National Library of Energy BETA

Sample records for hep research snowmass

  1. SNOWMASS (DPF Community Summer Study)

    SciTech Connect (OSTI)

    Cronin-Hennessy, et al, Daniel

    2013-08-06

    The 2013 Community Summer Study, known as Snowmass," brought together nearly 700 physicists to identify the critical research directions for the United States particle physics program. Commissioned by the American Physical Society, this meeting was the culmination of intense work over the past year by more than 1000 physicists that defined the most important questions for this field and identified the most promising opportunities to address them. This Snowmass study report is a key resource for setting priorities in particle physics.

  2. Snowmass Computing Frontier I2: Distributed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    panelists from different parts of the grid world: operations, technology, security, big thinking Snowmass report will summarize the discussion Listened carefully to...

  3. pMSSM Benchmark Models for Snowmass 2013 (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Journal Article: pMSSM Benchmark Models for Snowmass 2013 Citation Details In-Document Search Title: pMSSM Benchmark Models for Snowmass 2013 Authors: Cahill-Rowley, Matthew W. ; Hewett, JoAnne L. ; Ismail, Ahmed ; Peskin, Michael E. ; Rizzo, Thomas G. Publication Date: 2013-07-01 OSTI Identifier: 1086969 Report Number(s): SLAC-PUB-15458 arXiv:1305.2419 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: arXiv:1305.2419 Research Org:

  4. Barbara Helland Advanced Scientific Computing Research NERSC-HEP Requirements Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-28, 2012 Barbara Helland Advanced Scientific Computing Research NERSC-HEP Requirements Review 1 Science C ase S tudies d rive d iscussions Program R equirements R eviews  Program offices evaluated every two-three years  Participants include program managers, PI/ Scientists, ESnet/NERSC staff and management  User-driven discussion of science opportunities and needs  What: Instruments and facilities, data scale, computational requirements  How: science process, data analysis,

  5. ILC Comes to Snowmass (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ILC Comes to Snowmass Citation Details In-Document Search Title: ILC Comes to Snowmass No abstract prepared. Authors: Berger, E. ; /Argonne ; Burrows, P. ; /Queen Mary, U. of London ; Monig, K. ; /DESY ; Peskin, M. ; /SLAC ; Royole-Degieux, P. ; /Orsay, IPN Publication Date: 2006-03-01 OSTI Identifier: 876763 Report Number(s): SLAC-REPRINT-2005-160 Journal ID: ISSN 0304-288X; CECOA2; TRN: US0601282 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal

  6. High Energy Physics (HEP) Homepage | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Programs HEP Home High Energy Physics (HEP) HEP Home About Research Facilities Science ... Resources Contact Information High Energy Physics U.S. Department of Energy SC-25...

  7. 2001 Snowmass Accelerator R & D report (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: 2001 Snowmass Accelerator R & D report Citation Details In-Document Search Title: 2001 Snowmass Accelerator R & D report Authors: Chao, Alexander ; Davidson, Ronald ; Dragt, Alexander ; Dugan, Gerald ; Holtkamp, Norbert ; Joshi, Chan ; Roser, Thomas ; Ruth, Ronald ; Seeman, John ; Strait, Jim Publication Date: 2001-09-01 OSTI Identifier: 1131204 Report Number(s): SNOWMASS-2001-MT1001 DOE Contract Number: AC02-07CH11359 Resource Type: Conference Resource Relation: Conference:

  8. REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES.

    SciTech Connect (OSTI)

    CHOU,W.; WEI,J.

    2001-08-14

    The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensity proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade.

  9. Linear Collider Physics Resource Book Snowmass 2001

    SciTech Connect (OSTI)

    Ronan , M.T.

    2001-06-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and built in a few years, it would make sense to wait for the results of each accelerator before planning the next one. Thus, we would wait for the results from the Tevatron before planning the LHC experiments, and wait for the LHC before planning any later stage. In reality accelerators require a long time to construct, and they require such specialized resources and human talent that delay can cripple what would be promising opportunities. In any event, we believe that the case for the linear collider is so compelling and robust that we can justify this facility on the basis of our current knowledge, even before the Tevatron and LHC experiments are done. The physics prospects for the linear collider have been studied intensively for more than a decade, and arguments for the importance of its experimental program have been developed from many different points of view. This book provides an introduction and a guide to this literature. We hope that it will allow physicists new to the consideration of linear collider physics to start from their own personal perspectives and develop their own assessments of the opportunities afforded by a linear collider.

  10. HEP Budget | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget High Energy Physics (HEP) HEP Home About Organization Chart .pdf file (141KB) Staff HEP Budget HEP Committees of Visitors Directions Jobs University Research & National Labs Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More

  11. HEP-NERSCWorkshop.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP/NERSC Requirements Gathering Workshop Yukiko Sekine Program Manager, Facilities Division Advanced Scientific Computing Research Office of Science, DOE November 12 & 13, 2009 Advanced Scientific Computing Research Topics for Discussion * Current approaches to NERSC requirements gathering * Benefits of SC/HQ-centric requirements gathering for NERSC resources in the context of Programmatic mission needs * 2009 NERSC requirements gathering workshop schedule * An example outcome from

  12. pMSSM Benchmark Models for Snowmass 2013 (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Experiment-HEP, ...

  13. HEP Early Career Opportunities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Early Career Opportunities High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts HEP Early Career Opportunities Review Policy / Proposal Guidelines / Reporting Requirements Additional Requirements and Guidance for Digital Data Management Acknowledgements of Federal Support Advisory Committees Community Resources Contact

  14. HEP Supported Workshops & Conferences | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Sponsored Workshops and Conferences High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources News Archives Reports HEP Sponsored Workshops and Conferences Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More Information » Community Resources HEP

  15. 2001 Snowmass Accelerator R & D report (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    2001 Snowmass Accelerator R & D report Citation Details In-Document Search Title: 2001 Snowmass Accelerator R & D report × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public

  16. HEP Exascale Review Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presentations HEP Exascale Review Presentations Sort by: Default | Name | Date (low-high) | Date (high-low) | Source | Category HEP Requirements Review June 10, 2015 | Author(s): Barbara Helland, DOE ASCR | Download File: RequirementsreviewsHellandV3150610.pdf | pdf | 2.1 MB Opening Remarks June 10, 2015 | Author(s): Rob Roser, Salman Habib, Richard Gerber | Download File: HEP-ASCR-Exascale-opening-remarkssh.pdf | pdf | 187 KB P5 Science Drivers: Accelerator Experiments June 10, 2015 |

  17. HEP Committees of Visitors | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committees of Visitors High Energy Physics (HEP) HEP Home About Organization Chart .pdf file (141KB) Staff HEP Budget HEP Committees of Visitors Directions Jobs University Research & National Labs Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E:

  18. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    SciTech Connect (OSTI)

    ABE,T.; DAWSON,S.; HEINEMEYER,S.; MARCIANO,W.; PAIGE,F.; TURCOT,A.S.; ET AL

    2001-05-03

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.

  19. HEP Exascale Review Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | 2.1 MB Opening Remarks June 10, 2015 | Author(s): Rob Roser, Salman Habib, Richard Gerber | Download File: HEP-ASCR-Exascale-opening-remarkssh.pdf | pdf | 187 KB Traditional...

  20. HEP Exascale Review Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | 2.1 MB Opening Remarks June 10, 2015 | Author(s): Rob Roser, Salman Habib, Richard Gerber | Download File: HEP-ASCR-Exascale-opening-remarkssh.pdf | pdf | 187 KB P5 Science...

  1. HEP Exascale Review Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Requirements Review June 10, 2015 | Author(s): Barbara Helland, DOE ASCR | Download File: RequirementsreviewsHellandV3150610.pdf | pdf | 2.1 MB Opening Remarks June 10, 2015 | Author(s): Rob Roser, Salman Habib, Richard Gerber | Download File: HEP-ASCR-Exascale-opening-remarkssh.pdf | pdf | 187 KB Traditional HPC needs: particle accelerators June 10, 2015 | Author(s): Jean-Luc Vay | Download File: DOEExascaleReviewVay.pdf | pdf | 19 MB P5 Science Drivers: Theory June 10, 2015 | Author(s):

  2. HEP Exascale Review Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALCF Future Systems June 10, 2015 | Author(s): Tim Williams | Download File: ExascaleReqsHEPALCF3systems.pdf | pdf | 3.1 MB ASCR Facility Plans June 10, 2015 | Author(s): Sudip Dosanjh | Download File: ASCR-Facilities-IntroHEP.pdf | pdf | 12 MB Computational Cosmology June 10, 2015 | Author(s): Katrin Heitmann | Download File: cosmohepascrheitmann.pdf | pdf | 6.5 MB Data Movement in HEP June 10, 2015 | Author(s): Brian Bockelman | Download File: Exascale-Data-Movement.pdf | pdf | 311 KB ESnet

  3. Benefits of HEP | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benefits of HEP High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Medicine Homeland Security Industry Computing Sciences Workforce Development A Growing List Accelerators for Americas Future External link Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us

  4. HEP-Tsung.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F. S. Tsung, HEP Workshop Project Summary -- Simulations of Plasma Based Accelerator Experiments Around the World. UCLA/IST is making a strong effort to quickly deploy simulation modeling to experimental teams - Laboratory frame simulations of LWFA's in OSIRIS - Boosted frame simulations of LWFA's in OSIRIS - Laboratory frame simulations of LWFA/PWFA's in QuickPIC Plasma based accelerators can achieve accelerating gradients 1,000 x that of those created by conventional accelerators. Recently, 2

  5. Amber_HEP-NERSC.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE HEP Program Perspective HEP/NERSC Workshop November 12, 2009 2 What is High Energy Physics? The High Energy Physics (HEP) program mission is to understand how the universe works at its most fundamental level. We do this by:  Discovering the most elementary constituents of matter and energy,  Probing the interactions between them,  And exploring the basic nature of space and time. 3 The Three Frontiers of HEP  At the Energy Frontier, powerful accelerators are used to create new

  6. cet091110-hep_hpc.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detector Simulation and Analysis Craig E. Tull, Ph.D. Staff Scientist/Group Leader Science Software Systems Group Computational Research Division Berkeley Lab Computing Sciences November 12, 2009 Rockville, MD HEP-HCG | Rockville | November 12, 2009 1. Detector Simulation and Analysis Overview Summarize the projects in your science area and their scientific objectives for the next 3-5 years * Current and past users of NERSC: - ATLAS - LHC accelerator at CERN, Geneva (PI: Ian Hinchliff) - Daya

  7. HEP-NUG-WS-forcray.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP/NERSC/ASCR Requirements Workshop Large Scale Computing and Storage Requirements for High Energy Physics NERSC Lawrence Berkeley National Laboratory Workshop Held Nov 12-13, 2009, Rockville, MD October 28, 2010, NERSC OSF, Oakland, CA! NERSC Requirements Workshops * Goal: Ensure that NERSC continues to provide the world-class facilities and services needed to support DOE Office of Science Research" * Method: Hold workshops to derive and document each DOE SC Office's HPC requirements for

  8. Snowmass. Colorado,

    Office of Scientific and Technical Information (OSTI)

    ... The majoriy of tens were performed to determine the shock EOS propenies of PBXW-128 using an established technique in which a disc of esplosive undergoes normal and flat impact on ...

  9. Snowmass. Colorado,

    Office of Scientific and Technical Information (OSTI)

    data analysis methods, characterization of the test esplosive, and esperimental results. ... The present test program was performed on the Sandia National Laboratories (Albuquerque) ...

  10. HEP Science Network Requirements--Final Report

    SciTech Connect (OSTI)

    Bakken, Jon; Barczyk, Artur; Blatecky, Alan; Boehnlein, Amber; Carlson, Rich; Chekanov, Sergei; Cotter, Steve; Cottrell, Les; Crawford, Glen; Crawford, Matt; Dart, Eli; Dattoria, Vince; Ernst, Michael; Fisk, Ian; Gardner, Rob; Johnston, Bill; Kent, Steve; Lammel, Stephan; Loken, Stewart; Metzger, Joe; Mount, Richard; Ndousse-Fetter, Thomas; Newman, Harvey; Schopf, Jennifer; Sekine, Yukiko; Stone, Alan; Tierney, Brian; Tull, Craig; Zurawski, Jason

    2010-04-27

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2009 ESnet and the Office of High Energy Physics (HEP), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by HEP. The International HEP community has been a leader in data intensive science from the beginning. HEP data sets have historically been the largest of all scientific data sets, and the communty of interest the most distributed. The HEP community was also the first to embrace Grid technologies. The requirements identified at the workshop are summarized below, and described in more detail in the case studies and the Findings section: (1) There will be more LHC Tier-3 sites than orginally thought, and likely more Tier-2 to Tier-2 traffic than was envisioned. It it not yet known what the impact of this will be on ESnet, but we will need to keep an eye on this traffic. (2) The LHC Tier-1 sites (BNL and FNAL) predict the need for 40-50 Gbps of data movement capacity in 2-5 years, and 100-200 Gbps in 5-10 years for HEP program related traffic. Other key HEP sites include LHC Tier-2 and Tier-3 sites, many of which are located at universities. To support the LHC, ESnet must continue its collaborations with university and international networks. (3) While in all cases the deployed 'raw' network bandwidth must exceed the user requirements in order to meet the data transfer and reliability requirements, network engineering for trans-Atlantic connectivity is more complex than network engineering for intra-US connectivity. This is because transoceanic circuits have lower reliability and longer repair times when compared with land-based circuits. Therefore, trans-Atlantic connectivity requires greater deployed bandwidth and diversity to ensure reliability and service continuity of the user-level required data transfer rates. (4) Trans-Atlantic traffic load and patterns must be monitored, and projections adjusted if necessary. There is currently a shutdown planned for the LHC in 2012 that may affect projections of trans-Atlantic bandwidth requirements. (5) There is a significant need for network tuning and troubleshooting during the establishment of new LHC Tier-2 and Tier-3 facilities. ESnet will work with the HEP community to help new sites effectively use the network. (6) SLAC is building the CCD camera for the LSST. This project will require significant bandwidth (up to 30Gbps) to NCSA over the next few years. (7) The accelerator modeling program at SLAC could require the movement of 1PB simulation data sets from the Leadership Computing Facilities at Argonne and Oak Ridge to SLAC. The data sets would need to be moved overnight, and moving 1PB in eight hours requires more than 300Gbps of throughput. This requirement is dependent on the deployment of analysis capabilities at SLAC, and is about five years away. (8) It is difficult to achieve high data transfer throughput to sites in China. Projects that need to transfer data in or out of China are encouraged to deploy test and measurement infrastructure (e.g. perfSONAR) and allow time for performance tuning.

  11. Report of the Snowmass T4 working group on particle sources: Positron sources, anti-proton sources and secondary beams

    SciTech Connect (OSTI)

    N. Mokhov et al.

    2002-12-05

    This report documents the activities of the Snowmass 2001 T4 Particle Sources Working Group. T4 was charged with examining the most challenging aspects of positron sources for linear colliders and antiproton sources for proton-antiproton colliders, and the secondary beams of interest to the physics community that will be available from the next generation of high-energy particle accelerators. The leading issues, limiting technologies, and most important R and D efforts of positron production, antiproton production, and secondary beams are discussed in this paper. A listing of T4 Presentations is included.

  12. HEP Final Project Report

    SciTech Connect (OSTI)

    Chen, Chunhui

    2013-05-21

    In this report, we summarize the research activity funded by the DOE award DE-FG02-12ER41827 (DE-SC0007892) during the funding period (May 1, 2012- March 31, 2013).

  13. HEP Open Funding Opportunities

    Office of Science (SC) Website

    - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 8BF3F791-EE84-4768-BCDF-E...

  14. HEP-Req_SLAC.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Accelerator Modeling Finite Element Approach Lie-Quan Lee SLAC National Accelerator Laboratory Large Scale Computing and Storage Requirements for High Energy Physics NERSC/ASCR/HEP Workshop, Washington D.C., November 12-13, 2009 NERSC Project * Project name: Advanced Modeling for Particle Accelerators * Principle Investigator: Kwok Ko * Participating institutions: - SLAC, BNL, FNAL, ORNL, TJNAF - CW09 Users * ANL * CERN * Cornell University * Los Alamos Lab * Michigan State University * Paul

  15. HEP/NP Requirements Review 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP/NP Requirements Review 2013 Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 ASCR Requirements Review 2015 Previous Reviews HEP/NP Requirements Review 2013 HEP Attendees 2013 FES Requirements Review 2014 BES Requirements Review 2014 Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1

  16. NERSC/DOE HEP Requirements Workshop Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | DOE HEP Overview November 12, 2009 | Author(s): Amber Boehnlein | Workshop Logistics November 12, 2009 | Author(s): Harvey Wasserman | NERSC Role in High Energy Physics...

  17. University Research National Labs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    About » University Research & National Labs » University Research National Labs Alpha Listing High Energy Physics (HEP) HEP Home About Organization Chart .pdf file (141KB) Staff HEP Budget HEP Committees of Visitors Directions Jobs University Research & National Labs University Research National Labs Alpha Listing Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department

  18. Using HEP Technology to Fight Cancer

    SciTech Connect (OSTI)

    Le Du, Patrick

    2004-06-30

    Many engineering and physics HEP groups are now collaborating with medical doctors and biomedical scientists to develop new modern and 'state of the art' radiation instruments for cancer diagnostics and treatment. This presentation will review some of these studies, oriented towards the imaging fields for diagnostic (Positron Emission Tomography and Computed Tomography) and particle therapy for tumor treatment (from proton to light ions). I will try, using appropriate examples, to show what are the challenges and where the development of HEP concepts, tools and techniques can be used.

  19. HEP-v2-for-dist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Case S tudy: C on.nuing S tudies o f P lasma B ased Accelerators ( mp113) * PI: W. B. Mori (UCLA) * Presenter: F. S. Tsung (UCLA) Users: W. An, A. Davidson, V. K. Decyk, (UCLA), J. Vieira, L. Silva (IST), W. Lu (UCLA/ Tsinghua) F. S. Tsung, HEP Workshop HEP R equirements: Con.nuing S tudies o f P lasma B ased A ccelerators ( mp113) (PI: W . B . M ori, P resenter: F . S . T sung) An alternate scheme to accelerate particles using plasmas is the Plasma WakeField Accelerator (PWFA) concept where a

  20. HEP Budget | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Budget Budget Budget Home About Budget by Program ASCR Budget BES Budget BER Budget FES Budget HEP Budget NP Budget WDTS Budget SLI Budget S&S Budget SCPD Budget GAO Audit Reports External Links Contact Information Budget U.S. Department of Energy SC-41/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3541 F: (301) 903-9524 More Information » Budget by Program HEP Budget Print Text Size: A A A FeedbackShare Page The following links contain HEP's budget

  1. HEP Committees of Visitors | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEPAP Home » HEP Committees of Visitors High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings 2016 HEPAP Membership Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors Federal Advisory Committees HEP Home HEP Committees of Visitors Print Text Size: A A A FeedbackShare Page High Energy Physics Advisory Panel (HEPAP) » The links below provide an archive of High Energy Physics (HEP) Committees of Visitors (COV) reports and responses. 2013 HEPAP COV Report on HEP Program

  2. HEP Collider HPC Use, Prospects and Wishes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Collider HPC Use, Prospects and Wishes Tom L eCompte High E nergy P hysics D ivision Argonne N a4onal L aboratory 2 Outline § Overview o f t he S cience § Overview o f H PC u se T oday § Some E xtrapola?ons t o t he F uture I a m a n L HC e xperimenter. T his t alk i s a rranged a round t hat experience - a t t he p resent ? me, w e a re t he o nly m ajor experimental H EP g roup u sing H PCs a t t his s cale. 3 Collider Physics for Non-Physicists § We c ollide p ar?cles t

  3. A high-elevation, multi-proxy biotic and environmental record of MIS 64 from the Ziegler Reservoir fossil site, Snowmass Village, Colorado, USA

    SciTech Connect (OSTI)

    Ian M. Miller; Mitchell A. Plummer; Various Others

    2014-10-01

    In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the oceanatmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 20102011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5

  4. West Foster Creek Expansion Project 2007 HEP Report.

    SciTech Connect (OSTI)

    Ashley, Paul R.

    2008-02-01

    During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

  5. Shillapoo Wildlife Area 2007 Follow-up HEP Report.

    SciTech Connect (OSTI)

    Ashley, Paul R.

    2008-03-01

    In April and May 2007 the Regional HEP Team (RHT) conducted a follow-up HEP analysis on the Egger (612 acres) and Herzog (210 acres) parcels located at the north end of the Shillapoo Wildlife Area. The Egger and Herzog parcels have been managed with Bonneville Power Administration funds since acquired in 1998 and 2001 respectively. Slightly more than 936 habitat units (936.47) or 1.14 HUs per acre was generated as an outcome of the 2007 follow-up HEP surveys. Results included 1.65 black-capped chickadee HUs, 280.57 great blue heron HUs, 581.45 Canada goose HUs, 40 mallard HUs, and 32.80 mink HUs. Introduction A follow-up Habitat Evaluation Procedures (HEP) (USFWS 1980) analysis was conducted by the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) during April and May 2007 to document changes in habitat quality and to determine the number of habitat units (HUs) to credit Bonneville Power Administration (BPA) for providing operation and maintenance (O&M) funds since WDFW acquired the parcels. The 2007 follow-up HEP evaluation was limited to Shillapoo Wildlife Area (SWA) parcels purchased with Bonneville Power Administration funds. D. Budd (pers. comm.) reported WDFW purchased the 612 acre Egger Farms parcel on November 2, 1998 for $1,737,0001 and the 210 acre Herzog acquisition on June 21, 2001 for $500,000 with Memorandum of Agreement funds (BPA and WDFW 1996) as partial fulfillment of BPA's wildlife mitigation obligation for construction of Bonneville and John Day Dams (Rasmussen and Wright 1989). Anticipating the eventual acquisition of the Egger and Herzog properties, WDFW conducted HEP surveys on these lands in 1994 to determine the potential number of habitat units to be credited to BPA. As a result, HEP surveys and habitat unit calculations were completed as much as seven years prior to acquiring the sites. The term 'Shillapoo Wildlife Area' will be used to describe only the Herzog and Egger parcels in this document. Details and results of the HEP analysis are included in this report.

