs/GaAs tunnel junctions and their performances at different growth conditions. This is followed by the use of these tunnel junctions in stacked solar cell structures. The effect of these tunnel junctions on the performance of stacked solar cells was studied at different temperatures and different solar fluences. Finally, the authors studied the effect of different types of black surface fields (BSF), both p/n and n/p GaInP solar cell structures, and their potential for window layer applications. Parts of these activities were carried in close cooperation with Dr. Mike Timmons of the Research Triangle Institute.

  12. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    SciTech Connect (OSTI)

    Chang, Y. L. Gong, S. White, R.; Lu, Z. H.; Wang, X.; Wang, S.; Yang, C.

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8?lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  13. New III-V cell design approaches for very high efficiency

    SciTech Connect (OSTI)

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; Patkar, M.P.; Young, M.P. )

    1993-04-01

    This report describes to examine new solar cell desip approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for M-III semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring desip approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band pp and optimum material quality. It could also be a benefit manufacturing environment by making the cell's efficiency less dependent on materialquality.

  14. Screen bowl centrifuge: a high-efficiency particle size separator

    SciTech Connect (OSTI)

    Mohanty, M.K.; Zhang, B.; Khanna, N.; Palit, A.; Dube, B.

    2008-05-15

    Over the years, screen bowl centrifuges have been widely used for dewatering fine coal in coal preparation plants in the United States and elsewhere. It is generally recognized in the engineering and scientific communities that screen bowl centrifuges provide some degree of particle size separation while dewatering fine coal in a common application. However, the extent of differential partitioning of coarse and fine particles achievable by a screen bowl centrifuge has not been systematically studied in the past. The present investigation was aimed at conducting a parametric study using a statistically designed experimental program to better understand and optimize the size classification performance of a screen bowl centrifuge. A continuously operating screen bowl centrifuge having a bowl diameter of 0.5 m was used for this study at the Illinois Coal Development Park. Three key operating parameters, i.e., feed flow rate, feed solid content and pool depth, were varied to conduct a total of 17 experiments using a three-level factorial test matrix. Some of the best size separation performances achieved in this study may be described as having an imperfection value of 0.13 at an effective separation size (d(50c)) of 38 mu m and an imperfection value of 0.27 at an effective separation size (d(50c)) of 2.8 mu m. Due to an effective separation of ultrafine high ash materials, the ash content of the screen bowl feed was reduced from 22.3% to a minimum of 8.84% with a combustible recovery of 84.1% and an ash rejection of 71.6%. A higher combustible recovery of 92.1% was achieved at a product ash content of 12.5% with a d(50c) of 2.8 mu m and imperfection of 0.27.

  15. High-efficiency Low Global-Warming Potential (GWP) Compressor | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy efficiency Low Global-Warming Potential (GWP) Compressor High-efficiency Low Global-Warming Potential (GWP) Compressor Lead Performer: United Technologies Research Center - East Hartford, CT DOE Total Funding: $974,000 Cost Share: $417,000 Project Term: September 2015 - August 2017 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015, DE-FOA-0001166 Project Objective United Technologies Research Center (UTRC) proposes to demonstrate

  16. DOE ZERH Webinar: Low Load High Efficiency HVAC (Text Version) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Low Load High Efficiency HVAC (Text Version) DOE ZERH Webinar: Low Load High Efficiency HVAC (Text Version) Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014. Watch the presentation. GoToWebinar voice: The broadcast is now starting. All attendees are in listen-only mode. Lindsay Parker: Hi, everyone. Welcome to the Department of Energy Zero Energy Ready Home Technical Training Webinar Series. We're really

  17. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect (OSTI)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  18. High efficiency multijunction amorphous silicon alloy-based solar cells and modules

    SciTech Connect (OSTI)

    Guha, S.; Yang, J.; Banerjeee, A.; Glatfelter, T.; Hoffman, K.; Xu, X. )

    1994-06-30

    We have achieved initial efficiency of 11.4% as confirmed by National Renewable Energy Laboratory (NREL) on a multijunction amorphous silicon alloy photovoltaic module of one-square-foot-area. [bold This] [bold is] [bold the] [bold highest] [bold initial] [bold efficiency] [bold confirmed] [bold by] [bold NREL] [bold for] [bold any] [bold thin] [bold film] [bold photovoltaic] [bold module]. After light soaking for 1000 hours at 50 [degree]C under one-sun illumination, a module with initial efficiency of 11.1% shows a stabilized efficiency of 9.5%. Key factors that led to this high performance are discussed.

  19. High Efficiency Microturbine with Integral Heat Recovery- Presentation by Capstone Turbine Corporation, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on High Efficiency Microturbine with Integral Heat Recovery, given by John Nourse of Capstone Turbine Corporation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  20. High Efficiency CdTe Ink-Based Solar Cells Using Nanocrystals (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    This NREL Highlight is being developed for the 2015 February Alliance S&T Board meeting and describes a solution-processable ink to produce high-efficiency solar cells using low temperature and simple processing.

  1. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  2. Project Profile: High-Efficiency Thermal Storage System for Solar Plants

    Broader source: Energy.gov [DOE]

    SENER, under the Baseload CSP FOA, aims to develop a highly efficient, low-maintenance and economical thermal energy storage (TES) system using solid graphite modular blocks for CSP plants.

  3. Scalable Light Module for Low-Cost, High Efficiency LED Luminaires

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award DE-EE0006264 Paul Fini, paulfini@cree.com CREE, Inc. Scalable Light Module for Low-Cost, High Efficiency LED Luminaires 2015 Building Technologies Office Peer Review 2 ...

  4. High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - ...

  5. The Approach to Low-Cost High-Efficiency OLED Lighting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Approach to Low-Cost High-Efficiency OLED Lighting The Approach to Low-Cost High-Efficiency OLED Lighting Lead Performer: University of California - Los Angeles - Los Angeles, CA Partners: Polyradiant Corp. - Calabasas, CA DOE Total Funding: $612,733 Cost Share: $153,183 Project Term: September 4, 2014 - August 31, 2016 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0000973) Project Objective This project will develop an integrated plastic

  6. Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4: Are High Efficiency Hot Water Heating Systems Worth the Cost? Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost? What are realistic energy savings associated with the latest advanced and forthcoming water heating technologies and are they cost effective? PDF icon issue4_gasfired_waterheater.pdf PDF icon issue4_tankless_wh.pdf PDF icon issue4_waterhtg_solutions.pdf More Documents & Publications Cost Effective Water Heating Solutions Tankless

  7. Multi-petascale highly efficient parallel supercomputer (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Multi-petascale highly efficient parallel supercomputer Citation Details In-Document Search Title: Multi-petascale highly efficient parallel supercomputer × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  8. Low-Cost, High Efficiency Integration of SSL and Building Controls using a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PET Power Distribution System | Department of Energy High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Lead Performer: VoltServer Inc. - East Greenwich, RI DOE Total Funding: $999,122 Project Term: July 28, 2015 - July 27, 2017 Funding Opportunity: FY2015 Phase II Release 2 SBIR Awards PROJECT OBJECTIVE This project will demonstrate a novel

  9. Process and apparatus for split feed of spent catalyst to high efficiency

    Office of Scientific and Technical Information (OSTI)

    catalyst regenerator (Patent) | SciTech Connect Process and apparatus for split feed of spent catalyst to high efficiency catalyst regenerator Citation Details In-Document Search Title: Process and apparatus for split feed of spent catalyst to high efficiency catalyst regenerator This patent describes a fluidized catalytic cracking process for catalytic cracking of a heavy hydrocarbon feed. It comprises hydrocarbons having a boiling point above about 650{degrees} F to lighter products by

  10. Development of A Self Biased High Efficiency Solid-State Neutron Detector

    Office of Scientific and Technical Information (OSTI)

    for MPACT Applications (Technical Report) | SciTech Connect Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications Citation Details In-Document Search Title: Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications Neutron detection is an important aspect of materials protection, accounting, and control for transmutation (MPACT). Currently He-3 filled thermal neutron detectors are utilized in many applications;

  11. High-efficiency solid-state lighting and superconductor research receives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funding High-efficiency solid-state lighting and superconductor High-efficiency solid-state lighting and superconductor research receives funding Each project will be funded for up to three years. August 28, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  12. Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7_intelligent.pdf More Documents & Publications 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and

  13. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ft004_mueller_2012_o.pdf More Documents & Publications Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Vehicle Technologies Office Merit Review 2014: Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Optical-Engine and

  14. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print Wednesday, 27 March 2013 00:00 The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the

  15. PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $4,000,000 Low-cost III-V photovoltaics have the potential to lower the levelized cost of energy (LCOE) because III-V cells outperform silicon in terms of efficiency and annual energy

  16. Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification April 10, 2012 - 1:00pm Addthis A rendering of the Pratt & Whitney Rocketdyne high pressure, dry-solids feed pump. A rendering of the Pratt & Whitney Rocketdyne high pressure, dry-solids feed pump. Washington, DC - Gasification. It's a versatile technology that uses coal to produce power, chemicals, and fuels. Inherently

  17. Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers

    SciTech Connect (OSTI)

    Yoo, Hyung Keun; Kang, Chul; Hwang, In-Wook; Yoon, Youngwoon; Lee, Kiejin; Kee, Chul-Sik; Lee, Joong Wook

    2014-07-07

    Using hybrid bilayer systems comprising a molecular organic semiconductor and silicon, we achieve optically controllable active terahertz (THz) modulators that exhibit extremely high modulation efficiencies. A modulation efficiency of 98% is achieved from thermally annealed C{sub 60}/silicon bilayers, due to the rapid photo-induced electron transfer from the excited states of the silicon onto the C{sub 60} layer. Furthermore, we demonstrate the broadband modulation of THz waves. The cut-off condition of the system that is determined by the formation of efficient charge separation by the photo-excitation is highly variable, changing the system from insulating to metallic. The phenomenon enables an extremely high modulation bandwidth and rates of electromagnetic waves of interest. The realization of near-perfect modulation efficiency in THz frequencies opens up the possibilities of utilizing active modulators for THz spectroscopy and communications.

  18. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect (OSTI)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  19. High Quantum Efficiency AlGaN/InGaN Photodetectors

    SciTech Connect (OSTI)

    Buckley, James H; Leopold, Daniel

    2009-11-24

    High efficiency photon counting detectors in use today for high energy particle detection applications have a significant spectral mismatch with typical sources and have a number of practical problems compared with conventional bialkali photomultiplier tubes. Numerous high energy physics experiments that employ scintillation light detectors or Cherenkov detectors would benefit greatly from photomultipliers with higher quantum efficiencies. The need for extending the sensitivity of photon detectors to the blue and UV wavebands comes from the fact that both Cherenkov light and some scintillators have an emission spectrum which is peaked at short wavelengths. This research involves the development of high quantum efficiency, high gain, UV/blue photon counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy (MBE). The work could eventually lead to nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, very low radioactive background levels for deep underground experiments and high detection efficiency of individual UV-visible photons. We are also working on the development of photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices, and eventually leading to an all-solid-state photomultiplier device.

  20. Design of a high efficiency 30 kW boost composite converter

    SciTech Connect (OSTI)

    Kim, Hyeokjin; Chen, Hua; Maksimovic, Dragan; Erickson, Robert W.

    2015-09-20

    An experimental 30 kW boost composite converter is described in this paper. The composite converter architecture, which consists of a buck module, a boost module, and a dual active bridge module that operates as a DC transformer (DCX), leads to substantial reductions in losses at partial power points, and to significant improvements in weighted efficiency in applications that require wide variations in power and conversion ratio. A comprehensive loss model is developed, accounting for semiconductor conduction and switching losses, capacitor losses, as well as dc and ac losses in magnetic components. Based on the developed loss model, the module and system designs are optimized to maximize efficiency at a 50% power point. Experimental results for the 30 kW prototype demonstrate 98.5%peak efficiency, very high efficiency over wide ranges of power and voltage conversion ratios, as well as excellent agreements between model predictions and measured efficiency curves.

  1. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  2. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  3. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  4. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  5. High-Efficiency Solar Cogeneration with Thermophotovoltaic & Fiber-Optic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daylighting | Department of Energy Efficiency Solar Cogeneration with Thermophotovoltaic & Fiber-Optic Daylighting High-Efficiency Solar Cogeneration with Thermophotovoltaic & Fiber-Optic Daylighting Credit: Creative Light Source, Inc. Credit: Creative Light Source, Inc. Lead Performer: Creative Light Source, Inc. DOE Funding: $1,724,521 (total for SBIR Phases I and 2) Cost Share: N/A Project Term: 7/28/14 - 7/28/16 Funding Opportunity Announcement: 2013 - Small Business Innovation

  6. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  7. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  8. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  9. Development of the High Efficiency X1 Rotary Diesel Engine | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy This poster describes the design, modeling, and build of a 70-hp prototype of a high efficiency hybrid cycle engine that is expected to attain 57 percent efficiency across a range of loads. PDF icon p-23_shkolnik.pdf More Documents & Publications DEER 2007 ACES Status Report Poster: P-23 Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity Controlled Compression Ignition (RCCI) combustion Vehicle Technologies Office Merit

  10. ENGINEERED ELECTRODES AND ELECTRODE-ORGANIC INTERFACES FOR HIGH-EFFICIENCY ORGANIC PHOTOVOLTAICS

    SciTech Connect (OSTI)

    Tobin J. Marks; R.P.H. Chang; Tom Mason; Ken Poeppelmeier; Arthur J. Freeman

    2008-11-13

    Organic photovoltaic (OPV) cells offer the ultimate promise of low cost, readily manufacturable, and durable solar power. While recent advances have led to cells with impressive performance levels, OPV cells have yet to break the double-digit efficiency barrier. Further gains in efficiency and durability, to that competitive with high-performance inorganic photovoltaics will require breakthroughs in transparent electrode and interfacial materials science and engineering. This project involved an integrated basic research effort carried out by an experienced and highly collaborative interdisciplinary team to address in unconventional ways, critical electrode-interfacial issues underlying OPV performance--controlling band offsets between transparent electrodes and organics, addressing current loss/leakage problems at interfaces, enhancing adhesion, interfacial stability, and device durability while minimizing cost. It synergistically combined materials and interfacial reagent synthesis, nanostructural and photovoltaic characterization, and high level quantum theory. The research foci were: 1) understanding of/development of superior transparent electrode materials and materials morphologies--i.e., better matched electronically and chemically to organic active layers, 2) understanding-based development of inorganic interfacial current-collecting/charge-blocking layers, and 3) understanding-based development of self-assembled adhesion/current-collecting/charge-blocking/cross-linking layers for high-efficiency OPV interfaces. Pursing the goal of developing the fundamental scientific understanding needed to design, fabricate, prototype and ultimately test high-efficiency OPV cells incorporating these new concepts, we achieved a record power conversion efficiency of 5.2% for an organic bulk-heterjunction solar cell.

