Sample records for hemispherical electron energy

  1. A tunable hemispherical platform for non-stretching curved flexible electronics and optoelectronics

    SciTech Connect (OSTI)

    Zhuang, Jinda; Ju, Y. Sungtaek, E-mail: just@seas.ucla.edu [Mechanical and Aerospace Engineering Department, University of California, 420 Westwood Plaza, Los Angeles, California 90095 (United States)

    2014-07-28T23:59:59.000Z

    One major challenge in incorporating flexible electronics or optoelectronics on curved surfaces is the requirement of significant stretchability. We report a tunable platform for incorporating flexible and yet non-stretching device layers on a hemisphere. In this configuration, an array of planar petals contractively maps onto the surface of an inflatable hemisphere through elastocapillary interactions mediated by an interface liquid. A mechanical model is developed to elucidate the dependence of the conformality of the petal structures on their elastic modulus and thickness and the liquid surface tension. The modeling results are validated against experimental results obtained using petal structures of different thicknesses, restoring elastic spring elements of different spring constants, and liquids with different surface tension coefficients. Our platform will enable facile integration of non-stretching electronic and optoelectronic components prepared using established planar fabrication techniques on tunable hemispherical surfaces.

  2. Energy and Climate Partnership of the Americas Western Hemisphere...

    Energy Savers [EERE]

    to increase collaboration among participating countries to: Facilitate each country's roadmap to achieve its renewable energy goals in the context of its broader energy...

  3. Energy and Climate Partnership of the Americas Western Hemisphere Clean

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|July 14, 2014July 7, 2009Energy Initiative |

  4. Matter & Energy Electronics

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    See also: Matter & Energy Electronics· Detectors· Technology· Construction· Sports Science Electronic Tongue Tastes Wine Variety, Vintage (Aug. 12, 2008) -- You don't need a wine expert to Advance

  5. Dark Energy and Electrons

    E-Print Network [OSTI]

    Burra G. Sidharth

    2008-08-05T23:59:59.000Z

    In the light of recent developments in Dark Energy, we consider the electron in a such a background field and show that at the Compton wavelength the electron is stable, in that the Cassini inward pressure exactly counterbalances the outward Coulomb repulsive pressure thus answering a problem of the earlier electron theory.

  6. Hemispheric asymmetry of the afternoon electron aurora M. O. Fillingim, G. K. Parks, H. U. Frey, T. J. Immel, and S. B. Mende

    E-Print Network [OSTI]

    Fillingim, Matthew

    Hemispheric asymmetry of the afternoon electron aurora M. O. Fillingim, G. K. Parks, H. U. Frey, T of the dayside aurora. We find that the morphology of the afternoon aurora is significantly different in the two the northern aurora is unstructured. We relate the observed asymmetry in the aurora to the Y GSM component

  7. Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the...

  8. Power Electronics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics Power electronics

  9. Searchable Electronic Department of Energy Acquisition Regulation...

    Office of Environmental Management (EM)

    Searchable Electronic Department of Energy Acquisition Regulation Searchable Electronic Department of Energy Acquisition Regulation Updated July 2, 2013. The EDEAR is current...

  10. Forward Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForked DeerForward Electronics Jump to:

  11. Tokyo Electron | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:Tioga EnergyTokyo Electron PV

  12. Electronics Stewardship | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy|Electrifying YourElectronicElectronics

  13. Manasa Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOEMak-BanMaliMambucalManasa Electronics

  14. Electronics Stewardship | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy|Electrifying YourElectronic

  15. Energy Efficient Electronics Cooling Project

    SciTech Connect (OSTI)

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17T23:59:59.000Z

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  16. Electron and Photon Energy Deposition in Universe

    E-Print Network [OSTI]

    Toru Kanzaki; Masahiro Kawasaki

    2008-05-26T23:59:59.000Z

    We consider energy deposition of high energy electrons and photons in universe. We carry out detailed calculations of fractions of the initial energy of the injected electron or photon which are used to heat, ionize and excite background plasma in the early universe for various ionization states and redshifts.

  17. Energy Storage & Power Electronics 2008 Peer Review - Energy...

    Broader source: Energy.gov (indexed) [DOE]

    that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOEESPE,...

  18. Electronics - Key to Energy Control

    E-Print Network [OSTI]

    Nelson, K. P.

    1981-01-01T23:59:59.000Z

    % reduction planned by 1983. The methods and results of the TI energy management program will be presented....

  19. 6, 56715709, 2006 Hemispheric ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 6, 56715709, 2006 Hemispheric ozone variability indices T. Erbertseder et al. Title Page Chemistry and Physics Discussions Hemispheric ozone variability indices derived from satellite observations.erbertseder@dlr.de) 5671 #12;ACPD 6, 56715709, 2006 Hemispheric ozone variability indices T. Erbertseder et al. Title Page

  20. UCD School of Electrical, Electronic & Communications Engineering UCD Energy Institute

    E-Print Network [OSTI]

    UCD School of Electrical, Electronic & Communications Engineering UCD Energy Institute Academic Opportunities: UCD School of Electrical, Electronic & Communications Engineering UCD Energy Institute #12 Dublin School of Electrical, Electronic & Communications Engineering UCD Energy Institute The electricity

  1. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Office of Environmental Management (EM)

    Power Electronics Presentations Energy Storage Systems 2007 Peer Review - Power Electronics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer...

  2. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials Investigations of electrode interface and architecture...

  3. Genesis Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergyOrderWisconsin:

  4. Advance Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington,Admire,CA 94105 Product: SanZip:

  5. Power Electronics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric, Inc.Department ofAmountAtomic7951Fossil

  6. Rose Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to: navigation,Rolls RoyceRosa S A JumpRose

  7. Cookson Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSCEnergyOpenOpenCookson

  8. Tyco Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbull Hydro LLC Jump to:PageTwo New

  9. Vimal Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage ofInformation VillageVillageVillageVimal

  10. Casimir vacuum energy and the semiclassical electron

    E-Print Network [OSTI]

    H. E. Puthoff

    2006-12-15T23:59:59.000Z

    In 1953 Casimir proposed a semiclassical model for the electron based on the concept that net inward radiation pressure from the electromagnetic vacuum fluctuations fields (as in the Casimir effect, generally) might play the role of Poincare stresses, compensating outward coulomb pressure to yield a stable configuration at small dimensions. Given that in scattering experiments the electron appears point-like, critical to the success of the proposed model is demonstration that the self-energy corresponding to the divergent coulomb field does not contribute to the electron mass. Here we develop a self-consistent, vacuum-fluctuation-based model that satisfies this requirement and thereby resolves the issue of what would otherwise appear to be an incompatibility between a point-like electron and finite mass.

  11. Low energy electron irradiation of an apple

    E-Print Network [OSTI]

    Brescia, Giovanni Batista

    2002-01-01T23:59:59.000Z

    is the need to achieve a uniform dose over the entire surface of convoluted shapes. The main goal of this research was to calculate the dose distribution produced by low energy electron irradiation of a typical complex shape, an apple, using Monte Carlo...

  12. Electronic dissemination of energy data and analysis

    SciTech Connect (OSTI)

    Rodekohr, M.E.

    1997-06-01T23:59:59.000Z

    This paper provides a discussion of the Energy Information Administration`s (EIA) Electronic Dissemination program. This program is designed to deliver EIA energy information, statistics and analysis in the most timely fashion possible using the latest technologies to provide economies to both the provider (the U.S. government) and users of EIA information products. The EIA is responsible for producing the nation`s statistics and analysis on energy production, consumption, imports, and prices. These statistics are often available by month, year, region or other disaggregation. Just one of their databases (the Oil and Gas Resource Information Database) contains 50MB of energy data. The delivery of these data in a efficient and timely manner is critical to the EIA. The paper is organized around several sections which describe: (1) Electronic Dissemination Goals and Strategies, (2) Dissemination Techniques, (3) EIA`s Experience with Electronic Dissemination Methods, (4) Possibilities for the Future, and (5) Electronic Dissemination Policy Issues. Strategy, techniques usage statistics, and other policy related factors are discussed in some detail.

  13. Tokyo Electron PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:Tioga EnergyTokyo Electron PV Jump

  14. High-energy electron beam technology

    SciTech Connect (OSTI)

    Danko, J.C.; Lundin, C.D. (Univ. of Tennessee, Knoxville, TN (United States)); Nolting, E.E. (Naval Surface Warfare Center, White Oak, MD (United States))

    1994-09-01T23:59:59.000Z

    A high-energy electron beam (HEEB) technology was developed under the US Department of Defense (DOD) charged-particle-beam (CPB) directed-energy program. The program's objective was advanced military weapon systems. For the past two decades, charged-particle-beam research focused on producing intense beams and the vehicles to deliver large amounts of electrical energy. The charged-particle beams of interest for weapon systems had particle energies up to 100 MeV, beam currents of tens of kiloamperes, and propagation distances in excess of 100 m. However, such high energy levels are not required for industrial uses of the technology. It is anticipated that these less-aggressive beams will provide an electrical heat source suitable for a variety of materials processing applications, including surface treatment, joining, shock hardening, phase-transformation hardening, peening, shock-wave compaction, and melting. Much more R and D is needed to transfer to industry the high-energy electron beam technology developed in the CPB program. For example, its power as a materials processing tool must be convincingly demonstrated. Also required are compact, reliable accelerators that are relatively simple to use and reasonably priced.

  15. Electronic Educational Devices EED | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation, searchElectricElectrochemicalElectronic

  16. Everlight Electronics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace CenterEverlight Electronics Co Ltd Jump to:

  17. Sharp Electronics Corporation USA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPower Partners Wind Farm Jump to:Electronics

  18. ElectronVault | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldoradoElectronVault Jump to: navigation,

  19. Molecular Structure and Free Energy Landscape for Electron Transport...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure and Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome MtrF. Molecular Structure and Free Energy Landscape for Electron Transport in the Deca-Heme...

  20. Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with

    E-Print Network [OSTI]

    Saldin, Dilano

    Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with Renewable Energy SystemsRenewable Energy Systems Power Electronics and Motor Drives Introduction Wind Energy Profile Solar Energy Profile Energy Storage Options Role of Industrial Electronics

  1. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials In-situ characterization and diagnostics of mechanical degradation in electrodes...

  2. Free form hemispherical shaped charge

    DOE Patents [OSTI]

    Haselman, Jr., Leonard C. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved.

  3. Zonal wind oscillations over the western hemisphere during winter

    E-Print Network [OSTI]

    Hundermark, Bruce William

    1991-01-01T23:59:59.000Z

    and the European Centre for Medium Range Weather Forecasts (ECMWF) 7-day forecast errors of the 500 mb height field over the western hemisphere. B. Literature Review Variations in the zonal wind were first studied in the extended forecasting project.... The energetics of the zonal wind have also been studied. Winston and Krueger (1961) investigated a large scale cycle of available potential energy in the Northern Hemisphere during a 2-week period during late December 1958 and early January 1959. A buildup...

  4. Evaluation of Miscellaneous and Electronic Device Energy Use in Hospitals

    E-Print Network [OSTI]

    1 Evaluation of Miscellaneous and Electronic Device Energy Use in Hospitals Douglas R and Electronic Device Energy Use in Hospitals Douglas R. Black*, Steven M. Lanzisera, Judy Lai, Richard E. Brown@lbl.gov, REBrown@lbl.gov, and BCSinger@lbl.gov *Corresponding Author Abstract: Miscellaneous and electronic loads

  5. Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares

    E-Print Network [OSTI]

    Reep, Jeffrey; Alexander, David

    2015-01-01T23:59:59.000Z

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher, Canfield, & McClymont (1985a,b,c), who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Furt...

  6. From Nano-Electronics and Photonics to Renewable Energy

    E-Print Network [OSTI]

    Smy, Tom

    From Nano-Electronics and Photonics to Renewable Energy Tom Smy Department of Electronics, Carleton University Questions are welcome! #12;OUTLINE Introduction: to EE and Engineering Physics Renewable Energy and Renewable Energy Engineering #12;B.Eng. In Engineering Physics A focused education which is suitable

  7. Mechanics of hemispherical electronics Shuodao Wang,1

    E-Print Network [OSTI]

    Rogers, John A.

    on a circular plate of polyimide onto a spherical cap.5 The polyimide substrate is plastically de- formed

  8. 4, 22832300, 2004 Hemispheric average

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    ACPD 4, 22832300, 2004 Hemispheric average Cl atom concentration U. Platt et al. Title Page U. Platt1 , W. Allen2 , and D. Lowe2 1 Institut fur Umweltphysik, University of Heidelberg, INF 229 February 2004 Accepted: 9 March 2004 Published: 4 May 2004 Correspondence to: U. Platt (ulrich.platt

  9. ARM - Field Campaign - ISDAC - Hemispheric Flux Spectroradiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall- Hemispheric Flux

  10. Electron polarimetry at low energies in Hall C at JLab

    SciTech Connect (OSTI)

    Gaskell, D. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia, 23606 (United States)

    2013-11-07T23:59:59.000Z

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  11. Longitudinal bunch profile and electron beam energy spread

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Storage Ring Parameters Previous: Storage Ring Operation Modes Longitudinal bunch profile and electron beam energy spread Longitudinal bunch profile depends mainly on the...

  12. ccsd00001953, A comparative analysis of the electron energy

    E-Print Network [OSTI]

    -1027, 11801 M#19;exico D. F., MEXICO E-mail: cgt@nuclear.inin.mx Abstract. To establish the electron energy

  13. Measurement of electron temperatures and electron energy distribution functions in dual frequency capacitively coupled CF4/O2 plasmas using

    E-Print Network [OSTI]

    Economou, Demetre J.

    Measurement of electron temperatures and electron energy distribution functions in dual frequency and sheath was an efficient electron heating mechanism. Wu et al.12 computed ion energy distri- butions; published 31 July 2009 Measurements of electron temperatures Te and electron energy distribution functions

  14. Secondary electron emission yield in the limit of low electron energy

    E-Print Network [OSTI]

    Andronov, A N; Kaganovich, I D; Startsev, E A; Raitses, Y; Demidov, V I

    2013-01-01T23:59:59.000Z

    Secondary electron emission (SEE) from solids plays an important role in many areas of science and technology.1 In recent years, there has been renewed interest in the experimental and theoretical studies of SEE. A recent study proposed that the reflectivity of very low energy electrons from solid surface approaches unity in the limit of zero electron energy2,3,4, If this was indeed the case, this effect would have profound implications on the formation of electron clouds in particle accelerators,2-4 plasma measurements with electrostatic Langmuir probes, and operation of Hall plasma thrusters for spacecraft propulsion5,6. It appears that, the proposed high electron reflectivity at low electron energies contradicts to numerous previous experimental studies of the secondary electron emission7. The goal of this note is to discuss possible causes of these contradictions.

  15. Structural Fluctuations, Spin, Reorganization Energy, and Tunneling Energy Control of Intramolecular Electron Transfer

    E-Print Network [OSTI]

    Kurnikova, Maria

    calculations of electronic couplings, molecular dynamics simulations of molecular geometries, and Poisson exists to interpret electron-transfer (ET) reactions and their dependence upon molecular structure.1Structural Fluctuations, Spin, Reorganization Energy, and Tunneling Energy Control

  16. Quasi-free electron energy in near critical point helium

    E-Print Network [OSTI]

    Findley, Gary L.

    Quasi-free electron energy in near critical point helium Yevgeniy Lushtak a,b , Samantha B, Monroe, LA 71209 Abstract We present for the first time the quasi-free electron energy V0() in helium from low density to the density of the triple point liquid (gaseous helium/liquid helium I

  17. A compact, versatile low-energy electron beam ion source

    SciTech Connect (OSTI)

    Zschornack, G., E-mail: g.zschornack@hzdr.de [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany); Knig, J.; Schmidt, M.; Thorn, A. [DREEBIT GmbH, 01109 Dresden (Germany)] [DREEBIT GmbH, 01109 Dresden (Germany)

    2014-02-15T23:59:59.000Z

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  18. Remark on the self-energy of an electron

    E-Print Network [OSTI]

    Y. G. Yi

    2012-11-29T23:59:59.000Z

    The self-energy in the Feynman diagram cannot be possible physically so far as the electron is not moving faster than the photon. If we assume the vacuum polarization effect, we can bring the self-energy diagram into accord with the positron theory of Dirac. The self-force must be an effect on the electron of static polarization induced in the vacuum due to the presence of an electron.

  19. Electron cooling for low-energy RHIC program

    SciTech Connect (OSTI)

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31T23:59:59.000Z

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  20. Electron energy recovery system for negative ion sources

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN); Stirling, William L. (Oak Ridge, TN)

    1982-01-01T23:59:59.000Z

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  1. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    SciTech Connect (OSTI)

    Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States) [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

    2014-05-14T23:59:59.000Z

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  2. Study on electron beam in a low energy plasma focus

    SciTech Connect (OSTI)

    Khan, Muhammad Zubair, E-mail: mzubairkhan-um76@yahoo.com [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia and Department of Physics, Federal Urdu University of Arts, Science and Technology, 45320 Islamabad (Pakistan); Ling, Yap Seong; San, Wong Chiow [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05T23:59:59.000Z

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  3. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect (OSTI)

    Pollock, B

    2012-03-19T23:59:59.000Z

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 10{sup 18} cm{sup -3} in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a limited, defined region. Using this technique a 460 MeV electron beam was produced with an energy spread of 5%. This technique is directly scalable to multi-GeV electron beam generation with sub-percent energy spreads.

  4. Energy Storage & Power Electronics 2008 Peer Review - Power Electronics

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy PolicyEnvironmental-- AsSystems (ESS)(PE)

  5. Low energy electron bombardment induced surface contamination of Ru mirrors

    E-Print Network [OSTI]

    Harilal, S. S.

    Low energy electron bombardment induced surface contamination of Ru mirrors A. Al-Ajlonya , A., Albany, NY 12203, USA ABSTRACT The impact of secondary electrons induced contamination of the Ru surface, carbon contamination, Ruthenium capping 1. INTRODUCTION Extreme ultraviolet (EUV) radiation induced

  6. Energy Storage & Power Electronics 2008 Peer Review - Agenda...

    Broader source: Energy.gov (indexed) [DOE]

    The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects...

  7. Reflection High-Energy Electron Diffraction Beam-Induced Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam-Induced Structural and Property Changes on WO3 Thin Films. Reflection High-Energy Electron Diffraction Beam-Induced Structural and Property Changes on WO3 Thin...

  8. In Situ Electron Energy Loss Spectroscopy in Liquids

    E-Print Network [OSTI]

    Holtz, Megan E; Gao, Jie; Abrua, Hctor D; Muller, David A

    2012-01-01T23:59:59.000Z

    In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the holder shadows the detector, and electron energy loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS for studying chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap and thickness of the liquid layer by valence EELS is demonstrated for liquids. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio as demonstrated for LiFePO4 in aqueous solution. The potential for using...

  9. Low energy electron irradiation of an apple

    E-Print Network [OSTI]

    Brescia, Giovanni Batista

    2002-01-01T23:59:59.000Z

    simulation. A software package, MCNP (Monte Carlo N-Particle), was used to simulate an electron beam irradiation with a 1.0, 1.5 and 2.0 MeV sources on an apple modeled by interconnecting two spheres. The apple radii were 4.4 cm (perpendicular to its axis...

  10. Suzhou Good Ark Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker Energy HoldingEnergyLand-useSustainxSuzhou Good

  11. Policy Flash 2015-06 Energy Star and Electronic Products Environmental...

    Energy Savers [EERE]

    Policy Flash 2015-06 Energy Star and Electronic Products Environmental Assessment Tool (EPEAT) Policy Flash 2015-06 Energy Star and Electronic Products Environmental Assessment...

  12. Electron energy loss spectroscopy of gold nanoparticles on graphene

    SciTech Connect (OSTI)

    DeJarnette, Drew [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Roper, D. Keith, E-mail: dkroper@uark.edu [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States)

    2014-08-07T23:59:59.000Z

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports.

  13. Electron beam directed energy device and methods of using same

    DOE Patents [OSTI]

    Retsky, Michael W. (Trumbull, CT)

    2007-10-16T23:59:59.000Z

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  14. MEMC Electronic Materials Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMAREC Jump to:2 - AirMDV - Mohr, DavidowMEMC

  15. Kk electronic A S | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTN LLCKirmart Corporation Jump to:Kk

  16. Vickers Electronics Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:IsourceSchool ofAS

  17. EcoElectron Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine:Eau

  18. LPKF Laser Electronics AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNL Energy FlowLODLPKF Laser

  19. Magnetek Power Electronics Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to:Macquarie Energy LLC JumpMadkiniMagnetek Power

  20. Bharat Electronics Limited BEL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:Energy LLC Place:BeverlyBeyWatch Country

  1. Evaluation of Miscellaneous and Electronic Device Energy Use in Hospitals

    SciTech Connect (OSTI)

    Black, Douglas R.; Lanzisera, Steven M.; Lai, Judy; Brown, Richard E.; Singer, Brett C.

    2012-09-01T23:59:59.000Z

    Miscellaneous and electronic loads (MELs) consume about one-thirdof the primary energy used in US buildings, and their energy use is increasing faster than other end-uses. In healthcare facilities, 30percent of the annual electricity was used by MELs in 2008. This paper presents methods and challenges for estimating medical MELs energy consumption along with estimates of energy use in a hospital by combining device-level metered data with inventories and usage information. An important finding is that common, small devices consume large amounts of energy in aggregate and should not be ignored when trying to address hospital energy use.

  2. Low-energy elastic electron interactions with pyrimidine

    SciTech Connect (OSTI)

    Palihawadana, Prasanga; Sullivan, James; Buckman, Stephen [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Brunger, Michael [Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia); Institute of Mathematical Sciences, University of Malaya, 50603, Kuala Lumpur (Malaysia); Winstead, Carl; McKoy, Vincent [A A Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125 (United States); Garcia, Gustavo [Consejo Superior de Investigaciones Cientificas, Serrano 113-bis, ES-28006 Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, ES-28040 Madrid (Spain)

    2011-12-15T23:59:59.000Z

    We present results of measurements and calculations of elastic electron scattering from pyrimidine in the energy range 3-50 eV. Absolute differential and integral elastic cross sections have been measured using a crossed electron-molecule beam spectrometer and the relative flow technique. The measured cross sections are compared with results of calculations using the well-known Schwinger variational technique and an independent-atom model. Agreement between the measured differential cross sections and the results of the Schwinger calculations is good at lower energies but less satisfactory at higher energies where inelastic channels that should be open are kept closed in the calculations.

  3. Electronic structure and transition energies in polymer-fullerene bulk heterojunctions

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Electronic Structure and Transition Energies in Polymer?the HOMO and LUMO energy levels and transition energies haveand charge-transfer transition energies. The interface band

  4. Cybersecurity Awareness Electronic Messaging | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department of Energy Current5 by ISA -Department

  5. Home Office and Electronics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearningDepartment of Energy Blower

  6. Ligitek Electronics Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting Control Design Jump to:Photonics JumpLigitek

  7. Green Electronics Council | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,II WindAirplane JumpToolbox

  8. Tunable Graphene Electronic Devices - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z SiteManhattanPacific: AVehicles and

  9. Searchable Electronic Department of Energy Acquisition Regulation |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository | DepartmentSEA-04:DepartmentSara C.IBRFDepartment of

  10. Yamaichi Electronics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History View NewYBR Solar Jump to:Yamaichi

  11. Delta Electronics Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDayton Power & Light CoDelawareDelta

  12. Micro Power Electronics Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickey Hot Springs Geothermal AreaMicro

  13. Wide Bandgap Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseApril 16,WhoWhy AreWhyPower

  14. LG Electronics Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts andKunshanGroupEmissionsLEXELLGLGLG

  15. MGI Electronics LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDL Ambiente LtdMGE

  16. Central Electronics Limited CEL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillarCAPSPower Assn Jump

  17. Nanomaterials for Energy and Electronics Materials Science

    E-Print Network [OSTI]

    Cao, Guozhong

    . These devices have demonstrated conversion efficiencies of 16-32%. Although photovoltaic devices built, DSCs are thought to be advantageous as a photovoltaic device possessing both practical high efficiency and environ- mental challenge as a carbon-neutral energy source. Many photovoltaic devices that fulfill

  18. Energy spectra of two electrons in a circular quantum dot

    E-Print Network [OSTI]

    Anjana Sinha; Y. P. Varshni

    2002-08-27T23:59:59.000Z

    The electron interaction energy of two interacting electrons in a circular quantum dot (with hard wall confinement) is investigated in the framework of the semi-classical Wentzel-Kramers-Brillouin (WKB) approximation. The two electrons are assumed to be in an infinitely deep well of radius $r_0$, in a simple configuration with one electron fixed at the origin. The corresponding Schrodinger equation, with hard wall boundary conditions, is also solved exactly by numerical integration. It is observed that the agreement between the two energy values is quite good, suggesting that the WKB approximation works well for such a confined quantum system as well. This may provide motivation to extend this to more realistic confined potentials.

  19. Strong shock generation by fast electron energy deposition

    SciTech Connect (OSTI)

    Fox, T. E.; Pasley, J. [York Plasma Institute, University of York, York YO10 5DD (United Kingdom) [York Plasma Institute, University of York, York YO10 5DD (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Robinson, A. P. L. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2013-12-15T23:59:59.000Z

    It has been suggested that fast electrons may play a beneficial role in the formation of the ignitor shock in shock ignition owing to the high areal density of the fuel at the time of the ignitor pulse. In this paper, we extend previous studies which have focused on monoenergetic electron sources to populations with extended energy distributions. In good agreement with analytic scalings, we show that strong shocks can be produced with peak pressures of a few hundred Mbar to over 1 Gbar using fast electron intensities of 110 PW/cm{sup 2} in a uniform deuterium-tritium plasma at 10 g/cm{sup 3}. However, the length required for shock formation increases with fast electron temperature. As this shock formation distance becomes comparable to the target size, the shock is not able to fully develop, and this implies a limit on the ability of fast electrons to aid shock formation.

  20. Meson production in high-energy electron-nucleus scattering

    E-Print Network [OSTI]

    Gran Fldt

    2010-06-09T23:59:59.000Z

    Experimental studies of meson production through two-photon fusion in inelastic electron-nucleus scattering is now under way. A high-energy photon radiated by the incident electron is fused with a soft photon radiated by the nucleus. The process takes place in the small-angle-Coulomb region of nuclear scattering. We expound the theory for this production process as well as its interference with coherent-radiative-meson production. In particular, we investigate the distortion of the electron wave function due to multiple-Coulomb scattering.

  1. New constraints on Northern Hemisphere growing season net flux

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE L12807AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE Levin,Northern Hemisphere growing season net flux Z. Yang, 1 R. A.

  2. Atmosphere to Electrons | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you'reInc.:memo memorializes the meeting between AHAM

  3. Searchable Electronic Department of Energy Acquisition Regulation |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth Site » PortsmouthWorking2011 | Department ofSRSDepartment of

  4. Energy limitation of laser-plasma electron accelerators

    E-Print Network [OSTI]

    Cardenas, D E; Xu, J; Hofmann, L; Buck, A; Schmid, K; Sears, C M S; Rivas, D E; Shen, B; Veisz, L

    2015-01-01T23:59:59.000Z

    We report on systematic and high-precision measurements of dephasing, an effect that fundamentally limits the performance of laser wakefield accelerators. Utilizing shock-front injection, a technique providing stable, tunable and high-quality electron bunches, acceleration and deceleration of few-MeV quasi-monoenergetic beams were measured with sub-5-fs and 8-fs laser pulses. Typical density dependent electron energy evolution with 65-300 micrometers dephasing length and 6-20 MeV peak energy was observed and is well described with a simple model.

  5. Distance Dependence of Electron Transfer in DNA: The Role of the Reorganization Energy and Free Energy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Distance Dependence of Electron Transfer in DNA: The Role of the Reorganization Energy and Free of the solvent reorganization energy and free energy in the heterogeneous DNA environment. DNA is modeled represents water. Model calculations show the importance of including the reorganization energy and the free

  6. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-10-31T23:59:59.000Z

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  7. Streaking at high energies with electrons and positrons

    SciTech Connect (OSTI)

    Ipp, Andreas; Evers, Joerg; Keitel, Christoph H.; Hatsagortsyan, Karen Z. [Institut fuer Theoretische Physik, Technische Universitaet Wien, 1040 Vienna (Austria); Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2012-07-09T23:59:59.000Z

    State-of-the-art attosecond metrology deals with the detection and characterization of photon pulses with typical energies up to the hundreds of eV and time resolution of several tens of attoseconds. Such short pulses are used for example to control the motion of electrons on the atomic scale or to measure inner-shell atomic dynamics. The next challenge of time-resolving the inner-nuclear dynamics, transient meson states and resonances requires photon pulses below attosecond duration and with energies exceeding the MeV scale. Here we discuss a detection scheme for time-resolving high-energy gamma ray pulses down to the zeptosecond timescale. The scheme is based on the concept of attosecond streak imaging, but instead of conversion of photons into electrons in a nonlinear medium, the high-energy process of electron-positron pair creation is utilized. These pairs are produced in vacuum through the collision of a test pulse to be characterized with an intense laser pulse, and they acquire additional energy and momentum depending on their phase in the streaking pulse at the moment of production. A coincidence measurement of the electron and positron momenta after the interaction provides information on the pair production phase within the streaking pulse. We examine the limitations imposed by quantum radiation reaction in multiphoton Compton scattering on this detection scheme, and discuss other necessary conditions to render the scheme feasible in the upcoming Extreme Light Infrastructure (ELI) laser facility.