  6. Research | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier Cosmic Frontier Theoretical and Computational Physics Advanced Technology R&D Accelerator Stewardship Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  7. White Paper on DOE-HEP Accelerator Modeling Science Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White Paper on DOE-HEP Accelerator Modeling Science Activities J.-L. Vay, C. G. R. Geddes, A. Koniges - Lawrence Berkeley National Laboratory A. Friedman, D. P. Grote - Lawrence Livermore National Laboratory D. L. Bruhwiler - RadiaSoft LLC J. P. Verboncoeur - Michigan State University Objective Toward the goal of maximizing the impact of computer modeling on the design of future particle accelerators and the development of new accelerator techniques & technologies, this white paper presents

  8. Katrin Heitmann DOE HEP/ASCR Exascale Requirements Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Katrin Heitmann DOE HEP/ASCR Exascale Requirements Review June 10, 2015 Computational Cosmology Katrin Heitmann, Los Alamos National Laboratory Benasque Cosmology Workshop, August 2010 Roles of Cosmological Simulations in DE Survey Science * First part of end-to-end simulation * Control of systematics (1) Cosmology simulations and the survey (2) Solving the Inverse Problem from the LSST Science Book Cosmology Mock catalogs Athmosphere Optics Detector Images * Exploring fundamental physics *

  9. HEP-FCE Working Group on Libraries and Tools

    SciTech Connect (OSTI)

    Borgland, Anders; Elmer, Peter; Kirby, Michael; Patton, Simon; Potekhin, Maxim; Viren, Brett; Yanny, Brian

    2014-12-19

    The High-Energy Physics Forum for Computational Excellence (HEP-FCE) was formed by the Department of Energy as a follow-up to a recent report from the Topical Panel on Computing[1] and the associated P5 recommendation[2]. It is a pilot project distributed across the DOE Labs. During this initial incubation period the Forum is to develop a plan for a robust, long-term organization structure and a functioning web presence for forum activities and outreach, and a study of hardware and software needs across the HEP program. In the following sections we give this working group’s “vision” for aspects and qualities we wish to see in a future HEP-FCE. We then give a prioritized list of technical activities with suggested scoping and deliverables that can be expected to provide cross-experiment benefits. The remaining bulk of the report gives a technical survey of some specific “areas of opportunity” for cross-experiment benefit in the realm of software libs/tools. This survey serves as support for the vision and prioritized list. For each area we describe the ways that cross-experiment benefit is achieved today, as well as describe known failings or pitfalls where such benefit has failed to be achieved and which should be avoided in the future. For both cases, we try to give concrete examples. Each area then ends with an examination of what opportunities exist for improvements in that particular area.

  10. Sensor Compendium - A Snowmass Whitepaper-

    SciTech Connect (OSTI)

    Artuso, M.; Battaglia, M.; Bolla, G.; Bortoletto, D.; Caberera, B.; Carlstrom, J E; Chang, C. L.; Cooper, W.; Da Via, C.; Demarteau, M.; Fast, J.; Frisch, H.

    2013-10-01

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  11. Measurements of the {sup 6}He+p resonant scattering

    SciTech Connect (OSTI)

    Condori, R. Pampa; Lichtenthler, R.; Lpine-Szily, A.; Gasques, L. R.; Morais, M. C.; Scarduelli, V. B.; Leistenschneider, E.; Alcntara-Nez, J. A.; Faria, P. N. de; Mendes Jr, D. R.; Pires, K. C. C.; Shorto, J. M. B.

    2014-11-11

    Measurements of the p({sup 6}He,p) elastic scattering excitation function have been performed in the RIBRAS system using a {sup 6}He secondary beam and a CH{sub 2} polyethylene thick target. The motivation is to observe states of the compound nucleus {sup 7}Li in the excitation energy range of E{sub exc}{sup 7Li}?=?10.8-11.8MeV, where the isobaric analog state of {sup 7}He ground state lies. Excitation functions have been obtained at three laboratory angles ?{sub lab} = 0, 20, and 25 which correspond to ?{sub c.m} = 180, 140, and 130.

  12. Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.

    SciTech Connect (OSTI)

    Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

    1999-07-01

    The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

  13. Detector systems for future HEP experiments (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect SciTech Connect Search Results Journal Article: Detector systems for future HEP experiments Citation Details In-Document Search Title: Detector systems for future HEP experiments Some thoughts are presented on the development of detector systems for future high energy physics experiments. These systems must be able to achieve simultaneous, reliable, high-efficiency identification and measurement of all objects that make up an 'event'. This will require a world-wide collaborative

  14. HEP Committees of Visitors | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Committees of Visitors Deputy Director for Science Programs Deputy Director Home Mission & Functions Deputy Director Biography Organization Staff Presentations & Testimony Federal Advisory Committees Committees of Visitors ASCR Committees of Visitors BES Committees of Visitors BER Committees of Visitors FES Committees of Visitors HEP Committees of Visitors NP Committees of Visitors WDTS Committees of Visitors Contact Information Deputy Director for Science Programs U.S. Department of

  15. Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells

    SciTech Connect (OSTI)

    Sekiya, Mika; Hiraishi, Ako; Touyama, Maiko [Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572 (Japan); Sakamoto, Kazuichi [Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572 (Japan)], E-mail: sakamoto@biol.tsukuba.ac.jp

    2008-10-31

    SREBP1c (sterol regulatory element-binding protein 1c) is a metabolic-syndrome-associated transcription factor that controls fatty acid biosynthesis under glucose/insulin stimulation. Oxidative stress increases lipid accumulation, which promotes the generation of reactive oxygen species (ROS). However, we know little about the role of oxidative stress in fatty acid biosynthesis. To clarify the action of oxidative stress in lipid accumulation via SREBP1c, we examined SREBP1c activity in H{sub 2}O{sub 2}-treated mammalian cells. We introduced a luciferase reporter plasmid carrying the SREBP1c-binding site into HepG2 or COS-7 cells. With increasing H{sub 2}O{sub 2} dose, SREBP1c transcriptional activity increased in HepG2 cells but declined in COS-7 cells. RT-PCR analysis revealed that mRNA expression of SREBP1c gene or of SREBP1c-regulated genes rose H{sub 2}O{sub 2} dose-dependently in HepG2 cells but dropped in COS-7 cells. Lipid accumulation and levels of the nuclear form of SREBP1c increased in H{sub 2}O{sub 2}-stimulated HepG2 cells. ROS may stimulate lipid accumulation in HepG2 cells via SREBP1c activation.

  16. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil ...

  17. Gold-Stud Bump Bonding for HEP Applications (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Gold-Stud Bump Bonding for HEP Applications Citation Details In-Document Search Title: Gold-Stud Bump Bonding for HEP Applications Authors: Tripathi, S.M. ; /UC, Davis ; Holbrook, B. ; /UC, Davis ; Irving, M. ; /UC, Davis ; Lander, R.L. ; /UC, Davis ; Woods, M. ; /UC, Davis ; Brau, J.E. ; /Oregon U. ; Frey, R.E. ; /Oregon U. ; Strom, D. ; /Oregon U. ; Breidenbach, M. ; /SLAC ; Freytag, D. ; /SLAC more »; Haller, G. ; /SLAC ; Herbst, R. ; /SLAC ; Jaros, J. ; /SLAC ; Nelson, T. ;

  18. HepSim: A Repository with Predictions for High-Energy Physics Experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chekanov, S. V.

    2015-01-01

    A file repository for calculations of cross sections and kinematic distributions using Monte Carlo generators for high-energy collisions is discussed. The repository is used to facilitate effective preservation and archiving of data from theoretical calculations and for comparisons with experimental data. The HepSim data library is publicly accessible and includes a number of Monte Carlo event samples with Standard Model predictions for current and future experiments. The HepSim project includes a software package to automate the process of downloading and viewing online Monte Carlo event samples. Data streaming over a network for end-user analysis is discussed.

  19. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil target for proof-of-concept actinium-225 production In addition to our routine isotope products, the LANL Isotope Program is focused on developing the next suite of isotopes and services to meet the Nation's emerging needs. The LANL Isotope Program's R&D strategy is focused on four main areas (see

  20. Research

    SciTech Connect (OSTI)

    1999-10-01

    Subjects covered in this section are: (1) PCAST panel promotes energy research cooperation; (2) Letter issued by ANS urges funding balance in FFTF restart consideration and (3) FESAC panel releases report on priorities and balance.

  1. West Foster Creek 2007 Follow-up Habitat Evaluation Procedures (HEP) Report.

    SciTech Connect (OSTI)

    Ashley, Paul R.

    2008-02-01

    A follow-up habitat evaluation procedures (HEP) analysis was conducted on the West Foster Creek (Smith acquisition) wildlife mitigation site in May 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance and maintain the project site as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The West Foster Creek 2007 follow-up HEP survey generated 2,981.96 habitat units (HU) or 1.51 HUs per acre for a 34% increase (+751.34 HUs) above baseline HU credit (the 1999 baseline HEP survey generated 2,230.62 habitat units or 1.13 HUs per acre). The 2007 follow-up HEP analysis yielded 1,380.26 sharp-tailed grouse (Tympanuchus phasianellus) habitat units, 879.40 mule deer (Odocoileus hemionus) HUs, and 722.29 western meadowlark (Sturnella neglecta) habitat units. Mule deer and sharp-tailed grouse habitat units increased by 346.42 HUs and 470.62 HUs respectively over baseline (1999) survey results due largely to cessation of livestock grazing and subsequent passive restoration. In contrast, the western meadowlark generated slightly fewer habitat units in 2007 (-67.31) than in 1999, because of increased shrub cover, which lowers habitat suitability for that species.

  2. High-Performance Secure Database Access Technologies for HEP Grids

    SciTech Connect (OSTI)

    Matthew Vranicar; John Weicher

    2006-04-17

    The Large Hadron Collider (LHC) at the CERN Laboratory will become the largest scientific instrument in the world when it starts operations in 2007. Large Scale Analysis Computer Systems (computational grids) are required to extract rare signals of new physics from petabytes of LHC detector data. In addition to file-based event data, LHC data processing applications require access to large amounts of data in relational databases: detector conditions, calibrations, etc. U.S. high energy physicists demand efficient performance of grid computing applications in LHC physics research where world-wide remote participation is vital to their success. To empower physicists with data-intensive analysis capabilities a whole hyperinfrastructure of distributed databases cross-cuts a multi-tier hierarchy of computational grids. The crosscutting allows separation of concerns across both the global environment of a federation of computational grids and the local environment of a physicist’s computer used for analysis. Very few efforts are on-going in the area of database and grid integration research. Most of these are outside of the U.S. and rely on traditional approaches to secure database access via an extraneous security layer separate from the database system core, preventing efficient data transfers. Our findings are shared by the Database Access and Integration Services Working Group of the Global Grid Forum, who states that "Research and development activities relating to the Grid have generally focused on applications where data is stored in files. However, in many scientific and commercial domains, database management systems have a central role in data storage, access, organization, authorization, etc, for numerous applications.” There is a clear opportunity for a technological breakthrough, requiring innovative steps to provide high-performance secure database access technologies for grid computing. We believe that an innovative database architecture where the secure authorization is pushed into the database engine will eliminate inefficient data transfer bottlenecks. Furthermore, traditionally separated database and security layers provide an extra vulnerability, leaving a weak clear-text password authorization as the only protection on the database core systems. Due to the legacy limitations of the systems’ security models, the allowed passwords often can not even comply with the DOE password guideline requirements. We see an opportunity for the tight integration of the secure authorization layer with the database server engine resulting in both improved performance and improved security. Phase I has focused on the development of a proof-of-concept prototype using Argonne National Laboratory’s (ANL) Argonne Tandem-Linac Accelerator System (ATLAS) project as a test scenario. By developing a grid-security enabled version of the ATLAS project’s current relation database solution, MySQL, PIOCON Technologies aims to offer a more efficient solution to secure database access.

  3. Langston University - High Energy Physics (LU-HEP)

    SciTech Connect (OSTI)

    Snow, Dr., Joel [Langston Univ., OK (United States)

    2012-08-13

    This final report is presented by Langston University (LU) for the project entitled "Langston University High Energy Physics" (LUHEP) under the direction of principal investigator (PI) and project director Professor Joel Snow. The project encompassed high energy physics research performed at hadron colliders. The PI is a collaborator on the DZero experiment at Fermi National Accelerator Laboratory in Batavia, IL, USA and the ATLAS experiment at CERN in Geneva, Switzerland and was during the entire project period from April 1, 1999 until May 14, 2012. Both experiments seek to understand the fundamental constituents of the physical universe and the forces that govern their interactions. In 1999 as member of the Online Systems group for Run 2 the PI developed a cross-platform Python-based, Graphical User Interface (GUI) application for monitoring and control of EPICS based devices for control room use. This served as a model for other developers to enhance and build on for further monitoring and control tasks written in Python. Subsequently the PI created and developed a cross-platform C++ GUI utilizing a networked client-server paradigm and based on ROOT, the object oriented analysis framework from CERN. The GUI served as a user interface to the Examine tasks running in the D\\O\\ control room which monitored the status and integrity of data taking for Run 2. The PI developed the histogram server/control interface to the GUI client for the EXAMINE processes. The histogram server was built from the ROOT framework and was integrated into the D\\O\\ framework used for online monitoring programs and offline analysis. The PI developed the first implementation of displaying histograms dynamically generated by ROOT in a Web Browser. The PI's work resulted in several talks and papers at international conferences and workshops. The PI established computing software infrastructure at LU and U. Oklahoma (OU) to do analysis of DZero production data and produce simulation data for the experiment. Eventually this included the FNAL SAM data grid system, the SAMGrid (SG) infrastructure, and the Open Science Grid software stacks for computing and storage elements. At the end of 2003 Snow took on the role of global Monte Carlo production coordinator for the D experiment. A role which continues til this day. In January of 2004 Snow started working with the SAMGrid development team to help debug, deploy, and integrate SAMGrid with D Monte Carlo production. Snow installed and configured SG execution and client sites at LUHEP and OUHEP, and a SG scheduler site at LUHEP. The PI developed a python based GUI (DAJ) that acts as a front end for job submission to SAMGrid. The GUI interfaces to the DZero Mone Carlo (MC) request system that uses SAM to manage MC requests by the physics analysis groups. DAJ significantly simplified SG job submission and was deployed in DZero in an effort to increase the user base of SG. The following year was the advent of SAMGrid job submission to the Open Science Grid (OSG) and LHC Computing Grid (LCG) through a forwarding mechanism. The PI oversaw the integration of these grids into the existing production infrastructure. The PI developed an automatic MC (Automc) request processing system capable of operating without user intervention (other than getting grid credentials), and able to submit to any number of sites on various grids. The system manages production at all but 2 sites. The system was deployed at Fermilab and remains operating there today. The PI's work in distributed computing resulted in several talks at international conferences. UTA, OU, and LU were chosen as the collaborating institutions that form the Southwest Tier 2 Center (SWT2) for ATLAS. During the project period the PI contributed to the online and offline software infrastructure through his work with the Run 2 online group, and played a major role in Monte Carlo production for DZero. During the part of the project period in which the PI served as MC production coordinator MC production increased very significantly. In the first year of the PI'

  4. U. S. Government purposes. ANL-HEP-CP-88-42

    Office of Scientific and Technical Information (OSTI)

    authored bv a comracior>oi the U. S. Government under contract No. W-31-109-ENG-38, Accordingly, the U. S. Government retains a nonexclusive, royalty-tree license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes. ANL-HEP-CP-88-42 DE89 003647 NUCLEAR DEPENDENCE OF STRUCTURE FUNCTIONS IN THE SHADOWING REGION OF DEEP INELASTIC SCATTERING* EDMOND L. BERGER and JIANWEI QIU High Energy Physics Division, Argonne Natiorjd

  5. Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2

    Office of Scientific and Technical Information (OSTI)

    hepatoma cell line (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line Citation Details In-Document Search Title: Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line Diterpenoid tanshinones including tanshinone IIA (TIIA), cryptotanshinone (CTS), tanshinone I (TI) and dihydrotanshinone I (DHTI) are the major bioactive components

  6. Habitat Evaluation Procedures (HEP) Report : Hellsgate Project, 1999-2000 Technical Report.

    SciTech Connect (OSTI)

    Berger, Matthew

    2000-05-01

    A Habitat Evaluation Procedure (HEP) study was conducted on lands acquired and/or managed (4,568 acres total) by the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate project) to mitigate some of the losses associated with the original construction and operation of Grand Coulee Dam and inundation of habitats behind the dams. Three separate properties, totaling 2,224 acres were purchased in 1998. One property composed of two separate parcels, mostly grassland lies southeast of the town of Nespelem in Okanogan County (770 acres) and was formerly called the Hinman property. The former Hinman property lies within an area the Tribes have set aside for the protection and preservation of the sharp-tailed grouse (Agency Butte unit). This special management area minus the Hinman acquisition contains 2,388 acres in a long-term lease with the Tribes. The second property lies just south of the Silver Creek turnoff (Ferry County) and is bisected by the Hellsgate Road (part of the Friedlander unit). This parcel contains 60 acres of riparian and conifer forest cover. The third property (now named the Sand Hills unit) acquired for mitigation (1,394 acres) lies within the Hellsgate Reserve in Ferry County. This new acquisition links two existing mitigation parcels (the old Sand Hills parcels and the Lundstrum Flat parcel, all former Kuehne purchases) together forming one large unit. HEP team members included individuals from the Colville Confederated Tribes Fish and Wildlife Department (CTCR), Washington Department of Fish and Wildlife (WDFW), and Bureau of Land Management (BLM). The HEP team conducted a baseline habitat survey using the following HEP species models: mule deer (Odocoileus hemionus), mink (Mustela vison), downy woodpecker (Picoides pubescens), bobcat (Lynx rufus), yellow warbler (Dendroica petechia), and sharp-tailed grouse (Tympanuchus phasianellus columbianus). HEP analysis and results are discussed within the body of the text. The cover types evaluated for this study were grasslands, shrub-steppe, rock, conifer forest and woodland, and riparian. These same cover types were evaluated for other Hellsgate Project acquisitions within the same geographic area. Mule deer habitat on the Sand Hills unit rated good overall for winter food and cover in the shrub-steppe and conifer woodland cover types. Sharp-tailed grouse habitat on the former Hinman property and special management area rated good for nesting and brood rearing in the grassland cover type. Mink habitat on the Friedlander parcel rated poor due to lack of food and cover in and along the riparian cover type. The Downy woodpecker rated poor for food and cover on the Friedlander parcel in the conifer forest cover type. This species also rated poor on the conifer woodland habitat on the Hinman parcel. Yellow warbler habitat on the Agency Butte Special Management area rated very poor due to lack of shrubs for cover and reproduction around the scattered semi/permanent ponds that occur on the area. Bobcat habitat on this same area rated poor due to lack of cover and food. Fragmentation of existing quality habitat is also a problem for both these species. This report is an analysis of baseline habitat conditions on mitigation and managed lands, and provides estimated habitat units for mitigation crediting purposes. In addition, this information will be used to manage these lands for the benefit of wildlife.

  7. Habitat Evaluation Procedures (HEP) Report; Precious Lands Wildlife Management Area, Technical Report 2000-2003.

    SciTech Connect (OSTI)

    Kozusko, Shana

    2003-12-01

    The Nez Perce Tribe (NPT) currently manages a 15,325 acre parcel of land known as the Precious Lands Wildlife Management Area that was purchased as mitigation for losses incurred by construction of the four lower Snake River dams. The Management Area is located in northern Wallowa County, Oregon and southern Asotin County, Washington (Figure 1). It is divided into three management parcels--the Buford parcel is located on Buford Creek and straddles the WA-OR state line, and the Tamarack and Basin parcels are contiguous to each other and located between the Joseph Creek and Cottonwood Creek drainages in Wallowa County, OR. The project was developed under the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501), with funding from the Bonneville Power Administration (BPA). The acreage protected under this contract will be credited to BPA as habitat permanently dedicated to wildlife and wildlife mitigation. A modeling strategy known as Habitat Evaluation Procedure (HEP) was developed by the U.S. Fish and Wildlife Service and adopted by BPA as a habitat equivalency accounting system. Nine wildlife species models were used to evaluate distinct cover type features and provide a measure of habitat quality. Models measure a wide range of life requisite variables for each species and monitor overall trends in vegetation community health and diversity. One product of HEP is an evaluation of habitat quality expressed in Habitat Units (HUs). This HU accounting system is used to determine the amount of credit BPA receives for mitigation lands. After construction of the four lower Snake River dams, a HEP loss assessment was conducted to determine how many Habitat Units were inundated behind the dams. Twelve target species were used in that evaluation: Canada goose, mallard, river otter, downy woodpecker, song sparrow, yellow warbler, marsh wren, western meadowlark, chukar, ring-necked pheasant, California quail, and mule deer. The U.S. Army Corp of Engineers and the Washington Department of fish and Wildlife subsequently purchased numerous properties to mitigate for the identified Snake River losses. These projects, however, were not sufficient to mitigate for all the HU's lost. The Northwest Power Planning Council amended the remaining 26,774 HU's into their 1994-1995 Fish and Wildlife Program as being unmitigated (NPPC 2000), which allowed the Nez Perce Tribe to contract with BPA to provide HU's through the Precious Lands Project. The Precious Lands project contains a different composition of cover types than those assessed during the lower Snake loss assessment. For example, no mallard or Canada goose habitat exists on Precious Lands but the area does contain conifer forest, which was not present on the area inundated by dam construction. These cover type differences have resulted in a slightly different suite of species for the current HEP assessment. Target species for Precious Lands are downy woodpecker, yellow warbler, song sparrow, California Quail, mule deer, sharp-tailed grouse (brood rearing), west em meadowlark, beaver, and black-capped chickadee. This list is a reflection of the available cover types and the management objectives of the Nez Perce Tribe. For example, chukar was not used in the present assessment because it is an introduced Eurasian game bird that does not provide an accurate representation of the ecological health of the native grasslands it was supposed to represent. Initial model runs using the chukar confirmed this suspicion so the brood-rearing section of the sharp-tailed grouse model was used instead. Additionally, the beaver model was used in place of the river otter model because the otter model used in the loss assessment was not a published model, was overly simplistic, and did not provide an accurate assessment of riparian condition. The beaver model, however, provides a detailed evaluation of overstory class structure that the NPT felt was a good compliment to the yellow warbler and song sparrow models that evaluated understory shrub layers. Overall, such substitutions should result in a more accurate evaluation of the ecological conditions on Precious Lands, and provide better information for decision making. A baseline HEP analysis was initiated on the Precious Lands in 2000, and data collection continued throughout the 2001 and 2002 field seasons. In the future, HEP analysis will be used to evaluate habitat changes resulting from management activities. Repeat surveys will be useful in assessing long-term trends in plant community health, weed encroachment, wildlife limiting factors, habitat degradation, and establishing desired future condition guidelines for the management program.