  11. Engineering task plan for rotary mode core sampling exhausters CAM high radiation interlock

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-05-19

    The Rotary Mode Core Sampling (RMCS) system is primarily made up of the Rotary Mode Core Sample Trucks (RMCST) and the RMCS Exhausters. During RMCS operations an Exhauster is connected to a tank riser and withdraws gases from the tank dome vapor space at approximately 200 Standard Cubic Feet per Minute (SCFM). The gases are passed through two High Efficiency Particulate Air (HEPA) filters before passing out the exhaust stack to the atmosphere. A Continuous Air Monitor (CAM) monitors the exhaust gases in the exhaust stack for beta particle and gamma radiation. The CAM has a high radiation alarm output and a detector fail alarm output. The CAM alarms are currently connected to the data logger only. The CAM alarms require operator response per procedure LMHC 1998 but no automatic functions are initiated by the CAM alarms. Currently, there are three events that can cause an automatic shut down of the Exhauster. These are, Low Tank Pressure, Highnow Stack Flow and High HEPA Filter Differential Pressure (DP).

  12. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    SciTech Connect (OSTI)

    Yang, Aichao; Li, Ping Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-15

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density at 170–206 Hz.

  13. Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Savings | Department of Energy Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term Energy Savings Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term Energy Savings The LEED Platinum K-12 school in Greensburg, Kansas. <em>Photo from Joah Bussert, Greensburg GreenTown, NREL 19952</em> The LEED Platinum K-12 school in Greensburg, Kansas. Photo from Joah Bussert, Greensburg GreenTown, NREL 19952 On May 4, 2007, a massive tornado

  14. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  15. Refractory oxide hosts for a high power, broadly tunable laser with high quantum efficiency and method of making same

    DOE Patents [OSTI]

    Chen, Yok; Gonzalez, Roberto

    1986-01-01

    Refractory oxide crystals having high-quantum efficiency and high thermal stability for use as broadly tunable laser host materials. The crystals are formed by removing hydrogen from a single crystal of the oxide material to a level below about 10.sup.12 protons per cm.sup.3 and subsequently thermochemically reducing the oxygen content of the crystal to form sufficient oxygen anion vacancies so that short-lived F.sup.+ luminescence is produced when the crystal is optically excited.

  16. Refractory oxide hosts for a high power, broadly tunable laser with high quantum efficiency and method of making same

    DOE Patents [OSTI]

    Chen, Yok; Gonzalez, R.

    1985-07-03

    Refractory oxide crystals having high-quantum efficiency and high thermal stability for use as broadly tunable laser host materials. The crystals are formed by removing hydrogen from a single crystal of the oxide material to a level below about 10/sup 12/ protons per cm/sup 3/ and subsequently thermochemically reducing the oxygen content of the crystal to form sufficient oxygen anion vacancies so that short-lived F/sup +/ luminescence is produced when the crystal is optically excited.

  17. High-Efficiency Deflection of High-Energy Protons through Axial Channeling in a Bent Crystal

    SciTech Connect (OSTI)

    Scandale, Walter; Vomiero, Alberto; Baricordi, Stefano; Dalpiaz, Pietro; Fiorini, Massimiliano; Guidi, Vincenzo; Mazzolari, Andrea; Della Mea, Gianantonio; Milan, Riccardo; Ambrosi, Giovanni; Bertucci, Bruna; Burger, William J.; Zuccon, Paolo; Cavoto, Gianluca; Luci, Claudio; Santacesaria, Roberta; Valente, Paolo; Vallazza, Erik; Afonin, Alexander G.; Chesnokov, Yury A.

    2008-10-17

    Beam deflection due to axial channeling in a silicon crystal bent along the <111> axis was observed with 400 GeV/c protons at the CERN Super Proton Synchrotron. The condition for doughnut scattering of protons by the atomic strings of the crystal was attained. Such a condition allowed one to observe a beam deflection of 50 {mu}rad with about 30% efficiency. The contribution of hyperchanneled states of protons to the observed beam deflection was less than 2% according to simulation results.

  18. Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  19. Vehicle Technologies Office Merit Review 2014: High Temperature Materials for High Efficiency Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  20. Highly efficient terahertz wave filter for high-power laser beam separation

    SciTech Connect (OSTI)

    Guo, Bo; Cai, Bin E-mail: ymzhu@usst.edu.cn; Zhu, YiMing E-mail: ymzhu@usst.edu.cn; Tang, Jun

    2014-12-01

    In this study, we design and fabricate a two-layer device based on the Rayleigh scattering theory for effectively separating high-energy pump-laser-generated terahertz (THz) waves. The basic layer is comprised of cyclo olefin polymer and silicon nanoparticles, which can obstruct the propagation of the 800-nm, high-energy pump laser through scattering and absorption effects while permitting THz waves to pass through. In order to improve the laser damage threshold of the basic layer, an additional layer, which is composed of hollow silica nanoparticles, is used to diffuse the incident high-energy laser beam. Through this two-layer structure, a high 800-nm laser threshold and highly transparent THz region filter are fabricated.

  1. Overview of the DOE High Efficiency Engine Technologies R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace00c_gravel_2012_o.pdf More Documents & Publications Overview of the DOE High Efficiency Engine Technologies R&D Overview oi

  2. Overview of the DOE High Efficiency Engine Technologies R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace00c_gravel_2011_o.pdf More Documents & Publications Overview oi the DOE High Efficiency Engine Technologies R&D Overview of

  3. High-Efficiency GaInP/GaAs Tandem Solar Cells

    SciTech Connect (OSTI)

    Bertness, K. A.; Friedman, D. J.; Kurtz, S. R.; Kibbler, A. E.; Cramer, C.; Olson, J. M.

    1996-09-01

    GaInP/GaAs tandem solar cells have achieved efficiencies between 25.7-30.2%, depending on illumination conditions. The efficiencies are the highest confirmed two-terminal values measured for any solar cell within each standard illumination category. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance.

  4. High-efficiency GaInP/GaAs tandem solar cells

    SciTech Connect (OSTI)

    Bertness, K.A.; Friedman, D.J.; Kurtz, S.R.; Kibbler, A.E.; Kramer, C.; Olson, J.M.

    1994-12-01

    GaInP/GaAs tandem solar cells have achieved new record efficiencies, specifically 25.7% under air-mass 0 (AM0) illumination, 29.5% under AM 1.5 global (AM1.5G) illumination, and 30.2% at 140-180x concentration under AM 1.5 direct (AM1.5D) illumination. These values are the highest two-terminal efficiencies achieved by any solar cell under these illumination conditions. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance. 31 refs.

  5. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    SciTech Connect (OSTI)

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  6. High-Efficiency, Low-Emission Refrigeration System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Low-Emission Refrigeration System High-Efficiency, Low-Emission Refrigeration System Image of the compressor rack and system diagram for the CO2 refrigeration system.<br /> Credit: Oak Ridge National Lab Image of the compressor rack and system diagram for the CO2 refrigeration system. Credit: Oak Ridge National Lab Diagram of the compressor rack and system diagram for the CO2 refrigeration system.<br /> Credit: Oak Ridge National Lab Diagram of the compressor rack and

  7. Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode

    SciTech Connect (OSTI)

    Li, Aiyuan; Nie, Riming; Deng, Xianyu; Wei, Huaixin; Li, Yanqing; Tang, Jianxin; Zheng, Shizhao; Wong, King-Young

    2014-03-24

    In this paper, we report that highly efficient inverted organic solar cells were achieved by modifying the surface of indium tin oxide (ITO) using an amino acid, Serine (Ser). With the modification of the ITO surface, device efficiency was significantly enhanced from 0.63% to 4.17%, accompanied with an open circuit voltage (Voc) that was enhanced from 0.30?V to 0.55?V. Ultraviolet and X-ray photoelectron spectroscopy studies indicate that the work function reduction induced by the amino acid modification resulting in the decreased barrier height at the ITO/organic interface played a crucial role in the enhanced performances.

  8. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect (OSTI)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  9. Promoting high efficiency residential HVAC equipment: Lessons learned from leading utility programs

    SciTech Connect (OSTI)

    Neme, C.; Peters, J.; Rouleau, D.

    1998-07-01

    The Consortium for Energy Efficiency recently sponsored a study of leading electric utility efforts to promote high efficiency residential HVAC equipment. Given growing concerns from some utilities about the level of expenditures associated with rebate programs, special emphasis was placed on assessing the success of financing and other non-rebate options for promoting efficiency. Emphasis was also placed on review of efforts--rebate or otherwise--to push the market to very high levels of efficiency (i.e., SEER 13). This paper presents the results of the study. It includes discussion of key lessons from the utility programs analyzed. It also examines program participation rates and other potential indicators of market impacts. One notable conclusion is that several utility programs have pushed market shares for SEER 12 equipment to about 50% (the national average is less than 20%). At least one utility program has achieved a 50% market share for SEER 13 equipment (the national average is less than 3%). In general, financing does not appear to have as broad an appeal as consumer rebates. However, one unique utility program which combines the other of customer financing with modest incentives to contractors--in the form of frequent seller points that can be redeemed for advertising, technician training, travel and other merchandise--offers some promise that high participation rates can be achieved without customer rebates.

  10. High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates

    SciTech Connect (OSTI)

    Mahabaduge, H. P.; Rance, W. L.; Burst, J. M.; Reese, M. O.; Gessert, T. A.; Metzger, W. K.; Barnes, T. M.; Meysing, D. M.; Wolden, C. A.; Li, J.; Beach, J. D.; Garner, S.

    2015-03-30

    Flexible, high-efficiency, low-cost solar cells can enable applications that take advantage of high specific power, flexible form factors, lower installation and transportation costs. Here, we report a certified record efficiency of 16.4% for a flexible CdTe solar cell that is a marked improvement over the previous standard (14.05%). The improvement was achieved by replacing chemical-bath-deposited CdS with sputtered CdS:O and also replacing the high-temperature sputtered ZnTe:Cu back contact layer with co-evaporated and rapidly annealed ZnTe:Cu. We use quantum efficiency and capacitance-voltage measurements combined with device simulations to identify the reasons for the increase in efficiency. Both device simulations and experimental results show that higher carrier density can quantitatively account for the increased open circuit voltage (V{sub OC}) and Fill Factor (FF), and likewise, the increase in short circuit current density (J{sub SC}) can be attributed to the more transparent CdS:O.

  11. Light Trapping for High Efficiency Heterojunction Crystalline Si Solar Cells: Preprint

    SciTech Connect (OSTI)

    Wang, Q.; Xu, Y.; Iwaniczko, E.; Page, M.

    2011-04-01

    Light trapping plays an important role to achieve high short circuit current density (Jsc) and high efficiency for amorphous/crystalline Si heterojunction solar cells. Si heterojunction uses hydrogenated amorphous Si for emitter and back contact. This structure of solar cell posses highest open circuit voltage of 0.747 V at one sun for c-Si based solar cells. It also suggests that over 25% record-high efficiency is possible with further improvement of Jsc. Light trapping has two important tasks. The first one is to reduce the surface reflectance of light to zero for the solar spectrum that Si has a response. The second one is to increase the effective absorption length to capture all the photon. For Si heterojunction solar cell, surface texturing, anti-reflectance indium tin oxides (ITO) layer at the front and back are the key area to improve the light trapping.

  12. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    SciTech Connect (OSTI)

    Yan, Wensheng Gu, Min; Tao, Zhikuo; Ong, Thiam Min Brian

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer.

  13. Note: High-efficiency energy harvester using double-clamped piezoelectric beams

    SciTech Connect (OSTI)

    Zheng, Yingmei; Wu, Xuan; Parmar, Mitesh; Lee, Dong-weon

    2014-02-15

    In this study, an improvement in energy conversion efficiency has been reported, which is realized by using a double-clamped piezoelectric beam, based on uniaxial stretching strain. The buckling mechanism is applied to maximize axial stress in the double-clamped beam. The voltage generated by using the double-clamped piezoelectric beam is higher than that generated by using other conventional structures, such as bending cantilevers coated/sandwiched with piezoelectric film, which is proven both theoretically and experimentally. The power generation efficiency is enhanced by further optimizing the double-clamped structure. The optimized high-efficiency energy harvester utilizing double-clamped piezoelectric beams generates a peak output power of 80 μW, under an acceleration of 0.1g.