  8. Rapid thermal processing of steel using high energy electron beams

    SciTech Connect (OSTI)

    Elmer, J.W.; Newton, A.; Smith, C. Jr.

    1993-11-10T23:59:59.000Z

    High energy electron beams (HEEBs) with megavolt energies represent a new generation of charged particle beams that rapidly deposit up to several hundred joules/pulse over areas on the order of a few square millimeters to 100s of square centimeters. These pulsed beams have energies in the 1 to 10 MeV range, which enables the electrons to deposit large amounts of energy deeply into the material being processed, and these beams have short pulse durations (50 ns) that can heat materials at rates as high as 10{sup 10} {degrees}C/s for a 1000 {degree}C temperature rise in the material. Lower heating rates, on the order of 10{sup 4} {degrees}C/s, can be produced by reducing the energy per pulse and distributing the total required energy over a series of sub-ms pulses, at pulse repetition frequencies (PRFs) up to several kHz. This paper presents results from materials processing experiments performed on steel with a 6 MeV electron beam, analyzes these results using a Monte Carlo transport code, and presents a first-order predictive method for estimating the peak energy deposition, temperature, and heating rate for HEEB processed steel.

  9. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAMEnergy Innovation inInspectionIntegrated Dynamic Electron

  10. Resonant vibrational excitation of CO by low-energy electrons

    SciTech Connect (OSTI)

    Poparic, G. B.; Belic, D. S.; Vicic, M. D. [Faculty of Physics, University of Belgrade, Studentski trg 12-16, P.O. Box 368, 11000 Belgrade (Serbia and Montenegro); Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110-1093 (United States)

    2006-06-15T23:59:59.000Z

    Electron impact vibrational excitation of the CO molecule, via the {sup 2}{pi} resonance, in the 0-4 eV energy region has been investigated. The energy dependence of the resonant excitation of the first ten vibrational levels, v=1 to v=10, has been measured by use of a crossed-beams double trochoidal electron spectrometer. Obtained relative differential cross sections are normalized to the absolute values. Integral cross sections are determined by using our recent results on scattered electrons angular distributions, which demonstrate clear p-partial wave character of this resonance. Substructures appear in the {sup 2}{pi} resonant excitation of the CO molecule which have not been previously observed.

  11. Wave Patterns and Southern Hemisphere Convergence Zones

    E-Print Network [OSTI]

    Ramotowski, Michelle R.

    2013-04-11T23:59:59.000Z

    Data from satellites and reanalysis products are analyzed to study the behavior of wave trains in the three major Southern Hemisphere Convergences zones: the South Pacific, the South Atlantic, and the South Indian. Using ...

  12. Energy of the quasi-free electron in xenon Xianbo Shi a

    E-Print Network [OSTI]

    Findley, Gary L.

    Energy of the quasi-free electron in xenon Xianbo Shi a , Luxi Li a , C.M. Evans a,, G.L. Findley b critical point. The energy of the quasi-free electron, arising from dopant field ionization, in xenon and for the critical isotherm. Key words: supercritical xenon, field ionization, quasi-free electron energy, electron

  13. Shenzhen Nenglian Electronic Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: Energy ResourcesShelton,ChuangyinNenglian Electronic

  14. China Electronic Engineering Design Institute CEEDI | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China Electronic Engineering Design

  15. China Electronics Technology Group Corporation CETC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China Electronic Engineering

  16. Apower Electronics Co Ltd AEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County, Michigan: EnergySalient ofApower Electronics Co

  17. Estimating Appliance and Home Electronic Energy Use | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOEDepartment of EnergyEric J. Fygi About Us Eric

  18. Electron Solar Energy Formerly Envigra Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldorado

  19. Energy deposition spectra of simultaneous electron emissions from low energy protons

    E-Print Network [OSTI]

    DePriest, Kendall Russell

    1998-01-01T23:59:59.000Z

    track is more complicated than the normal LET/RBE relationship. Recent measurements of atomic cross-section indicate that interactions of low energy protons with target atoms sometimes produce two or more electrons simultaneously. However, these cross...

  20. Energy Storage & Power Electronics 2008 Peer Review - Energy Storage

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy PolicyEnvironmental-- AsSystems (ESS)

  1. Estimating Appliance and Home Electronic Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department of EnergyEstimating Appliance

  2. Electron energy distributions in a magnetized inductively coupled plasma

    SciTech Connect (OSTI)

    Song, Sang-Heon, E-mail: ssongs@umich.edu, E-mail: Sang-Heon.Song@us.tel.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2104 (United States); Yang, Yang, E-mail: yang-yang@amat.com [Applied Materials Inc., 974 E. Arques Avenue, M/S 81312, Sunnyvale, California 94085 (United States); Chabert, Pascal, E-mail: pascal.chabert@lpp.polytechnique.fr [LPP, CNRS, Ecole Polytechnique, UPMC, Paris XI, 91128 Palaiseau (France); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

    2014-09-15T23:59:59.000Z

    Optimizing and controlling electron energy distributions (EEDs) is a continuing goal in plasma materials processing as EEDs determine the rate coefficients for electron impact processes. There are many strategies to customize EEDs in low pressure inductively coupled plasmas (ICPs), for example, pulsing and choice of frequency, to produce the desired plasma properties. Recent experiments have shown that EEDs in low pressure ICPs can be manipulated through the use of static magnetic fields of sufficient magnitudes to magnetize the electrons and confine them to the electromagnetic skin depth. The EED is then a function of the local magnetic field as opposed to having non-local properties in the absence of the magnetic field. In this paper, EEDs in a magnetized inductively coupled plasma (mICP) sustained in Ar are discussed with results from a two-dimensional plasma hydrodynamics model. Results are compared with experimental measurements. We found that the character of the EED transitions from non-local to local with application of the static magnetic field. The reduction in cross-field mobility increases local electron heating in the skin depth and decreases the transport of these hot electrons to larger radii. The tail of the EED is therefore enhanced in the skin depth and depressed at large radii. Plasmas densities are non-monotonic with increasing pressure with the external magnetic field due to transitions between local and non-local kinetics.

  3. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1987-05-26T23:59:59.000Z

    A rechargeable high energy density lithium-based cell is described comprising: a solvated electron lithium negative electrode comprising a solution of lithium dissolved in liquid ammonia; a lithium ion conducting solid electrolyte contacting the negative electrode; a liquid non-aqueous lithium ion conducting electrolyte comprising a lithium ion conducting supporting electrolyte dissolved in a non-aqueous solvent. The liquid electrolyte contacting the lithium ion conducting solid electrolyte; and a solid lithium intercalation positive electrode contacting the liquid electrolyte.

  4. LDRD project 151362 : low energy electron-photon transport.

    SciTech Connect (OSTI)

    Kensek, Ronald Patrick; Hjalmarson, Harold Paul; Magyar, Rudolph J.; Bondi, Robert James; Crawford, Martin James

    2013-09-01T23:59:59.000Z

    At sufficiently high energies, the wavelengths of electrons and photons are short enough to only interact with one atom at time, leading to the popular %E2%80%9Cindependent-atom approximation%E2%80%9D. We attempted to incorporate atomic structure in the generation of cross sections (which embody the modeled physics) to improve transport at lower energies. We document our successes and failures. This was a three-year LDRD project. The core team consisted of a radiation-transport expert, a solid-state physicist, and two DFT experts.

  5. Gemballa Electronics GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRX sro JumpGayatriGemballa Electronics

  6. Jiaxing Advansil Electronic Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformationJamesManufacturingJiaxing Advansil Electronic

  7. Beijing Sevenstar Electronics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County,NewPower orSevenstar Electronics

  8. ELECTRON ENERGY and PHASEELECTRON ENERGY and PHASE RELAXATION in the PRESENCE ofRELAXATION in the PRESENCE of

    E-Print Network [OSTI]

    Fominov, Yakov

    -factors are almost const At E,eU TK: back to FL behavior, (energy-independent) #12;Energy relaxation:experiment vsELECTRON ENERGY and PHASEELECTRON ENERGY and PHASE RELAXATION in the PRESENCE of (Princeton) MESO 2003 #12;Outline Electron energy and phase relaxation in a Fermi liquid The effect

  9. FREE ELECTRON LASERS AND HIGH-ENERGY ELECTRON COOLING* Vladimir N. Litvinenko, BNL, Upton, Long Island, NY, USA#

    E-Print Network [OSTI]

    two orders-of-magnitude. Two techniques offering the potential to cool high- energy hadron beamsFREE ELECTRON LASERS AND HIGH-ENERGY ELECTRON COOLING* Vladimir N. Litvinenko, BNL, Upton, Long Island, NY, USA# Yaroslav S. Derbenev, TJNAF, Newport News, VA, USA) Abstract Cooling intense high

  10. Reduced density matrix hybrid approach: Application to electronic energy transfer

    SciTech Connect (OSTI)

    Berkelbach, Timothy C.; Reichman, David R. [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Markland, Thomas E. [Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305 (United States)

    2012-02-28T23:59:59.000Z

    Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

  11. Reduced density matrix hybrid approach: Application to electronic energy transfer

    E-Print Network [OSTI]

    Timothy C. Berkelbach; Thomas E. Markland; David R. Reichman

    2011-11-21T23:59:59.000Z

    Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

  12. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    SciTech Connect (OSTI)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01T23:59:59.000Z

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  13. A Technology for Electronic Energy Meters Intelligent Accounting Using Distributed Database over TCP/IP Network

    E-Print Network [OSTI]

    Borissova, Daniela

    4 8 A Technology for Electronic Energy Meters Intelligent Accounting Using Distributed Database in their entirety. 2. Electronic energy metersaccountingtechnology developed inthe project The technology under Collection Electronic Energy Meters Distributed Database over TCP/IP Network Optical Head Optical Port RS-232

  14. The energy of the quasi-free electron in near critical point nitrogen

    E-Print Network [OSTI]

    Findley, Gary L.

    The energy of the quasi-free electron in near critical point nitrogen Yevgeniy Lushtak a,b , C the density dependent quasi-free electron energy V0() in the strongly absorbing gas N2 for the first time. V0-Seitz model, repulsive fluids, quasi-free electron energy, critical point effects PACS: 79.60.-i, 34.80.-i, 82

  15. Radiation from polarized electrons in oriented crystals at high energy

    E-Print Network [OSTI]

    V. N. Baier; V. M. Katkov

    2004-05-06T23:59:59.000Z

    Radiation from high energy electrons in an oriented crystal can be considered in a frame of the quasiclassical operator method which appears to be a most satisfactory approach to the problem. Under some quite generic assumptions the general expression is derived for the probability of circularly polarized photon emission from the longitudinally polarized electron in oriented crystal. The particular mechanism of radiation depends on interrelation between the angle of incidence $\\vartheta_0$ (angle between the momentum of initial electron and axis (plane) of crystal) and angle $\\vartheta_v \\equiv V_0/m$ ($V_0$ is the scale of a potential of axis or a plane relative to which the angle $\\vartheta_0$ is defined). When $\\vartheta_0 \\ll \\vartheta_v$ one has magnetic bremsstrahlung type of radiation (with corrections $\\propto \\vartheta_0^2$ which are due to inhomogeneous character of field in crystal). When $\\vartheta_0 \\gg \\vartheta_v$ one obtains the theory of coherent bremsstrahlung, while for $\\vartheta_0 \\geq \\vartheta_v$ one arrives to the modified theory of coherent bremsstrahlung. At high energy radiation in oriented crystals is strongly enhanced comparing with standard bremsstrahlung.

  16. Western Hemisphere Oil Products Balance

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil andBOEWest Virginia

  17. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect (OSTI)

    Shikama, T., E-mail: shikama@me.kyoto-u.ac.jp; Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540 (Japan); Kitaoka, H. [Faculty of Engineering, Undergraduate School of Engineering Science, Kyoto University, Kyoto 615-8540 (Japan)

    2014-07-15T23:59:59.000Z

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30?eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  18. Solvent Reorganization Energy and Free Energy Change for Donor/Acceptor Electron Transfer at Micelle Surfaces: Theory and Experiment

    E-Print Network [OSTI]

    Fayer, Michael D.

    Solvent Reorganization Energy and Free Energy Change for Donor/Acceptor Electron TransferVed: April 7, 1998 Theories are presented for calculating the solvent reorganization energy and the free region, and the surrounding water. The free energy change accompanying electron transfer can

  19. Simulation of Recent Southern Hemisphere Climate Change

    E-Print Network [OSTI]

    Simulation of Recent Southern Hemisphere Climate Change Nathan P. Gillett1 * and David W. J. Thompson2 Recent observations indicate that climate change over the high latitudes of the Southern's surface as well. Recent climate change in the Southern Hemi- sphere (SH) is marked by a strengthening

  20. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    SciTech Connect (OSTI)

    Yedra, Ll.; Estrad, S., E-mail: sestrade@ub.edu [LENS, MIND-IN2UB, Departament d'Electrnica, Universitat de Barcelona, Mart i Franqus 1, 08028 Barcelona (Spain); TEM-MAT, CCiT, Universitat de Barcelona, Sol i Sabars 1, 08028 Barcelona (Spain); Torruella, P.; Eljarrat, A.; Peir, F. [LENS, MIND-IN2UB, Departament d'Electrnica, Universitat de Barcelona, Mart i Franqus 1, 08028 Barcelona (Spain); Darbal, A. D. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); Weiss, J. K. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); NanoMEGAS SPRL, Blvd. Edmond Machtens 79, B-1080 Brussels (Belgium)

    2014-08-04T23:59:59.000Z

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  1. High energy electron beam joining of ceramic components

    SciTech Connect (OSTI)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A. [and others

    1997-07-01T23:59:59.000Z

    High strength, hermetic braze joints between ceramic components have been produced using high energy electron beams. With a penetration depth into a typical ceramic of {approximately}1 cm for a 10 MeV electron beam, this method provides the capability for rapid, transient brazing operations where temperature control of critical components is essential. The method deposits energy directly into a buried joint, allowing otherwise inaccessible interfaces to be brazed. Because of transient heating, higher thermal conductivity, lower heat capacity, and lower melting temperature of braze metals relative to the ceramic materials, a pulsed high power beam can melt a braze metal without producing excessive ceramic temperatures. We have demonstrated the feasibility of this process related to ceramic coupons as well as ceramic and glass tubes. The transient thermal response was predicted, using as input the energy absorption predicted from the coupled electron-photon transport analysis. The joining experiments were conducted with an RF Linac accelerator at 10-13 MV. The repetition rate of the pulsed beam was varied between 8 and 120 Hz, the average beam current was varied between 8 and 120 microamps, and the power was varied up to 1.5 kW. These beam parameters gave a beam power density between 0.2 to 2 kW/cm{sup 2}. The duration of the joining runs varied from 5 to 600 sec. Joining experiments have provided high strength between alumina - alumina and alumina - cermet joints in cylindrical geometry. These joints provided good hermetic seals. A series of tests was conducted to determine the minimum beam power and exposure time for producing, a hermetic seal.

  2. SUNSHINE: A light environment simulation system based on hemispherical photographs. Forest Service research paper

    SciTech Connect (OSTI)

    Smith, W.R.; Somers, G.L.

    1991-09-01T23:59:59.000Z

    A new computer simulation system uses hemispherical photographs to estimate the amount of solar radiation a horizontal surface receives. The system reduces the cost and time of manual analysis to obtain radiation estimates from hemispherical photographs. The radiation on the horizontal surface is calculated from images of photographs input into a computer by an electronic scanner. Two programs are used, EDIT-TIF to edit and preprocess the image and SUNSHINE to calculate the diffuse and direct radiation. Use of the two programs in the SUNSHINE simulation system is described step by step. The theory and operation of the programs are discussed.

  3. Elastic Scattering of Low-Energy Electrons byTetrahydrofuran

    SciTech Connect (OSTI)

    Trevisan, Cynthia S.; Orel, Ann E.; Rescigno, Thomas N.

    2006-05-09T23:59:59.000Z

    We present the results of ab initio calculations for elasticelectron scattering by tetrahydrofuran (THF) using the complex Kohnvariational method. We carried out fixed-nuclei calculations at theequilibrium geometry of the target molecule for incident electronenergies up to 20 eV. The calculated momentum transfer cross sectionsclearly reveal the presence of broad shape resonance behavior in the 8-10eV energy range, in agreement with recent experiments. The calculateddifferential cross sections at 20 eV, which include the effects of thelong-range electron-dipole interaction, are alsofound to be in agreementwith the most recent experimental findings.

  4. Electronic Docket Room (e-Docket Room) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy|Electrifying YourElectronic Docket Room

  5. Lasers, Electron Beams and New Years Resolutions | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -

  6. ON THE RELATIONSHIP OF HEMISPHERIC SPECIALIZATION AND DEVELOPMENTAL DYSLEXIA

    E-Print Network [OSTI]

    ON THE RELATIONSHIP OF HEMISPHERIC SPECIALIZATION AND DEVELOPMENTAL DYSLEXIA Barbara Keefe has provided the focus for a great deal of the etiological investigation of developmental dyslexia hemispheric specialization and dyslexia, the exact nature of this relationship is far from clear

  7. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    E-Print Network [OSTI]

    Atwater, Harry

    Solar energy conversion via hot electron internal photoemission in metallic nanostructures://scitation.aip.org/termsconditions. Downloaded to ] IP: 131.215.44.236 On: Tue, 01 Apr 2014 22:46:10 #12;Solar energy conversion via hot electron for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy

  8. Rydberg and pulsed field ionization-zero electron kinetic energy spectra Colan Linton

    E-Print Network [OSTI]

    Morse, Michael D.

    Rydberg and pulsed field ionization-zero electron kinetic energy spectra of YO Colan Linton Physics, zero electron kinetic energy PFI-ZEKE investigation. The results provide accurate values of the ionization energy of YO, ionization energy I.E. YO 49 304.316 31 cm 1 6.112 958 4 eV , and of the rotational

  9. Long-Range Electronic-to-Vibrational Energy Transfer from Nanocrystals to Their Surrounding Matrix Environment

    E-Print Network [OSTI]

    Rabani, Eran

    for the analysis, control, and optimization of energy storage and disposal in chemistry, physics, material sci radiationless electronic-to-vibrational energy conversion and vibrational energy exchange, which are centralLong-Range Electronic-to-Vibrational Energy Transfer from Nanocrystals to Their Surrounding Matrix

  10. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-06-30T23:59:59.000Z

    To enhance the measurement capability of EICs to alpha spectrometry, measurements at FIU-HCET were performed on different energy alpha sources, and response factors of ST electrets in 960-mL chamber were determined. Earlier, EIC was considered as only a charge-integrating device without spectrometric capability. This is a potentially significant development accomplished by FIU-HCET. It could appreciably lower the current cost of spectral characterization. FIU-HCET has been invited to participate in the Operating Engineers' National Hazmat program's assessment of the Mini Mitter, commercially known as the VitalSense{trademark} Telemetric Monitoring System. This evaluation is scheduled for early July 1999. Additional health and safety technology evaluations, in which FIU-HCET will also participate, are also scheduled for later in the summer. The Technology Information System (TIS), MISD, and DASD are now complete and accessible through the Internet website http://www.DandD.org/tis.

  11. Title of dissertation: Precision Control of Intense Electron Beams in a Low-Energy Ring

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of dissertation: Precision Control of Intense Electron Beams in a Low-Energy Ring. Research reported in this dissertation was done on the University of Maryland Electron Ring (UMER ELECTRON BEAMS IN A LOW-ENERGY RING by Chao Wu Dissertation submitted to the Faculty of the Graduate School

  12. Parallel energy analyzer for pure electron plasma devices D. L. Eggleston

    E-Print Network [OSTI]

    California at San Diego, University of

    Parallel energy analyzer for pure electron plasma devices D. L. Eggleston Occidental The cylindrical electrodes of a typical pure electron plasma device are shown schematically in Fig. 1(a) A technique is presented for measuring the parallel energy distribution of magnetically confined electrons

  13. Measurements of ultra-low-energy electron scattering cross sections of atoms and molecules

    SciTech Connect (OSTI)

    Kitajima, M.; Shigemura, K.; Kurokawa, M. [Department of Chemistry, Tokyo Institute of Technology, 152-8551 Tokyo (Japan); Odagiri, T. [Department of Physics, Sophia University, 102-8554 Tokyo, Japan and Department of Chemistry, Tokyo Institute of Technology, 152-8551 Tokyo (Japan); Kato, H.; Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, 102-8554 Tokyo (Japan); Ito, K. [Photon Factory, Institute of Materials Structure Science, 305-0801 Tsukuba (Japan)

    2014-03-05T23:59:59.000Z

    A new experimental technique for the total cross section measurements of ultra-low energy electron collisions with atoms and molecules utilizing the synchrotron radiation is presented. The technique employs a combination of the penetrating field technique and the threshold photoionization of rare gas atoms using the synchrotron radiation as an electron source in order to produce a high resolution electron beam at very low energy. Absolute total cross sections for electron scattering from He, Ne, Ar, Kr, and Xe in the energy region from extremely low electron energy to 20 eV are presented.

  14. Moments of the Electron Energy Spectrum in B --> X_c l ?decays at Belle

    E-Print Network [OSTI]

    Belle Collaboration

    2005-08-30T23:59:59.000Z

    We report a measurement of the inclusive electron energy spectrum for charmed semileptonic decays of B mesons in a 140 fb^-1 data sample collected on the Upsilon(4S) resonance, with the Belle detector at the KEKB asymmetric energy e^+ e^- collider. We determine the first, second and third moments of the electron energy spectrum for threshold values of the electron energy between 0.4 and 1.5 GeV.

  15. Energy of the Quasi-free Electron in Argon and Krypton C. M. Evans1,

    E-Print Network [OSTI]

    Findley, Gary L.

    Energy of the Quasi-free Electron in Argon and Krypton C. M. Evans1, and G. L. Findley2, 1 these data, a new local Wigner- Seitz model for the density dependent energy V0(P) of a quasi-free electron/medium polarization energy, and includes the thermal kinetic energy of the quasi-free electron. Using this model, V0(P

  16. A stochastic reorganizational bath model for electronic energy transfer

    E-Print Network [OSTI]

    Takatoshi Fujita; Joonsuk Huh; Alan Aspuru-Guzik

    2014-06-06T23:59:59.000Z

    The fluctuations of optical gap induced by the environment play crucial roles in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker model, in which the energy-gap fluctuation is approximated as a white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to take the thermal fluctuation of excitation energies into account. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equations via the generalized Langevin approach. Based on the connection, we propose a novel scheme to correct reorganization effects within the framework of stochastic models. The proposed scheme provides a better description of the population dynamics especially in the regime of strong exciton-phonon coupling. Finally, we discuss the effect of the bath reorganization in the absorption and fluorescence spectra of ideal J-aggregates in terms of the Stokes shifts. For this purpose, we introduce a simple relationship that relates the reorganization contribution to the Stokes shifts - the reorganization shift - to three parameters: the monomer reorganization energy, the relaxation time of the optical gap, and the exciton delocalization length. This simple relationship allows one to classify the origin of the Stokes shifts in molecular aggregates.

  17. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics

    E-Print Network [OSTI]

    Wang, Zhong L.

    Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable: Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based

  18. Advanced Relay Design and Technology for Energy-Efficient Electronics

    E-Print Network [OSTI]

    Jeon, Jaeseok

    2011-01-01T23:59:59.000Z

    Elsevier Solid-State Electronics, vol. 51, no. 4, pp. 518-Elsevier Solid-State Electronics, vol. 51, no. 4, pp. 518-Elsevier Solid-State Electronics, vol. 45, no. 1, pp. 113-

  19. Pairing of valence electrons as necessary condition for energy minimization in a crystal

    E-Print Network [OSTI]

    Dolgopolov Stanislav Olegovich

    2014-10-21T23:59:59.000Z

    Pairing of valence electrons can lead to energy minimization of a crystal. It can be proved by use of representation of the valence electrons as plane waves in periodic potential of the crystal.

  20. Quaternary glaciations in the Northern Hemisphere

    SciTech Connect (OSTI)

    Sibrava, V.; Bowen, D.Q.; Richmond, G.M.

    1987-01-01T23:59:59.000Z

    This volume presents the final report of Project 24 of the International Geological Correlation Programme. The publication is drawn from the contributions of leading individual scientist as well as from scientific research teams. It reflects the present state of knowledge of the Quaternary Glaciations in the Northern Hemisphere and their correlation in space and time, as well as providing a unique summary of climatic change.

  1. Multi-Agent Systems and Control, Intelligent Robotics, and Cybernetics. Power Electronics, Renewable Energy, and Smart Grid.

    E-Print Network [OSTI]

    Wu, Yih-Min

    . Power Electronics, Renewable Energy, and Smart Grid. Computer Science and Engineering. Embedded Systems

  2. Electron-Nuclear Energy Sharing in Above-Threshold Multiphoton Dissociative Ionization of H2

    E-Print Network [OSTI]

    Thumm, Uwe

    Electron-Nuclear Energy Sharing in Above-Threshold Multiphoton Dissociative Ionization of H2 J. Wu­4], where the photon energy is shared by the freed electrons and the nuclear fragments. For the molecular ionization [10­15], and the imaging of inter- nuclear distance using nuclear kinetic energy release spec- tra

  3. PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda

    E-Print Network [OSTI]

    PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda J.S.T. Ng, P. Chen, W present results from the SLAC E­150 experiment on plasma focusing of high energy density electron and of the SLAC E­150 experiment are to study plasma focusing for high energy, high density par­ ticle beams

  4. Shell-instability generated waves by low energy electrons on converging magnetic field lines

    E-Print Network [OSTI]

    California at Berkeley, University of

    Shell-instability generated waves by low energy electrons on converging magnetic field lines D of observations of such shell type distributions having positive slope in velocity space at low energies, about 10´cre´au (2006), Shell-instability generated waves by low energy electrons on converging magnetic field lines

  5. Independent control of electron energy and density using a rotating magnetic field in inductively coupled plasmas

    SciTech Connect (OSTI)

    Kondo, Takahiro; Ohta, Masayuki; Ito, Tsuyohito; Okada, Shigefumi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan)] [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan)

    2013-09-21T23:59:59.000Z

    Effects of a rotating magnetic field (RMF) on the electron energy distribution function (EEDF) and on the electron density are investigated with the aim of controlling the radical composition of inductively coupled plasmas. By adjusting the RMF frequency and generation power, the desired electron density and electron energy shift are obtained. Consequently, the amount and fraction of high-energy electrons, which are mostly responsible for direct dissociation processes of raw molecules, will be controlled externally. This controllability, with no electrode exposed to plasma, will enable us to control radical components and their flux during plasma processing.

  6. Measurement of Electron Backscattering in the Energy Range of Neutron $?$-Decay

    E-Print Network [OSTI]

    J. W. Martin; J. Yuan; S. A. Hoedl; B. W. Filippone; D. Fong; T. M. Ito; E. Lin; B. Tipton; A. R. Young

    2003-10-01T23:59:59.000Z

    We report on the first detailed measurements of electron backscattering from low Z targets at energies up to 124 keV. Both energy and angular distributions of the backscattered electrons are measured and compared with electron transport simulations based on the Geant4 and Penelope Monte Carlo simulation codes. Comparisons are also made with previous, less extensive, measurements and with measurements at lower energies.

  7. National energy use of consumer electronics in 1999

    E-Print Network [OSTI]

    Rosen, Karen; Meier, Alan; Zandelin, Stefan

    2000-01-01T23:59:59.000Z

    of Energy. 1999. Annual Energy Outlook 2000. Washington,products. The Annual Energy Outlook 2000 (EIA 1999) included

  8. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect (OSTI)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-08-31T23:59:59.000Z

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  9. Low-energy cutoffs in electron spectra of solar flares: statistical survey

    E-Print Network [OSTI]

    E. P. Kontar; E. Dickson; J. Kasparova

    2008-05-21T23:59:59.000Z

    The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data base (February 2002 -- May 2006) has been searched to find solar flares with weak thermal components and flat photon spectra. Using a regularised inversion technique, we determine the mean electron flux distribution from count spectra of a selection of events with flat photon spectra in the 15--20 keV energy range. Such spectral behaviour is expected for photon spectra either affected by photospheric albedo or produced by electron spectra with an absence of electrons in a given energy range, e.g. a low-energy cutoff in the mean electron spectra of non-themal particles. We have found 18 cases which exhibit a statistically significant local minimum (a dip) in the range of 10--20 keV. The positions and spectral indices of events with low-energy cutoff indicate that such features are likely to be the result of photospheric albedo. It is shown that if the isotropic albedo correction was applied, all low-energy cutoffs in the mean electron spectrum were removed and hence the low energy cutoffs in the mean electron spectrum of solar flares above $\\sim$12 keV cannot be viewed as real features in the electron spectrum. If low-energy cutoffs exist in the mean electron spectra, the energy of low energy cutoffs should be less than $\\sim$12 keV.

  10. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammels, A.F.

    1987-08-04T23:59:59.000Z

    A solvated electron lithium negative electrode is described containing: containment means holding a solution of lithium dissolved in liquid ammonia to form a solvated electron solution, the solvated electron solution contacting a lithium intercalating membrane and providing lithium to the intercalating membrane during discharge and accepting it from the intercalating membrane during charge.

