National Library of Energy BETA

Sample records for hemispherical electron energy

  1. Energy and Climate Partnership of the Americas Western Hemisphere Clean

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind ProjectsEfficiencyPrepared for DeliveryJuneWithEnergy

  2. A Tunable Hemispherical Platform for Non-Stretching Curved Flexible Electronics and Optoelectronics

    E-Print Network [OSTI]

    Ju, Y. Sungtaek

    2014-01-01

    Stretching Curved Flexible Electronics and Optoelectronicsin incorporating flexible electronics or optoelectronics onin so-called flexible electronics and optoelectronics for a

  3. Dark Energy and Electrons

    E-Print Network [OSTI]

    Burra G. Sidharth

    2008-08-05

    In the light of recent developments in Dark Energy, we consider the electron in a such a background field and show that at the Compton wavelength the electron is stable, in that the Cassini inward pressure exactly counterbalances the outward Coulomb repulsive pressure thus answering a problem of the earlier electron theory.

  4. Matter & Energy Electronics

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    See also: Matter & Energy Detectors· Electronics· Technology· Medical Technology· Weapons Technology · Organic Chemistry· Reference Hydrogen chloride· Photography· Catalytic converter· Nanomedicine a series of tiny colored dots ­ each a different pigment ­ on an inert backing such as paper, plastic

  5. Searchable Electronic Department of Energy Acquisition Regulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Searchable Electronic Department of Energy Acquisition Regulation Searchable Electronic Department of Energy Acquisition Regulation Updated July 2, 2013. The EDEAR is current...

  6. (Aurora), Magdeburg Hemisphere

    E-Print Network [OSTI]

    Zexian, Cao

    ; -- #12; Magdeburg Hemisphere CO2 #12; 77K , 30nm Karman vortex street Perry bubble 7 foam - 8 8 c 7 #12;23 4 ( 136

  7. Energy Storage & Power Electronics 2008 Peer Review - Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Systems Security Publications Library Energy Storage Power Electronics Advanced Modeling Grid Research Transmission Reliability Renewable Energy Integration Small Business...

  8. Energy Efficient Electronics Cooling Project

    SciTech Connect (OSTI)

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  9. Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...

    Office of Environmental Management (EM)

    composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations...

  10. Electron and Photon Energy Deposition in Universe

    E-Print Network [OSTI]

    Toru Kanzaki; Masahiro Kawasaki

    2008-05-26

    We consider energy deposition of high energy electrons and photons in universe. We carry out detailed calculations of fractions of the initial energy of the injected electron or photon which are used to heat, ionize and excite background plasma in the early universe for various ionization states and redshifts.

  11. Quantitative Comparison of Measured Plasma Sheet Electron Energy Flux and Remotely Sensed Auroral Electron Energy Flux

    E-Print Network [OSTI]

    Fillingim, Matthew

    Electron Energy Flux M. O. Fillingim1, (matt@ess.washington.edu), G. K. Parks2, D. Chua1, G. A. Germany3, R intensity ~ precipitating electron energy flux Peak energy flux "near" WIND fQuantitative Comparison of Measured Plasma Sheet Electron Energy Flux and Remotely Sensed Auroral

  12. 6, 56715709, 2006 Hemispheric ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 6, 5671­5709, 2006 Hemispheric ozone variability indices T. Erbertseder et al. Title Page Chemistry and Physics Discussions Hemispheric ozone variability indices derived from satellite observations.erbertseder@dlr.de) 5671 #12;ACPD 6, 5671­5709, 2006 Hemispheric ozone variability indices T. Erbertseder et al. Title Page

  13. PLZT film capacitors for power electronics and energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PLZT film capacitors for power electronics and energy storage applications Title PLZT film capacitors for power electronics and energy storage applications Publication Type Journal...

  14. Next-Generation Power Electronics: Reducing Energy Waste and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 -...

  15. Appliances & Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    href"node587248">Check out these tips -- which include using a power strip and switching to ENERGY STAR appliances -- that every homeowner should try. Looking for ways to...

  16. Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnershipSitePost-Closure BenefitsPublicationsPower

  17. Manasa Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5Transport ProjectsI GeothermalManasa Electronics

  18. Cookson Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L P Jump to:OpenOpenElectronics

  19. Determining the static electronic and vibrational energy correlations via twodimensional electronic-vibrational spectroscopy

    E-Print Network [OSTI]

    Dong, Hui; Lewis, Nicholas HC; Oliver, Thomas AA; Fleming, Graham R

    2015-01-01

    and vibrational transition energies, and ? 0 eg and ? g 0and vibrational transition energies. We also show themodi?es the electronic transition energy to capture a broad

  20. Genesis Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway EditOpen EnergyNew York:

  1. Electronics Stewardship | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederal Register Noticeof AmericaThis04/2015)

  2. Electronics Stewardship | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederal Register Noticeof

  3. Advance Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan UK LtdWisconsin: EnergyAdvance

  4. Electronics - Key to Energy Control 

    E-Print Network [OSTI]

    Nelson, K. P.

    1981-01-01

    planned by 1985. The goal of this program is a 50% reduction in energy consumption when measured in terms of BTU'S consumed per square foot and BTU'S consumed per dollar of business. Taking 1973 as the base year, the reduction through 1980 is 38% with a 50...

  5. Detonation in TATB Hemispheres

    SciTech Connect (OSTI)

    Druce, B; Souers, P C; Chow, C; Roeske, F; Vitello, P; Hrousis, C

    2004-03-17

    Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54{sup o} at ambient temperatures and 42{sup o} at -54 C, where the axis of rotation is 0{sup o}. The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. The problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably there but it cannot be quantified.

  6. Forward Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex Fuels EnergyToolFort

  7. Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,anEnergyDepartmentSystems Integration Ā» Power

  8. Rose Electronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEast JumpInformation Sanjunyan SmallS A JumpRose

  9. Casimir vacuum energy and the semiclassical electron

    E-Print Network [OSTI]

    H. E. Puthoff

    2006-12-15

    In 1953 Casimir proposed a semiclassical model for the electron based on the concept that net inward radiation pressure from the electromagnetic vacuum fluctuations fields (as in the Casimir effect, generally) might play the role of Poincare stresses, compensating outward coulomb pressure to yield a stable configuration at small dimensions. Given that in scattering experiments the electron appears point-like, critical to the success of the proposed model is demonstration that the self-energy corresponding to the divergent coulomb field does not contribute to the electron mass. Here we develop a self-consistent, vacuum-fluctuation-based model that satisfies this requirement and thereby resolves the issue of what would otherwise appear to be an incompatibility between a point-like electron and finite mass.

  10. Energy Storage & Power Electronics 2008 Peer Review - Agenda...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Power Electronics 2008 Peer Review - AgendaPresentation List Energy Storage & Power Electronics 2008 Peer Review - AgendaPresentation List The 2008 Peer Review Meeting for the...

  11. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    es095unocic2011o.pdf More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage...

  12. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    es095unocic2012p.pdf More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage...

  13. Mechanics of hemispherical electronics Shuodao Wang,1

    E-Print Network [OSTI]

    Rogers, John A.

    on a circular plate of polyimide onto a spherical cap.5 The polyimide substrate is plastically de- formed

  14. Energy Storage & Power Electronics 2008 Peer Review - Agenda...

    Energy Savers [EERE]

    AgendaPresentation List Energy Storage & Power Electronics 2008 Peer Review - AgendaPresentation List The 2008 Peer Review Meeting for the DOE Energy Storage and Power...

  15. Estimating Appliance and Home Electronic Energy Use | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and electronic energy use calculator allows you to estimate your annual energy use and cost to operate specific products. The wattage values provided are samples only; actual...

  16. Measurements of plasma bremsstrahlung and plasma energy density produced by electron cyclotron resonance ion source plasmas

    E-Print Network [OSTI]

    Noland, Jonathan David

    2011-01-01

    as function of time. Right: electron energy as function ofas function of time. Right: electron energy as function ofas function of time. Right: electron energy as function of

  17. Electrostatic electron cyclotron waves generated by low-energy electron beams

    E-Print Network [OSTI]

    Scudder, Jack

    Electrostatic electron cyclotron waves generated by low-energy electron beams J. D. Menietti, O the role of electron beams with E ] 1 keV in the generation of these waves. Observed plasma parameters. D. Scudder, J. S. Pickett, and D. A. Gurnett, Electrostatic electron cyclotron waves generated

  18. Anomalous electron-ion energy coupling in electron drift wave turbulence

    E-Print Network [OSTI]

    Zhao, Lei

    and thermal diffusivity will be determined by the colli- sionless energy transfer processesthermal energy will not be lost only via electron transport processes.thermal energy will not only be lost via turbu- lent transport processes[

  19. Micro Power Electronics Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO isMickey Hot Springs GeothermalElectronics Inc

  20. Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares

    E-Print Network [OSTI]

    Reep, Jeffrey; Alexander, David

    2015-01-01

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher, Canfield, & McClymont (1985a,b,c), who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Furt...

  1. INV . January 2009 EASTERN HEMISPHERE

    E-Print Network [OSTI]

    /6500/1998 1:6,500,000 The Mediterranean basin (bc) - C.I.A. G/5672/M4 C55/13000/2004 1:13,000,000 Geodynamic (bc) - C.I.A. G/5700/4300/1994 1:4,300,000 Europe (bc) - C.I.A. G/5700/4500/1997 non-circ 1:4,500 copies) (bc) - National Geographic Society 5671/G1/-/1986 - Eastern hemisphere narcotics - C.I.A. G/5671

  2. Medium energy pitch angle distribution during substorm injected electron clouds

    E-Print Network [OSTI]

    Bergen, Universitetet i

    Medium energy pitch angle distribution during substorm injected electron clouds A. AĀ° snes,1 J, N. Ć?stgaard, and M. Thomsen (2005), Medium energy pitch angle distribution during substorm injected to obtain pitch angle resolved electron distribution data for measurements at energies 10 eV to 47 keV. [3

  3. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    E-Print Network [OSTI]

    Bakeman, M.S.

    2011-01-01

    Laser Wakefield Accelerator Electron Beam Energy Spread andposition detection of electron beams from laser-plasmaLPA) to measure electron beam energy spread and emittance

  4. Transport of energy by ultraintense laser-generated electrons in nail-wire targets

    SciTech Connect (OSTI)

    Ma, T. [Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Key, M. H.; Hatchett, S. P.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Wilks, S. C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Mason, R. J. [Research Applications Corporation, Los Alamos, New Mexico 87544 (United States); Akli, K. U.; Stephens, R. B. [General Atomics, San Diego, California 92186 (United States); Daskalova, R. L.; Freeman, R. R.; Highbarger, K.; Van Woerkom, L. D. [College of Mathematical and Physical Sciences, Ohio State University, Columbus, Ohio 43210 (United States); Green, J. S.; Norreys, P. A. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot OX11 OQX (United Kingdom); Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom); Jaanimagi, P. A.; Theobald, W. [Laboratory of Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); King, J. A.; Wei, M. S. [Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California 92093 (United States)] (and others)

    2009-11-15

    Nail-wire targets (20 {mu}m diameter copper wires with 80 {mu}m hemispherical head) were used to investigate energy transport by relativistic fast electrons generated in intense laser-plasma interactions. The targets were irradiated using the 300 J, 1 ps, and 2x10{sup 20} W{center_dot}cm{sup -2} Vulcan laser at the Rutherford Appleton Laboratory. A spherically bent crystal imager, a highly ordered pyrolytic graphite spectrometer, and single photon counting charge-coupled device gave absolute Cu K{alpha} measurements. Results show a concentration of energy deposition in the head and an approximately exponential fall-off along the wire with about 60 {mu}m 1/e decay length due to resistive inhibition. The coupling efficiency to the wire was 3.3{+-}1.7% with an average hot electron temperature of 620{+-}125 keV. Extreme ultraviolet images (68 and 256 eV) indicate additional heating of a thin surface layer of the wire. Modeling using the hybrid E-PLAS code has been compared with the experimental data, showing evidence of resistive heating, magnetic trapping, and surface transport.

  5. Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with

    E-Print Network [OSTI]

    Saldin, Dilano

    ;Power Electronics and Motor Drives Laboratory Wind and Solar Energy Outlook The U.S. wind power industry Introduction Wind Energy Profile Solar Energy Profile Energy Storage Options Role of Industrial Electronics Energy Storage Integrated with Renewable Energy Energy Storage Analysis for Wind and Solar #12;Power

  6. Secondary electron emission yield in the limit of low electron energy

    E-Print Network [OSTI]

    Andronov, A N; Kaganovich, I D; Startsev, E A; Raitses, Y; Demidov, V I

    2013-01-01

    Secondary electron emission (SEE) from solids plays an important role in many areas of science and technology.1 In recent years, there has been renewed interest in the experimental and theoretical studies of SEE. A recent study proposed that the reflectivity of very low energy electrons from solid surface approaches unity in the limit of zero electron energy2,3,4, If this was indeed the case, this effect would have profound implications on the formation of electron clouds in particle accelerators,2-4 plasma measurements with electrostatic Langmuir probes, and operation of Hall plasma thrusters for spacecraft propulsion5,6. It appears that, the proposed high electron reflectivity at low electron energies contradicts to numerous previous experimental studies of the secondary electron emission7. The goal of this note is to discuss possible causes of these contradictions.

  7. Federal Electronics Challenge Gold Award | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Headquarters was presented the Federal Electronics Challenge Gold Award for exemplary performance in Green Computing, including green procurement, energy efficient operations...

  8. Longitudinal bunch profile and electron beam energy spread

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ring Parameters Previous: Storage Ring Operation Modes Longitudinal bunch profile and electron beam energy spread Longitudinal bunch profile depends mainly on the single bunch...

  9. Estimating Appliance and Home Electronic Energy Use | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    how much electricity your appliances and home electronics use: The Energy Guide Label, which shows the estimated yearly operating cost and estimated yearly electricity use...

  10. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    SciTech Connect (OSTI)

    Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States) [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  11. A compact, versatile low-energy electron beam ion source

    SciTech Connect (OSTI)

    Zschornack, G., E-mail: g.zschornack@hzdr.de [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany); König, J.; Schmidt, M.; Thorn, A. [DREEBIT GmbH, 01109 Dresden (Germany)] [DREEBIT GmbH, 01109 Dresden (Germany)

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  12. Measurement of electron temperatures and electron energy distribution functions in dual frequency capacitively coupled CF4/O2 plasmas using

    E-Print Network [OSTI]

    Economou, Demetre J.

    Measurement of electron temperatures and electron energy distribution functions in dual frequency; published 31 July 2009 Measurements of electron temperatures Te and electron energy distribution functions the energy of the ions incident on the LF electrode was widely distributed up to 850 eV. Lee et al.10

  13. Structural Fluctuations, Spin, Reorganization Energy, and Tunneling Energy Control of Intramolecular Electron Transfer

    E-Print Network [OSTI]

    Kurnikova, Maria

    calculations of electronic couplings, molecular dynamics simulations of molecular geometries, and Poisson exists to interpret electron-transfer (ET) reactions and their dependence upon molecular structure.1Structural Fluctuations, Spin, Reorganization Energy, and Tunneling Energy Control

  14. Electron energy recovery system for negative ion sources

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN); Stirling, William L. (Oak Ridge, TN)

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  15. Study on electron beam in a low energy plasma focus

    SciTech Connect (OSTI)

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  16. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect (OSTI)

    Pollock, B

    2012-03-19

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 10{sup 18} cm{sup -3} in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a limited, defined region. Using this technique a 460 MeV electron beam was produced with an energy spread of 5%. This technique is directly scalable to multi-GeV electron beam generation with sub-percent energy spreads.

  17. Consumer Electronics Show 2013 Highlights Sustainable Energy...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Efficiency & Renewable Energy What does this mean for me? Watch for the new sustainable technologies displayed at CES this year. Energy savings aren't all about...

  18. Appliances and Electronics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electricity. | Photo courtesy of Dennis SchroederNREL. Incentives and Financing for Energy Efficient Homes This chart shows how much energy a typical appliance uses per year...

  19. Energy sources of field-aligned currents: Auroral electron energization

    E-Print Network [OSTI]

    Wright, Andrew N.

    Energy sources of field-aligned currents: Auroral electron energization Andrew N. Wright of field-aligned currents: Auroral electron energization, J. Geophys. Res., 110, A10S08, doi:10.1029/2004JA means no steady energization can be achieved by such a state [Bryant et al., 1992; Bryant, 1999, 2002

  20. Low energy electron bombardment induced surface contamination of Ru mirrors

    E-Print Network [OSTI]

    Harilal, S. S.

    Low energy electron bombardment induced surface contamination of Ru mirrors A. Al-Ajlonya , A., Albany, NY 12203, USA ABSTRACT The impact of secondary electrons induced contamination of the Ru surface, carbon contamination, Ruthenium capping 1. INTRODUCTION Extreme ultraviolet (EUV) radiation induced

  1. Hemispheric sunspot unit area: comparison with hemispheric sunspot number and sunspot area

    SciTech Connect (OSTI)

    Li, K. J.; Xiang, N. B.; Qu, Z. N.; Xie, J. L., E-mail: lkj@ynao.ac.cn [National Astronomical Observatories/Yunnan Observatory, CAS, Kunming 650011 (China)

    2014-03-01

    The monthly mean northern and southern hemispheric sunspot numbers (SNs) and sunspot areas (SAs) in the time interval of 1945 January to 2012 December are utilized to construct the monthly northern and southern hemispheric sunspot unit areas (SUAs), which are defined as the ratio of hemispheric SA to SN. Hemispheric SUAs are usually found to rise at the beginning and to fall at the ending time of a solar cycle more rapidly, forming a more irregular cycle profile than hemispheric SNs and SAs, although it also presents Schwabe-cycle-like hemispheric SNs and SAs. Sunspot activity (SN, SA, and SUA) is found asynchronously and is asymmetrically distributed in the northern and southern hemispheres, and hemispheric SNs, SAs, and SUAs are not in phase in the two hemispheres. The similarity of hemispheric SNs and SAs is found to be much more obvious than that of hemispheric SUAs and SNs (or SAs), and also for their north-south asymmetry. A notable feature is found for the behavior of the SUA around the minimum time of cycle 24: the SUA rapidly decreases from the cycle maximum value to the cycle minimum value of sunspot cycles 19-24 within just 22 months.

  2. Low energy electron irradiation of an apple 

    E-Print Network [OSTI]

    Brescia, Giovanni Batista

    2002-01-01

    simulation. A software package, MCNP (Monte Carlo N-Particle), was used to simulate an electron beam irradiation with a 1.0, 1.5 and 2.0 MeV sources on an apple modeled by interconnecting two spheres. The apple radii were 4.4 cm (perpendicular to its axis...

  3. Electronic structure and transition energies in polymer-fullerene bulk heterojunctions

    E-Print Network [OSTI]

    2014-01-01

    Electronic Structure and Transition Energies in Polymer?the HOMO and LUMO energy levels and transition energies haveand charge-transfer transition energies. The interface band

  4. Electron energy loss spectroscopy of gold nanoparticles on graphene

    SciTech Connect (OSTI)

    DeJarnette, Drew [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Roper, D. Keith, E-mail: dkroper@uark.edu [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States)

    2014-08-07

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports.

  5. Electron beam directed energy device and methods of using same

    DOE Patents [OSTI]

    Retsky, Michael W. (Trumbull, CT)

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  6. Evaluation of Miscellaneous and Electronic Device Energy Use in Hospitals

    SciTech Connect (OSTI)

    Black, Douglas R.; Lanzisera, Steven M.; Lai, Judy; Brown, Richard E.; Singer, Brett C.

    2012-09-01

    Miscellaneous and electronic loads (MELs) consume about one-thirdof the primary energy used in US buildings, and their energy use is increasing faster than other end-uses. In healthcare facilities, 30percent of the annual electricity was used by MELs in 2008. This paper presents methods and challenges for estimating medical MELs energy consumption along with estimates of energy use in a hospital by combining device-level metered data with inventories and usage information. An important finding is that common, small devices consume large amounts of energy in aggregate and should not be ignored when trying to address hospital energy use.

  7. A Technology for Electronic Energy Meters Intelligent Accounting Using Distributed Database over TCP/IP Network

    E-Print Network [OSTI]

    Borissova, Daniela

    4 8 A Technology for Electronic Energy Meters Intelligent Accounting Using Distributed Database processing to allow the adequate information integration and resource control in the energy distribution the energy distribution enterprise information. Reading the electronic energy meters is made through

  8. Electron energy spectrum in circularly polarized laser irradiated overdense plasma

    SciTech Connect (OSTI)

    Liu, C. S.; Tripathi, V. K.; Shao, Xi; Kumar, Pawan

    2014-10-15

    A circularly polarized laser normally impinged on an overdense plasma thin foil target is shown to accelerate the electrons in the skin layer towards the rear, converting the quiver energy into streaming energy exactly if one ignores the space charge field. The energy distribution of electrons is close to Maxwellian with an upper cutoff ?{sub max}=mc{sup 2}[(1+a{sub 0}{sup 2}){sup 1/2}?1], where a{sub 0}{sup 2}=(1+(2?{sup 2}/?{sub p}{sup 2})|a{sub in}|{sup 2}){sup 2}?1, |a{sub in}| is the normalized amplitude of the incident laser of frequency ?, and ?{sub p} is the plasma frequency. The energetic electrons create an electrostatic sheath at the rear and cause target normal sheath acceleration of protons. The energy gain by the accelerated ions is of the order of ?{sub max}.

  9. EcoElectron Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence, RhodeEchols County, Georgia:EcoElectron Ventures

  10. ElectronVault | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,NewInformation atProject)ElectronVault Jump to:

  11. Magnetek Power Electronics Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, search Name:Power Electronics Group Jump to: navigation,

  12. Green Electronics Council | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagmaIncentives JumpElectronics Council Jump to:

  13. Numerical simulation of electron energy loss near inhomogeneous dielectrics

    SciTech Connect (OSTI)

    Garcia de Abajo, F.J.

    1997-12-01

    The nonrelativistic energy loss suffered by fast electrons passing near dielectric interfaces of arbitrary shape is calculated by solving Poisson{close_quote}s equation using the boundary-charge method. The potential induced by a moving electron is expressed in terms of surface-charge distributions placed at the interfaces. These surface charges, obtained by self-consistently solving the resulting integral equation, act back on the electron producing a retarding force and hence energy loss. The dielectrics are described by frequency-dependent dielectric functions. Two particular cases are discussed in further detail: interfaces invariant under translation along one particular direction and axially symmetric interfaces. Previous results for simple geometries, such as planes, spheres, and cylinders, based upon analytical solutions, are fully reproduced within this approach. Calculations are presented for electrons moving near wedges, coupled parallel cylinders, coupled spheres, and toroidal surfaces. {copyright} {ital 1997} {ital The American Physical Society}

  14. Meson production in high-energy electron-nucleus scattering

    E-Print Network [OSTI]

    Göran Fäldt

    2010-06-09

    Experimental studies of meson production through two-photon fusion in inelastic electron-nucleus scattering is now under way. A high-energy photon radiated by the incident electron is fused with a soft photon radiated by the nucleus. The process takes place in the small-angle-Coulomb region of nuclear scattering. We expound the theory for this production process as well as its interference with coherent-radiative-meson production. In particular, we investigate the distortion of the electron wave function due to multiple-Coulomb scattering.

  15. Cybersecurity Awareness Electronic Messaging | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergyEveryCustomer Service Handbook Marchby ISAI N S

  16. Nanomaterials for Energy and Electronics Materials Science

    E-Print Network [OSTI]

    Cao, Guozhong

    Synthesis of ZnO Aggregates and Their Application in Dye-sensitized Solar Cells Nanomaterials for Energy Storage in Lithium-ion Battery Applications Synthesis, Properties, and Applications of Perovskite efficiency and cost.1 One of the more traditional photo- voltaic devices, single crystalline silicon solar

  17. Ligitek Electronics Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas:Hill,

  18. Electronic energy transfer: vibrational control and nonlinear wavepacket interferometry

    E-Print Network [OSTI]

    Dmitri S. Kilin; Jeffrey A. Cina; Oleg V. Prezhdo

    2004-12-31

    The time-development of photoexcitations in molecular aggregates exhibits specific dynamics of electronic states and vibrational wavefunction. We discuss the dynamical formation of entanglement between electronic and vibrational degrees of freedom in molecular aggregates with theory of electronic energy transfer and the method of vibronic 2D wavepackets [Cina, Kilin, Humble, J. Chem. Phys. 118, 46 (2003)]. The vibronic dynamics is also described by applying Jaynes-Cummings model to the electronic energy transfer [Kilin, Pereverzev, Prezhdo, J. Chem. Phys. 120, 11209 (2004);math-ph/0403023]. Following the ultrafast excitation of donor[chem-ph/9411004] the population of acceptor rises by small portions per each vibrational period, oscillates force and back between donor and acceptor with later damping and partial revivals of this oscillation. The transfer rate gets larger as donor wavepacket approaches the acceptor equilibrium configuration, which is possible at specific energy differences of donor and acceptor and at maximal amount of the vibrational motion along the line that links donor and acceptor equilibria positions. The four-pulse phase-locked nonlinear wavepacket 2D interferograms reflect the shape of the relevant 2D vibronic wavepackets and have maxima at longer delay between excitation pulses for dimers with equal donor-acceptor energy difference compare to dimers with activationless energy configuration [Cina, Fleming, J. Phys. Chem. A. 108, 11196 (2004)].

  19. Yamaichi Electronics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: EnergyYBR Solar Jump to:

  20. Appliances and Electronics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of Energy Facilities By E-mail: You can send an email to theCheckChoose

  1. Atmosphere to Electrons | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDayWhen doCleanup for EM Program |Atiq Warraich

  2. Consumer Electronics Association Comment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22,FresnoSky)Nuclear8Under the|LocationCEA)

  3. Appliances and Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStates andMeasuresAnnualScience &Energy

  4. Bremsstrahlung Energy Losses for Cosmic Ray Electrons and Positrons

    E-Print Network [OSTI]

    Widom, A; Srivastava, R

    2015-01-01

    Recently cosmic ray electrons and positrons, i.e. cosmic ray charged leptons, have been observed. To understand the distances from our solar system to the sources of such lepton cosmic rays, it is important to understand energy losses from cosmic electrodynamic fields. Energy losses for ultra-relativistic electrons and/or positrons due to classical electrodynamic bremsstrahlung are computed. The energy losses considered are (i) due to Thompson scattering from fluctuating electromagnetic fields in the background cosmic thermal black body radiation and (ii) due to the synchrotron radiation losses from quasi-static domains of cosmic magnetic fields. For distances to sources of galactic length proportions, the lepton cosmic ray energy must be lass than about a TeV.

  5. Bremsstrahlung Energy Losses for Cosmic Ray Electrons and Positrons

    E-Print Network [OSTI]

    A. Widom; J. Swain; R. Srivastava

    2015-09-24

    Recently cosmic ray electrons and positrons, i.e. cosmic ray charged leptons, have been observed. To understand the distances from our solar system to the sources of such lepton cosmic rays, it is important to understand energy losses from cosmic electrodynamic fields. Energy losses for ultra-relativistic electrons and/or positrons due to classical electrodynamic bremsstrahlung are computed. The energy losses considered are (i) due to Thompson scattering from fluctuating electromagnetic fields in the background cosmic thermal black body radiation and (ii) due to the synchrotron radiation losses from quasi-static domains of cosmic magnetic fields. For distances to sources of galactic length proportions, the lepton cosmic ray energy must be lass than about a TeV.

  6. Damage to Model DNA Fragments from Very Low-Energy (Electrons

    E-Print Network [OSTI]

    Simons, Jack

    Damage to Model DNA Fragments from Very Low-Energy (Electrons Joanna Berdys,, Iwona-mail: simons@chemistry.utah.edu Abstract: Although electrons having enough energy to ionize or electronically suggested that even lower- energy electrons (most recently 1 eV and below) can also damage DNA. The findings

  7. Energy of the quasi-free electron in xenon Xianbo Shi a

    E-Print Network [OSTI]

    Findley, Gary L.

    Energy of the quasi-free electron in xenon Xianbo Shi a , Luxi Li a , C.M. Evans a,, G.L. Findley b critical point. The energy of the quasi-free electron, arising from dopant field ionization, in xenon and for the critical isotherm. Key words: supercritical xenon, field ionization, quasi-free electron energy, electron

  8. Distance Dependence of Electron Transfer in DNA: The Role of the Reorganization Energy and Free Energy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Distance Dependence of Electron Transfer in DNA: The Role of the Reorganization Energy and Free of the solvent reorganization energy and free energy in the heterogeneous DNA environment. DNA is modeled represents water. Model calculations show the importance of including the reorganization energy and the free

  9. Energy Spectrum of Cosmic-Ray Electrons at TeV Energies

    SciTech Connect (OSTI)

    Aharonian, F.; Akhperjanian, A. G.; Sahakian, V.; Barres de Almeida, U.; Chadwick, P. M.; Cheesebrough, A.; Dickinson, H. J.; Hadjichristidis, C.; Keogh, D.; McComb, T. J. L.; Nolan, S. J.; Orford, K. J.; Osborne, J. L.; Rayner, S. M.; Rulten, C. B.; Spangler, D.; Ward, M.; Bazer-Bachi, A. R.; Borrel, V.; Olive, J-F.

    2008-12-31

    The very large collection area of ground-based {gamma}-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.

  10. FAST observations of the solar illumination dependence of downgoing auroral electron beams: Relationship to electron energy flux

    E-Print Network [OSTI]

    Carlson, Charles W.

    FAST observations of the solar illumination dependence of downgoing auroral electron beams] The dependence of the occurrence frequency of downgoing auroral electron beams on solar illumination almost no effect on the occurrence frequency of electron beams with energy flux less than or equal

  11. Energy spread reduction of electron beams produced via laser wakefield acceleration

    E-Print Network [OSTI]

    Pollock, Bradley Bolt

    2012-01-01

    Chapter 5 Chapter 6 Electron Beam Energy Spread Reduction bywake?eld-accelerated electron beams,” Phys. Rev. Lett. (S. M. Hooker, “Gev electron beams from a centimetre-scale

  12. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    E-Print Network [OSTI]

    Bakeman, M.S.

    2011-01-01

    Accelerator, Undulator, Electron Beam Diagnostic PACS: 52 .of an undulator-based electron beam diagnostic to be used inElectron Beam Energy Spread and Emittance Diagnostic M.S.

  13. The Onedimensional Hydrogen Atom with a Delta Function Potential Energy Interaction Between the Proton and Electron

    E-Print Network [OSTI]

    Rioux, Frank

    The Onedimensional Hydrogen Atom with a Delta Function Potential Energy Interaction Between the Proton and Electron Frank Rioux The energy Hamiltonian and its normalized eigenfunction for the hydrogen atom with delta function interaction between the electron and proton is given

  14. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1987-05-26

    A rechargeable high energy density lithium-based cell is described comprising: a solvated electron lithium negative electrode comprising a solution of lithium dissolved in liquid ammonia; a lithium ion conducting solid electrolyte contacting the negative electrode; a liquid non-aqueous lithium ion conducting electrolyte comprising a lithium ion conducting supporting electrolyte dissolved in a non-aqueous solvent. The liquid electrolyte contacting the lithium ion conducting solid electrolyte; and a solid lithium intercalation positive electrode contacting the liquid electrolyte.