  14. New concepts for high efficiency energy conversion: The avalanche heterostructure and superlattice solar cells

    SciTech Connect (OSTI)

    Summers, C.J.; Rohatgi, A.; Torabi, A.; Harris, H.M. )

    1993-01-01

    This report describes investigation into the theory and technology of a novel heterojunction or superlattice, single-junction solar cell, which injects electrons across the heterointerface to produce highly efficient impact ionization of carriers in the lowband-gap side of the junction, thereby conserving their total energy. Also, the superlattice structure has the advantage of relaxing the need for perfect lattice matching at the p-n interface and will inhibit the cross diffusion of dopant atoms that typically occurs in heavy doping. This structure avoids the use of tunnel junctions that make it very difficult to achieve the predicted efficiencies in cascade cells, thus making it possible to obtain energy efficiencies that are competitive with those predicted for cascade solar cells with reduced complexity and cost. This cell structure could also be incorporated into other solar cell structures designed for wider spectral coverage.

  15. Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates

    SciTech Connect (OSTI)

    Yamaguchi, M.; Amano, C.; Itoh, Y.

    1989-07-15

    This paper describes some recent developments in GaAs thin-film solar cells fabricated on Si substrates by metalorganic chemical vapor deposition and numerically analyzes them.GaAs solar cells with efficiency of more than 18% are successfully fabricated on Si substrates by reducing the dislocation density. Photovoltaic properties of GaAs/Si cells are analyzed by considering the effect of nonuniform dislocation distribution on recombination properties of GaAs thin films on Si substrates. Numerical analysis shows that the effect of majority-carrier trapping must be considered. High efficiency GaAs solar cells with total-area efficiency of over 20% on Si substrates can be realized if dislocation density can be reduced to less than 5/times/10/sup 5/ cm/sup /minus/2/.

  16. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    SciTech Connect (OSTI)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The projects research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The projects literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a heat mirror that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nations future electricity and transportation needs that is entirely home grown and carbon free. As CPV enter the nations utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this projects findings.

  17. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    SciTech Connect (OSTI)

    Kita, Shota Ueno, Toshiyuki; Yamada, Sotoshi

    2015-05-07

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.

  18. High Efficiency Solar-based Catalytic Structure for CO{sub 2} Reforming

    SciTech Connect (OSTI)

    Menkara, Hisham

    2013-09-30

    Throughout this project, we developed and optimized various photocatalyst structures for CO{sub 2} reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO{sub 2} reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solution containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO{sub 2} into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).

  19. Simulation of a High Efficiency Multi-bed Adsorption Heat Pump

    SciTech Connect (OSTI)

    TeGrotenhuis, Ward E.; Humble, Paul H.; Sweeney, J. B.

    2012-05-01

    Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here effectively transfers heat from beds being cooled to beds being heated, which enables high efficiency in thermally driven heat pumps. A simplified lumped-parameter model and detailed finite element analysis are used to simulate the performance of an ammonia-carbon sorption compressor, which is used to project the overall heat pump coefficient of performance. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.

  20. Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells

    SciTech Connect (OSTI)

    Liu, Feng; Zhu, Jun E-mail: sydai@ipp.ac.cn; Wei, Junfeng; Li, Yi; Lv, Mei; Yang, Shangfeng; Zhang, Bing; Yao, Jianxi; Dai, Songyuan E-mail: sydai@ipp.ac.cn

    2014-06-23

    Organo-metal halide perovskite solar cells based on planar architecture have been reported to achieve remarkably high power conversion efficiency (PCE, >16%), rendering them highly competitive to the conventional silicon based solar cells. A thorough understanding of the role of each component in solar cells and their effects as a whole is still required for further improvement in PCE. In this work, the planar heterojunction-based perovskite solar cells were simulated with the program AMPS (analysis of microelectronic and photonic structures)-1D. Simulation results revealed a great dependence of PCE on the thickness and defect density of the perovskite layer. Meanwhile, parameters including the work function of the back contact as well as the hole mobility and acceptor density in hole transport materials were identified to significantly influence the performance of the device. Strikingly, an efficiency over 20% was obtained under the moderate simulation conditions.

  1. SUNY/Buffalo Developing High-Efficiency Colloidal Quantum Dot Phosphors

    Broader source: Energy.gov [DOE]

    The State University of New York at Buffalo is working to reduce the cost and increase the performance of LEDs for general illumination by developing high-efficiency colloidal quantum dot phosphors to replace conventional phosphors (i.e., those placed directly on the chip). Colloidal quantum dot phosphors are nanocrystal emitters and contain no rare-earth elements. What's more, it's possible to tune the emission wavelength merely by changing their size.

  2. NREL and Partners to Compare High-Efficiency Solar Cells from Three Nations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Sites in Colorado and Yokohama, Japan - News Releases | NREL and Partners to Compare High-Efficiency Solar Cells from Three Nations at Sites in Colorado and Yokohama, Japan April 4, 2011 Golden, Colo., April 4, 2011 - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is partnering with major international industrial technology and solar research organizations to test how solar cells from three manufacturers perform in two geographic locations with different

  3. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace016_curran_2012_o.pdf More Documents & Publications Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Gasoline-Like Fuel Effects on Advanced Combustion Regimes

  4. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace016_curran_2011_o.pdf More Documents & Publications Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines

  5. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    Energy Savers [EERE]

    Achieving the Best Installed Performance from High- Efficiency Residential Gas Furnaces Larry Brand Partnership for Advanced Residential Retrofit (PARR) March 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the

  6. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment December 2013 i NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  7. Electrical and Thermal Transport Optimization of High Efficient n-type

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudites | Department of Energy Work on optimizing electrical and thermal transport properties of n-type skutterudites via a multiple-element-void-filling approach is presented. PDF icon yang.pdf More Documents & Publications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites On Thermoelectric Properties of p-Type Skutterudites Engineering and Materials for Automotive Thermoelectric Applications

  8. Interfacial Engineering for Highly Efficient-Conjugated Polymer-Based Bulk Heterojunction Photovoltaic Devices

    SciTech Connect (OSTI)

    Alex Jen; David Ginger; Christine Luscombe; Hong Ma

    2012-04-02

    The aim of our proposal is to apply interface engineering approach to improve charge extraction, guide active layer morphology, improve materials compatibility, and ultimately allow the fabrication of high efficiency tandem cells. Specifically, we aim at developing: i. Interfacial engineering using small molecule self-assembled monolayers ii. Nanostructure engineering in OPVs using polymer brushes iii. Development of efficient light harvesting and high mobility materials for OPVs iv. Physical characterization of the nanostructured systems using electrostatic force microscopy, and conducting atomic force microscopy v. All-solution processed organic-based tandem cells using interfacial engineering to optimize the recombination layer currents vi. Theoretical modeling of charge transport in the active semiconducting layer The material development effort is guided by advanced computer modeling and surface/ interface engineering tools to allow us to obtain better understanding of the effect of electrode modifications on OPV performance for the investigation of more elaborate device structures. The materials and devices developed within this program represent a major conceptual advancement using an integrated approach combining rational molecular design, material, interface, process, and device engineering to achieve solar cells with high efficiency, stability, and the potential to be used for large-area roll-to-roll printing. This may create significant impact in lowering manufacturing cost of polymer solar cells for promoting clean renewable energy use and preventing the side effects from using fossil fuels to impact environment.

  9. Cost Effective, High Efficiency Integrated Systems Approach to Auxilliary Electric Motors

    SciTech Connect (OSTI)

    Roy Kessinger Jr.; Keith Seymour; Kanchan Angal; Jason Wolf; Steve Brewer; Leonard Schrank

    2003-09-26

    The CARAT program, carried out by Kinetic Art & Technology Corporation (KAT), has been one of the most commercially successful KAT R&D programs to date. Based on previous development of its technology, KAT designed, constructed and tested a highly efficient motor and controller system under this CARAT program with supplemental commercial funding. Throughout this CARAT effort, the technical objectives have been refined and refocused. Some objectives have been greatly expanded, while others have been minimized. The determining factor in all decisions to refocus the objectives was the commercial need, primarily the needs of KAT manufacturing partners. Several companies are employing the resulting CARAT motor and controller designs in prototypes for commercial products. Two of these companies have committed to providing cost share in order to facilitate the development. One of these companies is a major manufacturing company developing a revolutionary new family of products requiring the ultra-high system efficiency achievable by the KAT motor and controller technologies (known as Segmented ElectroMagnetic Array, or SEMA technology). Another company requires the high efficiency, quiet operation, and control characteristics afforded by the same basic motor and controller for an advanced air filtration product. The combined annual production requirement projected by these two companies exceeds one million units by 2005.

  10. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect (OSTI)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

  11. Highly Efficient 32.3% Monolithic GaInP/GaAs/Ge Triple Junction Concentrator Solar Cells

    SciTech Connect (OSTI)

    Cotal, H. L.; Lillington, D. R.; Ermer, J. H.; King, R. R.; Karam, N. H.; Kurtz, S. R.; Friedman, D. J.; Olson, J. M.; Ward, S.; Duda, A.; Emery, K. A.; Moriarty, T.

    2000-01-01

    Based on recent cell improvements for space applications, multijunction cells apear to be ideal candidates for high efficiency, cost effective, PV concentrator systems.

  12. Development of Modified Pag (Polyalkylene Glycol) High VI High Fuel Efficient Lubricant for LDV Applications

    SciTech Connect (OSTI)

    Gangopadhyay, Arup; McWatt, D. G.; Zdrodowski, R. J.; Liu, Zak; Elie, Larry; Simko, S. J.; Erdemir, Ali; Ramirez, Giovanni; Cuthbert, J.; Hock, E. D.

    2015-09-30

    Engine oils play a critical role in friction reduction. Improvements in engine oil technology steadily improved fuel economy as the industry moved through ILSAC GF-1 to GF-5 specifications. These improvements were influenced by changes in base oil chemistry, development of new friction modifiers and their treat levels, and the total additive package consisting of various other components. However, the improvements are incremental and further fuel consumption reduction opportunities are becoming more challenging. Polyalkylene glycol (PAG) based engine oils are being explored as a step forward for significant fuel consumption reduction. Although PAG fluids are used in many industrial applications, its application as an engine oil has been explored in a limited way. The objective of this project is to deep dive in exploring the applicability of PAG technology in engine oil, understanding the benefits, and limitations, elucidating the mechanism(s) for friction benefits, if any, and finally recommending how to address any limitations. The project was designed in four steps, starting with selection of lubricant technology, followed by friction and wear evaluations in laboratory bench tests which are relatively simple and inexpensive and also served as a screener for further evaluation. Selected formulations were chosen for more complex engine component level tests i.e., motored valvetrain friction and wear, piston ring friction using a motored single cylinder, and motored engine tests. A couple of formulations were further selected based on component level tests for engine dyno tests i.e., Sequence VID (ASTM D6709) for fuel economy, Sequence IVA (ASTM D6891) for valvetrain wear, and Sequence VG (ASTM D6593) for sludge and varnish protection. These are some of the industry standard tests required for qualifying engine oils. Out of these tests, a single PAG oil was selected for chassis roll dynamometer tests for fuel economy and emission measurements using FTP (Federal Test Procedure) metro/highway cycles. Five different PAG chemistries were selected by varying the starting alcohol, the oxide monomers (ethylene oxide, propylene oxide, or butylene oxide), capped or uncapped, homopolymer or random copolymer. All formulations contained a proprietary additive package and one which contained additional antiwear and friction modifier additives. Laboratory bench tests (Pin-on-Disk, High Frequency Reciprocating Rig (HFRR), Block-on-Ring, Mini-Traction Machine (MTM) identified formulations having friction, wear, and load carrying characteristics similar to or better than baseline GF-5 SAE 5W-20 oil. Motored valvetrain and motored piston ring friction tests showed nearly 50% friction reduction for some of the PAG formulations compared to GF-5 SAE 5W-20 oil. Motored engine tests showed up to 15% friction benefit over GF-5 SAE 5W-20 oil. It was observed that friction benefits are more related to PAG base oil chemistry than their lower viscosity compared to GF-5 SAE 5W-20 oil. Analysis of wear surfaces from laboratory bench tests and bucket tappets from motored valvetrain tests confirmed the presence of PAG molecules. The adsorption of these polar molecules is believed to be reason for friction reduction. However, the wear surfaces also had thin tribo-film derived from additive components. The tribo-film consisting of phosphates, sulfides, and molybdenum disulfide (when molybdenum additive was present) were observed for both GF-5 SAE 5W-20 and PAG fluids. However, when using PAG fluids, motored valvetrain tests showed high initial wear, which is believed to be due to delay in protective tribo-film formation. After the initial wear, the wear rate of PAG fluids was comparable to GF-5 SAE 5W-20 oil. The PAG oil containing additional antiwear and friction reducing additives showed low initial wear as expected. However, when this oil was evaluated in Sequence IVA test, it showed initially low wear comparable to GF-5 oil but wear accelerated with oil aging indicating rapid deterioration of additive components. ASTM Sequence VG test showed good sludge protection capability but failed to meet varnish rating for GF-5 requirement. Chassis roll dynamometer tests with PAG oil 15-1 showed about 1% fuel economy benefit over GF-5 SAE 5W-20 oil in EPA city cycles only and when the oil was slightly aged (500 miles). No fuel economy benefits could be observed in combined EPA metro/highway cycles. Also, no fuel economy benefit could be observed with continued (500- 10000 miles) oil aging. However, the emission level was comparable to the reference oil and was within EPA limits. Analysis of the PAG oil following tests showed low iron content although additive components were significantly degraded. The results indicate that PAG fluids have significant friction reduction potential but there are challenges with wear and varnish protection capabilities. These limitations are primarily because the selected additive components were chosen to provide a fluid with no metal content that forms little or no sulphated ash. Significant development work is needed to identify additive components compatible with PAG chemistry including their solubility in PAG oil. Miscibility of PAG fluids with mineral base oil is another challenge for oil change service. There is PAG chemistry (oil soluble PAG, OSP) which is soluble in mineral oils but the formulation explored in this investigation did not show significant friction reduction in motored engine tests. Again, highlighting the need for additive development for specific PAG chemistry. The thermal oxidation behavior of these oils has not been explored in this investigation and needs attention.