  11. Engineering Physics: From Nano-Electronics and Photonics to Renewable Energy

    E-Print Network [OSTI]

    Smy, Tom

    Engineering Physics: From Nano-Electronics and Photonics to Renewable Energy Tom Smy Department of Electronics, Carleton University Questions are welcome! #12;OUTLINE Introduction to Engineering Physics (EE Engineering Physics Department of Electronics Department of System and Computer Engineering The Programs

  12. A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics Lucie(on)ic equipment is proposed for illustration purposes. Keywords: Energy efficiency; energy consumption; electric version received 23 February 2011) One of the challenging environmental issues faced by the electr

  13. Plasma parameters and electron energy distribution functions in a magnetically focused plasma

    SciTech Connect (OSTI)

    Samuell, C. M.; Blackwell, B. D.; Howard, J.; Corr, C. S. [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra (Australia)

    2013-03-15T23:59:59.000Z

    Spatially resolved measurements of ion density, electron temperature, floating potential, and the electron energy distribution function (EEDF) are presented for a magnetically focused plasma. The measurements identify a central plasma column displaying Maxwellian EEDFs at an electron temperature of about 5 eV indicating the presence of a significant fraction of electrons in the inelastic energy range (energies above 15 eV). It is observed that the EEDF remains Maxwellian along the axis of the discharge with an increase in density, at constant electron temperature, observed in the region of highest magnetic field strength. Both electron density and temperature decrease at the plasma radial edge. Electron temperature isotherms measured in the downstream region are found to coincide with the magnetic field lines.

  14. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas

    SciTech Connect (OSTI)

    Gambino, Nadia, E-mail: gambinon@ethz.ch; Brandsttter, Markus; Rollinger, Bob; Abhari, Reza [ETH Zrich, Laboratory for Energy Conversion, Sonneggstrasse 3, 8092 Zrich (Switzerland)

    2014-09-15T23:59:59.000Z

    In this work, a new diagnostic tool for laser-produced plasmas (LPPs) is presented. The detector is based on a multiple array of six motorized Langmuir probes. It allows to measure the dynamics of a LPP in terms of charged particles detection with particular attention to droplet-based LPP sources for EUV lithography. The system design permits to temporally resolve the angular and radial plasma charge distribution and to obtain a hemispherical mapping of the ions and electrons around the droplet plasma. The understanding of these dynamics is fundamental to improve the debris mitigation techniques for droplet-based LPP sources. The device has been developed, built, and employed at the Laboratory for Energy Conversion, ETH Zrich. The experimental results have been obtained on the droplet-based LPP source ALPS II. For the first time, 2D mappings of the ion kinetic energy distribution around the droplet plasma have been obtained with an array of multiple Langmuir probes. These measurements show an anisotropic expansion of the ions in terms of kinetic energy and amount of ion charge around the droplet target. First estimations of the plasma density and electron temperature were also obtained from the analysis of the probe current signals.

  15. Anomalous electron-ion energy coupling in electron drift wave turbulence

    E-Print Network [OSTI]

    Zhao, Lei

    annulus arises due to a wave energy flux differential acrossprincipal collisionless wave energy dissipation channel inOn the other hand, wave energy can be dissipated by ion

  16. Imaging doped silicon test structures using low energy electron microscopy.

    SciTech Connect (OSTI)

    Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

    2010-01-01T23:59:59.000Z

    This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

  17. Active electron energy distribution function control in direct current discharge using an auxiliary electrode

    SciTech Connect (OSTI)

    Schweigert, I. V. [Institute of Theoretical and Applied Mechanics, Novosibirsk 630090 (Russian Federation) [Institute of Theoretical and Applied Mechanics, Novosibirsk 630090 (Russian Federation); George Washington University, Washington, DC 20052 (United States); Kaganovich, I. D. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Demidov, V. I. [West Virginia University, Morgantown, WV 26506 (United States) [West Virginia University, Morgantown, WV 26506 (United States); St. Petersburg State University, St. Petersburg (Russian Federation)

    2013-10-15T23:59:59.000Z

    The electron energy distribution functions are studied in the low voltage dc discharge with a constriction, which is a diaphragm with an opening. The dc discharge glows in helium and is sustained by the electron current emitted from a heated cathode. We performed kinetic simulations of dc discharge characteristics and electron energy distribution functions for different gas pressures (0.8 Torr-4 Torr) and discharge current of 0.1 A. The results of these simulations indicate the ability to control the shape of the electron energy distribution functions by variation of the diaphragm opening radius.

  18. Scattering of low-energy electrons and positrons by atomic beryllium: Ramsauer-Townsend effect

    E-Print Network [OSTI]

    Reid, David D

    2014-01-01T23:59:59.000Z

    Total cross sections for the scattering of low-energy electrons and positrons by atomic beryllium in the energy range below the first inelastic thresholds are calculated. A Ramsauer-Townsend minimum is seen in the electron scattering cross sections, while no such effect is found in the case of positron scattering. A minimum total cross section of 0.016 a.u. at 0.0029 eV is observed for the electron case. In the limit of zero energy, the cross sections yield a scattering length of -0.61 a.u. for electron and +13.8 a.u. for positron scattering.

  19. HEMISPHERIC HELICITY TREND FOR SOLAR CYCLE 24

    SciTech Connect (OSTI)

    Hao Juan; Zhang Mei, E-mail: haojuan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatory, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012 (China)

    2011-06-01T23:59:59.000Z

    Using vector magnetograms obtained with the Spectro-polarimeter (SP) on board Hinode satellite, we studied two helicity parameters (local twist and current helicity) of 64 active regions that occurred in the descending phase of solar cycle 23 and the ascending phase of solar cycle 24. Our analysis gives the following results. (1) The 34 active regions of the solar cycle 24 follow the so-called hemispheric helicity rule, whereas the 30 active regions of the solar cycle 23 do not. (2) When combining all 64 active regions as one sample, they follow the hemispheric helicity sign rule as in most other observations. (3) Despite the so-far most accurate measurement of vector magnetic field given by SP/Hinode, the rule is still weak with large scatters. (4) The data show evidence of different helicity signs between strong and weak fields, confirming previous result from a large sample of ground-based observations. (5) With two example sunspots we show that the helicity parameters change sign from the inner umbra to the outer penumbra, where the sign of penumbra agrees with the sign of the active region as a whole. From these results, we speculate that both the {Sigma}-effect (turbulent convection) and the dynamo have contributed in the generation of helicity, whereas in both cases turbulence in the convection zone has played a significant role.

  20. Electronic coupling in organic-inorganic semiconductor hybrid structures with type-II energy level alignment

    E-Print Network [OSTI]

    Peters, Achim

    Electronic coupling in organic-inorganic semiconductor hybrid structures with type-II energy level Electronic coupling in a hybrid structure made of ZnMgO and a spirobifluorene derivative SP6 is inves- tigated in the situation where the energy level alignment at the organic/inorganic interface revealed

  1. ccsd00001969, Particle-in-cell simulations of high energy electron

    E-Print Network [OSTI]

    ccsd­00001969, version 2 ­ 23 Oct 2004 Particle-in-cell simulations of high energy electron energy electrons from the underdense plasmas are investigated using two dimensional particle- in-cell simulations. When the ratio of the laser power and a critical power of relativistic self

  2. Damage to Model DNA Fragments from Very Low-Energy (<1 eV) Electrons

    E-Print Network [OSTI]

    Simons, Jack

    Damage to Model DNA Fragments from Very Low-Energy ( of Chemistry, UniVersity of Gdansk ul. Sobieskiego 18, 80-952 Gdansk, Poland Received January 8, 2004; E-mail: simons@chemistry.utah.edu Abstract: Although electrons having enough energy to ionize or electronically

  3. DNA Damage Induced by Low-Energy Electrons: Electron Transfer and Diffraction

    SciTech Connect (OSTI)

    Zheng Yi; Wagner, J. Richard; Sanche, Leon [Groupe de Recherche en Sciences des Radiations, Faculte de Medecine, Universite de Sherbrooke, Sherbrooke, QC J1H 5N4 (Canada)

    2006-05-26T23:59:59.000Z

    Thin films of the short single strand of DNA, GCAT, in which guanine (G) or adenine (A) have been removed, were bombarded under vacuum by 4 to 15 eV electrons. The fragments corresponding to base release and strand breaks (SB) were analyzed by high performance liquid chromatography and their yields compared with those obtained from unmodified GCAT. From such a comparison, it is shown that, using GCAT as a model system (1) most SB result from electron capture by DNA bases followed by electron transfer to the phosphate group and (2) the initial capture probability depends on the coherence of the electron wave within the tetramer.

  4. assessing hemispheric language: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using active observations from the CloudSat and CALIPSO satellites. First, a compos- ite cyclone Jakob, Christian 66 Periodic Variability in the Large-Scale Southern Hemisphere...

  5. assessing hemispheric predominance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    set provides the first profile Thompson, Anne 15 Simulation of Recent Southern Hemisphere Climate Change Environmental Management and Restoration Websites Summary: Simulation of...

  6. Methods for detailed energy data collection of miscellaneous and electronic loads in a commercial office building

    E-Print Network [OSTI]

    California at Berkeley, University of

    and electronic loads (MELs) consume about 20% of the primary energy used in U.S. buildings, and this share Buildings account for 40% of the total primary energy con- sumption in the U.S., with 22% consumed-third of the primary energy used in U.S. buildings in the next 20 years [2]. MELs energy use is spread among many

  7. An electron/ion spectrometer with the ability of low energy electron measurement for fast ignition experiments

    SciTech Connect (OSTI)

    Ozaki, T.; Sakagami, H. [National Institute for Fusion Science, 322-6, Oroshi, Toki, Gifu 509-5292 (Japan); Kojima, S.; Arikawa, Y.; Shiraga, H.; Fujioka, S. [Institute of Laser Engineering, Osaka University, 2-6, Yamada-oka, Suita, Osaka 565-0871 (Japan); Kato, R., E-mail: ozaki@nifs.ac.jp [Institute of Scientific and Industrial Research, Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2014-11-15T23:59:59.000Z

    An electron energy spectrometer (ESM) is one of the most fundamental diagnostics in the fast ignition experiment. It is necessary to observe the spectra down to a low energy range in order to obtain the accurate deposition efficiency toward the core. Here, we realize the suitable ESM by using a ferrite magnet with a moderate magnetic field of 0.3 T and a rectangular magnetic circuit covered with a steel plate in the inlet side.

  8. Determining the static electronic and vibrational energy correlations via twodimensional electronic-vibrational spectroscopy

    E-Print Network [OSTI]

    Dong, Hui; Lewis, Nicholas HC; Oliver, Thomas AA; Fleming, Graham R

    2015-01-01T23:59:59.000Z

    Friend, The Role of Driving Energy and Delocalized States1. (Color online) Potential energy surfaces (a) on both theO?ce of Science, O?ce of Basic Energy Sciences, of the USA

  9. Measurements of high energy density electrons via observation of Cherenkov radiation

    SciTech Connect (OSTI)

    Habara, Hideaki; Ohta, Kazuhide; Tanaka, Kazuo A. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan and Laser Institute of Engineering, Osaka University, 2-6, Yamada-oka, Suita, Osaka 565-0871 (Japan); Kumar, G. Ravindra; Krishnamurthy, M.; Kahaly, Subhendu; Mondal, Sudipta; Bhuyan, Manoj Kumar; Rajeev, R. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400-005 (India); Zheng Jian [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-05-15T23:59:59.000Z

    Direct measurement of extremely high energy density electrons created in ultraintense laser-plasma interactions is crucial issue for fast ignition. Recently Cherenkov radiation has been studied to obtain the energy distribution of electrons because the emission angle depends on the electron energy. However in the previous studies [F. Brandl et al., Europhys. Lett. 61, 632 (2003); M. Manclossi et al., Phys. Rev. Lett. 96, 125002 (2006)], the experimental configurations using a planar target raised issues of spatial overlapping among the light from the different energy electrons as well as from the other emissions, such as transition radiation. A novel prism shaped target is developed in which Cherenkov lights emitted from different energy electrons are spatially separated, realizing an absolute measurement of the energy spectrum by counting the light intensities in each observed position. The observed image clearly shows the horseshoe pattern as expected in fully three-dimensional ray-trace calculations, and the image is successfully converted into the electron spectrum inside the target. In addition, it is found from the blur of the outer edge of the Cherenkov pattern that the electrons have a small beam divergence. The calibrated energy spectrum well agrees with particle simulations.

  10. Simulations of slow positron production using a low-energy electron accelerator

    SciTech Connect (OSTI)

    O'Rourke, B. E.; Kinomura, A.; Kuroda, R.; Ohdaira, T.; Oshima, N.; Suzuki, R. [National Institute of Advanced Industrial Science and Technology (AIST), AIST-Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Hayashizaki, N. [Tokyo Institute of Technology, Research Laboratory for Nuclear Reactors, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Minehara, E. J. [The Wakasa Wan Energy Research Centre, 64-52-1 Nagatani, Tsuruga, Fukui 941-0821 (Japan)

    2011-06-15T23:59:59.000Z

    Monte Carlo simulations of slow positron production via energetic electron interaction with a solid target have been performed. The aim of the simulations was to determine the expected slow positron beam intensity from a low-energy, high-current electron accelerator. By simulating (a) the fast positron production from a tantalum electron-positron converter and (b) the positron depth deposition profile in a tungsten moderator, the slow positron production probability per incident electron was estimated. Normalizing the calculated result to the measured slow positron yield at the present AIST linear accelerator, the expected slow positron yield as a function of energy was determined. For an electron beam energy of 5 MeV (10 MeV) and current 240 {mu}A (30 {mu}A), production of a slow positron beam of intensity 5 x 10{sup 6} s{sup -1} is predicted. The simulation also calculates the average energy deposited in the converter per electron, allowing an estimate of the beam heating at a given electron energy and current. For low-energy, high-current operation the maximum obtainable positron beam intensity will be limited by this beam heating.

  11. Low energy Beam Tracking Under Scattering for a Cold Electron Source in Manchester

    E-Print Network [OSTI]

    Appleby, R; Harvey, M; Jones, M; Kyle, B; Mete, O; Murray, A; Xia, G

    2015-01-01T23:59:59.000Z

    High quality electron beams, with high spatial and tempo- ral resolution, have an important use in electron diffraction experiments to probe and study the constituents of matter. A cold electron source is being developed based on elec- tron ionisation from an atom cloud trapped by using AC magneto-optical methods in the University of Manchester. The technique will produce bunches of electrons well suited for high precision and single shot electron diffraction. In this paper issues of modelling at low energies for this state of art electron source with very low energy spread are presented, with a focus on newly developed tools to model the scat- tering in the meshes used to support the extraction electric fields. The dependence on emittance growth on mesh wire thickness is studied.

  12. Detailed Energy Data Collection for Miscellaneous and Electronic Loads in a Commercial Office Building

    E-Print Network [OSTI]

    Culler, David E.

    Miscellaneous and electronic loads (MELs) consume about 20% of the primary energy used in U.S. buildings and accurate data to inform MELs energy use. Introduction Background Buildings account for 40% of the total), and this end use is projected to grow to one-third of the primary energy used in U.S. buildings in the next 20

  13. INNER SHELL EXCITATION OF ATOMS AND MOLECULES BY ELECTRON IMPACT WITH HIGH ENERGY RESOLUTION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    INNER SHELL EXCITATION OF ATOMS AND MOLECULES BY ELECTRON IMPACT WITH HIGH ENERGY RESOLUTION F. H resolution energy loss spectra for inner shell excited states, (2) the observa- tion of inner shell excited are the subject of the present review. The inner shell states that can usefully be studied with energy resolutions

  14. Modeling the free energy surfaces of electron transfer in condensed phases

    E-Print Network [OSTI]

    Matyushov, Dmitry

    PROOF COPY 509037JCP Modeling the free energy surfaces of electron transfer in condensed phases analytical solution for the ET free energy surfaces demonstrates the following features: i the range of ET reaction coordinates is limited by a one-sided fluctuation band, ii the ET free energies are infinite

  15. Electronics and photonics: two sciences in the benefit of solar energy conversion

    E-Print Network [OSTI]

    Girtan, M

    2012-01-01T23:59:59.000Z

    This paper gives a personal global point of view on two sciences: electronics and photonics towards plasmonics and solar energy conversion. The new research directions in these two sciences are pointed out by comparison and in the perspective of future new solar devices. A parallel and the equivalence between electronics and photonics are presented. Starting from electron in electronics, photon, solitons and plasmons in photonics, electrical cables - optical fibers, plasmonic wave guides, electrical circuits - optical circuits, electrical transistors - optical transistors, plasmonster, electrical generators - pulsed lasers and spasers, photonics gets step by step all the tools already existing in electronics. Solar energy could be converted in many ways, the most known is the conversion in electricity. Today we need that the energy is in form of electricity because most of the apparatus that we use are based on electricity: informatics, motors, etc. However, the progress in photonics with optical circuits, op...

  16. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    E-Print Network [OSTI]

    Henderson, Kevin; Funsten, Herb; MacDonald, Elizabeth

    2011-01-01T23:59:59.000Z

    We report the development of a versatile, compact, low to medium energy electron source. A collimated, monoenergetic beam of electrons, up to 50 mm in diameter, is produced with energies ranging from 0.03 to 30 keV. A uniform electron beam profile is generated by illuminating a metal cathode plate with a near ultraviolet (UV) light emitting diode (LED). A parallel electric field accelerates the electrons away from the cathode plate towards a grounded grid. The beam intensity can be controlled from 10 - 10^9 electrons cm-2 s-1 and the angular divergence of the beam is less than 1 degree FWHM for energies greater than 1 keV.

  17. Low energy electron-enhanced etching of Si(100) in hydrogen/helium direct-current plasma

    E-Print Network [OSTI]

    Dove, Patricia M.

    Low energy electron-enhanced etching of Si(100) in hydrogen/helium direct-current plasma H. P of a dc plasma reactor, and thus receives a large flux of low-energy electrons and hydrogen molecules-0269 Received 7 September 1994; accepted for publication 6 March 1995 Low energy electron-enhanced etching of Si

  18. Energy of the Quasi-free Electron in Supercritical Krypton near the Critical Point Luxi Li and C. M. Evans

    E-Print Network [OSTI]

    Evans, Cherice M.

    Energy of the Quasi-free Electron in Supercritical Krypton near the Critical Point Luxi Li and C. M by the quasi-free electron that arises from field ionization of the dopant, and the zero point kinetic energy of the free electron. The overall decrease in the shift of the dopant ionization energy near the critical

  19. Energy of the quasi-free electron in supercritical argon near the critical point C.M. Evans1,

    E-Print Network [OSTI]

    Evans, Cherice M.

    Energy of the quasi-free electron in supercritical argon near the critical point C.M. Evans1 to the interaction between argon and the quasi-free electron arising from field ionization of the dopant. The energy by the ionic core, V0(P) is the quasi-free electron energy in the perturbing medium, and P is the perturber

  20. Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes Chih-Kai Yang,1

    E-Print Network [OSTI]

    Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes Chih energy for both zigzag and armchair tubes. The delocalized 3d electrons from the titanium chain generate studied the binding energies and electronic structures of metal Ti, Al, Au chains adsorbed on single

  1. Supplementary material: CPO simulation of the backscattered SPR energy loss electrons under the condition of our experiment.

    E-Print Network [OSTI]

    Loss, Daniel

    Supplementary material: CPO simulation of the backscattered SPR energy loss electrons under the condition of our experiment. Fig.1 Simulated trajectories of backscattered electrons with energy loss 3.7e Simulated trajectories of backscattered electrons with energy loss 3.7eV at tip-sample distance 150m under

  2. On the role of electron energy distribution function in double frequency heating of electron cyclotron resonance ion source plasmas

    SciTech Connect (OSTI)

    Schachter, L., E-mail: lsch@tandem.nipne.ro; Dobrescu, S. [National Institute for Physics and Nuclear Engineering, Bucharest (Romania)] [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Stiebing, K. E. [Institut fr Kernphysik der J. W. Goethe Universitt, Frankfurt/Main (Germany)] [Institut fr Kernphysik der J. W. Goethe Universitt, Frankfurt/Main (Germany)

    2014-02-15T23:59:59.000Z

    Double frequency heating (DFH) is a tool to improve the output of highly charged ions particularly from modern electron cyclotron resonance ion source installations with very high RF-frequencies. In order to gain information on the DFH-mechanism and on the role of the lower injected frequency we have carried out a series of dedicated experiments where we have put emphasis on the creation of a discrete resonance surface also for this lower frequency. Our well-established method of inserting an emissive MD (metal-dielectric) liner into the plasma chamber of the source is used in these experiments as a tool of investigation. In this way, the electron temperature and density for both ECR zones is increased in a controlled manner, allowing conclusions on the role of the change of the electron-energy-distribution function with and without DFH.

  3. Potential energy surfaces for the 3 A electronic states of the

    E-Print Network [OSTI]

    Ramachandran, Bala (Ramu)

    1 Potential energy surfaces for the 3 A and 3 A electronic states of the O(3 P) + HCl system B. Ramachandrana Chemistry, College of Engineering & Science, Louisiana Tech University Ruston, LA 71272 Kirk A of theory for the 3 A and 3 A electronic states of the O(3 P) + HCl system, where the complete basis set

  4. Heat exchanger cleaning in support of ocean thermal energy conversion (OTEC) - electronics subsystems

    SciTech Connect (OSTI)

    Lott, D.F.

    1980-12-01T23:59:59.000Z

    Electronics systems supporting the development of biofouling countermeasures for Ocean Thermal Energy Conversion (OTEC) are described. Discussed are the thermistor/thermopile amplifiers, heaters, flowmeters, temperature measurement, control systems for chlorination, flow driven brushes, and recirculating sponge rubber balls. The operation and troubleshooting of each electronic subsystem is documented.

  5. Precision shape modification of nanodevices with a low-energy electron beam

    DOE Patents [OSTI]

    Zettl, Alex (Kensington, CA); Yuzvinsky, Thomas David (Berkeley, CA); Fennimore, Adam (Berkeley, CA)

    2010-03-09T23:59:59.000Z

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

  6. Spectroscopic investigations of the vibrational potential energy surfaces in electronic ground and excited states

    E-Print Network [OSTI]

    Yang, Juan

    2007-09-17T23:59:59.000Z

    The vibrational potential energy surfaces in electronic ground and excited states of several ring molecules were investigated using several different spectroscopic methods, including far-infrared (IR), Raman, ultraviolet (UV) absorption...

  7. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01T23:59:59.000Z

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  8. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect (OSTI)

    Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

    2010-06-01T23:59:59.000Z

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  9. Analysis of the second order exchange self energy of a dense electron gas

    E-Print Network [OSTI]

    M. L. Glasser; George Lamb

    2006-11-02T23:59:59.000Z

    We investigate the evaluation of the six-fold integral representation for the second order exchange contribution to the self energy of a three dimensional electron gas at the Fermi surface.

  10. Simulations of slow positron production using a low energy electron accelerator

    E-Print Network [OSTI]

    O'Rourke, B E; Kinomura, A; Kuroda, R; Minehara, E; Ohdaira, T; Oshima, N; Suzuki, R

    2011-01-01T23:59:59.000Z

    Monte Carlo simulations of slow positron production via energetic electron interaction with a solid target have been performed. The aim of the simulations was to determine the expected slow positron beam intensity from a low energy, high current electron accelerator. By simulating (a) the fast positron production from a tantalum electron-positron converter and (b) the positron depth deposition profile in a tungsten moderator, the slow positron production probability per incident electron was estimated. Normalizing the calculated result to the measured slow positron yield at the present AIST LINAC the expected slow positron yield as a function of energy was determined. For an electron beam energy of 5 MeV (10 MeV) and current 240 $\\mu$A (30 $\\mu$A) production of a slow positron beam of intensity 5 $\\times$ 10$^{6}$ s$^{-1}$ is predicted. The simulation also calculates the average energy deposited in the converter per electron, allowing an estimate of the beam heating at a given electron energy and current. For...

  11. High-energy electrons from the muon decay in orbit: radiative corrections

    E-Print Network [OSTI]

    Szafron, Robert

    2015-01-01T23:59:59.000Z

    We determine the $\\mathcal{O}(\\alpha)$ correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. The correction suppresses the background by about 20\\%.

  12. Forward production of high-energy electrons from megavoltage photon beams

    SciTech Connect (OSTI)

    Biggs, P.J.

    1987-09-01T23:59:59.000Z

    The forward production of high-energy electrons from materials with various atomic numbers from carbon to lead has been measured for megavoltage photon beams from 4- to 25-MV peak bremsstrahlung energy by placing a thin-window parallel-plate ionization chamber directly behind foils of the various materials. The relative forward production of electrons decreases with atomic number for energies less than or equal to10 MV until about Z = 50, after which it rises. For photon energies greater than or equal to15 MV, forward production increases with atomic number with a break point at Z--50, beyond which the curve becomes steeper.

  13. Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem

    E-Print Network [OSTI]

    L. Fletcher; H. S. Hudson

    2007-12-20T23:59:59.000Z

    The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.

  14. Electromagnetic cascade in high energy electron, positron, and photon interactions with intense laser pulses

    E-Print Network [OSTI]

    S. S. Bulanov; C. B. Schroeder; E. Esarey; W. P. Leemans

    2013-06-05T23:59:59.000Z

    The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high energy e-beam interacting with a counter-streaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  15. Conversion electrons used to monitor the energy scale of electron spectrometer near tritium endpoint - a simulation study

    E-Print Network [OSTI]

    M. Rysavy

    2006-01-15T23:59:59.000Z

    Measurements of the endpoint region of the tritium beta-decay spectrum provides good possibility to determine neutrino mass. This, however, needs a perfect monitoring of the spectrometer energy scale. A parallel measurement of electron line of known energy - in particular the 83mKr conversion K-line - may serve well to this purpose. The 83Rb decaying to 83mKr seems to be a very suitable radioactive source due to its halflife of 86.2 day. In this work, we determine the amount of 83Rb which is necessary for a successful monitoring.

  16. Milagro: A TeV Gamma-Ray Monitor of the Northern Hemisphere Sky

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    transients, such as gamma-ray bursts, and all sky surveys are dicult. A new type of TeV -ray observatoryMilagro: A TeV Gamma-Ray Monitor of the Northern Hemisphere Sky B.L. Dingus 1 , R. Atkins 1 , W type of very high energy (> a few 100 GeV) gamma-ray observatory, Milagro, has been built with a large

  17. Noninvasive measurement of micron electron beam size of high energy using diffraction radiation

    E-Print Network [OSTI]

    G. Naumenko

    2004-05-31T23:59:59.000Z

    Treatments of the usage of optical diffraction radiation from the relativistic electrons moving though a conductive slit for the noninvasive transverse beam size measurement encounter hard limitation of the method sensitivity for the electron energy larger than 1 GeV. We consider in this article a possibility of application in a diffraction radiation technique the artificial phase shift, which can take place when transverse electron position varies. This allows us to realize the nonivasive measurements of transverse size of supper-relativistic electron beams with the small emittance.

  18. Competing Effects Of Electronic And Nuclear Energy Loss On Microstruct...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microstructural Evolution In Ionic-covalent Materials. Abstract: Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the...

  19. Kraft Rt Kraft Electronics Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: EnergyKosovo: EnergyKrafla

  20. Driving on "Green" Electrons | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunication |Does YourDr. MonicaDriving on

  1. Beam dynamics performances and applications of a low-energy electron-beam magnetic bunch compressor

    E-Print Network [OSTI]

    Prokop, C R; Carlsten, B E; Church, M

    2013-01-01T23:59:59.000Z

    Many front-end applications of electron linear accelerators rely on the production of temporally-compressed bunches. The shortening of electron bunches is often realized with magnetic bunch compressors located in high-energy sections of accelerators. Magnetic compression is subject to collective effects including space charge and self interaction via coherent synchrotron radiation. In this paper we explore the application of magnetic compression to low-energy ($\\sim 40$ MeV), high-charge (nC) electron bunches with low normalized transverse emittances ($< 5$ $\\mu$m).

  2. Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators

    SciTech Connect (OSTI)

    Brijesh, P.; Thaury, C.; Phuoc, K. T.; Corde, S.; Lambert, G.; Malka, V. [Laboratoire d'Optique Appliquee, ENSTA ParisTech, CNRS UMR7639, Ecole Polytechnique, 91761 Palaiseau (France); Mangles, S. P. D.; Bloom, M.; Kneip, S. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2012-06-15T23:59:59.000Z

    A density perturbation in an underdense plasma was used to improve the quality of electron bunches produced in the laser-plasma wakefield acceleration scheme. Quasi-monoenergetic electrons were generated by controlled injection in the longitudinal density gradients of the density perturbation. By tuning the position of the density perturbation along the laser propagation axis, a fine control of the electron energy from a mean value of 60 MeV to 120 MeV has been demonstrated with a relative energy-spread of 15 {+-} 3.6%, divergence of 4 {+-} 0.8 mrad, and charge of 6 {+-} 1.8 pC.

  3. How Do Low-Energy (0.1-2 eV) Electrons Cause DNA-Strand

    E-Print Network [OSTI]

    Simons, Jack

    by which very low-energy (0.1-2 eV) free electrons attach to DNA and cause strong (ca. 4 eV) covalent bonds. The free electrons generated when water or DNA is ionized have a wide range of energies (1-20 eV), but they lose energy through collisions and can eventually yield solvated electrons. As these free electrons

  4. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    E-Print Network [OSTI]

    ATLAS Collaboration

    2014-11-13T23:59:59.000Z

    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb$^{-1}$ of LHC proton--proton collision data taken at centre-of-mass energies of $\\sqrt{s}$ = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the $Z$ resonance is used to set the absolute energy scale. For electrons from $Z$ decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.