  8. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    SciTech Connect (OSTI)

    Childs, Allen

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland rover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2} plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program. Longer-term benefits of protection and enhancement activities include increases in native species diversity and plant community resiliency in all cover types. Watershed conditions, including floodplain/riparian, and instream habitat quality should improve as well providing multiple benefits for terrestrial and aquatic resources. While such benefits are not necessarily recognized by HEP models and reflected in the number of habitat units generated, they are consistent with the NPPC Fish and Wildlife Program.

  9. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect (OSTI)

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ? Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ? The impairment of mitochondrial functions may contribute to the enhanced toxicity. ? Inhibition of JNK activity attenuated palmitate/ CsA induced toxicity. ? Palmitate sensitizes cells to the toxicity induced by CsA at therapeutic exposure. ? Elevated free fatty acids may predispose the patients to CsA-induced toxicity.

  10. Directions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    HEP Budget HEP Committees of Visitors Directions Jobs University Research & National Labs Research Facilities Science ... Directions to HEP Quick Links Office of Science HEP symmetry ...

  11. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROSCa{sup 2+}JNK mitochondrial pathways

    SciTech Connect (OSTI)

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao; Cheng, Dai; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-01-24

    Highlights: EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. EPA induced HepG2 cells apoptosis through ROSCa{sup 2+}JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n?3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N?,N?-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP and activation of caspase-9 and caspase-3. These results suggest that EPA induces apoptosis through ROSCa{sup 2+}JNK mitochondrial pathways.

  12. OSBP-related protein 8 (ORP8) interacts with Homo sapiens sperm associated antigen 5 (SPAG5) and mediates oxysterol interference of HepG2 cell cycle

    SciTech Connect (OSTI)

    Zhong, Wenbin; Zhou, You; Li, Jiwei; Mysore, Raghavendra; Luo, Wei; Li, Shiqian; Chang, Mau-Sun; Olkkonen, Vesa M.; Yan, Daoguang

    2014-04-01

    We earlier identified OSBP-related protein 8 (ORP8) as an endoplasmic reticulum/nuclear envelope oxysterol-binding protein implicated in cellular lipid homeostasis, migration, and organization of the microtubule cytoskeleton. Here, a yeast two-hybrid screen identified Homo sapiens sperm associated antigen 5 (SPAG5)/Astrin as interaction partner of ORP8. The putative interaction was further confirmed by pull-down and co-immunoprecipitation assays. ORP8 did not colocalize with kinetochore-associated SPAG5 in mitotic HepG2 or HuH7 cells, but overexpressed ORP8 was capable of recruiting SPAG5 onto endoplasmic reticulum membranes in interphase cells. In our experiments, 25-hydroxycholesterol (25OHC) retarded the HepG2 cell cycle, causing accumulation in G2/M phase; ORP8 overexpression resulted in the same phenotype. Importantly, ORP8 knock-down dramatically inhibited the oxysterol effect on HepG2 cell cycle, suggesting a mediating role of ORP8. Furthermore, knock-down of SPAG5 significantly reduced the effects of both ORP8 overexpression and 25OHC on the cell cycle, placing SPAG5 downstream of the two cell-cycle interfering factors. Taken together, the present results suggest that ORP8 may via SPAG5 mediate oxysterol interference of the HepG2 cell cycle. - Highlights: The oxysterol-binding protein ORP8 was found to interact with the mitotic regulator SPAG5/Astrin. Treatment of HepG2 cells with 25-hydroxycholesterol caused cell cycle retardation in G2/M. ORP8 overexpression caused a similar G2/M accumulation, and ORP8 knock-down reversed the 25-hydroxycholesterol effect. Reduction of cellular of SPAG5/Astrin reversed the cell cycle effects of both 25-hydroxycholesterol and ORP8 overexpression. Our results suggest that ORP8 mediates via SPAG5/Astrin the oxysterol interference of HepG2 cell cycle.

  13. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    SciTech Connect (OSTI)

    Wang, Huiling; Li, Ridong; Li, Li; Ge, Zemei; Zhou, Rouli; Li, Runtao

    2015-02-27

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{sub 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.

  14. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Nanoscale Science Research Centers (NSRCs) User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact

  15. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  16. Internalisation and multiple phosphorylation of γ-Conglutin, the lupin seed glycaemia-lowering protein, in HepG2 cells

    SciTech Connect (OSTI)

    Capraro, Jessica; Magni, Chiara; Faoro, Franco; Maffi, Dario; Scarafoni, Alessio; Tedeschi, Gabriella; Maffioli, Elisa; Parolari, Anna; Manzoni, Cristina; Lovati, Maria Rosa; Duranti, Marcello

    2013-08-09

    Highlights: •A glycaemia-reducing lupin seed protein is internalized by HepG2 cells. •The protein accumulates in the cytosol in an intact form. •The internalized protein is multiply phosphorylated. -- Abstract: Lupin seed γ-Conglutin is a protein capable of reducing glycaemia in mammalians and increasing glucose uptake by model cells. This work investigated whether γ-Conglutin is internalised into the target cells and undergoes any covalent change during the process, as a first step to understanding its mechanism of action. To this purpose, γ-Conglutin-treated and untreated HepG2 cells were submitted to confocal and transmission electron microscopy. Immune-revelation of γ-Conglutin at various intervals revealed its accumulation inside the cytosol. In parallel, 2D-electrophoresis of the cell lysates and antibody reaction of the blotted maps showed the presence of the protein intact subunits inside the treated cells, whilest no trace of the protein was found in the control cells. However, γ-Conglutin-related spots with an unexpectedly low pI were also observed in the maps. These spots were excised, trypsin-treated and submitted to MS/MS spectrometric analysis. The presence of phosphorylated amino acids was detected. These findings, by showing that γ-Conglutin is internalised by HepG2 cells in an intact form and is modified by multiple phosphorylation, open the way to the understanding of the lupin γ-Conglutin insulin-mimetic activity.

  17. Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director 9:00 HEP Program Office Research Directions James Siegrist HEP Associate Director 9:30 NERSC Role in HEP Research & Emerging Technologies Sudip Dosanjh NERSC...

  18. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    SciTech Connect (OSTI)

    Atienzar, Franck A.; Novik, Eric I.; Gerets, Helga H.; Parekh, Amit; Delatour, Claude; Cardenas, Alvaro; MacDonald, James; Yarmush, Martin L.; Dhalluin, Stphane

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: Importance of species differences in drug development. Relevance of dog co-culture model for metabolism and toxicology studies. Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  19. HEP Exascale Review Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALCF Future Systems June 10, 2015 | Author(s): Tim Williams | Download File: ExascaleReqsHEPALCF3systems.pdf | pdf | 3.1 MB ASCR Facility Plans June 10, 2015 | Author(s): Sudip...

  20. hep.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview * 3 NERSC repositories - mp107: O(10) NSFNASADOEinternational suborbital experiments - planck: current ESANASA satellite mission (with DOE IAA) - cmbpol: proposed ...

  1. HEP Science Highlights

    Office of Science (SC) Website

    neutrinos and antineutrinos are the same particle, and to see if neutrinos respect a natural symmetry, the reversal of time, need to be carried out. The discovery also...

  2. HEP_Exaflop_brower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Reviews: High Energy Physics Rich Brower (SciDAC software co-director/CUDA fellow) June 10, 2015 Lattice Field Theory Strong Dynamics in Standard Model and Beyond * PRECISION P HYSICS * M ul/---scale A LGORITHMS * Parallel S OFTWARE/HARDWARE 3 P art U SQCD P rogram 2 Algorithm Application Architecture Hard to find Sweet Spot CM-2 100 Mflops (1989) BF/Q 1 Pflops (2012) Future GPU/PHI architectures will soon get us there! What about spectacular Algorithms/Software? 10 7 increase in 25

  3. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    3 High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits ... Reports HEP Sponsored Workshops and Conferences Contact Information High Energy Physics ...

  4. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    5 High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits ... Reports HEP Sponsored Workshops and Conferences Contact Information High Energy Physics ...

  5. Research Mentors

    Broader source: Energy.gov [DOE]

    Research mentors are scientists and engineers committed to support and guide the applicant's research activities during the Research Award. Research mentors must be currently conducting or...

  6. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit

    SciTech Connect (OSTI)

    Boylan, Joan M.; Salomon, Arthur R.; Tantravahi, Umadevi; Gruppuso, Philip A.

    2015-07-15

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair.

  7. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells

    SciTech Connect (OSTI)

    Chen, Yue; Zhang, Shunfen; Zhou, Tianyan; Huang, Chaoqun; McLaughlin, Alicia; Chen, Guangping

    2013-04-15

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT. - Highlights: ► Liver X receptor α mediated genistein induction of hSULT2A1 in Hep G2 cells. ► LXRα and RXRα dimerization further activated this induction. ► Western blot results agreed well with luciferase reporter gene assay results. ► LXRs gene silencing significantly decreased hSULT2A1 expression. ► ChIP analysis suggested that genistein enhances hLXRα binding to the hSULT2A1 promoter.

  8. Plasmatic concentration of organochlorine lindane acts as metabolic disruptors in HepG2 liver cell line by inducing mitochondrial disorder

    SciTech Connect (OSTI)

    Benarbia, Mohammed el Amine; Macherel, David; Faure, Sbastien; Jacques, Caroline; Andriantsitohaina, Ramaroson; Malthiry, Yves

    2013-10-15

    Lindane (LD) is a persistent environmental pollutant that has been the subject of several toxicological studies. However, concentrations used in most of the reported studies were relatively higher than those found in the blood of the contaminated area residents and effects of low concentrations remain poorly investigated. Moreover, effects on cell metabolism and mitochondrial function of exposure to LD have received little attention. This study was designed to explore the effects of low concentrations of LD on cellular metabolism and mitochondrial function, using the hepatocarcinoma cell line HepG2. Cells were exposed to LD for 24, 48 and 72 h and different parameters linked with mitochondrial regulation and energy metabolism were analyzed. Despite having any impact on cellular viability, exposure to LD at plasmatic concentrations led to an increase of maximal respiratory capacity, complex I activity, intracellular ATP and NO release but decreased uncoupled respiration to ATP synthesis and medium lactate levels. In addition, LD exposure resulted in the upregulation of mitochondrial biogenesis genes. We suggest that, at plasmatic concentrations, LD acts as a metabolic disruptor through impaired mitochondrial function and regulation with an impact on cellular energetic metabolism. In addition, we propose that a cellular assay based on the analysis of mitochondria function, such as described here for LD, may be applicable for larger studies on the effects of low concentrations of xenobiotics, because of the exquisite sensitivity of this organelle. - Highlights: Our data clearly demonstrated in HepG2 cells that exposure at plasmatic low concentrations of LD were able to: Impair mitochondrial function Caused alteration on nucleo-mitochondrial cross-talk Increase nitric oxide release and protein nitration Impair cellular energetic metabolism and lipid accumulation.

  9. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  10. Research Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Gallery Research Gallery Exhibits in this gallery capture Laboratory's leading-edge research in many areas of science and technology to help solve national problems...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Area of Research: Journal Reference: N/A

  12. Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Office of Science Abstracts Database Research Highlights Summaries Research Highlights Members of ARM's science team are major contributors to radiation and cloud research. ARM investigators publish about 150 refereed journal articles per year, and ARM data are used in many studies published by other scientific

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotstayn, L., Commonwealth Scientific and Industrial Research Organization Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Rotstayn, L.,...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Researchers Report Reliable Method for Monitoring Soil Moisture Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Surface Properties...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing and Comparing the Modified Anomalous Diffraction Approximation Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud DistributionsCharacterizations...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Schmid, B., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: ARM Climate Research...

  17. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research Projects Joint Los Alamos National LaboratoryUCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Ensemble Simulation with the ARM IOP Data Submitter: Xu, K., NASA - Langley Research Center Area of Research: General Circulation and Single Column ModelsParameterizations ...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Measurements Validate New Satellite Multilayer Cloud Remote Sensing Method Submitter: Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Terrestrial Radiation Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research: General Circulation and Single Column Models...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fog and Rain in the Amazon For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight The diurnal and seasonal...

  2. Research Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Mission Research Mission NETL's Office of Research & Development is a national resource for fossil energy research and development, with a mission to create and expand the knowledge base that enables the safe, sustainable utilization of our abundant, domestic energy resources. In support of that mission, the onsite research effort: Develops solutions to key barriers to the implementation of emerging energy technologies. Explores transformational new concepts for next generation

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPartICus Submitter: Mishra, S., DOE - SunShot Initiative, AAAS S&T Policy Fellow Mitchell, D. L., Desert Research Institute Area of Research: General Circulation and Single...

  4. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Thermodynamics Affect Radiative Impact of Deep Convective Cloud Systems Submitter: Jensen, M., Brookhaven National Laboratory Area of Research: Atmospheric...

  6. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LaboratoryNational Security Education Center Menu NSEC Educational Programs Los Alamos Dynamics Summer School Science of Signatures Advanced Studies Institute Judicial Science School SHM Data Sets and Software Research Projects Current Projects Past Projects Publications NSEC » Engineering Institute » Research Projects » Joint Los Alamos National Laboratory/UCSD research projects Past Research Projects Previous collaborations between Los Alamos National Laboratory and the University of

  7. Research Facility,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Research Experience in Carbon Sequestration 2013 Now Accepting Applications Research Experience in Carbon Sequestration 2013 Now Accepting Applications March 12, 2013 - 1:43pm Addthis Washington, DC - Graduate students and early career professionals can gain hands-on field research experience in areas related to carbon capture and storage (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. The initiative, supported by DOE's Office

  8. Current Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and Analysis Computing Center (TRACC) features a state-of-the-art massively parallel computer system, advanced scientific visualization capability, high-speed network

  9. Research Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Research Library: delivering essential knowledge services for national security sciences since 1947 About the Research Library Mission We deliver agile, responsive knowledge services, connecting people with information, technology and resources. Vision Essential knowledge services for national security sciences. The Research Library provides extensive collections of books, journals, databases, patents and technical reports and offers literature searching, training and outreach services. The

  10. UNIRIB: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Mission Focus Photo Courtesy of Oak Ridge National Laboratory The central mission focus of the University Radioactive Ion Beam (UNIRIB) consortium is to perform nuclear physics research, and provide training and education. UNIRIB member universities have gained decades of frontline research experience through the use of the world-class facilities at Oak Ridge National Laboratory (ORNL) and other national laboratories across the United States. The UNIRIB consortium is tasked by the U.S.

  11. Environmental Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dist. Category UC-l 1, 13 DE@ 010764 Health & Environmental Research Summary of Accomplishments Prepared by Office of Energy Research /U.S. Department of Energy Washington, D.C. 20585 Reprinted April 1984 Published by Technical Information Center/U.S. Department of Energy The purpose of this brief narrative is to foster an awareness of a publicly funded health and environmental research program chartered nearly forty years ago, of its contributions toward the national goal of safe and

  12. PNNL: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research at PNNL Research is our business With an unwavering focus on our missions, scientists and engineers at PNNL deliver science and technology. We conduct basic research that advances the frontiers of science. We translate discoveries into tools and technologies in science, energy, the environment and national security. For more than four decades, our experts have teamed with government, industry and academia to tackle some of the toughest problems facing our nation. The result: We're

  13. Research | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Researching energy systems and technologies-and the science behind them-for a future powered by clean energy. Subscribe Stay connected with the latest news and research breakthroughs from NREL. Sign up now Photo of the U.S. Department of Energy's Energy Systems Integration Facility at NREL. Energy Systems Integration Facility The only facility in the nation focused on utility-scale clean energy grid integration. Learn More National Bioenergy Center National Center for Photovoltaics

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Partial Mechanistic Understanding of the North American Monsoon Download a printable PDF Submitter: Erfani, E., Desert Research Institute Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Erfani E and DL Mitchell. 2014. "A partial mechanistic understanding of the North American monsoon." Journal of Geophysical Research - Atmospheres, 119(23), 10.1002/2014JD022038. a) Dependence of

  15. Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights Research Highlights Highlighting some of the extraordinary work in Chemistry Division Contact Us Division Leader David Morris Deputy Division Leader Mark McCleskey (505) 667-4457 Deputy Division Leader (acting) George Havrilla Division Office (505) 667-4457 Email 2016 Physicist wins early-career award for isotope work 5/12 LANL researchers shine more light on the mechanism of one of the most efficient artificial catalytic reactions developed to date 4/20 3D-printing

  16. Researchers - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Programs Research, Development, Test, and Evaluation Forty-eight final optic assemblies are symmetrically distributed around the upper and lower hemispheres of the target chamber of the National Ignition Facility at Lawrence Livermore National Laboratory The Office of Research, Development, Test, and Evaluation directs research, development, computer simulation, and inertial confinement fusion activities to maintain the safety, security and effectiveness of the nuclear weapons

  17. Research Approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Approach Research Approach NETL's onsite research approach is based on integrating simulation tools with targeted experimental validation at real-life conditions in the lab and in the field. Simulation tools increase confidence in designs, thereby reducing the risk associated with incorporating multiple innovative technologies, realizing scale-up, and predicting the behavior and properties of real materials. The scientific underpinnings encoded into these models also ensure that

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Back to Basics: Theoretical Studies on Storm Clouds and Implications for Modeling For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Storms associated with deep convection are a key component of weather and climate. For example, they produce a large share of precipitation that falls to the Earth's surface, and their anvil shields act as a thermal blanket on the planet. To understand the behavior of these storms, researchers

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Delamere, J. S., Tech-X Corporation Mlawer, E. J., Atmospheric & Environmental Research, Inc. Collins, W. D., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Radiative Processes Journal Reference: Iacono, MJ, JS Delamere, EJ

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climatology of Aerosol Optical Depth in North-Central Oklahoma: 1992-2008 Download a printable PDF Submitter: Michalsky, J. J., Cooperative Institute for Research in Environmental Sciences Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Michalsky J, F Denn, C Flynn, G Hodges, P Kiedron, A Koontz, J Schlemmer, and SE Schwartz. 2010. "Climatology of aerosol optical depth in north-central Oklahoma: 1992-2008." Journal of Geophysical Research -

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Differences Between Tropical and Trade-Wind Shallow Cumuli Download a printable PDF Submitter: Ghate, V. P., Argonne National Laboratory Area of Research: Vertical Velocity Working...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nucleation Events Download a printable PDF Submitter: McMurry, P. ., University of Minnesota Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal ...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Australian Wet Seasons as Revealed by ARM Disdrometer Research Facilities (Darwin, Australia)." Journal of Applied Meteorology and Climatology, , http:dx.doi.org10.1175...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Research Facility located near Lamont, Oklahoma. Measurements from ARM Raman lidar and Doppler radar instruments were used to both initialize and evaluate the model. A...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Doppler spectra. Over the North Slope of Alaska, researchers used cloud radar Doppler velocity spectra, lidar backscattering coefficients and depolarization ratios, and...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zhang, Q., University of California, Davis Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Lose Download a printable PDF Submitter: Laskin, A., Pacific Northwest National Laboratory Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: NA...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Westwater, E. R., University of Colorado Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference:...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties, Radiative Processes...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Xie...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Sea Spray on the Thermodynamics of the Hurricane Boundary Layer Download a printable PDF Submitter: Khain, A., The Hebrew University of Jerusalem Area of Research:...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of MBL Cloud Properties over the Azores Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Radiation Processes Working Group(s): Cloud...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... data collected from 18 flights during FIRE-ACE, the researchers analyzed measurements of drop and ice crystal particle size distribution, water content, and icing rate. ...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: de Boer, G., University of Colorado, BoulderCIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: de...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to improve the representation of the autoconversion process in atmospheric models. This research also reveals major deficiencies of existing empirical schemes (see the figure)....