  15. Rajasthan Electronics Instruments Ltd REIL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing Corp Jump to:Rajasthan Electronics

  16. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    SciTech Connect (OSTI)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  17. Engineering Physics: From Nano-Electronics and Photonics to Renewable Energy

    E-Print Network [OSTI]

    Smy, Tom

    Engineering Physics: From Nano-Electronics and Photonics to Renewable Energy Tom Smy Department Software Engineering Sustainable and Renewable Energy Engineering #12;A System-level Design Circuit

  18. Detailed Energy Data Collection for Miscellaneous and Electronic Loads in a Commercial Office Building

    E-Print Network [OSTI]

    California at Berkeley, University of

    Detailed Energy Data Collection for Miscellaneous and Electronic Loads in a Commercial Office to cost-effectively generate representative MELs energy data for future studies, this study addressed

  19. Primary electron energy dependent flashover in surface polarity on Au films M. Catalfano,1

    E-Print Network [OSTI]

    Harilal, S. S.

    Primary electron energy dependent flashover in surface polarity on Au films M. Catalfano,1 A December 2012; accepted 12 April 2013; published online 1 May 2013) Primary electron energy (Ep) dependent shift of a double peak- like structure towards high kinetic energy region in the secondary electron

  20. Energy efficient hotspot-targeted embedded liquid cooling of electronics Chander Shekhar Sharma a

    E-Print Network [OSTI]

    Daraio, Chiara

    Energy efficient hotspot-targeted embedded liquid cooling of electronics Chander Shekhar Sharma t s We present a novel concept for hotspot-targeted, energy efficient ELC for electronic chips: Hotspot-targeted cooling Microchannel cooling Electronics cooling Hotspots Energy efficient computing

  1. Active electron energy distribution function control in direct current discharge using an auxiliary electrode

    E-Print Network [OSTI]

    Kaganovich, Igor

    Active electron energy distribution function control in direct current discharge using an auxiliary://pop.aip.org/authors #12;Active electron energy distribution function control in direct current discharge using; accepted 18 July 2013; published online 10 October 2013) The electron energy distribution functions

  2. PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda

    E-Print Network [OSTI]

    PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda J.S.T. Ng, P. Chen, W present results from the SLAC E­150 experiment on plasma focusing of high energy density electron and experiments to test this con­ cept were carried out with low energy density electron beams [2]. The goals

  3. Southern Hemisphere Additional Ozonesondes (SHADOZ) 19982000 tropical ozone climatology

    E-Print Network [OSTI]

    Thompson, Anne

    Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998­2000 tropical ozone climatology 2; published 31 January 2003. [1] The first view of stratospheric and tropospheric ozone variability in the Southern Hemisphere tropics is provided by a 3-year record of ozone soundings from the Southern Hemisphere

  4. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    SciTech Connect (OSTI)

    Yedra, Ll.; Estradé, S., E-mail: sestrade@ub.edu [LENS, MIND-IN2UB, Departament d'Electrņnica, Universitat de Barcelona, Martķ i Franqučs 1, 08028 Barcelona (Spain); TEM-MAT, CCiT, Universitat de Barcelona, Solé i Sabarķs 1, 08028 Barcelona (Spain); Torruella, P.; Eljarrat, A.; Peiró, F. [LENS, MIND-IN2UB, Departament d'Electrņnica, Universitat de Barcelona, Martķ i Franqučs 1, 08028 Barcelona (Spain); Darbal, A. D. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); Weiss, J. K. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); NanoMEGAS SPRL, Blvd. Edmond Machtens 79, B-1080 Brussels (Belgium)

    2014-08-04

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  5. The impacts of electronic state hybridization on the binding energy of single phosphorus donor electrons in extremely downscaled silicon nanostructures

    SciTech Connect (OSTI)

    The Anh, Le Manoharan, Muruganathan; Moraru, Daniel; Tabe, Michiharu; Mizuta, Hiroshi

    2014-08-14

    We present the density functional theory calculations of the binding energy of the Phosphorus (P) donor electrons in extremely downscaled single P-doped Silicon (Si) nanorods. In past studies, the binding energy of donor electrons was evaluated for the Si nanostructures as the difference between the ionization energy for the single P-doped Si nanostructures and the electron affinity for the un-doped Si nanostructures. This definition does not take into account the strong interaction of donor electron states and Si electron states explicitly at the conductive states and results in a monotonous increase in the binding energy by reducing the nanostructure's dimensions. In this paper, we introduce a new approach to evaluate the binding energy of donor electrons by combining the projected density of states (PDOS) analysis and three-dimensional analysis of associated electron wavefunctions. This enables us to clarify a gradual change of the spatial distribution of the 3D electron wavefunctions (3DWFs) from the donor electron ground state, which is fully localized around the P donor site to the first conductive state, which spreads over the outer Si nanorods contributing to current conduction. We found that the energy of the first conductive state is capped near the top of the atomistic effective potential at the donor site with respect to the surrounding Si atoms in nanorods smaller than about 27 a{sub 0}. This results in the binding energy of approximately 1.5?eV, which is virtually independent on the nanorod's dimensions. This fact signifies a good tolerance of the binding energy, which governs the operating temperature of the single dopant-based transistors in practice. We also conducted the computationally heavy transmission calculations of the single P-doped Si nanorods connected to the source and drain electrodes. The calculated transmission spectra are discussed in comparison with the atomistic effective potential distributions and the PDOS-3DWFs method.

  6. Momentum-resolved Electron Energy-Loss Spectroscopy Master Thesis, Electron Microscopy Group of Materials Science, Prof. Ute Kaiser

    E-Print Network [OSTI]

    Pfeifer, Holger

    of Materials Science, Prof. Ute Kaiser Background Electron energy-loss spectroscopy (EELS) is a well Microscopy group of Material Sciences in Ulm has gained experience in the acquisition and analysis of energy-loss spectra of two-dimensional materials using an in-column energy filter [1,2]. Aim The aim of the proposed

  7. Comments of consumer electronics association | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22, 2015 |AT&TThe Consumer Electronics

  8. Energy of the excess electron in methane and ethane near the critical point

    E-Print Network [OSTI]

    Findley, Gary L.

    Energy of the excess electron in methane and ethane near the critical point Xianbo Shi a,b , Luxi in ethane are presented as a function of perturber number density at various noncritical temperatures to the simple alka- nes methane and ethane. The quasi-free electron energy V0(P) [9­15] and the electron

  9. End-to-end absolute energy calibration of atmospheric fluorescence telescopes by an electron linear accelerator

    E-Print Network [OSTI]

    End-to-end absolute energy calibration of atmospheric fluorescence telescopes by an electron linear of fluorescence telescopes by using air showers induced by electron beams from a linear accelerator, which and constructing a compact linear accelerator with a maximum electron energy of 40 MeV and an intensity of 6.4 m

  10. Shell-instability generated waves by low energy electrons on converging magnetic field lines

    E-Print Network [OSTI]

    California at Berkeley, University of

    Shell-instability generated waves by low energy electrons on converging magnetic field lines D that the shell-instability can generate electrostatic and electromagnetic wave modes: whistler waves, electron´cre´au (2006), Shell-instability generated waves by low energy electrons on converging magnetic field lines

  11. Measurements of ultra-low-energy electron scattering cross sections of atoms and molecules

    SciTech Connect (OSTI)

    Kitajima, M.; Shigemura, K.; Kurokawa, M. [Department of Chemistry, Tokyo Institute of Technology, 152-8551 Tokyo (Japan); Odagiri, T. [Department of Physics, Sophia University, 102-8554 Tokyo, Japan and Department of Chemistry, Tokyo Institute of Technology, 152-8551 Tokyo (Japan); Kato, H.; Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, 102-8554 Tokyo (Japan); Ito, K. [Photon Factory, Institute of Materials Structure Science, 305-0801 Tsukuba (Japan)

    2014-03-05

    A new experimental technique for the total cross section measurements of ultra-low energy electron collisions with atoms and molecules utilizing the synchrotron radiation is presented. The technique employs a combination of the penetrating field technique and the threshold photoionization of rare gas atoms using the synchrotron radiation as an electron source in order to produce a high resolution electron beam at very low energy. Absolute total cross sections for electron scattering from He, Ne, Ar, Kr, and Xe in the energy region from extremely low electron energy to 20 eV are presented.

  12. Energy of the Quasi-free Electron in Argon and Krypton C. M. Evans1,

    E-Print Network [OSTI]

    Findley, Gary L.

    Energy of the Quasi-free Electron in Argon and Krypton C. M. Evans1, and G. L. Findley2, 1 these data, a new local Wigner- Seitz model for the density dependent energy V0(P) of a quasi-free electron/medium polarization energy, and includes the thermal kinetic energy of the quasi-free electron. Using this model, V0(P

  13. Energy use of U.S. consumer electronics at the end of the 20th century

    E-Print Network [OSTI]

    Rosen, Karen; Meier, Alan

    2000-01-01

    Products Televisions consume more energy than any otherset-top boxes often consume more energy per year than theconsume more electricity (31 TWh/yr) than any other consumer electronics device, but computer energy

  14. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics

    E-Print Network [OSTI]

    Wang, Zhong L.

    Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable: Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based

  15. Measurements of plasma bremsstrahlung and plasma energy density produced by electron cyclotron resonance ion source plasmas

    E-Print Network [OSTI]

    Noland, Jonathan David

    2011-01-01

    of x-ray power and plasma energy density with microwaveof diamagnetic loop used for plasma energy density mea-the average electron energy and density. During the slowly

  16. ARM - Field Campaign - ISDAC - Hemispheric Flux Spectroradiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic- Hemispheric Flux Spectroradiometer ARM

  17. Pairing of valence electrons as necessary condition for energy minimization in a crystal

    E-Print Network [OSTI]

    Dolgopolov Stanislav Olegovich

    2014-10-21

    Pairing of valence electrons can lead to energy minimization of a crystal. It can be proved by use of representation of the valence electrons as plane waves in periodic potential of the crystal.

  18. A stochastic reorganizational bath model for electronic energy transfer

    SciTech Connect (OSTI)

    Fujita, Takatoshi E-mail: aspuru@chemistry.harvard.edu; Huh, Joonsuk; Aspuru-Guzik, Alįn E-mail: aspuru@chemistry.harvard.edu

    2014-06-28

    Environmentally induced fluctuations of the optical gap play a crucial role in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker (HSR) model, in which the energy-gap fluctuation is approximated as white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to account for excitation energies’ thermal fluctuations. On the other hand, since the original work of HSR, many groups have employed stochastic models to simulate the same transfer dynamics. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equations via the generalized Langevin approach. Based on this connection, we propose a novel scheme to take account of reorganization effects within the framework of stochastic models. The proposed scheme provides a better description of the population dynamics especially in the regime of strong exciton-phonon coupling. Finally, we discuss the effect of the bath reorganization in the absorption and fluorescence spectra of ideal J-aggregates in terms of the Stokes shifts. We find a simple expression that relates the reorganization contribution to the Stokes shifts – the reorganization shift – to the ideal or non-ideal exciton delocalization in a J-aggregate. The reorganization shift can be described by three parameters: the monomer reorganization energy, the relaxation time of the optical gap, and the exciton delocalization length. This simple relationship allows one to understand the physical origin of the Stokes shifts in molecular aggregates.

  19. 1. Multi-Agent Systems, Intelligent Robotics, Mechatronics, and General Control Areas. 2. Power Electronics, Renewable Energy, and Smart Grid.

    E-Print Network [OSTI]

    Wu, Yih-Min

    , and General Control Areas. 2. Power Electronics, Renewable Energy, and Smart Grid. 3. Computer Science

  20. Multi-Agent Systems and Control, Intelligent Robotics, and Cybernetics. Power Electronics, Renewable Energy, and Smart Grid.

    E-Print Network [OSTI]

    Wu, Yih-Min

    . Power Electronics, Renewable Energy, and Smart Grid. Computer Science and Engineering. Embedded Systems

  1. Advanced Relay Design and Technology for Energy-Efficient Electronics

    E-Print Network [OSTI]

    Jeon, Jaeseok

    2011-01-01

    Elsevier Solid-State Electronics, vol. 51, no. 4, pp. 518-Elsevier Solid-State Electronics, vol. 51, no. 4, pp. 518-Elsevier Solid-State Electronics, vol. 45, no. 1, pp. 113-

  2. Studies of thin film hydrogenated silicon solar cells using electron energy-loss spectroscopy in the transmission electron microscope

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Studies of thin film hydrogenated silicon solar cells using electron energy-loss spectroscopy (TEM) to study n-i-p thin film Si solar cells grown on steel foil or glass substrates. For a solar cell experiment, we study the chemical compositions of defective regions in thin film Si solar cells using energy

  3. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas

    SciTech Connect (OSTI)

    Gambino, Nadia Brandstätter, Markus; Rollinger, Bob; Abhari, Reza

    2014-09-15

    In this work, a new diagnostic tool for laser-produced plasmas (LPPs) is presented. The detector is based on a multiple array of six motorized Langmuir probes. It allows to measure the dynamics of a LPP in terms of charged particles detection with particular attention to droplet-based LPP sources for EUV lithography. The system design permits to temporally resolve the angular and radial plasma charge distribution and to obtain a hemispherical mapping of the ions and electrons around the droplet plasma. The understanding of these dynamics is fundamental to improve the debris mitigation techniques for droplet-based LPP sources. The device has been developed, built, and employed at the Laboratory for Energy Conversion, ETH Zürich. The experimental results have been obtained on the droplet-based LPP source ALPS II. For the first time, 2D mappings of the ion kinetic energy distribution around the droplet plasma have been obtained with an array of multiple Langmuir probes. These measurements show an anisotropic expansion of the ions in terms of kinetic energy and amount of ion charge around the droplet target. First estimations of the plasma density and electron temperature were also obtained from the analysis of the probe current signals.

  4. Mapping boron in silicon solar cells using electron energy-loss spectroscopy

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Mapping boron in silicon solar cells using electron energy-loss spectroscopy M Duchamp1 , C B 3 ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten, The Netherlands 4 CEA-Leti, MINATEC Campus, 17-mail: martial.duchamp@cen.dtu.dk Abstract. Electron energy-loss spectroscopy (EELS) is used to study the B

  5. Electron-Nuclear Energy Sharing in Above-Threshold Multiphoton Dissociative Ionization of H2

    E-Print Network [OSTI]

    Thumm, Uwe

    Electron-Nuclear Energy Sharing in Above-Threshold Multiphoton Dissociative Ionization of H2 J. Wu­4], where the photon energy is shared by the freed electrons and the nuclear fragments. For the molecular ionization [10­15], and the imaging of inter- nuclear distance using nuclear kinetic energy release spec- tra

  6. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials

    E-Print Network [OSTI]

    Rubloff, Gary W.

    , and energy-related materials Martin L. Green, Ichiro Takeuchi, and Jason R. Hattrick-Simpers Citation: J) methodologies to electronic, magnetic, optical, and energy-related materials Martin L. Green,1 Ichiro Takeuchi,2 materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high

  7. Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers

    E-Print Network [OSTI]

    Pasko, Victor

    Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events Sebastien Celestin1 and Victor P. Pasko1 are directly related to the energy that thermal runaway electrons can gain once created. Using full energy

  8. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect (OSTI)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-08-31

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  9. Quasinormal mode theory and modelling of electron energy loss spectroscopy

    E-Print Network [OSTI]

    Ge, Rong-Chun

    2015-01-01

    Modelling electron energy loss spectroscopy (EELS) presents a major challenge in computational electrodynamics, requiring the full photon Green function as a function of two space points and frequency. In this work, we present an intuitive and computationally simple method for computing EELS maps using a quasinormal mode (QNM) expansion technique. By separating the contribution of the QNM and the bulk material, we give closed-form analytical formulas for the plasmonic QNM contribution to EELS images. We exemplify our technique for a split ring resonator, a gold nanorod, and a nanorod dimer structure. The method is accurate, intuitive, and gives orders of magnitude improvements over direct dipole simulations that numerically solve the full 3D Maxwell equations.

  10. Aspects of Electron-Phonon Self-Energy Revealed From Angle-Resolved...

    Office of Scientific and Technical Information (OSTI)

    ELEMENTARY PARTICLES AND FIELDS; PHOTOEMISSION; SELF-ENERGY; EMISSION SPECTROSCOPY; ELECTRONS; PHONONS Other,OTHER Word Cloud More Like This Full Text Journal Articles DOI:...

  11. Policy Flash 2015-06 - Energy Star and Electronic Products Environment...

    Broader source: Energy.gov (indexed) [DOE]

    Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: ENERGY STAR and Electronic...

  12. Electron Polarimetry at Low Energies in Hall C at Jefferson Lab

    SciTech Connect (OSTI)

    Gaskell, David J.

    2013-11-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  13. THE EFFECTS OF TEMPERATURE AND IMPURITIES ON THE ATOMIC DISPLACEMENT ENERGY DURING ELECTRON IRRADIATION

    E-Print Network [OSTI]

    Drosd, R.M.

    2010-01-01

    ENERGY DURING ELECTRON IRRADIATION Robert Michael DrosdTemperature Changes in I~1 Irradiations. ExperimentalCharged Particle S~osium Irradiations, in Proceedings of a

  14. Low-energy cutoffs in electron spectra of solar flares: statistical survey

    E-Print Network [OSTI]

    E. P. Kontar; E. Dickson; J. Kasparova

    2008-05-21

    The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data base (February 2002 -- May 2006) has been searched to find solar flares with weak thermal components and flat photon spectra. Using a regularised inversion technique, we determine the mean electron flux distribution from count spectra of a selection of events with flat photon spectra in the 15--20 keV energy range. Such spectral behaviour is expected for photon spectra either affected by photospheric albedo or produced by electron spectra with an absence of electrons in a given energy range, e.g. a low-energy cutoff in the mean electron spectra of non-themal particles. We have found 18 cases which exhibit a statistically significant local minimum (a dip) in the range of 10--20 keV. The positions and spectral indices of events with low-energy cutoff indicate that such features are likely to be the result of photospheric albedo. It is shown that if the isotropic albedo correction was applied, all low-energy cutoffs in the mean electron spectrum were removed and hence the low energy cutoffs in the mean electron spectrum of solar flares above $\\sim$12 keV cannot be viewed as real features in the electron spectrum. If low-energy cutoffs exist in the mean electron spectra, the energy of low energy cutoffs should be less than $\\sim$12 keV.

  15. EXPERIMENTAL STUDY OF ENERGY SPREAD IN A SPACE-CHARGE DOMINATED ELECTRON BEAM *

    E-Print Network [OSTI]

    Valfells, Įgśst

    EXPERIMENTAL STUDY OF ENERGY SPREAD IN A SPACE-CHARGE DOMINATED ELECTRON BEAM * Y. Cui , Y. Zou, A. Experimental Setup Electron Beam Ground Shielding High Voltage Cylinder Retarding Mesh Collector High Voltage. Valfells, I. Haber, R. Kishek, M. Reiser, P. G. O'Shea Institute for Research in Electronics and Applied

  16. defects;simultaneously,the energy loss of the transmitted electrons is measured, revealing

    E-Print Network [OSTI]

    Palumbi, Stephen

    defects;simultaneously,the energy loss of the transmitted electrons is measured, revealing the electronic effects of the missing oxygen atoms on the surrounding atoms (that is, changes in their oxidationTiO3 (top) is clear in this image created by Muller et al.3 using a scanning transmission electron

  17. Exploring the Energy Landscape for QA to QB Electron Transfer in Bacterial

    E-Print Network [OSTI]

    Gunner, Marilyn

    ) is rate-limited by conformational changes rather than electron tunneling. QB movement from a distal trapped in a different conformation. Now electron transfer from QA - to QB occurs even below 40 KExploring the Energy Landscape for QA - to QB Electron Transfer in Bacterial Photosynthetic

  18. Energy levels of the electrons localized over the surface of an inert film with address electrodes

    SciTech Connect (OSTI)

    Petrin, A. B.

    2013-03-15

    The problem of searching for the potential energy and the energy spectrum of the electrons localized over the surface of a thin liquid or solid inert film due to address electrodes placed under the film is considered.

  19. Anomalous electron-ion energy coupling in electron drift wave turbulence

    E-Print Network [OSTI]

    Zhao, Lei

    annulus arises due to a wave energy flux differential acrossprincipal collisionless wave energy dissipation channel inOn the other hand, wave energy can be dissipated by ion

  20. Plasma parameters and electron energy distribution functions in a magnetically focused plasma

    SciTech Connect (OSTI)

    Samuell, C. M.; Blackwell, B. D.; Howard, J.; Corr, C. S. [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra (Australia)

    2013-03-15

    Spatially resolved measurements of ion density, electron temperature, floating potential, and the electron energy distribution function (EEDF) are presented for a magnetically focused plasma. The measurements identify a central plasma column displaying Maxwellian EEDFs at an electron temperature of about 5 eV indicating the presence of a significant fraction of electrons in the inelastic energy range (energies above 15 eV). It is observed that the EEDF remains Maxwellian along the axis of the discharge with an increase in density, at constant electron temperature, observed in the region of highest magnetic field strength. Both electron density and temperature decrease at the plasma radial edge. Electron temperature isotherms measured in the downstream region are found to coincide with the magnetic field lines.

  1. Power Electronics R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics R&D Power Electronics R&D Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland....

  2. Active electron energy distribution function control in direct current discharge using an auxiliary electrode

    SciTech Connect (OSTI)

    Schweigert, I. V.; George Washington University, Washington, DC 20052 ; Kaganovich, I. D.; Demidov, V. I.; St. Petersburg State University, St. Petersburg

    2013-10-15

    The electron energy distribution functions are studied in the low voltage dc discharge with a constriction, which is a diaphragm with an opening. The dc discharge glows in helium and is sustained by the electron current emitted from a heated cathode. We performed kinetic simulations of dc discharge characteristics and electron energy distribution functions for different gas pressures (0.8 Torr-4 Torr) and discharge current of 0.1 A. The results of these simulations indicate the ability to control the shape of the electron energy distribution functions by variation of the diaphragm opening radius.

  3. Scattering of low-energy electrons and positrons by atomic beryllium: Ramsauer-Townsend effect

    E-Print Network [OSTI]

    Reid, David D

    2014-01-01

    Total cross sections for the scattering of low-energy electrons and positrons by atomic beryllium in the energy range below the first inelastic thresholds are calculated. A Ramsauer-Townsend minimum is seen in the electron scattering cross sections, while no such effect is found in the case of positron scattering. A minimum total cross section of 0.016 a.u. at 0.0029 eV is observed for the electron case. In the limit of zero energy, the cross sections yield a scattering length of -0.61 a.u. for electron and +13.8 a.u. for positron scattering.

  4. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammels, A.F.

    1987-08-04

    A solvated electron lithium negative electrode is described containing: containment means holding a solution of lithium dissolved in liquid ammonia to form a solvated electron solution, the solvated electron solution contacting a lithium intercalating membrane and providing lithium to the intercalating membrane during discharge and accepting it from the intercalating membrane during charge.

  5. Determining the static electronic and vibrational energy correlations via twodimensional electronic-vibrational spectroscopy

    E-Print Network [OSTI]

    Dong, Hui; Lewis, Nicholas HC; Oliver, Thomas AA; Fleming, Graham R

    2015-01-01

    Determining the static electronic and vibrational energythe signatures of a static correlation in 2DEV spectra withthe chromophore-solvent induce a static vari- ance of both

  6. DNA Damage Induced by Low-Energy Electrons: Electron Transfer and Diffraction

    SciTech Connect (OSTI)

    Zheng Yi; Wagner, J. Richard; Sanche, Leon [Groupe de Recherche en Sciences des Radiations, Faculte de Medecine, Universite de Sherbrooke, Sherbrooke, QC J1H 5N4 (Canada)

    2006-05-26

    Thin films of the short single strand of DNA, GCAT, in which guanine (G) or adenine (A) have been removed, were bombarded under vacuum by 4 to 15 eV electrons. The fragments corresponding to base release and strand breaks (SB) were analyzed by high performance liquid chromatography and their yields compared with those obtained from unmodified GCAT. From such a comparison, it is shown that, using GCAT as a model system (1) most SB result from electron capture by DNA bases followed by electron transfer to the phosphate group and (2) the initial capture probability depends on the coherence of the electron wave within the tetramer.

  7. Title of dissertation: Precision Control of Intense Electron Beams in a Low-Energy Ring

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of dissertation: Precision Control of Intense Electron Beams in a Low-Energy Ring ELECTRON BEAMS IN A LOW-ENERGY RING by Chao Wu Dissertation submitted to the Faculty of the Graduate School of particle accelerators require beams with high intensity and low emittance in a stable fashion. An important

  8. ccsd00001969, Particle-in-cell simulations of high energy electron

    E-Print Network [OSTI]

    ccsdĀ­00001969, version 2 Ā­ 23 Oct 2004 Particle-in-cell simulations of high energy electron energy electrons from the underdense plasmas are investigated using two dimensional particle- in-cell simulations. When the ratio of the laser power and a critical power of relativistic self

  9. An electron/ion spectrometer with the ability of low energy electron measurement for fast ignition experiments

    SciTech Connect (OSTI)

    Ozaki, T.; Sakagami, H. [National Institute for Fusion Science, 322-6, Oroshi, Toki, Gifu 509-5292 (Japan); Kojima, S.; Arikawa, Y.; Shiraga, H.; Fujioka, S. [Institute of Laser Engineering, Osaka University, 2-6, Yamada-oka, Suita, Osaka 565-0871 (Japan); Kato, R., E-mail: ozaki@nifs.ac.jp [Institute of Scientific and Industrial Research, Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2014-11-15

    An electron energy spectrometer (ESM) is one of the most fundamental diagnostics in the fast ignition experiment. It is necessary to observe the spectra down to a low energy range in order to obtain the accurate deposition efficiency toward the core. Here, we realize the suitable ESM by using a ferrite magnet with a moderate magnetic field of 0.3 T and a rectangular magnetic circuit covered with a steel plate in the inlet side.

  10. TOF Electron Energy Analyzer for Spin and Angular Resolved Photoemission Spectroscopy

    SciTech Connect (OSTI)

    Lebedev, Gennadi; Jozwiak, Chris; Andresen, Nord; Lanzara, Alessandra; Hussain, Zahid

    2008-07-09

    Current pulsed laser and synchrotron x-ray sources provide new opportunities for Time-Of- Flight (TOF) based photoemission spectroscopy to increase photoelectron energy resolution and efficiency compared to current standard techniques. The principals of photoelectron timing front formation, temporal aberration minimization, and optimization of electron beam transmission are presented. We have developed these concepts into a high resolution Electron Optical Scheme (EOS) of a TOF Electron Energy Analyzer (TOF-EEA) for photoemission spectroscopy. The EOS of the analyzer includes an electrostatic objective lens, three columns of transport lenses and a 90 degree energy band pass filter (BPF). The analyzer has two modes of operation: Spectrometer Mode (SM) with straight passage of electrons through the EOS undeflected by the BPF, allowing the entire spectrum to be measured, and Monochromator Mode (MM) in which the BPF defines a certain energy window inside the scope of the electron energy spectrum.

  11. Imaging doped silicon test structures using low energy electron microscopy.

    SciTech Connect (OSTI)

    Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

    2010-01-01

    This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

  12. Analysis of the electron self-energy for tightly bound electrons Ingvar Lindgren, Hans Persson, Sten Salomonson, and Per Sunnergren

    E-Print Network [OSTI]

    Lindgren, Ingvar

    are carried out by means of the Z expansion of the nuclear field, Z being the nuclear charge and the fine SE-SE . At strong nuclear fields, the Z expansion is no longer applicable, and numerical all A general scheme for mass renormalization of the electron self-energy in strong nuclear fields is developed

  13. Methods for detailed energy data collection of miscellaneous and electronic loads in a commercial office building

    E-Print Network [OSTI]

    California at Berkeley, University of

    and electronic loads (MELs) consume about 20% of the primary energy used in U.S. buildings, and this share Buildings account for 40% of the total primary energy con- sumption in the U.S., with 22% consumed-third of the primary energy used in U.S. buildings in the next 20 years [2]. MELs energy use is spread among many

  14. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Broader source: Energy.gov (indexed) [DOE]

    Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Innovations in Energy Storage...

  15. Determining the static electronic and vibrational energy correlations via twodimensional electronic-vibrational spectroscopy

    E-Print Network [OSTI]

    Dong, Hui; Lewis, Nicholas HC; Oliver, Thomas AA; Fleming, Graham R

    2015-01-01

    Friend, “The Role of Driving Energy and Delocalized States1. (Color online) Potential energy surfaces (a) on both theO?ce of Science, O?ce of Basic Energy Sciences, of the USA

  16. Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam

    E-Print Network [OSTI]

    Aharrouche, M; Di Ciaccio, L; El-Kacimi, M; Gaumer, O; Gouančre, M; Goujdami, D; Lafaye, R; Laplace, S; Le Maner, C; Neukermans, L; Perrodo, P; Poggioli, L; Prieur, D; Przysiezniak, H; Sauvage, G; Tarrade, F; Wingerter-Seez, I; Zitoun, R; Lanni, F; Ma, H; Rajagopalan, S; Rescia, S; Takai, H; Belymam, A; Benchekroun, D; Hakimi, M; Hoummada, A; Barberio, E; Gao, Y S; Lü, L; Stroynowski, R; Aleksa, Martin; Beck-Hansen, J; Carli, T; Efthymiopoulos, I; Fassnacht, P; Follin, F; Gianotti, F; Hervįs, L; Lampl, W; Collot, J; Hostachy, J Y; Ledroit-Guillon, F; Martin, P; Ohlsson-Malek, F; Saboumazrag, S; Leltchouk, M; Parsons, J A; Seman, M; Simion, S; Banfi, D; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandelli, L; Mazzanti, M; Tartarelli, F; Bourdarios, C; Fayard, L; Fournier, D; Graziani, G; Hassani, S; Iconomidou-Fayard, L; Kado, M; Lechowski, M; Lelas, M; Parrour, G; Puzo, P; Rousseau, D; Sacco, R; Serin, L; Unal, G; Zerwas, D; Camard, A; Lacour, D; Laforge, B; Nikolic-Audit, I; Schwemling, P; Ghazlane, H; Cherkaoui-El-Moursli, R; Idrissi Fakhr-Eddine, A; Boonekamp, M; Kerschen, N; Mansoulié, B; Meyer, P; Schwindling, J; Lund-Jensen, B; Tayalati, Y

    2006-01-01

    A module of the ATLAS electromagnetic barrel liquid argon calorimeter was exposed to the CERN electron test-beam at the H8 beam line upgraded for precision momentum measurement. The available energies of the electron beam ranged from 10 to 245 GeV. The electron beam impinged at one point corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of phi=0.28 in the ATLAS coordinate system. A detailed study of several effects biasing the electron energy measurement allowed an energy reconstruction procedure to be developed that ensures a good linearity and a good resolution. Use is made of detailed Monte Carlo simulations based on Geant which describe the longitudinal and transverse shower profiles as well as the energy distributions. For electron energies between 15 GeV and 180 GeV the deviation of the measured incident electron energy over the beam energy is within 0.1%. The systematic uncertainty of the measurement is about 0.1% at low energies and negligible at high energies. The energy resoluti...