  5. Tunable fluid-loaded free-electron laser in the low-electron-energy and long-wavelength extreme R. Drori and E. Jerby*

    E-Print Network [OSTI]

    Jerby, Eli

    Tunable fluid-loaded free-electron laser in the low-electron-energy and long-wavelength extreme R-4 PACS number s : 52.75.Ms, 33.20.Bx, 41.60.Cr, 84.40.Az I. INTRODUCTION In free-electron lasers FELs 1, Tel Aviv University, Ramat Aviv 69978, Israel Received 1 October 1998 A tunable fluid-loaded free-electron

  6. High energy electrons and nuclear phenomena in petawatt laser-solid experiments

    SciTech Connect (OSTI)

    Cowan, T. E.; Ditmire, T.; Hatchett, S.; Pennington, D. M.; Perry, M. D.; Phillips, T. W.; Wilks, S. C.; Young, P. E. [Lawrence Livermore National Laboratory, Livermore, California (United States); Dong, B.; Takahashi, Y. [University of Alabama, Huntsville, Alabama (United States); Fountain, W.; Parnell, T. [Marshall Space Flight Center, Huntsville, Alabama (United States); Hunt, A. W. [Harvard University, Cambridge, Massachusetts (United States); Johnson, J. [University Space Research Association, Huntsville, Alabama (United States); Kuehl, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    1999-07-12T23:59:59.000Z

    The Petawatt laser at LLNL has opened a new regime of laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have developed broad-band magnetic spectrometers to measure the spectrum of high-energy electrons produced in laser-solid target experiments at the Petawatt, and have found that in addition to the expected flux of {approx}few MeV electrons characteristic of the ponderomotive potential, there is a high energy component extending to {approx}100 MeV apparently from plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung, photo-nuclear reactions, and preliminary evidence for positron-electron pair production will be discussed.

  7. High energy electrons and nuclear phenomena in petawatt laser-solid experiments

    SciTech Connect (OSTI)

    Cowan, T.E.; Ditmire, T.; Hatchett, S.; Pennington, D.M.; Perry, M.D.; Phillips, T.W.; Wilks, S.C.; Young, P.E. [Lawrence Livermore National Laboratory, Livermore, California (United States)] Dong, B. [University of Alabama, Huntsville, Alabama (United States); Parnell, T.; Takahashi, Y. [Marshall Space Flight Center, Huntsville, Alabama (United States)] Hunt, A.W. [Harvard University, Cambridge, Massachusetts (United States)] Johnson, J. [University Space Research Association, Huntsville, Alabama (United States)] Kuehl, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    1999-07-01T23:59:59.000Z

    The Petawatt laser at LLNL has opened a new regime of laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have developed broad-band magnetic spectrometers to measure the spectrum of high-energy electrons produced in laser-solid target experiments at the Petawatt, and have found that in addition to the expected flux of {approximately}few MeV electrons characteristic of the ponderomotive potential, there is a high energy component extending to {approximately}100 MeV apparently from plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung, photo-nuclear reactions, and preliminary evidence for positron-electron pair production will be discussed. {copyright} {ital 1999 American Institute of Physics.}

  8. Energy relaxation of hot electrons in Si-doped GaN

    SciTech Connect (OSTI)

    Zhang, J.-Z., E-mail: tfyjzzhang@hotmail.com, E-mail: jian-zhong.zhang@hull.ac.uk [School of Systems Science, Beijing Normal University, Beijing 100875 (China)

    2014-05-28T23:59:59.000Z

    Energy relaxation of the hot electrons in Si-doped bulk GaN is studied theoretically, taking into account non-equilibrium polar optical phonons, electron degeneracy, and screening from the mobile electrons. The electron power dissipation and energy relaxation time are calculated as functions of the electron temperature T{sub e}, the hot-phonon effect (HPE) is examined by varying the optical phonon lifetime values, and the results are compared with previous calculations for typical GaN-based heterostructures. Particular attention is paid to the distinct temperature T{sub e} dependences of the power loss and the energy relaxation time ?{sub E} at the low and high electron temperatures. At low electron temperatures (T{sub e}<500?K), the exponential rise of phonon generation number, fast weakened screening and HPE result in a rapid increase of power loss and sharp drop of relaxation time with T{sub e}. At high electron temperatures (T{sub e}>1500?K), the power loss increases slowly with T{sub e} due to the decrease in phonon generation rate, and the temperature-dependence of the energy relaxation time depends on the polar optical phonon lifetimesaturation in energy relaxation occurs when the phonon lifetime increases or varies little with T{sub e}. Our calculated temperature dependences of the energy relaxation time are in good agreement with experimental findings [Liberis et al., Appl. Phys. Lett. 89, 202117 (2006); Matulionis et al., Phys. Status Solidi C 2, 2585 (2005)]. With no HPE, the electron energy relaxation is much faster in bulk GaN (?{sub E}? several tens femtoseconds) than in the GaN-based heterostructures. However, stronger hot-phonon re-absorption occurs in bulk GaN due to rapid polar-optical phonon emission compared to phonon decay. Therefore, including HPE yields very close power loss and energy relaxation times in bulk and heterostructures with similar densities of electrons (?{sub E}? several tenths of a picosecond). Transparent expressions for energy relaxation are obtained in the Boltzmann approximation, which are very useful for resolving the temperature dependences of the energy relaxation in the low- and high-T{sub e} regions.

  9. Estimation of the electron density and radiative energy losses in a calcium plasma source based on an electron cyclotron resonance discharge

    SciTech Connect (OSTI)

    Potanin, E. P., E-mail: potanin@imp.kiae.ru; Ustinov, A. L. [National Research Centre Kurchatov Institute (Russian Federation)

    2013-06-15T23:59:59.000Z

    The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures-the hot resonance component and the cold nonresonance component-were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T{sub e Parallel-To} of the main (cold) electron component on the energy fraction {beta} lost for radiation was obtained.

  10. Electron Microscopy > Analytical Resources > Research > The Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research communityElectricityLicensing -

  11. Federal Electronics Challenge Gold Award | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDThe data dashboardA A NA NA R NAUse)

  12. Tips: Home Office and Electronics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & Solar SolarHeat PumpsHome

  13. SB Electronics Breaks Ground on New Factory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA lSelectBuildingof328Report toSB

  14. Interuniversity Micro Electronics Centre IMEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co Ltd JumpInformationInterstrom AG

  15. SkyPower Pekon Electronics JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik Industries Jump to:SimranSkyBuilt

  16. Zicom Electronic Security Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang SwisselectronicXianEquipments Jump to:

  17. Shanghai Jiujing Electronics Material Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandong Lusa New Energy CoShanghai Jieneng

  18. Compel Electronics GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoatedCommunityCompacTecMenlo Avenue SuiteA1

  19. Vehicle Technologies Office: Power Electronics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUME I AThe VehicleSeveral ofof

  20. Beijing Eastwest Electronics Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind Ltd Place:

  1. Bihar State Electronics Development Corporation Ltd Beltron | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind

  2. El Ma Electronic Machining srl | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy OffshoreDeveloper - QEcostream JumpEfun

  3. Electronic Docket Room (e-Docket Room) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energyof EnergyDepartment ofJune 5,Delivery andAuthorizations

  4. Mitsubishi Electric and Electronics USA Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: Energy ResourcesMitchellElectric Corp Place:

  5. Komex Electronics Material Inc KEMI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistecKilaraKoRenta AGKomax Holding

  6. EPA to Require Electronic Filing of EISs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpact StatementDepartmentFrontCallChairWHITEDepartment ofof

  7. Beijing Zhongkexin Electronics Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPowerBeanBeijing FSuns

  8. Boehm Electronic Systems Slowakei s r o | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins Energia Jump to:BlackBluewatt Jump to:BmpBoehm

  9. Next-Generation Power Electronics: Reducing Energy Waste and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to pay for. In fact, a typical laptop loses a quarter of the energy that goes into it as waste heat. But there's a new technology that could change the game: it's called wide...

  10. A High Energy Electron and Photon Detector Simulation System

    E-Print Network [OSTI]

    Srikanta Sinha

    2008-10-02T23:59:59.000Z

    A detailed Monte-Carlo code has been developed from basic principles that simulates almost all of the basic photon and charged particle interactions. The code is used to derive the response functions of a high energy photon detector to incident beams of photons of various energies. The detector response matrices (DRMs) are calculated using this code. Deconvolution of an artificially generated spectrum is presented.

  11. Electronics and Telecommunications Research Institute ETRI | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation,

  12. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    E-Print Network [OSTI]

    Taylor, Frank E.

    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb [superscript ?1] of LHC protonproton collision data taken at centre-of-mass energies of ?s = 7 and 8 TeV. ...

  13. Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV

    E-Print Network [OSTI]

    California at Berkeley, University of

    Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV B the ionospheric Pedersen conductivity and produces Joule heat- ing in the presence of an electric field. In addition, part of the energy of the auroral particles is dissipated into local heating through dissociation

  14. Accurate determination of energy scales in few-electron double quantum dots D. Taubert,1

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    methods to determine the gate voltage to energy conversion accurately in the different regimes of dot-lead tunnel couplings and demonstrate strong variations of the conversion factors. Our concepts can easily involves a conversion of the applied gate voltages to energy differences between the electronic states

  15. Low-Energy (0.1 eV) Electron Attachment SS Bond Cleavage

    E-Print Network [OSTI]

    Simons, Jack

    Low-Energy (0.1 eV) Electron Attachment S­S Bond Cleavage Assisted by Coulomb Stabilization Department of Chemistry, University of Gdansk, Gdansk, Poland Received 12 September 2004; accepted 13 October], very low-energy elec- trons are attached to the gaseous sample, after which specific bonds break

  16. New Reflections on Electron's Energy and Wavefunction in the Hydrogen Atom

    E-Print Network [OSTI]

    Ezzat G. Bakhoum

    2009-07-17T23:59:59.000Z

    Schrodinger's equation predicts something very peculiar about the electron in the Hydrogen atom: its total energy must be equal to zero. Unfortunately, an analysis of a zero-energy wavefunction for the electron in the Hydrogen atom has not been attempted in the published literature. This paper provides such an analysis for the first time and uncovers a few interesting facts, including the fact that a "zero-energy wavefunction" is actually a quantized version of the classical wavefunction that has been known for decades.

  17. Self-energy of one electron in non-relativistic QED

    E-Print Network [OSTI]

    I. Catto; Ch. Hainzl

    2002-07-25T23:59:59.000Z

    We investigate the self-energy of one electron coupled to a quantized radiation field by extending the ideas developed recently by C. Hainzl. We fix an arbitrary cut-off parameter Lambda and recover the alpha^2-term of the self-energy, where alpha is the coupling parameter representing the fine structure constant. Thereby we develop a method which allows to expand the self-energy up to any power of alpha. This implies that perturbation theory is correct if Lambda is fix. As an immediate consequence we obtain enhanced binding for electrons.

  18. THE JOURNAL OF CHEMICAL PHYSICS 138, 114105 (2013) Reorganization energy of electron transfer processes in ionic fluids

    E-Print Network [OSTI]

    Song, Xueyu

    2013-01-01T23:59:59.000Z

    solutions. Thus any reliable theoretical understanding of electron transfer reactions in ionic fluidsTHE JOURNAL OF CHEMICAL PHYSICS 138, 114105 (2013) Reorganization energy of electron transfer; published online 15 March 2013) The reorganization energy of electron transfer processes in ionic fluids

  19. Low energy conversion electron detection in superfluid He3 at ultra-low temperature

    E-Print Network [OSTI]

    E. Moulin; C. Winkelmann; J. F. Macias-Perez; Yu. M. Bunkov; H. Godfrin; D. Santos

    2005-04-12T23:59:59.000Z

    We report on the first results of the MACHe3 (MAtrix of Cells of Helium 3) prototype experiment concerning the measurement of low energy conversion electrons at ultra-low temperature. For the first time, the feasibility of the detection of low energy electrons is demonstrated in superfluid He3-B cooled down to 100 microK. Low energy electrons at 7.3 keV coming from the K shell conversion of the 14.4 keV nuclear transition of a low activity Co57 source are detected, opening the possibility to use a He3-based detector for the detection of Weakly Interacting Massive Particles (WIMPs) which are expected to release an amount of energy higher-bounded by 5.6 keV.

  20. Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures

    E-Print Network [OSTI]

    Fu, Feichao; Zhu, Pengfei; Zhao, Lingrong; Jiang, Tao; Lu, Chao; Liu, Shengguang; Shi, Libin; Yan, Lixin; Deng, Haixiao; Feng, Chao; Gu, Qiang; Huang, Dazhang; Liu, Bo; Wang, Dong; Wang, Xingtao; Zhang, Meng; Zhao, Zhentang; Stupakov, Gennady; Xiang, Dao; Zhang, Jie

    2015-01-01T23:59:59.000Z

    High quality electron beams with flat distributions in both energy and current are critical for many accelerator-based scientific facilities such as free-electron lasers and MeV ultrafast electron diffraction and microscopes. In this Letter we report on using corrugated structures to compensate for the beam nonlinear energy chirp imprinted by the curvature of the radio-frequency field, leading to a significant reduction in beam energy spread. By using a pair of corrugated structures with orthogonal orientations, we show that the quadrupole wake fields which otherwise increase beam emittance can be effectively canceled. This work also extends the applications of corrugated structures to the low beam charge (a few pC) and low beam energy (a few MeV) regime and may have a strong impact in many accelerator-based facilities.

  1. Is Second Law of Thermodynamics Violated for Electron Transition from Lower-Energy Level to Higher-Energy Level

    E-Print Network [OSTI]

    R. C. Gupta; Ruchi Gupta; Sanjay Gupta

    2003-10-05T23:59:59.000Z

    Second law of thermodynamics is applied to a few electronic processes. It is seen that the second law of thermodynamics holds good for all except one mentioned here. The classical approach, based on exact equivalence of emission and absorption spectra, for electron transition from lower energy level (first orbit) to higher energy level (second orbit) violates the second law of thermodynamics. But since second law which implies irreversibility and is universally true, a new explanation of electron transition from lower to higher energy level is proposed which leads to better understanding of several topics such as Fraunhofer lines, Optical laser. Also, interestingly, it is shown that widely different fields such as second law of thermodynamics and special relativity are in fact closely linked to each other. Also, possible links between supersymmetry and new concept of quaternion mass are mentioned.

  2. Consumer Electronics Show 2013 Highlights Sustainable Energy Technology |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluor Federal ServicesDepartment ofDepartment of

  3. Peter Dent, Electron Energy Corporation, Strategies for More Effective

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5Parabolic Trough ParabolicPerformance AuditPersonnelPeter

  4. Florida Power Electronics Center FPEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive JumpFirstFlorence High SchoolHydro

  5. Graphene, Hydrogen and Next-Generation Electronics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 BudgetGoals and Requirements GoalsLoggingas a2009Graphene,

  6. EcoElectron Ventures Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrictInformationEau ClaireEcoEcoEcoDog

  7. Comments of consumer electronics association | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. CashDay-June 22, 2015Policy |Verizon

  8. Wanxiang Silicon Peak Electronics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpageWalthall County,Wanxiang America CorporationPeak

  9. Shanghai Electric Xantrex Power Electronics Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma:SevinShamil AyntraziLTD Jump

  10. Shiv Shakti Electronics Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirke Biofuels Jump to: navigation,Shiv Shakti

  11. Sharp Electronics Europe GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPower Partners Wind Farm Jump

  12. Power Electronics R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:AnnualDepartmentEnergy

  13. Solera Sustainable Energies Company formerly Phantom Electron Corp | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore JumpSolarezo JumpSolarvestSolea

  14. Suntrack P4Q Electronics SL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place: Wuxi, Jiangsu Province,Suntrack P4Q

  15. Federal Electronics Challenge Gold Award | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 at Iowa Wind TurbineTuesday,Left to right: EPA Assistant Administrator

  16. EPA - NPDES Electronic Notice of Intent webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyer County,ECO2Ltd Place:Notice of Intent

  17. Dalian Sengu New Power Electronic Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data and Resources11-DNA JumpRenewables Consulting

  18. Jiangsu Yizheng Electron Tube Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformationJames WatkinsTianlongJiangsu YangguangYizheng

  19. LG Display Everlight Electronics JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts andKunshanGroupEmissionsLEXELLG

  20. Tianjin Tai Yang Photo electronic Technology Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicyREDD+TianjiaoTianjin

  1. REN Electron srl formerly FIMI Group srl | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada <REC Solar (Colorado)srl formerly

  2. Rajasthan Electronics Instruments Ltd REIL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name: Raghuraji AgroRajaram Maize Products

  3. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill Gas to7AC

  4. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill Gas

  5. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill GasTrakLok

  6. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill GasTrakLok333

  7. In-Situ Electron Microscopy of Electrical Energy Storage Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the LostDepartmentIn theDepartment

  8. In-Situ Electron Microscopy of Electrical Energy Storage Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the LostDepartmentIn theDepartmentDepartment

  9. Three-Dimensional Momentum Imaging of Electron Wave Packet Interference in Few-Cycle Laser Pulses

    SciTech Connect (OSTI)

    Gopal, R.; Simeonidis, K.; Moshammer, R.; Ergler, Th.; Duerr, M.; Kurka, M.; Kuehnel, K.-U.; Tschuch, S.; Schroeter, C.-D.; Bauer, D.; Ullrich, J.; Rudenko, A.; Herrwerth, O.; Uphues, Th.; Schultze, M.; Goulielmakis, E.; Uiberacker, M.; Lezius, M.; Kling, M. F. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Max-Planck Advanced Study Group at CFEL, D-22607 Hamburg (Germany); Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany)

    2009-07-31T23:59:59.000Z

    Using a reaction microscope, three-dimensional (3D) electron (and ion) momentum (P) spectra have been recorded for carrier-envelope-phase (CEP) stabilized few-cycle (approx5 fs), intense (approx4x10{sup 14} W/cm{sup 2}) laser pulses (740 nm) impinging on He. Preferential emission of low-energy electrons (E{sub e}<15 eV) to either hemisphere is observed as a function of the CEP. Clear interference patterns emerge in P space at CEPs with maximum asymmetry, interpreted as attosecond interferences of rescattered and directly emitted electron wave packets by means of a simple model.

  10. Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Ding, Yuantao; Marinelli, Agostino; Huang, Zhirong

    2015-03-01T23:59:59.000Z

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunch compression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.

  11. Modification Of The Electron Energy Distribution Function During Lithium Experiments On The National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P

    2011-06-03T23:59:59.000Z

    The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.

  12. A highly miniaturized electron and ion energy spectrometer prototype for the rapid analysis of space plasmas

    SciTech Connect (OSTI)

    Bedington, R., E-mail: r.bedington@stp.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210 (Japan); Kataria, D. O.; Smith, A. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary RH5 6NT (United Kingdom)] [Mullard Space Science Laboratory, University College London, Holmbury St. Mary RH5 6NT (United Kingdom)

    2014-02-15T23:59:59.000Z

    MEMS (Micro Electro-Mechanical Systems) plasma analyzers are a promising possibility for future space missions but conventional instrument designs are not necessarily well suited to micro-fabrication. Here, a candidate design for a MEMS-based instrument has been prototyped using electron-discharge machining. The device features 10 electrostatic analyzers that, with a single voltage applied to it, allow five different energies of electron and five different energies of positive ion to be simultaneously sampled. It has been simulated using SIMION and the electron response characteristics tested in an instrument calibration chamber. Small deviations found in the electrode spacing of the as-built prototype were found to have some effect on the electron response characteristics but do not significantly impede its performance.

  13. Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Tsinghua University, Beijing; Ding, Yuantao; Marinelli, Agostino; Huang, Zhirong

    2015-03-01T23:59:59.000Z

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunchmorecompression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.less

  14. ARM: SIRS: derived, correction of downwelling shortwave diffuse hemispheric measurements using Dutton and full algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, Tom; Kay, Bev; Habte, Aron; Anderberg, Mary; Kutchenreiter, Mark

    SIRS: derived, correction of downwelling shortwave diffuse hemispheric measurements using Dutton and full algorithm

  15. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    E-Print Network [OSTI]

    Fujihashi, Yuta; Ishizaki, Akihito

    2015-01-01T23:59:59.000Z

    Recently, nuclear vibrational contribution signatures in 2D electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the e...

  16. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Haiyan [Universit_e de Toulouse, Toulouse, France (Europe); National Institute of Standards Technology, Gaithersburg, MD (United States); Xin, Huolin L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhu, Ye [Monash Univ., Melbourne, VIC (Australia); Dwyer, Christian [Peter Grunberg Institute, Julich, Germany (Europe)

    2014-12-01T23:59:59.000Z

    Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5? (? is the electron mean-free path, here approximately 110 nm). At greater thicknesses we observe a counter-intuitive negative contrast. Only at much higher energy losses is an intuitive positive contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive positive chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. Implications for the interpretation of atomic-scale elemental maps are discussed.

  17. In situ characterization of GaN quantum dot growth with reflection high-energy electron diffraction and line-of-sight mass spectrometry

    E-Print Network [OSTI]

    Brown, J S; Koblmuller, G; Averbeck, R; Riechert, H; Speck, J S

    2006-01-01T23:59:59.000Z

    mass spectrometry and re?ection high-energy electronmass spectrometry ?QMS? and re?ection high-energy electron

  18. Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction

    E-Print Network [OSTI]

    Brown, J S; Koblmuller, G; Wu, F; Averbeck, R; Riechert, H; Speck, J S

    2006-01-01T23:59:59.000Z

    mass spectrometry and re?ection high-energy electronmass spectrometry ?QMS? and re?ection high-energy electron

  19. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    SciTech Connect (OSTI)

    Henderson, Kevin; Harper, Ron; Funsten, Herb; MacDonald, Elizabeth [Space Science and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-15T23:59:59.000Z

    We have developed and demonstrated a versatile, compact electron source that can produce a mono-energetic electron beam up to 50 mm in diameter from 0.1 to 30 keV with an energy spread of <10 eV. By illuminating a metal cathode plate with a single near ultraviolet light emitting diode, a spatially uniform electron beam with 15% variation over 1 cm{sup 2} can be generated. A uniform electric field in front of the cathode surface accelerates the electrons into a beam with an angular divergence of <1 Degree-Sign at 1 keV. The beam intensity can be controlled from 10 to 10{sup 9} electrons cm{sup -2} s{sup -1}.

  20. Production of energetic neutral particles and low energy electrons from four anode rods ion source

    SciTech Connect (OSTI)

    Mostafa, O. A.; El-Khabeary, H.; Abdel Reheem, A. M. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority P.N.13759, Inchas, Cairo (Egypt)] [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority P.N.13759, Inchas, Cairo (Egypt)

    2013-11-15T23:59:59.000Z

    The factors affecting the energetic neutral current, the low energy electron current, and the positive ion current emerging from a four-anode-rods ion source have been studied using argon gas. The neutral and electron current were measured using a simple, new technique. It was found that the energetic neutral current and the electron current depend on the positive ion current and the gas pressure. The ratio of the neutral and electron current to the positive ion current increases by increasing the gas pressure. Also it was found that at a pressure equal to 9 10{sup ?4} mmHg, the ratio of the neutral to the positive ion current reaches 2.34 while the ratio of the electron current to the positive ion current reaches 1.7.

  1. System Architecture of the Dark Energy Survey Camera Readout Electronics

    SciTech Connect (OSTI)

    Shaw, Theresa; /FERMILAB; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; /Barcelona, IFAE; Chappa, Steve; /Fermilab; de Vicente, Juan; /Madrid, CIEMAT; Holm, Scott; Huffman, Dave; Kozlovsky, Mark; /Fermilab; Martinez, Gustavo; /Madrid, CIEMAT; Moore, Todd; /Madrid, CIEMAT /Fermilab /Illinois U., Urbana /Fermilab

    2010-05-27T23:59:59.000Z

    The Dark Energy Survey makes use of a new camera, the Dark Energy Camera (DECam). DECam will be installed in the Blanco 4M telescope at Cerro Tololo Inter-American Observatory (CTIO). DECam is presently under construction and is expected to be ready for observations in the fall of 2011. The focal plane will make use of 62 2Kx4K and 12 2kx2k fully depleted Charge-Coupled Devices (CCDs) for guiding, alignment and focus. This paper will describe design considerations of the system; including, the entire signal path used to read out the CCDs, the development of a custom crate and backplane, the overall grounding scheme and early results of system tests.

  2. Electronic structure, molecular bonding and potential energy surfaces

    SciTech Connect (OSTI)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01T23:59:59.000Z

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  3. Direct-Cooled Power Electronic Substrate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A

  4. Environmental Effects on Power Electronic Devices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |

  5. Environmental Effects on Power Electronic Devices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOE Vehicle Technologies and Hydrogen

  6. Neutral beamline with ion energy recovery based on magnetic blocking of electrons

    DOE Patents [OSTI]

    Stirling, William L. (Oak Ridge, TN)

    1982-01-01T23:59:59.000Z

    A neutral beamline generator with energy recovery of the full-energy ion ponent of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the electrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.

  7. Cross sections for electron scattering by propane in the low- and intermediate-energy ranges

    SciTech Connect (OSTI)

    Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R. [Departamento de Quimica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Departamento de Fisica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Instituto de Fisica 'Gleb Wataghin', UNICAMP, 13083-970 Campinas, SP (Brazil); Departamento de Fisica, UFSC, 88010-970 Florianopolis, SC (Brazil); Department of Chemistry, Texas A and M University, College Station, Texas 7784-3255 (United States)

    2010-07-15T23:59:59.000Z

    We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

  8. Experimental and modeling studies of imaging with curvilinear electronic eye cameras

    E-Print Network [OSTI]

    Rogers, John A.

    Experimental and modeling studies of imaging with curvilinear electronic eye cameras Viktor of the imaging properties of planar, hemispherical, and elliptic parabolic electronic eye cameras are compared.-J. Yu, J. B. Geddes 3rd, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, "A hemispherical electronic eye

  9. Energy Doubling of 42 GeV Electrons in a Meter-scale Plasma Wakefield Accelerator

    SciTech Connect (OSTI)

    Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas,; Kirby, Neil; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-03-14T23:59:59.000Z

    The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx} 52GV m{sup -1}. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

  10. LEIC - A Polarized Low Energy Electron-ion Collider at Jefferson Lab

    SciTech Connect (OSTI)

    Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Hutton, Andrew M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Nissen, Edward W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Yunn, Byung C. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, He [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Sullivan, Michael K. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-06-01T23:59:59.000Z

    A polarized electron-ion collider is envisioned as the future nuclear science program at JLab beyond the 12 GeV CEBAF. Presently, a medium energy collider (MEIC) is set as an immediate goal with options for a future energy upgrade. A comprehensive design report for MEIC has been released recently. The MEIC facility could also accommodate electron and proton/ion collisions in a low CM energy range, covering proton energies from 10 to 25 GeV and ion energies with a similar magnetic rigidity, for additional science reach. In this paper, we present a conceptual design of this low energy collider, LEIC, showing its luminosity can reach above 10{sup 33} cm{sup -2}s{sup -1}. The design specifies that the large booster of the MEIC is converted to a low energy ion collider ring with an interaction region and an electron cooler integrated into it. The design provides options for either sharing the detector with the MEIC or a dedicated low energy detector in a third collision point, with advantages of either a minimum cost or extra detection parallel to the MEIC operation, respectively. The LEIC could be positioned as the first and low cost phase of a multi-stage approach to realize the full MEIC.

  11. Local order measurement in SnGe alloys and monolayer Sn films on Si with reflection electron energy loss spectrometry

    E-Print Network [OSTI]

    Atwater, Harry

    fine structure EXELFS data obtained by reflection electron energy loss spectrometry REELS-range order obtained using reflection high energy electron diffraction. The results suggest that EXELFS synthesis of artificial structures with abrupt strain and composition profiles. Re- flection high energy

  12. Reorganization Energy of Electron Transfer in Viscous Solvents above the Glass Transition Pradip K. Ghorai and Dmitry V. Matyushov*

    E-Print Network [OSTI]

    Matyushov, Dmitry

    Reorganization Energy of Electron Transfer in Viscous Solvents above the Glass Transition Pradip K-Einstein relation. The change in the reorganization energy at the transition temperature reflects the dynamical reorganization energy of electron transfer in supercooled water. We observe a sharp decrease

  13. Energy of the quasi-free electron in argon, krypton and xenon Xianbo Shi a,b

    E-Print Network [OSTI]

    Findley, Gary L.