  13. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    SciTech Connect (OSTI)

    Mike Hack

    2008-12-31

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

  14. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect (OSTI)

    Sara Ward; Michael A. Petrik

    2004-07-28

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

  15. Scanning EM of non-heavy metal stained biosamples: Large-field of view, high contrast and highly efficient immunolabeling

    SciTech Connect (OSTI)

    Kuipers, Jeroen; Boer, Pascal de; Giepmans, Ben N.G.

    2015-10-01

    Scanning electron microscopy (SEM) is increasing its application in life sciences for electron density measurements of ultrathin sections. These are traditionally analyzed with transmission electron microscopy (TEM); by most labs, SEM analysis still is associated with surface imaging only. Here we report several advantages of SEM for thin sections over TEM, both for structural inspection, as well as analyzing immuno-targeted labels such as quantum dots (QDs) and gold, where we find that QD-labeling is ten times more efficient than gold-labeling. Furthermore, we find that omitting post-staining with uranyl and lead leads to QDs readily detectable over the ultrastructure, but under these conditions ultrastructural contrast was even almost invisible in TEM examination. Importantly, imaging in SEM with STEM detection leads to both outstanding QDs and ultrastructural contrast. STEM imaging is superior over back-scattered electron imaging of these non-contrasted samples, whereas secondary electron detection cannot be used at all. We conclude that examination of ultrathin sections by SEM, which may be immunolabeled with QDs, will allow rapid and straightforward analysis of large fields with more efficient labeling than can be achieved with immunogold. The large fields of view routinely achieved with SEM, but not with TEM, allows straightforward raw data sharing using virtual microscopy, also known as nanotomy when this concerns EM data in the life sciences. - Highlights: • High resolution and large fields of view via nanotomy or virtual microscopy. • Highly relevant for EM‐datasets where information density is high. • Sample preparation with low contrast good for STEM, not TEM. • Quantum dots now stand out in STEM‐based detection. • 10 Times more efficient labeling with quantum dots compared to gold.

  16. Design and development of a high-concentration and high-efficiency photovoltaic concentrator using a curved Fresnel lens

    SciTech Connect (OSTI)

    Scharlack, R.S.; Moffat, A.

    1983-08-01

    Thermo Electron has designed a high concentration photovoltaic module that uses a domed, point-focus Fresnel lens. Their design, design optimization process, and results from lens and receiver tests are described in this report. A complete module has not been fabricated and probably will not be fabricated in the future; however, Thermo Electron's optical design, analysis, and testing of both secondary optical units and domed Fresnel lenses have made a significant contribution to our project. Tooling errors prevented the lens from reaching its potential efficiency by the end of the contract, and resolution of these tooling problems is currently being attempted with a follow-on contract, No. 68-9463.

  17. Thicker, more efficient superconducting strip-line detectors for high throughput macromolecules analysis

    SciTech Connect (OSTI)

    Casaburi, A.; Ejrnaes, M.; Cristiano, R.; Zen, N.; Ohkubo, M.; Pagano, S.

    2011-01-10

    Fast detectors with large area are required in time-of-flight mass spectrometers for high throughput analysis of biological molecules. We fabricated and characterized subnanosecond 1x1 mm{sup 2} NbN superconducting strip-line detectors. The influence of the strip-line thickness on the temporal characteristics and efficiency of the detector for the impacts of keV accelerated molecules is investigated. We find that the increase of thickness improves both efficiency and response time. In the thicker sample we achieved a rise time of 380 ps, a fall time of 1.38 ns, and a higher count rate. The physics involved in this behavior is investigated.

  18. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals

    SciTech Connect (OSTI)

    Chen, Bao-Qin; Zhang, Chao; Liu, Rong-Juan; Li, Zhi-Yuan

    2014-10-13

    We have designed and fabricated a lithium niobate (LN) nonlinear photonic crystal (NPC) with a two-dimensional (2D) ellipse structure of inverse poling domains. The structure can offer continuously varying reciprocal lattice vectors in different directions to compensate the phase-mismatching during the second harmonic generation (SHG) for diverse pump wavelengths. We consider three propagation directions with large effective nonlinear susceptibility and measure the nonlinear conversion efficiency of SHG. The experimental data are in good agreement with the quantitative calculation results using the effective susceptibility model with pump depletion. With high-efficiency SHG in multiple propagation direction, the 2D ellipse structure of LN NPC has the potential to realize various broadband nonlinear frequency conversion processes in different propagation direction with a single crystal.

  19. Demonstration of High Efficiency Elastocaloric Cooling with Large Delta- T Using NiTi Wires

    SciTech Connect (OSTI)

    Cui, Jun; Wu, Yiming; Muehlbauer, Jan; Hwang, Yunho; Radermacher, Reinhard; Fackler, Sean; Wuttig, Manfred; Takeuchi, Ichiro

    2012-08-01

    Vapor compression (VC) is by far the most dominant technology for meeting all cooling and refrigeration needs around the world. It is a mature technology with the efficiency of modern compressors approaching the theoretical limit, but its envi-ronmental footprint remains a global problem. VC refrigerants such as hydrochlo-roflurocarbons (HCFCs) and hydrofluorocarbons (HFCs) are a significant source of green house gas (GHG) emissions, and their global warming potential (GWP) is as high as 1000 times that of CO2. It is expected that building space cooling and re-frigeration alone will amount to {approx} 5% of primary energy consumption and {approx}5% of all CO2 emission in U.S. in 2030 . As such, there is an urgent need to develop an al-ternative high-efficiency cooling technology that is affordable and environmentally friendly. Among the proposed candidates, magnetocaloric cooling (MC) is currently received a lot of attention because of its high efficiency. However, MC is inherently expensive because of the requirement of large magnetic field and rare earth materi-als. Here, we demonstrate an entirely new type of solid-state cooling mechanism based on the latent heat of reversible martensitic transformation. We call it elasto-caloric cooling (EC) after the superelastic transformation of austenite it utilizes. The solid-state refrigerant of EC is cost-effective, and it completely eliminates the use of any refrigerants including HCFCs/HFCs. We show that the COP (coefficient of per-formance) of a jugular EC with optimized materials can be as high as > 10 with measured {Delta}T of 17 C.

  20. Demonstration of high efficiency elastocaloric cooling with large Delta T using NiTi wires

    SciTech Connect (OSTI)

    Cui, J; Wu, YM; Muehlbauer, J; Hwang, YH; Radermacher, R; Fackler, S; Wuttig, M; Takeuchi, I

    2012-08-13

    Vapor compression (VC) is by far the most dominant technology for meeting all cooling and refrigeration needs around the world. It is a mature technology with the efficiency of modern compressors approaching the theoretical limit, but its environmental footprint remains a global problem. VC refrigerants such as hydrochloroflurocarbons (HCFCs) and hydrofluorocarbons (HFCs) are a significant source of green house gas emissions, and their global warming potential (GWP) is as high as 1000 times that of CO2 [Buildings Energy Data Book (Building Technologies Program, Department of Energy, 2009)]. There is an urgent need to develop an alternative high-efficiency cooling technology that is affordable and environmentally friendly [A. D. Little, Report For Office of Building Technology State and Community Programs, Department of Energy, 2001]. Here, we demonstrate that elastocaloric cooling (EC), a type of solid-state cooling mechanism based on the latent heat of reversible martensitic transformation, can have the coefficient of performance as high as 1 1, with a directly measured Delta T of 17 degrees C. The solid-state refrigerant of EC completely eliminates the use of any GWP refrigerants including HCFCs/HFCs. (C) 2012 American Institute. of Physics. [http://dx.doiorg/10.1063/1.4746257

  1. High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001

    SciTech Connect (OSTI)

    Brown, L.C.

    2002-11-01

    OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

  2. High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal

    SciTech Connect (OSTI)

    Scandale, Walter; Still, Dean A.; Baricordi, Stefano; Dalpiaz, Pietro; Fiorini, Massimiliano; Guidi, Vincenzo; Martinelli, Giuliano; Mazzolari, Andrea; Milan, Emiliano; Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto; Bertucci, Bruna; Burger, William J.; Ionica, Maria; Zuccon, Paolo; Cavoto, Gianluca; Santacesaria, Roberta; Valente, Paolo; Vallazza, Erik

    2007-04-13

    The volume reflection phenomenon was detected while investigating 400 GeV proton interactions with bent silicon crystals in the external beam H8 of the CERN Super Proton Synchrotron. Such a process was observed for a wide interval of crystal orientations relative to the beam axis, and its efficiency exceeds 95%, thereby surpassing any previously observed value. These observations suggest new perspectives for the manipulation of high-energy beams, e.g., for collimation and extraction in new-generation hadron colliders, such as the CERN Large Hadron Collider.

  3. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOE Patents [OSTI]

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  4. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect (OSTI)

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

  5. SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Development of Dual-Fuel Engine for Class 8 Applications Gasoline Ultra Fuel Efficient Vehicle...

  6. Highly bent (110) Ge crystals for efficient steering of ultrarelativistic beams

    SciTech Connect (OSTI)

    De Salvador, D.; Maggioni, G.; Carturan, S.; Bazzan, M.; Argiolas, N.; Carnera, A.; Dalla Palma, M.; Della Mea, G.; Bagli, E.; Mazzolari, A.; Bandiera, L.; Guidi, V.; Lietti, D.; Berra, A.; Guffanti, G.; Prest, M.; Vallazza, E.

    2013-10-21

    Thanks to the effective electrostatic potential generated by the ordered atomic structure, bent crystals can efficiently deflect ultra relativistic charged beams by means of planar and axial channeling phenomena as well as of the recently discovered volume reflection effect. Most of the experimental knowledge about these phenomena has been gathered with Si crystals, but it has been recently demonstrated that the steering performance can be improved by using high quality Ge materials which have a larger atomic number. In this paper, we investigate channeling and volume reflection of 400 GeV protons from (110) lattice planes in highly bent Ge strips crystals. Both production and characterization of the strips are presented. Herein, the experimental results on deflection are compared with theoretical predictions, with previous published data and with the expected performances of Si crystals in similar experimental conditions.

  7. System efficiency analysis for high power solid state radio frequency transmitter

    SciTech Connect (OSTI)

    Jain, Akhilesh, E-mail: ajain@rrcat.gov.in; Sharma, D. K.; Gupta, A. K.; Lad, M. R.; Hannurkar, P. R. [RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)] [RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Pathak, S. K. [Electromagnetics and Microwave Engineering, Institute for Plasma Research, Gandhinagar 382 428 (India)] [Electromagnetics and Microwave Engineering, Institute for Plasma Research, Gandhinagar 382 428 (India)

    2014-02-15

    This paper examines some important relationships, related with the system efficiency, for very high power, radio frequency solid-state transmitter; incorporating multiple solid-state power amplifier modules, power combiners, dividers, couplers, and control/interlock hardware. In particular, the characterization of such transmitters, at the component as well as the system level, is discussed. The analysis for studying the influence of the amplitude and phase imbalance, on useful performance parameters like system efficiency and power distribution is performed. This analysis is based on a scattering parameter model. This model serves as a template for fine-tuning the results, with the help of a system level simulator. For experimental study, this approach is applied to a recently designed modular and scalable solid-state transmitter, operating at the centre frequency of 505.8?MHz and capable of delivering a continuous power of 75 kW. Such first time presented, system level study and experimental characterization for the real time operation will be useful for the high power solid-state amplifier designs, deployed in particle accelerators.

  8. Targeting 100! Advanced Energy Efficient Building Technologies for High Performance Hospitals: Executive Summary.

    SciTech Connect (OSTI)

    Burpee, Heather; Loveland, Joel; Helmers, Aaron

    2015-09-02

    This research, Targeting 100!, provides a conceptual framework and decision-making structure at a schematic design level of precision for hospital owners, architects and engineers to radically reduce energy use in hospitals. Following the goals of Architecture 2030 and The 2030 Challenge, it offers access to design strategies and the cost implications of those strategies for new hospitals to utilize 60% less energy. The name, Targeting 100!, comes from the 2030 Challenge energy reduction goal for hospitals; a 60% energy use reduction from typical acute care hospital targets approximately 100 KBtu/SF Year, thus the name Targeting 100!. Targeting 100! was developed through funding partnerships with the US Department of Energy and the Northwest Energy Efficiencys BetterBricks Initiative. The technical team was led by the University of Washington Integrated Design Lab supported by deep collaboration with Solarc Architecture and Engineering, TBD Cost Consultants, and NBBJ Architecture. Through extensive research and design development, Targeting 100! provides a framework for developing high performance healthcare projects today and into the future. An online tool houses a Targeting 100! knowlegebase and roadmap. It can be accessed at: www.idlseattle.com/t100. The webtool is structured from high-level overview materials to detailed library with modeling inputs and outputs, providing a comprehensive report of the background, data, and outcomes from the project.