  17. Energy dissipation of energetic electrons in the inhomogeneous intergalactic medium during the epoch of reionization

    E-Print Network [OSTI]

    Kaurov, Alexander A

    2015-01-01

    We explore a time-dependent energy dissipation of the energetic electrons in the inhomogeneous intergalactic medium (IGM) during the epoch of cosmic reionization. In addition to the atomic processes we take into account the Inverse Compton (IC) scattering of the electrons on the comic microwave background (CMB) photons, which is the dominant channel of energy loss for the electrons with energies above a few MeV. We show that: (1) the effect on the IGM has both local (atomic processes) and non-local (IC radiation) components; (2) the energy distribution between Hydrogen and Helium ionizations depends on the initial electron energy; (3) the local baryon overdensity significantly affects the fractions of energy distributed in each channel; and (4) the relativistic effect of atomic cross section become important during the epoch of cosmic reionization. We release our code as open source for further modification by the community.

  18. (An)isotropy of the Hubble diagram: comparing hemispheres

    E-Print Network [OSTI]

    Dominik J. Schwarz; Bastian Weinhorst

    2007-09-12

    We test the isotropy of the Hubble diagram. At small redshifts, this is possible without assumptions on the cosmic inventory and provides a fundamental test of the cosmological principle. At higher redshift we check for the self-consistency of the LambdaCDM model. At small redshifts, we use public supernovae (SNe) Ia data to determine the deceleration parameter q_0 and the SN calibration on opposite hemispheres. For the complete data sets we fit Omega_M and the SN calibration on opposite hemispheres. A statistically significant anisotropy of the Hubble diagram at redshifts z 95% C.L.). While data from the North Galactic hemisphere favour the accelerated expansion of the Universe, data from the South Galactic hemisphere are not conclusive. The hemispheric asymmetry is maximal toward a direction close to the equatorial poles. The discrepancy between the equatorial North and South hemispheres shows up in the SN calibration. For the LambdaCDM model fitted to all available SNe, we find the same asymmetry. The alignment of discrepancies between hemispheric Hubble diagrams with the equatorial frame seems to point toward a systematic error in the SN search, observation, analysis or data reduction. We also find that our model independent test cannot exclude the case of the deceleration of the expansion at a statistically significant level.

  19. A microwave chip-based beam splitter for low-energy guided electrons

    E-Print Network [OSTI]

    Jakob Hammer; Sebastian Thomas; Philipp Weber; Peter Hommelhoff

    2015-05-18

    We demonstrate the splitting of a low-energy electron beam by means of a microwave pseudopotential formed above a planar chip substrate. Beam splitting arises from smoothly transforming the transverse guiding potential for an electron beam from a single-well harmonic confinement into a double-well, thereby generating two separated output beams with $5\\,$mm lateral spacing. Efficient beam splitting is observed for electron kinetic energies up to $3\\,$eV, in excellent agreement with particle tracking simulations. We discuss prospects of this novel beam splitter approach for electron-based quantum matter-wave optics experiments.

  20. Effect of Sex of Subject and Experimenter on Hemispheric Balance 

    E-Print Network [OSTI]

    Ford, Joan; Wilkes, Chris; Crissman, Sue; Barchas, Pat

    2015-08-15

    stream_source_info #61 Effect of Sex of Subject and Experimenter on Hemispheric Balance.pdf.txt stream_content_type text/plain stream_size 28922 Content-Encoding UTF-8 stream_name #61 Effect of Sex of Subject and Experimenter... on Hemispheric Balance.pdf.txt Content-Type text/plain; charset=UTF-8 A TECHNICAL REPORT The Laboratory for Social Research STANFORD, CALIFORNIASTANFORD UNIVERSITY EFFECT OF SEX OF SUBJECT AMD EXPERIMENTER OH HEMISPHERIC BALANCE Joan Ford Chris...

  1. Milagro: A TeV Gamma-Ray Monitor of the Northern Hemisphere Sky

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    transients, such as gamma-ray bursts, and all sky surveys are diĘcult. A new type of TeV -ray observatoryMilagro: A TeV Gamma-Ray Monitor of the Northern Hemisphere Sky B.L. Dingus 1 , R. Atkins 1 , W type of very high energy (> a few 100 GeV) gamma-ray observatory, Milagro, has been built with a large

  2. Proceedings of ICRC 2001: 2219 c Copernicus Gesellschaft 2001 Measurement of primary protons and electrons in the energy range

    E-Print Network [OSTI]

    Morselli, Aldo

    of spectrometer is proposed to measure the primary protons and electrons in the energy range of 1011 - 1013 e the primary electrons with energy 1011 -1013 eV from the proton flux with a rejection factor up to 10 to investigate the particle energy roughly up to 1013 eV. That means that primary protons and electrons

  3. Temporal evolution of the electron energy distribution function in oxygen and chlorine gases under dc and ac fields

    E-Print Network [OSTI]

    Economou, Demetre J.

    Temporal evolution of the electron energy distribution function in oxygen and chlorine gases under for publication 19 February 1993) An analysis of the temporal evolution of the electron energy distribution of the distribution function is dominant. The electron energy distribution function (EEDF) can be derived from

  4. Supplementary material: CPO simulation of the backscattered SPR energy loss electrons under the condition of our experiment.

    E-Print Network [OSTI]

    Loss, Daniel

    Supplementary material: CPO simulation of the backscattered SPR energy loss electrons under the condition of our experiment. Fig.1 Simulated trajectories of backscattered electrons with energy loss 3.7e Simulated trajectories of backscattered electrons with energy loss 3.7eV at tip-sample distance 150m under

  5. Energy of the Quasi-free Electron in Supercritical Krypton near the Critical Point Luxi Li and C. M. Evans

    E-Print Network [OSTI]

    Findley, Gary L.

    Energy of the Quasi-free Electron in Supercritical Krypton near the Critical Point Luxi Li and C. M by the quasi-free electron that arises from field ionization of the dopant, and the zero point kinetic energy of the free electron. The overall decrease in the shift of the dopant ionization energy near the critical

  6. Energy of the quasi-free electron in supercritical argon near the critical point C.M. Evans1,

    E-Print Network [OSTI]

    Findley, Gary L.

    Energy of the quasi-free electron in supercritical argon near the critical point C.M. Evans1 to the interaction between argon and the quasi-free electron arising from field ionization of the dopant. The energy by the ionic core, V0(P) is the quasi-free electron energy in the perturbing medium, and P is the perturber

  7. Solvent Reorganization Energy and Free Energy Change for Donor/Acceptor Electron Transfer at Micelle Surfaces: Theory and Experiment

    E-Print Network [OSTI]

    Fayer, Michael D.

    Solvent Reorganization Energy and Free Energy Change for Donor/Acceptor Electron TransferVed: April 7, 1998 Theories are presented for calculating the solvent reorganization energy and the free and acceptor. The form of this dependence has been of considerable interest for many years.2-6 Solvents

  8. Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroicAward | DepartmentElectron thermal

  9. The Onedimensional Hydrogen Atom with a Delta Function Potential Energy Interaction Between the Proton and Electron

    E-Print Network [OSTI]

    Rioux, Frank

    The Onedimensional Hydrogen Atom with a Delta Function Potential Energy is suggested for a variational calculation for the energy of a onedimensional model of the hydrogen atom that postulates a deltafunction potential energy interaction between the electron and the proton. x exp x

  10. Modeling the free energy surfaces of electron transfer in condensed phases

    E-Print Network [OSTI]

    Matyushov, Dmitry

    PROOF COPY 509037JCP Modeling the free energy surfaces of electron transfer in condensed phases analytical solution for the ET free energy surfaces demonstrates the following features: i the range of ET reaction coordinates is limited by a one-sided fluctuation band, ii the ET free energies are infinite

  11. Electron Energy Loss Spectra of Graphite, Graphene and Carbon Nanotubes: Plasmon

    E-Print Network [OSTI]

    Botti, Silvana

    Electron Energy Loss Spectra of Graphite, Graphene and Carbon Nanotubes: Plasmon Dispersion in Carbon Systems #12;Outlook dimensionality 1. induced Hartree potentials in low dimensional systems: independent particles energy loss in graphene (in-plane, q = 0.41 °A-1 ) 0 2 4 6 8 10 energy loss (eV) -Im -1

  12. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    E-Print Network [OSTI]

    Henderson, Kevin; Funsten, Herb; MacDonald, Elizabeth

    2011-01-01

    We report the development of a versatile, compact, low to medium energy electron source. A collimated, monoenergetic beam of electrons, up to 50 mm in diameter, is produced with energies ranging from 0.03 to 30 keV. A uniform electron beam profile is generated by illuminating a metal cathode plate with a near ultraviolet (UV) light emitting diode (LED). A parallel electric field accelerates the electrons away from the cathode plate towards a grounded grid. The beam intensity can be controlled from 10 - 10^9 electrons cm-2 s-1 and the angular divergence of the beam is less than 1 degree FWHM for energies greater than 1 keV.

  13. Stratigraphic significance of uvigerinid foraminifers in the Western Hemisphere

    E-Print Network [OSTI]

    Lamb, J. L.; Miller, T. H.

    1984-12-18

    OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS ARTICLE 66 Stratigraphic Significance of Uvigerinid Foraminifers in the Western Hemisphere J. L. Lamb and T. H. Miller Harold Norman Fisk Memorial Papers Exxon Company, U.S.A. The University of Kansas Paleontological... OF UVIGERINID FORAMINIFERS IN THE WESTERN HEMISPHERE' J. L. LAMB and T. H. MILLER 4818 E. Laureldale Drive, Houston, Texas 77041 and Exxon Production Research Corporation, P. 0. Box 2189, Houston, Texas 77001 Abstract—Uvigerinid foraminifers increasingly...

  14. Zonal wind oscillations over the western hemisphere during winter 

    E-Print Network [OSTI]

    Hundermark, Bruce William

    1991-01-01

    ZONAL WIND OSCILLATIONS OVER THE WESTERN HEMISPHERE DURING WINIER A Thesis by BRUCE WILLIAM HUNDERMARK Submitted to the Office of Graduate Studies of Texas AdiM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1991 Major Subject: Meteorology ZONAL WIND OSCILLATIONS OVER THE WESTERN HEMISPHERE DURING WINIER A Thesis by BRUCE WILLIAM HUNDERMARIZ Approved as to style and content by: c Dusan Djuric (Co-Chair of Committee) haF. ' s (Co...

  15. Conversion electrons used to monitor the energy scale of electron spectrometer near tritium endpoint - a simulation study

    E-Print Network [OSTI]

    M. Rysavy

    2006-01-15

    Measurements of the endpoint region of the tritium beta-decay spectrum provides good possibility to determine neutrino mass. This, however, needs a perfect monitoring of the spectrometer energy scale. A parallel measurement of electron line of known energy - in particular the 83mKr conversion K-line - may serve well to this purpose. The 83Rb decaying to 83mKr seems to be a very suitable radioactive source due to its halflife of 86.2 day. In this work, we determine the amount of 83Rb which is necessary for a successful monitoring.

  16. Reorganization energy of intermolecular electron transfer in solvents near isotropicnematic transition

    E-Print Network [OSTI]

    Matyushov, Dmitry

    Reorganization energy of intermolecular electron transfer in solvents near isotropic of orientational isotropic/ nematic phase transition. These data are used to calculate the solvent reorganization.1063/1.1580107 I. INTRODUCTION The effect of a condensed-phase solvent on the kinetics of electron transfer ET

  17. Determination of the displacement energy of O, Si and Zr under electron beam irradiation

    SciTech Connect (OSTI)

    Edmondson, Philip D; Weber, William J; Namavar, Fereydoon; Zhang, Yanwen

    2012-01-01

    The response of nanocrystalline, stabilizer-free cubic zirconia thin films on a Si substrate to electron beam irradiation with energies of 4, 110 and 200 keV and fluences up to {approx}1.5 x 10{sup 22} e m{sup -2} has been studied to determine the displacement energies. The 110 and 200 keV irradiations were performed in situ using a transmission electron microscope; the 4 keV irradiations were performed ex situ using an electron gun. In all three irradiations, no structural modification of the zirconia was observed, despite the high fluxes and fluences. However the Si substrate on which the zirconia film was deposited was amorphized under the 200 keV electron irradiation. Examination of the electron-solid interactions reveals that the kinetic energy transfer from the 200 keV electrons to the silicon lattice is sufficient to cause atomic displacements, resulting in amorphization. The kinetic energy transfer from the 200 keV electrons to the oxygen sub-lattice of the zirconia may be sufficient to induce defect production, however, no evidence of defect production was observed. The displacement cross-section value of Zr was found to be {approx}400 times greater than that of O indicating that the O atoms are effectively screened from the electrons by the Zr atoms, and, therefore, the displacement of O is inefficient.

  18. Determination of the Displacement Energies of O, Si and Zr Under Electron Beam Irradiation

    SciTech Connect (OSTI)

    Edmondson, P. D.; Weber, William J.; Namavar, Fereydoon; Zhang, Yanwen

    2012-03-01

    The response of nanocrystalline, stabilizer-free cubic zirconia thin films on a Si substrate to electron beam irradiation with energies of 4, 110 and 200 keV and fluences up to ~1.5 x 10²²e m² has been studied to determine the displacement energies. The 110 and 200 keV irradiations were performed in situ using a transmission electron microscope; the 4 keV irradiations were performed ex situ using an electron gun. In all three irradiations, no structural modification of the zirconia was observed, despite the high fluxes and fluences. However the Si substrate on which the zirconia film was deposited was amorphized under the 200 keV electron irradiation. Examination of the electron–solid interactions reveals that the kinetic energy transfer from the 200 keV electrons to the silicon lattice is sufficient to cause atomic displacements, resulting in amorphization. The kinetic energy transfer from the 200 keV electrons to the oxygen sub-lattice of the zirconia may be sufficient to induce defect production, however, no evidence of defect production was observed. The displacement cross-section value of Zr was found to be ~400 times greater than that of O indicating that the O atoms are effectively screened from the electrons by the Zr atoms, and, therefore, the displacement of O is inefficient.

  19. Precision shape modification of nanodevices with a low-energy electron beam

    DOE Patents [OSTI]

    Zettl, Alex (Kensington, CA); Yuzvinsky, Thomas David (Berkeley, CA); Fennimore, Adam (Berkeley, CA)

    2010-03-09

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

  20. The ejected electron energy spectrum following a proton-hydrogen collision 

    E-Print Network [OSTI]

    Fu, Jun

    2000-01-01

    A Finite Hilbert Basis Set (FHBS) method of calculating the cross sections, differential in energy, of the ejected electrons following an ion atom collision is developed and applied to the proton-hydrogen collision system. An FHBS First Born...

  1. Power Electronics Design Implications of Novel Photovoltaic Collector Geometries and Their Application for Increased Energy Harvest 

    E-Print Network [OSTI]

    Karavadi, Amulya

    2011-10-21

    applications for this sustainable energy generation currently not possible with the traditional rigid, flat silicon-glass modules. However, since the photovoltaic cells are no longer coplanar, there are significant new requirements for the power electronics...

  2. Estimation of the electron density and radiative energy losses in a calcium plasma source based on an electron cyclotron resonance discharge

    SciTech Connect (OSTI)

    Potanin, E. P. Ustinov, A. L.

    2013-06-15

    The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures-the hot resonance component and the cold nonresonance component-were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T{sub e Parallel-To} of the main (cold) electron component on the energy fraction {beta} lost for radiation was obtained.

  3. Simultaneously non-linear energy calibration of CMS calorimeters for single pions and electrons

    E-Print Network [OSTI]

    J. Damgov; V. Genchev; S. Cht. Mavrodiev

    2001-10-11

    CMS calorimeter energy calibration was done in the full CMS simulated geometry for the pseudorapidity region eta = 0. The samples of single pion events were generated with a set of incident energies from 5 GeV to 3 TeV and for single electrons from 5 to 500 GeV. The analysis of the simulated data shows that standard calibration using just sampling coefficients for calorimeter parts with different sampling ratio gives nonlinear calorimeter response. Non-linear calibration technique was applied simultaneously for pion and electron beams which is preparation for jets energy reconstruction. It improve calorimeter energy resolution for pions and restore the calorimeter linearity.

  4. Electromagnetic cascade in high energy electron, positron, and photon interactions with intense laser pulses

    E-Print Network [OSTI]

    S. S. Bulanov; C. B. Schroeder; E. Esarey; W. P. Leemans

    2013-06-05

    The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high energy e-beam interacting with a counter-streaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  5. Estimating Appliance and Home Electronic Energy Use | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Estimate the energy consumption and cost to operate an appliance when making a purchase. Investing in an energy-efficient product may save you money in the long run. | Photo...

  6. ARM: SIRS: derived, correction of downwelling shortwave diffuse hemispheric measurements using Dutton and full algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Laura Riihimaki

    1997-03-21

    SIRS: derived, correction of downwelling shortwave diffuse hemispheric measurements using Dutton and full algorithm

  7. Optical and electronic properties of some binary semiconductors from energy gaps

    E-Print Network [OSTI]

    Sunil K. Tripathy; Anup Pattanaik

    2015-10-14

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap.

  8. Optical and electronic properties of some binary semiconductors from energy gaps

    E-Print Network [OSTI]

    Sunil K. Tripathy; Anup Pattanaik

    2015-08-23

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap.

  9. Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators

    SciTech Connect (OSTI)

    Brijesh, P.; Thaury, C.; Phuoc, K. T.; Corde, S.; Lambert, G.; Malka, V. [Laboratoire d'Optique Appliquee, ENSTA ParisTech, CNRS UMR7639, Ecole Polytechnique, 91761 Palaiseau (France); Mangles, S. P. D.; Bloom, M.; Kneip, S. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2012-06-15

    A density perturbation in an underdense plasma was used to improve the quality of electron bunches produced in the laser-plasma wakefield acceleration scheme. Quasi-monoenergetic electrons were generated by controlled injection in the longitudinal density gradients of the density perturbation. By tuning the position of the density perturbation along the laser propagation axis, a fine control of the electron energy from a mean value of 60 MeV to 120 MeV has been demonstrated with a relative energy-spread of 15 {+-} 3.6%, divergence of 4 {+-} 0.8 mrad, and charge of 6 {+-} 1.8 pC.

  10. Optical and electronic properties of some binary semiconductors from energy gaps

    E-Print Network [OSTI]

    Tripathy, Sunil K

    2015-01-01

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap.

  11. Conceptual MEIC electron ring injection scheme using CEBAF as a full energy injector

    SciTech Connect (OSTI)

    Guo, Jiquan; Lin, Fanglei; Rimmer, Robert A.; Wang, Haipeng; Wang, Shaoheng; Zhang, Yuhong

    2015-09-01

    The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is planning to use the newly upgraded 12 GeV CEBAF 1497 MHz SRF CW recirculating linac as a full-energy injector for the electron collider ring. The electron collider ring is proposed to reuse the 476MHz PEP-II RF system to achieve high installed voltage and high beam power. The MEIC electron injection requires 3-10 (or 12) GeV beam in 3-4µs long bunch trains with low duty factor and high peak current, resulting in strong transient beam loading for the CEBAF. In this paper, we propose an injection scheme that can match the two systems' frequencies with acceptable injection time, and also address the transient beam loading issue in CEBAF. The scheme is compatible with future upgrade to 952.6 MHz SRF system in the electron ring.

  12. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    E-Print Network [OSTI]

    ATLAS Collaboration

    2014-11-13

    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb$^{-1}$ of LHC proton--proton collision data taken at centre-of-mass energies of $\\sqrt{s}$ = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the $Z$ resonance is used to set the absolute energy scale. For electrons from $Z$ decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.

  13. Energy spectrum of the electrons accelerated by reconnection electric field: exponential or power-law?

    E-Print Network [OSTI]

    Liu, W J; Ding, M D; Fang, C

    2008-01-01

    The direct current (DC) electric field near the reconnection region has been proposed as an effective mechanism to accelerate protons and electrons in solar flares. A power-law energy spectrum was generally claimed in the simulations of electron acceleration by the reconnection electric field. However, in most of the literature, the electric and magnetic fields were chosen independently. In this paper, we perform test particle simulations of electron acceleration in reconnecting magnetic field, where both the electric and magnetic fields are adopted from numerical simulations of the MHD equations. It is found that the accelerated electrons present a truncated power-law energy spectrum with an exponential tail at high energies, which is analogous to the case of diffusive shock acceleration. The influences of the reconnection parameters on the spectral feature are also investigated, such as the longitudinal and transverse components of the magnetic field and the size of the current sheet. It is suggested that t...

  14. A Monte Carlo study of reflection electron energy loss spectroscopy spectrum of a carbon contaminated surface

    SciTech Connect (OSTI)

    Da, B.; Li, Z. Y.; Chang, H. C.; Ding, Z. J.; Mao, S. F.

    2014-09-28

    It has been experimentally found that the carbon surface contamination influences strongly the spectrum signals in reflection electron energy loss spectroscopy (REELS) especially at low primary electron energy. However, there is still little theoretical work dealing with the carbon contamination effect in REELS. Such a work is required to predict REELS spectrum for layered structural sample, providing an understanding of the experimental phenomena observed. In this study, we present a numerical calculation result on the spatially varying differential inelastic mean free path for a sample made of a carbon contamination layer of varied thickness on a SrTiO{sub 3} substrate. A Monte Carlo simulation model for electron interaction with a layered structural sample is built by combining this inelastic scattering cross-section with the Mott's cross-section for electron elastic scattering. The simulation results have clearly shown that the contribution of the electron energy loss from carbon surface contamination increases with decreasing primary energy due to increased individual scattering processes along trajectory parts carbon contamination layer. Comparison of the simulated spectra for different thicknesses of the carbon contamination layer and for different primary electron energies with experimental spectra clearly identifies that the carbon contamination in the measured sample was in the form of discontinuous islands other than the uniform film.

  15. Electronic Effects of Rh(II)-Mediated Carbenoid Intramolecular C-H Insertion: A Linear Free Energy Correlation Study

    E-Print Network [OSTI]

    Wang, Jianbo

    Electronic Effects of Rh(II)-Mediated Carbenoid Intramolecular C-H Insertion: A Linear Free Energy. The mechanistic significance of these Hammett correlations is discussed. Introduction The electronic effects of Rh is enhanced by an electron-donating group while an electron-withdrawing group retards the C-H insertion, thus

  16. Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity Laser Pulses

    E-Print Network [OSTI]

    Umstadter, Donald

    Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High%) and a decreased electron-beam divergence angle (by 45%), as compared with single-pulse illumination. Simulations reveal that increased stochastic heating of electrons may have also contributed to the electron-beam

  17. Solera Sustainable Energies Company formerly Phantom Electron Corp | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergy Inc Jump to: navigation,SolastaSolcoEnergy

  18. DOE Reaches Agreement with LG Electronics, USA, On Refrigerator Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominateEnergy U.S. EnergyEnergyMatter |

  19. Mechanism for Damage to DNA by Low-Energy Electrons Robyn Barrios, Piotr Skurski, and Jack Simons*

    E-Print Network [OSTI]

    Simons, Jack

    Mechanism for Damage to DNA by Low-Energy Electrons Robyn Barrios, Piotr Skurski, and Jack Simons electronic structure calculations on a portion of DNA, the results of which provide support for a mechanism that produces single-strand breaks (SSBs) with low-energy electrons. This mechanism involves attaching a low

  20. Hydrogen Atom Loss in Pyrimidine DNA Bases Induced by Low-Energy Electrons: Energetics Predicted by Theory

    E-Print Network [OSTI]

    Simons, Jack

    Hydrogen Atom Loss in Pyrimidine DNA Bases Induced by Low-Energy Electrons: Energetics Predicted In addition to inducing DNA strand breaks, low-energy electrons (LEEs) also have been shown to induce of a hydrogen atom from a DNA base-electron adduct initiates chemical modification of the base, which can cause

  1. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    E-Print Network [OSTI]

    Fujihashi, Yuta; Ishizaki, Akihito

    2015-01-01

    Recently, nuclear vibrational contribution signatures in 2D electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the e...

  2. In situ reflection high energy electron diffraction study of dehydrogenation process of Pd coated Mg nanoblades

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA Received 23 March 2008; accepted,2 Hydrogen has been con- sidered as one of the promising alternative energy resources due to its abundanceIn situ reflection high energy electron diffraction study of dehydrogenation process of Pd coated

  3. Solvent reorganization energy of electron-transfer reactions in polar solvents

    E-Print Network [OSTI]

    Matyushov, Dmitry

    Solvent reorganization energy of electron-transfer reactions in polar solvents Dmitry V. Matyushova theory of solvent reorganization energy in polar molecular solvents is developed. The theory represents the solvent response as a combination of the density and polarization fluctuations of the solvent given

  4. The Effect of Transverse Energy on Electronic Bound States in Heterostructure Quantum Wells

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    that will be the subject of this work, is the precise form of the energy-wave vector (E(k)) relation and its deviation fromThe Effect of Transverse Energy on Electronic Bound States in Heterostructure Quantum Wells Elias Kougianos1 and Saraju P. Mohanty2 1Dept of Engineering Technology, University of North Texas, Denton, TX

  5. Defect transition energies and the density of electronic states in hydrogenated amorphous silicon

    E-Print Network [OSTI]

    Tolk, Norman H.

    Defect transition energies and the density of electronic states in hydrogenated amorphous silicon G in hydrogenated amorphous silicon (a-Si:H). These measurements suggest that the density of neutral defects is much of the corresponding transition energies are determined and agree with two models proposed to describe the density

  6. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  7. New Reflections on Electron's Energy and Wavefunction in the Hydrogen Atom

    E-Print Network [OSTI]

    Ezzat G. Bakhoum

    2009-07-17

    Schrodinger's equation predicts something very peculiar about the electron in the Hydrogen atom: its total energy must be equal to zero. Unfortunately, an analysis of a zero-energy wavefunction for the electron in the Hydrogen atom has not been attempted in the published literature. This paper provides such an analysis for the first time and uncovers a few interesting facts, including the fact that a "zero-energy wavefunction" is actually a quantized version of the classical wavefunction that has been known for decades.

  8. New Reflections on Electron's Energy and Wavefunction in the Hydrogen Atom

    E-Print Network [OSTI]

    Bakhoum, Ezzat G

    2009-01-01

    Schrodinger's equation predicts something very peculiar about the electron in the Hydrogen atom: its total energy must be equal to zero. Unfortunately, an analysis of a zero-energy wavefunction for the electron in the Hydrogen atom has not been attempted in the published literature. This paper provides such an analysis for the first time and uncovers a few interesting facts, including the fact that a "zero-energy wavefunction" is actually a quantized version of the classical wavefunction that has been known for decades.

  9. Low energy conversion electron detection in superfluid He3 at ultra-low temperature

    E-Print Network [OSTI]

    E. Moulin; C. Winkelmann; J. F. Macias-Perez; Yu. M. Bunkov; H. Godfrin; D. Santos

    2005-04-12

    We report on the first results of the MACHe3 (MAtrix of Cells of Helium 3) prototype experiment concerning the measurement of low energy conversion electrons at ultra-low temperature. For the first time, the feasibility of the detection of low energy electrons is demonstrated in superfluid He3-B cooled down to 100 microK. Low energy electrons at 7.3 keV coming from the K shell conversion of the 14.4 keV nuclear transition of a low activity Co57 source are detected, opening the possibility to use a He3-based detector for the detection of Weakly Interacting Massive Particles (WIMPs) which are expected to release an amount of energy higher-bounded by 5.6 keV.

  10. Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem

    E-Print Network [OSTI]

    L. Fletcher; H. S. Hudson

    2007-12-20

    The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta waves propagate as inertial Alfven waves. In the presence of strong spatial gradients, these generate field-aligned electric fields that can accelerate electrons to energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.

  11. Direct Cooled Power Electronics Substrate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2 DOE|Energy,Dimitri

  12. Peter Dent, Electron Energy Corporation, Strategies for More Effective

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes havePUBLICofPatriciaOrderDepartment

  13. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservationEnergy5975-01 REPORT ONInstitutionalIntegrated2011

  14. Sharp Electronics Europe GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to: navigation, search Name: Sharp Electronics

  15. Florida Power Electronics Center FPEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flats 100k.pdf JumpFlemington, NewFloodplainsElectronics

  16. CMB hemispherical asymmetry: long mode modulation and non-Gaussianity

    SciTech Connect (OSTI)

    Namjoo, Mohammad Hossein; Baghram, Shant; Firouzjahi, Hassan; Abolhasani, Ali Akbar E-mail: abolhasani@ipm.ir E-mail: firouz@ipm.ir

    2014-08-01

    The observed hemispherical asymmetry in CMB map can be explained by modulation from a long wavelength super horizon mode which non-linearly couples to the CMB modes. We address the criticism in [1] about the role of non-Gaussianities in squeezed and equilateral configurations in generating hemispherical asymmetry from the long mode modulation. We stress that the modulation is sensitive to the non-Gaussianity in the squeezed limit. In addition, we demonstrate the validity of our approach in providing a consistency condition relating the amplitude of dipole asymmetry to f{sub NL} in the squeezed limit.

  17. Modification Of The Electron Energy Distribution Function During Lithium Experiments On The National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P

    2011-06-03

    The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.

  18. Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Tsinghua University, Beijing (China); Ding, Yuantao [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Marinelli, Agostino [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Huang, Zhirong [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)

    2015-03-01

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunch compression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.

  19. Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Tsinghua University, Beijing; Ding, Yuantao; Marinelli, Agostino; Huang, Zhirong

    2015-03-01

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunchmore »compression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less

  20. A highly miniaturized electron and ion energy spectrometer prototype for the rapid analysis of space plasmas

    SciTech Connect (OSTI)

    Bedington, R., E-mail: r.bedington@stp.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210 (Japan); Kataria, D. O.; Smith, A. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary RH5 6NT (United Kingdom)] [Mullard Space Science Laboratory, University College London, Holmbury St. Mary RH5 6NT (United Kingdom)

    2014-02-15

    MEMS (Micro Electro-Mechanical Systems) plasma analyzers are a promising possibility for future space missions but conventional instrument designs are not necessarily well suited to micro-fabrication. Here, a candidate design for a MEMS-based instrument has been prototyped using electron-discharge machining. The device features 10 electrostatic analyzers that, with a single voltage applied to it, allow five different energies of electron and five different energies of positive ion to be simultaneously sampled. It has been simulated using SIMION and the electron response characteristics tested in an instrument calibration chamber. Small deviations found in the electrode spacing of the as-built prototype were found to have some effect on the electron response characteristics but do not significantly impede its performance.

  1. Simulation studies for operating electron beam ion trap at very low energy for disentangling edge plasma spectra

    SciTech Connect (OSTI)

    Jin Xuelong; Fei Zejie; Xiao Jun; Lu Di; Hutton, Roger; Zou Yaming [Key Lab of Applied Ion Beam Physics, Ministry of Education, China and Shanghai EBIT laboratory, Modern Physics Institute, Fudan University, Shanghai (China)

    2012-07-15

    Electron beam ion traps (EBITs) are very useful tools for disentanglement studies of atomic processes in plasmas. In order to assist studies on edge plasma spectroscopic diagnostics, a very low energy EBIT, SH-PermEBIT, has been set up at the Shanghai EBIT lab. In this work, simulation studies for factors which hinder an EBIT to operate at very low electron energies were made based on the Tricomp (Field Precision) codes. Longitudinal, transversal, and total kinetic energy distributions were analyzed for all the electron trajectories. Influences from the electron current and electron energy on the energy depression caused by the space charge are discussed. The simulation results show that although the energy depression is most serious along the center of the electron beam, the electrons in the outer part of the beam are more likely to be lost when an EBIT is running at very low energy. Using the simulation results to guide us, we successfully managed to reach the minimum electron beam energy of 60 eV with a beam transmission above 57% for the SH-PermEBIT. Ar and W spectra were measured from the SH-PermEBIT at the apparent electron beam energies (read from the voltage difference between the electron gun cathode and the central drift tube) of 60 eV and 1200 eV, respectively. The spectra are shown in this paper.