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simple Equation Is Good Enough Submitter: Barnard, J., University of Nevada Reno Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Paine SN, DD Turner, ...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Roobik" Is Part of the Answer, Not a Puzzle Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): ...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Turner DD. ...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, DD Turner, VP ...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mlawer, E. J., Atmospheric & Environmental Research, Inc. Turner, D. D., National Oceanic ... Journal Reference: Cady-Pereira, K, M Shephard, E Mlawer, D Turner, S Clough, and T ...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Size Distributions with Help from Satellites Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute d'Entremont, R. P., Atmospheric and Environmental...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Radiation Effects on Sea Ice Loss Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud DistributionsCharacterizations...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Dust Composition on Cloud Droplet Formation Download a printable PDF Submitter: Chuang, C., Lawrence Livermore National Laboratory Area of Research: Aerosol Properties...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning on the Prairies Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Long-Term Impacts of Aerosols on the Vertical Development of Clouds and Precipitation Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research:...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Complexity of Arctic Clouds Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Albedo Observations in the Southern Great Plains Submitter: Lamb, P. J., University of Oklahoma Area of Research: Aerosol Properties Working Group(s): Aerosol Journal...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    over the MJO Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Cloud DistributionsCharacterizations...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Get Organized Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Cloud Processes Working Group(s): Cloud...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Into the (Cold) Pool Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: General Circulation and Single Column...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and climate change. The study, funded in large part by DOE's Atmospheric System Research program and recently discussed in the Quarterly Journal of the Royal Meteorological...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: NA Figure 1. MFRSR data from the TWP site (970910) Figure 2. Aerosol...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Climate Models Submitter: Zhang, G., University of California, San Diego Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference:...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Experiment Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and GCM Simulations Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Rasch, P., Pacific Northwest National Laboratory Ivanova, D., Embry-Riddle...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Download a printable PDF Submitter: Moffet, R., University of the Pacific Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: O'Brien...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Applied Optics,...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Life Cycle Journal...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Long, C. N., NOAA Global Monitoring DivisionCIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Riihimaki...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Ronfeld, D., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Properties Journal Reference: NA The...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Laskin, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Aerosol Life Cycle...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printable PDF Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s):...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Lidar Observations of Aerosol Humidification Near Clouds Submitter: Ferrare, R. A., NASA LaRC Area of Research: Aerosol Properties Working Group(s): Aerosol Journal ...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Successful for Measuring Thickness of Broken Clouds Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Cloud DistributionsCharacterizations ...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP Observations Help Validate Soil Temperature Simulations Download a printable PDF Submitter: Huang, M., Pacific Northwest National Laboratory Area of Research: Surface...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhao Y, GG Mace, and JM Comstock. 2011. "The occurrence of particle ...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Wilson J, D Imre, J Bernek, M Shrivastava, and A Zelenyuk. 2014. "Evaporation ...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-Distribution Method for a SW Radiative Transfer Model Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anvil cirrus: A comparison between in situ aircraft measurements and ground-based Doppler cloud radar retrievals." Geophysical Research Letters, 41, doi:10.1002...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Doppler Radar to Characterize Cloud Parameters Download a printable PDF Submitter: Kogan, Y., University of Oklahoma - CIMMS Area of Research: Cloud Distributions...

  16. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment ... engineering programs and the pit manufacturing program. STUDENT RESOURCES Precollege ...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Lin, Y., Geophysical Fluid Dynamics Laboratory Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ARM Data Submitter: Somerville, R. C., Scripps Institution of Oceanography Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Aerosol Life Cycle,...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fog and Rain in the Amazon Download a printable PDF Submitter: Gentine, P., Columbia University Sobel, A., Columbia University Area of Research: Cloud-Aerosol-Precipitation...

  1. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Flux of Sea-Spray Aerosol Download a printable PDF Submitter: Schwartz, S. E., Brookhaven National Laboratory Area of Research: Aerosol Properties Working Group(s):...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Sites Enable Assessment of Cluster Analysis for Identifying Cloud Regimes Submitter: Jakob, C., Monash University Area of Research: Cloud DistributionsCharacterizations...

  4. Research | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Mission Statement The objective of PARC is to understand the basic scientific principles that underpin the efficient functioning of natural photosynthetic antenna systems as a basis for design of biohybrid and bioinspired architectures for next-generation systems for solar-energy conversion. Scientific Themes Through basic scientific research, PARC seeks to understand the principles of light harvesting and energy funneling as applied to The PARC Vision Graphic three

  5. Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper

    SciTech Connect (OSTI)

    Akimov, D. Moscow Engineering Physics Institute , Russia; Bernstein, A. Lawrence Livermore National Laboratory; BarbeauP.,; Barton, P. J. Lawrence Berkeley National Laboratory; Bolozdynya, A. Moscow Engineering Physics Institute , Russia; Cabrera-Palmer, B. Sandia National Laboratories; Cavanna, F. Yale University; Cianciolo, Vince ORNL; Collar, J. University of Chicago, Enrico Fermi Institute; Cooper, R. J. Indiana University; Dean, D. J. Oak Ridge National Laboratory; Efremenko, Yuri University of Tennessee and Oak Ridge National Laboratory; Etenko, A. Moscow Engineering Physics Institute , Russia; Fields, N. University of Chicago, Enrico Fermi Institute; Foxe, M. Pennsylvania State University, University Park, PA; Figueroa-Feliciano, E. Massachusetts Institute of Technology; Fomin, N. University of Tennessee, Knoxville; Gallmeier, F. Oak Ridge National Laboratory; Garishvili, I. University of Tennessee, Knoxville; Gerling, M. Sandia National Laboratories; Green, M. University of North Carolina, Chapel Hill; Greene, Geoffrey University of Tennessee, Knoxville; Hatzikoutelis, A. University of Tennessee, Knoxville; Henning, Reyco University of North Carolina, Chapel Hill; Hix, R. University of Tennessee and Oak Ridge National Laboratory; Hogan, D. University of California-Berkeley; Hornback, D. University of Tennessee and Oak Ridge National Laboratory; Jovanovic, I. Pennsylvania State University, University Park, PA; Hossbach, T. Pacific Northwest National Laboratory; Iverson, Erik B ORNL; Klein, S. R. Lawrence Berkeley National Laboratory; Khromov, A. Moscow Engineering Physics Institute , Russia; Link, J. Virginia Polytechnic Institute and State University; Louis, W. Los Alamos National Laboratory; Lu, W. Oak Ridge National Laboratory; Mauger, C. Los Alamos National Laboratory; Marleau, P. Sandia National Laboratories; Markoff, D. North Carolina Central University, Durham; Martin, R. D. University of South Dakota; Mueller, Paul Edward ORNL; Newby, J. Oak Ridge National Laboratory; Orrell, John L. Pacific Northwest National Laboratory; O'Shaughnessy, C. University of North Carolina, Chapel Hill; Penttila, Seppo Oak Ridge National Laboratory; Patton, K. North Carolina State University, Raleigh; Poon, A. W. Lawrence Berkeley National Laboratory; Radford, David C ORNL; Reyna, D. Sandia National Laboratories; Ray, H. University of Florida, Gainesville; Scholberg, K. Duke University, North Carolina; Sosnovtsev, V. Moscow Engineering Physics Institute , Russia; Tayloe, R. Indiana University; Vetter, K. Lawrence Berkeley National Laboratory; Virtue, C. Laurentian University, Canada; Wilkerson, J. University of North Carolina, Chapel Hill; Yoo, J. Fermi National Accelerator Laboratory; Yu, Chang-Hong ORNL

    2013-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS).

  6. IntroHEP-compressed.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASCR Facility Plans --- 1 --- June 1 0, 2 015 Projections on Moore's Law and other trends Figure c ourtesy o f Kunle O lukotun, Lance H ammond, H erb S u=er, a nd Burton S mith, 2 004 2 0 1 10 100 1000 10000 100000 1000000 10000000 1970 1975 1980 1985 1990 1995 2000 2005 2010 Transistors (Thousands) Frequency (MHz) Power (W) Cores 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1/1/1992 1/1/1996 1/1/2000 1/1/2004 1/1/2008 1/1/2012 1/1/2016 1/1/2020 1/1/2024 Energy per Flop (pJ) Heavyweight

  7. HEP BPI QCI Testing Reminders

    Energy Savers [EERE]

    HEAT Loan Minimum Standards and Requirements HEAT Loan Minimum Standards and Requirements Presents additional resources on loan standards and requirements from Elise Avers' presentation on HEAT Loan Minimum Standards and Requirements. PDF icon Minimum Standards and Requirements More Documents & Publications Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners STEP Financial Incentives Summary Energy Saver 101: Home

  8. COMP-1h.EPS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tents Tires Toilet seats Tool boxes Tool racks Toothbrushes Toothpaste Transparent tape Trash bags TV cabinets Umbrellas Unbreakable dishes Upholstery Vaporizers Vinyl flooring...

  9. COMP-1h.EPS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ballpoint pens Bandages Beach umbrellas Boats Cameras Candles Candies and gum Car battery cases Car enamel Cassettes Caulking CDscomputer disks Cellular phones Clothesline Coffee ...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observing Warm Clouds in 3D Using ARM Scanning Cloud Radars and a Novel Ensemble Method Download a printable PDF Submitter: Fielding, M. D., University of Reading Area of Research:...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Research Improves Longwave Radiative Transfer Models Submitter: Turner, D. D., ... resolution infrared radiance. D.D. Turner, D.C. Tobin, S.A. Clough, P.D. Brown, ...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Climate Models: Results from TC4 and ISDAC Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Mishra, S., DOE - SunShot Initiative, AAAS S&T...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: China S, G Kulkarni, BV Scarnato, N Sharma, M Pekour, JE Shilling, J Wilson, A ...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To Rain or Not to Rain...Aerosols May Be the Answer Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During MC3E Download a printable PDF Submitter: Pu, Z., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Pu Z and C...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wu D, B Xi, Z...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Modeling Journal Reference: Naud, C, A Del Genio, GG Mace, S Benson, EE Clothiaux, and P Kollias. ...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal Reference: Wang X, KN Liou, SS Ou, GG Mace, and M Deng. 2009. "Remote sensing of ...

  19. Caterpillar Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Capabilities Research Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy, to supercomputing. thumbnail of Bioscience At Los Alamos, scientists and engineers are working to unlock many of the mechanisms found in nature to improve humanity's ability to battle diseases, create new forms of environmentally friendly and abundant

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Decade and Counting Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Long CN, SA McFarlane, A Del Genio, P Minnis, TP Ackerman, J Mather, J Comstock, GG Mace, M Jensen, and C Jakob. 2013. "ARM research in the equatorial western Pacific - a decade and counting." Bulletin of the American Meteorological Society, 94(5),

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Campaign Resource Allocation Using Statistical Decision Analysis Download a printable PDF Submitter: Hanlon, C., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Hanlon CJ, JB Stefik, AA Small, J Verlinde, and GS Young. 2013. "Statistical decision analysis for flight decision support: The SPartICus campaign." Journal of Geophysical Research - Atmospheres, , . ACCEPTED. In many atmospheric science field

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pointing Scanning Cloud Radar in the Right Direction Download a printable PDF Submitter: Fielding, M. D., University of Reading Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Fielding MD, JC Chiu, RJ Hogan, and G Feingold. 2013. "3D cloud reconstructions: Evaluation of scanning radar scan strategy with a view to surface shortwave radiation closure." Journal of Geophysical Research -

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Brass Ring of Climate Modeling Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ghan SJ, SJ Smith, M Wang, K Zhang, K Pringle, K Carslaw, J Pierce, S Bauer, and P Adams. 2013. "A simple model of global aerosol indirect effects." Journal of Geophysical Research - Atmospheres, 118, 1-20. The simple model of aerosol effects on clouds

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Digging Into Climate Models' Needs with SPADE Download a printable PDF Submitter: Gustafson, W. I., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Gustafson WI, PL Ma, H Xiao, B Singh, PJ Rasch, and JD Fast. 2013. "The separate physics and dynamics experiment (SPADE) framework for determining resolution awareness: A case study of microphysics." Journal of Geophysical Research -

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Invisible Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Photo

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nailing Down Ice in a Cloud Model Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Comstock JM, A Protat, SA McFarlane, J Delanoë, and M Deng. 2013. "Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm differences: Analysis using 3 Years of ARM data at Darwin, Australia." Journal of Geophysical Research -

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Overambitious Other Carbon Submitter: Church, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Song C, M Gyawali, RA Zaveri, JE Shilling, and WP Arnott. 2013. "Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity." Journal of Geophysical Research - Atmospheres, 118, doi:10.1002/jgrd.50767. Time-dependent Mass Absorption

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational Analysis of Land-Atmosphere Coupling for Climate Model Evaluation Download a printable PDF Submitter: Phillips, T. J., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Phillips TJ and SA Klein. 2014. "Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains." Journal of Geophysical Research -

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBL Aerosol Properties and Their Impact on CCN at the Azores-AMF Site Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Logan T, B Xi, and X Dong. 2014. "Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores." Journal of Geophysical Research - Atmospheres, 119(8),

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accuracy of GFS and ECMWF Hurricane Sandy Track Forecasts Dependent on Cumulus Parameterization Download a printable PDF Submitter: Bassill, N. P., University of Utah Zipser, E., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Bassill NP. 2014. "Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization." Geophysical Research Letters, ,

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Masters the Misunderstood Mixed-Phase Cloud Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, AS Ackerman, A Avramov, A Cheng, J Fan, AM Fridland, S Ghan, J Harrington, C Hoose, A Korolev, GM McFarquhar, H Morrison, M Paukert, J Savre, BJ Shipway, MD Shupe, A Solomon, and K

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Are Increases in Thunderstorm Activity in Southeast China Related to Air Pollution? Download a printable PDF Submitter: Li, Z., UALBANY Cribb, M. C., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Yang X and Z Li. 2014. "Increases in thunderstorm activity and relationships with air pollution in southeast China." Journal of Geophysical Research - Atmospheres, 119(4),

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying the Importance of Cold Pool Mechanisms for Convection Triggering Download a printable PDF Submitter: Kuang, Z., Harvard University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Torri G, Z Kuang, and Y Tian. 2015. "Mechanisms for convection triggering by cold pools." Geophysical Research Letters, , . ACCEPTED. Horizontal sections of (left) potential temperature and (right) water vapor specific humidity at 25 m from the model surface.

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observed Relations Between Snowfall Microphysics and Triple-Frequency Radar Observations Download a printable PDF Submitter: Kneifel, S., McGill University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kneifel S, A von Lerber, J Tiira, D Moisseev, P Kollias, and J Leinonen. 2015. "Observed relations between snowfall microphysics and triple-frequency radar measurements." Journal of Geophysical Research - Atmospheres, 120(12),

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Well Are Shallow Convective Clouds Simulated in the CAM5 Model? Download a printable PDF Submitter: Chandra, A. S., University of Miami Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Chandra AS, C Zhang, SA Klein, and H Ma. 2015. "Low-cloud characteristics over the tropical western Pacific from ARM observations and CAM5 simulations." Journal of Geophysical Research - Atmospheres, 120, 52402, doi:10.1002/2015JD02.

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stereo Photogrammetry Reveals Substantial Drag on Cloud Thermals Download a printable PDF Submitter: Romps, D., Lawrence Berkeley National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Romps DM and R Oktem. 2015. "Stereo photogrammetry reveals substantial drag on cloud thermals." Geophysical Research Letters, , doi:10.1002/2015GL064009. ONLINE. A 14-minute sequence of cloud growth as observed by a camera located at the MAST Academy

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Cloud and Aerosol Properties from the ARM Raman Lidar Download a printable PDF Submitter: Thorsen, T., NASA - Langley Research Center Fu, Q., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Thorsen TJ, Q Fu, RK Newsom, DD Turner, and JM Comstock. 2015. "Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, Part I: Feature detection." Journal of

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus Download a printable PDF Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Feingold, G., NOAA - Earth System Research Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, G Feingold, and MD Shupe. 2015. "The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Arctic Mixed-Phase Cloud Structure Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qiu S, X Dong, B Xi, and F Li. 2015. "Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations." Journal of Geophysical Research - Atmospheres, 120, 10.1002/2014JD023022.

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Particle Projected Area- and Mass-Dimension Expressions for Cirrus Clouds Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Erfani E and DL Mitchell. 2015. "Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing." Atmospheric Chemistry and Physics, 15(20),

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scale-Aware Parameterization of Liquid Cloud Inhomogeneity and Its Impact on Simulated Climate Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Xie X and M Zhang. 2015. "Scale-aware parameterization of liquid cloud inhomogeneity and its impact on simulated climate in CESM." Journal of Geophysical Research - Atmospheres, 120(16),

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Fire to Ice Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni GR, M Nandasiri, A Zelenyuk, J Beranek, N Madaan, A Devaraj, V Shutthanandan, S Thevuthasan, and T Varga. 2015. "Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles." Geophysical Research Letters, 42(8), doi:10.1002/2015GL063270. Tons of

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Changes Clouds' Ice Crystal Genesis Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kulkarni GR, K Zhang, C Zhao, M Nandasiri, V Shutthanandan, X Liu, L Berg, and J Fast. 2015. "Ice formation on nitric acid-coated dust particles: Laboratory and modeling studies." Journal of Geophysical Research - Atmospheres, 120(15), doi:10.1002/2014JD022637.

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bell-Shaped Curve Captures Cloud System Variability Submitter: Lamb, P. J., University of Oklahoma Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Journal of Geophysical Research, 110, D18205, doi:10.1029/2005JD006158. Figure 1. Reflectivity standard deviation PDFs, resampled as a function of timescale and contoured by equal values of probability, show an increase in variability with scale. The PDF modes lie mostly along the mean

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Birth and Growth of an Aerosol Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A An aerosol particle journey. New modeling approaches developed by a research team led by PNNL show how aerosol particles are born and grow to affect the atmosphere and ultimately climate. Tiny atmospheric aerosols are some of the most highly

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dependence of Entrainment in Shallow Cumulus Convection on Vertical Velocity and Distance to Cloud Edge PI Contact: Kuang, Z., Harvard University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Tian Y and Z Kuang. 2016. "Dependence of entrainment in shallow cumulus convection on vertical velocity and distance to cloud edge." Geophysical Research Letters, , doi:10.1002/2016GL069005. ONLINE. Percentage change in (a) vertical velocity, (b) distance

  8. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Joint Los Alamos National Laboratory/UCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email "Since 2003, LANL has funded numerous collaborative

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Birth and Growth of an Aerosol For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Tiny atmospheric aerosols are some of the most highly studied particles connected with Planet Earth, yet questions remain on how they are formed and how they affect climate. Now Pacific Northwest National Laboratory scientists have developed new approaches to accurately model the birth and growth of these important aerosols. "Most

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying Error in the Radiative Forcing of the First Aerosol Indirect Effect Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Submitted to Geophysical Research Letters, 06-27-2007. Radiative forcing of aerosol indirect as function of CCN number density and LWP in units of W/m2 per 5% IE error. A survey of recently published works shows that values used to represent the magnitude of

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Atmospheric Aerosols Using MFRSR Measurements Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Alexandrov, MD, AA Lacis, BE Carlson, and B Cairns. 2007. "Characterization of atmospheric aerosols using MFRSR measurements." (Journal of Geophysical Research 113, DO8204. Sample spectral optical depths of atmospheric constituents in 300 - 900 nm spectral range:

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Science Applications of AERI Measurements Submitter: Smith, W. L., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: DeSlover, D. H. 1996. Analysis of Visible and Infrared Cirrus Cloud Optical Properties Using High Spectral Resolution Remote Sensing, M.S. Thesis, University of Wisconsin - Madison. Ho, S.-P. 1997. Atmospheric Profiles From Simultaneous Observations of Upwelling and Downwelling Spectral Radiance, Ph.D.

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model Download a printable PDF Submitter: Zhang, G., University of California, San Diego Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Li, G, and GJ Zhang. 2008. "Understanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric Research Community Atmosphere Model (CAM3) during El

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wide Angle Imaging Lidar: Active Optical Sensor Technology for Ground-Based Probing of Dense Clouds Download a printable PDF Submitter: Davis, A. B., Jet Propulsion Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Davis, AB. 2008. "Multiple-scattering lidar from both sides of the clouds: Addressing internal structure." Journal of Geophysical Research 113, D14S10, doi:10.1029/2007JD009666. Figure 1. Lidar

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minimal Shortwave Anomalous Absorption Found over ACRF Sites Download a printable PDF Submitter: Dong, X., University of North Dakota Minnis, P., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Dong, X, BA Wielicki, B Xi, Y Hu, GG Mace, S Benson, F Rose, S Kato, T Charlock, and P Minnis. 2008. "Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprisingly Large Contribution of Small Marine Clouds to Cloud Fraction and Reflectance Download a printable PDF Submitter: Oreopoulos, L., NASA Feingold, G., NOAA - Earth System Research Laboratory Koren, I., Weizmann Institute of Science Remer, L., NASA - GSFC, Laboratory for Atmospheres Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Cloud Properties Journal Reference: Koren, I, L Oreopoulos, G Feingold, LA Remer, and O Altaratz. 2008. "How small

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosol Measurements on Cloudy Days: a New Method Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Kassianov, EI, and M Ovtchinnikov. 2008. "On reflectance ratios and aerosol optical depth retrieval in the presence of cumulus clouds." Geophysical Research Letters doi:10.1029/2008GL033231.