  9. Use of non evaporable getter pumps to ensure long term performances of high quantum efficiency photocathodes

    SciTech Connect (OSTI)

    Sertore, Daniele Michelato, Paolo; Monaco, Laura; Manini, Paolo; Siviero, Fabrizio

    2014-05-15

    High quantum efficiency photocathodes are routinely used as laser triggered emitters in the advanced high brightness electron sources based on radio frequency guns. The sensitivity of “semiconductor” type photocathodes to vacuum levels and gas composition requires special care during preparation and handling. This paper will discuss the results obtained using a novel pumping approach based on coupling a 20 l s{sup −1} sputter ion getter pump with a CapaciTorr® D100 non evaporable getter (NEG) pump. A pressure of 8⋅10{sup −8} Pa was achieved using only a sputter ion pump after a 6 day bake-out. With the addition of a NEG pump, a pressure of 2⋅10{sup −9} Pa was achieved after a 2 day bake-out. These pressure values were maintained without power due to the ability of the NEG to pump gases by chemical reaction. Long term monitoring of cathodes quantum efficiencies was also carried out at different photon wavelengths for more than two years, showing no degradation of the photoemissive film properties.

  10. Novel wide band gap materials for highly efficient thin film tandem solar cells

    SciTech Connect (OSTI)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PVâ??s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

  11. High efficiency thin film CdTe and a-Si based solar cells

    SciTech Connect (OSTI)

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2000-01-04

    This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and {approximately}9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS{sub x}Te{sub 1{minus}x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS{sub x}Te{sub 1{minus}x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ({approximately}2 {times} 10{sup {minus}5} torr) was beneficial for growing high-quality films from ITO targets.

  12. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    SciTech Connect (OSTI)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible commercialization. The low pressure spool design activity focused on an aeropath derivative of the current C200 engine. The aeropath derivative included changes to the compressor section —compressor and inducer — and to the turbine nozzle. The increased power also necessitated a larger, more powerful generator and generator controller to support the increased power requirements. These two major design changes were completed by utilizing both advanced 3D modeling and computational fluid dynamics modelling. After design, modeling, and analysis, the decision was made to acquire and integrate the components for testing. The second task of Phase I was to integrate and test the components of the low pressure spool to validate power and efficiency. Acquisition of the components for the low pressure spool was completed utilizing Capstone’s current supplier base. Utilization of Capstone’s supply base for integration of the test article would allow — if the decision was made —expedited commercialization of the product. After integration of the engine components, the engine was tested and evaluated for performance and emissions. Test data analysis confirmed that the engine met all power and efficiency requirements and did so while maintaining CARB level emissions. The emissions were met without the use of any post processing or catalyst. After testing was completed, the DOE authorized — via a milestone review — proceeding to Phase II: the development of the integrated C370 engine. The C370 high pressure spool design activity required significant changes to the C65 engine architecture. The engine required a high power density generator, completely redesigned compressor stage, turbine section, recuperator, controls architecture, and intercooler stage asThe two most critical design challenges were the turbine section (the nozzle and turbine) and the controls architecture. The design and analysis of all of the components was completed and integrated into a system model. The system model — after numerous iterations — indicated that, once integrated, the engine will meet or exceed all system requirements. Unfortunately, the turbine section’s life requirements remain a technical challenge and will require continued refinement of the bi-metallic turbine wheel design and manufacturing approach to meet the life requirement at theses high temperatures. The current controls architecture requires substantial effort to develop a system capable of handling the high-speed, near real-time controls requirement, but it was determined not to be a technical roadblock for the project. The C370 Program has been a significant effort with state-of-the-art technical targets. The targets have pushed Capstone’s designers to the limits of current technology. The program has been fortunate to see many successes: the successful testing of the low pressure spool (C250), the development of new material processes, and the implementation of new design practices. The technology and practices learned during the program will be utilized in Capstone’s current product lines and future products. The C370 Program has been a resounding success on many fronts for the DOE and for Capstone.

  13. Candidate alloys for cost-effective, high-efficiency, high-temperature compact/foil heat-exchangers

    SciTech Connect (OSTI)

    Evans, Neal D; Maziasz, Philip J; Shingledecker, John P; Pint, Bruce A; Yamamoto, Yukinori

    2007-01-01

    Solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) systems operate at high temperatures (up to 1000 C and 650 C, respectively), which makes them especially attractive sources for combined heat and power (CHP) cogeneration. However, improvements in the efficiency of heat exchange in these fuel cells require both development and careful processing of advanced cost-effective alloys for use in such high-temperature service conditions. The high-temperature properties of both sheet and foil forms of several alloys being considered for use in compact heat-exchangers (recuperators) have been characterized. Mechanical and creep-rupture testing, oxidation studies, and microstructural studies have been performed on commercially available sheet and foil forms of alloy 347, alloys 625, HR230, HR120, and the new AL20-25+Nb. These studies have led to a mechanistic understanding of the responses of these alloys to anticipated service conditions, and suggest that these alloys developed for gas- and micro-turbine recuperator applications are also suitable for use in fuel cell heat-exchangers. Additional work is still required to achieve foil forms with creep life comparable to thicker-section wrought product forms of the same alloys.

  14. High Efficiency Single Crystal CdTe Solar Cells: November 19, 2009 - January 31, 2011

    SciTech Connect (OSTI)

    Carmody, M.; Gilmore, A.

    2011-05-01

    The goal of the program was to develop single crystal CdTe-based top cells grown on Si solar cells as a platform for the subsequent manufacture of high efficiency tandem cells for CPV applications. The keys to both the single junction and the tandem junction cell architectures are the ability to grow high quality single-crystal CdTe and CdZnTe layers on p-type Si substrates, to dope the CdTe and CdZnTe controllably, both n and p-type, and to make low resistance ohmic front and back contacts. EPIR demonstrated the consistent MBE growth of CdTe/Si and CdZnTe/Si having high crystalline quality despite very large lattice mismatches; epitaxial CdTe/Si and CdZnTe/Si consistently showed state-of-the-art electron mobilities and good hole mobilities; bulk minority carrier recombination lifetimes of unintentionally p-doped CdTe and CdZnTe grown by MBE on Si were demonstrated to be consistently of order 100 ns or longer; desired n- and p-doping levels were achieved; solar cell series specific resistances <10 ?-cm2 were achieved; A single-junction solar cell having a state-of-the-art value of Voc and a unverified 16.4% efficiency was fabricated from CdZnTe having a 1.80 eV bandgap, ideal for the top junction in a tandem cell with a Si bottom junction.

  15. High-density grids for efficient data collection from multiple crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baxter, Elizabeth L.; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Bonagura, Christopher A.; Brehmer, Winnie; Brunger, Axel T.; Calero, Guillermo; Caradoc-Davies, Tom T.; Chatterjee, Ruchira; et al

    2015-11-03

    Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassettemore » or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice/DCSSexperimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. As a result, crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.« less

  16. High-density grids for efficient data collection from multiple crystals

    SciTech Connect (OSTI)

    Baxter, Elizabeth L.; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Bonagura, Christopher A.; Brehmer, Winnie; Brunger, Axel T.; Calero, Guillermo; Caradoc-Davies, Tom T.; Chatterjee, Ruchira; Degrado, William F.; Fraser, James S.; Ibrahim, Mohamed; Kern, Jan; Kobilka, Brian K.; Kruse, Andrew C.; Larsson, Karl M.; Lemke, Heinrik T.; Lyubimov, Artem Y.; Manglik, Aashish; McPhillips, Scott E.; Norgren, Erik; Pang, Siew S.; Soltis, S. M.; Song, Jinhu; Thomaston, Jessica; Tsai, Yingssu; Weis, William I.; Woldeyes, Rahel A.; Yachandra, Vittal; Yano, Junko; Zouni, Athina; Cohen, Aina E.

    2016-01-01

    Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice/DCSSexperimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.

  17. High-density grids for efficient data collection from multiple crystals

    SciTech Connect (OSTI)

    Baxter, Elizabeth L.; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Bonagura, Christopher A.; Brehmer, Winnie; Brunger, Axel T.; Calero, Guillermo; Caradoc-Davies, Tom T.; Chatterjee, Ruchira; Degrado, William F.; Fraser, James S.; Ibrahim, Mohamed; Kern, Jan; Kobilka, Brian K.; Kruse, Andrew C.; Larsson, Karl M.; Lemke, Heinrik T.; Lyubimov, Artem Y.; Manglik, Aashish; McPhillips, Scott E.; Norgren, Erik; Pang, Siew S.; Soltis, S. M.; Song, Jinhu; Thomaston, Jessica; Tsai, Yingssu; Weis, William I.; Woldeyes, Rahel A.; Yachandra, Vittal; Yano, Junko; Zouni, Athina; Cohen, Aina E.

    2015-11-03

    Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice/DCSSexperimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. As a result, crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.

  18. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    SciTech Connect (OSTI)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  19. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect (OSTI)

    Hewes, T.; Peeks, B.

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  20. Development of UV-LED Phosphor Coatings for High Efficiency Solid State Lighting

    SciTech Connect (OSTI)

    U. Happek

    2005-01-01

    The University of Georgia, in collaboration with GE Global Research, is investigating the relevant quenching mechanism of phosphor coatings used in white light devices based on UV LEDs in a focused eighteen month program. The final goal is the design of high-efficacy white UV-LEDs through improved and optimized phosphor coatings. At the end of the first year, we have reached a fundamental understanding of quenching processes in UV-LED phosphors and have observed severe quenching in standard devices under extreme operating conditions. Relationships are being established that describe the performance of the phosphor as a function of photon flux, temperature, and phosphor composition. These relationships will provide a road map for the design of efficient white light LEDs during the final six months of the project.

  1. High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage

    SciTech Connect (OSTI)

    2011-11-15

    HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in todays EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal batterywhich does not use any hazardous substancescan be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetaks converters can also run on the electric battery if needed and provide the required cooling and heating to the passengerseliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

  2. Electrical heating of soils using high efficiency electrode patterns and power phases

    DOE Patents [OSTI]

    Buettner, Harley M.

    1999-01-01

    Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.

  3. High efficiency direct detection of ions from resonance ionization of sputtered atoms

    DOE Patents [OSTI]

    Gruen, D.M.; Pellin, M.J.; Young, C.E.

    1985-01-16

    A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.

  4. High efficiency direct detection of ions from resonance ionization of sputtered atoms

    DOE Patents [OSTI]

    Gruen, Dieter M.; Pellin, Michael J.; Young, Charles E.

    1986-01-01

    A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.

  5. Lattice-Mismatched III-V Epilayers for High-Efficiency Photovoltaics

    SciTech Connect (OSTI)

    Ahrenkiel, Scott Phillip

    2013-06-30

    The project focused on development of new approaches and materials combinations to expand and improve the quality and versatility of lattice-mismatched (LMM) III-V semiconductor epilayers for use in high-efficiency multijunction photovoltaic (PV) devices. To address these goals, new capabilities for materials synthesis and characterization were established at SDSM&T that have applications in modern opto- and nano-electronics, including epitaxial crystal growth and transmission electron microscopy. Advances were made in analyzing and controlling the strain profiles and quality of compositional grades used for these technologies. In particular, quaternary compositional grades were demonstrated, and a quantitative method for characteristic X-ray analysis was developed. The project allowed enhanced collaboration between scientists at NREL and SDSM&T to address closely related research goals, including materials exchange and characterization.

  6. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect (OSTI)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.

  7. Final LDRD report : advanced materials for next generation high-efficiency thermochemistry.

    SciTech Connect (OSTI)

    Ambrosini, Andrea; Miller, James Edward; Allendorf, Mark D.; Coker, Eric Nicholas; Ermanoski, Ivan; Hogan, Roy E.,; McDaniel, Anthony H.

    2014-01-01

    Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

  8. Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Young, David L.; Nemeth, William; Grover, Sachit; Norman, Andrew; Yuan, Hao-Chih; Lee, Benjamin G.; LaSalvia, Vincenzo; Stradins, Paul

    2014-01-01

    We describe the design, fabrication and results of passivated contacts to n-type silicon utilizing thin SiO2 and transparent conducting oxide layers. High temperature silicon dioxide is grown on both surfaces of an n-type wafer to a thickness <50 Å, followed by deposition of tin-doped indium oxide (ITO) and a patterned metal contacting layer. As deposited, the thin-film stack has a very high J0,contact, and a non-ohmic, high contact resistance. However, after a forming gas anneal, the passivation quality and the contact resistivity improve significantly. The contacts are characterized by measuring the recombination parameter of the contact (J0,contact) and the specificmore » contact resistivity (ρcontact) using a TLM pattern. The best ITO/SiO2 passivated contact in this study has J0,contact = 92.5 fA/cm2 and ρcontact = 11.5 mOhm-cm2. These values are placed in context with other passivating contacts using an analysis that determines the ultimate efficiency and the optimal area fraction for contacts for a given set of (J0,contact, ρcontact) values. The ITO/SiO2 contacts are found to have a higher J0,contact, but a similar ρcontact compared to the best reported passivated contacts.« less

  9. Vehicle Technologies Office Merit Review 2015: High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology

    Broader source: Energy.gov [DOE]

    Presentation given by Envera LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency VCR engine with...