  2. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    SciTech Connect (OSTI)

    Henderson, Kevin; Harper, Ron; Funsten, Herb; MacDonald, Elizabeth [Space Science and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-15

    We have developed and demonstrated a versatile, compact electron source that can produce a mono-energetic electron beam up to 50 mm in diameter from 0.1 to 30 keV with an energy spread of <10 eV. By illuminating a metal cathode plate with a single near ultraviolet light emitting diode, a spatially uniform electron beam with 15% variation over 1 cm{sup 2} can be generated. A uniform electric field in front of the cathode surface accelerates the electrons into a beam with an angular divergence of <1 Degree-Sign at 1 keV. The beam intensity can be controlled from 10 to 10{sup 9} electrons cm{sup -2} s{sup -1}.

  3. Systematic low-energy effective field theory for electron-doped antiferromagnets

    SciTech Connect (OSTI)

    Bruegger, C.; Kaempfer, F.; Moser, M.; Wiese, U.-J.; Hofmann, C. P.; Pepe, M.

    2007-06-01

    In contrast to hole-doped systems which have hole pockets centered at ({+-}({pi}/2a),{+-}({pi}/2a)), in lightly electron-doped antiferromagnets the charged quasiparticles reside in momentum space pockets centered at (({pi}/a),0) or (0,({pi}/a)). This has important consequences for the corresponding low-energy effective field theory of magnons and electrons which is constructed in this paper. In particular, in contrast to the hole-doped case, the magnon-mediated forces between two electrons depend on the total momentum P-vector of the pair. For P-vector=0, the one-magnon exchange potential between two electrons at distance r is proportional to 1/r{sup 4}, while in the hole case, it has a 1/r{sup 2} dependence. The effective theory predicts that spiral phases are absent in electron-doped antiferromagnets.

  4. Effects of energy loss on interaction dynamics of energetic electrons with plasmas C. K. Li and R. D. Petrasso

    E-Print Network [OSTI]

    Effects of energy loss on interaction dynamics of energetic electrons with plasmas C. K. Li and R for energetic electrons interacting with plasmas. This model rigorously treats the effects of energy loss upon and energy loss--which previous calculations had erroneously treated as independent in cases where

  5. 542 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 31, NO. 4, AUGUST 2003 Time-Dependence of the Electron Energy Distribution

    E-Print Network [OSTI]

    Guerra, Vasco

    -Dependence of the Electron Energy Distribution Function in the Nitrogen Afterglow Vasco Guerra, Francisco M. Dias, Jorge, we present an investigation of the time- relaxation of the electron energy distribution function that an equilibrium between the vibrational distribution function of ground-state molecules N2( 16+ ) and low-energy

  6. A hybrid model for particle transport and electron energy distributions in positive column electrical discharges using equivalent species transport

    E-Print Network [OSTI]

    Kushner, Mark

    A hybrid model for particle transport and electron energy distributions in positive column the fluid portion of the model. Transport coefficients, source functions, and energy distributions for all field has motivated a num- ber of investigations into its effect on the `electron energy distribution

  7. Energy of the quasi-free electron in argon, krypton and xenon Xianbo Shi a,b

    E-Print Network [OSTI]

    Findley, Gary L.

    Energy of the quasi-free electron in argon, krypton and xenon Xianbo Shi a,b , Luxi Li a,b , C. M ionization of the dopant, and (iii) the kinetic energy of the quasi-free electron. The polarization terms are determined by a standard statistical mechanical treatment. However, the kinetic energy of the quasi-free

  8. Low energy electron-enhanced etching of Si(100) in hydrogen/helium direct-current plasma

    E-Print Network [OSTI]

    Dove, Patricia M.

    Low energy electron-enhanced etching of Si(100) in hydrogen/helium direct-current plasma H. P, and high-density plasma in which energy of the incident ions is reduced;2,3 however, damage problems remain of a dc plasma reactor, and thus receives a large flux of low-energy electrons and hydrogen molecules

  9. Is Second Law of Thermodynamics Violated for Electron Transition from Lower-Energy Level to Higher-Energy Level

    E-Print Network [OSTI]

    R. C. Gupta; Ruchi Gupta; Sanjay Gupta

    2003-10-05

    Second law of thermodynamics is applied to a few electronic processes. It is seen that the second law of thermodynamics holds good for all except one mentioned here. The classical approach, based on exact equivalence of emission and absorption spectra, for electron transition from lower energy level (first orbit) to higher energy level (second orbit) violates the second law of thermodynamics. But since second law which implies irreversibility and is universally true, a new explanation of electron transition from lower to higher energy level is proposed which leads to better understanding of several topics such as Fraunhofer lines, Optical laser. Also, interestingly, it is shown that widely different fields such as second law of thermodynamics and special relativity are in fact closely linked to each other. Also, possible links between supersymmetry and new concept of quaternion mass are mentioned.

  10. Microelectrode for energy and current control of nanotip field electron emitters

    SciTech Connect (OSTI)

    Lüneburg, S.; Müller, M. Paarmann, A. Ernstorfer, R.

    2013-11-18

    Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10–30??m. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.

  11. Shanghai Electric Xantrex Power Electronics Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low EmissionTianhong Silicon MaterialNew MaterialEco Energy

  12. Electronic Docket Room (e-Docket Room) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederal Register Noticeof AmericaThis

  13. Federal Electronics Challenge Gold Award | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress MoreHyd rogEnergy AdvisoryFEMPTheLeft to

  14. EPA to Require Electronic Filing of EISs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementof EnergyQuality'Lean'1401of Energy EPA andto

  15. Cross sections for electron scattering by propane in the low- and intermediate-energy ranges

    SciTech Connect (OSTI)

    Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R.

    2010-07-15

    We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

  16. The Very Low Energy Solar Flux of Electron and Heavy-Flavor Neutrinos and Antineutrinos

    E-Print Network [OSTI]

    W. C. Haxton; Wei Lin

    2000-06-28

    We calculate the thermal flux of low-energy solar neutrinos and antineutrinos of all flavors arising from a variety of neutrino pair processes: Compton production (including plasmon-pole diagrams), neutral current decay of thermally populated nuclear states, plasmon decay, and electron transitions from free to atomic bound states. The resulting flux density per flavor is significant (10E8-10E9/cm2/sec/MeV) below about 5 keV, and the distributions fill much of the valley between the high-energy edge of the cosmic background neutrino spectrum and the low energy tails of the pp-chain electron neutrino and terrestrial electron antineutrino spectra. Thermal neutrinos carry information on the solar core temperature distribution and on heavy flavor masses in the range of 1 keV. The detection of these neutrinos is a daunting but interesting challenge.

  17. The Effect Of Electronic Energy Loss On Irradiation-induced Grain Growth In Nanocrystalline Oxides

    SciTech Connect (OSTI)

    Zhang, Yanwen; Aidhy, Dilpuneet S.; Varga, Tamas; Moll, Sandra; Edmondson, Philip D.; Namavar, Fereydoon; Jin, Ke; Ostrouchov, Christopher N.; Weber, William J.

    2014-03-03

    Grain growth of nanocrystalline materials is generally thermally activated, but can also be driven by irradiation at much lower temperature. In nanocrystalline ceria and zirconia, energetic ions deposit their energy to both atomic nuclei and electrons. Our experimental results have shown that irradiationinduced grain growth is dependent on the total energy deposited, where electronic energy loss and elastic collisions between atomic nuclei both contribute to the production of disorder and grain growth. Our atomistic simulations reveal that a high density of disorder near grain boundaries leads to locally rapid grain movement. The additive effect from both electronic excitation and atomic collision cascades on grain growth demonstrated in this work opens up new possibilities for controlling grain sizes to improve functionality of nanocrystalline materials.

  18. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D

    SciTech Connect (OSTI)

    Hollmann, E. M.; Moyer, R. A.; Rudakov, D. L.; Parks, P. B.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.

    2015-05-15

    The evolution of the runaway electron (RE) energy distribution function f{sub ?} during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f{sub ?} is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle ? is not uniform, but tends to be large at low energies and small ????0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.

  19. From Nano-Electronics and Photonics to Renewable Energy

    E-Print Network [OSTI]

    Smy, Tom

    circuits, which are fundamental to the infrastructure of modern society #12;B.Eng. In Electrical: · Electrical Energy Distribution · Electric Cars & Batteries · Wind/Solar/Hydro Power Generation · Robotics #12 are sufficient to last for centuries, and coal can be liquefied or used to generate electricity! Unfortunately

  20. How Do Low-Energy (0.1-2 eV) Electrons Cause DNA-Strand

    E-Print Network [OSTI]

    Simons, Jack

    How Do Low-Energy (0.1-2 eV) Electrons Cause DNA-Strand Breaks? JACK SIMONS* Chemistry Department by which very low-energy (0.1-2 eV) free electrons attach to DNA and cause strong (ca. 4 eV) covalent bonds of electrons in the above energy range to base * orbitals is more likely than attachment elsewhere and (ii

  1. The second-order electron self-energy in hydrogen-like ions

    E-Print Network [OSTI]

    I. Goidenko; L. Labzowsky; A. Nefiodov; G. Plunien; G. Soff

    1999-04-08

    A calculation of the simplest part of the second-order electron self-energy (loop after loop irreducible contribution) for hydrogen-like ions with nuclear charge numbers $3 \\leq Z \\leq 92$ is presented. This serves as a test for the more complicated second-order self-energy parts (loop inside loop and crossed loop contributions) for heavy one-electron ions. Our results are in strong disagreement with recent calculations of Mallampalli and Sapirstein for low $Z$ values but are compatible with the two known terms of the analytical $Z\\alpha$-expansion.

  2. Low energy antineutrino detection using neutrino capture on electron capture decaying nuclei

    SciTech Connect (OSTI)

    Cocco, Alfredo G.; Mangano, Gianpiero; Messina, Marcello

    2009-03-01

    In this paper we present a study of the interaction of a low energy electron antineutrino on nuclei that undergo electron capture. We show that the two corresponding crossed reactions have a sizable cross section and are both suitable for detection of low energy antineutrino. However, only in the case where very specific conditions on the Q value of the decay are met or significant improvements on the performances of ion storage rings are achieved, these reactions could be exploited in the future to address the long standing problem of a direct detection of cosmological neutrino background.

  3. Southern Hemisphere Additional Ozonesondes (SHADOZ) 19982004 tropical ozone climatology

    E-Print Network [OSTI]

    Thompson, Anne

    Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998­2004 tropical ozone climatology: 3 more than 3000 ozone profiles from 14 tropical and subtropical sites using balloon- borne technique might cause small station-to-station biases in the total ozone measurement. We present further

  4. Southern Hemisphere Additional Ozonesondes (SHADOZ) 19982000 tropical ozone climatology

    E-Print Network [OSTI]

    Thompson, Anne

    Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998­2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements Anne M. Thompson,1 Additional Ozonesondes (SHADOZ) project and established from operational sites, provided over 1000 ozone

  5. Holocene climate evolution in the high-latitude Southern Hemisphere

    E-Print Network [OSTI]

    Renssen, Hans

    temperature evolution during different seasons in the high-latitude Southern Hemisphere. We find in summer a thermal optimum in the mid- Holocene (6Į/3 ka BP), with temperatures locally 38C above the preindustrial insolation by 1 to 2 months owing to the thermal inertia of the system, and (2) the long memory

  6. Precipitation and Northern Hemisphere regimes Christoph C. Raiblea,*, Ute Lukschb

    E-Print Network [OSTI]

    Raible, Christoph C.

    Precipitation and Northern Hemisphere regimes Christoph C. Raiblea,*, Ute Lukschb , Klaus-correlations between the precipitation in the tropical and subtropical western Atlantic illustrate the changes of the Hadley cell with El Nin~o/Southern Oscillation (ENSO).The precipitation anomaly pattern in the north

  7. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Haiyan [Universit_e de Toulouse, Toulouse, France (Europe); National Institute of Standards Technology, Gaithersburg, MD (United States); Xin, Huolin L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhu, Ye [Monash Univ., Melbourne, VIC (Australia); Dwyer, Christian [Peter Grunberg Institute, Julich, Germany (Europe)

    2014-12-01

    Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5? (? is the electron mean-free path, here approximately 110 nm). At greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. Implications for the interpretation of atomic-scale elemental maps are discussed.

  8. System Architecture of the Dark Energy Survey Camera Readout Electronics

    SciTech Connect (OSTI)

    Shaw, Theresa; /FERMILAB; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; /Barcelona, IFAE; Chappa, Steve; /Fermilab; de Vicente, Juan; /Madrid, CIEMAT; Holm, Scott; Huffman, Dave; Kozlovsky, Mark; /Fermilab; Martinez, Gustavo; /Madrid, CIEMAT; Moore, Todd; /Madrid, CIEMAT /Fermilab /Illinois U., Urbana /Fermilab

    2010-05-27

    The Dark Energy Survey makes use of a new camera, the Dark Energy Camera (DECam). DECam will be installed in the Blanco 4M telescope at Cerro Tololo Inter-American Observatory (CTIO). DECam is presently under construction and is expected to be ready for observations in the fall of 2011. The focal plane will make use of 62 2Kx4K and 12 2kx2k fully depleted Charge-Coupled Devices (CCDs) for guiding, alignment and focus. This paper will describe design considerations of the system; including, the entire signal path used to read out the CCDs, the development of a custom crate and backplane, the overall grounding scheme and early results of system tests.

  9. Wanxiang Silicon Peak Electronics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village ofWaialua,Wallington,

  10. Electronic structure, molecular bonding and potential energy surfaces

    SciTech Connect (OSTI)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  11. Shenzhen Nenglian Electronic Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformation Nano Materials and Technology Jump

  12. Solder Joints of Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipmentSolar PVEquipment Salesof201110

  13. Solder Joints of Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipmentSolar PVEquipment Salesof20111009

  14. Lasers, Electron Beams and New Years Resolutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energy |Department of

  15. Environmental Effects on Power Electronic Devices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartment of Energy 3Environmental10 DOE

  16. Graphene, Hydrogen and Next-Generation Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGet Current:5LoggingGraphene, Hydrogen and

  17. DOE Reaches Agreement with LG Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us Ā»Buildings DOEDOEProgram

  18. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    SciTech Connect (OSTI)

    Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A.; Lewis, Nathan S.

    2014-04-07

    Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%–10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

  19. Plasma response to electron energy filter in large volume plasma device

    SciTech Connect (OSTI)

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K. [Institute for Plasma Research, Gandhinagar, 382 428 Gujarat (India)] [Institute for Plasma Research, Gandhinagar, 382 428 Gujarat (India)

    2013-12-15

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  20. Suntrack P4Q Electronics SL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLan SolarKoreaSuntechnics Belgium

  1. Mitsubishi Electric and Electronics USA Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectric Coop,Mithril GmbH Jump to:Corp

  2. Kraft Rt Kraft Electronics Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformationKizildereTexas:Solar IncKrafla Geothermal

  3. Driving on "Green" Electrons | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryofNotices | DepartmentDepartment ofWorking here atyou've

  4. Compel Electronics GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtd JumpAntasCompare My

  5. Beijing Zhongkexin Electronics Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:Bajo enInformationTianrun NewZhongkexin

  6. Boehm Electronic Systems Slowakei s r o | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence Jump to: navigation,BloomerBluewatt Jump to:BmpBoehm

  7. China Electronic Engineering Design Institute CEEDI | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:Changing WorldCalifornia:Dialogue Jump to:

  8. China Electronics Technology Group Corporation CETC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:Changing WorldCalifornia:Dialogue Jump

  9. SkyPower Pekon Electronics JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment Co LtdSimran

  10. Apower Electronics Co Ltd AEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola onAperion Energy SystemsApopka,

  11. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333 likes

  12. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333 likes333

  13. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333 likes333333

  14. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333

  15. Environmental Effects on Power Electronic Devices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartment of Energy 3Environmental10 DOE09 DOE

  16. Beijing Eastwest Electronics Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDateSAEngineeringBecosa EnergiasCoronaEastwest

  17. Tips: Home Office and Electronics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers at theAugust 1, 2013the NewKeep Your Home Office

  18. Consumer Electronics Show 2013 Highlights Sustainable Energy Technology |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22,FresnoSky)Nuclear8Under

  19. A low energy ion source for electron capture spectroscopy

    SciTech Connect (OSTI)

    Tusche, C.; Kirschner, J.

    2014-06-15

    We report on the design of an ion source for the production of single and double charged Helium ions with kinetic energies in the range from 300 eV down to 5 eV. The construction is based on a commercial sputter ion gun equipped with a Wien-filter for mass/charge separation. Retardation of the ions from the ionizer potential (2 keV) takes place completely within the lens system of the sputter gun, without modification of original parts. For 15 eV He{sup +} ions, the design allows for beam currents up to 30 nA, limited by the space charge repulsion in the beam. For He{sup 2+} operation, we obtain a beam current of 320?pA at 30 eV, and 46 pA at 5 eV beam energy, respectively. In addition, operating parameters can be optimized for a significant contribution of metastable He*{sup +} (2s) ions.

  20. Universality of electron distributions in high-energy air showers - description of Cherenkov light production

    E-Print Network [OSTI]

    F. Nerling; J. Blümer; R. Engel; M. Risse

    2005-12-22

    The shower simulation code CORSIKA has been used to investigate the electron energy and angular distributions in high-energy showers. Based on the universality of both distributions, we develop an analytical description of Cherenkov light emission in extensive air showers, which provides the total number and angular distribution of photons. The parameterisation can be used e.g. to calculate the contribution of direct and scattered Cherenkov light to shower profiles measured with the air fluorescence technique.

  1. Design and operation of a retarding field energy analyzer with variable focusing for space-charge-dominated electron beams

    E-Print Network [OSTI]

    Valfells, Įgśst

    -charge-dominated electron beams Y. Cui, Y. Zou, A. Valfells, M. Reiser, M. Walter, I. Haber, R. A. Kishek, S. Bernal, and P with electron beams of several keV, in which space-charge effects play an important role. A cylindrical focusing, high-energy colliders, free electron lasers, and other applications require high-quality intense beams

  2. Empirical Determination of the Energy Loss Rate of Accelerated Electrons in a Well-Observed Solar Flare

    E-Print Network [OSTI]

    Piana, Michele

    & Michele Piana1,3 ABSTRACT We present electron images of an extended solar flare source, deduced from the impulsive phase of a solar flare typically appears in the form of accelerated electrons. In the generallyEmpirical Determination of the Energy Loss Rate of Accelerated Electrons in a Well-Observed Solar

  3. Evolution of the electron energy distribution function during genesis of breakdown plasma

    SciTech Connect (OSTI)

    Bhattacharjee, Sudeep; Paul, Samit; Ghosh, Sayandip [Department of Physics, Indian Institute of Technology – Kanpur, Kanpur 208016 (India)

    2014-08-15

    During the process of plasma initiation by an electromagnetic wave, it is found that the electron energy distribution function (EEDF) that is initially Maxwellian with the most probable energy at room temperature, evolves with time and tends toward a Bi-Maxwellian?–?indicating attainment of thermodynamic equilibrium in the individual electron populations prior to breakdown, with a significant increase in hot electron density. In the intermediate states during the evolution, however, non-equilibrium processes are prevalent under fast pulse excitation and the EEDF initially exhibits substantial deviation from a Maxwellian. An analysis of the deviation has been carried out by optimizing the residual sum of squares of the probabilities obtained from the simulation and a fitted Maxwellian curve. The equilibrium regain time defined as the time required to attain thermodynamic equilibrium again, is investigated as a function of neutral pressure, wave electric, and external magnetostatic fields.

  4. The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA

    E-Print Network [OSTI]

    Achterberg, A.; IceCube Collaboration

    2008-01-01

    see also the Swift Gamma-Ray Burst Mission Page: http://from Northern Hemisphere Gamma-Ray Bursts with AMANDA A.Northern Hemisphere Gamma-Ray Bursts with AMANDA The IceCube

  5. Performance of large electron energy filter in large volume plasma device

    SciTech Connect (OSTI)

    Singh, S. K.; Srivastava, P. K.; Awasthi, L. M.; Mattoo, S. K.; Sanyasi, A. K.; Kaw, P. K. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India)] [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); Singh, R. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India) [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); WCI Center for Fusion Theory, National Fusion Research Institute Gwahangno 113, Yu-seong-gu, Daejeon, 305-333 (Korea, Republic of)

    2014-03-15

    This paper describes an in-house designed large Electron Energy Filter (EEF) utilized in the Large Volume Plasma Device (LVPD) [S. K. Mattoo, V. P. Anita, L. M. Awasthi, and G. Ravi, Rev. Sci. Instrum. 72, 3864 (2001)] to secure objectives of (a) removing the presence of remnant primary ionizing energetic electrons and the non-thermal electrons, (b) introducing a radial gradient in plasma electron temperature without greatly affecting the radial profile of plasma density, and (c) providing a control on the scale length of gradient in electron temperature. A set of 19 independent coils of EEF make a variable aspect ratio, rectangular solenoid producing a magnetic field (B{sub x}) of 100?G along its axis and transverse to the ambient axial field (B{sub z} ? 6.2?G) of LVPD, when all its coils are used. Outside the EEF, magnetic field reduces rapidly to 1?G at a distance of 20 cm from the center of the solenoid on either side of target and source plasma. The EEF divides LVPD plasma into three distinct regions of source, EEF and target plasma. We report that the target plasma (n{sub e} ? 2 × 10{sup 11}?cm{sup ?3} and T{sub e} ? 2?eV) has no detectable energetic electrons and the radial gradients in its electron temperature can be established with scale length between 50?and?600 cm by controlling EEF magnetic field. Our observations reveal that the role of the EEF magnetic field is manifested by the energy dependence of transverse electron transport and enhanced transport caused by the plasma turbulence in the EEF plasma.

  6. Microbial Origin of Desert Varnish Abstract. Scanning electron microscopy and energy dispersive x-ray analyse,

    E-Print Network [OSTI]

    Dorn, Ron

    Reports Microbial Origin of Desert Varnish Abstract. Scanning electron microscopy and energy bacteria support a microbial originfor manganese-) films. Varnish microbes can be cultured and produce environments appear to be a product of microbial activity. Desert varnish is a natural coating dominatedby

  7. Free-energy functional of the electronic potential for Schrödinger-Poisson theory

    E-Print Network [OSTI]

    Vikram Jadhao; Kaushik Mitra; Francisco J. Solis; Monica Olvera de la Cruz

    2014-12-15

    In the study of model electronic device systems where electrons are typically under confinement, a key obstacle is the need to iteratively solve the coupled Schr\\"{o}dinger-Poisson (SP) equation. It is possible to bypass this obstacle by adopting a variational approach and obtaining the solution of the SP equation by minimizing a functional. Further, using molecular dynamics methods that treat the electronic potential as a dynamical variable, the functional can be minimized on the fly in conjunction with the update of other dynamical degrees of freedom leading to considerable reduction in computational costs. But such approaches require access to a true free-energy functional, one that evaluates to the equilibrium free energy at its minimum. In this paper, we present a variational formulation of the Schr\\"{o}dinger-Poisson (SP) theory with the needed free-energy functional of the electronic potential. We apply our formulation to semiconducting nanostructures and provide the expression of the free-energy functional for narrow channel quantum wells where the local density approximation yields accurate physics and for the case of wider channels where Thomas-Fermi approximation is valid.

  8. Transmission electron energy-loss spectroscopy study of carbon nanotubes upon high temperature treatment

    E-Print Network [OSTI]

    Bertsch George F.

    Transmission electron energy-loss spectroscopy study of carbon nanotubes upon high temperature subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions #12;Transmission of carbon nanotube materials, grown with a pulsed-laser deposition technique but purified and heat treated

  9. Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets

    E-Print Network [OSTI]

    Mende, Stephen B.

    Discharge processes, electric field, and electron energy in ISUAL- recorded gigantic jets Cheng measurements of gigantic jets from the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) experiment. The velocity of the upward propagating fully developed jet stage of the gigantic jets was $107 m sĆ?1 , which

  10. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect (OSTI)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top

  11. 468 IEEE ELECTRON DEVICE LETTERS, VOL. EDL-7, NO. 8, AUGUST 1986 Low-Energy Ion Beam Oxidation of Silicon

    E-Print Network [OSTI]

    Fossum, Eric R.

    468 IEEE ELECTRON DEVICE LETTERS, VOL. EDL-7, NO. 8, AUGUST 1986 Low-Energy Ion Beam Oxidation and neutralized by a thermionic filament whose electron emission is adjusted to yield a net neutral beam of Silicon Abstract-A low-energyoxygen ion beam with energy below 100 eV has been applied to the oxidation

  12. Inclusion of nonadiabiatic effects in calculations on vibrational excitation of molecular hydrogen by low-energy electron impact

    E-Print Network [OSTI]

    Morrison, Michael A.

    Inclusion of nonadiabiatic effects in calculations on vibrational excitation of molecular hydrogen by low-energy electron impact S. Mazevet,1 Michael A. Morrison,1, * Olen Boydstun,1 and R. K. Nesbet2 1 dynamics in calculations of low-energy inelastic electron-molecule cross sections. This formalism uses

  13. Effects of Solvent and Solute Polarizability on the Reorganization Energy of Electron Shikha Gupta and Dmitry V. Matyushov*

    E-Print Network [OSTI]

    Matyushov, Dmitry

    Effects of Solvent and Solute Polarizability on the Reorganization Energy of Electron Transfer of the effect of solute and solvent polarizability on the solvent reorganization energy of intramolecular electron transfer. In the first set of simulations, the polarizability of the solvent is varied at constant

  14. Three-dimensional calculation of field electron energy distributions from open hydrogen-saturated and capped metallic

    E-Print Network [OSTI]

    Mayer, Alexandre

    Three-dimensional calculation of field electron energy distributions from open hydrogen-core potentials and the electronic exchange energy was evaluated using the local density ap- proximation 4 3CX 1 emission from open and capped 5,5 carbon nanotubes, with consideration of hydrogen saturation of the open

  15. 2004 AGU Fall Meeting SM42A-05 Hemispheric Asymmetries in the

    E-Print Network [OSTI]

    Fillingim, Matthew

    2004 AGU Fall Meeting SM42A-05 Hemispheric Asymmetries in the Dayside Aurora M. O. Fillingim, M of California, Berkeley Southern Hemisphere Polar UVI Northern Hemisphere IMAGE WIC #12;2004 AGU Fall Meeting SM #12;2004 AGU Fall Meeting SM42A-05 Introduction (cont'd) Previous conjugate observations limited

  16. ISOTROPIC ETCHING OF 111 SCS FOR WAFER-SCALE MANUFACTURING OF PERFECTLY HEMISPHERICAL SILICON MOLDS

    E-Print Network [OSTI]

    Afshari, Ehsan

    ISOTROPIC ETCHING OF 111 SCS FOR WAFER-SCALE MANUFACTURING OF PERFECTLY HEMISPHERICAL SILICON MOLDS as sacrificial molds for micro-scale hemispherical resonator gyroscopes (HRGs) made using hemispherical shell resonators. Geometric uniformity of the mold is critical for HRG applications in order to achieve degenerate

  17. Scaled Opposite Spin Second Order Moller-Plesset Correlation Energy: An Economical Electronic Structure Method

    SciTech Connect (OSTI)

    Jung, Yousung; Lochan, Rohini C.; Dutoi, Anthony D.; Head-Gordon, Martin

    2004-08-02

    A simplified approach to treating the electron correlation energy is suggested in which only the alpha-beta component of the second order Moller-Plesset energy is evaluated, and then scaled by an empirical factor which is suggested to be 1.3. This scaled opposite spin second order energy (SOS-MP2) yields results for relative energies and derivative properties that are statistically improved over the conventional MP2 method. Furthermore, the SOS-MP2 energy can be evaluated without the 5th order computational steps associated with MP2 theory, even without exploiting any spatial locality. A 4th order algorithm is given for evaluating the opposite spin MP2 energy using auxiliary basis expansions, and a Laplace approach, and timing comparisons are given.

  18. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect (OSTI)

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying; Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  19. Creation of transversely polarized high-energy electrons and positrons in crystals

    SciTech Connect (OSTI)

    Baryshevskii, V.B.; Tikhomirov, V.V.

    1983-07-01

    It is shown that when high-energy ..gamma.. quanta pass through a crystal at small angles to the crystallographic planes (axes) a new phenomenon arises: creation of transversely polarized electrons and positrons by unpolarized ..gamma.. quanta. Estimates based on the theory developed in this paper for this phenomenon show that it can be used to obtain transversely polarized electrons and positrons with degree of polarization 50--90% and with energies of hundreds and thousands GeV in the case of incidence of the ..gamma.. quanta on atomic planes, and starting with an energy of several tens of GeV in the case of incidence on atomic axes. Concrete calculations are made of the polarization, number, and angular distributions of positrons produced by 350-GeV ..gamma.. quanta incident on the (110) family of planes of a tungsten plate of thickness 3 x 10 cm. The features of the manifestation of the described phenomenon in bent crystals are analyzed.

  20. The Cause of Photospheric and Helioseismic Responses to Solar Flares: High-Energy Electrons or Protons?

    E-Print Network [OSTI]

    A. G. Kosovichev

    2007-10-03

    Analysis of the hydrodynamic and helioseismic effects in the photosphere during the solar flare of July 23, 2002, observed by Michelson Doppler Imager (MDI) on SOHO, and high-energy images from RHESSI shows that these effects are closely associated with sources of the hard X-ray emission, and that there are no such effects in the centroid region of the flare gamma-ray emission. These results demonstrate that contrary to expectations the hydrodynamic and helioseismic responses (''sunquakes") are more likely to be caused by accelerated electrons than by high-energy protons. A series of multiple impulses of high-energy electrons forms a hydrodynamic source moving in the photosphere with a supersonic speed. The moving source plays a critical role in the formation of the anisotropic wave front of sunquakes.

  1. Film Boiling on Downward Quenching Hemisphere of Varying Sizes

    SciTech Connect (OSTI)

    Chan S. Kim; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-04-01

    Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Laminar Transition Apparatus). Two test sections are made of copper to maintain low Biot numbers. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of all the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the test sections. The measured data are compared with the numerical predictions from laminar film boiling analysis. The measured heat transfer coefficients are found to be greater than those predicted by the conventional laminar flow theory on account of the interfacial wavy motion incurred by the Helmholtz instability. Incorporation of the wavy motion model considerably improves the agreement between the experimental and numerical results in terms of heat transfer coefficient. In addition, the interfacial wavy motion and the quenching process are visualized through a digital camera.