    Energy of the quasi-free electron in argon, krypton and xenon Xianbo Shi a,b , Luxi Li a,b , C. M ionization of the dopant, and (iii) the kinetic energy of the quasi-free electron. The polarization terms are determined by a standard statistical mechanical treatment. However, the kinetic energy of the quasi-free

  14. A hybrid model for particle transport and electron energy distributions in positive column electrical discharges using equivalent species transport

    E-Print Network [OSTI]

    Kushner, Mark

    A hybrid model for particle transport and electron energy distributions in positive column species are generated in the kinetic module. The hybrid model has been used to examine electron energy which has discrete negative energies representing bound states, and a positive continuum representing

  15. Effects of energy loss on interaction dynamics of energetic electrons with plasmas C. K. Li and R. D. Petrasso

    E-Print Network [OSTI]

    Effects of energy loss on interaction dynamics of energetic electrons with plasmas C. K. Li and R for energetic electrons interacting with plasmas. This model rigorously treats the effects of energy loss upon and energy loss--which previous calculations had erroneously treated as independent in cases where

  16. Dissociative Low-Energy Electron Attachment to the CS Bond of H3CSCH3 Influenced by

    E-Print Network [OSTI]

    Simons, Jack

    Dissociative Low-Energy Electron Attachment to the C­S Bond of H3CSCH3 Influenced by Coulomb of Gdansk, 80-952 Gdansk, Poland Abstract In earlier works by our group, it was suggested that the presence of stabilizing Coulomb potentials can allow low-energy electrons (i.e., with kinetic energies !1 eV) to attach

  17. Energy Storage Systems 2007 Peer Review - Power Electronics Presentations |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy PolicyEnvironmental--Department

  18. DOE Reaches Agreement with LG Electronics, USA, On Refrigerator Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOEDepartment| DepartmentRailcar

  19. Light-harvesting, Excitation Energy/Electron Transfer, and Photoregulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenterCenterCenterSafetyin

  20. Sandia Energy - EFRC Scientist Weng Chow Awarded the Quantum Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon CarbideAgency:UNM: BiomimeticAward

  1. Sandia Energy - Nanoscale Effects on Heterojunction Electron Gases in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery MesaMonitoringNISAC

  2. 2010 Emissions from an Electronics Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09Combustion2/2010 1 2010

  3. Comments of consumer electronics association | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational Broadband PlanSpaceComments of Verizon

  4. Dynamic Electronic Control of Catalytic Converters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner About UsDurable, Low Cost,1 DOEElectronic

  5. Direct Cooled Power Electronics Substrate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A *Dingell_to_Bodman_0206.pdfDirect CatalyticCooled

  6. MECS 2006 - Computer, Electronics and Appliances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment1| DepartmentCement MECS

  7. Materials Compatibility of Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOE HydrogenisLaboratory:Presentation

  8. Materials Compatibility of Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOE HydrogenisLaboratory:Presentation10

  9. Materials Compatibility of Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOE HydrogenisLaboratory:Presentation1009

  10. Environmental Effects on Power Electronic Devices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOE Vehicle Technologies and Hydrogen09 DOE

  11. Advanced Power Electronics and Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment ofDepartment ofMachines Advanced Power

  12. Solder Joints of Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycle SelectionDepartment of11Joints

  13. Solder Joints of Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycle SelectionDepartment of11Joints09

  14. Determination of thickness and composition of high-k dielectrics using high-energy electrons

    SciTech Connect (OSTI)

    Grande, P. L. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia) [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Instituto de Fsica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Vos, M. [Atomic and Molecular Physics Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)] [Atomic and Molecular Physics Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Venkatachalam, D. K.; Elliman, R. G. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)] [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Nandi, S. K. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia) [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Research School of Astronomy and Astrophysics, The Australian National University, Canberra ACT 2611 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2013-08-12T23:59:59.000Z

    We demonstrate the application of high-energy elastic electron backscattering to the analysis of thin (220 nm) HfO{sub 2} overlayers on oxidized Si substrates. The film composition and thickness are determined directly from elastic scattering peaks characteristic of each element. The stoichiometry of the films is determined with an accuracy of 5%10%. The experimental results are corroborated by medium energy ions scattering and Rutherford backscattering spectrometry measurements, and clearly demonstrate the applicability of the technique for thin-film analysis. Significantly, the presented technique opens new possibilities for nm depth profiling with high spatial resolution in scanning electron microscopes.

  15. The second-order electron self-energy in hydrogen-like ions

    E-Print Network [OSTI]

    I. Goidenko; L. Labzowsky; A. Nefiodov; G. Plunien; G. Soff

    1999-04-08T23:59:59.000Z

    A calculation of the simplest part of the second-order electron self-energy (loop after loop irreducible contribution) for hydrogen-like ions with nuclear charge numbers $3 \\leq Z \\leq 92$ is presented. This serves as a test for the more complicated second-order self-energy parts (loop inside loop and crossed loop contributions) for heavy one-electron ions. Our results are in strong disagreement with recent calculations of Mallampalli and Sapirstein for low $Z$ values but are compatible with the two known terms of the analytical $Z\\alpha$-expansion.

  16. Low-energy run of Fermilab Electron Cooler's beam generation system

    SciTech Connect (OSTI)

    Prost, Lionel; Shemyakin, Alexander; /Fermilab; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01T23:59:59.000Z

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  17. A low energy ion source for electron capture spectroscopy

    SciTech Connect (OSTI)

    Tusche, C., E-mail: tusche@mpi-halle.mpg.de [Max-Planck-Institut fr Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Kirschner, J. [Max-Planck-Institut fr Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Naturwissenschaftliche Fakultt II, Martin-Luther-Universitt Halle-Wittenberg, 06120 Halle (Germany)

    2014-06-15T23:59:59.000Z

    We report on the design of an ion source for the production of single and double charged Helium ions with kinetic energies in the range from 300 eV down to 5 eV. The construction is based on a commercial sputter ion gun equipped with a Wien-filter for mass/charge separation. Retardation of the ions from the ionizer potential (2 keV) takes place completely within the lens system of the sputter gun, without modification of original parts. For 15 eV He{sup +} ions, the design allows for beam currents up to 30 nA, limited by the space charge repulsion in the beam. For He{sup 2+} operation, we obtain a beam current of 320?pA at 30 eV, and 46 pA at 5 eV beam energy, respectively. In addition, operating parameters can be optimized for a significant contribution of metastable He*{sup +}(2s) ions.

  18. S-wave threshold in electron attachment - observations and cross sections in CCl4 and SF6 at ultralow electron energies

    SciTech Connect (OSTI)

    Chutjian, A.; Alajajian, S.H.

    1985-05-01T23:59:59.000Z

    The threshold photoionization method was used to study low-energy electron attachment phenomena in and cross sections of CCl4 and SF6 compounds, which have applications in the design of gaseous dielectrics and diffuse discharge opening switches. Measurements were made at electron energies from below threshold to 140 meV at resolutions of 6 and 8 meV. A narrow resolution-limited structure was observed in electron attachment to CCl4 and SF6 at electron energies below 10 meV, which is attributed to the divergence of the attachment cross section in the limit epsilon, l approaches zero. The results are compared with experimental collisional-ionization results, electron-swarm unfolded cross sections, and earlier threshold photoionization data. 34 refs.

  19. The First Events in Photosynthesis: Electronic Coupling and Energy Transfer Dynamics in the Photosynthetic Reaction Center from Rhodobacter sphaeroides

    E-Print Network [OSTI]

    Scherer, Norbert F.

    The First Events in Photosynthesis: Electronic Coupling and Energy Transfer Dynamics in photosynthesis. The reaction center contains six chlorophyll-like pigments arranged with approximate C2 symmetry

  20. Plasma response to electron energy filter in large volume plasma device

    SciTech Connect (OSTI)

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K. [Institute for Plasma Research, Gandhinagar, 382 428 Gujarat (India)] [Institute for Plasma Research, Gandhinagar, 382 428 Gujarat (India)

    2013-12-15T23:59:59.000Z

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  1. Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC Supports - Energy InnovationVehiclesdensity

  2. Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC Supports - Energy

  3. Analysis of the microbunching instability in a mid-energy electron linac

    E-Print Network [OSTI]

    Huang, Dazhang; Wang, Zhen; Zhang, Meng; Ng, King Yuen

    2014-01-01T23:59:59.000Z

    Microbunching instability usually exists in the linear accelerator (linac) of a free electron laser (FEL) facility. If it is not controlled effectively, the beam quality will be damaged seriously and the machine will not operate properly. In the electron linac of a soft X-Ray FEL device, because the electron energy is not very high, the problem can become even more serious. As a typical example, the microbunching instability in the linac of the proposed Shanghai Soft X-ray Free Electron Laser facility (SXFEL) is investigated in detail by means of both analytical formulae and simulation tools. In the study, a new mechanism of introducing random noise into the beam current profile as the beam passes through a chicane-type bunch compressor is proposed. The higher-order modes that appear in the simulations suggest that further improvement of the current theoretical model of the instability is needed.

  4. EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances

    SciTech Connect (OSTI)

    Sanchez, Marla Christine; Brown, Richard; Homan, Gregory

    2008-11-17T23:59:59.000Z

    Over a decade ago, the electricity consumption associated with home electronics and other small appliances emerged onto the global energy policy landscape as one of the fastest growing residential end uses with the opportunity to deliver significant energy savings. As our knowledge of this end use matures, it is essential to step back and evaluate the degree to which energy efficiency programs have successfully realized energy savings and where savings opportunities have been missed.For the past fifteen years, we have quantified energy, utility bill, and carbon savings for US EPA?s ENERGY STAR voluntary product labeling program. In this paper, we present a unique look into the US residential program savings claimed to date for EPA?s ENERGY STAR office equipment, consumer electronics, and other small household appliances as well as EPA?s projected program savings over the next five years. We present a top-level discussion identifying program areas where EPA?s ENERGY STAR efforts have succeeded and program areas where ENERGY STAR efforts did not successfully address underlying market factors, technology issues and/or consumer behavior. We end by presenting the magnitude of ?overlooked? savings.

  5. Evolution of the electron energy distribution function during genesis of breakdown plasma

    SciTech Connect (OSTI)

    Bhattacharjee, Sudeep; Paul, Samit; Ghosh, Sayandip [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2014-08-15T23:59:59.000Z

    During the process of plasma initiation by an electromagnetic wave, it is found that the electron energy distribution function (EEDF) that is initially Maxwellian with the most probable energy at room temperature, evolves with time and tends toward a Bi-Maxwellian??indicating attainment of thermodynamic equilibrium in the individual electron populations prior to breakdown, with a significant increase in hot electron density. In the intermediate states during the evolution, however, non-equilibrium processes are prevalent under fast pulse excitation and the EEDF initially exhibits substantial deviation from a Maxwellian. An analysis of the deviation has been carried out by optimizing the residual sum of squares of the probabilities obtained from the simulation and a fitted Maxwellian curve. The equilibrium regain time defined as the time required to attain thermodynamic equilibrium again, is investigated as a function of neutral pressure, wave electric, and external magnetostatic fields.

  6. Neutral beamline with ion energy recovery based on magnetic blocking of electrons

    DOE Patents [OSTI]

    Stirling, W.L.

    1980-07-01T23:59:59.000Z

    A neutral beamline generator with energy recovery of the full-energy ion component of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the elecrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.

  7. Nonlinear Ultrafast Spectroscopy of Electron and Energy Transfer in Molecule Complexes

    SciTech Connect (OSTI)

    Mukamel, Shaul

    2006-02-09T23:59:59.000Z

    The proposed research program will focus on the development of a unified dynamical theoretical framework for calculating the optical response of molecular assemblies and applying it towards studying the interplay of energy and charge transfer in artificial chromophore-aggregate complexes. Applications will be made to poly (p phenylene vinylene), (PPV) oligomers, several families of stilbenoid aggregates with stacking through a cyclophane group, coupled porphyrin arrays, and energy funneling in phenylacetylene dendrimers. The approach is based on formulating the problem using the density- matrix and developing Liouville-space techniques which provide physical insight and are particularly suitable for computing both coherent and incoherent transport. A physical picture based on collective electronic normal modes which represent the dynamics of the optically-driven reduced single electron density matrix will be established. Femtosecond signals and optical properties will be directly related to the motions of electron-hole pairs in real space, completely avoiding the calculation of many-electron excited-state wavefunctions, thus, considerably reducing computational effort. Vibrational and solvent effects will be incorporated. Guidelines for the synthesis of new donor/bridge/acceptor molecules with desired properties such as carrier transport, optical response time scales and fluorescence quantum yields will be developed. The analogy with Thz emission spectroscopy which probes charge carrier dynamic is in semiconductor superlattices will be explored. A systematic procedure for identifying the electronic coherence sizes which control the transport and optical properties will be developed. Localization of electronic transition density matrices of large molecules will be used to break the description of their optical response into coupled chromophores. The proposal is divided into four parts: (i) Collective-Oscillator Representation of Electronic Excitations in Molecular Assemblies; (ii) Nonlinear Optical Spectroscopy of Coupled Chromophores; (iii) Long-Range Electron Transfer and Transport in Solvents with Complex Spectral Densities; (iv) Probing Exciton-Migration by Coherent Femtosecond Spectroscopies.

  8. Performance of large electron energy filter in large volume plasma device

    SciTech Connect (OSTI)

    Singh, S. K.; Srivastava, P. K.; Awasthi, L. M.; Mattoo, S. K.; Sanyasi, A. K.; Kaw, P. K. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India)] [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); Singh, R. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India) [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); WCI Center for Fusion Theory, National Fusion Research Institute Gwahangno 113, Yu-seong-gu, Daejeon, 305-333 (Korea, Republic of)

    2014-03-15T23:59:59.000Z

    This paper describes an in-house designed large Electron Energy Filter (EEF) utilized in the Large Volume Plasma Device (LVPD) [S. K. Mattoo, V. P. Anita, L. M. Awasthi, and G. Ravi, Rev. Sci. Instrum. 72, 3864 (2001)] to secure objectives of (a) removing the presence of remnant primary ionizing energetic electrons and the non-thermal electrons, (b) introducing a radial gradient in plasma electron temperature without greatly affecting the radial profile of plasma density, and (c) providing a control on the scale length of gradient in electron temperature. A set of 19 independent coils of EEF make a variable aspect ratio, rectangular solenoid producing a magnetic field (B{sub x}) of 100?G along its axis and transverse to the ambient axial field (B{sub z} ? 6.2?G) of LVPD, when all its coils are used. Outside the EEF, magnetic field reduces rapidly to 1?G at a distance of 20 cm from the center of the solenoid on either side of target and source plasma. The EEF divides LVPD plasma into three distinct regions of source, EEF and target plasma. We report that the target plasma (n{sub e} ? 2 10{sup 11}?cm{sup ?3} and T{sub e} ? 2?eV) has no detectable energetic electrons and the radial gradients in its electron temperature can be established with scale length between 50?and?600 cm by controlling EEF magnetic field. Our observations reveal that the role of the EEF magnetic field is manifested by the energy dependence of transverse electron transport and enhanced transport caused by the plasma turbulence in the EEF plasma.

  9. Study of Low Energy Electron Anti-neutrinos at Super-Kamiokande IV

    E-Print Network [OSTI]

    Tokyo, University of

    Study of Low Energy Electron Anti-neutrinos at Super-Kamiokande IV Dissertation Submitted neutrino physics. A forced trigger scheme has been implemented in Super-Kamiokande IV to search for the 2 the Sun. No events are found for both signals in 960 days of Super-Kamiokande IV data. The 90% CL upper

  10. Free-energy functional of the electronic potential for Schrdinger-Poisson theory

    E-Print Network [OSTI]

    Vikram Jadhao; Kaushik Mitra; Francisco J. Solis; Monica Olvera de la Cruz

    2014-12-15T23:59:59.000Z

    In the study of model electronic device systems where electrons are typically under confinement, a key obstacle is the need to iteratively solve the coupled Schr\\"{o}dinger-Poisson (SP) equation. It is possible to bypass this obstacle by adopting a variational approach and obtaining the solution of the SP equation by minimizing a functional. Further, using molecular dynamics methods that treat the electronic potential as a dynamical variable, the functional can be minimized on the fly in conjunction with the update of other dynamical degrees of freedom leading to considerable reduction in computational costs. But such approaches require access to a true free-energy functional, one that evaluates to the equilibrium free energy at its minimum. In this paper, we present a variational formulation of the Schr\\"{o}dinger-Poisson (SP) theory with the needed free-energy functional of the electronic potential. We apply our formulation to semiconducting nanostructures and provide the expression of the free-energy functional for narrow channel quantum wells where the local density approximation yields accurate physics and for the case of wider channels where Thomas-Fermi approximation is valid.

  11. Low-Energy Electron Microscopy Studies of Interlayer Mass Transport Kinetics on TiN(111)

    E-Print Network [OSTI]

    Israeli, Navot

    Low-Energy Electron Microscopy Studies of Interlayer Mass Transport Kinetics on TiN(111) S annealing of three-dimensional (3D) TiN(111) mounds, consisting of stacked 2D islands, at temperatures-limited decay of 2D TiN islands on atomically-flat TiN(111) terraces [Phys. Rev. Lett. 89 (2002) 176102

  12. In situ growth regime characterization of cubic GaN using reflection high energy electron diffraction

    E-Print Network [OSTI]

    As, Donat Josef

    from Knudsen cells. Cubic GaN layers were deposited at 720 C directly on 3C-SiC substrates shutters the GaN surface was exposed to different Ga fluxes for a certain time. The substrate temperatureIn situ growth regime characterization of cubic GaN using reflection high energy electron

  13. Plasma Chemistry and Plasma Processing, Vol. 22, No. 2, June 2002 ( 2002) Electron Density and Energy Distributions in

    E-Print Network [OSTI]

    Chen, Junhong

    Plasma Chemistry and Plasma Processing, Vol. 22, No. 2, June 2002 ( 2002) Electron Density in the corona plasma is required to quantify the chemical processes. In this paper, the electron density- ness of the plasma and the electron energy distribution are not affected. Smaller electrodes produce

  14. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect (OSTI)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01T23:59:59.000Z

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top

  15. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Haiyan; Xin, Huolin L.; Zhu, Ye; Dwyer, Christian

    2014-12-01T23:59:59.000Z

    Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5? (? is the electron mean-free path, here approximately 110 nm). Atmoregreater thicknesses we observe a counter-intuitive negative contrast. Only at much higher energy losses is an intuitive positive contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive positive chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. Implications for the interpretation of atomic-scale elemental maps are discussed.less

  16. Scaled Opposite Spin Second Order Moller-Plesset Correlation Energy: An Economical Electronic Structure Method

    SciTech Connect (OSTI)

    Jung, Yousung; Lochan, Rohini C.; Dutoi, Anthony D.; Head-Gordon, Martin

    2004-08-02T23:59:59.000Z

    A simplified approach to treating the electron correlation energy is suggested in which only the alpha-beta component of the second order Moller-Plesset energy is evaluated, and then scaled by an empirical factor which is suggested to be 1.3. This scaled opposite spin second order energy (SOS-MP2) yields results for relative energies and derivative properties that are statistically improved over the conventional MP2 method. Furthermore, the SOS-MP2 energy can be evaluated without the 5th order computational steps associated with MP2 theory, even without exploiting any spatial locality. A 4th order algorithm is given for evaluating the opposite spin MP2 energy using auxiliary basis expansions, and a Laplace approach, and timing comparisons are given.

  17. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect (OSTI)

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying (Iris); Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24T23:59:59.000Z

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  18. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes

    SciTech Connect (OSTI)

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng, E-mail: guw8@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)] [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2013-11-28T23:59:59.000Z

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  19. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    E-Print Network [OSTI]

    Wang, Guanglei; Deng, Haixiao; Zhang, Weiqing; Wu, Guorong; Dai, Dongxu; Wang, Dong; Zhao, Zhentang; Yang, Xueming

    2015-01-01T23:59:59.000Z

    The beam energy spread at the entrance of undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs). In this paper, the dependences of high harmonic micro-bunching in the high-gain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG) and phase-merging enhanced harmonic generation (PEHG) schemes on the electron energy spread distribution are studied. Theoretical investigations and multi-dimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the performance of HGHG-FELs, while they almost have no influence on EEHG and PEHG schemes. A numerical example demonstrates that, with about 84keV RMS uniform and/or saddle slice energy spread, the 30th harmonic radiation can be directly generated by a single-stage seeding scheme for a soft x-ray FEL f...

  20. Absolute calibration of image plates for electrons at energy between 100 keV and 4 MeV

    SciTech Connect (OSTI)

    Chen Hui; Back, Norman L.; Eder, David C.; MacPhee, Andrew G.; Ping Yuan; Song, Peter M.; Throop, Alan [Lawrence Livermore National Laboratory, Livermore, California 94550-9234 (United States); Bartal, Teresa; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); Link, Anthony J.; Van Woerkom, Linn [Ohio State University, Columbus, Ohio 43210 (United States)

    2008-03-15T23:59:59.000Z

    We measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV and 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on solid density targets. This paper presents the calibration results of image plate photon stimulated luminescence per electron at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energy depositions at these angles. These provide a complete set of tools that allows extraction of our absolute calibration to other spectrometer setting at this electron energy range.

  1. Issues concerning high current lower energy electron beams required for ion cooling between EBIS LINAC and booster

    SciTech Connect (OSTI)

    Hershcovitch,A.

    2009-03-01T23:59:59.000Z

    Some issues, regarding a low energy high current electron beam that will be needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, are examined. Options for propagating such an electron beam, as well as the effect of neutralizing background plasma on electron and ion beam parameters are calculated. Computations and some experimental data indicate that none of these issues is a show stopper.

  2. PHYSICAL REVIEW B 87, 245414 (2013) Low-energy electron reflectivity of graphene on copper and other substrates

    E-Print Network [OSTI]

    Widom, Michael

    2013-01-01T23:59:59.000Z

    PHYSICAL REVIEW B 87, 245414 (2013) Low-energy electron reflectivity of graphene on copper of low-energy electrons from graphene on copper substrates is studied both experimentally-principles density functional description of interlayer states forming for various thicknesses of multilayer graphene

  3. THE ERL HIGH-ENERGY COOLER FOR RHIC* I. Ben-Zvi** for the electron cooling team***,

    E-Print Network [OSTI]

    ]. The design evolved during the past 5 years. The present design will use classical (non-magnetized) electron presents many challenges to the design of the cooler. The cooling is slowed down by the high- energyTHE ERL HIGH-ENERGY COOLER FOR RHIC* I. Ben-Zvi** for the electron cooling team***, C-AD, BNL

  4. FHBS calculation of ionized electron angular and energy distribution following the p+H collision at 20 keV

    E-Print Network [OSTI]

    Fu, Jun

    2004-11-15T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 E. Results of Angular and Energy Distributions from TCE . . . . . 67 V CONCLUSIONS : : : : : : : : : : : : : : : : : : : : : : : : : : : 71 REFERENCES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73 APPENDIX A... interaction between the projectile proton and the target electron at a lower impact energy. What we need is a pro- 3 jectile continuum channel to effectively simulate the electron ionization. This brought us to use the Two-Centered Expansion (TCE) method...

  5. /II sifu reflection electron energy loss spectroscopy measurements of low temperature surface cleaning for Si molecular beam epitaxy

    E-Print Network [OSTI]

    Atwater, Harry

    /II sifu reflection electron energy loss spectroscopy measurements of low temperature surface cleaning for Si molecular beam epitaxy Shouleh Nikzad, Selmer S. Wong, Channing C. Ahn, Aimee L. Smith molecular beam epitaxy system, using reflection electron energy loss spectroscopy, in conjunction

  6. Energy levels, transition probabilities, and electron impact excitations for La XXX

    SciTech Connect (OSTI)

    Zhong, J.Y. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)]. E-mail: jyzhong@aphy.iphy.ac.cn; Zhao, G. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Zhang, J. [Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2006-09-15T23:59:59.000Z

    energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for La XXX. The data refer to 107 fine-structure levels belonging to the configurations (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p{sup 6}3d{sup 10}, 3s{sup 2}3p{sup 6}3d{sup 9}4l, 3s{sup 2}3p{sup 5}3d{sup 10}4l, and 3s3p{sup 6}3d{sup 10}4l (l = s, p, d, f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 10 and 10,000 eV by using the distorted-wave approximation. Effective collision strengths are obtained at seven electron temperatures: T {sub e} (eV) = 10, 100, 300, 500, 800, 1000, and 1500 by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like La X-ray laser at 8.8 nm.

  7. Energy Spectrum of the Electrons Accelerated by a Reconnection Electric Field: Exponential or Power Law?

    E-Print Network [OSTI]

    W. J. Liu; P. F. Chen; M. D. Ding; C. Fang

    2009-01-10T23:59:59.000Z

    The direct current (DC) electric field near the reconnection region has been proposed as an effective mechanism to accelerate protons and electrons in solar flares. A power-law energy spectrum was generally claimed in the simulations of electron acceleration by the reconnection electric field. However in most of the literature, the electric and magnetic fields were chosen independently. In this paper, we perform test-particle simulations of electron acceleration in a reconnecting magnetic field, where both the electric and magnetic fields are adopted from numerical simulations of the MHD equations. It is found that the accelerated electrons present a truncated power-law energy spectrum with an exponential tail at high energies, which is analogous to the case of diffusive shock acceleration. The influences of reconnection parameters on the spectral feature are also investigated, such as the longitudinal and transverse components of the magnetic field and the size of the current sheet. It is suggested that the DC electric field alone might not be able to reproduce the observed single or double power-law distributions.

  8. New Recent Reports April 10, 2007 CSIS Western Hemisphere

    E-Print Network [OSTI]

    Texas at Austin, University of

    New Recent Reports April 10, 2007 CSIS Western Hemisphere National oil companies working paper OIES the importance of private investment, market determination, and appropriate regulatory oversight for Western to improved regional trade. Gains from trade in turn create increased incentives for private investment

  9. Cortical Hemisphere Registration Via Large Deformation Diffeomorphic Metric Curve

    E-Print Network [OSTI]

    Qiu, Anqi

    on the relation between individual brains and the atlas. This is a powerful approach allowing us to study a largeCortical Hemisphere Registration Via Large Deformation Diffeomorphic Metric Curve Mapping Anqi Qiu1 Science, Johns Hopkins University Abstract. We present large deformation diffeomorphic metric curve

  10. Hollow hemispherical titanium dioxide aggregates fabricated by coaxial

    E-Print Network [OSTI]

    Cao, Guozhong

    hemispherical titanium dioxide aggregates fabricated by coaxial electrospray for dye-sensitized solar cell nanocrystallites were prepared by a coaxial electrospray method and applied to dye- sensitized solar cells (DSCs-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JNP.6.063519] Keywords dye-sensitized solar cells; hollow

  11. Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants

    E-Print Network [OSTI]

    V. N. Zirakashvili; F. Aharonian

    2007-10-26T23:59:59.000Z

    %context {Recent observations of hard X-rays and very high energy gamma-rays from a number of young shell type supernova remnants indicate the importance of detailed quantitative studies of energy spectra of relativistic electrons formed via diffusive shock acceleration accompanied by intense nonthermal emission through synchrotron radiation and inverse Compton scattering.} %aim {The aim of this work was derivation of exact asymptotic solutions of the kinetic equation which describes the energy distribution of shock-accelerated electrons for an arbitrary energy-dependence of the diffusion coefficient.} %method {The asymptotic solutions at low and very high energy domains coupled with numerical calculations in the intermediate energy range allow analytical presentations of energy spectra of electrons for the entire energy region.} %results {Under the assumption that the energy losses of electrons are dominated by synchrotron cooling, we derived the exact asymptotic spectra of electrons without any restriction on the diffusion coefficient. We also obtained simple analytical approximations which describe, with accuracy better than ten percent, the energy spectra of nonthermal emission of shock-accelerated electrons due to the synchrotron radiation and inverse Compton scattering.} %conclusions {The results can be applied for interpretation of X-ray and gamma-ray observations of shell type supernova remnants, as well as other nonthermal high energy source populations like microquasars and large scale synchrotron jets of active galactic nuclei.

  12. 728 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006 The Electron Diffusion Coefficient in Energy

    E-Print Network [OSTI]

    Kaganovich, Igor

    Coefficient in Energy in Bounded Collisional Plasmas Lev D. Tsendin Abstract--The electron energies in typical, the momentum relaxation in collisions with neutrals is sig- nificantly faster than the energy relaxation due be de- scribed by a diffusion coefficient in energy . Both collisional and stochastic heating mechanisms

  13. Using field emission to control the electron energy distribution in high-pressure microdischarges at microscale dimensions

    SciTech Connect (OSTI)

    Li, Yingjie; Go, David B. [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)] [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2013-12-02T23:59:59.000Z

    Particle simulations of high-pressure microdischarges at gaps below 10 ?m show that the electron energy distribution becomes non-continuous, with discrete peaks corresponding to specific inelastic collisions. The relative magnitude of these peaks and shape of the energy distribution can be directly controlled by the parameter pressure times distance (pd) and the applied potential across the gap. These parameters dictate inelastic collisions experienced by electrons and as both increase the distribution smooths into a Maxwellian-like distribution. By capitalizing on field emission at these dimensions, it is possible to control the energy distribution of free electrons to target specific, energy dependent reactions.

  14. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    SciTech Connect (OSTI)

    Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

    2008-10-08T23:59:59.000Z

    Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

  15. Recent Progress in the Research on Ion and Electron Transport in Gases at Swarm Energies

    SciTech Connect (OSTI)

    Urquijo, Jaime de [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, P.O. Box 48-3, 62251, Cuernavaca, Mor. (Mexico)

    2004-12-01T23:59:59.000Z

    This paper deals with the presentation and discussion of recent research on the transport of electrons and ions in gases at low energies. Particular emphasis is placed on electron swarm experiments related with the negative differential conductivity of electrons in some gas mixtures, and with secondary ionisation processes due to the impact of metastables with neutrals (Penning ionisation). Ion transport is firstly addressed through some recent measurements on atomic and molecular systems for which both theory and experiment have reached a high degree of agreement, and also on those in which the ranges of the density-normalized electric field intensity E/N have been increased substantiality. Also, the recent advances on the application of transport theories dealing with inelastic collisions are presented, as well as some recent measurements of negative ions and charged clusters in gaseous mixtures, leading to the successful test of Blanc's law at low fields, to the experimental mobilities.

  16. Effects of the energy spread of secondary electrons in a dc-biased single-surface multipactor

    SciTech Connect (OSTI)

    Hur, Min Sup [UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Kim, Jung-Il; Kim, Geun-Ju; Jeon, Seok-Gy [Center for Pioneering Medical-Physics Research, KERI, 1271-19 Sa-dong, Ansan-si 426-170 (Korea, Republic of)

    2011-03-15T23:59:59.000Z

    The effects of the energy spread of secondary electrons are theoretically investigated for a dc-biased single-surface multipactor. In our previous publication [S. G. Jeon et al., Phys. Plasmas 16, 073101 (2009)], we obtained the conditions for the phase lock of an electron bunch, assuming zero velocity spread of the secondary electrons. In this work, we extended our previous theory to derive a quadratic map, by which the stability and bifurcation of the electron bunch can be systematically investigated. For the study of the energy spread of the secondary electrons, a randomized term was added to this map. The modified map then showed significant smearing-out of the bifurcated branches. The theoretical results were verified by particle-in-cell simulations, which showed good agreement in wide parameter ranges for both cases of monoenergetic and energy-spread secondary electrons.