  10. Vehicle Technologies Office Merit Review 2014: High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology

    Broader source: Energy.gov [DOE]

    Presentation given by Envera LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency VCR engine...

  11. Vehicle Technologies Office Merit Review 2014: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Broader source: Energy.gov [DOE]

    Presentation given by Hyundai at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  12. Vehicle Technologies Office Merit Review 2015: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Broader source: Energy.gov [DOE]

    Presentation given by Hyundai at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  13. Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  14. Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford...

    Office of Environmental Management (EM)

    to include the foremost experts from the chemical processing industry, the glass industry, ... process system GFC glass-forming chemical HEPA high-efficiency particulate air HLW ...

  15. Operating Experience Level 3, Laboratory Tests Indicate Conditions...

    Energy Savers [EERE]

    provides new information on a potential performance issue associated with certain axial flow high efficiency particulate air (HEPA) filters that do not contain separators in the...

  16. DOE/EA-2014

    Office of Environmental Management (EM)

    ... Common air pollution control devices employed on the ORR include exhaust gas scrubbers, fabric filters, and High Efficiency Particulate Air (HEPA) filtration systems designed to ...

  17. Operating Experience Level 3, Update to Requalification Test...

    Energy Savers [EERE]

    Operating Experience Level 3, Update to Requalification Test Failure of Certain High Efficiency Particulate Air (HEPA) Filters Operating Experience Level 3, Update to...

  18. The high-efficiency jets magnetically accelerated from a thin disk in powerful lobe-dominated FRII radio galaxies

    SciTech Connect (OSTI)

    Li, Shuang-Liang

    2014-06-10

    A maximum jet efficiency line R ? 25 (R = L {sub jet}/L {sub bol}), found in FRII radio galaxies by Fernandes et al., was extended to cover the full range of jet power by Punsly. Recent general relativistic magnetohydrodynamic simulations of jet formation have mainly focused on the enhancement of jet power. In this work, we suggest that the jet efficiency could be very high even for conventional jet power if the radiative efficiency of disks was much smaller. We adopt the model of a thin disk with magnetically driven winds to investigate the observational high-efficiency jets in FRII radio galaxies. It is found that the structure of a thin disk can be significantly altered by the feedback of winds. The temperature of a disk gradually decreases with increasing magnetic field; the disk density, surface density, and pressure also change enormously. The lower temperature and higher surface density in the inner disk result in the rapid decrease of radiative efficiency. Thus, the jet efficiency is greatly improved even if the jet power is conventional. Our results can explain the observations quite well. The theoretical maximum jet efficiency of R ? 1000 suggested by our calculations is large enough to explain all of the high jet efficiency in observations, even considering the episodic activity of jets.

  19. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    SciTech Connect (OSTI)

    Mohammed S. Agamy; Maja Harfman-Todorovic; Ahmed Elasser; Robert L. Steigerwald; Juan A. Sabate; Song Chi; Adam J. McCann; Li Zhang; Frank Mueller

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  20. High efficiency thermal storage system for solar plants (HELSOLAR). Final report

    SciTech Connect (OSTI)

    Villarroel, Eduardo; Fernandez-Pello, Carlos; Lenartz, Jeff; Parysek, Karen

    2013-02-27

    The project objective was to develop a high temperature Thermal Storage System (TES) based on graphite and able to provide both economical and technical advantages with respect to existing solutions contributing to increase the share of Concentrated Solar Plants (CSP). One of the main disadvantages of most of the renewable energy systems is their dependence to instantaneous irradiation and, thus, lack of predictability. CSP plants with thermal storage have proved to offer a good solution to this problem although still at an elevated price. The identification of alternative concepts able to work more efficiently would help to speed up the convergence of CSP towards grid parity. One way to reduce costs is to work in a range of temperatures higher than those allowed by the actual molten salt systems, currently the benchmark for TES in CSP. This requires the use of alternative energy storage materials such as graphite, as well as the utilization of Heat Transfer Fluids (HTF) other than molten salts or organic oils. The main technical challenges identified are derived from the high temperatures and significant high pressures, which pose risks such as potential graphite and insulation oxidation, creep, fatigue, corrosion and stress-corrosion in the pipes, leakages in the joints, high blower drivers’ electrical power consumption, thermal compatibility or relative deformations of the different materials. At the end, the main challenge of the project, is to identify a technical solution able to overcome all these problems but still at a competitive cost when compared to already existing thermal storage solutions. Special attention is given to all these issues during this project.

  1. Energy-Efficient, High-Color-Rendering LED Lamps Using Oxyfluoride and Fluoride Phosphors

    SciTech Connect (OSTI)

    Setlur, A.; Radkov, E; Henderson, C; Her, J; Srivastava, A; Karkada, N; Kishore, M; Kumar, N; Aesram, D; et al.

    2010-01-01

    LED lamps using phosphor downconversion can be designed to replace incandescent or halogen sources with a 'warm-white' correlated color temperature (CCT) of 2700-3200 K and a color rendering index (CRI) greater than 90. However, these lamps have efficacies of {approx}70% of standard 'cool-white' LED packages (CCT = 4500-6000 K; CRI = 75-80). In this report, we describe structural and luminescence properties of fluoride and oxyfluoride phosphors, specifically a (Sr,Ca){sub 3}(Al,Si)O{sub 4}(F,O):Ce{sup 3+} yellow-green phosphor and a K{sub 2}TiF{sub 6}:Mn{sup 4+} red phosphor, that can reduce this gap and therefore meet the spectral and efficiency requirements for high-efficacy LED lighting. LED lamps with a warm-white color temperature (3088 K), high CRI (90), and an efficacy of {approx}82 lm/W are demonstrated using these phosphors. This efficacy is {approx}85% of comparable cool-white lamps using typical Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+}-based phosphors, significantly reducing the efficacy gap between warm-white and cool-white LED lamps that use phosphor downconversion.

  2. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    SciTech Connect (OSTI)

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

    2012-07-01

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

  3. High-Efficiency Non-Polar GaN-Based LEDs

    SciTech Connect (OSTI)

    Paul Fini

    2010-11-30

    Inlustra Technologies with subcontractor U.C. Santa Barbara conducted a project with the principle goal of demonstrating high internal quantum efficiency blue (430 nm) and green (540nm) light emitting diodes (LEDs) on low-defect density non-polar GaN wafers. Inlustra pursued the fabrication of smooth thick a-plane and m-plane GaN films, as well as defect reduction techniques such as lateral epitaxial overgrowth (LEO) to uniformly lower dislocation density in these films. Limited free-standing wafers were produced as well. By the end of the reporting period, Inlustra had met its milestone of dislocation reduction to < 5 x 10{sup 6} cm{sup -2}. Stacking faults were still present in appreciable density ({approx} 1 x 10{sup 5} cm{sup -1}), but were not the primary focus of defect reduction since there have been no published studies establishing their detrimental effects on LED performance. Inlustra's LEO progress built a solid foundation upon which further commercial development of GaN substrates will occur. UCSB encountered multiple delays in its LED growth and fabrication efforts due to unavoidable facilities outages imposed by ongoing construction in an area adjacent to the metalorganic chemical vapor deposition (MOCVD) laboratory. This, combined with the large amount of ab initio optimization required for the MOCVD system used during the project, resulted in unsatisfactory LED progress. Although numerous blue-green photoluminescence results were obtained, only a few LED structures exhibited electroluminescence at appreciable levels. UCSB also conducting extensive modeling (led by Prof. Van de Walle) on the problem of non-radiative Auger recombination in GaN-based LED structures, which has been posited to contribute to LED efficiency 'droop' at elevated current density. Unlike previous modeling efforts, UCSB's approach was truly a first-principles ab initio methodology. Building on solid numerical foundations, the Auger recombination rates of In{sub x}Ga{sub 1-x}N alloys were calculated from first-principles density-functional and many-body-perturbation theory. The differing mechanisms of inter- and intra-band recombination were found to affect different parts of the emission spectrum. In the blue to green spectral region and at room temperature the Auger coefficient was calculated to be as large as 2 x 10{sup -30} cm{sup 6} s{sup -1}; in the infrared it is even larger. These results indicated that Auger recombination may be responsible for the loss of quantum efficiency that affects InGaN-based light emitters, whether on non-polar or polar crystal planes.

  4. High efficiency shale oil recovery. Fourth quarterly report, October 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Adams, D.C.

    1992-12-31

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  5. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.; Veliz, M.

    2011-09-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was placed in the engine head. The engine was aggressively operated using a transient test cycle for 200 hours. The valve recession was periodically measured to determine valve performance. Upon completion of the test the valves were removed and returned to Caterpillar for additional assessment. Industrial in-kind support was available throughout the project period. Review of the status and research results were carried out on a regular basis (meetings and telecons) which included direction for future work activities. A significant portion of the industrial support was in the form of information exchange and technical consultation.

  6. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

  7. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device

    SciTech Connect (OSTI)

    Samant, Sanjiv S.; Gopal, Arun

    2006-08-15

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25x25 cm{sup 2} CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240x1024 pixels, 250 {mu}m pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW{sup PLUS}) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed to be used as a predictive model to propose improvements in the optics associated with the light detection. The prototype TSC provides DQE(0)=0.02 with its current imaging geometry, which is an order of magnitude greater than that for commercial VEPID systems and comparable to flat-panel imaging systems. Following optimization in the imaging geometry and the use of a high-end, cooled charge-coupled-device (CCD) camera system, the performance of the TSC is expected to improve even further. Based on our theoretical model, the expected DQE(0)=0.12 for the TSC system with the proposed improvements, which exceeds the performance of current flat-panel EPIDs. The prototype TSC provides high quality imaging even at subMU exposures (typical imaging dose is 0.2 MU per image), which offers the potential for daily patient localization imaging without increasing the weekly dose to the patient. Currently, the TSC is capable of limited frame-rate fluoroscopy for intratreatment visualization of patient motion at {approx}3 frames/second, since the achievable frame rate is significantly reduced by the limitations of the camera-control processor. With optimized processor control, the TSC is expected to be capable of intratreatment imaging exceeding 10 frames/second to monitor patient motion.

  8. Building America Expert Meeting: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  9. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect (OSTI)

    Brand, Larry

    2012-03-01

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit (PARR) team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  10. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    SciTech Connect (OSTI)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

  11. Tandem Microwire Solar Cells for Flexible High Efficiency Low Cost Photovoltaics

    SciTech Connect (OSTI)

    Atwater, Harry A.

    2015-03-10

    This project has developed components of a waferless, flexible, low-cost tandem multijunction III-V/Si microwire array solar cell technology which combines the efficiency of wafered III-V photovoltaic technologies with the process designed to meet the Sunshot object. The project focused on design of lattice-matched GaAsP/SiGe two junction cell design and lattice-mismatched GaInP/Si tandem cell design. Combined electromagnetic simulation/device physics models using realistic microwire tandem structures were developed that predict >22% conversion efficiency for known material parameters, such as tunnel junction structure, window layer structure, absorber lifetimes and optical absorption and these model indicate a clear path to 30% efficiency for high quality III-V heterostructures. SiGe microwire arrays were synthesized via Cu-catalyzed vapor-liquid-solid (VLS) growth with inexpensive chlorosilane and chlorogermance precursors in an atmospheric pressure reactor. SiGe alloy composition in microwires was found to be limited to a maximum of 12% Ge incorporation during chlorogermane growth, due to the melting of the alloy near the solidus composition. Lattice mismatched InGaP double heterostructures were grown by selective epitaxy with a thermal oxide mask on Si microwire substrates using metallorganic vapor phase epitaxy. Transmission electron microscopy (TEM) analysis confirms the growth of individual step graded layers and a high density of defects near the wire/III-V interface. Selective epitaxy was initiated with a low temperature nucleation scheme under “atomic layer epitaxy” or “flow mediated epitaxy” conditions whereby the Ga and P containing precursors are alternately introduced into the reactor to promote layer-bylayer growth. In parallel to our efforts on conformal GaInP heteroepitaxy on selectively masked Si microwires, we explored direct, axial growth of GaAs on Si wire arrays as another route to a tandem junction architecture. We proposed axial, lattice-mismatched growth of a GaAs segment that extrude out of a Si wire via a self-aligned SiO2 hollow cylindrical mask. With this growth strategy, misfit dislocations that would normally form at the GaAs/Si interface during thin film epitaxy may bend over to and thus terminate at the sidewall of the SiO2 tube. A reactive-ion etching technique was employed 1) to remove Si to form a hollow, self-aligned SiO2 cylindrical tube as a growth template for GaAs epitaxy using a vertical, showerhead, low-pressure metal-organic chemical-vapor deposition reactor that was operated at 0.1 atm. Successful epitaxy of axial GaAs wires on non-polar, <111>-oriented Si wire substrates was found at temperatures of ~850C. This and the other III-V/Si heterojunction wire synthesis strategies described here are promising approaches to realize future III-V/Si tandem solar cell designs.

  12. Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger Compressor

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  13. SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  14. NASA's Marshall Space Flight Center Saves Water With High-Efficiency...

    Energy Savers [EERE]

    program that focuses on energy and water efficiency as well as environmental protection. ... MSFC consumes approximately 240 million gallons of potable water annually, supplied ...