  2. Electron residual energy due to stochastic heating in field-ionized plasma

    E-Print Network [OSTI]

    Khalilzadeh, Elnaz; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz

    2015-01-01

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is here investigated. The optical response of plasma is initially modeled by using the concept of two counter-propagating electromagnetic waves. The solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared to the case without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will significantly be changed by applying a minor change to the initial conditions. Extensive kinetic 1D-3V particle-in-cell (PIC) simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in sufficient long pulse length is high enough to act as a second counter-propagating wave for triggering the stochastic e...

  3. Energy Spectrum of the Electrons Accelerated by a Reconnection Electric Field: Exponential or Power Law?

    E-Print Network [OSTI]

    W. J. Liu; P. F. Chen; M. D. Ding; C. Fang

    2009-01-10

    The direct current (DC) electric field near the reconnection region has been proposed as an effective mechanism to accelerate protons and electrons in solar flares. A power-law energy spectrum was generally claimed in the simulations of electron acceleration by the reconnection electric field. However in most of the literature, the electric and magnetic fields were chosen independently. In this paper, we perform test-particle simulations of electron acceleration in a reconnecting magnetic field, where both the electric and magnetic fields are adopted from numerical simulations of the MHD equations. It is found that the accelerated electrons present a truncated power-law energy spectrum with an exponential tail at high energies, which is analogous to the case of diffusive shock acceleration. The influences of reconnection parameters on the spectral feature are also investigated, such as the longitudinal and transverse components of the magnetic field and the size of the current sheet. It is suggested that the DC electric field alone might not be able to reproduce the observed single or double power-law distributions.

  4. Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants

    E-Print Network [OSTI]

    V. N. Zirakashvili; F. Aharonian

    2007-10-26

    %context {Recent observations of hard X-rays and very high energy gamma-rays from a number of young shell type supernova remnants indicate the importance of detailed quantitative studies of energy spectra of relativistic electrons formed via diffusive shock acceleration accompanied by intense nonthermal emission through synchrotron radiation and inverse Compton scattering.} %aim {The aim of this work was derivation of exact asymptotic solutions of the kinetic equation which describes the energy distribution of shock-accelerated electrons for an arbitrary energy-dependence of the diffusion coefficient.} %method {The asymptotic solutions at low and very high energy domains coupled with numerical calculations in the intermediate energy range allow analytical presentations of energy spectra of electrons for the entire energy region.} %results {Under the assumption that the energy losses of electrons are dominated by synchrotron cooling, we derived the exact asymptotic spectra of electrons without any restriction on the diffusion coefficient. We also obtained simple analytical approximations which describe, with accuracy better than ten percent, the energy spectra of nonthermal emission of shock-accelerated electrons due to the synchrotron radiation and inverse Compton scattering.} %conclusions {The results can be applied for interpretation of X-ray and gamma-ray observations of shell type supernova remnants, as well as other nonthermal high energy source populations like microquasars and large scale synchrotron jets of active galactic nuclei.

  5. 728 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006 The Electron Diffusion Coefficient in Energy

    E-Print Network [OSTI]

    Kaganovich, Igor

    Coefficient in Energy in Bounded Collisional Plasmas Lev D. Tsendin Abstract--The electron energies in typical, the momentum relaxation in collisions with neutrals is sig- nificantly faster than the energy relaxation due be de- scribed by a diffusion coefficient in energy . Both collisional and stochastic heating mechanisms

  6. Stable Electron Beams With Low Absolute Energy Spread From a Laser Wakefield Accelerator With Plasma Density Ramp Controlled Injection

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    -keV level energy spread and central energy sta- bility by using the plasma density profile to control self is reached. Because dephasing limits electron energy gain [2], low densities ( to order of 100 keV at GeV energies and beyond. RESULTS In the present experiments, the density profile

  7. Energy and Climate Partnership of the Americas Western Hemisphere...

    Office of Environmental Management (EM)

    toward a collective doubling of renewable sources such as solar, wind, small-scale hydropower, sustainable biomass, and geothermal, by 2030. This initiative seeks to increase...

  8. IceVeto: Extended PeV neutrino astronomy in the Southern Hemisphere with IceCube

    SciTech Connect (OSTI)

    Auffenberg, Jan; Collaboration: IceCube Collaboration

    2014-11-18

    IceCube, the world's largest high-energy neutrino observatory, built at the South Pole, recently reported evidence of an astrophysical neutrino flux extending to PeV energies in the Southern Hemisphere. This observation raises the question of how the sensitivity in this energy range could be further increased. In the down-going sector, in IceCube's case the Southern Hemisphere, backgrounds from atmospheric muons and neutrinos pose a challenge to the identification of an astrophysical neutrino flux. The IceCube analysis, that led to the evidence for astrophysical neutrinos, is based on an in-ice veto strategy for background rejection. One possibility available to IceCube is the concept of an extended surface detector, IceVeto, which could allow the rejection of a large fraction of atmospheric backgrounds, primarily for muons from cosmic ray (CR) air showers as well as from neutrinos in the same air showers. Building on the experience of IceTop/IceCube, possibly the most cost-effective and sensitive way to build IceVeto is as an extension of the IceTop detector, with simple photomultiplier based detector modules for CR air shower detection. Initial simulations and estimates indicate that such a veto detector will significantly increase the sensitivity to an astrophysical flux of ?{sub ?} induced muon tracks in the Southern Hemisphere compared to current analyses. Here we present the motivation and capabilities based on initial simulations. Conceptual ideas for a simplified surface array will be discussed briefly.

  9. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Haiyan; Zhu, Ye; Dwyer, Christian; Xin, Huolin L.

    2014-12-31

    Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5? (? is the electron mean-free path, here approximately 110 nm). Atmore »greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.« less

  10. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy

    SciTech Connect (OSTI)

    Tan, Haiyan; Zhu, Ye; Dwyer, Christian; Xin, Huolin L.

    2014-12-31

    Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5? (? is the electron mean-free path, here approximately 110 nm). At greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.

  11. Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail electron distribution

    SciTech Connect (OSTI)

    Younsi, Smain; Tribeche, Mouloud

    2008-07-15

    Large amplitude as well as weakly nonlinear dust acoustic waves in a mixed nonthermal high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from Boltzmann distribution on the large amplitude dust acoustic soliton are then considered. The dust charge variation leads to an additional enlargement of the dust acoustic soliton, which is more pronounced as the electrons evolve far away from Maxwell-Boltzmann distribution. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. The results complement and provide new insights into our previously published results on this problem [K. Aoutou, M. Tribeche, and T. H. Zerguini, Phys. Plasmas 15, 013702 (2008)].

  12. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    SciTech Connect (OSTI)

    Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

    2008-10-08

    Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

  13. High Energy Electron Signals from Dark Matter Annihilation in the Sun

    SciTech Connect (OSTI)

    Schuster, Philip; Toro, Natalia; Weiner, Neal; Yavin, Itay; /New York U., CCPP

    2012-04-09

    In this paper we discuss two mechanisms by which high energy electrons resulting from dark matter annihilations in or near the Sun can arrive at the Earth. Specifically, electrons can escape the sun if DM annihilates into long-lived states, or if dark matter scatters inelastically, which would leave a halo of dark matter outside of the sun. Such a localized source of electrons may affect the spectra observed by experiments with narrower fields of view oriented towards the sun, such as ATIC, differently from those with larger fields of view such as Fermi. We suggest a simple test of these possibilities with existing Fermi data that is more sensitive than limits from final state radiation. If observed, such a signal will constitute an unequivocal signature of dark matter.

  14. Insight into the photoelectron angular dependent energy distribution of negative-electron-affinity InP photocathodes

    SciTech Connect (OSTI)

    Chen, Zhanghui; Jiang, Xiangwei; Dong, Shan; Li, Jingbo Li, Shushen; Wang, Linwang

    2014-01-13

    Energy distribution and angular distribution of the photoelectrons from InP photocathodes are investigated using a precise Monte Carlo model. It is found that ?-valley electrons contribute to the first peak of the energy distribution curve, but the second peak is contributed by both ?-valley and L-valley electrons rather than only L-valley electrons. L valley electrons are shown to have a smaller angular spread than ?-valley electrons, which is attributed to the much higher potential energy of L-valley minimum. The further simulation indicates that the performance of InP photocathodes can be improved by increasing the hole concentration or decreasing the temperature, but the activation layer thickness variation only has very slight influence on either energy or angular distribution.

  15. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination

    SciTech Connect (OSTI)

    Lovley, DR

    2011-12-01

    Microorganisms that can form direct electrical connections with insoluble minerals, electrodes, or other microorganisms can play an important role in some traditional as well as novel bioenergy strategies and can be helpful in the remediation of environmental contamination resulting from the use of more traditional energy sources. The surprising discovery that microorganisms in the genus Geobacter are capable of forming highly conductive networks of filaments that transfer electrons along their length with organic metallic-like conductivity, rather than traditional molecule to molecule electron exchange, provides an explanation for the ability of Geobacter species to grow in subsurface environments with insoluble Fe(III) oxides as the electron acceptor, and effectively remediate groundwater contaminated with hydrocarbon fuels or uranium and similar contaminants associated with the mining and processing of nuclear fuel. A similar organic metallic-like conductivity may be an important mechanism for microorganisms to exchange electrons in syntrophic associations, such as those responsible for the conversion of organic wastes to methane in anaerobic digesters, a proven bioenergy technology. Biofilms with conductivities rivaling those of synthetic polymers help Geobacter species generate the high current densities in microbial fuel cells producing electric current from organic compounds. Electron transfer in the reverse direction, i.e. from electrodes to microbes, is the basis for microbial electrosynthesis, in which microorganisms reduce carbon dioxide to fuels and other useful organic compounds with solar energy in a form of artificial photosynthesis that is more efficient and avoids many of the environmental sustainability concerns associated with biomass-based bioenergy strategies. The ability of Geobacter species to produce highly conductive electronic networks that function in water opens new possibilities in the emerging field of bioelectronics.

  16. Electronic structure of nitinol surfaces oxidized by low-energy ion bombardment

    SciTech Connect (OSTI)

    Petravic, M. Varasanec, M.; Peter, R.; Kavre, I.; Metikos-Hukovic, M.; Yang, Y.-W.

    2014-06-28

    We have studied the electronic structure of nitinol exposed to low-energy oxygen-ion bombardment, using x-ray photoemission spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. XPS spectra reveal a gradual transformation of nitinol surfaces into TiO{sub 2} with increased dose of implanted oxygen. No oxidation of Ni atoms has been detected. NEXAFS spectra around O K-edge and Ti L{sub 2,3}-edge, reflecting the element-specific partial density of empty electronic states, exhibit features, which can be attributed to the creation of molecular orbitals, crystal field splitting, and the absence of long-range order, characteristic of the amorphous TiO{sub 2}. Based on these results, we discuss the oxidation kinetics of nitinol under low-energy oxygen-ion bombardment.

  17. Two-Phase Cooling Technology for Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy Two Companies RecognizedTribalElectronics

  18. The Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks

    E-Print Network [OSTI]

    Yao, Kun

    2015-01-01

    We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from electron density. The output of the network is used as a non-local correction to the conventional local and semi-local kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. Numerical noise inherited from the non-linearity of the neural network is identified as the major challenge for the model. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.

  19. Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials

    SciTech Connect (OSTI)

    Zhang, Yanwen; Varga, Tamas; Ishimaru, Dr. Manabu; Edmondson, Dr. Philip; Xue, Haizhou; Liu, Peng; Moll, Sandra; Namavar, Fereydoon; Hardiman, Chris; Shannon, Prof. Steven; Weber, William J

    2014-01-01

    Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence on the growth rate is observed under Si and Au irradiations. While grain shrinkage and amorphization are observed in the nano-engineered 3C SiC with a high-density of stacking faults embedded in nanosize columnar grains, significantly enhanced radiation resistance is attributed to stacking faults that promote efficient point defect annihilation. Moreover, competing effects of electronic and nuclear energy loss on the damage accumulation and annihilation are observed in crystalline 4H-SiC. Systematic experiments and simulation effort are needed to understand the competitive or synergistic effects.

  20. Electron Beam Energy Chirp Control with a Rectangular Corrugated Structure at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Bane, Karl; Ding, Yantao; Huang, Zhirong; Iverson, Richard; Maxwell, Timothy; Stupakov, Gennady; Wang, Lanfa

    2015-01-30

    Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (#24;100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a #12;field matching program to obtain the wakes. Based on the numerical calculations, we #12;fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.

  1. Electron Beam Energy Chirp Control with a Rectangular Corrugated Structure at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Bane, Karl; Ding, Yantao; Huang, Zhirong; Iverson, Richard; Maxwell, Timothy; Stupakov, Gennady; Wang, Lanfa

    2015-01-30

    Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (#24;100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size similar tomore »the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a #12;field matching program to obtain the wakes. Based on the numerical calculations, we #12;fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.« less

  2. Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion

    SciTech Connect (OSTI)

    Li, C.K.; Petrasso, R.D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2006-05-15

    Energy deposition of MeV electrons in dense plasmas, important for fast ignition in inertial confinement fusion, is modeled analytically. It is shown that classical stopping and scattering dominate electron transport and energy deposition when the electrons reach the dense plasmas in the cores of compressed targets, while 'anomalous' stopping associated with self-generated fields and micro-instabilities (suggested by previous simulations) might initially play an important role in the lower-density plasmas outside the dense core. For MeV electrons in precompressed deuterium-tritium fast-ignition targets, the initial penetration results in approximately uniform energy deposition but the latter stages of penetration involve mutual couplings of energy loss, straggling, and blooming that lead to enhanced, nonuniform energy deposition. This model can be used for quantitatively assessing ignition requirements for fast ignition.

  3. Electron-impact excitation of xenon at incident energies between 15 and 80 eV

    SciTech Connect (OSTI)

    Filipovic-acute-accent, D.; Marinkovic-acute-accent, B.; Pejcev, V.; Vuskovic-acute-accent, a.L.

    1988-01-15

    Normalized, absolute differential cross sections (DCS's) have been measured for the 20 lowest electronic states of xenon. Incident electron energies were 15, 20, 30, and 80 eV and the scattering angles ranged from 5/sup 0/ to 150/sup 0/. The energy resolution was 40 meV. Absolute elastic DCS's have been obtained by normalizing the relative values to the recently published absolute elastic DCS's by Register et al. (J. Phys. B 19, 1685 (1986)). Elastic-to-inelastic intensity ratios, at different incident energies for the 6s((3/2)/sub 1/ state were determined. These ratios were utilized as secondary standards to establish the absolute scale for the other inelastic processes in accordance with intensity ratios of lines in energy-loss spectra. The absolute inelastic DCS's were extrapolated to 0/sup 0/ and 180/sup 0/ and integrated to yield the integral cross sections (ICS's). A comparison of the present DCS's with the only available measurements at 20 eV impact energy shows satisfactory agreement in shape but considerable difference in absolute value.

  4. CP violation and electric-dipole-moment at low energy $?$ production with polarized electrons

    E-Print Network [OSTI]

    J. Bernabeu G. A. Gonzalez-Sprinberg J. Vidal

    2006-10-11

    The new proposals for high luminosity B/Flavor factories, near and on top of the $\\Upsilon$ resonances, allow for a detailed investigation of CP-violation in the $\\tau$-pair production. In particular, bounds on the tau electric dipole moment can be obtained from genuine CP-odd observables related to the $\\tau$-pair production. We perform an independent analysis from low energy (10 GeV) data by means of linear spin observables. We show that, for a longitudinally polarized electron beam, a CP-odd asymmetry, associated to the normal polarization term, can be measured at these low energy facilities both at resonant and non resonant energies. In this way, stringent and independent bounds to the tau electric dipole moment, which are orders of magnitude below other high or low energy bounds, can be obtained.

  5. CP violation and electric-dipole-moment at low energy $\\tau$ production with polarized electrons

    E-Print Network [OSTI]

    Vidal, J B G A G S J

    2007-01-01

    The new proposals for high luminosity B/Flavor factories, near and on top of the $\\Upsilon$ resonances, allow for a detailed investigation of CP-violation in the $\\tau$-pair production. In particular, bounds on the tau electric dipole moment can be obtained from genuine CP-odd observables related to the $\\tau$-pair production. We perform an independent analysis from low energy (10 GeV) data by means of linear spin observables. We show that, for a longitudinally polarized electron beam, a CP-odd asymmetry, associated to the normal polarization term, can be measured at these low energy facilities both at resonant and non resonant energies. In this way, stringent and independent bounds to the tau electric dipole moment, which are orders of magnitude below other high or low energy bounds, can be obtained.

  6. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

  7. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

  8. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

    SciTech Connect (OSTI)

    Albert Mendoza; Yan Shi; Connor Flynn

    2011-03-22

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

  9. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    1990-01-01

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

  10. This research emphasizes the use of Scanning/Transmission Electron Microscopy and Electron Energy Loss Spectroscopy to characterize several functional materials. Along with the fast development of science and

    E-Print Network [OSTI]

    This research emphasizes the use of Scanning/Transmission Electron Microscopy and Electron Energy Loss Spectroscopy to characterize several functional materials. Along with the fast development of science and technology, the studied materials is becoming more complicated and smaller. All

  11. Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells. de Bariloche, Argentina 3 ECN Solar Energy, High Tech Campus, Building 5, 5656 AE Eindhoven energy-loss spectroscopy (EELS) is used to study p-doped layers in n-i-p amorphous thin film Si solar

  12. IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 28, NO. 9, SEPTEMBER 2013 4227 Energy Recycling From Multigigahertz Clocks Using

    E-Print Network [OSTI]

    Lemieux, Guy

    IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 28, NO. 9, SEPTEMBER 2013 4227 Energy Recycling From cycle, the large aggregate capacitance of the clock network is charged from the supply and then discharged to ground. Instead of wasting this stored energy, it is possible to recycle the energy

  13. Modeling the Effects of Mutations on the Free Energy of the First Electron Transfer to QB in Photosynthetic Reaction Centers

    E-Print Network [OSTI]

    Gunner, Marilyn

    Modeling the Effects of Mutations on the Free Energy of the First Electron Transfer from QA - to QB, 1999; ReVised Manuscript ReceiVed February 14, 2000 ABSTRACT: Numerical calculations of the free energy changes in nearby residues. This reduces the effect of mutation and makes the changes in state free energy

  14. Energy of the quasi-free electron in low density Ar and Kr: Extension of the local

    E-Print Network [OSTI]

    Findley, Gary L.

    Energy of the quasi-free electron in low density Ar and Kr: Extension of the local Wigner induced shift of the CH3I ion- ization energy at low perturber number densities and analyze these data­15]. In both regions, the perturber-induced energy shift (P), where P is the perturber number density

  15. Observed hemispheric asymmetry in global sea ice changes

    SciTech Connect (OSTI)

    Cavalieri, D.J.; Gloersen, P.; Parkinson, C.L.; Comiso, J.C.; Zwally, H.J.

    1997-11-07

    From November 1978 through December 1996, the areal extent of sea ice decreased by 2.9 {+-} 0.4 percent decade in the Arctic and increased by 1.3 {+-} 0.2 percent per decade in the Antarctic. The observed hemispheric asymmetry in these trends is consistent with a modeled response to a carbon dioxide-induced climate warming. The interannual variations, which are 2.3 percent of the annual mean in the Arctic, with a predominant period of about 5 years, and 3.4 percent of the annual mean in the Antarctic, with a predominant period of about 3 years, are uncorrelated. 29 refs., 2 figs., 1 tab.

  16. Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy

    SciTech Connect (OSTI)

    Wang, Feng; Graetz, Jason; Moreno, M. Sergio; Ma, Chao; Wu, Lijun; Volkov, Vyacheslav; Zhu, Yimei

    2011-01-01

    Direct mapping of the lithium spatial distribution and the chemical state provides critical information on structure-correlated lithium transport in electrode materials for lithium batteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses an extreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid?electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10?50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.

  17. Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy

    SciTech Connect (OSTI)

    Zhu, Y.; Wang, F.; Graetz, J.; Moreno, M.S.; Ma, C.; Wu, L.; Volkov, V.

    2011-02-01

    Direct mapping of the lithium spatial distribution and the chemical state provides critical information on structure-correlated lithium transport in electrode materials for lithium batteries. Nevertheless, probing lithium, the lightest solid element in the periodic table, poses an extreme challenge with traditional X-ray or electron scattering techniques due to its weak scattering power and vulnerability to radiation damage. Here, we report nanoscale maps of the lithium spatial distribution in electrochemically lithiated graphite using electron energy loss spectroscopy in the transmission electron microscope under optimized experimental conditions. The electronic structure of the discharged graphite was obtained from the near-edge fine structure of the Li and C K-edges and ab initio calculations. A 2.7 eV chemical shift of the Li K-edge, along with changes in the density of states, reveals the ionic nature of the intercalated lithium with significant charge transfer to the graphene sheets. Direct mapping of lithium in graphite revealed nanoscale inhomogeneities (nonstoichiometric regions), which are correlated with local phase separation and structural disorder (i.e., lattice distortion and dislocations) as observed by high-resolution transmission electron microscopy. The surface solid-electrolyte interphase (SEI) layer was also imaged and determined to have a thickness of 10-50 nm, covering both edge and basal planes with LiF as its primary inorganic component. The Li K-edge spectroscopy and mapping, combined with electron microscopy-based structural analysis provide a comprehensive view of the structure-correlated lithium intercalation in graphite and of the formation of the SEI layer.

  18. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jefferson Lab

    E-Print Network [OSTI]

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Filatov, Yu; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Nadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzi?, B; Tiefenback, M; Wang, H; Wang, S; Weiss, C; Yunn, B; Zhang, Y

    2012-01-01

    This report presents a brief summary of the science opportunities and program of a polarized medium energy electron-ion collider at Jefferson Lab and a comprehensive description of the conceptual design of such a collider based on the CEBAF electron accelerator facility.

  19. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jefferson Lab

    E-Print Network [OSTI]

    S. Abeyratne; A. Accardi; S. Ahmed; D. Barber; J. Bisognano; A. Bogacz; A. Castilla; P. Chevtsov; S. Corneliussen; W. Deconinck; P. Degtiarenko; J. Delayen; Ya. Derbenev; S. DeSilva; D. Douglas; V. Dudnikov; R. Ent; B. Erdelyi; P. Evtushenko; Yu. Filatov; D. Gaskell; R. Geng; V. Guzey; T. Horn; A. Hutton; C. Hyde; R. Johnson; Y. Kim; F. Klein; A. Kondratenko; M. Kondratenko; G. Krafft; R. Li; F. Lin; S. Manikonda; F. Marhauser; R. McKeown; V. Morozov; P. Nadel-Turonski; E. Nissen; P. Ostroumov; M. Pivi; F. Pilat; M. Poelker; A. Prokudin; R. Rimmer; T. Satogata; H. Sayed; M. Spata; M. Sullivan; C. Tennant; B. Terzi?; M. Tiefenback; H. Wang; S. Wang; C. Weiss; B. Yunn; Y. Zhang

    2012-09-05

    This report presents a brief summary of the science opportunities and program of a polarized medium energy electron-ion collider at Jefferson Lab and a comprehensive description of the conceptual design of such a collider based on the CEBAF electron accelerator facility.

  20. Structure of the hydrogen stabilized MgO(111)-(1 1) surface from low energy electron diffraction (LEED)

    E-Print Network [OSTI]

    Saldin, Dilano

    (LEED) H.C. Poon, X.F. Hu, S.E. Chamberlin, D.K. Saldin, C.J. Hirschmugl * Department of Physics study has been performed on the MgO(111)-(1 · 1) surface by low energy electron diffraction (LEED) using experimental data obtained with a delay-line-detector LEED (DLD-LEED) system to minimize electron damage

  1. Spectroscopic investigation of photo-induced proton-coupled electron transfer and Dexter energy transfer in model systems

    E-Print Network [OSTI]

    Young, Elizabeth R. (Elizabeth Renee), 1980-

    2009-01-01

    Spectroscopic investigations of systems designed to advance the mechanistic interrogation of photo-induced proton coupled electron transfer (PCET) and proton-coupled (through-bond) energy transfer (PCEnT) are presented. ...

  2. Radiation effects in nuclear materials: Role of nuclear and electronic energy losses and their synergy

    SciTech Connect (OSTI)

    Thomé, Lionel; Debelle, Aurelien; Garrido, Frederico; Mylonas, Stamatis; Décamps, B.; Bachelet, C.; Sattonnay, G.; Pellegrino, S.; Miro, S.; Trocellier, P.; Serruys, Y.; Velisa, G.; Grygiel, C.; Monnet, I.; Toulemonde, Marcel; Simon, P.; Jagielski, Jacek; Jozwik-Biala, Iwona; Nowicki, Lech; Behar, M.; Weber, William J; Zhang, Yanwen; Backman, Marie; Nordlund, Kai; Djurabekova, Flyura

    2013-01-01

    Ceramic oxides and carbides are promising matrices for the immobilization and/or transmutation of nuclear wastes, cladding materials for gas-cooled fission reactors and structural components for fusion reactors. For these applications there is a need of fundamental data concerning the behavior of nuclear ceramics upon irradiation. This article is focused on the presentation of a few remarkable examples regarding ion-beam modifications of nuclear ceramics with an emphasis on the mechanisms leading to damage creation and phase transformations. Results obtained by combining advanced techniques (Rutherford backscattering spectrometry and channeling, X-ray diffraction, transmission electron microscopy, Raman spectroscopy) concern irradiations in a broad energy range (from keV to GeV) with the aim of exploring both nuclear collision (Sn) and electronic excitation (Se) regimes. Finally, the daunting challenge of the demonstration of the existence of synergistic effects between Sn and Se is tackled by discussing the healing due to intense electronic energy deposition (SHIBIEC) and by reporting results recently obtained in dual-beam irradiation (DBI) experiments.

  3. EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01

    Tackling Growth in Home Electronics and Small Appliancesassociated with home electronics and other small appliancesequipment, consumer electronics, and other small household

  4. Benchmark Evaluation of Plutonium Hemispheres Reflected by Steel and Oil

    SciTech Connect (OSTI)

    John Darrell Bess

    2008-06-01

    During the period from June 1967 through September 1969 a series of critical experiments was performed at the Rocky Flats Critical Mass Laboratory with spherical and hemispherical plutonium assemblies as nested hemishells as part of a Nuclear Safety Facility Experimental Program to evaluate operational safety margins for the Rocky Flats Plant. These assemblies were both bare and fully or partially oil-reflected. Many of these experiments were subcritical with an extrapolation to critical configurations or critical at a particular oil height. Existing records reveal that 167 experiments were performed over the course of 28 months. Unfortunately, much of the data was not recorded. A reevaluation of the experiments had been summarized in a report for future experimental and computational analyses. This report examines only fifteen partially oil-reflected hemispherical assemblies. Fourteen of these assemblies also had close-fitting stainless-steel hemishell reflectors, used to determine the effective critical reflector height of oil with varying steel-reflector thickness. The experiments and their uncertainty in keff values were evaluated to determine their potential as valid criticality benchmark experiments of plutonium.

  5. Performance evaluation of booster materials in the plastic bonded explosive PBX 9502 in a hemispherical wave breakout test

    SciTech Connect (OSTI)

    Hooks, Daniel E; Morris, John S; Hill, Larry G; Francois, Elizabeth

    2008-01-01

    An explosive booster is normally required to initiate detonation in an insensitive high explosive (lHE). Booster materials must be ignitable by a conventional detonator and deliver sufficient energy and favorable pulse shape to initiate the IHE charge. The explosive booster should be as insensitive as reasonably possible to maintain the overall safety margin of the explosive assembly. A hemispherical wave breakout test termed the on ionskin test is one of the methods of testing the performance of booster materials in an initiation train assembly. There are several variations of this basic test which are known by other names. In this test, the wave breakout time-position history at the surface of a hemispherical IHE acceptor charge is recorded, and the relative uniformity of breakout allows qualitative comparison between booster candidates and quantitative comparison of several metrics. The results of a series of onionskin experiments evaluating the performance of some new booster formulations in the triaminotrinitrobenzene (TA TB) -based plastic bonded explosive PBX 9502 will be presented. The boosters were tested in an onionskin arrangement in which the booster pellet was cylindrical, and the tests were performed at a temperature of-55{sup o}C to emphasize variations in spreading performance. The modification from the traditional hemispherical geometry facilitated efficient explosive fabrication and charge assembly, but the results indicate that this geometry was not ideal for several reasons. Despite the complications arising from geometry, promising performance was observed from booster formulations including 3,3' -diamino-4,4'azoxyfurazan.

  6. Response of CdWO4 crystal scintillator for few MeV ions and low energy electrons

    E-Print Network [OSTI]

    P. G. Bizzeti; L. Carraresi; F. A. Danevich; T. Fazzini; P. R. Maurenzig; F. Taccetti; N. Taccetti; V. I. Tretyak

    2012-08-31

    The response of a CdWO4 crystal scintillator to protons, alpha particles, Li, C, O and Ti ions with energies in the range 1 - 10 MeV was measured. The non-proportionality of CdWO4 for low energy electrons (4 - 110 keV) was studied with the Compton Coincidence Technique. The energy dependence of the quenching factors for ions and the relative light yield for low energy electrons was calculated using a semi-empirical approach. Pulse-shape discrimination ability between gamma quanta, protons, alpha particles and ions was investigated.

  7. The slingshot effect: A possible new laser-driven high energy acceleration mechanism for electrons

    SciTech Connect (OSTI)

    Fiore, Gaetano; Fedele, Renato; Angelis, Umberto de

    2014-11-15

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (“slingshot effect”). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

  8. The slingshot effect: a possible new laser-driven high energy acceleration mechanism for electrons

    E-Print Network [OSTI]

    Gaetano Fiore; Renato Fedele; Umberto de Angelis

    2014-11-14

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of propagation of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation ("slingshot effect"). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or Laser-Wake-Field ones.

  9. New Approach for the Electronic Energies of the Hydrogen Molecular Ion

    E-Print Network [OSTI]

    Scott, T C; Grotendorst, J; Scott, Tony C.; Aubert-Frecon, Monique; Grotendorst, Johannes

    2006-01-01

    Herein, we present analytical solutions for the electronic energy eigenvalues of the hydrogen molecular ion H2+, namely the one-electron two-fixed-center problem. These are given for the homonuclear case for the countable infinity of discrete states when the magnetic quantum number m is zero. In this case, these solutions are the roots of a set of two coupled three-term recurrence relations. The eigensolutions are obtained from an application of EXPERIMENTAL MATHEMATICS using Computer Algebra as its principal tool and are vindicated by numerical and algebraic demonstrations. Finally, the mathematical nature of the eigenenergies is identified. The eigenenergies are related to a generalization of the Lambert W function.

  10. Electronic Coupling Dependence of Ultrafast Interfacial Electron...

    Office of Scientific and Technical Information (OSTI)

    Electron Transfer on Nanocrystalline Thin Films and Single Crystal Lian, Tianquan 14 SOLAR ENERGY The long-term goal of the proposed research is to understand electron transfer...

  11. Energy levels and decoherence properties of single electron and nuclear spins in a defect center in diamond

    E-Print Network [OSTI]

    I. Popa; T. Gaebel; M. Domhan; C. Wittmann; F. Jelezko; J. Wrachtrup

    2004-09-12

    The coherent behavior of the single electron and single nuclear spins of a defect center in diamond and a 13C nucleus in its vicinity, respectively, are investigated. The energy levels associated with the hyperfine coupling of the electron spin of the defect center to the 13C nuclear spin are analyzed. Methods of magnetic resonance together with optical readout of single defect centers have been applied in order to observe the coherent dynamics of the electron and nuclear spins. Long coherence times, in the order of microseconds for electron spins and tens of microseconds for nuclear spins, recommend the studied system as a good experimental approach for implementing a 2-qubit gate.