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection and Retrieval of Cirrus Clouds in the Tropics from AIRS: Validation from ARM Data Submitter: Yue, Q., Jet Propulsion Laboratory/California Institute of Technology Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yue Q and KN Liou. 2009. "Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra." Geophysical Research Letters, 36, L05810,

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Influence of Parameterized Ice Habit on Simulated Mixed-Phase Arctic Clouds Download a printable PDF Submitter: Harrington, J. Y., Pennsylvania State University Avramov, A., Columbia University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Avramov A and JY Harrington. 2010. "Influence of parameterized ice habit on simulated mixed phase Arctic clouds." Journal of Geophysical Research - Atmospheres, 115, D03205,

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Brighten Up the Sky Near Them Download a printable PDF Submitter: Varnai, T., University of Maryland, Baltimore County/JCEST Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Varnai T and A Marshak. 2009. "MODIS observations of enhanced clear sky reflectance near clouds." Geophysical Research Letters, 36, L06807, doi:10.1029/2008GL037089. Figure 1. Illustration of clouds enhancing the

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Ground-Based Millimeter-Wave Observations During RHUBC I Submitter: Cimini, D., CETEMPS - Dipartimento di Fisica Westwater, E. R., University of Colorado Payne, V., Jet Propulsion Laboratory/California Institute of Technology Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Exner, M., Radiometrics Corporation Cadeddu, M. P., Argonne National Laboratory Area of Research: Radiation Processes Working Group(s):

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method for Retrieving Cloud Heights from Satellite Data Download a printable PDF Submitter: Chang, F., Science Systems and Applications, Inc. Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chang F, P Minnis, B Lin, MM Khaiyer, R Palikonda, and DA Spangenberg. 2010. "A modified method for inferring cloud top height using GOES-12 imager 10.7- and 13.3-µm data." Journal of

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, EI Kassianov, CN Long, and DL Mills. 2011. "Surface summertime radiative forcing by shallow cumuli at the ARM SGP." Journal of Geophysical Research - Atmospheres, 116, D01202, 10.1029/2010JD014593. Histogram of hourly average shortwave

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adoption of RRTMG in the NCAR CAM5 and CESM1 Global Climate Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Collins, W. D., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A Figure 1. Shortwave cloud forcing for three versions of the NCAR Community Atmosphere Model (CAM) with CERES

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations of the First Aerosol Indirect Effect in Shallow Cumuli Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Berg LK, CM Berkowitz, JC Barnard, G Senum, and SR Springston. 2011. "Observations of the first aerosol indirect effect in shallow cumuli." Geophysical Research Letters, 38, L03809, 10.1029/2010GL046047. Mean value of (a)

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cumuli Impact on Solar Radiation at Surface: Spectral Changes Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, J Barnard, LK Berg, CN Long, and C Flynn. 2011. "Shortwave spectral radiative forcing of cumulus clouds from surface observations." Geophysical Research Letters, 38, L07801,

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Possible Impact of Homogeneous Freezing Nucleation on in Situ Measurements Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Mishra, S., DOE - SunShot Initiative, AAAS S&T Policy Fellow Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mitchell DL, S Mishra, and RP Lawson. 2011. Cirrus Clouds and Climate Engineering: New Findings on Ice Nucleation and Theoretical

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Putting the Pieces Together Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Fan J, S Ghan, M Ovchinnikov, X Liu, P Rasch, and A Korolev. 2011. "Representation of arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study." Journal of Geophysical Research - Atmospheres, 116,

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Science Applications of AERI Measurements: 1997 Progress Submitter: Smith, W. L., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1. Figs. 1a and 1b contain rms differences from 72 radiosondes for AERI retrievals (blue), GOES retrievals (black), and AERI+GOES retrievals (red) for temperature and mixing ratio respectively during the 1997 Water Vapor IOP. A measure of meteorological the variability of the

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Recent Evaluation of the MT_CKD Model of Continuum Absorption Download a printable PDF Submitter: Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi:

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution + Storm Clouds = Warmer Atmosphere Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Fan J, D Rosenfeld, Y Ding, L Leung, and Z Li. 2012. "Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection." Geophysical Research Letters, 39, L09806,

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Catch Aerosols in the Act Download a printable PDF Submitter: Wang, M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wang M, S Ghan, X Liu, TS L'Ecuyer, K Zhang, H Morrison, M Ovchinnikov, R Easter, R Marchand, D Chand, Y Qian, and JE Penner. 2012. "Constraining cloud lifetime effects of aerosols using A-Train satellite observations." Geophysical Research Letters, 39, L15709, doi:

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Invisible" Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Daily averaged values of (a, b) the direct

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying the Magnitude of Anomalous Solar Absorption Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1 Spurred by a series of articles published in 1995 claiming solar absorption in cloudy atmospheres far exceeded model predictions, Atmospheric Radiation Measurement (ARM) Program researchers at the Southern Great Plains (SGP) site in Oklahoma

  15. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Kotwal, Ashutosh V.; Goshaw, Al; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, #12;ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22; ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water-#12;lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  16. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22;{mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China's Aerosol Malady Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Qiu Y, Q Wang, and F Hu. 2012. "Shouxian aerosol radiative properties measured by DOE AMF and compared with CERES-MODIS." Advanced Materials Research, 518-523(2), doi:10.4028/www.scientific.net/AMR.518-523.1973. Tiananmen tower enveloped by heavy fog and haze in January 2013. Many of

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Madden-Julian Oscillation Heating: to Tilt or Not to Tilt Download a printable PDF Submitter: Schumacher, C., Texas A&M University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lappen C and C Schumacher. 2014. "The role of tilted heating in the evolution of the MJO." Journal of Geophysical Research - Atmospheres, , 10.1002/2013JD020638. ACCEPTED. In this figure, November through April wavenumber frequency spectrum of OLR (colors) and 850

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of CERES-MODIS Cloud Retrievals Using the Azores Data Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Xi B, P Minnis, and S Sun-Mack. 2014. "Comparison of marine boundary layer cloud properties from CERES-MODIS edition 4 and DOE ARM AMF measurements at the Azores." Journal of Geophysical Research - Atmospheres, 119, doi:10.1002/2014JD021813. Figure 1. The ARM

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Warming Due to Soot and Smoke? Maybe Not. Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J.E., S.Y. Zhang, and C.C. Chuang, Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108(D21), 4657, doi:10.1029/2003JD003409, 2003. New research results from the Department of Energy's Atmospheric Radiation Measurement (ARM) Program suggest that fossil fuel soot emissions and biomass smoke may

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Achieves Milestone in Global Cloud Properties Research Submitter: Revercomb, H. E., University of Wisconsin, Madison Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Knuteson, R.O., Best, F.A., Dedecker, R.G., Feltz, W.F., Revercomb, H.E., and Tobin, D.C., 2004: "10 Years of AERI Data from the DOE ARM Southern Great Plains Site," In Proceedings from the Fourteenth ARM Science Team Meeting, U.S. Department of Energy,Washington,

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bimodal CCN Spectra Download a printable PDF Submitter: Hudson, J. G., Desert Research Institute Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A Figure 1. Differential CCN concentrations (per cm3) against critical supersaturation (Sc) for MASE below cloud CCN spectra for each of the 8 modal categories. (a) cat 1, (b) cat 2, (c) cat 3, (d) cat 4, (e) cat 5, (f) cat 6, (g) cat 7, (h) cat 8. Sc in percent for, Hoppel minima are

  3. RESEARCH QUARTERLY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESEARCH QUARTERLY First Quarter 2015 Th 90 Ac 89 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103 Glenn T. Seaborg Institute for Transactinium Science/Los Alamos National Laboratory Actinide Research Quarterly About the cover The crystalline structure of plutonium in its elemental form, and in molecules and compounds with other elements, is the basis for understanding the intriguing chemistry, physics, and engineering of plutonium molecules and compounds. Colored

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM M-PACE Data Used to Evaluate and Improve Arctic Mixed-Phase Clouds Simulated in Climate Models Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S, J Boyle, SA Klein, X Liu, and S Ghan. 2008. "Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE." Journal of Geophysical Research 113,

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Apparent Bluing of Aerosols Near Clouds Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak, A, G Wen, JA Coakley, LA Remer, NG Loeb, and RF Cahalan. 2008. "A simple model of the cloud adjacency effect and the apparent bluing of aerosols near clouds." Journal of Geophysical Research 113, D14S17, doi: 10.1029/2007JD009196. (upper panel) A schematic

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Sensing of Mineral Dust Using AERI Download a printable PDF Submitter: Hansell, R. A., University of California, Los Angeles Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Hansell R, KN Liou, SC Ou, SC Tsay, Q Ji, and JS Reid. 2008. "Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study." Journal of Geophysical Research - Atmospheres, 113, D18202, doi:10.1029/2008JD010246. BT sensitivity to dust

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Observations of Convective Boundary Layer Using Insect Returns at SGP Download a printable PDF Submitter: Chandra, A. S., McGill University Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Chandra AS, P Kollias, SE Giangrande, and SA Klein. 2010. "Long-term observations of the convective boundary layer using insect radar returns at the SGP ARM Climate Research Facility." Journal of Climate, 23, 5699-5714. Example of time-height mapping

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the Treatment of Radiation in Climate Models Download a printable PDF Submitter: Delamere, J. S., Tech-X Corporation Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Delamere JS, SA Clough, VH Payne, EJ Mlawer, DD Turner, and RR Gamache. 2010. "A far-infrared radiative closure study in the Arctic: Application to water vapor." Journal of Geophysical Research - Atmospheres, 115, D17106, 10.1029/2009JD012968. The

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predicting Arctic Sea Ice Loss Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Liu X, S Xie, J Boyle, SA Klein, X Shi, Z Wang, W Lin, SJ Ghan, M Earle, PS Liu, and A Zelenyuk. 2011. "Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations." Journal of Geophysical Research, 116, D00T11,

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method for Three-Dimensional Imaging of Cirrus Clouds Submitter: Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Liou, K.N, S.C. Ou, Y. Takano, J. Roskovensky, G.G. Mace, K. Sassen, and M. Poellot, 2002: "Remote sensing of three-dimensional inhomogeneous cirrus clouds using satellite and mm-wave cloud radar data," Geophysical Research Letters 29(9): 1360. Figure 1 ARM Data

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partly Cloudy with a Chance of Aerosol Download a printable PDF Submitter: Chand, D., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Chand D, R Wood, SJ Ghan, M Wang, M Ovchinnikov, PJ Rasch, S Miller, B Schichtel, and T Moore. 2012. "Aerosol optical depth increase in partly cloudy conditions." Journal of Geophysical Research, 117, D17207, doi:10.1029/2012JD017894. The sky can appear nearly clear or

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Short and the Long of Storms: Tracing a Deep Convective System's Life in the Midlatitude Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, X Dong, B Xi, S McFarlane, A Kennedy, B Lin, and P Minnis. 2012. "Life cycle of midlatitude deep convective systems in a Lagrangian framework." Journal of Geophysical Research - Atmospheres, 117(D23), D23201,

  13. Errvironmentaf Research

    Office of Legacy Management (LM)

    online at www.sciencedirect.com Environmental Research 10 1 (2006) 3 4 4 1 Errvironmentaf Research Do scientists and fishermen collect the same size fish? Possible implications for exposure assessment Joanna urger^^^^', Michael ~ o c h f e l d ~ ~ ~ , Sean Christian W. ~ e i t n e r ~ . ~ , Stephen ~ e w e t t ~ , Daniel SnigarofP, Ronald snigarofff, Tim Starnrng, Shawn ~ a r ~ e f , Max ~ o b e r ~ * , Heloise chenelotd, Robert patrickh, Conrad D. volzi, James ~ e s t o d 'Division of Life

  14. Postdoctoral Research Awards Annual Research Meeting: Brandon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brandon Mercado Postdoctoral Research Awards Annual Research Meeting: Brandon Mercado Poster Presentation at 2012 EERE Annual Research Meeting, Postdoctoral Research Awards, from ...

  15. Postdoctoral Research Awards Annual Research Meeting: Padmaja...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Padmaja Gunda Postdoctoral Research Awards Annual Research Meeting: Padmaja Gunda Poster Presentation at 2012 EERE Annual Research Meeting, Postdoctoral Research Awards, from the ...

  16. Postdoctoral Research Awards Annual Research Meeting: Joseph...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joseph Mondloch Postdoctoral Research Awards Annual Research Meeting: Joseph Mondloch Postdoctoral Research Awards Annual Research Meeting: Joseph Mondloch poster presentation. PDF ...

  17. REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS

    SciTech Connect (OSTI)

    Wise, Mark B.; Kapustin, Anton N.; Schwarz, John Henry; Carroll, Sean; Ooguri, Hirosi; Gukov, Sergei; Preskill, John; Hitlin, David G.; Porter, Frank C.; Patterson, Ryan B.; Newman, Harvey B.; Spiropulu, Maria; Golwala, Sunil; Zhu, Ren-Yuan

    2014-08-26

    Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the motivation for these studies is the desire to gain a deeper understanding of superstring theory and M-theory. The research interests of Mark Wise span particle physics, cosmology and nuclear physics. His recent work has centered on extensions of the standard model where baryon number and lepton number are gauged and extensions of the standard model that have novel sources of baryon number violation and new sources of charged lepton flavor violation

  18. ASU EFRC - Center researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center researchers Chad Simmons Academic Professional Gerdenis Kodis Research Assistant Professor Raimund Fromme Faculty Research Associate Yuichi Terazono Faculty Research...

  19. ARM - Funded Research Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Proposals Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional &...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnosing Raindrop Evaporation, Breakup, and Coalescence in Vertical Radar Observations PI Contact: Williams, C. R., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Williams CR. 2016. "Reflectivity and Liquid Water Content Vertical Decomposition Diagrams to Diagnose Vertical Evolution of Raindrop Size Distributions." Journal of Atmospheric and Oceanic Technology, 33(3), doi: 10.1175/jtech-d-15-0208.1. Example of

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical Piggybacking: Understanding the Coupling Between Cloud Dynamics and Microphysics PI Contact: Grabowski, W., NCAR Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Grabowski WW. 2014. "Extracting microphysical impacts in large-eddy simulations of shallow convection." Journal of the Atmospheric Sciences, 71(12), 10.1175/JAS-D-14-0231.1. Grabowski WW. 2015. "Untangling microphysical

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regime Dependence of Cloud Water Variability Observed at the ARM Sites PI Contact: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and RM Forbes. 2016. "Regime dependence of cloud condensate variability observed at the Atmospheric Radiation Measurement sites." Quarterly Journal Royal Meteorological Society, ,

  3. Research Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities /collaboration/_assets/images/icon-collaboration.jpg Research Opportunities Partnering with respected universities, LANL Centers provide exceptional educational opportunities and support staff recruitment, revitalization, and retention. Center for Nonlinear Studies» Quantum Institute» Energy Security Center» Seaborg Institute» Center for Space and Earth Science» TOP STORIES - highlights of our science, people, technologies close Science on the Hill: Why space weather matters

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Aerosols in Fair-Weather Clouds During CHAPS Download a printable PDF Submitter: Shrivastava, M., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Shrivastava M, LK Berg, J Fast, R Easter, A Laskin, WI Gustafson, Y Liu, and CM Berkowitz. 2013. "Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study." Journal of

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fair-Weather Clouds Hold Dirty Secret Download a printable PDF Submitter: Shrivastava, M., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Shrivastava MB, JD Fast, RC Easter, WI Gustafson, RA Zaveri, JL Jimenez, P Saide, and A Hodzic. 2011. "Modeling organic aerosols in a megacity: Comparison of simple and complex representations of the volatility basis set

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics of Vertical Velocities from Monsoonal Convection with Verification Download a printable PDF Submitter: Collis, S. M., Argonne National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Collis S, A Protat, PT May, and C Williams. 2013. "Statistics of storm updraft velocities from TWP-ICE including verification with profiling measurements." Journal of Applied Meteorology and Climatology, 52(8), 10.1175/jamc-d-12-0230.1. A

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Controls the Vertical Extent of Continental Shallow Cumulus? Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Zhang Y and SA Klein. 2013. "Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site." Journal of the Atmospheric Sciences,

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Importance of Environmental Instability to the Sensitivity of the Rimed Ice Species in Convection Download a printable PDF Submitter: Van Weverberg, K., Brookhaven National Laboratory Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K. 2013. "Impact of environmental instability on convective precipitation uncertainty associated with the nature of the rimed ice species in a bulk microphysics

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Different Strokes for Different Folks-Not Any More, Say Scientists at the UK Met Office Submitter: Morcrette, C., Met Office Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Morcrette CJ, EJ O'Connor, and JC Petch. 2012. "Evaluation of two cloud parametrization schemes using ARM and Cloud-Net observations." Quarterly Journal Royal Meteorological Society, 138(665), doi:10.1002/qj.969. Errors

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Finer Mesh to Improve Cloud Representation in Climate Models? Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Boutle IA, SJ Abel, PG Hill, and CJ Morcrette. 2013. "Spatial variability of liquid cloud and rain: observations and microphysical effects." Quarterly Journal Royal Meteorological Society, , doi:10.1002/qj.2140. Different sizes of water droplets as well as varying water

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Survey over West Africa Reveals Climate Impact of Mid-Level Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Bouniol D, F Couvreux, PH Kamsu-Tamo, M Leplay, F Guichard, F Favot, and EJ O'Connor. 2012. "Diurnal and seasonal cycles of cloud occurrences, types, and radiative impact over West Africa." Journal of Applied Meteorology and Climatology, 51(3),

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Ice Cloud Simulations Using Scripps Single Column Model (SCM) Reveal Range of Model Uncertainties Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: McFarquhar, G.M., S. Iacobellis, R.C.J. Somerville. SCM Simualtions of Tropical Ice Clouds Using Observationally Based Parameterizations of Microphysics, Journal of Climate: Vol 15, No. 11, pp.

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Microphysics Parameterization in Simulating Tropical Mesoscale Convective Systems Download a printable PDF Submitter: Van Weverberg, K., Brookhaven National Laboratory Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, AM Vogelmann, W Lin, EP Luke, AT Cialella, P Minnis, MM Khaiyer, ER Boer, and MP Jensen. 2013. "The role of cloud microphysics parameterization in the simulation

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Application of Linear Programming Techniques to ARM Polarimetric Radar Processing Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, R McGraw, and L Lei. 2013. "An application of linear programming to polarimetric radar differential phase processing." Journal of Atmospheric and Oceanic Technology, , . ACCEPTED. C-band scanning ARM precipitation radar

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights Into Deep Convective Core Vertical Velocities Using ARM UHF Wind Profilers Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, S Collis, J Straka, A Protat, C Williams, and S Krueger. 2013. "A summary of convective core vertical velocity properties using ARM UHF wind profilers in Oklahoma." Journal of Applied Meteorology and Climatology, ,

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linking Ice Nucleation to Aerosols and Its Impact on CAM5 Simulated Arctic Clouds and Radiation Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Xie S, X Liu, C Zhao, and Y Zhang. 2013. "Sensitivity of CAM5 simulated arctic clouds and radiation to ice nucleation parameterization." Journal of Climate, 26(16),

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires Lead to More Warming Than Climate Models Predict, a New Mexico Fire Study Reports Download a printable PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: China S, C Mazzoleni, K Gorkowski, AC Aiken, and MK Dubey. 2013. "Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles." Nature Communications, 4, 2122, doi:10.1038/ncomms3122.

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Impact of Instrument Selection and Sampling on Cloud Fraction at the ARM Southern Great Plains Site Download a printable PDF Submitter: Kennedy, A. D., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Kennedy AD, X Dong, and B Xi. 2013. "Cloud Fraction at the ARM SGP Site: Instrument and sampling considerations from 14 years of ARSCL." Theoretical and Applied Climatology (Springer), 115(1-2),

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modified Climate Model Better Replicates Global Rainfall Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Song X, GJ Zhang, and JF Li. 2012. "Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5." Journal of Climate, 25(24), doi:10.1175/JCLI-D-11-00563.1. Rainfall in the

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Tall Order: Climate Models Fall Short in Predicting African Sahel Rainfall Download a printable PDF Submitter: Roehrig, R., Meteo-France CNRM/GMME/MOANA Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Roehrig R, D Bouniol, F Guichard, F Hourdin, and JL Redelsperger. 2013. "The present and future of the West African Monsoon: A process-oriented assessment of CMIP5 simulations along

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Comes the Thunder: Precursors to Local Rainfall in the West African Monsoon Download a printable PDF Submitter: Roeder, L. R., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Dione C, M Lothon, D Badiane, B Campistron, F Couvreau, F Guichard, and S Sall. 2013. "Phenomenology of Sahelian convection observed in Niamey during the early monsoon." Quarterly Journal Royal Meteorological Society, , . ACCEPTED.

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addressing the "Light Precipitation Problem" in the ECMWF Global Model Download a printable PDF Submitter: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and R Forbes. 2013. "Improving the representation of low clouds and drizzle in the ECMWF model based on ARM observations from the Azores." Monthly Weather Review,

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining the Future of CO2 Using an Earth System Model Download a printable PDF Submitter: Keppel-Aleks, G., University of Michigan Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol Life Cycle Journal Reference: Keppel-Aleks G, JT Randerson, K Lindsay, BB Stephens, JK Moore, SC Doney, PE Thornton, NM Mahowald, FM Hoffman, C Sweeney, PP Tans, PO Wennberg, and SC Wofsy. 2013. "Atmospheric carbon dioxide variability in the Community

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground Stations Likely Get a Boost from Satellites to Estimate Carbon Dioxide Emissions Download a printable PDF Submitter: Roeder, L. R., Pacific Northwest National Laboratory Area of Research: Surface Properties Working Group(s): Aerosol Life Cycle Journal Reference: Basu S, S Guerlet, A Butz, S Houweling, OP Hasekamp, I Aben, PB Krummel, LP Steele, RL Langenfelds, MS Torn, SC Biraud, B Stephens, A Andrews, and D Worthy. 2013. "Global CO2 fluxes estimated from GOSAT retrievals of total

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All Mixed Up-Probing Large and Small Scale Turbulence Structures in Continental Stratocumulus Clouds Download a printable PDF Submitter: Fang, M., University of Miami Albrecht, B. A., University of Miami Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Fang M, BA Albrecht, VP Ghate, and P Kollias. 2013. "Turbulence in continental stratocumulus, Part I: External forcings and turbulence structures." Boundary-Layer Meteorology, 149(454),

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Does Glyoxal Contribute Significantly to Regional SOA Formation? Download a printable PDF Submitter: Knote, C., Atmospheric Chemistry Division Hodzic, A., NCAR Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Knote C, A Hodzic, J Jimenez, R Volkamer, JJ Orlando, S Baidar, J Brioude, J Fast, DR Gentner, AH Goldstein, PL Hayes, BW Knighton, H Oetjen, A Setyan, H Stark, R Thalman, G Tyndall, R Washenfelder, E Waxman, and Q Zhang. 2014. "Simulation of

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Stratocumulus Clouds: Turbulence-Raidation-Thermodynamics Coupling Download a printable PDF Submitter: Ghate, V. P., Argonne National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Ghate VP, BA Albrecht, MA Miller, A Brewer, and CW Fairall. 2014. "Turbulence and radiation in stratocumulus-topped marine boundary layers: A case study from VOCALS-REx." Journal of Applied Meteorology and Climatology, 53, 117-135. Figure 1.