  17. Few-Photon Multiple Ionization of Ne and Ar by Strong Free-Electron-Laser Pulses

    SciTech Connect (OSTI)

    Moshammer, R.; Jiang, Y. H.; Rudenko, A.; Ergler, Th.; Schroeter, C. D.; Luedemann, S.; Zrost, K.; Dorn, A.; Ferger, T.; Kuehnel, K. U.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Foucar, L.; Titze, J.; Jahnke, T.; Schoeffler, M.; Doerner, R. [Institut fuer Kernphysik, Universitaet Frankfurt, D 60486 Frankfurt (Germany); Fischer, D. [Atomic Physics, Stockholm University, Alba Nova University Centrum, 10691 Stockholm (Sweden); Weber, T. [Institut fuer Kernphysik, Universitaet Frankfurt, D 60486 Frankfurt (Germany); DESY, Notkestrasse 85, 22607 Hamburg (Germany); Zouros, T. J. M. [Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, P.O. Box 1527, 71110 Heraklion, Crete (Greece); Duesterer, S. [DESY, Notkestrasse 85, 22607 Hamburg (Germany)] (and others)

    2007-05-18T23:59:59.000Z

    Few-photon multiple ionization of Ne and Ar atoms by strong vacuum ultraviolet laser pulses from the free-electron laser at Hamburg was investigated differentially with the Heidelberg reaction microscope. The light-intensity dependence of Ne{sup 2+} production reveals the dominance of nonsequential two-photon double ionization at intensities of I<6x10{sup 12} W/cm{sup 2} and significant contributions of three-photon ionization as I increases. Ne{sup 2+} recoil-ion-momentum distributions suggest that two electrons absorbing ''instantaneously'' two photons are ejected most likely into opposite hemispheres with similar energies.

  18. The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA

    E-Print Network [OSTI]

    Achterberg, A.; IceCube Collaboration

    2008-01-01T23:59:59.000Z

    see also the Swift Gamma-Ray Burst Mission Page: http://from Northern Hemisphere Gamma-Ray Bursts with AMANDA A.Northern Hemisphere Gamma-Ray Bursts with AMANDA The IceCube

  19. Electronic structure of nitinol surfaces oxidized by low-energy ion bombardment

    SciTech Connect (OSTI)

    Petravic, M., E-mail: mpetravic@phy.uniri.hr; Varasanec, M.; Peter, R.; Kavre, I. [Department of Physics and Center for Micro and Nano Sciences and Technologies, University of Rijeka, 51000 Rijeka (Croatia); Metikos-Hukovic, M. [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb (Croatia); Yang, Y.-W. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)

    2014-06-28T23:59:59.000Z

    We have studied the electronic structure of nitinol exposed to low-energy oxygen-ion bombardment, using x-ray photoemission spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. XPS spectra reveal a gradual transformation of nitinol surfaces into TiO{sub 2} with increased dose of implanted oxygen. No oxidation of Ni atoms has been detected. NEXAFS spectra around O K-edge and Ti L{sub 2,3}-edge, reflecting the element-specific partial density of empty electronic states, exhibit features, which can be attributed to the creation of molecular orbitals, crystal field splitting, and the absence of long-range order, characteristic of the amorphous TiO{sub 2}. Based on these results, we discuss the oxidation kinetics of nitinol under low-energy oxygen-ion bombardment.

  20. Fragment transition density method to calculate electronic coupling for excitation energy transfer

    SciTech Connect (OSTI)

    Voityuk, Alexander A., E-mail: alexander.voityuk@icrea.cat [Instituci Catalana de Recerca i Estudis Avanats, 08010 Barcelona, Spain and Institut de Qumica Computacional i Catlisi (IQCC), Universitat de Girona 17071 Girona (Spain)

    2014-06-28T23:59:59.000Z

    A general approach, the Fragment Transition Density (FTD) scheme, is introduced to estimate electronic coupling for excitation energy transfer in a molecular system. Within this method, the excitation energies and transition densities of the system are used to derive the coupling matrix element. The scheme allows one to treat systems where exciton donor and acceptor are close together and their exchange interaction and orbital overlap are significant. The FTD method can be applied in combination with any quantum mechanical approach to treat excited states of general nature including single-, double-, and higher excitations. Using FTD approach, we derive excitonic couplings for several systems computed with the CIS, TD DFT and MS-CASPT2 methods. In particular, it is shown that the estimated coupling values in DNA ?-stacks are strongly affected by the short-range electronic interaction of adjacent nucleobases.

  1. Insight into the photoelectron angular dependent energy distribution of negative-electron-affinity InP photocathodes

    SciTech Connect (OSTI)

    Chen, Zhanghui; Jiang, Xiangwei; Dong, Shan; Li, Jingbo, E-mail: jbli@semi.ac.cn; Li, Shushen [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Wang, Linwang [Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F, Berkeley, California 94720 (United States)

    2014-01-13T23:59:59.000Z

    Energy distribution and angular distribution of the photoelectrons from InP photocathodes are investigated using a precise Monte Carlo model. It is found that ?-valley electrons contribute to the first peak of the energy distribution curve, but the second peak is contributed by both ?-valley and L-valley electrons rather than only L-valley electrons. L valley electrons are shown to have a smaller angular spread than ?-valley electrons, which is attributed to the much higher potential energy of L-valley minimum. The further simulation indicates that the performance of InP photocathodes can be improved by increasing the hole concentration or decreasing the temperature, but the activation layer thickness variation only has very slight influence on either energy or angular distribution.

  2. Regular Article Homotopic language reorganization in the right hemisphere after early left

    E-Print Network [OSTI]

    Makous, Walter

    hemisphere injury Madalina E. Tivarus a,b, , Sarah J. Starling c , Elissa L. Newport c , John T. Langfitt d

  3. Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests

    E-Print Network [OSTI]

    Becker, R; Dissertori, G; Djambazov, L; Doneg, M; Lustermann, W; Marini, A C; Nessi-Tedaldi, F; Pandolfi, F; Peruzzi, M; Schnenberger, M; Cavallari, F; Dafinei, I; Diemoz, M; Lope, C Jorda; Meridiani, P; Nuccetelli, M; Paramatti, R; Pellegrino, F; Micheli, F; Organtini, G; Rahatlou, S; Soffi, L; Brianza, L; Govoni, P; Martelli, A; de Fatis, T Tabarelli; Monti, V; Pastrone, N; Trapani, P P; Candelise, V; Della Ricca, G

    2015-01-01T23:59:59.000Z

    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.

  4. Electron Beam Energy Chirp Control with a Rectangular Corrugated Structure at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Bane, Karl; Ding, Yantao; Huang, Zhirong; Iverson, Richard; Maxwell, Timothy; Stupakov, Gennady; Wang, Lanfa

    2015-01-30T23:59:59.000Z

    Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (#24;100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a #12;field matching program to obtain the wakes. Based on the numerical calculations, we #12;fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.

  5. Electron Beam Energy Chirp Control with a Rectangular Corrugated Structure at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Bane, Karl; Ding, Yantao; Huang, Zhirong; Iverson, Richard; Maxwell, Timothy; Stupakov, Gennady; Wang, Lanfa

    2015-01-30T23:59:59.000Z

    Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (#24;100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size similar tomorethe gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a #12;field matching program to obtain the wakes. Based on the numerical calculations, we #12;fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.less

  6. Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than todays best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durationsgenerally less than a few minutes. ABBs system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

  7. CP violation and electric-dipole-moment at low energy $?$ production with polarized electrons

    E-Print Network [OSTI]

    J. Bernabeu G. A. Gonzalez-Sprinberg J. Vidal

    2006-10-11T23:59:59.000Z

    The new proposals for high luminosity B/Flavor factories, near and on top of the $\\Upsilon$ resonances, allow for a detailed investigation of CP-violation in the $\\tau$-pair production. In particular, bounds on the tau electric dipole moment can be obtained from genuine CP-odd observables related to the $\\tau$-pair production. We perform an independent analysis from low energy (10 GeV) data by means of linear spin observables. We show that, for a longitudinally polarized electron beam, a CP-odd asymmetry, associated to the normal polarization term, can be measured at these low energy facilities both at resonant and non resonant energies. In this way, stringent and independent bounds to the tau electric dipole moment, which are orders of magnitude below other high or low energy bounds, can be obtained.

  8. The application of reflected light microscopy, scanning electron microscopy-energy dispersive spectroscopy, Auger electron spectroscopy and electron microprobe analysis to the study of dusts

    SciTech Connect (OSTI)

    Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Dept. of Geology and Geophysics)

    1993-03-01T23:59:59.000Z

    Over 500,000 tons of electric arc furnace (EAF) dust is generated each year in the US. The mineralogy and characterization of this dust is being studied to determine the phases and relationships of the valuable zinc, the hazardous lead, cadmium, and chromium, and the deleterious chlorine and fluorine. EAF dust averages 15--20% zinc and is therefore a potential source for 100,000 tons of zinc per year. The major mineralogical phases of EAF dust are franklinite (ZnFe[sub 2]O[sub 4]), magnetite (FeFe[sub 2]O[sub 4]), jacobsite (MnFe[sub 2]O[sub 4]), solid solutions between franklinite-magnetite-jacobsite, and zincite (ZnO). Franklinite, magnetite, and jacobsite solid solutions commonly are cruciform or dendritic crystals in a Ca-Fe-Si matrix and contain up to 5% chromium. Magnetite also occurs as spheres partially oxidized to hematite (Fe[sub 2]O[sub 3]) along its octahedral planes. The dust particles are predominantly in the form of spheres and broken spheres, ranging in size from 200 [mu]m to less than 1 [mu]m. Although many spheres are in the size ranges of 40--50 [mu]m and 10--20 [mu]m, most are less than 1 [mu]m in diameter. Automated scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) probed 118 particles in search of chlorine phases. Chlorine-bearing lime (CaO) was identified by that SEM study. In addition, chlorine is present as hydrophylite (CaCl[sub 2]) and sylvite (KCl). Auger electron spectroscopy (AES) was used to sputter the outer 180[angstrom] layer of the dust particles to search for the possible presence of cotunnite (PbCl[sub 2]) coatings, but none were detected. Minor phases detected include chalcopyrite (CuFeS[sub 2]), sphalerite (ZnS), pyrite (FeS[sub 2]), and coke.

  9. Film Boiling on Downward Quenching Hemisphere of Varying Sizes

    SciTech Connect (OSTI)

    Chan S. Kim; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-04-01T23:59:59.000Z

    Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Laminar Transition Apparatus). Two test sections are made of copper to maintain low Biot numbers. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of all the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the test sections. The measured data are compared with the numerical predictions from laminar film boiling analysis. The measured heat transfer coefficients are found to be greater than those predicted by the conventional laminar flow theory on account of the interfacial wavy motion incurred by the Helmholtz instability. Incorporation of the wavy motion model considerably improves the agreement between the experimental and numerical results in terms of heat transfer coefficient. In addition, the interfacial wavy motion and the quenching process are visualized through a digital camera.

  10. Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy

    SciTech Connect (OSTI)

    Wang, Feng; Graetz, Jason; Moreno, M. Sergio; Ma, Chao; Wu, Lijun; Volkov, Vyacheslav; Zhu, Yimei

    2011-01-01T23:59:59.000Z

    Direct mapping of the lithium spatial distribution and the chemical state provides critical information on structure-correlated lithium transport in electrode materials for lithium batteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses an extreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid?electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10?50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.

  11. Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy

    SciTech Connect (OSTI)

    Zhu, Y.; Wang, F.; Graetz, J.; Moreno, M.S.; Ma, C.; Wu, L.; Volkov, V.

    2011-02-01T23:59:59.000Z

    Direct mapping of the lithium spatial distribution and the chemical state provides critical information on structure-correlated lithium transport in electrode materials for lithium batteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses an extreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.

  12. Synergico: a method for systematic integration of energy efficiency into the design process of electr(on)ic equipment

    E-Print Network [OSTI]

    Boyer, Edmond

    : ecodesign method; energy efficiency, electrical and electronic products 1. Introduction Energy consumption has been a major concern for several decades. Indeed, both private and public sectors have been aware-efficient Europe" and aims at a 20% saving by 2020 by imposing energy efficiency criteria in all economic sectors

  13. J. Phys. Chem. 1995, 99, 1633-1636 1633 Negative Ion Zero Electron Kinetic Energy Spectroscopy of I-*CH3I

    E-Print Network [OSTI]

    Neumark, Daniel M.

    J. Phys. Chem. 1995, 99, 1633-1636 1633 Negative Ion Zero Electron Kinetic Energy Spectroscopy of I: October IO,1994@ The negative ion zero electron kinetic energy (ZEKE) spectrum of I-H3I is presented ion zero electron kinetic energy (ZEKE) spectrum of I-CH3I in which we observe that the neutralcomplex

  14. EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01T23:59:59.000Z

    Tackling Growth in Home Electronics and Small Appliancesassociated with home electronics and other small appliancesequipment, consumer electronics, and other small household

  15. How Do You Save Energy With Your Electronics? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony of Secretary Samuel HappyFuelOnOnEarlier

  16. Low-energy, electron-spin-polarized {sup 4}He{sup +} ion source

    SciTech Connect (OSTI)

    Bixler, D.L.; Lancaster, J.C.; Popple, R.A.; Dunning, F.B.; Walters, G.K. [Department of Physics and the Rice Quantum Institute, Rice University, P.O. Box 1892, Houston, Texas77251-1892 (United States)] [Department of Physics and the Rice Quantum Institute, Rice University, P.O. Box 1892, Houston, Texas77251-1892 (United States)

    1998-05-01T23:59:59.000Z

    A source of low-energy, electron-spin-polarized {sup 4}He{sup +} ions based on an optically pumped, rf-excited helium discharge is described. Ion polarizations P{sub +} of {approximately}0.13 are achieved at beam currents of {approximately}0.1nA, decreasing to {approximately}0.09 at currents of {approximately}0.5nA. Ion beam energies as low as 10 eV have been realized, with an energy spread of {approx_lt}3eV full width half maximum. The ion polarization can be reversed (P{sub +}{r_arrow}{minus}P{sub +}) simply by changing the sense of circular polarization of the optical pumping radiation. The source is suitable for use in a wide variety of applications including surface physics studies. {copyright} {ital 1998 American Institute of Physics.}

  17. Free energy, entropy and volume of activation for electron transfer reactions in a polar solvent

    SciTech Connect (OSTI)

    Manjari, Swati R.; Kim, Hyung J. [Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2006-07-07T23:59:59.000Z

    A continuum theory with account of cavity size fluctuations is employed to study free energy, volume and entropy of activation for nonadiabatic electron transfer (ET) reactions in polar solvents. By using a two-sphere cavity description, model calculations are performed for charge separation and recombination processes in acetonitrile under ambient conditions. It is found that the cavity size at the transition state varies with the free energy of reaction as well as with the thermodynamic conditions. In contrast to the Marcus theory predictions, the volume and entropy of activation show a monotonic behavior with the free energy of reaction and a strong correlation with each other. For example, for a given ET process, the volume and entropy of activation have the same sign. Their values for the charge separation and recombination processes are opposite in sign. These findings are in good qualitative agreement with measurements.

  18. Spectroscopic investigation of photo-induced proton-coupled electron transfer and Dexter energy transfer in model systems

    E-Print Network [OSTI]

    Young, Elizabeth R. (Elizabeth Renee), 1980-

    2009-01-01T23:59:59.000Z

    Spectroscopic investigations of systems designed to advance the mechanistic interrogation of photo-induced proton coupled electron transfer (PCET) and proton-coupled (through-bond) energy transfer (PCEnT) are presented. ...

  19. 614 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 53, NO. 2, APRIL 2006 Energy-Management System for a Hybrid Electric

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    614 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 53, NO. 2, APRIL 2006 Energy with poor specific power. The AES shown in Fig. 1 needs to be a high-specific power device

  20. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 25, NO. 3, SEPTEMBER 2010 901 Benefits of Power Electronic Interfaces

    E-Print Network [OSTI]

    Simes, Marcelo Godoy

    in operations with various other DE sources, while reducing overall interconnection costs. This pa- per current, interconnection, interface, inverter, microgrid, power electronics (PE), power quality. I-99GO10337 and by the California Energy Commission under Technology Partnership Agreement 500

  1. Microstructure of highly strained BiFeO{sub 3} thin films: Transmission electron microscopy and electron-energy loss spectroscopy studies

    SciTech Connect (OSTI)

    Heon Kim, Young, E-mail: young.h.kim@kriss.re.kr [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Bhatnagar, Akash; Pippel, Eckhard; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Alexe, Marin [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); University of Warwick, Coventry CV4 7AL, West Midlands (United Kingdom)

    2014-01-28T23:59:59.000Z

    Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO{sub 3}) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed.

  2. Electron Self-energy in Pseudo-Hermitian Quantum Electrodynamics with a Maximal Mass M

    E-Print Network [OSTI]

    V. P. Neznamov

    2010-10-18T23:59:59.000Z

    The electron self-energy (self-mass) is calculated on the basis of the model of quantum field theory with maximal mass M, developed by V.G.Kadyshevsky et al. within the pseudo-Hermitian quantum electrodynamics in the second order of the perturbation theory. In theory, there is the natural cut-off of large transmitted momentum in intermediate states because of presence of the universal mass M. As a result, the electron self-mass is finite and depends on the transmitted maximum momentum. Two interpretations of the obtained results are possible at defined M and A. The first interpretation allows confirming quantitatively the old concept of elementary particle mass sources defined by interaction of particles with self-gauge fields. The second interpretation results in the possibility not to renormalize the mass (at least in the second order of perturbation theory) owing to the zero mass operator.

  3. The slingshot effect: a possible new laser-driven high energy acceleration mechanism for electrons

    E-Print Network [OSTI]

    Gaetano Fiore; Renato Fedele; Umberto de Angelis

    2014-11-14T23:59:59.000Z

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of propagation of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation ("slingshot effect"). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or Laser-Wake-Field ones.

  4. Higher energy electronic transitions of HC2n+1H+ ,,n=27... and HC2n+1H

    E-Print Network [OSTI]

    Maier, John Paul

    Higher energy electronic transitions of HC2n+1H+ ,,n=2­7... and HC2n+1H ,,n=4­7... in neon matrices of Sciences, Al. Lotników 32-46, Pl-02668 Warsaw, Poland Received 3 April 2010; accepted 25 May 2010 of the HCnH series, because they are open-shell and their lowest energy electronic transition falls

  5. High-energy high-luminosity electron-ion collider eRHIC

    SciTech Connect (OSTI)

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.; et al

    2011-08-09T23:59:59.000Z

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. The replacement cost of the RHIC facility is about two billion US dollars, and the eRHIC will fully take advantage and utilize this investment. We plan adding a polarized 5-30 GeV electron beam to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a top energy of 325 GeV, to heavy fully-striped ions with energies up to 130 GeV/u. Brookhaven's innovative design, is based on one of the RHIC's hadron rings and a multi-pass energy-recovery linac (ERL). Using the ERL as the electron accelerator assures high luminosity in the 10{sup 33}-10{sup 34} cm{sup -2} sec{sup -1} range, and for the natural staging of eRHIC, with the ERL located inside the RHIC tunnel. The eRHIC will provide electron-hadron collisions in up to three interaction regions. We detail the eRHIC's performance in Section 2. Since first paper on eRHIC paper in 2000, its design underwent several iterations. Initially, the main eRHIC option (the so-called ring-ring, RR, design) was based on an electron ring, with the linac-ring (LR) option as a backup. In 2004, we published the detailed 'eRHIC 0th Order Design Report' including a cost-estimate for the RR design. After detailed studies, we found that an LR eRHIC has about a 10-fold higher luminosity than the RR. Since 2007, the LR, with its natural staging strategy and full transparency for polarized electrons, became the main choice for eRHIC. In 2009, we completed technical studies of the design and dynamics for MeRHIC with 3-pass 4 GeV ERL. We learned much from this evaluation, completed a bottom-up cost estimate for this $350M machine, but then shelved the design. In the same year, we turned again to considering the cost-effective, all-in-tunnel six-pass ERL for our design of the high-luminosity eRHIC. In it, electrons from the polarized pre-injector will be accelerated to their top energy by passing six times through two SRF linacs. After colliding with the hadron beam in up to three detectors, the e-beam will be decelerated by the same linacs and dumped. The six-pass magnetic system with small-gap magnets will be installed from the start. We will stage the electron energy from 5 GeV to 30 GeV stepwise by increasing the lengths of the SRF linacs. We discuss details of eRHIC's layout in Section 3. We considered several IR designs for eRHIC. The latest one, with a 10 mrad crossing angle and {beta}* = 5 cm, takes advantage of newly commissioned Nb{sub 3}Sn quadrupoles. Section 4 details the eRHIC lattice and the IR layout. The current eRHIC design focuses on electron-hadron collisions. If justified by the EIC physics, we will add a 30 GeV polarized positron ring with full energy injection from eRHIC ERL. This addition to the eRHIC facility provide for positron-hadron collisions, but at a significantly lower luminosity than those attainable in the electron-hadron mode. As a novel high-luminosity EIC, eRHIC faces many technical challenges, such as generating 50 mA of polarized electron current. eRHIC also will employ coherent electron cooling (CeC) for the hadron beams. Staff at BNL, JLab, and MIT is pursuing vigorously an R&D program for resolving addressing these obstacles. In collaboration with Jlab, BNL plans experimentally to demonstrate CeC at the RHIC. We discuss the structure and the status of the eRHIC R&D in Section 5.

  6. Energy levels and decoherence properties of single electron and nuclear spins in a defect center in diamond

    E-Print Network [OSTI]

    I. Popa; T. Gaebel; M. Domhan; C. Wittmann; F. Jelezko; J. Wrachtrup

    2004-09-12T23:59:59.000Z

    The coherent behavior of the single electron and single nuclear spins of a defect center in diamond and a 13C nucleus in its vicinity, respectively, are investigated. The energy levels associated with the hyperfine coupling of the electron spin of the defect center to the 13C nuclear spin are analyzed. Methods of magnetic resonance together with optical readout of single defect centers have been applied in order to observe the coherent dynamics of the electron and nuclear spins. Long coherence times, in the order of microseconds for electron spins and tens of microseconds for nuclear spins, recommend the studied system as a good experimental approach for implementing a 2-qubit gate.

  7. Measurement of the solar neutrino energy spectrum using neutrino-electron scattering

    E-Print Network [OSTI]

    The Super-Kamiokande collaboration

    1998-12-08T23:59:59.000Z

    A measurement of the energy spectrum of recoil electrons from solar neutrino scattering in the Super--Kamiokande detector is presented. The results shown here are obtained from 504 days of data taken between the 31st of May, 1996 and the 25th of March, 1998. The shape of the measured spectrum is compared with the expectation for solar B8 neutrinos. The comparison takes into account both kinematic and detector related effects in the measurement process. The spectral shape comparison between the observation and the expectation gives a chi-square of 25.3 with 15 degrees of freedom, corresponding to a 4.6% confidence level.

  8. A dressing of zero-range potentials and electron-molecule scattering problem at low energies

    E-Print Network [OSTI]

    S. B. Leble; S. Yalunin

    2002-10-18T23:59:59.000Z

    A dressing of a nonspherical potential, which includes $n$ zero range potentials, is considered. The dressing technique is used to improve ZRP model. Concepts of the partial waves and partial phases for non-spherical potential are used in order to perform Darboux transformation. The problem of scattering on the regular $\\hbox{X}_n$ and $\\hbox{YX}_n$ structures is studied. The possibilities of dressed ZRP are illustrated by model calculation of the low-energy electron-Silane ($\\hbox{SiH}_4$) scattering. The results are discussed. Key words: multiple scattering, silane, zero range potential.

  9. Role of suprathermal electrons during nanosecond laser energy deposit in fused silica

    SciTech Connect (OSTI)

    Grua, P.; Hbert, D.; Lamaignre, L.; Rullier, J.-L. [CEA, DAM, CESTA, F-33114 Le Barp (France)

    2014-08-25T23:59:59.000Z

    An accurate description of interaction between a nanosecond laser pulse and a wide band gap dielectric, such as fused silica, requires the understanding of energy deposit induced by temperature changes occurring in the material. In order to identify the fundamental processes involved in laser-matter interaction, we have used a 1D computational model that allows us to describe a wide set of physical mechanisms and intended for comparison with specially designed 1D experiments. We have pointed out that suprathermal electrons are very likely implicated in heat conduction, and this assumption has allowed the model to reproduce the experiments.

  10. Using data from ETSAP models in a hemispheric pollution model Marie-Louise Siggaard-Andersen1, Kenneth Karlsson1,2

    E-Print Network [OSTI]

    1 Using data from ETSAP models in a hemispheric pollution model Marie-Louise Siggaard-Andersen1 Alamos Laboratory (New Mexico, USA) University of Cologne (Germany) Energy Research Centre models (e.g. prizes for one life-year) Modelsystems (e.g. EVA = Economic Value of Air pollution) Centre

  11. How Do You Save Energy With Your Electronics? | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs,AssessmentInteractive GraphicExcelFind Thermal

  12. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Flynn, Connor

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

  13. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Flynn, Connor

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

  14. Electron energy boosting in laser-wake-field acceleration with external magnetic field Bapprox1 T and laser prepulses

    SciTech Connect (OSTI)

    Hosokai, Tomonao [Photon Pioneers Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan and Japan Science and Technology Agency (JST), CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Zhidkov, Alexei [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Yamazaki, Atsushi [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Mizuta, Yoshio [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Uesaka, Mitsuru [Graduate School of Engineering, University of Tokyo, 22-2 Shirane-shirakata, Tokai, Naka, Ibaraki 319-1188 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan) and Japan Science and Technology Agency (JST), CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2010-03-22T23:59:59.000Z

    Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as approx0.02 pi mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, Bapprox1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in the electron energy distribution.

  15. Electronic Systems for Radiation Detection in Space and High Energy Physics Applications

    E-Print Network [OSTI]

    Valerio, Pierpaolo; Ballabriga, Rafael

    This Ph.D. thesis focuses on the analysis and development of novel solution for electronics system for radiation detector, especially suited for space and high energy physics applications. The many blocks of a readout system were studied to develop complete systems, investigating where the performances can be improved over state of the art technologies. Two different architectures, suitable for different applications, were studied: Fractional Packet Counting, for High Dynamic Range (HDR) integrating imagers and CLICpix, an example of high-accuracy hybrid photon counting detector. The main specifications of the two systems were anayzed and solutions were proposed and implemented to meet them. A CLICpix prototype has been designed, fabricated using a commercial 65 nm CMOS technology and tested (characterization is still ongoing). The technology used for the prototype has also been characterized and validated for High Energy Physics (HEP) use and radiation hard design.

  16. Study of O/Ni(100) with LEED (low-energy electron diffraction) and AES (auger electron spectroscopy) from chemisorption to oxidation

    SciTech Connect (OSTI)

    Wang, Wen-Di.

    1990-11-16T23:59:59.000Z

    The structures formed on the Ni(100) surface during oxygen adsorption, leading to oxidation, are studied with Video-LEED (low-energy electron diffraction) and AES (Auger electron spectroscopy). The temperature- and exposure-dependence in the development of LEED patterns observed during oxidation of Ni(100), at oxidation temperatures of 80 to 400 K, are investigated extensively. Integrated diffraction spot intensities and fractional spot profiles are measured quantitatively and continuously, allowing unambiguous correlation of various surface processes. AES is used to measure the oxidation onset during adsorption and the final relative thickness of the oxide. 48 figs., 79 refs.

  17. Efficient Strategies for Accurate Calculations of Electronic Excitation and Ionization Energies: Theory and Application to the Dehydro-m-xylylene Anion

    E-Print Network [OSTI]

    Krylov, Anna I.

    Efficient Strategies for Accurate Calculations of Electronic Excitation and Ionization Energies on single-reference methods for calculating accurate energy differences. Different schemes for calculating of energy differences, such as electronic excitation and ionization energies, as well as heats of formation

  18. Grinding tool for making hemispherical bores in hard materials

    DOE Patents [OSTI]

    Duran, E.L.

    1985-04-03T23:59:59.000Z

    A grinding tool for forming hemispherical bores in hard materials such as boron carbide. The tool comprises a hemicircular grinding bit, formed of a metal bond diamond matrix, which is mounted transversely on one end of a tubular tool shaft. The bit includes a spherically curved outer edge surface which is the active grinding surface of the tool. Two coolant fluid ports on opposite sides of the bit enable introduction of coolant fluid through the bore of the tool shaft so as to be emitted adjacent the opposite sides of the grinding bit, thereby providing optimum cooling of both the workpiece and the bit.