  12. MeV electrons accelerated backward along laser axis from low energy, high intensity laser-water interactions

    E-Print Network [OSTI]

    Feister, Scott; Morrison, John T; Frische, Kyle D; Orban, Chris; Ngirmang, Gregory; Handler, Abraham; Schillaci, Mark; Chowdhury, Enam A; Freeman, R R; Roquemore, W M

    2015-01-01

    Direct electron spectrum measurements show MeV energy electrons generated backward along the laser axis by a $\\lambda =$ 780 nm, 40 fs, 2.9 mJ short-pulse laser ($1.5 \\cdot 10^{18}$ W/cm$^2$). Electrons pass through a 3 mm hole in the center of the final off-axis paraboloid (OAP) and are characterized by a magnetic spectrometer. The charge collected at the OAP is hundreds of pC per pulse. A mechanism for this super-ponderomotive backward electron acceleration is discussed in the framework of 3D Particle-in-cell simulations.

  13. Study of O/Ni(100) with LEED (low-energy electron diffraction) and AES (auger electron spectroscopy) from chemisorption to oxidation

    SciTech Connect (OSTI)

    Wang, Wen-Di.

    1990-11-16

    The structures formed on the Ni(100) surface during oxygen adsorption, leading to oxidation, are studied with Video-LEED (low-energy electron diffraction) and AES (Auger electron spectroscopy). The temperature- and exposure-dependence in the development of LEED patterns observed during oxidation of Ni(100), at oxidation temperatures of 80 to 400 K, are investigated extensively. Integrated diffraction spot intensities and fractional spot profiles are measured quantitatively and continuously, allowing unambiguous correlation of various surface processes. AES is used to measure the oxidation onset during adsorption and the final relative thickness of the oxide. 48 figs., 79 refs.

  14. High-energy high-luminosity electron-ion collider eRHIC

    SciTech Connect (OSTI)

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.; et al

    2011-08-09

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. The replacement cost of the RHIC facility is about two billion US dollars, and the eRHIC will fully take advantage and utilize this investment. We plan adding a polarized 5-30 GeV electron beam to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a top energy of 325 GeV, to heavy fully-striped ions with energies up to 130 GeV/u. Brookhaven's innovative design, is based on one of the RHIC's hadron rings and a multi-pass energy-recovery linac (ERL). Using the ERL as the electron accelerator assures high luminosity in the 10{sup 33}-10{sup 34} cm{sup -2} sec{sup -1} range, and for the natural staging of eRHIC, with the ERL located inside the RHIC tunnel. The eRHIC will provide electron-hadron collisions in up to three interaction regions. We detail the eRHIC's performance in Section 2. Since first paper on eRHIC paper in 2000, its design underwent several iterations. Initially, the main eRHIC option (the so-called ring-ring, RR, design) was based on an electron ring, with the linac-ring (LR) option as a backup. In 2004, we published the detailed 'eRHIC 0th Order Design Report' including a cost-estimate for the RR design. After detailed studies, we found that an LR eRHIC has about a 10-fold higher luminosity than the RR. Since 2007, the LR, with its natural staging strategy and full transparency for polarized electrons, became the main choice for eRHIC. In 2009, we completed technical studies of the design and dynamics for MeRHIC with 3-pass 4 GeV ERL. We learned much from this evaluation, completed a bottom-up cost estimate for this $350M machine, but then shelved the design. In the same year, we turned again to considering the cost-effective, all-in-tunnel six-pass ERL for our design of the high-luminosity eRHIC. In it, electrons from the polarized pre-injector will be accelerated to their top energy by passing six times through two SRF linacs. After colliding with the hadron beam in up to three detectors, the e-beam will be decelerated by the same linacs and dumped. The six-pass magnetic system with small-gap magnets will be installed from the start. We will stage the electron energy from 5 GeV to 30 GeV stepwise by increasing the lengths of the SRF linacs. We discuss details of eRHIC's layout in Section 3. We considered several IR designs for eRHIC. The latest one, with a 10 mrad crossing angle and {beta}* = 5 cm, takes advantage of newly commissioned Nb{sub 3}Sn quadrupoles. Section 4 details the eRHIC lattice and the IR layout. The current eRHIC design focuses on electron-hadron collisions. If justified by the EIC physics, we will add a 30 GeV polarized positron ring with full energy injection from eRHIC ERL. This addition to the eRHIC facility provide for positron-hadron collisions, but at a significantly lower luminosity than those attainable in the electron-hadron mode. As a novel high-luminosity EIC, eRHIC faces many technical challenges, such as generating 50 mA of polarized electron current. eRHIC also will employ coherent electron cooling (CeC) for the hadron beams. Staff at BNL, JLab, and MIT is pursuing vigorously an R&D program for resolving addressing these obstacles. In collaboration with Jlab, BNL plans experimentally to demonstrate CeC at the RHIC. We discuss the structure and the status of the eRHIC R&D in Section 5.

  15. Measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy

    E-Print Network [OSTI]

    Tseung, H Wan Chan; Tolich, N

    2011-01-01

    An experimental test of the electron energy scale linearities of SNO+ and EJ-301 scintillators is carried out using a Compton spectrometer with electrons in the energy range 0.09-3 MeV. The linearity of the apparatus is explicitly demonstrated. It is found that the response of both types of scintillators with respect to electrons becomes non-linear below ~0.4 MeV. An explanation is given in terms of Cherenkov light absorption and re-emission by the scintillators.

  16. Measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy

    E-Print Network [OSTI]

    H. Wan Chan Tseung; J. Kaspar; N. Tolich

    2011-07-01

    An experimental test of the electron energy scale linearities of SNO+ and EJ-301 scintillators was carried out using a Compton spectrometer with electrons in the energy range 0.09-3 MeV. The linearity of the apparatus was explicitly demonstrated. It was found that the response of both types of scintillators with respect to electrons becomes non-linear below ~0.4 MeV. An explanation is given in terms of Cherenkov light absorption and re-emission by the scintillators.

  17. Semiconductor Nanotechnology: Novel Materials and Devices for Electronics, Photonics, and Renewable Energy Applications

    SciTech Connect (OSTI)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag S; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-03-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low cost of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of Nano and Giga Challenges in Electronics and Photonics NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10 14 August, Hamilton, Ontario, Canada) and the scope was expanded to include renewable energy research and development. This special issue of Nanotechnology is devoted to a better understanding of the function and design of semiconductor devices that are relevant to information technology (both electronics and photonics based) and renewable energy applications. The papers contained in this special issue are selected from the NGC/CSTC2009 symposium. Among them is a report by Ray LaPierre from McMaster University and colleagues at the University of Waterloo in Canada on the ability to manipulate single spins in nanowire quantum bits. The paper also reports the development of a testbed of a few qubits for general quantum information processing tasks [1]. Lower cost and greater energy conversion efficiency compared with thin film devices have led to a high level of activity in nanowire research related to photovoltaic applications. This special issue also contains results from an impedance spectroscopy study of core shell GaAs nanowires to throw light on the transport and recombination mechanisms relevant to solar cell research [2]. Information technology research and renewable energy sources are research areas of enormous public interest. This special issue addresses both theoretical and experimental achievements and provides a stimulating outlook for technological developments in these highly topical fields of research. References [1] Caram J, Sandoval C, Tirado M, Comedi D, Czaban J, Thompson D A and LaPierre R R 2010 Electrical characteristics of core shell p-n GaAs nanowire structures with Te as the n-dopant Nanotechnology 21 134007 [2] Baugh J, Fung J S and LaPierre R R 2010 Building a spin quantum bit register using semiconductor nanowires Nanotechnology 21 134018

  18. Azole energetic materials: Initial mechanisms for the energy release from electronical excited nitropyrazoles

    SciTech Connect (OSTI)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu [Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States)

    2014-01-21

    Decomposition of energetic material 3,4-dinitropyrazole (DNP) and two model molecules 4-nitropyrazole and 1-nitropyrazole is investigated both theoretically and experimentally. The initial decomposition mechanisms for these three nitropyrazoles are explored with complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from all three materials subsequent to UV excitation. Observed NO products are rotationally cold (<50 K) for all three systems. The vibrational temperature of the NO product from DNP is (3850 ± 50) K, 1350 K hotter than that of the two model species. Potential energy surface calculations at the CASSCF(12,8)/6-31+G(d) level illustrate that conical intersections plays an essential role in the decomposition mechanism. Electronically excited S{sub 2} nitropyraozles can nonradiatively relax to lower electronic states through (S{sub 2}/S{sub 1}){sub CI} and (S{sub 1}/S{sub 0}){sub CI} conical intersection and undergo a nitro-nitrite isomerization to generate NO product either in the S{sub 1} state or S{sub 0} state. In model systems, NO is generated in the S{sub 1} state, while in the energetic material DNP, NO is produced on the ground state surface, as the S{sub 1} decomposition pathway is energetically unavailable. The theoretically predicted mechanism is consistent with the experimental results, as DNP decomposes in a lower electronic state than do the model systems and thus the vibrational energy in the NO product from DNP should be hotter than from the model systems. The observed rotational energy distributions for NO are consistent with the final structures of the respective transition states for each molecule.

  19. Efficient Strategies for Accurate Calculations of Electronic Excitation and Ionization Energies: Theory and Application to the Dehydro-m-xylylene Anion

    E-Print Network [OSTI]

    Krylov, Anna I.

    Efficient Strategies for Accurate Calculations of Electronic Excitation and Ionization Energies on single-reference methods for calculating accurate energy differences. Different schemes for calculating of energy differences, such as electronic excitation and ionization energies, as well as heats of formation

  20. Role of suprathermal electrons during nanosecond laser energy deposit in fused silica

    SciTech Connect (OSTI)

    Grua, P.; Hébert, D.; Lamaignčre, L.; Rullier, J.-L.

    2014-08-25

    An accurate description of interaction between a nanosecond laser pulse and a wide band gap dielectric, such as fused silica, requires the understanding of energy deposit induced by temperature changes occurring in the material. In order to identify the fundamental processes involved in laser-matter interaction, we have used a 1D computational model that allows us to describe a wide set of physical mechanisms and intended for comparison with specially designed “1D experiments.” We have pointed out that suprathermal electrons are very likely implicated in heat conduction, and this assumption has allowed the model to reproduce the experiments.

  1. Measurement of the solar neutrino energy spectrum using neutrino-electron scattering

    E-Print Network [OSTI]

    The Super-Kamiokande collaboration

    1998-12-08

    A measurement of the energy spectrum of recoil electrons from solar neutrino scattering in the Super--Kamiokande detector is presented. The results shown here are obtained from 504 days of data taken between the 31st of May, 1996 and the 25th of March, 1998. The shape of the measured spectrum is compared with the expectation for solar B8 neutrinos. The comparison takes into account both kinematic and detector related effects in the measurement process. The spectral shape comparison between the observation and the expectation gives a chi-square of 25.3 with 15 degrees of freedom, corresponding to a 4.6% confidence level.

  2. Piezoelectric energy harvesting from colored fat-tailed fluctuations: An electronic analogy

    E-Print Network [OSTI]

    J. I. Peńa Rosselló; R. R. Deza; J. I. Deza; H. S. Wio

    2015-10-17

    Aiming to optimize piezoelectric energy harvesting from strongly colored fat-tailed fluctuations, we have recently studied the performance of a monostable inertial device under a noise whose statistics depends on a parameter $q$ (bounded for $q1$). We have studied the interplay between the potential shape (interpolating between square-well and harmonic-like behaviors) and the noise's statistics and spectrum, and showed that its output power grows as $q$ increases above 1. We now report a real experiment on an electronic analog of the proposed system, which sheds light on its operating principle.

  3. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect (OSTI)

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ? 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ? 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  4. Guiding of low-energy electrons by highly ordered Al{sub 2}O{sub 3} nanocapillaries

    SciTech Connect (OSTI)

    Milosavljevic, A. R.; Vikor, Gy.; Pesic, Z. D.; Kolarz, P.; Sevic, D.; Marinkovic, B. P.; Matefi-Tempfli, S.; Matefi-Tempfli, M.; Piraux, L.

    2007-03-15

    We report an experimental study of guided transmission of low-energy (200-350 eV) electrons through highly ordered Al{sub 2}O{sub 3} nanocapillaries with large aspect ratio (140 nm diameter and 15 {mu}m length). The nanochannel array was prepared using self-ordering phenomena during a two-step anodization process of a high-purity aluminum foil. The experimental results clearly show the existence of the guiding effect, as found for highly charged ions. The guiding of the electron beam was observed for tilt angles up to 12 degree sign . As seen for highly charged ions, the guiding efficiency increases with decreasing electron incident energy. The transmission efficiency appeared to be significantly lower than observed for highly charged ions and, moreover, the intensity of transmitted electrons significantly decreases with decreasing impact energy.

  5. Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation

    SciTech Connect (OSTI)

    Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.

    1995-10-01

    An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs.

  6. Hard Electron Energy Distribution in the Relativistic Shocks of GRB Afterglows

    E-Print Network [OSTI]

    L. Resmi; D. Bhattacharya

    2008-04-08

    Particle acceleration in relativistic shocks is not a very well understood subject. Owing to that difficulty, radiation spectra from relativistic shocks, such as those in GRB afterglows, have been often modelled by making assumptions about the underlying electron distribution. One such assumption is a relatively soft distribution of the particle energy, which need not be true always, as is obvious from observations of several GRB afterglows. In this paper, we describe modifications to the afterglow standard model to accommodate energy spectra which are `hard'. We calculate the overall evolution of the synchrotron and compton flux arising from such a distribution. We also model two afterglows, GRB010222 and GRB020813, under this assumption and estimate the physical parameters.

  7. Fundamental studies of energy-and hole/electron- transfer in hydroporphyrin architectures

    SciTech Connect (OSTI)

    Bocian, David F.

    2014-08-20

    The long-term objective of the Bocian/Holten/Lindsey research program is to design, synthesize, and characterize tetrapyrrole-based molecular architectures that absorb sunlight, funnel energy, and separate charge with high efficiency and in a manner compatible with current and future solar-energy conversion schemes. The synthetic tetrapyrroles include porphyrins and hydroporphyrins; the latter classes of molecules encompass analogues of the naturally occurring chlorophylls and bacteriochlorophylls (e.g., chlorins, bacteriochlorins, and their derivatives). The attainment of the goals of the research program requires the close interplay of molecular design and synthesis (Lindsey group), static and time-resolved optical spectroscopic measurements (Holten group), and electrochemical, electron paramagnetic resonance, and resonance Raman studies, as well as density functional theory calculations (Bocian Group). The proposed research encompasses four interrelated themes: (1) Determination of the rates of ground-state hole/electron transfer between (hydro)porphyrins in multipigment arrays as a function of array size, distance between components, linker type, site of linker connection, and frontier molecular orbital composition. (2) Examination of excited-state energy transfer among hydroporphyrins in multipigment arrrays, including both pairwise and non-adjacent transfer, with a chief aim to identify the relative contributions of through-space (Förster) and through-bond (Dexter) mechanisms of energy transfer, including the roles of site of linker connection and frontier molecular orbital composition. (3) Elucidation of the role of substituents in tuning the spectral and electronic properties of bacteriochlorins, with a primary aim of learning how to shift the long-wavelength absorption band deeper into the near-infrared region. (4) Continued development of the software package PhotochemCAD for spectral manipulations and calculations through the compilation of a database of spectra for naturally occurring and synthetic hydroporphyrins. The availability of such data should augment efforts in the design of light-harvesting systems where spectral coverage in the red and near-infrared regions is desired. Collectively, the proposed studies will provide fundamental insights into molecular properties, interactions, and processes relevant to the design of molecular architectures for solar-energy conversion. The accomplishment of these goals is only possible through a highly synergistic program that encompasses molecular design, synthesis, and characterization.

  8. Structure and Binding Site of Acetate on Pd(111) Determined Using Density Functional Theory and Low Energy Electron Diffraction

    E-Print Network [OSTI]

    Saldin, Dilano

    , University of Wisconsin ­ Milwaukee, Milwaukee, WI 53211, USA 4 National Energy Technology Laboratory and Low Energy Electron Diffraction Joanna James1 , Dilano K. Saldin2 , T. Zheng3 , W. T. Tysoe3 Theory (DFT) calculations have played a key role in the growing list of surface species whose structure

  9. TRIBUTE TO FOUNDERS: NEAL R. AMUNDSON. INORGANIC MATERIALS: SYNTHESIS AND Particle-in-Cell Simulation of Electron and Ion Energy

    E-Print Network [OSTI]

    Economou, Demetre J.

    -in-Cell Simulation of Electron and Ion Energy Distributions in dc/rf Hybrid Capacitively-Coupled Plasmas Paola Engineers AIChE J, 59: 3214-3222, 2013 Keywords: plasma, simulation, molecular, energy distribution 1, 2013 in Wiley Online Library (wileyonlinelibrary.com) A Particle-in-Cell simulation with Monte

  10. Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP

    E-Print Network [OSTI]

    Schael, S; Bruneliere, R; Buskulic, D; De Bonis, I; Decamp, D; Ghez, P; Goy, C; Jezequel, S; Lees, J P; Lucotte, A; Martin, F; Merle, E; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Trocme, B; Bravo, S; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Fernandez, E; Fernandez-Bosman, M; Garrido, Ll; Grauges, E; Juste, A; Martinez, M; Merino, G; Miquel, R; Mir, Ll. M; Orteu, S; Pacheco, A; Park, I C; Perlas, J; Riu, I; Ruiz, H; Sanchez, F; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Bazarko, A; Becker, U; Boix, G; Bird, F; Blucher, E; Bonvicini, B; Bright-Thomas, P; Barklow, T; Buchmuller, O; Cattaneo, M; Cerutti, F; Ciulli, V; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Greening, T C; Hagelberg, R; Halley, A W; Gianotti, F; Girone, M; Hansen, J B; Harvey, J; Jacobsen, R; Hutchcroft, D E; Janot, P; Jost, B; Knobloch, J; Kado, M; Lehraus, I; Lazeyras, P; Maley, P; Mato, P; May, J; Moutoussi, A; Pepe-Altarelli, M; Ranjard, F; Rolandi, L; Schlatter, D; Schmitt, B; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Veenhof, R; Valassi, A; Wiedenmann, W; Wright, A E; Ajaltouni, Z; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Fayolle, D; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Pascolo, J M; Perret, P; Podlyski, F; Bertelsen, H; Fernley, T; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Lindahl, A; Mollerud, R; Nilsson, B S; Rensch, B; Waananen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, E; Siotis, I; Vayaki, A; Zachariadou, K; Blondel, A; Bonneaud, G; Brient, J C; Machefert, F; Rouge, A; Rumpf, M; Swynghedauw, M; Tanaka, R; Verderi, M; Videau, H; Ciulli, V; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C; Antonelli, A; Antonelli, M; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Picchi, P; Colrain, P; Have, I. ten; Hughes, I S; Kennedy, J; Knowles, I G; Lynch, J G; Morton, W T; Negus, P; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Turnbull, R M; Wasserbaech, S; Buchmuller, O; Cavanaugh, R; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Stenzel, H; Tittel, K; Werner, W; Wunsch, M; Beuselinck, R; Binnie, D M; Cameron, W; Davies, G; Dornan, P J; Goodsir, S; Marinelli, N; Martin, E B; Nash, J; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Buck, P G; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R.W L; Keemer, N R; Pearson, M R; Robertson, N A; Sloan, T; Smizanska, M; Snow, S W; Williams, M I; van der Aa, O; Delaere, C; Leibenguth, G; Lemaitre, V; Bauerdick, L.A T; Blumenschein, U; van Gemmeren, P; Giehl, I; Holldorfer, F; Jakobs, K; Kasemann, M; Kayser, F; Kleinknecht, K; Muller, A S; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H; Wanke, R; Zeitnitz, C; Ziegler, T; Aubert, J J; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Curtil, C; Ealet, A; Etienne, F; Fouchez, D; Motsch, F; Payre, P; Rousseau, D; Tilquin, A; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Buscher, V; David, A; Dietl, H; Ganis, G; Huttmann, K; Lutjens, G; Mannert, C; Manner, W; Moser, H G; Settles, R; Seywerd, H; Stenzel, H; Villegas, M; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, Ph; Jacholkowska, A; Le Diberder, F; Lefrancois, J; Mutz, A M; Schune, M H; Serin, L; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foa, L; Giammanco, A; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, F; Rizzo, G; Sanguinetti, G; Sciaba, A; Sguazzoni, G; Spagnolo, P; Steinberger, J; Tenchini, R; Vannini, C; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; Garcia-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Botterill, D R; Clifft, R W; Edgecock, T R; Edwards, M; Haywood, S J; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D; Colas, P; Emery, S; Fabbro, B; Kozanecki, W; Lancon, E; Lemaire, M C; Locci, E; Perez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S

    2013-01-01

    Electroweak measurements performed with data taken at the electron-positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3~fb$^{-1}$ collected by the four LEP experiments ALEPH, DELPHI, L3 and OPAL, at centre-of-mass energies ranging from $130~GeV$ to $209~GeV$. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron-positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose-Einstein correlations between the two W decay systems arising ...

  11. Elastic scattering of low-energy electrons by 1,4-dioxane

    SciTech Connect (OSTI)

    Barbosa, Alessandra Souza; Bettega, Mįrcio H. F.

    2014-05-14

    We report calculated cross sections for elastic collisions of low-energy-electrons with 1,4-dioxane. Our calculations employed the Schwinger multichannel method with pseudopotentials and were carried out in the static-exchange and static-exchange plus polarization approximations for energies up to 30 eV. Our results show the presence of three shape resonances belonging to the B{sub u}, A{sub u}, and B{sub g} symmetries and located at 7.0 eV, 8.4 eV, and 9.8 eV, respectively. We also report the presence of a Ramsauer-Townsend minimum located at around 0.05 eV. We compare our calculated cross sections with experimental data and R-matrix and independent atom model along with the additivity rule corrected by using screening coefficients theoretical results for 1,4-dioxane obtained by Palihawadana et al. [J. Chem. Phys. 139, 014308 (2013)]. The agreement between the present and the R-matrix theoretical calculations of Palihawadana et al. is relatively good at energies below 10 eV. Our calculated differential cross sections agree well with the experimental data, showing only some discrepancies at higher energies.

  12. Sensitivity of LR 115 detectors in hemispherical chambers for radon measurements

    E-Print Network [OSTI]

    Yu, Peter K.N.

    Sensitivity of LR 115 detectors in hemispherical chambers for radon measurements D. Nikezic 1 , F, if the radius is larger than 3 cm, the effects of the deposition fraction of radon progeny will come into effect, which will again introduce uncertainties in radon measurements. For the hemispherical chamber

  13. Right Hemisphere Activation of Joke-related Information: An Event-related Brain Potential Study

    E-Print Network [OSTI]

    Coulson, Seana

    Right Hemisphere Activation of Joke-related Information: An Event-related Brain Potential Study-relevant information was more active in the right hemisphere. The anterior positivity was ob- served with RVF Seana Coulson and Ying Choon Wu Abstract & Two studies tested the hypothesis that the right hemi- sphere

  14. Forcing of Ocean and Sea Ice Variability by the Southern Hemisphere Annular Mode

    E-Print Network [OSTI]

    Columbia University

    hemisphere ocean. 1 #12;1 The atmospheric jet stream and southern hemisphere geography If the earth's surface in solar forcing would also be zonally-symmetric. This would generate, in turn, a mid-latitude jet stream the well-known wavenumber 2 stationary wave pattern in the climatological mean state of the NH jet stream

  15. The influence of Southern Hemisphere seaice extent on the latitude of the midlatitude jet stream

    E-Print Network [OSTI]

    Kidston, Joseph

    The influence of Southern Hemisphere seaice extent on the latitude of the midlatitude jet stream J midlatitude jet stream, but that the amplitude of the atmospheric response depends critically on the location), The influence of Southern Hemisphere seaice extent on the latitude of the midlatitude jet stream, Geophys. Res

  16. Forcing of Ocean and Sea Ice Variability by the Southern Hemisphere Annular Mode

    E-Print Network [OSTI]

    Columbia University

    hemisphere ocean. 1 #12; 1 The atmospheric jet stream and southern hemisphere geography If the earth in solar forcing would also be zonally­symmetric. This would generate, in turn, a mid­latitude jet stream the well­known wavenumber 2 stationary wave pattern in the climatological mean state of the NH jet stream

  17. Impact of Antarctic Ozone Depletion and Recovery on Southern Hemisphere Precipitation, Evaporation, and Extreme Changes

    E-Print Network [OSTI]

    Son, Seok-Woo

    Impact of Antarctic Ozone Depletion and Recovery on Southern Hemisphere Precipitation, Evaporation) ABSTRACT The possible impact of Antarctic ozone depletion and recovery on Southern Hemisphere (SH) mean- tercomparison Project 3 (CMIP3). By grouping models into four sets, those with and without ozone depletion

  18. One-way implodable tag capsule with hemispherical beaded end cap for LWR fuel manufacturing

    DOE Patents [OSTI]

    Gross, K.; Lambert, J.

    1999-04-06

    A capsule is disclosed containing a tag gas in a zircaloy body portion having a hemispherical top curved toward the bottom of the body portion. The hemispherical top has a rupturable portion upon exposure to elevated gas pressure and the capsule is positioned within a fuel element in a nuclear reactor. 3 figs.

  19. How Do You Save Energy With Your Electronics? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls - Buildingof EnergyTown,FinanceWith Your

  20. Energy spread reduction of electron beams produced via laser wakefield acceleration

    E-Print Network [OSTI]

    Pollock, Bradley Bolt

    2012-01-01

    the resulting electron beams. Each diagnostic that was useddiagnostic suite which was developed to characterize the laser, plasma, and electron beam

  1. FA12 Nanoscale Devices & Systems MS Exam Solution 1. For small semiconductor quantum dot structures, the single-electron charging energy can

    E-Print Network [OSTI]

    California at San Diego, University of

    FA12 Nanoscale Devices & Systems MS Exam Solution 1. For small semiconductor quantum dot structures, the single-electron charging energy can become comparable to the quantum confinement energies in the dot effective mass 0 * 5.0 mmp , where m0 is the free electron mass. An infinite potential energy barrier

  2. Electron-Atom Superelastic Scattering in Magnesium at Millielectron Volt Energies T. Baynard, A. C. Reber, R. F. Niedziela,| S. A. Darveau, B. Prutzman,# and R. S. Berry*,

    E-Print Network [OSTI]

    Berry, R. Stephen

    Electron-Atom Superelastic Scattering in Magnesium at Millielectron Volt Energies T. Baynard, A. C ReceiVed: July 17, 2007; In Final Form: September 16, 2007 The energy dependence of superelastic electron source to collide with excited atoms. Measurements are made at energies as low as 1.5 me

  3. Reflection high-energy electron diffraction beam-induced structural and property changes on WO{sub 3} thin films

    SciTech Connect (OSTI)

    Du, Y., E-mail: yingge.du@pnnl.gov; Varga, T. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Zhang, K. H. L.; Chambers, S. A. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-08-04

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO{sub 3} as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO{sub 3}, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  4. Reflection High-Energy Electron Diffraction Beam-Induced Structural and Property Changes on WO3 Thin Films

    SciTech Connect (OSTI)

    Du, Yingge; Zhang, Hongliang; Varga, Tamas; Chambers, Scott A.

    2014-08-08

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO3 as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO3, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  5. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect (OSTI)

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  6. Proper energy of an electron in a topologically massive (2 + 1) quantum electrodynamics system at finite temperature and density

    SciTech Connect (OSTI)

    Zhukovskii, K.V.; Eminov, P.A. [Moscow State Inst. for Electronics and Mathematics (Russian Federation)

    1995-11-01

    The one-loop approximation is used to calculate the effects of finite temperature and nonzero chemical potential on the electron energy shift in a (2 + 1)-quantum electrodynamic system containing a Churn-Simon term. The induced electron mass is derived with a massless (2 + 1)-quantum electrodynamic system together with the exchange correction to the thermodynamic potential for a completely degenerate electron gas. It is shown that in the last case, incorporating the Churn-Simon term leads to loss of the gap in the direction law.

  7. Searching for Lepton Flavor Violation at a Future High Energy Electron-Positron Collider

    E-Print Network [OSTI]

    Brandon Murakami; Tim M. P. Tait

    2014-10-06

    We consider theories where lepton flavor is violated, in particular concentrating on the four fermion operator consisting of three electrons and a tau. Strong constraints are available from existing searches for tau -> eee, requiring the scale of the contact interaction to be less than ~(9 TeV)^-2. We reexamine this type of physics, assuming that the particles responsible are heavy (with masses greater than ~TeV) such that a contact interaction description continues to be applicable at the energies for a future e+e- collider. We find that the process e+e- -> e tau can be a very sensitive probe of this kind of physics (even for very conservative assumptions about the detector performance), already improving upon the tau decay bounds to less than ~(11 TeV)^-2 at collider energy sqrt(s) 500 GeV, or reaching beyond ~(35 TeV)^-2 for sqrt(s) = 3 TeV. Even stronger bounds are possible at e-e- colliders in the same energy range.

  8. Nuclear physics with a medium-energy Electron-Ion Collider

    E-Print Network [OSTI]

    A. Accardi; V. Guzey; A. Prokudin; C. Weiss

    2011-10-05

    A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy sqrt(s) ~ 20-70 GeV and a luminosity ~ 10^{34} cm^{-2} s^{-1} would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

  9. The 1-loop self-energy of an electron in a strong external magnetic field revisited

    E-Print Network [OSTI]

    Machet, Bruno

    2015-01-01

    I revisit the 1-loop self-energy of an electron in a strong, constant and uniform external magnetic field B. First, I show, after Tsai (1974), how, for an electron in the lowest Landau level, Schwinger's techniques, as explained by Dittrich and Reuter (1985) lead to the same integral deduced by Demeur (1953) and used later by Jancovici (1969). Then, I calculate the Demeur-Jancovici integral in the range $75 \\leq L\\equiv\\frac{|e|B}{m^2} \\leq 10\\,000$, which yields $\\delta m \\simeq \\frac{\\alpha m}{4\\pi} \\left[\\left(\\ln L-\\gamma_E-\\frac32\\right)^2 -\\frac94 +\\frac{\\pi}{\\beta-1} +\\frac{\\pi^2}{6} +\\frac{\\pi\\;\\Gamma[1-\\beta]}{L^{\\beta-1}} +\\frac{1}{L}\\left(\\frac{\\pi}{2-\\beta}-5\\right) +{\\cal O}(\\frac{1}{L^{\\geq 2}})\\right],\\ \\beta \\simeq 1.175$, close to Jancovici's last estimate $\\delta m \\simeq \\frac{\\alpha m}{4\\pi}\\left[\\left(\\ln 2L-\\gamma_E-\\frac32\\right)^2 +A+\\ldots\\right]$ with $A\\simeq 3.5$ (previously undetermined). The term proportional to $(\\ln\\frac{|e|B}{m^2})^2$ can never be considered to be leading and ...