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Aerosol Concentration Is Key Contributor to Low-Level Cloud Reflectivity Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J., Dong, X., Chen. Y., Observational evidence of a change in radiative forcing due to the indirect aerosol effect, Nature, Vol. 427, 15 January 2004. Cloud optical depth, as determined from the parcel model, is indicated by the dots. Red lines show best fit data of cloud liquid

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most Systematic Errors in Climate Models Appear in Only a Few Days of Model Integration Download a printable PDF Submitter: Ma, H., Lawrence Livermore National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Ma H, S Xie, SA Klein, KD Williams, JS Boyle, S Bony, H Douville, S Fermepin, B Medeiros, S Tyteca, M Watanabe, and DL Williamson. 2014. "On the correspondence between mean forecast errors and climate errors in

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reality Check: Estimates for Human-Caused Methane Emissions in the U.S. Appear Off by 50% Download a printable PDF Submitter: Biraud, S. C., Lawrence Berkeley National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Miller SM, SC Wofsy, AM Michalak, EA Kort, AE Andrews, SC Biraud, EJ Dlugokencky, J Elszkeiwicz, ML Fischer, G Janssens-Maenhout, BR Miller, JB Miller, SA Montzka, T Nehrkorn, and C Sweeney. 2013. "Anthropogenic emissions

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Winter Frost Flowers Have Negligible Influence on Cloud Longwave Warming Download a printable PDF Submitter: Xu, L., University of California, San Diego Russell, L. M., Scripps Institution of Oceanography Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Xu L, LM Russell, RC Somerville, and PK Quinn. 2013. "Frost flower aerosol effects on Arctic wintertime longwave cloud radiative forcing."

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-scale Variations of Decade-long Cloud Fractions from Six Different Platforms over the SGP Download a printable PDF Submitter: Wu, W., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Wu W, Y Liu, MP Jensen, T Toto, MJ Foster, and CN Long. 2014. "A comparison of multiscale variations of decade-long cloud fractions from six different platforms over the Southern Great Plains in the United

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Organic Molecules Explaining New Particle Growth in the Boreal Forest Download a printable PDF Submitter: Thornton, J., University of Washington Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Ehn M, JA Thornton, E Kleist, M Sipila, H Junninen, I Pullinen, M Springer, F Rubach, R Tillmann, B Lee, F Lopez-Hilfiker, S Andres, I Acir, M Rissanen, T Jokinen, S Schobesberger, J Kangasluoma, J Kontkanen, T Nieminen, T Kurten, LB Nielsen, S Jorgensen, HG

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Which Absorption Model Should Be Used for Supercooled Liquid Water in the Microwave? Download a printable PDF Submitter: Kneifel, S., McGill University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Kneifel S, S Redl, E Orlandi, U Löhnert, MP Cadeddu, DD Turner, and M Chen. 2014. "Absorption properties of supercooled liquid water between 31 and 225 GHz: evaluation of absorption models using ground-based observations." Journal of Applied

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Emergence of Open Source Software for the Weather Radar Community Download a printable PDF Submitter: Collis, S. M., Argonne National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Heistermann M, S Collis, MJ Dixon, SE Giangrande, JJ Helmus, B Kelley, J Koistinen, DB Michelson, P Markus, T Pfaff, and DB Wolff. 2014. "The Emergence of Open Source Software for the Weather Radar Community."

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Merging Cloud and Precipitation Radar Data Provides a Better View of Tropical Rain Clouds Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, SA McFarlane, C Schumacher, S Ellis, J Comstock, and N Bharadwaj. 2014. "Constructing a merged cloud-precipitation radar dataset for tropical convective clouds during the DYNAMO/AMIE experiment at Addu Atoll."

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Uncover Combustion Mechanism to Better Predict Warming by Wildfires Download a printable PDF Submitter: Dubey, M. K., Los Alamos National Laboratory Donahue, N., Carnegie Mellon University Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Saleh R, E Robinson, D Tkacik, A Ahern, S Liu, A Aiken, R Sullivan, A Presto, M Dubey, R Yokelson, N Donahue, and A Robinson. 2014. "Brownness of organics in aerosols from biomass burning linked to

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase State and Physical Properties of Ambient and Lab Generated Aerosols: X-ray Microscopy Download a printable PDF Submitter: OBrien, R. E., Lawrence Berkeley National Laboratory Gilles, M., Lawrence Berkeley National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: O'Brien RE, A Neu, SA Epstein, AC MacMillan, B Wang, ST Kelly, SA Nizkorodov, A Laskin, RC Moffet, and MK Gilles. 2014. "Physical properties of ambient and

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Concentration Retrieval in Stratiform Mixed-Phase Clouds Using Cloud Radar Measurements Download a printable PDF Submitter: Zhang, D., University of Wyoming Wang, Z., University of Wyoming Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Zhang D, Z Wang, A Heymsfield, J Fan, and T Luo. 2014. "Ice concentration retrieval in stratiform mixed-phase clouds using cloud radar reflectivity measurements and 1-D ice-growth model simulations." Journal

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Anatomy and Physics of ZDR Columns Submitter: Kumjian, M., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kumjian MR, AP Khain, N Benmoshe, E Ilotoviz, AV Ryzhkov, and VT Phillips. 2014. "The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model." Journal of Applied Meteorology and Climatology, 53(7),

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Theory of Time-dependent Freezing and Its Application to Investigation of Formation of Hail Download a printable PDF Submitter: Khain, A., The Hebrew University of Jerusalem Phillips, V., University of Leeds Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Phillips VT, A Khain, N Benmoshe, E Ilotoviz, and A Ryzhkov. 2014. "Theory of time-dependent freezing. II: Scheme for freezing raindrops and simulations by a cloud model

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observations of Tracking Clouds Using Scanning ARM Cloud Radars Download a printable PDF Submitter: Borque, P., McGill University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Borque P, P Kollias, and S Giangrande. 2014. "First observations of tracking clouds using scanning ARM cloud radars." Journal of Applied Meteorology and Climatology, , . ONLINE. A 2.5-hour long observing sequence from 25 May 2011 of (a) the Total Sky Imager (TSI)

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: an ARM Mobile Facility Deployment Download a printable PDF Submitter: Wood, R., University of Washington Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A Composite seasonal cycles of (a) cloud droplet concentration retrieved using a variety of methods; (b) surface measured cloud condensation nuclei concentrations at four supersaturations.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growing More Effective Ways to Measure Climate Change Download a printable PDF Submitter: Maseyk, K. S., Universite Pierre et Marie Curie, Paris 6 Area of Research: Surface Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Maseyk K, JA Berry, D Billesbach, JE Campbell, MS Torn, M Zahniser, and U Seibt. 2014. "Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains." Proceedings of the National Academy of

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hail Generation and Melting in Deep Convective Clouds from the Perspective of Dual-polarization Download a printable PDF Submitter: Ryzhkov, A., National Severe Storms Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Ryzhkov AV, MR Kumjian, SM Ganson, and AP Khain. 2014. "Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling." Journal of Applied Meteorology and

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of Climate Model Ice Cloud Properties Download a printable PDF Submitter: Eidhammer, T., NCAR Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Eidhammer T, H Morrison, A Bansemer, A Gettelman, and AJ Heymsfield. 2014. "Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in situ observations." Atmospheric Chemistry and Physics, 14(18), doi:10.5194/acp-14-10103-2014. Mass weighted terminal fall

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Dust as Component Minerals in the Community Atmosphere Model Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Scanza R, N Mahowald, S Ghan, CS Zender, JF Kok, Y Zhang, and S Albani. 2015. "Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing."

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overly Intense Convective Updrafts Exposed as a Significant Contributor to Model Biases Submitter: Varble, A., University of Utah Zipser, E., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Varble A, EJ Zipser, AM Fridlind, P Zhu, AS Ackerman, J Chaboureau, S Collis, J Fan, A Hill, and B Shipway. 2014. "Evaluation of cloud-resolving and limited area model simulations using TWP-ICE observations. Part 1: Deep convective updraft

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding the Causes for Consistently Low Biased Stratiform Rainfall in Models Submitter: Varble, A., University of Utah Zipser, E., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Varble A, EJ Zipser, AM Fridlind, P Zhu, AS Ackerman, J Chaboureau, J Fan, A Hill, B Shipway, and C Williams. 2014. "Evaluation of cloud-resolving and limited area model simulations using TWP-ICE observations. 2. Precipitation microphysics." Journal of

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Filling Gaps Within Instrument Records Submitter: Kennedy, A. D., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Kennedy AD, X Dong, and B Xi. 2015. "Cloud fraction at the ARM SGP site: reducing uncertainty with self-organizing maps." Theoretical and Applied Climatology, , . ONLINE. Example of a large, 40x30 (1200 class) SOM generated from 14 years of synoptic states provided by the North American

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Inference of Thermals and Cloud Base Updraft Speeds Download a printable PDF Submitter: Zheng, Y., University of Maryland Area of Research: Vertical Velocity Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Zheng Y, D Rosenfeld, and Z Li. 2015. "Satellite inference of thermals and cloud base updraft speeds based on retrieved surface and cloud base temperatures." Journal of the Atmospheric Sciences, , . ONLINE. Validation of satellite-estimated

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intersecting Cold Pools: Convective Cloud Organization by Cold Pools over Tropical Ocean Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, S Hagos, AK Rowe, CD Burleyson, MN Martini, and SP de Szoeke. 2015. "Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign." Journal of Advances in

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Precipitating Cumulus Congestus Observed by the ARM Radar Suite During the MC3E Field Campaign Download a printable PDF Submitter: Mechem, D. B., University of Kansas Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mechem DB, SE Giangrande, CS Wittman, P Borque, T Toto, and P Kollias. 2015. "Insights from modeling and observational evaluation of a precipitating continental cumulus event observed

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Uncertainties in Ice Particle Size Distributions Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: McFarquhar GM, T Hsieh, M Freer, JR Mascio, and BF Jewett. 2015. "The characterization of ice hydrometeor gamma size distributions as volumes in N0/lambda/mu phase space: implications for microphysical process modeling." Journal of

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regime Analysis to Identify the Contribution of Clouds to Surface Temperature Errors in GCMs Submitter: Van Weverberg, K., Met Office Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, CJ Morcrette, H Ma, SA Klein, and JC Petch. 2015. "Using regime analysis to identify the contribution of clouds to surface temperature errors in weather and climate models." Quarterly Journal Royal

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Absorption of Primary Organic Aerosol Paper Named ACS Editors' Choice Download a printable PDF Submitter: Lu, Z., Argonne National Laboratory Streets, D. ., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Lu Z, DG Streets, E Winijkul, F Yan, Y Chen, TC Bond, Y Feng, MK Dubey, S Liu, JP Pinto, and GR Carmichael. 2015. "Light absorption properties and radiative effects of primary organic aerosol emissions."

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Water the Key to Arctic Cloud Radiative Closure Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, DD Turner, A Zwink, MM Thieman, EJ Mlawer, and T Shippert. 2015. "Deriving Arctic cloud microphysics at Barrow, Alaska: Algorithms, results, and radiative closure." Journal of Applied Meteorology and Climatology, 54(7),

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Prediction and Climate Simulation: a Meeting of the Models Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Phillips, T. J. G.L. Potter, D.L. Williamson, R.T. Cederwall, J.S. Boyle, M. Fiorino, J.J. Hnilo, J.G. Olson, S. Xie, J.J. Yio, Evaluating Parameterizations in General Circulation Models: Climate Simulation Meets Weather Prediction, Bulletin

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sticky Thermals: Evidence for a Dominant Balance Between Buoyancy and Drag in Cloud Updrafts Download a printable PDF Submitter: Romps, D., Lawrence Berkeley National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Romps DM and AB Charn. 2015. "Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts." Journal of the Atmospheric Sciences, , doi:10.1175/JAS-D-15-0042.1. ONLINE. Hill's vortex (shown

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Deeper Look Into Shallow Boundary Layer Clouds Submitter: Bretherton, C. S., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Bretherton, C. S., J. R. McCaa, and H. Grenier. A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results, Monthly Weather Review, 132(1), 864-882, 2004, doi:

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Haze: Effect of Anthropogenic and Biomass Burning Aerosols Transported from Europe to the Arctic Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Marelle L, J Raut, JL Thomas, KS Law, B Quennehen, G Ancellet, J Pelon, A Schwarzenboeck, and JD Fast. 2015. "Transport of anthropogenic and biomass burning aerosols from Europe to the

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three-Dimensional Constrained Variational Analysis: Approach and Application Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Tang S and M Zhang. 2015. "Three-dimensional constrained variational analysis: Approach and application to analysis of atmospheric diabatic heating and derivative fields during an ARM SGP intensive observational period." Journal of Geophysical

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Out with the Old, in with the New: McICA to Replace Traditional Cloud Overlap Assumptions Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Pincus, R., R. Hemler, and S.A. Klein, 2006: Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model. Mon. Wea. Rev., 134, 3644-3656. As shown by the difference between the two panels, the

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Good Is Not Enough: Improving Measurements of Atmospheric Particles Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, LK Berg, M Pekour, J Barnard, D Chand, C Flynn, M Ovchinnikov, A Sedlacek, B Schmid, J Shilling, J Tomlinson, and J Fast. 2015. "Airborne aerosol in situ measurements during TCAP: A closure study of total scattering."

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Surface Measurements for Aerosol Profiles Shown to Represent Integrated Column Measurements Submitter: Andrews, E., University of Colorado Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Andrews, E., P. J. Sheridan, J. A. Ogren, and R. Ferrare (2004), In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 1. Aerosol optical properties, J. Geophys. Res., 109, D06208, doi:10.1029/2003JD004025. Delle Monache, L., K.

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Improved Hindcast Approach for Evaluation and Diagnosis of Physical Processes in GCMs Download a printable PDF Submitter: Ma, H., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Ma H, C Chuang, SA Klein, M Lo, Y Zhang, S Xie, X Zheng, P Ma, Y Zhang, and TJ Phillips. 2015. "An improved hindcast approach for evaluation and

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds' Role in Sunlight Stopping Download a printable PDF Submitter: Burleyson, C. D., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Burleyson CD, CN Long, and JM Comstock. 2015. "Quantifying diurnal cloud radiative effects by cloud type in the Tropical Western Pacific." Journal of Applied Meteorology and Climatology, , doi:10.1175/JAMC-D-14-0288.1. ONLINE. Sunlight streaks through clouds over the

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Observations Validate Climate Model for Tropical Cirrus Clouds Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Comstock, J.M., C. Jakob, Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru Island, 2004, Geophys. Res. Ltr, Vol.31, L10106, doi:10.1029/2004GL019539. Composite

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuous Dataset of Water Vapor Measurements Throws Water on Assumptions of Cirrus Cloud Formation Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Comstock, J. M., T. P. Ackerman, and D. D. Turner, 2004: Evidence of high ice supersaturation in cirrus clouds using ARM Raman lidar measurements. Geophys. Res. Letters, doi:10.1029/2004GL019705. To illustrate their

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A "Little" Respect: Droplet Nucleation Finally Included in Global Climate Model Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Reflection of sunlight by clouds simulated with predicted droplet number with (dark blue) and without (green) the autoconversion feedback agrees remarkably well with the reflection

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probabilistic Approach Useful for Evaluating Cloud System Models Submitter: Jakob, C., Monash University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Jakob, C., R. Pincus, C. Hannay, and K.M. Xu (2004). Use of cloud radar observations for model evaluation: A probabilistic approach, J. Geophys. Res., 109, D03202, doi:10.1029/2003JD003473. In evaluating climate models, time and space represent key challenges

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Regulation Strikes a Balance Between Hydrological Cycle, Radiation Processes, and Intraseasonal Dynamic Variations Submitter: Stephens, G. L., Colorado State University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Stephens, Graeme L., Webster, Peter J., Johnson, Richard H., Engelen, Richard, L'Ecuyer, Tristan. 2004: Observational Evidence for the Mutual Regulation of the Tropical Hydrological Cycle and Tropical

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Splitting the Solar Spectrum: Sometimes Less Is Better Than More Submitter: Pawlak, D. T., Pennsylvania State University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Pawlak, DT, EJ Clothiaux, MF Modest, and JNS Cole. 2004. Full-Spectrum Correlated-k Distribution for Shortwave Atmospheric Radiative Transfer. Journal of the Atmospheric Sciences 61: 2588-2601. Of all the physical and dynamical calculations

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Lightens Up Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Wild, M., H. Gilgen, A. Roesch, A. Ohmura, C. N. Long, E. G. Dutton, B. Forgan, A. Kallis, V. Russak, and A. Tsvetkov, (2005): From dimming to brightening: Decadal changes in solar radiation at the Earth's surface, Science, 308, Issue 5723, 847-850, [DOI:10.1126/science.1103215] Global distribution of surface observation

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Experiment Results Featured in Technical Journal Submitter: Sheridan, P., U.S. Department of Commerce/NOAA Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sheridan, P, W Arnott, J Ogren, E Andrews, D Atkinson, D Covert, H Moosmuller, A Petzold, B Schmid, A Strawa, R Varma, and A Virkkula. 2005. "The Reno Aerosol Optics Study: An evaluation of aerosol absorption measurement methods." Aerosol Science and Technology 39(1):1-16. This magnification

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correction Method for Infrared Detector Confirmed; Error in Clear Sky Bias Condition Remains Unresolved Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A AERI data from January 2004 at the ARM North Slope of Alaska locale shows the observed radiance for two AERI systems with significantly different hot blackbody temperatures. Residuals are within 1% of the ambient radiance

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Processes Make a Big Difference in Model Outcomes Submitter: Cole, J. N., Canadian Centre for Climate Modelling and Analysis Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Cole, J. N. S., H. W. Barker, D. A. Randall, M. F. Khairoutdinov, and E. E. Clothiaux (2005), Global consequences of interactions between clouds and radiation at scales unresolved by global climate models, Geophys. Res. Lett., 32,

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosols Help Clouds Warm Up Arctic Submitter: Lubin, D., National Science Foundation Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Lubin, D., and A.M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic, Nature, 439, 26 January, 453-456, doi:10.1038/nature04449 In a process known as the first aerosol indirect effect, enhanced aerosol concentrations cause the droplets in a cloud to be smaller and more

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of Integrated Water Vapor Sensors: WVIOP-96 Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 The 1996 Water Vapor Intensive Operations Period (WVIOP-96) was conducted at the SGP CART central facility in September in order to assess the skill of a wide variety of sensors in measuring atmospheric water

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Forecasts Help to Understand Climate Model Biases Submitter: Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Klein, Stephen A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U. S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33,

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Thin Ice: Retrieval Algorithms for Ice Clouds Examined for Improvements Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: An Intercomparison of Microphysical Retrieval Algorithms for Upper Tropospheric Ice Clouds. Jennifer M. Comstock, Robert d'Entremont, Daniel DeSlover, Gerald G. Mace, Sergey Y. Matrosov, Sally A. McFarlane, Patrick Minnis, David Mitchell,Kenneth

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shallow Clouds Make the Case for Remote Sensing Instrumentation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, S. A., and W. W. Grabowski (2007). Optical properties of shallow tropical cumuli derived from ARM ground-based remote sensing, Geophys. Res. Lett., 34, L06808, doi:10.1029/2006GL028767. In this figure, the lines indicate theoretical calculations of cloud

  3. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email UCSD Faculty and Graduate Students Professor

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative and Thermodynamic Responses to Uncertainty in Aerosol Extinction Profiles Download a printable PDF Submitter: Feng, Y., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Feng Y, R Kotamarthi, R Coulter, C Zhao, and M Cadeddu. 2016. "Radiative and Thermodynamic Responses to Aerosol Extinction Profiles during the Pre-monsoon Month over South Asia." Atmospheric Chemistry and Physics, 16(1), 247-264. WRF-Chem

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Download a printable PDF Submitter: Albrecht, B. A., University of Miami Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Albrecht B, M Fang, and V Ghate. 2016. "Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Cloud Radar Observations." Journal of the Atmospheric Sciences, 73(2), 10.1175/JAS-D-15-0147.1.

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ensemble-Constrained Variational Analysis of Atmospheric Forcing Data and Its Application Download a printable PDF Submitter: Zhang, M., Stony Brook University Tang, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Tang S, M Zhang, and S Xie. 2016. "An ensemble constrained variation alanalysis of atmospheric forcing data and its application to evaluate clouds in

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Back to Basics: Theoretical Studies on Storm Clouds and Implications for Modeling Download a printable PDF Submitter: Morrison, H. C., NCAR Lebo, Z., University of Wyoming Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Morrison H. 2016. "Impacts of Updraft Size and Dimensionality on the Perturbation Pressure and Vertical Velocity in Cumulus Convection. Part II: Comparison of Theoretical and Numerical Solutions and Fully Dynamical Simulations."