  15. Low-Cost, High Efficiency Integration of SSL and Building Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packet Energy Transfer (PET) power-supply design that improved conversion efficiency to ... Lighting Pedestrian Areas Daylighting Digital Dimmer R2R Production of Low-Cost ...

  16. Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  17. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

  18. Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications

    Broader source: Energy.gov [DOE]

    Identify a technical and business approach to accelerate the deployment of light-duty automotive TE HVAC technology, maintain occupant comfort, and improve energy efficiency.

  19. Overview of the DOE High Efficiency Engine Technologies R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. ...

  20. On the Design of High Efficiency Thermoelectric Type I Clathrates through Transition Metal Doping

    SciTech Connect (OSTI)

    Shi, Xun; Yang, Jiong; Yang, Jihui; Salvador, James R.; Bai, Shengqiang; Zhang, Weiqing; Chen, Lidong; Wong-Ng, W.; Wang, Hsin

    2010-01-01

    The lack of high efficiency thermoelectric materials hinders their deployment into wide ranging applications such as power generation from waste heat and solid state heating and cooling, which could lead to significant energy savings. Type I clathrates have recently been identified as prospective thermoelectric materials for power generation purposes due to their very low lattice thermal conductivity values. The maximum thermoelectric figure of merit of almost all type I clathrates is, however, less than 1; and occurs at, or above, 1000 K making them unfavorable especially for intermediate temperature applications. In this report, we demonstrate that transition metal doping introduces charge distortion and lattice defects into these materials which increases the ionized impurity scattering of carriers and point defect scattering of lattice phonons, respectively; leading to an enhanced power factor, reduced lattice thermal conductivity, and therefore improved thermoelectric figure of merit. Most importantly, the band gap of these materials can be tuned between 0.1 eV and 0.5 eV by adjusting the transition metal content, making it possible to design type I clathrates with excellent thermoelectric properties between 500 K and 1000 K.

  1. Improving energy efficiency of Embedded DRAM Caches for High-end Computing Systems

    SciTech Connect (OSTI)

    Mittal, Sparsh; Vetter, Jeffrey S; Li, Dong

    2014-01-01

    With increasing system core-count, the size of last level cache (LLC) has increased and since SRAM consumes high leakage power, power consumption of LLCs is becoming a significant fraction of processor power consumption. To address this, researchers have used embedded DRAM (eDRAM) LLCs which consume low-leakage power. However, eDRAM caches consume a significant amount of energy in the form of refresh energy. In this paper, we propose ESTEEM, an energy saving technique for embedded DRAM caches. ESTEEM uses dynamic cache reconfiguration to turn-off a portion of the cache to save both leakage and refresh energy. It logically divides the cache sets into multiple modules and turns-off possibly different number of ways in each module. Microarchitectural simulations confirm that ESTEEM is effective in improving performance and energy efficiency and provides better results compared to a recently-proposed eDRAM cache energy saving technique, namely Refrint. For single and dual-core simulations, the average saving in memory subsystem (LLC+main memory) on using ESTEEM is 25.8% and 32.6%, respectively and average weighted speedup are 1.09X and 1.22X, respectively. Additional experiments confirm that ESTEEM works well for a wide-range of system parameters.

  2. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    SciTech Connect (OSTI)

    Martini, R.; Kepa, J.; Stesmans, A.; Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I.; Poortmans, J.

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  3. Measuring and tuning energy efficiency on large scale high performance computing platforms.

    SciTech Connect (OSTI)

    Laros, James H., III

    2011-08-01

    Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

  4. Research on stable, high-efficiency, large-area, amorphous-silicon-based submodules

    SciTech Connect (OSTI)

    Delahoy, A.E.; Tonon, T.; Macneil, J. (Chronar Corp., Princeton, NJ (USA))

    1991-06-01

    The primary objective of this subcontract is to develop the technology for same bandgap, amorphous silicon tandem junction photovoltaic modules having an area of at least 900 cm{sup 2} with the goal of achieving an aperture area efficiency of 9%. A further objective is to demonstrate modules that retain 95% of their under standard light soaking conditions. Our approach to the attainment of these objective is based on the following distinctive technologies: (a) in-house deposition of SiO{sub 2}/SnO{sub 2}:F onto soda lime glass by APCVD to provide a textured, transparent electrode, (b) single chamber r.f. flow discharge deposition of the a-Si:H layers onto vertical substrates contained with high package density in a box carrier'' to which the discharge is confined (c) sputter deposition of highly reflecting, ZnO-based back contacts, and (d) laser scribing of the a-Si:H and electrodes with real-time scribe tracking to minimize area loss. Continued development of single junction amorphous silicon was aggressively pursued as proving ground for various optical enhancement schemes, new p-layers, and i-layers quality. We have rigorously demonstrated that the introduction of a transitional i-layer does not impair stability and that the initial gain in performance is retained. We have demonstrated a small improvement in cell stability through a post-fabrication treatment consisting of multiple, intense light flashes followed by sufficient annealing. Finally, several experiments have indicated that long term stability can be improved by overcoating the SnO{sub 2} with ZnO. 25 refs., 17 figs.

  5. TiO2 nanotube arrays grown in ionic liquids: high-efficiency in photocatalysis and pore-widening

    SciTech Connect (OSTI)

    Li, Huaqing; Qu, Jun; Cui, Qingzhou; Xu, Hanbing; Luo, Huimin; Chi, Miaofang; Meisner, Roberta Ann; Wang, Wei; Dai, Sheng

    2011-01-01

    Debris-free, long, well-separated TiO2 nanotube arrays were obtained using an ionic liquid (IL) as electrolyte. The high conductivity of IL resulted in fast pore widening and few contaminants from electrolyte decomposition leading to high photocatalytic efficiency in water splitting.

  6. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    SciTech Connect (OSTI)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000?cd/m{sup 2} corresponding to a current efficiency of 110?cd/A, low efficiency roll-off with 21% at 10?000?cd/m{sup 2} and low turn on voltage of 2.4?V. Especially, the device showed very small color change with the variation of ?x?=?0.02, ?y?=?0.02 in the CIE 1931 coordinates as the viewing angle changes from 0 to 60. The performance of the device is superior to that of the metal/metal cavity structured device.

  7. High efficiency, high quality x-ray optic based on ellipsoidally bent highly oriented pyrolytic graphite crystal for ultrafast x-ray diffraction experiments

    SciTech Connect (OSTI)

    Uschmann, I.; Nothelle, U.; Foerster, E.; Arkadiev, V.; Langhoff, N.; Antonov, A.; Grigorieva, I.; Steinkopf, R.; Gebhardt, A

    2005-08-20

    By the use of a thin highly oriented pyrolytic graphite crystal (HOPG) bent to a high-performance ellipsoidal shape it was possible to focus monochromatic x-rays of 4.5 keV photon energy with an efficiency of 0.0033, which is 30 times larger than for previously used bent crystals. Isotropic TiK{sub a}lpha radiation of a 150 {mu}m source was focused onto a 450 {mu}m spot. The size of the focal spot can be explained by broadening due to the mosaic crystal rocking curve. The rocking curve width (FWHM) of the thin graphite foil was determined to 0.11 deg. . The estimated temporal broadening of an ultrashort Kalpha pulse by the crystal is not larger than 300 fs. These properties make the x-ray optic very attractive for ultrafast time-resolved x-ray measurements.

  8. Development of Low-Cost High Efficiency Commercial Ready Advanced Silicon Solar Cells

    SciTech Connect (OSTI)

    Rohatgi, Ajeet; Zimbardi, Francesco

    2015-01-30

    As a result of the work within this project manufacturing ready devices were developed using 4 different promising Si material technologies with final efficiencies between 20.1% and 21.2%. The starting efficiencies for the FPACE I project were based on best manufactured p-type and n-type cells at the start of the project in 2011. Target efficiencies proposed for the project were 21% for p-type CZ, 20% for p-type cast Si, 21% for n-type and 20% for epi. All Target efficiencies were met or exceeded by the end of the project in 2014. The figure below list displays the 4 highest performing structures for each material with corresponding achieved efficiencies.

  9. High-Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectifier Management for Telecom Central Office and Large Data Center Applications

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet about high-efficiency, wideband, three-phase rectifiers and active rectifier management for ICT centers

  10. High Efficiency Amorphous and Microcrystalline Silicon Based Double-Junction Solar Cells made with Very-High-Frequency Glow Discharge

    SciTech Connect (OSTI)

    Banerjee, Arindam

    2004-10-20

    We have achieved a total-area initial efficiency of 11.47% (active-area efficiency of 12.33%) on a-Si:H/?c-Si:H double-junction structure, where the intrinsic layer bottom cell was made in 50 minutes. On another device in which the bottom cell was made in 30 min, we achieved initial total-area efficiency of 10.58% (active-efficiency of 11.35%). We have shown that the phenomenon of ambient degradation of both ?c-Si:H single-junction and a-Si:H/?c-Si:H double-junction cells can be attributed to impurity diffusion after deposition. Optimization of the plasma parameters led to alleviation of the ambient degradation. Appropriate current matching between the top and bottom component cells has resulted in a stable total-area efficiency of 9.7% (active-area efficiency of 10.42%) on an a-Si:H/?c-Si:H double-junction solar cell in which the deposition time for the ?c-Si:H intrinsic layer deposition was of 30 min.

  11. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    SciTech Connect (OSTI)

    Wu, Y.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q.; Hasan, T.

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5?nm. The dominant emission, detectable at ultralow (<1??A) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25??A current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter?high efficiency Schottky junction-based UV-LEDs.

  12. Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development

    SciTech Connect (OSTI)

    King Wang

    2009-07-31

    The objective of this program is to use a novel nano-composite material system for the OLED anode coating/hole transport layer. The novel anode coating is intended to significantly increase not only hole injection/transport efficiency, but the device energy efficiency as well. Another goal of the Core Technologies Program is the optimization and scale-up of air-stable and cross-linkable novel HTL nano-composite materials synthesis and the development of low-cost, large-scale mist deposition processes for polymer OLED fabrication. This proposed technology holds the promise to substantially improve OLED energy efficiency and lifetime.

  13. Investigating the Interplay between Energy Efficiency and Resilience in High Performance Computing

    SciTech Connect (OSTI)

    Tan, Li; Song, Shuaiwen; Wu, Panruo; Chen, Zizhong; Ge, Rong; Kerbyson, Darren J.

    2015-05-29

    Energy efficiency and resilience are two crucial challenges for HPC systems to reach exascale. While energy efficiency and resilience issues have been extensively studied individually, little has been done to understand the interplay between energy efficiency and resilience for HPC systems. Decreasing the supply voltage associated with a given operating frequency for processors and other CMOS-based components can significantly reduce power consumption. However, this often raises system failure rates and consequently increases application execution time. In this work, we present an energy saving undervolting approach that leverages the mainstream resilience techniques to tolerate the increased failures caused by undervolting.

  14. Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants

    SciTech Connect (OSTI)

    A. D. Rao; J. Francuz; H. Liao; A. Verma; G. S. Samuelsen

    2006-11-01

    Table 1 shows that the systems efficiency, coal (HHV) to power, is 35%. Table 2 summarizes the auxiliary power consumption within the plant. Thermoflex was used to simulate the power block and Aspen Plus the balance of plant. The overall block flow diagram is presented in Figure A1.3-1 and the key unit process flow diagrams are shown in subsequent figures. Stream data are given in Table A1.3-1. Equipment function specifications are provided in Tables A1.3-2 through 17. The overall plant scheme consists of a cryogenic air separation unit supplying 95% purity O{sub 2} to GE type high pressure (HP) total quench gasifiers. The raw gas after scrubbing is treated in a sour shift unit to react the CO with H{sub 2}O to form H{sub 2} and CO{sub 2}. The gas is further treated to remove Hg in a sulfided activated carbon bed. The syngas is desulfurized and decarbonized in a Selexol acid gas removal unit and the decarbonized syngas after humidification and preheat is fired in GE 7H type steam cooled gas turbines. Intermediate pressure (IP) N{sub 2} from the ASU is also supplied to the combustors of the gas turbines as additional diluent for NOx control. A portion of the air required by the ASU is extracted from the gas turbines. The plant consists of the following major process units: (1) Air Separation Unit (ASU); (2) Gasification Unit; (3) CO Shift/Low Temperature Gas Cooling (LTGC) Unit; (4) Acid Gas Removal Unit (AGR) Unit; (5) Fuel Gas Humidification Unit; (6) Carbon Dioxide Compression/Dehydration Unit; (7) Claus Sulfur Recovery/Tail Gas Treating Unit (SRU/TGTU); and (8) Power Block.