  10. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect (OSTI)

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  11. Ballistic electrons in an open square geometry: Selective probing of resonant-energy states

    SciTech Connect (OSTI)

    Zozoulenko, I.V.; Schuster, R.; Berggren, K.-.; Ensslin, K.

    1997-04-01

    We report on the interplay between classical trajectories and quantum-mechanical effects in a square geometry. At low magnetic fields the four-terminal resistance is dominated by phenomena that depend on ballistic trajectories in a classical billiard. Superimposed on these classical effects are quantum interference effects manifested by highly periodic conductance oscillations. Numerical analysis shows that these oscillations are directly related to excitations of particular eigenstates in the square. In spite of open leads, transport through an open cavity is effectively mediated by just a few (or even a single) resonant-energy states. The leads injecting electrons into the cavity play a decisive role in a selection of the particular set of states excited in the dot. The above selection rule sets a specific frequency of the oscillations seen in the experiment. {copyright} {ital 1997} {ital The American Physical Society}

  12. ON THE ELECTRON ENERGY DISTRIBUTION INDEX OF SWIFT GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect (OSTI)

    Curran, P. A.; De Pasquale, M.; Page, M. J.; Evans, P. A.; Van der Horst, A. J.

    2010-06-20

    The electron energy distribution index, p, is a fundamental parameter of the synchrotron emission from a range of astronomical sources. Here we examine one such source of synchrotron emission, gamma-ray burst (GRB) afterglows observed by the Swift satellite. Within the framework of the blast wave model, we examine the constraints placed on the distribution of p by the observed X-ray spectral indices and parameterize the distribution. We find that the observed distribution of spectral indices are inconsistent with an underlying distribution of p composed of a single discrete value but consistent with a Gaussian distribution centered at p = 2.36 and having a width of 0.59. Furthermore, accepting that the underlying distribution is a Gaussian, we find that the majority ({approx_gt}94%) of GRB afterglows in our sample have cooling break frequencies less than the X-ray frequency.

  13. Correlation and Finite Interaction-Range Effects in High-Energy Electron Inclusive Scattering

    E-Print Network [OSTI]

    Akihisa Kohama; Koichi Yazaki; Ryoichi Seki

    2000-01-19

    We calculate cross sections of high energy electron inclusive scattering off nuclear matter in a new and consistent formulation based on the Green's function method with the Glauber approximation, which is an extension of our previous work on the nuclear transparency in (e, e'p) reaction. The comparison with other approaches is discussed. In this framework, we study the finite-range effect of the nucleon-nucleon interaction in the final-state interactions, and the effect of the nuclear short-range correlation. We propose a zero-range approximation, which works well when correlation and finite interaction-range effects are included. It greatly reduces the numerical work, while maintaining a reasonable accuracy.

  14. Electronic film with embedded micro-mirrors for solar energy concentrator systems

    E-Print Network [OSTI]

    Mario Rabinowitz; Mark Davidson

    2004-04-16

    A novel electronic film solar energy concentrator with embedded micro-mirrors that track the sun is described. The potential viability of this new concept is presented. Due to miniaturization, the amount of material needed for the optical system is minimal. Because it is light-weight and flexible, it can easily be attached to the land or existing structures. This presents an economic advantage over conventional concentrators which require the construction of a separate structure to support them, and motors to orient them to intercept and properly reflect sunlight. Such separate structures must be able to survive gusts, windstorms, earthquakes, etc. This concentrator utilizes the ground or existing edifices which are already capable of withstanding such vicissitudes of nature.

  15. What can you do with energy-efficient optics and photonics? Well, for starters... FOOTPRINT CLEAN ENERGY WORK SLOW CLIMATE CHANGE CONSERVATION DIRECT CURRENT EFFICIENT SUN FLEXIBLE FUEL ELECTRON OFF-THE-GRID THERMAL ENERGY ENGINEER ENVIRONMEN

    E-Print Network [OSTI]

    Faure, Claudie

    devices, creating a power plant. Utilize solar energy at night with nanostructured capacitors, and use · ELECTRON · OFF-THE-GRID · THERMAL ENERGY · ENGINEER · ENVIRONMENT · FURNACE · SOLAR POWER · CURRENT SOLAR, PHOTONIC DEVICES FOR EFFICIENT HARVESTING AND CONVERSION OF SOLAR ENERGY DEVICESFORMONITORINGENERGYUSAGE,MONITORINGEXHAUSTGASESANDPOLLUTANTS,ENERGY

  16. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

  17. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

  18. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    1990-01-01

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

  19. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    2011-03-22

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

  20. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore »theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less

  1. THE SAGITTARIUS STREAMS IN THE SOUTHERN GALACTIC HEMISPHERE

    SciTech Connect (OSTI)

    Koposov, Sergey E.; Belokurov, V.; Evans, N. W.; Gilmore, G.; Gieles, M.; Irwin, M. J.; Lewis, G. F.; Niederste-Ostholt, M.; Penarrubia, J. [Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Smith, M. C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Bizyaev, D. [Sternberg Astronomical Institute, Moscow State University, Universitetskiy pr. 13, Moscow 119991 (Russian Federation); Malanushenko, E.; Malanushenko, V. [Apache Point Observatory, Sunspot, NM 88349 (United States); Schneider, D. P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Wyse, R. F. G. [Department of Physics and Astronomy, Johns Hopkins University, 3900 North Charles Street, Baltimore, MD 21218 (United States)

    2012-05-01

    The structure of the Sagittarius stream in the southern Galactic hemisphere is analyzed with the Sloan Digital Sky Survey Data Release 8. Parallel to the Sagittarius tidal track, but {approx}10 Degree-Sign away, there is another fainter and more metal-poor stream. We provide evidence that the two streams follow similar distance gradients but have distinct morphological properties and stellar populations. The brighter stream is broader, contains more metal-rich stars, and has a richer color-magnitude diagram with multiple turnoffs and a prominent red clump as compared to the fainter stream. Based on the structural properties and the stellar population mix, the stream configuration is similar to the Northern 'bifurcation'. In the region of the South Galactic Cap, there is overlapping tidal debris from the Cetus stream, which crosses the Sagittarius stream. Using both photometric and spectroscopic data, we show that the blue straggler population belongs mainly to Sagittarius and the blue horizontal branch stars belong mainly to the Cetus stream in this confused location in the halo.

  2. Modeling of electron energy spectra and mobilities in semi-metallic Hg1-xCdxTe quantum wells

    E-Print Network [OSTI]

    Melezhik, E O; Sizov, F F

    2015-01-01

    Electron mobility, energy spectra and intrinsic carrier concentrations in the n-type Hg0.32Cd0.68Te / Hg1-xCdxTe / Hg0.32Cd0.68Te quantum well (QW) in semi-metallic state are numerically modeled. Energy spectra and wave functions were calculated in the framework of the 8-band k-p Hamiltonian. In our model, electron scattering on longitudinal optical phonons, charged impurities, and holes has been taken into account, and the mobility has been calculated by an iterative solution of the Boltzmann transport equation. Our results show that the increase of the electron concentration in the well enhances the screening of the 2D electron gas, decreases the hole concentration, and can ultimately lead to a high electron mobility at liquid nitrogen temperatures. The increase of the electron concentration in the QW could be achieved in situ by delta-doping of barriers or by applying the top-gate potential. Our modeling has shown that for low molar composition x the concentration of holes in the well is high in a wide ran...

  3. Nuclear physics with a medium-energy Electron-Ion Collider

    E-Print Network [OSTI]

    Accardi, A; Prokudin, A; Weiss, C

    2011-01-01

    A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy sqrt(s) ~ 20-70 GeV and a luminosity ~ 10^{34} cm^{-2} s^{-1} would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-ene...

  4. Excitonic splitting and coherent electronic energy transfer in the gas-phase benzoic acid dimer

    SciTech Connect (OSTI)

    Ottiger, Philipp; Leutwyler, Samuel

    2012-11-28

    The benzoic acid dimer, (BZA){sub 2}, is a paradigmatic symmetric hydrogen bonded dimer with two strong antiparallel hydrogen bonds. The excitonic S{sub 1}/S{sub 2} state splitting and coherent electronic energy transfer within supersonically cooled (BZA){sub 2} and its {sup 13}C-, d{sub 1}-, d{sub 2}-, and {sup 13}C/d{sub 1}- isotopomers have been investigated by mass-resolved two-color resonant two-photon ionization spectroscopy. The (BZA){sub 2}-(h-h) and (BZA){sub 2}-(d-d) dimers are C{sub 2h} symmetric, hence only the S{sub 2} Leftwards-Arrow S{sub 0} transition can be observed, the S{sub 1} Leftwards-Arrow S{sub 0} transition being strictly electric-dipole forbidden. A single {sup 12}C/{sup 13}C or H/D isotopic substitution reduces the symmetry of the dimer to C{sub s}, so that the isotopic heterodimers (BZA){sub 2}-{sup 13}C, (BZA){sub 2}-(h-d), (BZA){sub 2}-(h{sup 13}C-d), and (BZA){sub 2}-(h-d{sup 13}C) show both S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} bands. The S{sub 1}/S{sub 2} exciton splitting inferred is {Delta}{sub exc}= 0.94 {+-} 0.1 cm{sup -1}. This is the smallest splitting observed so far for any H-bonded gas-phase dimer. Additional isotope-dependent contributions to the splittings, {Delta}{sub iso}, arise from the change of the zero-point vibrational energy upon electronic excitation and range from {Delta}{sub iso}= 3.3 cm{sup -1} upon {sup 12}C/{sup 13}C substitution to 14.8 cm{sup -1} for carboxy H/D substitution. The degree of excitonic localization/delocalization can be sensitively measured via the relative intensities of the S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} origin bands; near-complete localization is observed even for a single {sup 12}C/{sup 13}C substitution. The S{sub 1}/ S{sub 2} energy gap of (BZA){sub 2} is {Delta}{sub calc}{sup exc}=11 cm{sup -1} when calculated by the approximate second-order perturbation theory (CC2) method. Upon correction for vibronic quenching, this decreases to {Delta}{sub vibron}{sup exc}=2.1 cm{sup -1} [P. Ottiger et al., J. Chem. Phys. 136, 174308 (2012)], in good agreement with the observed {Delta}{sub exc}= 0.94 cm{sup -1}. The observed excitonic splittings can be converted to exciton hopping times {tau}{sub exc}. For the (BZA){sub 2}-(h-h) homodimer {tau}{sub exc}= 18 ps, which is nearly 40 times shorter than the double proton transfer time of (BZA){sub 2} in its excited state [Kalkman et al., ChemPhysChem 9, 1788 (2008)]. Thus, the electronic energy transfer is much faster than the proton-transfer in (BZA){sub 2}{sup *}.

  5. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    SciTech Connect (OSTI)

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  6. Pyroelectric-field driven defects diffusion along c-axis in ZnO nanobelts under high-energy electron beam irradiation

    E-Print Network [OSTI]

    Wang, Zhong L.

    electron beam irradiation Yong Ding, Ying Liu, Simiao Niu, Wenzhuo Wu, and Zhong Lin Wang Citation: JournalO nanobelts under high-energy electron beam irradiation Yong Ding,a) Ying Liu, Simiao Niu, Wenzhuo Wu is created around the electron probe due to local beam heating effect, which gener- ates a unidirectional

  7. Effect of non-uniform electron energy distribution function on plasma production in large arc driven negative ion source

    SciTech Connect (OSTI)

    Shibata, T.; Koga, S.; Terasaki, R.; Hatayama, A.; Inoue, T.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Tsuchida, K.; Umeda, N.; Watanabe, K.

    2012-02-15

    Spatially non-uniform electron energy distribution function (EEDF) in an arc driven negative ion source (JAEA 10A negative ion source: 10 A NIS) is calculated numerically by a three-dimensional Monte Carlo kinetic model for electrons to understand spatial distribution of plasma production (such as atomic and ionic hydrogen (H{sup 0}/H{sup +}) production) in source chamber. The local EEDFs were directly calculated from electron orbits including electromagnetic effects and elastic/inelastic collision forces. From the EEDF, spatial distributions of H{sup 0}/H{sup +} production rate were obtained. The results suggest that spatial non-uniformity of H{sup 0}/H{sup +} productions is enhanced by high energy component of EEDF.

  8. Seasonal variations in the subauroral electron temperature enhancement

    SciTech Connect (OSTI)

    Fok, M.C.; Kozyra, J.U.; Warren, M.F. (Univ. of Michigan, Ann Arbor (USA)); Brace, L.H. (NASA Goddard Space Flight Center, Greenbelt, MD (USA))

    1991-06-01

    The subauroral nightside electron temperature peak is one of the phenomena showing the response of the subauroral ionosphere to the influx of magnetic storm energy in the vicinity of the plasmapause. A statistical study of the seasonal variations of the subauroral electron temperature enhancement was undertaken using data from the Langmuir probe experiment on the DE 2 satellite throughout most of the mission (1981-1982). In the winter hemisphere the nighttime background electron temperature is the highest and the magnitude of the peak T{sub e} responds most weakly to the geomagnetic activity. This behavior can be explained by seasonal trends in the nighttime downward heat flux due to conjugate photoelectrons. Moreover, model results indicate that a factor of {approximately}3 increase in heat inflow during equinox relative to solstice is required to raise the electron temperature to a given level. This is a consequence of the higher electron densities at the T{sub e} peak near equinox. The T{sub e} peak occurs on field lines which thread the outer plasmasphere in the vicinity of the plasmapause and thus can be used as a tracer of the plasmapause position. Correlating the position of the T{sub e} peak with K{sub p} (the highest value of 3-hour K{sub p} in the preceding 12 hours) indicates a trend toward a more expanded quiet time plasmasphere and one which is more easily compressed by magnetic storms at equinox than during the solstice period.

  9. VHEeP: A very high energy electron-proton collider based on proton-driven plasma wakefield acceleration

    E-Print Network [OSTI]

    Caldwell, Allen

    2015-01-01

    Based on current CERN infrastructure, an electron-proton collider is proposed at a centre-of-mass energy of about 9 TeV. A 7 TeV LHC bunch is used as the proton driver to create a plasma wakefield which then accelerates electrons to 3 TeV, these then colliding with the other 7 TeV LHC proton beam. The basic parameters of the collider are presented, which although of very high energy, has integrated luminosities of the order of 1 pb$^{-1}$/year. For such a collider, with a centre-of-mass energy 30 times greater than HERA, parton momentum fractions, $x$, down to about $10^{-8}$ are accessible for $Q^2$ of 1 GeV$^2$ and could lead to effects of saturation or some other breakdown of DGLAP being observed. The total photon-proton cross section can be measured up to very high energies and also at different energies as the possibility of varying the electron beam energy is assumed; this could have synergy with cosmic-ray physics. Other physics which can be pursued at such a collider are contact interaction searches, ...

  10. Harmonic content and time variation of electron energy distributions in high-plasma-density, low-pressure inductively coupled discharges

    E-Print Network [OSTI]

    Kushner, Mark

    Harmonic content and time variation of electron energy distributions in high-plasma-density, low-the-fly'' OTF Monte Carlo method. The OTF method directly computes the harmonic content of the EEDs using was incorporated into a two-dimensional plasma equipment model to investigate the harmonic content of the EEDs

  11. Thickness monitoring of graphene on SiC using low-energy electron diffraction P. J. Fisher

    E-Print Network [OSTI]

    Feenstra, Randall

    more general method. A series of samples are prepared by vacuum annealing in a graphene production system (suitable for graphene preparation on semi- insulating SiC, and scalable to large wafer sizes1 Thickness monitoring of graphene on SiC using low-energy electron diffraction P. J. Fisher IBM T

  12. A Failure of Continuum Theory: Temperature Dependence of the Solvent Reorganization Energy of Electron Transfer in Highly Polar Solvents

    E-Print Network [OSTI]

    Matyushov, Dmitry

    A Failure of Continuum Theory: Temperature Dependence of the Solvent Reorganization Energy of Electron Transfer in Highly Polar Solvents Peter Vath and Matthew B. Zimmt* Department of Chemistry, Brown ReceiVed: February 9, 1999; In Final Form: April 26, 1999 The temperature dependence of the solvent

  13. Reorganization Energy of Electron Transfer in Viscous Solvents above the Glass Transition Pradip K. Ghorai and Dmitry V. Matyushov*

    E-Print Network [OSTI]

    Matyushov, Dmitry

    Reorganization Energy of Electron Transfer in Viscous Solvents above the Glass Transition Pradip KVed: September 15, 2005; In Final Form: NoVember 6, 2005 We present a molecular-dynamics study of the solvent arrest of the slow, collective relaxation of the solvent related to Debye relaxation of the solvent

  14. Dependence of the Electron Beam Energy and Types of Surface to Determine EBSD Indexing Reliability in Yttria-Stabilized Zirconia

    SciTech Connect (OSTI)

    Saraf, Laxmikant V.

    2012-04-01

    Electron backscatter diffraction (EBSD) is a powerful technique for the surface microstructure analysis. EBSD analysis of cubic yttria-stabilized zirconia (YSZ) in two and three dimensions (2-D, 3-D) is demonstrated using sequential slicing from a focused ion beam (FIB) followed by EBSD mapping to represent 3-D reconstructed high density grain structure with random orientation. The statistics related to accuracy of EBSD band detection shows that probability of accurate grain orientation detection increased significantly when the electron beam energy is increased from 10 kV to 30 kV. As a result of better sampling with increased interaction volume, a disparity between local and average grain orientation angle also exhibited the dependence of the electron beam energy to determine the accuracy of grain orientation. To study the accuracy and quality of EBSD band detection as a function of surface roughness and over layer formation, rapid EBSD measurement tests are performed on (a) YSZ surfaces ion-polished at ion beam energies of 65 nA at 30 kV and 1 nA at 30 kV and (b) carbon coated versus uncoated YSZ surfaces. The EBSD results at both 10 kV and 30 kV electron beam energies indicate that EBSD band detection accuracy is negatively affected by surface roughness and amorphous over layer formation.

  15. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    E-Print Network [OSTI]

    Baptiste, Kenneth

    2009-01-01

    Todd, State-of-the art electron guns and injector de- signs,7] Summary of working group on guns and injectors, 41st Ad-A CW normal-conductive RF gun for free electron laser and

  16. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  17. Monitoring and evaluation of the ceramic hemispheric filter in Northern Ghanaian households

    E-Print Network [OSTI]

    Cheng, Kristine M. (Kristine Marie)

    2013-01-01

    The village of Yipelgu in the Northern Region of Ghana was the recipient of a 1,000-ceramic hemispheric water filter distribution, which was supplied by Pure Home Water (PHW) and funded by UNICEF-Ghana. The distribution ...

  18. LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569 TWINS

    E-Print Network [OSTI]

    Thompson, Paul

    LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high- angular resolution diffusion imaging. We

  19. Structure of the -Al2O3,,0001... surface from low-energy electron diffraction: Al termination and evidence for anomalously large thermal vibrations

    E-Print Network [OSTI]

    Soares, Edmar Avellar

    ; published 22 April 2002 We use dynamical low-energy electron diffraction LEED to determine the surface layer s as labeled in Fig. 1. First- principles calculations predict an Al1 termination with the first cannot be accurately modeled in low-energy electron diffraction LEED calculations using an isotropic

  20. Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy spectroscopy

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Study of the low-lying states of Ge2 and Ge2 using negative ion zero electron kinetic energy The low-lying states of Ge2 and Ge2 are probed using negative ion zero electron kinetic energy ZEKE spectroscopy. The ZEKE spectrum of Ge2 yields an electron affinity of 2.035 0.001 eV for Ge2, as well as term

  1. Negative Electron Binding Energies Observed in a Triply Charged Anion: Photoelectron Spectroscopy of 1-Hydroxy-3, 6, 8-Pyrene-Trisulfonate

    SciTech Connect (OSTI)

    Yang, Jie; Xing, Xiaopeng; Wang, Xue B.; Wang, Lai S.; Sergeeva, Alina P.; Boldyrev, Alexander I.

    2008-03-07

    We report the observation of negative electron binding energies in a triply charged anion, 1-hydroxy-3,6,8-pyrene-trisulfonate (HPTS3–). Low-temperature photoelectron spectra were obtained for HPTS3– at several photon energies, revealing three detachment features below 0 electron binding energy. The HPTS3– trianion was measured to possess a negative electron binding of -0.66 eV. Despite the relatively high excess energy stored in HPTS3–, it was observed to be a long-lived anion due to its high repulsive Coulomb barrier (~3.3 eV), which prevents spontaneous electron emission. Theoretical calculations were carried out, which confirmed the negative electron binding energies observed. The calculations further showed that the highest occupied molecular orbital in HPTS3– is an anti-bonding ? orbital on the pyrene rings, followed by lone pair electrons in the peripheral –SO3– groups. Negative electron binding energy is a unique feature of multiply-charged anions due to the presence of the repulsive Coulomb barrier. Such metastable species may be good models to study electron-electron and vibronic interactions in complex molecules.

  2. Imaging Electrons in Few-Electron Quantum Dots

    E-Print Network [OSTI]

    Imaging Electrons in Few-Electron Quantum Dots A thesis presented by Parisa Fallahi to The Division Electrons in Few-Electron Quantum Dots Abstract Electrons in a one-electron quantum dot were imaged the tip-induced shift of the electron energy state in the dot. A technique for extracting the amplitude

  3. Anion A– • HX Clusters with Reduced Electron Binding Energies: Proton vs Hydrogen Atom Relocation Upon Electron Detachment

    SciTech Connect (OSTI)

    Wang, Xue B.; Kass, Steven R.

    2014-12-10

    Clustering an anion with one or more neutral molecules is a stabilizing process that enhances the oxidation potential of the complex relative to the free ion. Several hydrogen bond clusters (i.e., A— • HX, where A— = H2PO4— and CF3CO2— and HX = MeOH, PhOH, and Me2NOH or Et2NOH) are examined by photoelectron spectroscopy and M06-2X and CCSD(T) computations. Remarkably, these species are experimentally found to have adiabatic detachment energies that are smaller than those for the free ion and reductions of 0.47 to 1.87 eV are predicted computationally. Hydrogen atom and proton transfers upon vertical photodetachment are two limiting extremes on the neutral surface in a continuum of mechanistic pathways that account for these results, and the whole gamut of possibilities are predicted to occur.

  4. Constraints on the Low-Energy Cutoff in the Electron Distributionof the PKS 0637--752 Jet

    SciTech Connect (OSTI)

    Mueller, M.; /SLAC /KIPAC, Menlo Park

    2007-06-26

    We re-analyze the Chandra X-ray spectrum of the kpc-scale jet in PKS 0637-752 to investigate the possible low energy cutoff in the relativistic electron spectrum producing the non-thermal radiation in the scenario of inverse Compton emission off the cosmic microwave background. This was among the first objects targeted by the Chandra Observatory and gives a unique opportunity to study the low energy X-ray emission free of contamination. As previously noted, the spectrum can be fit by a power law, with the slope predicted by the radio spectrum, modified by low energy absorption through the Galaxy as determined from the spectrum of the quasar core and by HI 21 cm observations. We report evidence for a broad excess of emission below 1 keV, but are unable to constrain the shape very well. If we assume that this soft excess is unrelated to the electron population responsible for the power law emission, and that the electron spectrum cuts off at an energy of {gamma}{sub min}m{sub e}c{sup 2}, then we must have {gamma}{sub min} ({Lambda}/10) {approx}< 75 due to the absence of any low energy turn-over in the X-ray spectrum. This predicts that the observed radio spectrum should extend unbroken down below 2 MHz for the estimated jet restframe magnetic field B = 10 {micro} G. In addition, the observed optical flux can be used to place a lower limit on {gamma}{sub min}; the constraint is not very strong, but does suggest that {gamma}{sub min} must be higher than 1 to avoid overproducing the optical emission. The implication of these limits on the jet luminosity is discussed. An alternative phenomenological description of the soft excess is offered where the low-energy end of the electron spectrum is modified to account for the excess.

  5. Efficient Production of High-energy Nonthermal Particles during Magnetic Reconnection in a Magnetically-dominated Ion-Electron Plasma

    E-Print Network [OSTI]

    Guo, Fan; Li, Hui; Daughton, William; Zhang, Bing; Lloyd-Ronning, Nicole; Liu, Yi-Hsin; Zhang, Haocheng; Deng, Wei

    2015-01-01

    Magnetic reconnection is a leading mechanism for dissipating magnetic energy and accelerating nonthermal particles in Poynting-flux dominated flows. In this letter, we investigate nonthermal particle acceleration during magnetic reconnection in a magnetically-dominated ion-electron plasma using fully kinetic simulations. For an ion-electron plasma with total magnetization $\\sigma_0=B^2/(4\\pi n(m_i+m_e)c^2)$, the magnetization for each species is $\\sigma_i \\sim \\sigma_0$ and $\\sigma_e \\sim (m_i/m_e) \\sigma_0$, respectively. We have studied the magnetically dominated regime by varying $\\sigma_{e} = 10^3 - 10^5$ with initial ion and electron temperatures $T_i = T_e = 5 - 20 m_ec^2$ and mass ratio $m_i/m_e = 1 - 1836$. The results demonstrate that reconnection quickly establishes power-law energy distributions for both electrons and ions within several ($2-3$) light-crossing times. For the cases with periodic boundary conditions, the power-law index is $1energies...

  6. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    SciTech Connect (OSTI)

    Roberts, J.G.

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  7. Electron-Transfer Collisions of Low-Energy Multicharged Nitrogen-Ions with H-2 and N-2 

    E-Print Network [OSTI]

    Wang, H. Y.; Church, David A.

    1987-01-01

    VOLUME 36, NUMBER 9 NOVEMBER 1, 1987 Electron-transfer collisions of low-energy multicharged nitrogen ions with H2 and N2 Hua-Ying Wang and D. A. Church Department of Physics, Texas A&M University, College Station, Texas 77843-4242 (Received 27 April... 1987) A stored-ion collision technique has been used to study the charge-changing collisions of mul- ticharged nitrogen ions with H2 and N2 target gases. The ions were produced inside a Penning trap with use of electron-impact ionization. The time...

  8. Energies of Electronic States of Ni (II) Ion in NiO-Al2O3 Catalyst Prepared by Impregnation

    SciTech Connect (OSTI)

    Obadovic, D. Z.; Kiurski, J.; Marinkovic-Neducin, R. P.

    2007-04-23

    The behavior of NiO-Al2O3 catalysts is strongly dependent on the preparation method, as well as on pretreatment conditions. In the present work we investigated the influences of Ni(II) ion on NiO-Al2O3 catalysts properties due to the preparation by impregnation method. Based on experimental diffuse reflectance spectroscopy (DRS) data of electronic d-d transitions of Ni (II) promoter ion the energies of electronic states in spinel-like structure were calculated, and the most probable scheme of molecular orbital have been proposed.

  9. Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion

    SciTech Connect (OSTI)

    Schmidt, Michael W; Ivanic, Joseph; Ruedenberg, Klaus

    2014-05-28

    An analysis based on the variation principle shows that in the molecules H2 +, H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.

  10. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    E-Print Network [OSTI]

    Brown, Richard

    2012-01-01

    a High-Fidelity Wireless Building Energy Auditing Network.Using Wireless Power Meters to Measure Energy Use ofUsing Wireless Power Meters to Measure Energy Miscellaneous

  11. Detailed Energy Data Collection for Miscellaneous and Electronic Loads in a Commercial Office Building

    E-Print Network [OSTI]

    Cheung, H.Y. Iris

    2014-01-01

    LBNL-XXXXX Detailed Energy Data Collection for Miscellaneous05CH11231. Detailed Energy Data Collection for Miscellaneousgenerate representative MELs energy data for future studies,

  12. Methods for Detailed Energy Data Collection of Miscellaneous and Electronic Loads in a Commercial Office Building

    E-Print Network [OSTI]

    Lanzisera, Steven

    2014-01-01

    Methods for Detailed Energy Data Collection of MiscellaneousMethods for Detailed Energy Data Collection of Miscellaneousmethod of collecting MELs energy data today. In the US, MELs

  13. Detailed Energy Data Collection for Miscellaneous and Electronic Loads in a Commercial Office Building

    E-Print Network [OSTI]

    Cheung, H.Y. Iris

    2014-01-01

    Study on Energy Efficiency in Buildings. Ed. : AmericanSummer Study on Energy Efficiency in Buildings in Asilomar,Summer Study on Energy Efficiency in Buildings Asilomar, CA,

  14. The Design of a Large Booster Ring for the Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect (OSTI)

    Edward Nissen, Todd Satogata, Yuhong Zhang

    2012-07-01

    In this paper, we present the current design of the large booster ring for the Medium energy Electron-Ion Collider at Jefferson Lab. The booster ring takes 3 GeV protons or ions of equivalent rigidity from a pre-booster ring, and accelerates them to 20 GeV for protons or equivalent energy for light to heavy ions before sending them to the ion collider ring. The present design calls for a figure-8 shape of the ring for superior preservation of ion polarization. The ring is made of warm magnets and shares a tunnel with the two collider rings. Acceleration is achieved by warm RF systems. The linear optics has been designed with the transition energy above the highest beam energy in the ring so crossing of transition energy will be avoided. Preliminary beam dynamics studies including chromaticity compensation are presented in this paper.

  15. EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01

    ENERGY STAR as a national program platform ENERGY STAR is atreats ENERGY STAR as a leveraged national program strategyNational Laboratory best estimates. This methodology represents ENERGY STAR program

  16. Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilayer systems for extreme ultraviolet radiation regime

    SciTech Connect (OSTI)

    Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.

    2014-03-28

    Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100?eV and 1000?eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.

  17. Contribution of the electron-phonon coupling to Lindhard partition at low energy in Ge and Si detectors for astroparticle physics

    E-Print Network [OSTI]

    Lazanu, Ionel

    2015-01-01

    The influence of the transient thermal effects on the partition of the energy of selfrecoils in germanium and silicon into energy eventually given to electrons and to atomic recoils respectively is studied. The transient effects are treated in the frame of the thermal spike model, which considers the electronic and atomic subsystems coupled through the electron-phonon interaction. For low energies of selfrecoils, we show that the corrections to the energy partition curves due to the energy exchange during the transient processes modify the Lindhard predictions. These effects depend on the initial temperature of the target material, as the energies exchanged between electronic and lattice subsystems have different signs for temperatures lower and higher than about 15 K. More of the experimental data reported in the literature support the model.

  18. Studies of fast electron transport in the problems of inertial fusion energy

    E-Print Network [OSTI]

    Frolov, Boris K.

    2006-01-01

    Problems of Inertial Fusion Energy by Boris K. Frolov DoctorProblems of Inertial Fusion Energy A dissertation submitted

  19. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    SciTech Connect (OSTI)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  20. Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy

    SciTech Connect (OSTI)

    Yang, Guang Cheng, Shaodong; Li, Chao; Ma, Chuansheng; Zhong, Jiasong; Xiang, Weidong; Wang, Zhao

    2014-12-14

    Three optically transparent colorful (red, green, and blue) glasses were synthesized by the sol-gel method. Nano-sized precipitates were found in scanning electron microscopy images. The precipitates were analyzed by transmission electron microscopy (TEM) and high resolution TEM. The measured lattice parameters of these precipitates were found to fit the metallic copper in red glass but deviate from single valenced Cu oxides in green and blue glasses. The chemistry of these nano-sized particles was confirmed by electron energy loss spectroscopy (EELS). By fitting the EELS spectra obtained from the precipitates with the linear combination of reference spectra from Cu reference compounds, the oxidation states of Cu in the precipitates have been derived. First principle calculations suggested that the Cu nano-particles, which are in the similar oxidation states as our measurement, would show green color in the visible light range.