  19. Compositions and chemical bonding in ceramics by quantitative electron energy-loss spectrometry

    SciTech Connect (OSTI)

    Bentley, J.; Horton, L.L. [Oak Ridge National Lab., TN (United States); McHargue, C.J. [Tennessee Univ., Knoxville, TN (United States); McKernan, S.; Carter, C.B. [Minnesota Univ., Minneapolis, MN (United States). Dept. of Chemical Engineering; Revcolevschi, A. [Univ. de Paris-Sud, Lab. de Chemie des Solides (France); Tanaka, S.; Davis, R.F. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering

    1993-12-31T23:59:59.000Z

    Quantitative electron energy-loss spectrometry was applied to a range of ceramic materials at a spatial resolution of <5 nm. Analysis of Fe L{sub 23} white lines indicated a low-spin state with a charge transfer of {approximately}1.5 electrons/atom onto the Fe atoms implanted into (amorphized) silicon carbide. Gradients of 2 to 5% in the Co:O stoichiometry were measured across 100-nm-thick Co{sub 3}O{sub 4} layers in an oxidized directionally solidified CoO-ZrO{sub 2} eutectic, with the highest O levels near the ZrO{sub 2}. The energy-loss near-edge structures were dramatically different for the two cobalt oxides; those for CO{sub 3}O{sub 4} have been incorrectly ascribed to CoO in the published literature. Kinetically stabilized solid solubility occurred in an AlN-SiC film grown by low-temperature molecular beam epitaxy (MBE) on {alpha}(6H)-SiC, and no detectable interdiffusion occurred in couples of MBE-grown AlN on SiC following annealing at up to 1750C. In diffusion couples of polycrystalline AlN on SiC, interfacial 8H sialon (aluminum oxy-nitride) and pockets of Si{sub 3}N{sub 4}-rich {beta}{prime} sialon in the SiC were detected.

  20. Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP

    E-Print Network [OSTI]

    Schael, S; Bruneliere, R; Buskulic, D; De Bonis, I; Decamp, D; Ghez, P; Goy, C; Jezequel, S; Lees, J P; Lucotte, A; Martin, F; Merle, E; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Trocme, B; Bravo, S; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Fernandez, E; Fernandez-Bosman, M; Garrido, Ll; Grauges, E; Juste, A; Martinez, M; Merino, G; Miquel, R; Mir, Ll. M; Orteu, S; Pacheco, A; Park, I C; Perlas, J; Riu, I; Ruiz, H; Sanchez, F; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Bazarko, A; Becker, U; Boix, G; Bird, F; Blucher, E; Bonvicini, B; Bright-Thomas, P; Barklow, T; Buchmuller, O; Cattaneo, M; Cerutti, F; Ciulli, V; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Greening, T C; Hagelberg, R; Halley, A W; Gianotti, F; Girone, M; Hansen, J B; Harvey, J; Jacobsen, R; Hutchcroft, D E; Janot, P; Jost, B; Knobloch, J; Kado, M; Lehraus, I; Lazeyras, P; Maley, P; Mato, P; May, J; Moutoussi, A; Pepe-Altarelli, M; Ranjard, F; Rolandi, L; Schlatter, D; Schmitt, B; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Veenhof, R; Valassi, A; Wiedenmann, W; Wright, A E; Ajaltouni, Z; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Fayolle, D; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Pascolo, J M; Perret, P; Podlyski, F; Bertelsen, H; Fernley, T; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Lindahl, A; Mollerud, R; Nilsson, B S; Rensch, B; Waananen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, E; Siotis, I; Vayaki, A; Zachariadou, K; Blondel, A; Bonneaud, G; Brient, J C; Machefert, F; Rouge, A; Rumpf, M; Swynghedauw, M; Tanaka, R; Verderi, M; Videau, H; Ciulli, V; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C; Antonelli, A; Antonelli, M; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Picchi, P; Colrain, P; Have, I. ten; Hughes, I S; Kennedy, J; Knowles, I G; Lynch, J G; Morton, W T; Negus, P; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Turnbull, R M; Wasserbaech, S; Buchmuller, O; Cavanaugh, R; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Stenzel, H; Tittel, K; Werner, W; Wunsch, M; Beuselinck, R; Binnie, D M; Cameron, W; Davies, G; Dornan, P J; Goodsir, S; Marinelli, N; Martin, E B; Nash, J; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Buck, P G; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R.W L; Keemer, N R; Pearson, M R; Robertson, N A; Sloan, T; Smizanska, M; Snow, S W; Williams, M I; van der Aa, O; Delaere, C; Leibenguth, G; Lemaitre, V; Bauerdick, L.A T; Blumenschein, U; van Gemmeren, P; Giehl, I; Holldorfer, F; Jakobs, K; Kasemann, M; Kayser, F; Kleinknecht, K; Muller, A S; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H; Wanke, R; Zeitnitz, C; Ziegler, T; Aubert, J J; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Curtil, C; Ealet, A; Etienne, F; Fouchez, D; Motsch, F; Payre, P; Rousseau, D; Tilquin, A; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Buscher, V; David, A; Dietl, H; Ganis, G; Huttmann, K; Lutjens, G; Mannert, C; Manner, W; Moser, H G; Settles, R; Seywerd, H; Stenzel, H; Villegas, M; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, Ph; Jacholkowska, A; Le Diberder, F; Lefrancois, J; Mutz, A M; Schune, M H; Serin, L; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foa, L; Giammanco, A; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, F; Rizzo, G; Sanguinetti, G; Sciaba, A; Sguazzoni, G; Spagnolo, P; Steinberger, J; Tenchini, R; Vannini, C; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; Garcia-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Botterill, D R; Clifft, R W; Edgecock, T R; Edwards, M; Haywood, S J; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D; Colas, P; Emery, S; Fabbro, B; Kozanecki, W; Lancon, E; Lemaire, M C; Locci, E; Perez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S

    2013-01-01T23:59:59.000Z

    Electroweak measurements performed with data taken at the electron-positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3~fb$^{-1}$ collected by the four LEP experiments ALEPH, DELPHI, L3 and OPAL, at centre-of-mass energies ranging from $130~GeV$ to $209~GeV$. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron-positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose-Einstein correlations between the two W decay systems arising ...

  1. Generalized oscillator strengths for inner-shell excitation of SF6 recorded with a high-performance electron energy loss

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Generalized oscillator strengths for inner-shell excitation of SF6 recorded with a high-performance electron energy loss spectrometer I.G. Eustatiu a , J.T. Francis b , T. Tyliszczak b , C.C. Turci c , A) are reported up to very high momentum transfer. These have been measured with a variable impact energy

  2. Determination of energy scales in few-electron double quantum dots D. Taubert, D. Schuh, W. Wegscheider, and S. Ludwig

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    gate volt- ages to energy differences between the electronic states. The conversion factors devices. We have developed methods to determine the gate voltage to energy conversion accurately in the different regimes of dot-lead tunnel couplings and demonstrate strong variations of the conversion factors

  3. TRIBUTE TO FOUNDERS: NEAL R. AMUNDSON. INORGANIC MATERIALS: SYNTHESIS AND Particle-in-Cell Simulation of Electron and Ion Energy

    E-Print Network [OSTI]

    Economou, Demetre J.

    -in-Cell Simulation of Electron and Ion Energy Distributions in dc/rf Hybrid Capacitively-Coupled Plasmas Paola Engineers AIChE J, 59: 3214-3222, 2013 Keywords: plasma, simulation, molecular, energy distribution 1, 2013 in Wiley Online Library (wileyonlinelibrary.com) A Particle-in-Cell simulation with Monte

  4. Study of the ArBr-, AC, and Krl-anions and the corresponding neutral van der Waals complexes by anion zero electron kinetic energy

    E-Print Network [OSTI]

    Neumark, Daniel M.

    by anion zero electron kinetic energy spectroscopy Yuexing Zhao, Ivan Yourshaw, Georg Reiser, Caroline C a zero electron kinetic energy @EKE) spectroscopy study of sev- eral rare gas halide (RgX-) anionsI-, and the corresponding open-shell van der Waals complexes, ArBr, ArI, and KrI, were studied with anion zero electron

  5. Molecular Structure and Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome MtrF

    SciTech Connect (OSTI)

    Breuer, Marian; Zarzycki, Piotr P.; Shi, Liang; Clarke, Thomas; Edwards, Marcus; Butt, Julea N.; Richardson, David J.; Fredrickson, Jim K.; Zachara, John M.; Blumberger, Jochen; Rosso, Kevin M.

    2012-12-01T23:59:59.000Z

    The free energy profile for electron flow through the bacterial deca-heme cytochrome MtrF has been computed using thermodynamic integration and classical molecular dynamics. The extensive calculations on two versions of the structure help validate the method and results, because differences in the profiles can be related to differences in the charged amino acids local to specific heme groups. First estimates of reorganization free energies ? yield a range consistent with expectations for partially solvent exposed cofactors, and reveal an activation energy range surmountable for electron flow. Future work will aim at increasing the accuracy of ? with polarizable force field dynamics and quantum chemical energy gap calculations, as well as quantum chemical computation of electronic coupling matrix elements.

  6. Performance evaluation of booster materials in the plastic bonded explosive PBX 9502 in a hemispherical wave breakout test

    SciTech Connect (OSTI)

    Hooks, Daniel E [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Francois, Elizabeth [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    An explosive booster is normally required to initiate detonation in an insensitive high explosive (lHE). Booster materials must be ignitable by a conventional detonator and deliver sufficient energy and favorable pulse shape to initiate the IHE charge. The explosive booster should be as insensitive as reasonably possible to maintain the overall safety margin of the explosive assembly. A hemispherical wave breakout test termed the on ionskin test is one of the methods of testing the performance of booster materials in an initiation train assembly. There are several variations of this basic test which are known by other names. In this test, the wave breakout time-position history at the surface of a hemispherical IHE acceptor charge is recorded, and the relative uniformity of breakout allows qualitative comparison between booster candidates and quantitative comparison of several metrics. The results of a series of onionskin experiments evaluating the performance of some new booster formulations in the triaminotrinitrobenzene (TA TB) -based plastic bonded explosive PBX 9502 will be presented. The boosters were tested in an onionskin arrangement in which the booster pellet was cylindrical, and the tests were performed at a temperature of-55{sup o}C to emphasize variations in spreading performance. The modification from the traditional hemispherical geometry facilitated efficient explosive fabrication and charge assembly, but the results indicate that this geometry was not ideal for several reasons. Despite the complications arising from geometry, promising performance was observed from booster formulations including 3,3' -diamino-4,4'azoxyfurazan.

  7. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    E-Print Network [OSTI]

    Baptiste, Kenneth

    2009-01-01T23:59:59.000Z

    The Bessy Soft X-Ray Free Electron Laser, ISBN 3-9809534-0-26th International Free Electron Laser Conference, Trieste,Proceedings of 21st Free-Electron Laser Conference (FEL99),

  8. Laser ablation of electronic materials including the effects of energy coupling and plasma interactions

    SciTech Connect (OSTI)

    Zeng, Xianzhong

    2004-12-10T23:59:59.000Z

    Many laser ablation applications such as laser drilling and micromachining generate cavity structures. The study of laser ablation inside a cavity is of both fundamental and practical significance. In this dissertation, cavities with different aspect ratios (depth/diameter) were fabricated in fused silica by laser micromachining. Pulsed laser ablation in the cavities was studied and compared with laser ablation on a flat surface. The formation of laser-induced plasmas in the cavities and the effects of the cavities on the ablation processes were investigated. The temperatures and electron number densities of the resulting laser-induced plasmas in the cavities were determined from spectroscopic measurements. Reflection and confinement effects by the cavity walls and plasma shielding were discussed to explain the increased temperature and electron number density with respect to increasing cavity aspect ratio. The temporal variations of the plasma temperature and electron number density inside the cavity decreased more rapidly than outside the cavity. The effect of laser energy on formation of a plasma inside a cavity was also investigated. Propagation of the shock wave generated during pulsed laser ablation in cavities was measured using laser shadowgraph imaging and compared with laser ablation on a flat surface. It is found that outside the cavity, after about 30 ns the radius of the expanding shock wave was proportional to t2/5, which corresponds to a spherical blast wave. The calculated pressures and temperatures of the shocked air outside of the cavities were higher than those obtained on the flat surface. Lasers with femtosecond pulse duration are receiving much attention for direct fabrication of microstructures due to their capabilities of high-precision ablation with minimal damage to the sample. We have also performed experimental studies of pulsed femtosecond laser ablation on the flat surface of silicon samples and compared results with pulsed nanosecond laser ablation at a ultraviolet wavelength (266 nm). Crater depth measurements indicated that ablation efficiency was enhanced for UV femtosecond laser pulses. The electron number densities and temperatures of femtosecond-pulse plasmas decreased faster than nanosecond-pulse plasmas due to different energy deposition mechanisms. Plasma expansion in both the perpendicular and the lateral directions were studied.

  9. EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01T23:59:59.000Z

    behavior: the case of ENERGY STAR computers Unlike ENERGY STAR ME, participation in ENERGY STAR home

  10. Low-energy structure of above-threshold-ionization electron spectra: Role of the Coulomb threshold effect

    E-Print Network [OSTI]

    Telnov, Dmitry A.; Chu, Shih-I

    2011-06-10T23:59:59.000Z

    start from the expression for the differential ionization probability corresponding to ejection of the electron with the energy Ef within the unit energy interval and unit solid angle under the specified direction (atomic units are used throughout... spectra have been also normalized to fall in the range 01. The solid (blue) lines represent the intensity-averaged quantity ?2P/(?Ef?#3;) calculated according to Eq. (1), while the dashed (red) lines correspond to the intensity-averaged energy spectra...

  11. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    E-Print Network [OSTI]

    Bakeman, M.S.

    2011-01-01T23:59:59.000Z

    ultra-short, high- peak-current, electron beams are ideal for driving a compact X U V free electron laser (

  12. Electronic film with embedded micro-mirrors for solar energy concentrator systems

    E-Print Network [OSTI]

    Mario Rabinowitz; Mark Davidson

    2004-04-16T23:59:59.000Z

    A novel electronic film solar energy concentrator with embedded micro-mirrors that track the sun is described. The potential viability of this new concept is presented. Due to miniaturization, the amount of material needed for the optical system is minimal. Because it is light-weight and flexible, it can easily be attached to the land or existing structures. This presents an economic advantage over conventional concentrators which require the construction of a separate structure to support them, and motors to orient them to intercept and properly reflect sunlight. Such separate structures must be able to survive gusts, windstorms, earthquakes, etc. This concentrator utilizes the ground or existing edifices which are already capable of withstanding such vicissitudes of nature.

  13. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect (OSTI)

    Roychowdhury, P.; Chakravarthy, D. P. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-12-15T23:59:59.000Z

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  14. Electron-Atom Superelastic Scattering in Magnesium at Millielectron Volt Energies T. Baynard, A. C. Reber, R. F. Niedziela,| S. A. Darveau, B. Prutzman,# and R. S. Berry*,

    E-Print Network [OSTI]

    Berry, R. Stephen

    Electron-Atom Superelastic Scattering in Magnesium at Millielectron Volt Energies T. Baynard, A. C ReceiVed: July 17, 2007; In Final Form: September 16, 2007 The energy dependence of superelastic electron source to collide with excited atoms. Measurements are made at energies as low as 1.5 me

  15. 11490 J. Phys. Chem. 1994, 98, 11490-11498 Kinetic and Electronic Energy Dependence of the Reactions of Sc+ and Ti+ with D20

    E-Print Network [OSTI]

    Clemmer, David E.

    of ground state M+ in both systems. In the titanium system, the effect of electronic energy on product11490 J. Phys. Chem. 1994, 98, 11490- 11498 Kinetic and Electronic Energy Dependence@ The reactions of Sc+ and Ti+ with D20 are studied as a function of translational energy in a guided ion beam

  16. Southern Hemisphere Forestry Journal 2007, 69(2): 103109 Printed in South Africa --All rights reserved

    E-Print Network [OSTI]

    Southern Hemisphere Forestry Journal 2007, 69(2): 103­109 Printed in South Africa -- All rights reserved Copyright © NISC Pty Ltd SOUTHERN HEMISPHERE FORESTRY JOURNAL ISSN 1991­931X doi: 10.2989/SHFJ) in South African forestry nurseries BP Hurley1,4*, B Slippers2,4, TA Coutinho3,4, BD Wingfield2,4, P

  17. StratosphereTroposphere Coupling in the Southern Hemisphere DAVID W. J. THOMPSON

    E-Print Network [OSTI]

    StratosphereTroposphere Coupling in the Southern Hemisphere DAVID W. J. THOMPSON Department of variability in the NH circulation, the so-called North- ern Hemisphere annular mode (Thompson and Wal- lace author address: David W. J. Thompson, Depart- ment of Atmospheric Science, Colorado State University

  18. One-way implodable tag capsule with hemispherical beaded end cap for LWR fuel manufacturing

    DOE Patents [OSTI]

    Gross, K.; Lambert, J.

    1999-04-06T23:59:59.000Z

    A capsule is disclosed containing a tag gas in a zircaloy body portion having a hemispherical top curved toward the bottom of the body portion. The hemispherical top has a rupturable portion upon exposure to elevated gas pressure and the capsule is positioned within a fuel element in a nuclear reactor. 3 figs.

  19. Structural and orientation effects on electronic energy transfer between silicon quantum dots with dopants and with silver adsorbates

    SciTech Connect (OSTI)

    Vinson, N.; Freitag, H.; Micha, D. A., E-mail: micha@qtp.ufl.edu [Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611 (United States)

    2014-06-28T23:59:59.000Z

    Starting from the atomic structure of silicon quantum dots (QDs), and utilizing ab initio electronic structure calculations within the Frster resonance energy transfer (FRET) treatment, a model has been developed to characterize electronic excitation energy transfer between QDs. Electronic energy transfer rates, K{sub EET}, between selected identical pairs of crystalline silicon quantum dots systems, either bare, doped with Al or P, or adsorbed with Ag and Ag{sub 3}, have been calculated and analyzed to extend previous work on light absorption by QDs. The effects of their size and relative orientation on energy transfer rates for each system have also been considered. Using time-dependent density functional theory and the hybrid functional HSE06, the FRET treatment was employed to model electronic energy transfer rates within the dipole-dipole interaction approximation. Calculations with adsorbed Ag show that: (a) addition of Ag increases rates up to 100 times, (b) addition of Ag{sub 3} increases rates up to 1000 times, (c) collinear alignment of permanent dipoles increases transfer rates by an order of magnitude compared to parallel orientation, and (d) smaller QD-size increases transfer due to greater electronic orbitals overlap. Calculations with dopants show that: (a) p-type and n-type dopants enhance energy transfer up to two orders of magnitude, (b) surface-doping with P and center-doping with Al show the greatest rates, and (c) K{sub EET} is largest for collinear permanent dipoles when the dopant is on the outer surface and for parallel permanent dipoles when the dopant is inside the QD.

  20. Coherent and incoherent radiation from high-energy electron and the LPM effect in oriented single crystal

    E-Print Network [OSTI]

    V. N. Baier; V. M. Katkov

    2005-12-01T23:59:59.000Z

    The process of radiation from high-energy electron in oriented single crystal is considered using the method which permits inseparable consideration of both coherent and incoherent mechanisms of photon emission. The total intensity of radiation is calculated. The theory, where the energy loss of projectile has to be taken into account, agrees quite satisfactory with available CERN data. It is shown that the influence of multiple scattering on radiation process is suppressed due to action of crystal field.

  1. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    SciTech Connect (OSTI)

    Tolbert, L.M.

    2005-12-21T23:59:59.000Z

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  2. Neutralization of space charge on high-current low-energy ion beam by low-energy electrons supplied from silicon based field emitter arrays

    SciTech Connect (OSTI)

    Gotoh, Yasuhito; Tsuji, Hiroshi; Taguchi, Shuhei; Ikeda, Keita; Kitagawa, Takayuki; Ishikawa, Junzo; Sakai, Shigeki [Dept. of Electron. Sci. Eng., Kyoto Univ. Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Dept. of Electron. Information Eng., Chubu Univ., 1200, Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Nissin Ion Equipment Co., Ltd., 575 Kuze-Tonoshiro-cho, Minami-ku, Kyoto 601-8502 (Japan)

    2012-11-06T23:59:59.000Z

    Neutralization of space charge on a high-current and low-energy ion beam was attempted to reduce the divergence with an aid of low-energy electrons supplied from silicon based field emitter arrays (Si-FEAs). An argon ion beam with the energy of 500 eV and the current of 0.25 mA was produced by a microwave ion source. The initial beam divergence and the emittance were measured at the entrance of the analysis chamber in order to estimate the intrinsic factors for beam divergence. The current density distribution of the beam after transport of 730 mm was measured by a movable Faraday cup, with and without electron supply from Si-FEAs. A similar experiment was performed with tungsten filaments as an electron source. The results indicated that the electron supply from FEA had almost the same effect as the thermionic filament, and it was confirmed that both electron sources can neutralize the ion beam.

  3. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01T23:59:59.000Z

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  4. Energy limits on runaway electrons in tokamak plasmas J. R. Martin-Solisa)

    E-Print Network [OSTI]

    Martín-Solís, José Ramón

    runaway electrons in JET and the projected International Thermonuclear Experimental Reactor ITER ITER EDA International Thermonuclear Experi- mental Reactor ITER 1 where larger amounts of runaway electrons than those

  5. Thickness monitoring of graphene on SiC using low-energy electron diffraction P. J. Fisher

    E-Print Network [OSTI]

    Feenstra, Randall

    more general method. A series of samples are prepared by vacuum annealing in a graphene production system (suitable for graphene preparation on semi- insulating SiC, and scalable to large wafer sizes1 Thickness monitoring of graphene on SiC using low-energy electron diffraction P. J. Fisher IBM T

  6. High-Energy-Resolution Inelastic Electron and Proton Scattering and the Multiphonon Nature of Mixed-Symmetry 2

    E-Print Network [OSTI]

    Ponomarev, Vladimir

    , University of Cape Town, Rondebosch 7700, South Africa 3 School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa 4 iThemba LABS, PO Box 722, Somerset West 7129, South Africa 5 Institut fuHigh-Energy-Resolution Inelastic Electron and Proton Scattering and the Multiphonon Nature of Mixed

  7. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Flynn, Connor

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

  8. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Flynn, Connor

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

  9. Audit Report on "Protection of the Department of Energy's Unclassified Sensitive Electronic Information"

    SciTech Connect (OSTI)

    None

    2009-08-01T23:59:59.000Z

    The Department of Energy and its contractors store and process massive quantities of sensitive information to accomplish national security, energy, science, and environmental missions. Sensitive unclassified data, such as personally identifiable information (PII), official use only, and unclassified controlled nuclear information require special handling and protection to prevent misuse of the information for inappropriate purposes. Industry experts have reported that more than 203 million personal privacy records have been lost or stolen over the past three years, including information maintained by corporations, educational institutions, and Federal agencies. The loss of personal and other sensitive information can result in substantial financial harm, embarrassment, and inconvenience to individuals and organizations. Therefore, strong protective measures, including data encryption, help protect against the unauthorized disclosure of sensitive information. Prior reports involving the loss of sensitive information have highlighted weaknesses in the Department's ability to protect sensitive data. Our report on Security Over Personally Identifiable Information (DOE/IG-0771, July 2007) disclosed that the Department had not fully implemented all measures recommended by the Office of Management and Budget (OMB) and required by the National Institute of Standards and Technology (NIST) to protect PII, including failures to identify and encrypt PII maintained on information systems. Similarly, the Government Accountability Office recently reported that the Department had not yet installed encryption technology to protect sensitive data on the vast majority of laptop computers and handheld devices. Because of the potential for harm, we initiated this audit to determine whether the Department and its contractors adequately safeguarded sensitive electronic information. The Department had taken a number of steps to improve protection of PII. Our review, however, identified opportunities to strengthen the protection of all types of sensitive unclassified electronic information and reduce the risk that such data could fall into the hands of individuals with malicious intent. In particular, for the seven sites we reviewed: (1) Four sites had either not ensured that sensitive information maintained on mobile devices was encrypted. Or, they had improperly permitted sensitive unclassified information to be transmitted unencrypted through email or to offsite backup storage facilities; (2) One site had not ensured that laptops taken on foreign travel, including travel to sensitive countries, were protected against security threats; and, (3) Although required by the OMB since 2003, we learned that programs and sites were still working to complete Privacy Impact Assessments - analyses designed to examine the risks and ramifications of using information systems to collect, maintain, and disseminate personal information. Our testing revealed that the weaknesses identified were attributable, at least in part, to Headquarters programs and field sites that had not implemented existing policies and procedures requiring protection of sensitive electronic information. In addition, a lack of performance monitoring contributed to the inability of the Department and the National Nuclear Security Administration (NNSA) to ensure that measures were in place to fully protect sensitive information. As demonstrated by previous computer intrusion-related data losses throughout the Department, without improvements, the risk or vulnerability for future losses remains unacceptably high. In conducting this audit, we recognized that data encryption and related techniques do not provide absolute assurance that sensitive data is fully protected. For example, encryption will not necessarily protect data in circumstances where organizational access controls are weak or are circumvented through phishing or other malicious techniques. However, as noted by NIST, when used appropriately, encryption is an effective tool that can, as part of an overall risk-management strat

  10. Self-energy and excitonic effects in the electronic and optical properties of TiO? crystalline phases

    SciTech Connect (OSTI)

    Chiodo, Letizia; Garcia-Lastra, Juan M.; Iaocomino, Amilcare; Ossicini, Stefano; Zhao, Jin; Petek, Hrvoje; Rubio, Angel

    2010-07-22T23:59:59.000Z

    We present a unified ab initio study of electronic and optical properties of TiO? rutile and anatase phases with a combination of density-functional theory and many-body perturbation-theory techniques. The consistent treatment of exchange and correlation, with the inclusion of many-body one-particle and two-particles effects in self-energy and electron-hole interaction, produces a high-quality description of electronic and optical properties, giving, for some quantities, the first available estimation for this compound. In particular, we give a quantitative estimate of the electronic and direct optical gaps, clarifying their role with respect to previous measurements obtained by various experimental techniques. We obtain a description for both electronic gap and optical spectra that is consistent with experiments by analyzing the role of different contributions to the experimental optical gap and relating them to the level of theory used in our calculations. We also show the spatial properties of excitons in the two crystalline phases, highlighting the localization character of different optical transitions. This paper aims at understanding and firmly establishing electro-optical bulk properties, yet to be clarified, of this material of fundamental and technological interest for green energy applications.

  11. A measurement of the energy and timing resolution of GlueX Forward Calorimeter using an electron beam

    SciTech Connect (OSTI)

    Moriya, Kei [Indiana U.; Leckey, John P. [Indiana U.; Shepherd, Matthew R. [Cornell U.; Bauer, Kevin [Indiana U.; Bennett, Daniel William [Indiana U.; Frye, John Michael [Indiana U.; Gonzalez, Juan Carlos [Christopher Newport U., JLAB; Henderson, Scott J. [Indiana U.; Lawrence, David W. [JLAB; Mitchell, Ryan E. [Indiana U.; Smith, Elton S. [JLAB; Smith, Paul T. [Indiana U.; Somov, Alexander Sergeyevich [JLAB; Egiyan, Hovanes [JLAB

    2013-10-01T23:59:59.000Z

    The performance of the GlueX Forward Calorimeter was studied using a small version of the detector and a variable energy electron beam derived from the Hall B tagger at Jefferson Lab. For electron energies from 110 MeV to 260 MeV, which are near the lower-limits of the design sensitivity, the fractional energy resolution was measured to range from 20% to 14%, which meets the design goals. The use of custom 250 MHz flash ADCs for readout allowed precise measurements of signal arrival times. The detector achieved timing resolutions of 0.38 ns for a single 100 mV pulse, which will allow timing discrimination of photon beam bunches and out-of-time background during the operation of the GlueX detector.

  12. Effects of Base -Stacking on Damage to DNA by Low-Energy Electrons Iwona Anusiewicz,,, Joanna Berdys,, Monika Sobczyk,, Piotr Skurski,, and

    E-Print Network [OSTI]

    Simons, Jack

    Effects of Base -Stacking on Damage to DNA by Low-Energy Electrons Iwona Anusiewicz,,,§ JoannaVersity of Gdansk, 80-952 Gdansk, Poland ReceiVed: June 16, 2004; In Final Form: July 28, 2004 In this work, we -stacking. In thsese studies, we consider SSBs induced by low-energy electrons that attach to DNA bases

  13. Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy spectroscopy

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy The low-lying states of Ge2 and Ge2 are probed using negative ion zero electron kinetic energy ZEKE spectroscopy. The ZEKE spectrum of Ge2 yields an electron affinity of 2.035 0.001 eV for Ge2, as well as term

  14. Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion

    SciTech Connect (OSTI)

    Schmidt, Michael W.; Ivanic, Joseph; Ruedenberg, Klaus

    2014-05-28T23:59:59.000Z

    An analysis based on the variation principle shows that in the molecules H2 +, H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.

  15. Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis

    SciTech Connect (OSTI)

    Krueger, Brenda J.; Grassian, Vicki H.; Iedema, Martin J.; Cowin, James P.; Laskin, Alexander

    2003-10-01T23:59:59.000Z

    In this paper, we demonstrate the utility of single-particle analysis to investigate the chemistry of isolated, individual particles of atmospheric relevance such as NaCl, sea salt, CaCO3, and SiO2. A variety of state-of-th-art scanning electron microscopy techniques, including environmental scanning electon microscopy and computer-controlled scanning electron microscopy/energy-dispersive X-ray analysis, were utilized for monitoring and quantifying phase transitions of individual particles, morphology, and compositional changes of individual particles as they react with nitric acid.

  16. Anion A HX Clusters with Reduced Electron Binding Energies: Proton vs Hydrogen Atom Relocation Upon Electron Detachment

    SciTech Connect (OSTI)

    Wang, Xue B.; Kass, Steven R.

    2014-12-10T23:59:59.000Z

    Clustering an anion with one or more neutral molecules is a stabilizing process that enhances the oxidation potential of the complex relative to the free ion. Several hydrogen bond clusters (i.e., A HX, where A = H2PO4 and CF3CO2 and HX = MeOH, PhOH, and Me2NOH or Et2NOH) are examined by photoelectron spectroscopy and M06-2X and CCSD(T) computations. Remarkably, these species are experimentally found to have adiabatic detachment energies that are smaller than those for the free ion and reductions of 0.47 to 1.87 eV are predicted computationally. Hydrogen atom and proton transfers upon vertical photodetachment are two limiting extremes on the neutral surface in a continuum of mechanistic pathways that account for these results, and the whole gamut of possibilities are predicted to occur.