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Droplet Spectral Shape Sheds New Light on Aerosol-Cloud-Interaction Regimes Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Zhang, M., Stony Brook University Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Chen J, Y Liu, M Zhang, and Y Peng. 2016. "New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Vertical Structure of Cloud Radiative Forcing at the ACRF SGP Revealed by 8 Years of Continuous Measurements Submitter: Mace, G., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Accepted to Journal of Climate, 2007. Figure 1. Cloud occurrence, coverage, radiative forcing, and radiation effects over a composite annual cycle that is derived by averaging all observations collected during a

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Formulation for Representing Cloud-to-Rain Transition in Atmospheric Models Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol, Cloud Modeling, Cloud Properties Journal Reference: Liu, Y., P. H. Daum, R. McGraw, M. Miller, and S. Niu, 2007: Theoretical formulation for autoconversion rate of cloud droplet concentration. Geophys. Res. Lett., 34, L116821, doi:10.1029/2007GL030389

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Water Vapor and Cloud Liquid Water at MCTEX Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Integrated water vapor and cloud liquid water measurements were obtained during the Maritime Continent Thunderstorm Experiment (MCTEX) by Eugene Clothiaux and Tom Ackerman of Penn State University using an ARM

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Climatology of Midlatitude Continental Cloud Properties and Their Impact on the Surface Radiation Budget Submitter: Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Dong, X., P. Minnis, and B. Xi, 2005: A climatology of midlatitude continental clouds from ARM SGP site. Part I: Low-level Cloud Macrophysical, microphysical and radiative properties. J. Climate. 18, 1391-1410. Dong, X., B. Xi, and P.

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, (2007): Modification of the atmospheric boundary layer by a small island: observations from Nauru, MWR, Vol. 135, No. 3, pages 891–905. Figure 1.

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate? Submitter: Prenni, A. J., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Prenni, A. J., J. Y. Harrington, M. Tjernstrom, P. J. DeMott, A. Avramov, C. N. Long, S. M. Kreidenweis, P. Q. Olsson, and J. Verlinde, (2006): Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate?, BAMS, Vol.88, Iss. 4; pg. 541-550. ACIA, 2004: Impacts of a Warming

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Aerosol Humidity Effects Using the ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Jeong, M.-J., Z. Li, E. Andrews, and S.-C. Tsay (2007). Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site, J. Geophys. Res., 112, D10202, doi:10.1029/2006JD007176. (a)-(j) Column-mean aerosol humidification factor as

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Bulk Parameterization of Giant Cloud Condensation Nuclei Download a printable PDF Submitter: Kogan, Y., University of Oklahoma - CIMMS Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Mechem, D. B., and Y. L. Kogan, 2007: A bulk parameterization of giant CCN. J. Atmos. Sci., conditionally accepted. Mean quantities as a function of GCCN concentration for polluted (squares) and clean (diamonds) background CCN conditions. Radiative

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use of ARM Products in Reanalysis Applications and IPCC Model Assessment Download a printable PDF Submitter: Walsh, J. E., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Walsh, J. E., W. L. Chapman, and D. H. Portis: Arctic clouds and radiative fluxes in large-scale atmospheric reanalysis. Submitted to the Journal of Climate. Figure 1. Monthly mean cloud fraction is shown here from ARM-observations

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a New Method for Estimating Evapotranspiration Using ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Surface Properties Working Group(s): Radiative Processes Journal Reference: Wang, K., P. Wang, Z. Li, M. Cribb, and M. Sparrow (2007). A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature, J. Geophys. Res., 112, D15107, doi:10.1029/2006JD008351. Wang, K., Z. Li, and M. Cribb (2006).

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Significance of Multilayer Cloud Systems in Tropical Convection Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Stephens, GL, and NB Wood. 2007. "Properties of tropical convection observed by millimeter-wave radar systems." Monthly Weather Review 135: 821-842. Storm classifications (derived from k-means clustering analysis) applied to MWR

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with SCAM, CAPT Forecasts and M-PACE Observations Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Liu, X, S Xie, and SJ Ghan. 2007. "Evaluation of a new mixed-Phase cloud microphysics parameterization with the NCAR single column climate model (SCAM) and ARM M-PACE

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Cloud-Resolving Model to Identify the Role of Aerosols on Clouds and Precipitation Download a printable PDF Submitter: GSFC, N., NASA GSFC Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol, Cloud Modeling Journal Reference: Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophy. Res., (accepted). Zeng, X., W.-K. Tao, S.

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Tomography: a Novel Method for Determining 3D Cloud Liquid Water Distribution Download a printable PDF Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Huang, D., Y. Liu, and W. Wiscombe, 2007a: Determination of cloud liquid water distribution using 3D cloud tomography. J. Geophys. Res., submitted. Cloud tomography is a novel method for determining cloud water

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Five-Year Statistics of Shallow Clouds at the ACRF SGP Site Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Berg, LK, and EI Kassianov. 2008. "Temporal variability of fair-weather cumulus statistics at the ARM SGP site." Journal of Climate 21, 3344-3358. Figure 1. Five-year mean ARSCL VAP

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intercomparison of Longwave Radiative Heating Algorithms Submitter: Baer, F., University of Maryland Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Baer, F., N. Arsky, J. J. Charney, and R. G. Ellingson. 1996. "Intercomparison of Heating Rates Generated by Global Climate Model Longwave Radiation Codes." J. Geoph. Res., 101, D21, 26589-26603. 30 levels of longwave heating rates for all algorithms

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM QCRad Goes Global Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and Y Shi. 2008. "An automated quality assessment and control algorithm for surface radiation measurements." The Open Atmospheric Science Journal 2: 23-37, doi: 10.2174/1874282300802010023. Figure: QCRad downwelling (top) and upwelling (bottom) longwave (LW) comparison

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Mixed-Phase Clouds from the Ground: a Status Report Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, JS Daniel, G De Boer, EW Eloranta, P Kollias, E Luke, CN Long, DD Turner, and J Verlinde. 2008. "A focus on mixed-phase clouds: The status of ground-ba sed observational methods." Bulletin of the American Meteorological Society,

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Indirect Effect Download a printable PDF Submitter: Oreopoulos, L., NASA Platnick, S., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Platnick, S, and L Oreopoulos. 2008. "Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS." Journal of

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Scattering Properties of Aggregates of Bullet Rosettes in Cirrus Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Um, J, and GM McFarquhar. 2007. "Single-scattering properties of aggregates of bullet rosettes in cirrus." Journal of Applied Meteorology and Climatology 46, 757-775. Two images of idealized geometry

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shortwave Absorption in Tropical Clouds Download a printable PDF Submitter: McFarlane, S. A., U.S. Department of Energy Mather, J. H., Pacific Northwest National Laboratory Ackerman, T. P., University of Washington Liu, Z., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, SA, JH Mather, TP Ackerman, and Z Liu. 2008. "Effect of clouds on the vertical distribution of SW absorption in the

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Climate Model Skill in Producing Present-Day Clouds Download a printable PDF Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Batstone, C., NOAA - CIRES Climate Diagnostics Center Hofmann, R. P., University of Colorado, Boulder/NOAA - ESRL Taylor, K. E., Lawrence Livermore National Laboratory Gleckler, P. J., Lawrence Livermore National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: Pincus, R, CP Batstone, RJP Hofmann,

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of CloudSat Using ARM, AMF, and CloudNet Observations Download a printable PDF Submitter: Protat, A., Australian Bureau of Meterology May, P. T., Bureau of Meteorology O'Connor, E. J., University of Reading Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Submitted. PDF of cloud reflectivity (upper-left), cloud top height (upper-right), thickness (lower-left), and cloud base height (lower right) as measured by the Darwin

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Simple Algorithm to Find Cloud Optical Depth Applied to Thin Ice Clouds Download a printable PDF Submitter: Barnard, J., University of Nevada Reno Long, C. N., NOAA Global Monitoring Division/CIRES Kassianov, E., Pacific Northwest National Laboratory McFarlane, S. A., U.S. Department of Energy Comstock, J. M., Pacific Northwest National Laboratory Freer, M., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluate the Diurnal Cycle in the Multiscale Modeling Framework Using Satellite and ARM Data Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Zhang, Y, SA Klein, C Liu, B Tian, RT Marchand, JM Haynes, RB McCoy, Y Zhang, and TP Ackerman. 2008. "On the diurnal cycle of deep

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Variation of Cloud Droplet Size Using Ship and Space-borne R/S Data Download a printable PDF Submitter: Li, Z., University of Maryland Chen, R., University of Maryland Wood, R., University of Washington Chang, F., Science Systems and Applications, Inc. Ferraro, R., NOAA/NESDIS, WWBG Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chen, R, R Wood, Z Li, R Ferraro, and F Chang. 2008. "Studying the vertical variation of

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of Cirrus Properties and Its Coupling with the State of the Large-Scale Atmosphere Download a printable PDF Submitter: Ivanova, K., Pennsylvania State University Ackerman, T. P., University of Washington Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Ivanova K and TP Ackerman. 2009. "Tracking nucleation-growth-sublimation in cirrus clouds using ARM millimeter wavelength radar observations." Journal of

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating Fractional Sky Cover from Spectral Measurements Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Min, Q., State University of New York, Albany Wang, T., State University of New York, Albany Duan, M., Institute of Atmospheric Physics/Chinese Academy of Science Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Min Q, T Wang, CN Long, and M Duan. 2008. "Estimating fractional sky

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Significant Decadal Brightening over the Continental United States Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Dutton, E. G., NOAA/OAR/ESRL Augustine, J., National Oceanic and Atmospheric Administration Wiscombe, W. J., Brookhaven National Laboratory Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich McFarlane, S. A., U.S. Department of Energy Flynn, C. J., Pacific Northwest National Laboratory Area of Research: Radiation Processes

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Scattering Properties of Aggregates of Plates Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Um J and GM McFarquhar. 2009. "Single-scattering properties of aggregates of plates." Quarterly Journal Royal Meteorological Society, 135(639), 10.1002/qj.378. Aggregates of plates imaged by Cloud

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thawing the Mystery of Extra Ice Crystals Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Ovchinnikov, M., Pacific Northwest National Laboratory Comstock, J. M., Pacific Northwest National Laboratory McFarlane, S. A., U.S. Department of Energy Khain, A., The Hebrew University of Jerusalem Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Fan J, M Ovtchinnikov, JM Comstock, SA McFarlane, and A Khain.

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyzing the Contribution of Aerosols to an Observed Increase in Direct Normal Irradiance Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Riihimaki, L., Pacific Northwest National Laboratory Vignola, F., University of Oregon Area of Research: Radiation Processes Working Group(s): Aerosol, Radiative Processes Journal Reference: Riihimaki LD, FE Vignola, and CN Long. 2009. "Analyzing the contribution of aerosols to an observed increase in direct normal

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Variations of Meridional Aerosol Distribution and Solar Dimming Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Kishcha, P., Tel-Aviv University Starobinets, B., Tel-Aviv University Kalashnikova, O., Jet Propulsion Laboratory Alpert, P., Tel-Aviv University Area of Research: Radiation Processes Working Group(s): Aerosol, Radiative Processes Journal Reference: Kishcha P, B Starobinets, O Kalashnikova, CN Long, and P Alpert. 2009. "Variations of

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Dimming and Brightening: an Update Beyond 2000 Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich Truessel, B., Institute for Atmospheric and Climate Science - ETH Zurich Ohmura, A., Swiss Federal Institute of Technology Koenig-Langlo, G., Alfred Wegener Institute Dutton, E. G., NOAA/OAR/ESRL Tsvetkov, A. V., World Radiation Data Centre Area of Research: Radiation Processes Working

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using the ACRF Shortwave Spectrometer to Study the Transition Between Clear and Cloudy Regions Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Chiu, J., University of Reading Knyazikhin, Y., Boston University Pilewskie, P., University of Colorado Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Chiu C, A Marshak, Y Knyazikhin, P Pilewskie, and W Wiscombe. 2009.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seasonal Variation of the Physical Properties of Marine Boundary Clouds Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Lin W, M Zhang, and NG Loeb. 2009. "Seasonal variation of the physical properties of marine boundary layer clouds off the California coast." Journal of Climate, 22(10), doi:10.1175/2008JCLI2478.1. Image (a). Seasonal

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Cloud Parameterizations in Climate Models: Implications from CAM3 and WRF Simulations Download a printable PDF Submitter: Wang, W., Pacific Northwest National Laboratory Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Wang W, X Liu, S Xie, J Boyle, and SA McFarlane. 2009. "Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Retrievals of Mixed-phase Cloud Properties Download a printable PDF Submitter: Ou, S., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Ou SS, KN Liou, XJ Wang, A Dybdahl, M Mussetto, LD Carey, J Niu, JA Kankiewicz, S Kidder, and TH Von der Haar. 2009. "Retrievals of mixed-phase cloud properties during the National Polar-Orbiting Operational Environmental Satellite System."

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multifractal Analysis of Radiation in Clouds: 5000km to 50cm Submitter: Lovejoy, S., McGill University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Lovejoy, S., D. Schertzer, J. D. Stanway, 2001: "Direct Evidence of planetary scale atmospheric cascade dynamics," Phys. Rev. Lett. 86(22): 5200-5203. Left: Power spectrum of the 5 different aircraft measured liquid water data sets from the FIRE experiment

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPLAT Makes Its Mark in Flying Research Laboratory Download a printable PDF Submitter: Cziczo, D. J., Massachusetts Institute of Technology Ghan, S. J., Pacific Northwest National Laboratory Flynn, C. J., Pacific Northwest National Laboratory Hubbe, J., Pacific Northwest National Laboratory Laskin, A., Pacific Northwest National Laboratory Roeder, L. R., Pacific Northwest National Laboratory Ronfeld, D., Pacific Northwest National Laboratory Schmid, B., Pacific Northwest National Laboratory

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the Numerical Simulation of Squall Lines Download a printable PDF Submitter: Morrison, H. C., NCAR Thompson, G., NCAR Tatarskii, V., Georgia Institute of Technology Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Morrison HC, G Thompson, and V Tatarskii. 2009. "Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes."

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profiling Capability of High-Resolution Oxygen A-band Spectroscopy for Stratus Cloud Cover Submitter: Davis, A. B., Jet Propulsion Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Davis AB, IN Polonsky, and A Marshak. 2009. Space-Time Green Functions for Diffusive Radiation Transport, in Application to Active and Passive Cloud Probing. In Light Scattering Reviews, Volume 4, pp. 169-292. Ed. by A.A. Kohkanovsky, Heidelberg,

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detangling Convective Oscillations at ARM Tropical Western Pacific Site: Manus Submitter: Wang, Y., Department of Geography Long, C. N., NOAA Global Monitoring Division/CIRES Mather, J. H., Pacific Northwest National Laboratory Liu, X., Institute of Earth Environment Area of Research: Radiation Processes Working Group(s): Cloud Properties Journal Reference: Wang Y, C Long, J Mather, and X Liu. 2010. "Convective signals from surface measurements at ARM Tropical Western Pacific site:

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Water Vapor Variability by Ground-Based Microwave Radiometry Download a printable PDF Submitter: Kneifel, S., McGill University Crewell, S., University of Cologne Loehnert, U., University of Cologne Schween, J. H., Inst. of Geophysics and Meteorology Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Kneifel S, S Crewell, U Löhnert, and J Schween. 2009. "Investigating water vapor variability by

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Variability of Mesoscale Convective System Anvil Structure from A-train Satellite Data Submitter: Yuan, J., Nanjing University Houze, R., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yuan J and RA Houze. 2010. "Global variability of mesoscale convective system anvil structure from A-train satellite data." Journal of Climate, 23, 5864-5888. Figure. 1 Annual mean (2007) climatology of anvil

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Carbon Aerosols and the Third Polar Ice Cap Submitter: Menon, S., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Menon S, D Koch, G Beig, S Sahu, J Fasullo, and D Orlikowski. 2009. "Black carbon aerosols and the third polar ice cap." Atmospheric Chemistry and Physics, 9, 26593-26625. Recent thinning of glaciers over the Himalayas (sometimes referred to as

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCN Activity and Mixing Rules of Isoprene Secondary Organic Aerosol (SOA) and Sulfate Download a printable PDF Submitter: Martin, S. T., Harvard University Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: King SM, T Rosenoern, JH Shilling, Q Chen, Z Wang, G Biskos, KA McKinney, U Poeschl, and ST Martin. 2010. "Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nucleation Link to Aerosols for Global Models Download a printable PDF Submitter: DeMott, P. J., Colorado State University Liu, X., University of Wyoming Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: DeMott PJ, AJ Prenni, X Liu, SM Kreidenweis, MD Petters, CH Twohy, MS Richardson, T Eidhammer, and DC Rogers. 2010. "Predicting global atmospheric ice nuclei distributions and their impacts on

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanisms Affecting the Transition from Shallow to Deep Convection over Land Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhang Y and SA Klein. 2010. "Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Horizontal Resolution on Climate Model Simulations of Tropical Moist Processes Download a printable PDF Submitter: Boyle, J., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Boyle JS and SA Klein. 2010. "Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biases in Column Absorption for Fractal Clouds Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak, Alexander; Davis, Anthony; Wiscombe, Warren; Ridgway, William; Cahalan, Robert; 1998: "Biases in Shortwave Column Absorption in the Presence of Fractal Clouds," J. Climate 11(3):431-446. Figure 1: Water vapor transmission spectra for solar zenith angle of 60 degree. From the top:

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increased Accuracy for Sky Imager Retrievals Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Long CN. 2010. "Correcting for circumsolar and near-horizon errors in sky cover retrievals from sky images." The Open Atmospheric Science Journal, 4, doi:10.2174/1874282301004010045. Long CN, JM Sabburg, J Calbo, and D Pages. 2006. "Retrieving

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Arctic Clouds Between ECMWF Simulations and ARM Observations at the NSA Download a printable PDF Submitter: Zhao, M., National Oceanic and Atmospheric Administration Wang, Z., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Figure 1: Monthly-averaged vertical distribution of cloud fraction from the observation (a) and the ECMWF model (b), and their differences (c). Both

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Macrophysical and Microphysical Properties of Deep Convective Clouds as Observed by MODIS Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Distributions of cloud optical depth from Aqua in four regions. The mean and standard deviation of the distributions are given for each region indicated by latitude and longitude range in each panel. The means and

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating Glaciation Temperature of Deep Convective Clouds with Remote Sensing Data Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A (a) A conceptual diagram of cloud particle size vertical evolution inside a deep convective cloud. (b) Cloud side scanner retrievals of (left) particle size and (right) cloud phase. Homogeneous freezing is inefficient at temperatures

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insight on the Atmosphere's Tiniest Particles Download a printable PDF Submitter: Smith, J., University of California, Irvine McMurry, P. ., University of Minnesota Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Smith JN, KC Barsanti, HR Friedli, M Ehn, M Kulmala, DR Collins, JH Scheckman, BJ Williams, and PH McMurry. 2010. "Observations of aminium salts in atmospheric nanoparticles and possible climatic implications." Proceedings of

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress Towards Climate Projections of Central U.S. Rainfall Using a Global Model with Embedded Explicit Convection Download a printable PDF Submitter: Pritchard, M. S., Scripps Institution of Oceanography Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Pritchard MS, MW Moncrieff, and RC Somerville. 2011. "Orogenic propagating precipitation systems over the US in a global climate model with embedded

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Clouds at Arctic Atmospheric Observatories Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, VP Walden, E Eloranta, T Uttal, JR Campbell, SM Starkweather, and M Shiobara. 2011. "Clouds at Arctic atmospheric observatories, part I: occurrence and macrophysical properties." Journal of Applied Meteorology and Climatology, 50(3), 626-644.

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground-Based Measurements in Support of Liquid-Dependent Ice Nucleation in Arctic Clouds Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: de Boer G, H Morrison, MD Shupe, and R Hildner. 2011. "Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Microphysics Schemes in Idealized Supercell Thunderstorm Simulations Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Morrison H and JA Milbrandt. 2011. "Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations." Monthly Weather Review, 139, 1103-1130. Near-surface radar reflectivity after

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of CRM Intercomparison Simulations Using TWP-ICE Observations, Part 1 Download a printable PDF Submitter: Varble, A., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Varble AC, AM Fridlind, EJ Zipser, AS Ackerman, J Chaboureau, J Fan, A Hill, SA McFarlane, J Pinty, and B Shipway. 2011. "Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating the Ice Crystal Enhancement Factor in the Tropics Download a printable PDF Submitter: Zeng, X., Morgan State University GSFC, N., NASA GSFC Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Zeng X, W Tao, T Matsui, S Xie, S Lang, M Zhang, DO Starr, and X Li. 2011. "Estimating the ice crystal enhancement factor in the tropics." Journal of the

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dependence of the Single-Scattering Properties of Small Ice Crystals on Idealized Shape Models Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Um J and GM McFarquhar. 2011. "Dependence of the single-scattering properties of small ice crystals on idealized shape

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Indirect Impact of Atmospheric Aerosols on an Ensemble of Deep Convective Clouds Download a printable PDF Submitter: Grabowski, W., NCAR Morrison, H. C., NCAR Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Grabowski WW and H Morrison. 2011. "Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi-equilibrium. Part II: Double-moment microphysics." Journal of

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors Influencing the Microphysics and Radiative Properties of Liquid-Dominated Arctic Clouds Download a printable PDF Submitter: Earle, M., Environment Canada Liu, P., Environment Canada Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Earle ME, PS Liu, JW Strapp, A Zelenyuk, D Imre, GM McFarquhar, NC Shantz, and WR Leaitch. 2011. "Factors influencing the microphysics and radiative properties of

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Properties of the 1997 TWP Smoke Event Submitter: Spinhirne, J., University of Arizona Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A Figure 1. MPL image showing evolution of early September, 1997 smoke event at Manus, TWP. Figure 2. Selected aerosol extinction cross section profiles at the ARM TWP site during 1997 showing progression of aerosol loading. Figure 3. Cloud-cleared optical measurements at the TWP site from July 27 to

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Surface Albedo Data Set Enables Improved Radiative Transfer Calculations Download a printable PDF Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: McFarlane SA, K Gaustad, E Mlawer, C Long, and J Delamere. 2011. "Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility." Atmospheric Measurement Techniques, 4, 1713-1733. Time

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Snow Particle Observations in Arctic Clouds Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Morrison H, P Zuidema, GM McFarquhar, A Bansemer, and AJ Heymsfield. 2011. "Microphysical observations in shallow mixed-phase and deep frontal Arctic cloud systems." Quarterly Journal Royal Meteorological Society, 137(659), doi:10.1002/qj.840. Fitted size distribution intercept

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Humidified Aerosols on Lidar Depolarization Below Ice-Precipitating Arctic Clouds Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies van Diedenhoven, B., NASA - Goddard Institute for Space Studies Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: van Diedenhoven B, AM Fridlind, and AS Ackerman. 2011. "Influence of humidified aerosol on lidar depolarization measurements below

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Dance of Aerosols Download a printable PDF Submitter: Song, C., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Song C, RA Zaveri, JE Shilling, ML Alexander, and M Newburn. 2011. "Effect of hydrophilic organic seed aerosols on secondary organic aerosol formation from ozonolysis of α-pinene." Environmental Science & Technology, 45(17), doi:10.1021/es201225c. The injection of alpha-pinene, a

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Top Humidity Inversions and the Maintenance of Arctic Mixed-Phase Stratocumulus Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, MD Shupe, O Persson, and H Morrison. 2011. "Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion." Atmospheric

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling the Sensitivity of Convection to Tropospheric Humidity Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Del Genio AD. 2011. "Representing the sensitivity of convective cloud systems to tropospheric humidity in general circulation models." Surveys in Geophysics, , doi:10.1007/s10712-011-9148-9.