  1. Atomic and electronic structures of SrTiO3/GaAs heterointerfaces: An 80-kV atomic-resolution electron energy-loss spectroscopy study

    SciTech Connect (OSTI)

    Qiao, Q.; Klie, Robert F; Ogut, Serdar; Idrobo Tapia, Juan C

    2012-01-01

    We have examined the atomic and electronic structures of epitaxially grown, ultrathin SrTiO{sub 3} (100) films on GaAs (001) using 80-kV aberration-corrected atomic-resolution Z-contrast imaging and electron energy-loss spectroscopy (EELS) to develop a fundamental understanding of the interfacial structure-property relationships. We find that the interface is atomically abrupt and no surface reconstruction of the GaAs (001) surface is observed. Using atomic-column resolved EELS, we examine the oxygen vacancy and Ti concentrations in the SrTiO{sub 3} film and across the heterointerface. We show that Ti diffuses into the first few monolayers of GaAs. Using a combination of EELS and first-principles calculations, we present evidence for the formation of As oxides at the interface depending on the thin-film growth conditions. These findings are used to explain the differences in the transport behavior of the films.

  2. Generation of high-energy electron-positron beams in the collision of a laser-accelerated electron beam and a multi-petawatt laser

    E-Print Network [OSTI]

    Lobet, Mathieu; d'Humičres, Emmanuel; Gremillet, Laurent

    2015-01-01

    Generation of antimatter via the multiphoton Breit-Wheeler process in an all-optical scheme will be made possible on forthcoming high-power laser facilities through the collision of wakefield-accelerated GeV electrons with a counter-propagating laser pulse with $10^{22}$-$10^{23}$ $\\mathrm{Wcm}^{-2}$ peak intensity. By means of integrated 3D particle-in-cell simulations, we show that the production of positron beams with 0.1-1 nC total charge, 100-400 MeV mean energy and 0.01-0.1 rad divergence is within the reach of soon-to-be-available laser systems. The variations of the positron beam's properties with respect to the laser parameters are also examined.

  3. Investigation of effect of excitation frequency on electron energy distribution functions in low pressure radio frequency bounded plasmas

    SciTech Connect (OSTI)

    Bhattacharjee, Sudeep [Space plasma, Power and Propulsion, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India); Lafleur, Trevor; Charles, Christine; Boswell, Rod [Space plasma, Power and Propulsion, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2011-07-15

    Particle in cell (PIC) simulations are employed to investigate the effect of excitation frequency {omega} on electron energy distribution functions (EEDFs) in a low pressure radio frequency (rf) discharge. The discharge is maintained over a length of 0.10 m, bounded by two infinite parallel plates, with the coherent heating field localized at the center of the discharge over a distance of 0.05 m and applied perpendicularly along the y and z directions. On varying the excitation frequency f (={omega}/2{pi}) in the range 0.01-50 MHz, it is observed that for f {<=} 5 MHz the EEDF shows a trend toward a convex (Druyvesteyn-like) distribution. For f > 5 MHz, the distribution resembles more like a Maxwellian with the familiar break energy visible in most of the distributions. A prominent ''hot tail'' is observed at f{>=} 20 MHz and the temperature of the tail is seen to decrease with further increase in frequency (e.g., at 30 MHz and 50 MHz). The mechanism for the generation of the ''hot tail'' is considered to be due to preferential transit time heating of energetic electrons as a function of {omega}, in the antenna heating field. There exists an optimum frequency for which high energy electrons are maximally heated. The occurrence of the Druyvesteyn-like distributions at lower {omega} may be explained by a balance between the heating of the electrons in the effective electric field and elastic cooling due to electron neutral collision frequency {nu}{sub en}; the transition being dictated by {omega} {approx} 2{pi}{nu}{sub en}.

  4. Total energy study of the microscopic structure and electronic properties of tetragonal perovskite SrTiO{sub 3}

    SciTech Connect (OSTI)

    Rubio-Ponce, A.; Olguķn, D.

    2014-05-15

    To study the structural and electronic properties of cubic perovskite SrTiO{sub 3} and its stress-induced tetragonal phase, we have performed total energy calculations and studied the effect of oxygen vacancies on the electronic properties of tetragonal perovskite SrTiO{sub 3}. The method used was the relativistic full-potential linearized augmented plane wave (FLAPW) method. To obtain the geometry that minimizes the total energy, we relaxed the internal atomic sites of the tetragonal cell. As a result of this procedure, we have found that the titanium atoms move toward the plane of the vacancy by 0.03 Å, and the apical oxygen atoms move to the same plane by approximately 0.14 Å. These results are discussed in comparison with experimental data.

  5. A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers

    SciTech Connect (OSTI)

    Barcellan, L.; Carugno, G.; Berto, E.; Galet, G.; Galeazzi, G.; Borghesani, A. F.

    2011-09-15

    We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of {mu} A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance.

  6. High-energy high-luminosity electron-ion collider eRHIC

    E-Print Network [OSTI]

    Litvinenko, Vladimir N; Belomestnykh, Sergei; Ben-Zvi, Ilan; Blaskiewicz, Michael M; Calaga, Rama; Chang, Xiangyun; Fedotov, Alexei; Gassner, David; Hammons, Lee; Hahn, Harald; Hao, Yue; He, Ping; Jackson, William; Jain, Animesh; Johnson, Elliott C; Kayran, Dmitry; Kewisch, Jrg; Luo, Yun; Mahler, George; McIntyre, Gary; Meng, Wuzheng; Minty, Michiko; Parker, Brett; Pikin, Alexander; Pozdeyev, Eduard; Ptitsyn, Vadim; Rao, Triveni; Roser, Thomas; Skaritka, John; Sheehy, Brian; Tepikian, Steven; Than, Yatming; Trbojevic, Dejan; Tsentalovich, Evgeni; Tsoupas, Nicholaos; Tuozzolo, Joseph; Wang, Gang; Webb, Stephen; Wu, Qiong; Xu, Wencan; Zelenski, Anatoly

    2011-01-01

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. A new ERL accelerator, which provide 5-30 GeV electron beam, will ensure 10^33 to 10^34 cm^-2 s^-1 level luminosity.

  7. Ultrafast dynamics of hot electrons and holes in copper: Excitation, energy relaxation, and transport effects

    E-Print Network [OSTI]

    Wolf, Martin

    , and transport effects E. Knoesel, A. Hotzel, and M. Wolf Fritz-Haber-Institut der MPG, Faradayweg 4-6, D-14195 calculation, a simulation of the ballistic transport effect and its implication on the observed electron process for a hot electron is scattering with a ``cold'' elec- tron below the Fermi level, because

  8. Atomic Forces from Electronic Energies Via the Hellmann-Feynman Theorem, with Application to Semiconductor (110) Surface Relaxation 

    E-Print Network [OSTI]

    SANKEY, OF; Allen, Roland E.

    1986-01-01

    to yield new information on a num- ber of difficult yet technologically important problems. These include (i) the relaxation and the reconstructed geometries of surfaces and interfaces, and the atomic con- figurations in semiconducting alloys, (ii... VOLUM~ 33, NUMBER 10 15 lVIAY 1986 Atomic forces from electronic energies via the Hellmann-Feynman theorem, with application to semiconductor (110)surface relaxation Otto F. Sankey Department ofPhysics, Arizona State University, Tempe, Arizona 85287...

  9. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials

    SciTech Connect (OSTI)

    Howe, James M.

    2013-05-09

    In this program, we developed new theoretical and experimental insights into understanding the relationships among fundamental universality and scaling phenomena, the solid-state physical and mechanical properties of materials, and the volume plasmon energy as measured by electron energy-loss spectroscopy (EELS). Particular achievements in these areas are summarized as follows: (i) Using a previously proposed physical model based on the universal binding-energy relation (UBER), we established close phenomenological connections regarding the influence of the valence electrons in materials on the longitudinal plasma oscillations (plasmons) and various solid-state properties such as the optical constants (including absorption and dispersion), elastic constants, cohesive energy, etc. (ii) We found that carbon materials, e.g., diamond, graphite, diamond-like carbons, hydrogenated and amorphous carbon films, exhibit strong correlations in density vs. Ep (or maximum of the volume plasmon peak) and density vs. hardness, both from available experimental data and ab initio DFT calculations. This allowed us to derive a three-dimensional relationship between hardness and the plasmon energy, that can be used to determine experimentally both hardness and density of carbon materials based on measurements of the plasmon peak position. (iii) As major experimental accomplishments, we demonstrated the possibility of in-situ monitoring of changes in the physical properties of materials with conditions, e.g., temperature, and we also applied a new plasmon ratio-imaging technique to map multiple physical properties of materials, such as the elastic moduli, cohesive energy and bonding electron density, with a sub-nanometer lateral resolution. This presents new capability for understanding material behavior. (iv) Lastly, we demonstrated a new physical phenomenon - electron-beam trapping, or Ć?Ā¢Ć?Ā?Ć?Ā?electron tweezersĆ?Ā¢Ć?Ā?Ć?Ā¯ - of a solid metal nanoparticle inside a liquid metal. This phenomenon is analogous to that of optical trapping of solid microparticles in solution known as "optical tweezers", which is currently being used to manipulate molecules and inorganic materials in a variety of nanotechnology applications.

  10. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    E-Print Network [OSTI]

    Brown, Richard

    2012-01-01

    of collecting device-level energy data. This paper describescollects the power and energy data, stores it in a database,collect whole-building energy data to calculate the fraction

  11. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    E-Print Network [OSTI]

    Brown, Richard

    2012-01-01

    a High-Fidelity Wireless Building Energy Auditing Network.energy and power data using small, relatively inexpensive wirelessUsing Wireless Power Meters to Measure Energy Use of

  12. Investigation of the formation and energy density of high-current pulsed electron beams

    E-Print Network [OSTI]

    Daichi, Yoshiaki; WANG, ZHIGANG; Yamazaki, Kazuo; Sano, Sadao

    2007-01-01

    of the formation and energy density of high-current pulsednot clear about the energy density of HCPEB under differentof HCPEB and its energy density. Then, effects of argon gas

  13. Transport in carbon nanotube field-effect transistors tuned using low energy electron beam This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Harriott, Lloyd R.

    Transport in carbon nanotube field-effect transistors tuned using low energy electron beam exposure nanotube field-effect transistors tuned using low energy electron beam exposure Jack Chan1 , Brian Burke1/334212 Abstract We have studied the effect of low energy (30 keV) electron beam exposure on carbon nanotube field

  14. O.L. Lazarenkova and A.A. Balandin, Investigation of the electron energy spectrum in a three dimensional regimented tetragonal quantum dot superlattice, presented at the MRS Spring Meeting, San Francisco, 2001 (The Best Poster Presentation Award).

    E-Print Network [OSTI]

    , 2001 (The Best Poster Presentation Award). Investigation of the Electron Energy Spectrum in a ThreeO.L. Lazarenkova and A.A. Balandin, Investigation of the electron energy spectrum in a three.S.A. ABSTRACT We analyze the electron energy spectrum in three-dimensional regimented arrays of semiconductor

  15. Injection of electrons with predominantly perpendicular energy into an area of toroidal field ripple in a tokamak plasma to improve plasma confinement

    DOE Patents [OSTI]

    Ono, Masayuki (Princeton Junction, NJ); Furth, Harold (Princeton, NJ)

    1993-01-01

    An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..

  16. NEWSLETTER October 2009 Predicted Northern-Hemisphere temperature rise due

    E-Print Network [OSTI]

    Williams, Paul

    ; glaciology; waste; energy; the built environment. · Prize money totals £500; · A certificate will also merged with web editor, and as Communication Editors, we have high standards to live up to! Environmental

  17. Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare

    E-Print Network [OSTI]

    J. Kasparova; M. Karlicky; E. P. Kontar; R. A. Schwartz; B. R. Dennis

    2005-08-30

    A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.

  18. Testing time-dependent density functional theory with depopulated molecular orbitals for predicting electronic excitation energies of valence, Rydberg, and charge-transfer

    E-Print Network [OSTI]

    Truhlar, Donald G

    transition energies J. Chem. Phys. 137, 244104 (2012); 10.1063/1.4769078 A long-range-corrected densityTesting time-dependent density functional theory with depopulated molecular orbitals for predicting electronic excitation energies of valence, Rydberg, and charge-transfer states and potential energies near

  19. arXiv:cond-mat/0404413v23May2004 Ground state energy of an interacting electron system in the background of two

    E-Print Network [OSTI]

    von Oppen, Felix

    arXiv:cond-mat/0404413v23May2004 Ground state energy of an interacting electron system rigorously that the ground state energy and degeneracy of an infinitely extended system of interacting that the energy spectrum does not depend on the string separation distance for strictly positive distances

  20. Generation of 500 MeV-1 GeV energy electrons from laser wakefield acceleration via ionization induced injection using CO{sub 2} mixed in He

    SciTech Connect (OSTI)

    Mo, M. Z.; Ali, A.; Fedosejevs, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)] [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Fourmaux, S.; Lassonde, P.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)] [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2013-04-01

    Laser wakefield acceleration of 500 MeV to 1 GeV electron bunches has been demonstrated using ionization injection in mixtures of 4% to 10% of CO{sub 2} in He. 80 TW laser pulses were propagated through 5 mm gas jet targets at electron densities of 0.4-1.5 Multiplication-Sign 10{sup 19}cm{sup -3}. Ionization injection led to lower density thresholds, a higher total electron charge, and an increased probability of producing electrons above 500 MeV in energy compared to self-injection in He gas alone. Electrons with GeV energies were also observed on a few shots and indicative of an additional energy enhancement mechanism.

  1. Single electron beam rf feedback free electron laser

    DOE Patents [OSTI]

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  2. An electronic radiation of blackbody: Cosmic electron background

    E-Print Network [OSTI]

    Jian-Miin Liu

    2008-02-23

    The Universe owns the electronic radiation of blackbody at temperature 2.725 K, which we call the cosmic electron background. We calculate its radiation spectrum. The energy distribution of number density of electrons in the cosmic electron background becomes zero as energy goes to both zero and infinity. It has one maximum peak near the energy level of 10**(-23) J.

  3. Zeeman energy and spin relaxation in a one-electron quantum dot

    E-Print Network [OSTI]

    R. Hanson; B. Witkamp; L. M. K. Vandersypen; L. H. Willems van Beveren; J. M. Elzerman; L. P. Kouwenhoven

    2003-11-10

    We have measured the relaxation time, T1, of the spin of a single electron confined in a semiconductor quantum dot (a proposed quantum bit). In a magnetic field, applied parallel to the two-dimensional electron gas in which the quantum dot is defined, Zeeman splitting of the orbital states is directly observed by measurements of electron transport through the dot. By applying short voltage pulses, we can populate the excited spin state with one electron and monitor relaxation of the spin. We find a lower bound on T1 of 50 microseconds at 7.5 T, only limited by our signal-to-noise ratio. A continuous measurement of the charge on the dot has no observable effect on the spin relaxation.

  4. Electron recombination in low-energy nuclear recoils tracks in liquid argon

    E-Print Network [OSTI]

    Wojcik, Mariusz

    2015-01-01

    This paper presents an analysis of electron-ion recombination processes in ionization tracks of recoiled atoms in liquid argon (LAr) detectors. The analysis is based on the results of computer simulations which use realistic models of electron transport and reactions. The calculations reproduce the recent experimental results of the ionization yield from 6.7 keV nuclear recoils in LAr. The statistical distribution of the number of electrons that escape recombination is found to deviate from the binomial distribution, and estimates of recombination fluctuations for nuclear recoils tracks are obtained. A study of the recombination kinetics shows that a significant part of electrons undergo very fast static recombination, an effect that may be responsible for the weak drift-field dependence of the ionization yield from nuclear recoils in some noble liquids. The obtained results can be useful in the search for hypothetical dark matter particles and in other studies that involve detection of recoiled nuclei.

  5. Catalac free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1982-01-01

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  6. Intermediate-energy electron-impact dissociative ionization-excitation of molecular hydrogen

    E-Print Network [OSTI]

    Serov, Vladislav V

    2013-01-01

    We have implemented three variants of the exterior complex scaling procedure in prolate spheroidal coordinates (PS-ECS) to study the dissociative electron impact ionization-excitation of hydrogen molecule, where the emerging electrons and one of the protons are detected in coincidence for the first time in a recent experiment. In the first variant, designated PSECS-1B, the two target electrons are treated ab initio while the interaction of the incident-scattered electron is taken into account using the first term of the Born series. In the second, PSECS-2BCD, the second Born term is introduced in the dipole approximation. In the third approach, designated PSECS-SW, applied to the ionization-excitation to the $2p\\sigma_u$ level of H$_2^+$, the multi-configurational single active electron approximation is used for the target, while the interaction of the incident electron with the target is described ab initio. Our results agree partially with those of a recent experiment which is in progress.

  7. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    SciTech Connect (OSTI)

    Filippov, A. V. Dyatko, N. A.; Kostenko, A. S.

    2014-11-15

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup ?1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocality is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.

  8. State-selective electron capture in {sup 3}He{sup 2+} + He collisions at intermediate impact energies

    SciTech Connect (OSTI)

    Alessi, M.; Otranto, S.; Focke, P.

    2011-01-15

    In this work we have measured single-electron capture in collisions of {sup 3}He{sup 2+} projectiles incident on a helium target for energies of 13.3-100 keV/amu with the cold-target recoil-ion momentum spectroscopy setup implemented at the Centro Atomico Bariloche. State-selective single-capture cross sections were measured as a function of the impact energy. They were found to agree with previous existing data from the Frankfurt group, starting at the impact energy of 60 keV/amu; as well as with recent data, at 7.5 keV/amu, from the Lanzhou group. The present experimental results are also contrasted to the classical trajectory Monte Carlo method with dynamical screening.

  9. Self-energy correction to the hyperfine splitting and the electron g factor in hydrogen-like ions

    E-Print Network [OSTI]

    Yerokhin, Vladimir A

    2009-01-01

    The hyperfine structure (hfs) and the g factor of a bound electron are caused by external magnetic fields. For the hfs, the magnetic field is due to the nuclear spin. A uniform-in-space and constant-in-time magnetic field is used to probe the bound-electron g factor. The self-energy corrections to these effects are more difficult to evaluate than those to the Lamb shift. Here, we describe a numerical approach for both effects in the notoriously problematic regime of hydrogen-like bound systems with low nuclear charge numbers. The calculation is nonperturbative in the binding Coulomb field. Accurate numerical values for the remainder functions are provided for 2P states and for nS states with n=1,2,3.

  10. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    SciTech Connect (OSTI)

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah [Malaysian Nuclear Agency (Nuclear Malaysia), Bangi 43000 Kajang Selangor (Malaysia); Ahmad, Pauzi [Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor (Malaysia)

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

  11. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators

    SciTech Connect (OSTI)

    Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N. [Institute of Physics, University of Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil)

    2012-09-15

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  12. Aero-Optical Investigation of Transonic Flow Features And Shock Dynamics on Hemisphere-On-Cylinder Turrets

    E-Print Network [OSTI]

    Gordeyev, Stanislav

    Aero-Optical Investigation of Transonic Flow Features And Shock Dynamics on Hemisphere, Notre Dame, IN, 46545 Aero-optical environment around a hemisphere-on-cylinder turret with both flat, causing additional aero-optical distortions at side- looking angles. The instantaneous shock locations

  13. The isotopic record of Northern Hemisphere atmospheric carbon monoxide1 since 1950; implications for the CO budget Supplementary Material2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    1 The isotopic record of Northern Hemisphere atmospheric carbon monoxide1 since 1950 as a supplement to `The isotopic record of Northern Hemisphere23 atmospheric carbon monoxide since 1950 combustion, methane oxidation, NMHC oxidation, biofuel burning, biomass burning, direct57 biogenic

  14. A jet streak circulation associated with a low-latitude jet in the Southern Hemisphere over Africa.

    E-Print Network [OSTI]

    Nicholson, Sharon E.

    A jet streak circulation associated with a low-latitude jet in the Southern Hemisphere over Africa 2007 #12;2 Abstract In the Southern Hemisphere over Africa a mid-tropospheric easterly jet stream exists during some months that is analogous to the African Easterly Jet over West Africa. In this note

  15. Diagnosing Northern Hemisphere Jet Portrayal in 17 CMIP3 Global Climate Models: Twenty-First-Century Projections

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    an intensified midlatitude jet stream and an elevated tropopause, as well as a poleward-shifted jet. While both to impact modeled Northern Hemisphere jet stream changes. In particular, El Nin~o­Southern Oscillation in the Northern Hemisphere zonal wind response to climate change. 1. Background Understanding how jet streams

  16. A Cavity-backed Slot Antenna with High Upper Hemisphere Efficiency for Sewer Sensor Network

    E-Print Network [OSTI]

    Tentzeris, Manos

    A Cavity-backed Slot Antenna with High Upper Hemisphere Efficiency for Sewer Sensor Network of Technology Atlanta, GA Abstract--A wireless sewer sensor network has been widespread to monitor combined sewer overflow (CSO) causing human health and environmental hazards. To enable the wireless

  17. Negative running of the spectral index, hemispherical asymmetry and the consistency of Planck with large r

    SciTech Connect (OSTI)

    McDonald, John

    2014-11-01

    Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l ?< 50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a large value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r.

  18. Spray and microjets produced by focusing a laser pulse into a hemispherical drop

    E-Print Network [OSTI]

    Ohl, Claus-Dieter

    Spray and microjets produced by focusing a laser pulse into a hemispherical drop S. T. Thoroddsen,1 surface and the Nd:YAG yttrium aluminum garnet laser pulse propagates through the drop and is focused near applications of laser disrup- tion of droplets is for generation of fine spray to improve combustion efficiency

  19. One-way implodable tag capsule with hemispherical beaded end cap for LWR fuel manufacturing

    DOE Patents [OSTI]

    Gross, Kenny (Bolingbrook, IL); Lambert, John (Wheaton, IL)

    1999-01-01

    A capsule containing a tag gas in a zircaloy body portion having a hemispical top curved toward the bottom of the body portion. The hemispherical top has a rupturable portion upon exposure to elevated gas pressure and the capsule is positioned within a fuel element in a nuclear reactor.

  20. Cortical Projection Topography of the Human Splenium: Hemispheric Asymmetry and Individual Differences

    E-Print Network [OSTI]

    Gazzaniga, Michael

    Cortical Projection Topography of the Human Splenium: Hemispheric Asymmetry and Individual topography of the human splenium. Homotopic and heterotopic connections were revealed between the splenium difficult to trace the cortical projection topographies of long white matter fiber tracts of the human brain

  1. Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements

    E-Print Network [OSTI]

    Donchin, Opher

    Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements to address this issue, we simultaneously recorded neuronal activity at multiple sites within the arm area related to the mode of coupling between the two arms. Both the correlations between the movements

  2. eschweizerbart_xxx Are Greenhouse Gas Signals of Northern Hemisphere winter

    E-Print Network [OSTI]

    Raible, Christoph C.

    eschweizerbart_xxx Are Greenhouse Gas Signals of Northern Hemisphere winter extra-tropical cyclone, Russia 4 Institute of Geography, Russian Academy of Sciences, Moscow, Russia 5 Institute of Global Climate and Ecology, Roshydromet and Russian Academy of Sciences, Moscow, Russia 6 Climate Research

  3. Similarities and Differences in Aero-Optical Structure over Cylindrical and Hemispherical Turrets with a Flat

    E-Print Network [OSTI]

    Gordeyev, Stanislav

    Similarities and Differences in Aero-Optical Structure over Cylindrical and Hemispherical Turrets, Missouri, USA This paper discusses similarities and differences for aft-looking angles of the aero- optical turret. Both fluid-mechanic and aero-optical data for the base- line flows over the turrets and with two

  4. Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases

    E-Print Network [OSTI]

    Arblaster, Julie

    Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases J 2010; accepted 19 October 2010; published 19 January 2011. [1] Future anthropogenic climate change simulations. Citation: Arblaster, J. M., G. A. Meehl, and D. J. Karoly (2011), Future climate change

  5. Ozone hole and Southern Hemisphere climate change Seok-Woo Son,1

    E-Print Network [OSTI]

    Son, Seok-Woo

    Ozone hole and Southern Hemisphere climate change Seok-Woo Son,1 Neil F. Tandon,2 Lorenzo M cooling resulting from ozone depletion has only recently been examined and a comprehensive picture on the stratospheric ozone forcing used, we here show that stratospheric ozone affects the entire atmospheric

  6. Getting it right: Word learning across the hemispheres Arielle Borovsky a,n

    E-Print Network [OSTI]

    Kutas, Marta

    Getting it right: Word learning across the hemispheres Arielle Borovsky a,n , Marta Kutas a 20 November 2012 Accepted 31 January 2013 Available online 14 February 2013 Keywords: ERPs N400 Word information about an unknown word's meaning from a highly constraining sentence context with minimal exposure

  7. MICROSCALE THREE-DIMENSIONAL HEMISPHERICAL SHELL RESONATORS FABRICATED FROM METALLIC GLASS

    E-Print Network [OSTI]

    M'Closkey, Robert T.

    of metallic glasses combined with the ability to blow mold at relatively low temperatures (150- 400 °CMICROSCALE THREE-DIMENSIONAL HEMISPHERICAL SHELL RESONATORS FABRICATED FROM METALLIC GLASS M. Kanik.S. Abstract-- A novel use of bulk metallic glasses in microresonator applications is reported and a method

  8. Climatology of wave breaking and mixing in the Northern Hemisphere summer stratosphere 

    E-Print Network [OSTI]

    Wagner, Richard Emmett

    1999-01-01

    The cause of loge zonal ozone variations observed by POAM II (Polar Ozone and Aerosol Measurement II) in the Northern Hemisphere summer stratosphere between 55N?-65N? and ~20-30 km is investigated using the United Kingdom Meteorological Office...

  9. An ERP investigation of the co-development of hemispheric lateralization of face and word recognition

    E-Print Network [OSTI]

    Plaut, David C.

    An ERP investigation of the co-development of hemispheric lateralization of face and word observed the standard finding of greater accuracy and a larger N170 ERP component in the left over right event- related potentials (ERPs) have observed a N170 component that is stronger in the LH than

  10. Semi-epitaxial magnetic tunnel transistor: Effect of electron energy and temperature

    E-Print Network [OSTI]

    Bayreuther, Günther

    ; published online 6 May 2005 A magnetic tunnel transistor with spin-valve metallic base and epitaxial collector leakage. © 2005 American Institute of Physics. DOI: 10.1063/1.1853892 I. INTRODUCTION The hot-electron spin-valve transistor was introduced by Monsma et al. in 1995.1 Since then, interest in hot

  11. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, Christopher J. (Powell, TN); Lopata, Vincent J. (Manitoba, CA); Havens, Stephen J. (Knoxville, TN); Dorsey, George F. (Farragut, TN); Moulton, Richard J. (Lafayette, CA)

    1999-01-01

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  12. Technical report on "BES Early Career. Control Graphene Electronic Structure for Energy Technology"

    SciTech Connect (OSTI)

    Wang, Feng

    2015-07-11

    Graphene, a one-atom thick sheet of carbon, exhibits incredible structural flexibility, electrical transport, and optical responses. And remarkably, the graphene electronic structure can be varied through interlayer coupling, nanoscale patterning, and electrical gating. In this project we made significant contribution to better understand and control physical properties of graphene and other novel two-dimensional layered materials.

  13. Parametric Exponential Energy Decay for Dissipative Electron-Ion Plasma Waves

    E-Print Network [OSTI]

    Stavrakakis, Nikolaos M.

    in a homogeneous magnetic field, adapted to model the UHH plasma heating scheme. The system focuses on the vital work is to study a model describing the Upper Hybrid Heating (UHH) scheme for plasmas in fusion devices-Gordon - SchrØodinger system, Electron-Ion Plasma Waves, ECRH Plasma Heating, Dissipation, Global Existence

  14. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, C.J.; Lopata, V.J.; Havens, S.J.; Dorsey, G.F.; Moulton, R.J.

    1999-03-02

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  15. In-situ stoichiometry determination using x-ray fluorescence generated by reflection-high-energy-electron-diffraction

    SciTech Connect (OSTI)

    Keenan, Cameron; Chandril, Sandeep; Lederman, David [Department of Physics and Multifunctional Materials Laboratory, West Virginia University, Morgantown, West Virginia 26506 (United States); Myers, T. H. [Department of Physics and Multifunctional Materials Laboratory, West Virginia University, Morgantown, West Virginia 26506 (United States); Materials Science, Engineering, and Commercialization Program, Texas State University-San Marcos, San Marcos, Texas 78666 (United States)

    2011-06-01

    A major challenge in the stoichiometric growth of complex oxide compounds is the control of the relative compositions of the constituent materials. A potential avenue for compositional analysis during growth is the use of x-ray fluorescence generated during reflection high energy electron diffraction measurements. Using this technique, relative compositions of Y and Mn in molecular beam epitaxy grown YMnO{sub 3} samples were studied. Comparing the results with Rutherford back scattering spectroscopy suggests that the technique has the potential for real-time analysis of elemental fluxes and stoichiometry control during sample growth.

  16. FHBS calculation of ionized electron angular and energy distribution following the p+H collision at 20 keV 

    E-Print Network [OSTI]

    Fu, Jun

    2004-11-15

    -Centered Expansion (SCE). In the SCE method a basis is con ned around the target center. This limited basis has proved to be less effective in calculating charge transfer, which is important at the impact energy range we are considering (20 keV). Thus the SCE... is not a good candidate to obtain meaningful differential cross sections. Despite this de ciency the SCE is helpful in checking our ability to describe the electron continuum. The One-and-Half-Centered-Expansion (OHCE) method makes an improvement over...

  17. Rf Feedback free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1981-01-01

    A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  18. Analytical Model for Rates of Electron Attachment and Intramolecular Electron Transfer in Electron Transfer

    E-Print Network [OSTI]

    Simons, Jack

    . As a result, in ECD the primary source of excess energy is the recombination energy released when the electron) where free low-energy electrons rather than anion collision partners are used to effect the initial) experiments, one subjects a mass-to-charge-selected parent ion to very low-energy electrons (often boiled off

  19. FEL and Optical Klystron Gain for an Electron Beam with Oscillatory Energy Distribution

    SciTech Connect (OSTI)

    Stupakov, G.; Ding, Y.; Huang, Z.; /SLAC

    2009-12-09

    If the energy spread of a beam is larger then the Pierce parameter, the FEL gain length increases dramatically and the FEL output gets suppressed. We show that if the energy distribution of such a beam is made oscillatory on a small scale, the gain length can be considerably decreased. Such an oscillatory energy distribution is generated by first modulating the beam energy with a laser via the mechanism of inverse FEL, and then sending it through a strong chicane. We show that this approach also works for the optical klystron enhancement scheme. Our analytical results are corroborated by numerical simulations.

  20. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    E-Print Network [OSTI]

    Brown, Richard

    2012-01-01

    with a High-Fidelity Wireless Building Energy AuditingN ATIONAL L ABORATORY Using Wireless Power Meters to Measureopportunity employer. Using Wireless Power Meters to Measure