  17. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    SciTech Connect (OSTI)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28T23:59:59.000Z

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  18. OPPORTUNITIES TO MARKET U.S. TECHNOLOGIES THROUGHOUT THE WESTERN HEMISPHERE

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D

    1999-01-01T23:59:59.000Z

    This project involves an open-ended, continuous process of information gathering with respect to Latin American and Caribbean environmental issues. This entails the development of contacts with individuals and institutions conducting research and work on issues of sustainability and environmental technology in the Americas. As part of this phase, a database containing information on firms, nongovernmental organizations (NGOs), governmental institutions, and other participants in Latin America's environmental sector was developed and is continually being updated. In addition, FIU-HCET's efforts were geared toward determining environmental technological needs in different parts of the region and identifying the most significant and lucrative markets. The project requires that FIU-HCET continually cement those contacts already established, continue updating the database to be made available to external users, and identify U.S. companies with the necessary expertise to participate in the Latin American and Caribbean markets. To aid in this endeavor, comprehensive, country-specific studies of the market for environmental goods and services are drafted and published by FIU-HCET. FIU-HCET, with sponsorship from OST, will make new, innovative, and more cost-effective technologies available for transfer throughout the Western Hemisphere. Environmental/energy technology development projects encompass the range of problems experienced by LACN. This includes mixed waste characterization and treatment, soils and groundwater remediation. In addition, future activities will include the issues of energy, climate change, and fossil fuels.

  19. New Measurements and Quantitative Analysis of Electron Backscattering in the Energy Range of Neutron Beta-Decay

    E-Print Network [OSTI]

    Martin, J W; Filippone, B W; Hoedl, S A; Ito, T M; Plaster, B; Young, A R; Yuan, J

    2006-01-01T23:59:59.000Z

    We report on the first detailed measurements of electron backscattering from plastic scintillator targets, extending our previous work on beryllium and silicon targets. The scintillator experiment posed several additional experimental challenges associated with charging of the scintillator target, and those challenges are addressed in detail. In addition, we quantitatively compare the energy and angular distributions of this data, and our previous data, with electron transport simulations based on the Geant4 and Penelope Monte Carlo simulation codes. The Penelope simulation is found globally to give a superior description of the data. Such information is crucial for a broad array of weak-interaction physics experiments, where electron backscattering can give rise to the dominant detector-related systematic uncertainty.

  20. New Measurements and Quantitative Analysis of Electron Backscattering in the Energy Range of Neutron Beta-Decay

    E-Print Network [OSTI]

    J. W. Martin; J. Yuan; M. J. Betancourt; B. W. Filippone; S. A. Hoedl; T. M. Ito; B. Plaster; A. R. Young

    2005-11-21T23:59:59.000Z

    We report on the first detailed measurements of electron backscattering from plastic scintillator targets, extending our previous work on beryllium and silicon targets. The scintillator experiment posed several additional experimental challenges associated with charging of the scintillator target, and those challenges are addressed in detail. In addition, we quantitatively compare the energy and angular distributions of this data, and our previous data, with electron transport simulations based on the Geant4 and Penelope Monte Carlo simulation codes. The Penelope simulation is found globally to give a superior description of the data. Such information is crucial for a broad array of weak-interaction physics experiments, where electron backscattering can give rise to the dominant detector-related systematic uncertainty.

  1. Combined effects of gas pressure and exciting frequency on electron energy distribution functions in hydrogen capacitively coupled plasmas

    SciTech Connect (OSTI)

    Abdel-Fattah, E. [Physics Department, Faculty of Science, Zagazig University, Zagazig 44519 (Egypt); Sugai, H. [Department of Electronics and Information Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501 (Japan)

    2013-02-15T23:59:59.000Z

    The combined effects of the variation of hydrogen pressure (40-400 mTorr) and exciting frequency (13.56-50 MHz) on the electron energy probability function (EEPF) and other plasma parameters in capacitively coupled hydrogen H{sub 2} discharge at fixed discharge voltage were investigated using rf-compensated Langmuir probe. At a fixed exciting frequency of 13.56 MHz, the EEPF evolved from Maxwellian-like distribution to a bi-Maxwellian distribution when the H{sub 2} pressure increased, possibly due to efficient vibrational excitation. The electron density largely increased to a peak value and then decreased with the increase of H{sub 2} pressure. Meanwhile, the electron temperature and plasma potential significantly decrease and reaching a minimum at 120 mTorr beyond, which saturated or slightly increases. On the other hand, the dissipated power and electron density markedly increased with increasing the exciting frequency at fixed H{sub 2} pressure and voltage. The electron temperatures negligibly dependent on the driving frequency. The EEPFs at low pressure 60 mTorr resemble Maxwellian-like distribution and evolve into a bi-Maxwellian type as frequency increased, due to a collisonless (stochastic) sheath-heating in the very high frequency regime, while the EEPF at hydrogen pressure {>=}120 mTorr retained a bi-Maxwellian-type distribution irrespective of the driving frequency. Such evolution of the EEPFs shape with the driving frequency and hydrogen pressure has been discussed on the basis of electron diffusion processes and low threshold-energy inelastic collision processes taking place in the discharge. The ratio of stochastic power to bulk power heating ratio is dependent on the hydrogen pressure while it is independent on the driving frequency.

  2. Ultrafast dynamics of hot electrons and holes in copper: Excitation, energy relaxation, and transport effects

    E-Print Network [OSTI]

    Wolf, Martin

    , and transport effects E. Knoesel, A. Hotzel, and M. Wolf Fritz-Haber-Institut der MPG, Faradayweg 4-6, D-14195 calculation, a simulation of the ballistic transport effect and its implication on the observed electron process for a hot electron is scattering with a ``cold'' elec- tron below the Fermi level, because

  3. Contribution of the electron-phonon coupling to Lindhard partition at low energy in Ge and Si detectors for astroparticle physics

    E-Print Network [OSTI]

    Lazanu, Ionel

    2015-01-01T23:59:59.000Z

    The influence of the transient thermal effects on the partition of the energy of selfrecoils in germanium and silicon into energy eventually given to electrons and to atomic recoils respectively is studied. The transient effects are treated in the frame of the thermal spike model, which considers the electronic and atomic subsystems coupled through the electron-phonon interaction. For low energies of selfrecoils, we show that the corrections to the energy partition curves due to the energy exchange during the transient processes modify the Lindhard predictions. These effects depend on the initial temperature of the target material, as the energies exchanged between electronic and lattice subsystems have different signs for temperatures lower and higher than about 15 K. More of the experimental data reported in the literature support the model.

  4. Investigation of effect of excitation frequency on electron energy distribution functions in low pressure radio frequency bounded plasmas

    SciTech Connect (OSTI)

    Bhattacharjee, Sudeep [Space plasma, Power and Propulsion, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India); Lafleur, Trevor; Charles, Christine; Boswell, Rod [Space plasma, Power and Propulsion, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2011-07-15T23:59:59.000Z

    Particle in cell (PIC) simulations are employed to investigate the effect of excitation frequency {omega} on electron energy distribution functions (EEDFs) in a low pressure radio frequency (rf) discharge. The discharge is maintained over a length of 0.10 m, bounded by two infinite parallel plates, with the coherent heating field localized at the center of the discharge over a distance of 0.05 m and applied perpendicularly along the y and z directions. On varying the excitation frequency f (={omega}/2{pi}) in the range 0.01-50 MHz, it is observed that for f {<=} 5 MHz the EEDF shows a trend toward a convex (Druyvesteyn-like) distribution. For f > 5 MHz, the distribution resembles more like a Maxwellian with the familiar break energy visible in most of the distributions. A prominent ''hot tail'' is observed at f{>=} 20 MHz and the temperature of the tail is seen to decrease with further increase in frequency (e.g., at 30 MHz and 50 MHz). The mechanism for the generation of the ''hot tail'' is considered to be due to preferential transit time heating of energetic electrons as a function of {omega}, in the antenna heating field. There exists an optimum frequency for which high energy electrons are maximally heated. The occurrence of the Druyvesteyn-like distributions at lower {omega} may be explained by a balance between the heating of the electrons in the effective electric field and elastic cooling due to electron neutral collision frequency {nu}{sub en}; the transition being dictated by {omega} {approx} 2{pi}{nu}{sub en}.

  5. LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569 TWINS

    E-Print Network [OSTI]

    Thompson, Paul

    LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high- angular resolution diffusion imaging. We

  6. Chaotic dust dynamics and implications for the hemispherical color asymmetries of the Uranian satellites

    E-Print Network [OSTI]

    Hamilton, Douglas P.

    system Cook and Franklin, 1970), (ii) interstellar dust particles (ISDPs) (Landgraf, 2000), (iii) solar of fast incoming particles like solar photons and cosmic rays cannot generate a hemispherical leading

  7. The Making of a Hemispheric Intellectual-Statesman: Leo S. Rowe in Argentina (19061919)

    E-Print Network [OSTI]

    Salvatore, Ricardo D.

    2010-01-01T23:59:59.000Z

    foreign policy, collaborating with Argentina, Brazil,Argentina and other progressive Latin American nations in the making of hemispheric policies. Argentina and the United States. This was the institutional correlate of the policy

  8. A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers

    SciTech Connect (OSTI)

    Barcellan, L.; Carugno, G. [INFN Section, Padua (Italy); Berto, E.; Galet, G.; Galeazzi, G. [Department of Physics, University of Padua (Italy); Borghesani, A. F. [INFN Section, Padua (Italy); CNISM Unit, Department of Physics, University of Padua (Italy)

    2011-09-15T23:59:59.000Z

    We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of {mu} A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance.

  9. A coaxial waveguide opening into a ground plane and covered by a dielectric hemisphere

    E-Print Network [OSTI]

    Wheeler, Joseph Edward

    1985-01-01T23:59:59.000Z

    for cancer hyperthermia and ss an antenna. The effects of placing a dielectric hemisphere over the aperture of the waveguide is investigated. Two different systems are analyzed, the coaxial waveguide with a fiat center conductor at the aperture and a coax... with its center conductor extended hemispherically above the aperture. The analysis includes solving for the aperture electric field, refiection coe%cient, impedance and power densities of the near and far field. Effects on the power distribution...

  10. Extreme ultraviolet ionization of pure He nanodroplets: Mass-correlated photoelectron imaging, Penning ionization, and electron energy-loss spectra

    SciTech Connect (OSTI)

    Buchta, D.; Stienkemeier, F.; Mudrich, M. [Physikalisches Institut, Universitt Freiburg, 79104 Freiburg (Germany)] [Physikalisches Institut, Universitt Freiburg, 79104 Freiburg (Germany); Krishnan, S. R.; Moshammer, R. [Max-Planck-Institut fr Kernphysik, 69117 Heidelberg (Germany)] [Max-Planck-Institut fr Kernphysik, 69117 Heidelberg (Germany); Brauer, N. B.; Drabbels, M. [Laboratoire de Chimie Physique Molculaire, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)] [Laboratoire de Chimie Physique Molculaire, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); OKeeffe, P.; Coreno, M. [CNR Istituto di Metodologie Inorganiche e dei Plasmi, CP10, 00016 Monterotondo Scalo (Italy)] [CNR Istituto di Metodologie Inorganiche e dei Plasmi, CP10, 00016 Monterotondo Scalo (Italy); Devetta, M. [CIMAINA and Dipartimento di Fisica, Universit di Milano, 20133 Milano (Italy)] [CIMAINA and Dipartimento di Fisica, Universit di Milano, 20133 Milano (Italy); Di Fraia, M. [Department of Physics, University of Trieste, 34128 Trieste (Italy)] [Department of Physics, University of Trieste, 34128 Trieste (Italy); Callegari, C.; Richter, R.; Prince, K. C. [Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste (Italy)] [Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste (Italy); Ullrich, J. [Max-Planck-Institut fr Kernphysik, 69117 Heidelberg (Germany) [Max-Planck-Institut fr Kernphysik, 69117 Heidelberg (Germany); Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, D-38116 Braunschweig (Germany)

    2013-08-28T23:59:59.000Z

    The ionization dynamics of pure He nanodroplets irradiated by Extreme ultraviolet radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He{sup +}, He{sub 2}{sup +}, and He{sub 3}{sup +}. Surprisingly, below the autoionization threshold of He droplets, we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we observe inelastic collisions of photoelectrons with the surrounding He atoms in the droplets.

  11. Manufacturing Energy and Carbon Footprint - Sector: Computer, Electronics and Appliances (NAICS 334, 335), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturingAllComputers, Electronics

  12. Beam Energy Scaling on Ion-Induced Electron Yield from K+ Impact on Stainless Steel

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    K + Impact on Stainless Steel Michel Kireeff Covo Lawrence+ ions hit the stainless steel target with energy up to 400energies hitting stainless steel target obtained from

  13. North-south asymmetry for high-energy cosmic-ray electrons measured with the PAMELA experiment

    SciTech Connect (OSTI)

    Karelin, A. V., E-mail: karelin@hotbox.ru ['MEPhI' National Research Nuclear University (Russian Federation); Adriani, O. [Structure of Florence and Physics Department of University of Florence, INFN (Italy)] [Structure of Florence and Physics Department of University of Florence, INFN (Italy); Barbarino, G. C. [Structure of Naples and Physics Department of University of Naples, INFN (Italy)] [Structure of Naples and Physics Department of University of Naples, INFN (Italy); Bazilevskaya, G. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Bellotti, R. [Structure of Bari and Physics Department of University of Bari, INFN (Italy)] [Structure of Bari and Physics Department of University of Bari, INFN (Italy); Boezio, M. [Structure of Trieste and Physics Department of University of Trieste, INFN (Italy)] [Structure of Trieste and Physics Department of University of Trieste, INFN (Italy); Bogomolov, E. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)] [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Bonechi, L.; Bongi, M. [Structure of Florence and Physics Department of University of Florence, INFN (Italy)] [Structure of Florence and Physics Department of University of Florence, INFN (Italy); Bonvicini, V. [Structure of Trieste and Physics Department of University of Trieste, INFN (Italy)] [Structure of Trieste and Physics Department of University of Trieste, INFN (Italy); Bottai, S. [Structure of Florence and Physics Department of University of Florence, INFN (Italy)] [Structure of Florence and Physics Department of University of Florence, INFN (Italy); Bruno, A. [Structure of Bari and Physics Department of University of Bari, INFN (Italy)] [Structure of Bari and Physics Department of University of Bari, INFN (Italy); Vacchi, A. [Structure of Trieste and Physics Department of University of Trieste, INFN (Italy)] [Structure of Trieste and Physics Department of University of Trieste, INFN (Italy); Vannuccini, E. [Structure of Florence and Physics Department of University of Florence, INFN (Italy)] [Structure of Florence and Physics Department of University of Florence, INFN (Italy); Vasilyev, G. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)] [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Voronov, S. A.; Galper, A. M.; Danilchenko, I. A. ['MEPhI' National Research Nuclear University (Russian Federation)] ['MEPhI' National Research Nuclear University (Russian Federation); Donato, C. De; Santis, C. De [Structure of Rome Tor Vergata and Physics Department of University of Rome Tor Vergata, INFN (Italy)] [Structure of Rome Tor Vergata and Physics Department of University of Rome Tor Vergata, INFN (Italy); and others

    2013-08-15T23:59:59.000Z

    The north-south asymmetry for cosmic-ray particles was measured with one instrument of the PAMELA satellite-borne experiment in the period June 2006-May 2009. The analysis has been performed by two independent methods: by comparing the count rates in regions with identical geomagnetic conditions and by comparing the experimental distribution of particle directions with the simulated distribution that would be in the case of an isotropic particle flux. The dependences of the asymmetry on energy release in the PAMELA calorimeter and on time have been constructed. The asymmetry (N{sub n} - N{sub s})/(N{sub n} + N{sub s}) is 0.06 {+-} 0.004 at the threshold energy release in the calorimeter and gradually decreases with increasing energy release. The observed effect is shown to be produced by electrons in the energy range 10-100 GeV.

  14. Isocurvature and curvaton perturbations with red power spectrum and large hemispherical asymmetry

    SciTech Connect (OSTI)

    McDonald, John, E-mail: j.mcdonald@lancaster.ac.uk [Lancaster-Manchester-Sheffield Consortium for Fundamental Physics, Cosmology and Astroparticle Physics Group, Dept. of Physics, University of Lancaster, Lancaster LA1 4YB (United Kingdom)

    2013-07-01T23:59:59.000Z

    We calculate the power spectrum and hemispherical asymmetry of isocurvature and curvaton perturbations due to a complex field ? which is evolving along the tachyonic part of its potential. Using a semi-classical evolution of initially sub-horizon quantum fluctuations, we compute the power spectrum, mean field and hemispherical asymmetry as a function of the number of e-foldings of tachyonic growth ?N and the tachyonic mass term cH{sup 2}. We find that a large hemispherical asymmetry due to the modulation of |?| can easily be generated via the spatial modulation of |?| across the horizon, with ?|?|/|?| > 0.5 when the observed Universe exits the horizon within 10-40 e-foldings of the beginning of tachyonic evolution and c is in the range 0.1-1. The spectral index of the isocurvature and curvaton perturbations is generally negative, corresponding to a red power spectrum. Dark matter isocurvature perturbations due to an axion-like curvaton with a large hemispherical asymmetry may be able to explain the hemispherical asymmetry observed by WMAP and Planck. In this case, the red spectrum can additionally suppress the hemispherical asymmetry at small scales, which should make it easier to satisfy scale-dependence requirements on the asymmetry from quasar number counts.

  15. ENERGY MODULATION OF THE ELECTRONS BY THE LASER FIELD IN THE WIGGLER MAGNET: ANALYSIS AND EXPERIMENT

    E-Print Network [OSTI]

    Zholents, A.A.; Holldack, K.

    2006-01-01T23:59:59.000Z

    Beams, 7, (2004)011302. [7] BESSY-II, http://www.bessy.de/ [CA 94720, U.S.A. K. Holldack, BESSY, 12489 Berlin, Germanywere performed at the BESSY-II electron storage ring. K = eB

  16. Non-Standard Physics and Nucleon Strangeness in Low-Energy PV Electron Scattering

    E-Print Network [OSTI]

    M. J. Musolf; T. W. Donnelly

    1992-12-03T23:59:59.000Z

    Contributions from physics beyond the Standard Model, strange quarks in the nucleon, and nuclear structure effects to the left-right asymmetry measured in parity-violating (PV) electron scattering from $\

  17. Ultrafast Energy-Electron Transfer Cascade in a Multichromophoric Light-Harvesting Molecular Square

    E-Print Network [OSTI]

    van Stokkum, Ivo

    and electron-transfer pathways, and chromophoric heterogeneity. Temperature-dependent time-resolved emission in the fields of molecular recognition,9,10 sensing,6,9 catalysis,11 and electrochemical or photochemical

  18. Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare

    E-Print Network [OSTI]

    J. Kasparova; M. Karlicky; E. P. Kontar; R. A. Schwartz; B. R. Dennis

    2005-08-30T23:59:59.000Z

    A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.

  19. Injection of electrons with predominantly perpendicular energy into an area of toroidal field ripple in a tokamak plasma to improve plasma confinement

    DOE Patents [OSTI]

    Ono, Masayuki (Princeton Junction, NJ); Furth, Harold (Princeton, NJ)

    1993-01-01T23:59:59.000Z

    An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..

  20. Ion acceleration in Ar-Xe and Ar-He plasmas. I. Electron energy distribution functions and ion composition

    SciTech Connect (OSTI)

    Biloiu, Ioana A.; Scime, Earl E. [Department of Physics, West Virginia University, Morganton, West Virginia 26506 (United States)

    2010-11-15T23:59:59.000Z

    Electron energy distribution functions (eedf), ion production, and ion composition are studied in Ar-Xe and Ar-He expanding helicon plasmas. It was found that under the conditions of constant total flow rate, Xe, in addition to Ar, changes the eedf from Maxwellian-like to Druyvesteyn-like with a shortening of the high energy tail at {approx}15 eV. The electron temperature exponentially decreases from {approx}7 eV in pure Ar plasma to {approx}4 eV in pure Xe plasma. Xenon ions dominate the ion population for Xe filling fractions greater than 10%. The plasma density increases by {approx}15% with increasing Xe fraction. For an Ar-He plasma, increasing the helium fraction increases the electron temperature from {approx}7 eV in pure Ar plasma to {approx}14 eV for a He filling fraction of 80%. The plasma density drops by more than three orders of magnitude from 1.14x10{sup 11} cm{sup -3} to 6.5x10{sup 7} cm{sup -3}. However, the inferred ion densities indicate that even at a helium fraction of 80%, argon ions significantly outnumber helium ions.

  1. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    SciTech Connect (OSTI)

    Filippov, A. V., E-mail: fav@triniti.ru; Dyatko, N. A. [Troitsk Institute for Innovation and Fusion Research, Russian State Research Center (Russian Federation); Kostenko, A. S. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2014-11-15T23:59:59.000Z

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup ?1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocality is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.

  2. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    SciTech Connect (OSTI)

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah [Malaysian Nuclear Agency (Nuclear Malaysia), Bangi 43000 Kajang Selangor (Malaysia); Ahmad, Pauzi [Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor (Malaysia)

    2014-09-03T23:59:59.000Z

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

  3. Primary electron energy dependent flashover in surface polarity on Au films M. Catalfano,1

    E-Print Network [OSTI]

    Harilal, S. S.

    .1063/1.4803484] I. INTRODUCTION Incident electron-induced charging of insulators in vac- uum can lead due to the presence or absence of oxide growth and carbon contamination on the surface of various occur in insulating materials, leading to either surface flash- over16 or dielectric breakdown.17

  4. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, Christopher J. (Powell, TN); Lopata, Vincent J. (Manitoba, CA); Havens, Stephen J. (Knoxville, TN); Dorsey, George F. (Farragut, TN); Moulton, Richard J. (Lafayette, CA)

    1999-01-01T23:59:59.000Z

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  5. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, C.J.; Lopata, V.J.; Havens, S.J.; Dorsey, G.F.; Moulton, R.J.

    1999-03-02T23:59:59.000Z

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  6. Sandia Energy - Sandia-Developed Alloy Has Potential for Electronics in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffects of Wave-EnergyIvanpahto

  7. In-situ stoichiometry determination using x-ray fluorescence generated by reflection-high-energy-electron-diffraction

    SciTech Connect (OSTI)

    Keenan, Cameron; Chandril, Sandeep; Lederman, David [Department of Physics and Multifunctional Materials Laboratory, West Virginia University, Morgantown, West Virginia 26506 (United States); Myers, T. H. [Department of Physics and Multifunctional Materials Laboratory, West Virginia University, Morgantown, West Virginia 26506 (United States); Materials Science, Engineering, and Commercialization Program, Texas State University-San Marcos, San Marcos, Texas 78666 (United States)

    2011-06-01T23:59:59.000Z

    A major challenge in the stoichiometric growth of complex oxide compounds is the control of the relative compositions of the constituent materials. A potential avenue for compositional analysis during growth is the use of x-ray fluorescence generated during reflection high energy electron diffraction measurements. Using this technique, relative compositions of Y and Mn in molecular beam epitaxy grown YMnO{sub 3} samples were studied. Comparing the results with Rutherford back scattering spectroscopy suggests that the technique has the potential for real-time analysis of elemental fluxes and stoichiometry control during sample growth.

  8. A Large Hadron Electron Collider at CERN | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Resources U.S. Science Information - Science.gov Global Science Information - WorldWideScience.org - Energy Technology Data Exchange - International Nuclear Information System...

  9. Non-equilibrium vibrational and electron energy distributions functions in atmospheric nitrogen ns pulsed discharges and \\mus post-discharges: the role of electron molecule vibrational excitation scaling-laws

    E-Print Network [OSTI]

    Colonna, Gianpiero; Celiberto, Roberto; Capitelli, Mario; Tennyson, Jonathan

    2015-01-01T23:59:59.000Z

    The formation of the electron energy distribution function in nanosecond atmospheric nitrogen discharges is investigated by means of self-consistent solution of the chemical kinetics and the Boltzmann equation for free electrons. The post-discharge phase is followed to few microseconds. The model is formulated in order to investigate the role of the cross section set, focusing on the vibrational-excitation by electron-impact through resonant channel. Four different cross section sets are considered, one based on internally consistent vibrational-excitation calculations which extend to the whole vibrational ladder, and the others obtained by applying commonly used scaling-laws.

  10. Barotropic and baroclinic annular variability in the Southern Hemisphere David. W. J. Thompson1 and Jonathan D. Woodworth

    E-Print Network [OSTI]

    Barotropic and baroclinic annular variability in the Southern Hemisphere David. W. J. Thompson1. Thompson, Department of Atmospheric Science, Colorado State University, Fort Collins, CO. USA 80523 E

  11. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron(positron) storage rings

    E-Print Network [OSTI]

    Duan, Zhe; Barber, Desmond P; Qin, Qing

    2015-01-01T23:59:59.000Z

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called "correlated" crossing of spin resonances ...

  12. Low energy electron stimulated desorption from DNA films dosed with oxygen

    SciTech Connect (OSTI)

    Mirsaleh-Kohan, Nasrin; Bass, Andrew D.; Cloutier, Pierre; Massey, Sylvain; Sanche, Leon [Groupe en sciences des radiations, Faculte de medecine et des sciences de la sante, Universite de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2012-06-21T23:59:59.000Z

    Desorption of anions stimulated by 1-18 eV electron impact on self-assembled monolayer (SAM) films of single DNA strands is measured as a function of film temperature (50-250 K). The SAMs, composed of 10 nucleotides, are dosed with O{sub 2}. The OH{sup -} desorption yields increase markedly with exposure to O{sub 2} at 50 K and are further enhanced upon heating. In contrast, the desorption yields of O{sup -}, attributable to dissociative electron attachment to trapped O{sub 2} molecules decrease with heating. Irradiation of the DNA films prior to the deposition of O{sub 2} shows that this surprising increase in OH{sup -} desorption, at elevated temperatures, arises from the reaction of O{sub 2} with damaged DNA sites. These results thus appear to be a manifestation of the so-called 'oxygen fixation' effect, well known in radiobiology.

  13. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  14. Improved low-energy, electron-spin-polarized {sup 4}He{sup +} ion source

    SciTech Connect (OSTI)

    Bixler, D.L.; Lancaster, J.C.; Kontur, F.J.; Popple, R.A.; Dunning, F.B.; Walters, G.K. [Department of Physics and the Rice Quantum Institute, Rice University, Houston, Texas, 77251-1892 (United States)] [Department of Physics and the Rice Quantum Institute, Rice University, Houston, Texas, 77251-1892 (United States)

    1999-01-01T23:59:59.000Z

    Recent improvements to a source of electron-spin-polarized {sup 4}He{sup +} ions based on an optically pumped, rf-excited helium discharge are described that have resulted in ion polarizations P{sub +} of {approximately}0.18 at currents of {approximately}1 nA and in an increase of over an order of magnitude in the quality factor P{sub +}{sup 2}I. {copyright} {ital 1999 American Institute of Physics.}

  15. A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider

    SciTech Connect (OSTI)

    Nissen, Edward W.; Hutton, Andrew M.; Kimber, Andrew J.

    2013-06-01T23:59:59.000Z

    The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.

  16. Ionization Cluster Size Distributions Created by Low Energy Electrons and Alpha Particles in Nanometric Track Segment in Gases

    E-Print Network [OSTI]

    Bantsar, Aliaksandr

    2012-01-01T23:59:59.000Z

    The interaction of ionizing radiation with nanometric targets is a field of interest for many branches of science such as: radiology, oncology, radiation protection and nanoelectronics. A new experimental technique known as nanodosimetry has been developed for the qualitative as well as quantitative description of these types of interactions. The work presented here is a contribution to this development, namely by further improvement of the new experimental technique called the Jet Counter, originally developed at the Andrzej So{\\l}tan Institute for Nuclear Studies. The Jet Counter is a unique device in the world for studying the interaction of low energy electrons with nanometer targets in the range 2-10 nm (in unit density). The basic experimental result is the frequency distribution of ionization cluster size produced by ionizing particles in a gaseous (nitrogen or propane) nanometric track segment. The first experimental data on the frequency distribution of ionization cluster size produced by low energy ...

  17. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect (OSTI)

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21T23:59:59.000Z

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  18. Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy

    SciTech Connect (OSTI)

    Guo, L. B.; Li, C. M. [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511 (United States); School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Hu, W.; Zhou, Y. S.; Zhang, B. Y.; Lu, Y. F. [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511 (United States); Cai, Z. X.; Zeng, X. Y. [School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2011-03-28T23:59:59.000Z

    An aluminum hemispherical cavity (diameter: 11.1 mm) was used to confine plasmas produced by a KrF excimer laser in air from a steel target with a low concentration manganese in laser-induced breakdown spectroscopy. A significant enhancement (factor >12) in the emission intensity of Mn lines was observed at a laser fluence of 7.8 J/cm{sup 2} when the plasma was confined by the hemispherical cavity, leading to an increase in plasma temperature about 3600 K. The maximum emission enhancement increased with increasing laser fluence. The spatial confinement mechanism was discussed using shock wave theory.

  19. Next-Generation Power Electronics: Reducing Energy Waste and Powering the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2April 2013 ESH&SNext BigFuture |

  20. Shenzhen Bang Bell Electronics Co Ltd BBE LED | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandong LusaShelby, Ohio:Shenyu New Energy