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Birth of a Cloud Droplet Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ghan SJ, H Abdul-Razzak, A Nenes, Y Ming, X Liu, M Ovchinnikov, B Shipway, N Meskhidze, J Xu, and X Shi. 2011. "Droplet nucleation: Physically-based parameterizations and comparative evaluation." Journal of Advances

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TOA Radiation Budget of Convective Core/Stratiform Rain/Anvil Clouds from Deep Convection Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, XQ Dong, BK Xi, C Schumacher, P Minnis, and M Khaiyer. 2011. "Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating the Impact of Aerosols on Tropical Deep Convection Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Morrison H and WW Grabowski. 2011. "Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment." Atmospheric Chemistry and Physics, 11(20),

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Millimeter Wave Scattering from Ice Crystals and Their Aggregates Download a printable PDF Submitter: Botta, G., Pennsylvania State University Verlinde, J., The Pennsylvania State University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Botta G, K Aydin, J Verlinde, A Avramov, A Ackerman, A Fridlind, M Wolde, and G McFarquhar. 2011. "Millimeter wave scattering from ice crystals and their aggregates: Comparing cloud model simulations with X- and

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unraveling the Complexity of Arctic Mixed-Phase Clouds Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Morrison H, G de Boer, G Feingold, J Harrington, M Shupe, and K Sulia. 2011. "Resilience of persistent Arctic mixed-phase clouds." Nature Geoscience, 5, doi:10.1038/ngeo1332. A conceptual model that illustrates the primary processes and basic physical structure of persistent Arctic

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Simulated Clouds and Radiation at the ARM Site Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Ghan, S.J. and Leung, L.R., 1999: "A Comparison of Three Different Modeling Strategies for Evaluating Cloud and Radiation Parameterizations," Monthly Weather Review 127( 9): 1967-1984. Observed and Simulated Column Water Vapor Column

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Get in the Way: How Climate Models Calculate the Effects of Clouds on Earth's Warming Download a printable PDF Submitter: Qian, Y., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qian Y, CN Long, H Wang, JM Comstock, SA McFarlane, and S Xie. 2012. "Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations."

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Carbon Reduction of Snow Albedo Submitter: Kirchstetter, T. W., Lawrence Berkeley National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Hadley OL and TW Kirchstetter. 2012. "Black carbon reduction of snow albedo." Nature Climate Change, , doi:10.1038/nclimate1433. Spectrally weighted snow albedo over the 300-2,500 nm solar spectrum: derived from our experiments (dots, 1 standard deviation) and modelled using SNICAR

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modelling Future Changes in Surface Ozone: a Parameterized Approach Download a printable PDF Submitter: Bergmann, D., Lawrence Livermore National Laboratory Chuang, C., Lawrence Livermore National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Wild O, AM Fiore, DT Shindell, RM Doherty, WJ Collins, FJ Dentener, MG Schultz, S Gong, IA MacKenzie, G Zeng, P Hess, DJ Bergmann, S Szopa, JE Jonson, TJ Keating, and A Zuber. 2012. "Modelling

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Rain Clouds Still a Challenge to Cloud-Resolving Models Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies Ackerman, A., NASA - Goddard Institute for Space Studies Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Fridlind AM, AS Ackerman, J Chaboureau, J Fan, WW Grabowski, AA Hill, TR Jones, MM Khaiyer, G Liu, P Minnis, H Morrison, L Nguyen,

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Simulation of Boundary Layer Clouds Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1. Comparison of Boundary Layer Clouds Schemes in Climate Models with Satellite Observations Key Contributors: James McCaa, as part of his Ph.D. dissertation at University of Washington Chris Bretherton, University of Washington Dennis Hartmann, University of

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico City Carbon-Containing Particle Composition Simulated Download a printable PDF Submitter: Zaveri, R., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Lee-Taylor J, S Madronich, B Aumont, M Camredon, A Hodzic, GS Tyndall, E Aperl, and RA Zaveri. 2012. "Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume." Atmospheric Chemistry and

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Controls on Ozone Precursors Will Have Different Impacts on Future Climate Download a printable PDF Submitter: Bergmann, D., Lawrence Livermore National Laboratory Chuang, C., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol Life Cycle Journal Reference: Fry MM, V Naik, JJ West, MD Schwartzkopf, AM Fiore, WJ Collins, FJ Dentener, DT Shindell, C Atherton, D Bergmann, BN Duncan, P Hess, IA

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAM5 Shows Reasonable Aerosol First Indirect Effects on Non-Precipitating Low Liquid Clouds Download a printable PDF Submitter: Zhao, C., Beijing Normal University Klein, S., Lawrence Livermore National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Zhao C, SA Klein, S Xie, X Liu, JS Boyle, and Y Zhang. 2012. "Aerosol first indirect effects on non-precipitating low-level

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Many Forecast Errors Are Climate Errors Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Xie S, H Ma, JS Boyle, SA Klein, and Y Zhang. 2012. "On the correspondence between short- and long-timescale systematic errors in CAM4/CAM5 for the years of tropical convection." Journal of Climate, 25(22),

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diurnal Cycle of Monsoon Clouds, Precipitation, and Surface Radiation Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES May, P. T., Bureau of Meteorology Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: May PT, CN Long, and A Protat. 2012. "The diurnal cycle of the boundary layer, convection, clouds, and surface radiation in a coastal monsoon environment (Darwin

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anthropogenic Aerosols: a Clearer Understanding Submitter: Daum, P., Brookhaven National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Liu, Y., and P. H. Daum, 2002: "Indirect warming effect from dispersion forcing," Nature 419(6872):580-581. Figure 1. Key = Green symbols: triangle - FIRE, northeastern Pacific; Crossed circles - SOCEX, Southern Ocean; Filled circle - ACE1, Southern Ocean; Blue symbols: Filled circles - ASTEX 8,

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Aerosols Affect Cloud Properties in Arctic Mixed-Phase Stratocumulus Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Jackson RC, GM McFarquhar, AV Korolev, ME Earle, PS Liu, RP Lawson, S Brooks, M Wolde, A Laskin, and M Freer. 2012. "The dependence of ice microphysics on aerosol concentration in arctic mixed-phase

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Observed Cirrus Microphysical Properties on Shortwave Radiation: a Case Study Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Nousiainen, T. P., University of Helsinki Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Mauno P, GM McFarquhar, T Nousiainen, M Timlin, M Kahnert, and P Raisanen. 2011. "The influence of cloud microphysical properties on shortwave radiation: A case study over Oklahoma."

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbonaceous Aerosol Aging Mechanisms Improve Agreement of Global Simulations with Data Download a printable PDF Submitter: Dubey, M. K., Los Alamos National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: N/A Longitudinal and vertical distribution of global zonal mean hydrophobic to hydrophilic conversion time for carbonaceous aerosols with new laboratory aging mechanism. Impact of new aging mechanism on global zonal mean black carbon

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Constraints on Cloud-Top Phase, Ice Size, and Asymmetry Parameter over Deep Convection Download a printable PDF Submitter: van Diedenhoven, B., NASA - Goddard Institute for Space Studies Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: van Diedenhoven B, AM Fridlind, AS Ackerman, and B Cairns. 2012. "Evaluation of hydrometeor phase and ice properties in cloud-resolving model

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Understanding Water Vapor's Role in Models Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Time-height cross sections of water vapor mixing ratio, which is observed directly by the ARM Raman lidar at 10-min and approximately 100 m resolution, and relative humidity for 29 November through 2 December 2002. The bottom panel shows the comparison of

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations Guide Low-Cloud Parameterization Development in the ECMWF Model Download a printable PDF Submitter: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Forbes, R. M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and R Forbes. 2012. "The impact of low clouds on surface shortwave radiation in the ECMWF model."

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing Download a printable PDF Submitter: Bergmann, D., Lawrence Livermore National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Yu H, M Chin, J West, C Atherton, N Bellouin, D Bergmann, I Bey, H Bian, T Diehl, G Forberth, P Hess, M Schulz, D Shindell, T Takemura, and Q Tan. 2012. "An HTAP multi-model assessment of the influence of regional

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scale Shows True Weight of Aerosol Effects on Clouds Download a printable PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: McComiskey A and G Feingold. 2012. "The scale problem in quantifying aerosol indirect effects." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-1031-2012. Differing values: Values derived from aircraft and surface observations,

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Hitches Ride to Arctic Download a printable PDF Submitter: Zelenyuk-Imre, A., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Zelenyuk A, D Imre, J Beranek, E Abramson, J Wilson, and M Shrivastava. 2012. "Synergy between secondary organic aerosols and long-range transport of polycyclic aromatic hydrocarbons." Environmental Science & Technology, 46(22), doi:10.1021/es302743z. When airborne

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrics and Diagnostics for Climate Model Short-Range Hindcasts Download a printable PDF Submitter: Ma, H., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ma H, S Xie, JS Boyle, SA Klein, and Y Zhang. 2012. "Metrics and diagnostics for precipitation-related processes in climate model short-range hindcasts." Journal of Climate, , . ACCEPTED. Pattern statistics

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2007 Floods Not a Complete Washout in U.S. Great Plains Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Lamb PJ, DH Portis, and A Zangvil. 2012. "Investigation of Large-Scale Atmospheric Moisture Budget and Land Surface Interactions over U.S. Southern Great Plains including for CLASIC (June 2007)." Journal of

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shaking Things Up-What Triggers Atmospheric Convection in the West African Sahel? Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Couvreux F, C Rio, F Guichard, M Lothon, G Canut, D Bouniol, and A Gounou. 2012. "Initiation of daytime local convection in a semi-arid region analysed with high-resolution simulations and AMMA observations." Quarterly

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strong Impacts of Vertical Velocity on Cloud Microphysics and Implications for Aerosol Indirect Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Nanjing University of Information Science and Technology Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Lu C, Y Liu, S Niu, and AM Vogelmann. 2012. "Observed impacts of vertical velocity on cloud

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at the Full Spectrum for Water Vapor Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi:

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Validation of a Black Carbon Mixing State Resolved Three-Dimensional Model Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Matsui H, M Koike, Y Kondo, N Moteki, JD Fast, and RA Zaveri. 2013. "Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impact." Journal of

  13. Research Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software & Tools Development Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Software & Tools Development Over the years, ESnet

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Proposes New Scheme to Characterize Land-Atmosphere Interactions and Improve Climate Models Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Liu G, Y Liu, and S Endo. 2013. "Evaluation of surface flux parameterizations with long-term ARM observations." Monthly Weather Review, 141(2), doi:10.1175/MWR-D-12-00095.1. One of the three

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rain and Cloud Resistance Download a printable PDF Submitter: Flaherty, J., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Deng L, S McFarlane, and J Flaherty. 2013. "Characteristics associated with the Madden-Julian Oscillation at Manus Island." Journal of Climate, 26(10), doi:10.1175/JCLI-D-12-00312.1. Deep tropical clouds are sometimes called the engines of the global climate. They

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Properties of the Arctic Stratiform Cloud-Top Region Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Sedlar J, MD Shupe, and M Tjernström. 2011. "On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic." Journal of Climate, 25(7), doi:10.1175/JCLI-D-11-00186.1. Occurrence frequency of low-level, stratiform cloud cases used in the analysis

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method Simulates 3D Ice Crystal Growth Within Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Harrington JY, K Sulia, and H Morrison. 2013. "A method for adaptive habit prediction in bulk microphysical models. Part I: theoretical development." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-040.1. Harrington JY, K Sulia, and H Morrison. 2013.

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When It Rains, It Doesn't Always Pour Download a printable PDF Submitter: Penide, G., Laboratoire d\'Optique Atmospherique Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Penide G, V Kumar, A Protat, and P May. 2013. "Statistics of drop size distribution parameters and rain rates for stratiform and convective precipitation during the North Australian wet season." Monthly Weather Review, 141(9), 10.1175 /mwr-d-12-00262.1. Measurements from the

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seasonal Case Studies Reveal Significant Variance in Large-Scale Forcing Data Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S, R.T Cederwall, M. Zhang, and J.J. Yio, Comparison of SCM and CSRM forcing data derived from the ECMWF model and from objective analysis at the ARM SGP site, J. Geophys. Res., 108(D16), 4499, doi:10.1029/2003JD003541, 2003.

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cotton-Ball Clouds Contained Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, WI Gustafson, EI Kassianov, and D Liping. 2013. "Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies." Monthly Weather Review, 141, doi:10.1175/MWR-D-12-00136.1. Cumulus Potential (CuP) parameterization leads to improved forecasts of

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automated Rain Rate Estimates Using the Ka-band ARM Zenith Radar (KAZR) Submitter: Chandra, A. S., McGill University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Chandra A, C Zhang, P Kollias, S Matrosov, and W Szyrmer. 2015. "Automated rain rate estimates using the Ka-band ARM Zenith Radar (KAZR)." Atmospheric Measurement Techniques, 8(1-15), doi:10.5194/amt-8-1-2015. ACCEPTED. Scatter plots of rain rates (R) observed from a video

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust in the Wind... and the Clouds... and the Atmosphere Submitter: Sassen, K., University of Alaska, Fairbanks Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sassen, K., P.J. DeMott, J.M. Propsero, and M.R. Poellot, Saharan Dust Storms and Indirect Aerosol Effects on Clouds: CRYSTAL-FACE Results, Geophys. Res. Ltt., 30(12), 1633, doi:10/1029/2003GL017371, 2003. PDL linear depolarization ratio (color scale on top) and relative returned power (in gray scale) of

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBL Cloud Properties Derived from the Azores-AMF Observations Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Dong X, B Xi, A Kennedy, P Minnis, and R Wood. 2014. "A 19-month record of marine aerosol-cloud-radiation properties derived from DOE ARM AMF deployment at the Azores: Part I: Cloud fraction and single-layered MBL cloud properties." Journal of Climate, 27(10),

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Mixed-layer Heights from Airborne HSRL and WRF-Chem During CARES Download a printable PDF Submitter: Scarino, A. J., Science Systems and Applications, Inc. Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Scarino AJ, MD Obland, JD Fast, SP Burton, RA Ferrare, CA Hostetler, LK Berg, B Lefer, C Haman, JW Hair, RR Rogers, C Butler, AL Cook, and DB Harper. 2014. "Comparison of mixed layer heights from airborne high spectral resolution

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deciphering Raindrop Collisions with Dual-polarization Radar Download a printable PDF Submitter: Kumjian, M., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kumjian MR and OP Prat. 2014. "The impact of raindrop collisional processes on the polarimetric radar variables." Journal of the Atmospheric Sciences, 71(8), doi:10.1175/JAS-D-13-0357.1. (a) Changes in ZDR as a function

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Island-Induced Cloud Plumes Influence Tropical Atmospheric Measurements, Surface Radiation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: McFarlane, S.A., Long, C.N., and Flynn, D., Nauru Island Effect Study, Fourteenth ARM Science Team Meeting, March 22 to 26, 2004, Albuquerque, New Mexico. Nauru Island, about 1,200 miles northeast of Papua New Guinea in the western South Pacific, is one of

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Shapes and Phases of Small Particles in Mixed-Phase Clouds Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: McFarquhar GM, J Um, and R Jackson. 2013. "Small cloud particle shapes in mixed-phase clouds." Journal of Applied Meteorology and Climatology, 52(5), doi:10.1175/JAMC-D-12-0114.1. Figure 1. Magnified images of four particles imaged

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Two Faces of Aerosols Download a printable PDF Submitter: Ovink, J., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, M Shrivastava, RC Easter, JD Fast, EG Chapman, Y Liu, and RA Ferrare. 2015. "A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud Processes on Aerosol and Trace Gases in Parameterized Cumuli." Geoscientific Model Development, 8, doi:10.5194/gmd-8-409-2015. A new

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Data Used to Evaluate Reanalysis Results Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Dolinar E, X Dong, and B Xi. 2015. "Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations." Climate Dynamics, , DOI 10.1007/s00382-0, 10.1007/s00382-0. Figure 1. Monthly means of CF (a), SWDNsfc

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mountain-Induced Dynamics Influence Cloud Phase Distribution and Precipitation Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Dorsi SW, MD Shupe, PG Persson, DE Kingsmill, and LM Avallone. 2015. "Phase-specific characteristics of wintertime clouds across a mid-latitude mountain range." Monthly Weather Review, 143(10), doi:10.1175/MWR-D-15-0135.1. Multi-flight composite

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Re-gathered by Wind Shear Download a printable PDF Submitter: Yang, Q., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Yang Q, RC Easter, P Campuzano-Jost, JL Jimenez, JD Fast, SJ Ghan, H Wang, LK Berg, MC Barth, Y Liu, MB Shrivastava, B Singh, H Morrison, J Fan, CL Ziegler, M Bela, E Apel, GS Diskin, T Mikoviny, and A Wisthaler. 2015. "Aerosol transport and

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Subgrid-Scale Hydrometeor Transport Using a High-Resolution CRM Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wong M, M Ovchinnikov, and M Wang. 2015. "Evaluation of subgrid-scale hydrometeor transport schemes using a high-resolution cloud-resolving model." Journal of the Atmospheric Sciences, 72(9), doi:10.1175/JAS-D-15-0060.1. Clouds

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storm Clouds Take Rain on Rollercoaster Ride Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wong M, M Ovchinnikov, and M Wang. 2015. "Evaluation of subgrid-scale hydrometeor transport schemes using a high-resolution cloud-resolving model." Journal of the Atmospheric Sciences, 72(9), doi:10.1175/JAS-D-15-0060.1. Strong updrafts within the cloud propel their

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data from Saharan Dust Storm Reveal Model Deficiencies Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Slingo, A., T.P. Ackerman, R.P. Allan, E.I. Kassianov, S.A. McFarlane, G.J. Robinson, J.C. Barnard, M.A. Miller, J.E. Harries, J.E. Russell , S. Dewitte, 2006: Observations of the impact of a major Saharan dust storm on the Earth's radiation budget. Geophys. Res. Lett., 33, L24817,

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Entrainment Rate Parameterization Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lu C, Y Liu, GJ Zhang, X Wu, S Endo, L Cao, Y Li, and X Guo. 2016. "Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulations." Journal of the Atmospheric Sciences, 73(2), doi:10.1175/JAS-D-15-0050.1. Relationships

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quasi-Vertical Profiles - a New Way to Look at Polarimetric Radar Data PI Contact: Ryzhkov, A., National Severe Storms Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Ryzhkov A, P Zhang, H Reeves, M Kumjian, T Tschallener, S Trömel, and C Simmer. 2016. "Quasi-Vertical Profiles - A New Way to Look at Polarimetric Radar Data." Journal of Atmospheric and Oceanic Technology, 33(3), doi:10.1175/JTECH-D-15-0020.1. An example of composite

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tests of Single-Column Models with ARM Data Submitter: Randall, D. A., Colorado State University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1 Figure 2 One of the primary goals of ARM is to collect observations that can be used to test models of cloud formation and radiative transfer in the atmosphere. One class of such models, called "single-column models," is designed to predict the

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Assessment of the ECMWF Model over the Arctic Land Using Observations from the Mixed-Phase Arctic Cloud Experiment Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S., S. A. Klein, J. J. Yio, A. C. M. Beljaars, C. N. Long, and M. Zhang, (2006): An Assessment of the ECMWF Model over the Arctic Land Using Observations from the ARM Mixed-Phase Arctic

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Images Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Long, C. N., J. M. Sabburg, J. Calbo, and D. Pages, (2006): Retrieving Cloud Characteristics from Ground-based Daytime Color All-sky Images, JTech, 23, No. 5, 633–652. Long, C. N., J. M. Sabburg, J. Calbo, and D. Pages, (2006): Papers of Note:

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Forecasting in the Tropics with Climate Models Is Feasible Submitter: Boyle, J., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Climate Model Forecast Experiments for TOGA-COARE. J. Boyle,S. Klein,G. Zhang,S. Xie,X. Wei. Accepted by Monthly Weather Review Figure 1. Profiles of the apparent heat source (Q1) at the TOGA-COARE central site for the observations and