  15. Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components

    SciTech Connect (OSTI)

    M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

    2006-03-02

    The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings were determined using composite specimens of ceramic coated onto stainless steel substrates, tested with the coating in compression and the steel in tension. The strength of the coating was determined from an elastic bi-material analysis of the resulting failure of the coating in compression.(3) Altough initial comparisons of the materials would appear to be straight forward from these results, the results of the aging tests of the materials are necessary to insure that trends in properties remain after long term exposure to a diesel environment. Some comparisons can be made, such as the comparison between for lot-to-lot variation. An axial fatigue test to determine the high cycle fatigue behavior of TTBCs was developed at the University of Illinois under funding from this program.(4) A fatigue test apparatus has been designed and initial work performed which demonstrates the ability to provide a routine method of axial testing of coating. The test fixture replaces the normal load frame and fixtures used to transmit the hydraulic oil loading to the sample with the TTBC specimen itself. The TTBC specimen is a composite metal/coating with stainless steel ends. The coating is sprayed onto a mild steel center tube section onto which the stainless steel ends are press fit. The specimen is then machined. After machining, the specimen is placed in an acid bath which etches the mild steel away leaving the TTBC attached to the the stainless steel ends. Plugs are then installed in the ends and the composite specimen loaded in the test fixture where the hydraulic oil pressurizes each end to apply the load. Since oil transmits the load, bending loads are minimized. This test fixture has been modified to allow piston ends to be attached to the specimen which allows tensile loading as well as compressive loading of the specimen. In addition to the room temperature data, specimens have been tested at 800 Degrees C with the surprising result that at high temperature, the TTBC exhibits much higher fatigue strength. Testing of the TTBC using tension/compression cycling has been conducted using the modified test fixture. The goal of this work was to investigate the failure mechanisms of the coating and to determine if tensile and compressive fatigue damage would interact to influence the resulting life of the coating. Coating samples were run with various mean compressive loads and constant tensile loading approximately equal to 90% of the tensile strength of the coating. The results of this testing shows no interaction of failure resulting from the tensile and compressive load. The material fails in tension at the life predicted by the maximum tensile stress or in compression at the life predicted by the compressive stress. This indicates that there are two differing failure mechanisms for the TTBC in tension and compression.

  16. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    SciTech Connect (OSTI)

    Carbary, Lawrence D.; Perkins, Laura L.; Serino, Roland; Preston, Bill; Kosny, Jan

    2014-01-29

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of 2012 compared to previous winters. This project achieved its goal of developing a system that is constructible, offers protection to the VIPs, and meets all performance targets established for the project.

  17. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Proposed two-stage TEG system with half-heusler as the first stage, and Bi2Te3 as the low temperature stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle

  18. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency Clean Diesels

    Broader source: Energy.gov [DOE]

    Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. Highly efficient organic multi-junction solar cells with a thiophene based donor material

    SciTech Connect (OSTI)

    Meerheim, Rico Krner, Christian; Leo, Karl

    2014-08-11

    The efficiency of organic solar cells can be increased by serial stacked subcells even upon using the same absorber material. For the multi-junction devices presented here, we use the small molecule donor material DCV5T-Me. The subcell currents were matched by optical transfer matrix simulation, allowing an efficiency increase from 8.3% for a single junction up to 9.7% for a triple junction cell. The external quantum efficiency of the subcells, measured under appropriate light bias illumination, is spectrally shifted due to the microcavity of the complete stack, resulting in a broadband response and an increased cell current. The increase of the power conversion efficiency upon device stacking is even stronger for large area cells due to higher influence of the resistance of the indium tin oxide anode, emphasizing the advantage of multi-junction devices for large-area applications.

  1. Building America Top Innovations 2013 Profile – High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  2. Unregulated Emissions from High-Efficiency Clean Combustion Modes- ORNL-FEERC

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  3. Study of the technology of the plasma nanostructuring of silicon to form highly efficient emission structures

    SciTech Connect (OSTI)

    Galperin, V. A.; Kitsyuk, E. P.; Pavlov, A. A.; Shamanaev, A. A.

    2015-12-15

    New methods for silicon nanostructuring and the possibility of raising the aspect ratios of the structures being formed are considered. It is shown that the technology developed relates to self-formation methods and is an efficient tool for improving the quality of field-emission cathodes based on carbon nanotubes (CNTs) by increasing the Si–CNT contact area and raising the efficiency of the heat sink.

  4. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program

    SciTech Connect (OSTI)

    2011-02-22

    The National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  5. High-Efficiency Retrofit Lessons for Retail from a SuperTarget: Preprint

    SciTech Connect (OSTI)

    Langner, R.; Deru, M.; Hirsch, A.; Williams, S.

    2013-02-01

    The National Renewable Energy Laboratory partnered with Target under the Commercial Building Program to design and implement a retrofit of a SuperTarget in Thornton, CO. The result was a retrofit design that predicted 37% energy savings over ASHRAE Standard 90.1-2004, and 29% compared to existing (pre-retrofit) store consumption. The largest savings came from energy efficient lighting, energy efficient cooling systems, improved refrigeration, and better control of plug loads.

  6. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect (OSTI)

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  7. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gleber, Sophie -Charlotte; Wojcik, Michael; Liu, Jie; Roehrig, Chris; Cummings, Marvin; Vila-Comamala, Joan; Li, Kenan; Lai, Barry; Shu, Deming; Vogt, Stefan

    2014-11-05

    Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies formorehigh resolution focusing at three different energies, 10, 11.8, and 25 keV.less

  8. The first of a series of high efficiency, high bmep, turbocharged two-stroke cycle diesel engines; the general motors EMD 645FB engine

    SciTech Connect (OSTI)

    Kotlin, J.J.; Dunteman, N.R.; Scott, D.I.; Williams, H.A. Jr.

    1983-01-01

    The current Electro-Motive Division 645 Series turbocharged engines are the Model FB and EC. The FB engine combines the highest thermal efficiency with the highest specific output of any EMD engine to date. The FB Series incorporates 16:1 compression ratio with a fire ring piston and an improved turbocharger design. Engine components included in the FB engine provide very high output levels with exceptional reliability. This paper also describes the performance of the lower rated Model EC engine series which feature high thermal efficiency and utilize many engine components well proven in service and basic to the Model FB Series.

  9. Microsoft Word - WIPP Update 3_25_14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 HEPA Filter Test Moves Forward Los Alamos resumed aerosol tests on WIPP high efficiency air particulate (HEPA) filters after acquiring a larger generator needed to inject the aerosol into the filters. The tests aim to determine the efficiency of the filters, some of which will be scheduled for replacement. Additional HEPA filters have been ordered and will be on-site next week. Before the replacement filters arrive at WIPP they must be shipped from the manufacturer to a Maryland facility

  10. Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

    Broader source: Energy.gov [DOE]

    A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

  11. Technology Assessment: NREL Provides Know-How for Highly Energy-Efficient Data Centers (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-05-01

    NREL leads the effort to change how energy is used worldwide by helping identify and eliminate barriers to energy efficiency and clean energy technology deployment. The laboratory takes a portfolio approach that explores the full range of technology options for developing and implementing innovative energy performance solutions. The Research Support Facility (RSF) data center is a prime example of NREL's capabilities and expertise in energy efficiency. But, more important, its features can be replicated. NREL provides custom technical assistance and training for improved data center performance to help our customers realize cost savings.

  12. High-Efficiency Beam Extraction and Collimation Using Channeling in Very Short Bent Crystals

    SciTech Connect (OSTI)

    Afonin, A. G.; Baranov, V. T.; Biryukov, V. M.; Breese, M. B. H.; Chepegin, V. N.; Chesnokov, Yu. A.; Guidi, V.; Ivanov, Yu. M.; Kotov, V. I.; Martinelli, G.

    2001-08-27

    A silicon crystal was used to channel and extract 70GeV protons from the U-70 accelerator with an efficiency of 85.3{+-}2.8% , as measured for a beam of {approx}10{sup 12} protons directed towards crystals of {approx}2 mm length in spills of {approx}2 s duration. The experimental data follow very well the prediction of Monte Carlo simulations. This demonstration is important in devising a more efficient use of the U-70 accelerator in Protvino and provides crucial support for implementing crystal-assisted slow extraction and collimation in other machines, such as the Tevatron, RHIC, the AGS, the SNS, COSY, and the LHC.

  13. Palladium-catalyzed Br/D exchange of arenes: Selective deuterium incorporation with versatile functional group tolerance and high efficiency

    SciTech Connect (OSTI)

    Zhang, Honghai -Hai; Bonnesen, Peter V.; Hong, Kunlun

    2015-07-13

    There is a facile method for introducing one or more deuterium atoms onto an aromatic nucleus via Br/D exchange with high functional group tolerance and high incorporation efficiency is disclosed. Deuterium-labeled aryl chlorides and aryl borates which could be used as substrates in cross-coupling reactions to construct more complicated deuterium-labeled compounds can also be synthesized by this method.

  14. Palladium-catalyzed Br/D exchange of arenes: Selective deuterium incorporation with versatile functional group tolerance and high efficiency

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Honghai -Hai; Bonnesen, Peter V.; Hong, Kunlun

    2015-01-01

    There is a facile method for introducing one or more deuterium atoms onto an aromatic nucleus via Br/D exchange with high functional group tolerance and high incorporation efficiency is disclosed. Deuterium-labeled aryl chlorides and aryl borates which could be used as substrates in cross-coupling reactions to construct more complicated deuterium-labeled compounds can also be synthesized by this method.

  15. High Efficiency Spectrum Splitting Prototype Submodule Using Commercial CPV Cells (Presentation)

    SciTech Connect (OSTI)

    Keevers, M.; Lau, J.; Green, M.; Thomas, I.; Lasich, J.; King, R.; Emery, K.

    2014-11-01

    This presentation summarizes progress on the design, fabrication and testing of a proof-of-concept, prototype spectrum splitting CPV submodule using commercial CPV cells, aimed at demonstrating an independently confirmed efficiency above 40% at STC (1000 W/m2, AM1.5D ASTM G173-03, 25 degrees C).

  16. High-Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter

    Broader source: Energy.gov [DOE]

    This project is demonstrating an efficient and stable white organic light-emitting diode (WOLED) using a single emitter on a planar glass substrate. Current WOLED technology requires the use of multiple emissive materials, which are expensive to manufacture and also generate color instability and color aging issues, affecting WOLED performance and operational lifetime.

  17. Device Architecture and Lifetime Requirements for High Efficiency Multicrystalline Silicon Solar Cells

    SciTech Connect (OSTI)

    Wagner, H.; Hofstetter, J.; Mitchell, B.; Altermatt, P.; Buonassisi, T.

    2015-03-23

    We present a numerical simulation study of different multicrystalline silicon materials and solar cell architectures to understand today's efficiency limitations and future efficiency possibilities. We compare conventional full-area BSF and PERC solar cells to future cell designs with a gallium phosphide heteroemitter. For all designs, mc-Si materials with different excess carrier lifetime distributions are used as simulation input parameters to capture a broad range of materials. The results show that conventional solar cell designs are sufficient for generalized mean lifetimes between 40 – 90 μs, but do not give a clear advantage in terms of efficiency for higher mean lifetime mc-Si material because they are often limited by recombination in the phosphorus diffused emitter region. Heteroemitter designs instead increase in cell efficiency considerable up to generalized mean lifetimes of 380 μs because they are significantly less limited by recombination in the emitter and the bulk lifetime becomes more important. In conclusion, to benefit from increasing mc-Si lifetime, new cell designs, especially heteroemitter, are desirable.

  18. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect (OSTI)

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  19. Reducing Barriers To The Use of High-Efficiency Lighting Systems

    SciTech Connect (OSTI)

    Peter Morante

    2005-12-31

    With funding from the U.S. Department of Energy (DOE), the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute completed the four-year research project, Reducing Barriers to the Use of High-Efficiency Lighting Systems. The initial objectives were: (1) identifying barriers to widespread penetration of lighting controls in commercial/industrial (C/I) applications that employ fluorescent lamp technologies, and (2) making recommendations to overcome these barriers. The addition of a fourth year expanded the original project objectives to include an examination of the impact on fluorescent lamps from dimming utilizing different lamp electrode heating and dimming ratios. The scope of the project was narrowed to identify barriers to the penetration of lighting controls into commercial-industrial (C/I) applications that employ fluorescent lamp technologies, and to recommend means for overcoming these barriers. Working with lighting manufacturers, specifiers, and installers, the project identified technological and marketing barriers to the widespread use of lighting controls, specifically automatic-off controls, occupancy sensors, photosensors, dimming systems, communication protocols and load-shedding ballasts. The primary barriers identified include cost effectiveness of lighting controls to the building owner, lack of standard communication protocols to allow different part of the control system to communicate effectively, and installation and commissioning issues. Overcoming the identified barriers requires lighting control products on the market to achieve three main goals: (1) Achieve sufficient functionality to meet the key requirements of their main market. (2) Allow significant cost reduction compared to current market standard systems. Cost should consider: hardware capital cost including wiring, design time required by the specifier and the control system manufacturer, installation time required by the electrician, and commissioning time and remedial time required by the electrician and end user. (3) Minimize ongoing perceived overhead costs and inconvenience to the end user, or in other words, systems should be simple to understand and use. In addition, we believe that no lighting controls solution is effective or acceptable unless it contributes to, or does not compromise, the following goals: (1) Productivity--Planning, installation, commissioning, maintenance, and use of controls should not decrease business productivity; (2) Energy savings--Lighting controls should save significant amounts of energy and money in relation to the expense involved in using them (acceptable payback period); and/or (3) Reduced power demand--Society as a whole should benefit from the lowered demand for expensive power and for more natural resources. Discussions of technology barriers and developments are insufficient by themselves to achieve higher penetration of lighting controls in the market place. Technology transfer efforts must play a key role in gaining market acceptance. The LRC developed a technology transfer model to better understand what actions are required and by whom to move any technology toward full market acceptance.

  20. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells: Final Technical Report, 1 September 2001--6 March 2005

    SciTech Connect (OSTI)

    Deng, X.

    2006-01-01

    The objectives for the University of Toledo are to: (1) establish a transferable knowledge and technology base for fabricating high-efficiency triple-junction a-Si-based solar cells, and (2) develop high-rate deposition techniques for the growing a-Si-based and related alloys, including poly-Si, c-Si, a-SiGe, and a-Si films and photovoltaic devices with these materials.