National Library of Energy BETA

Sample records for helium induced cracking

  1. Technique to eliminate helium induced weld cracking in stainless steels

    SciTech Connect (OSTI)

    Chin-An Wang; Chin, B.A.; Grossbeck, M.L.

    1992-12-31

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  2. Remote reactor repair: GTA (gas tungsten Arc) weld cracking caused by entrapped helium

    SciTech Connect (OSTI)

    Kanne, W.R. Jr.

    1988-01-01

    A repair patch was welded to the wall of a nuclear reactor tank using remotely controlled thirty-foot long robot arms. Further repair was halted when gas tungsten arc (GTA) welds joining type 304L stainless steel patches to the 304 stainless steel wall developed toe cracks in the heat-affected zone (HAZ). The role of helium in cracking was investigated using material with entrapped helium from tritium decay. As a result of this investigation, and of an extensive array of diagnostic tests performed on reactor tank wall material, helium embrittlement was shown to be the cause of the toe cracks.

  3. Friction-Induced Fluid Heating in Nanoscale Helium Flows

    SciTech Connect (OSTI)

    Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-05-21

    We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

  4. Laser induced fluorescence spectroscopy of the Ca dimer deposited on helium and mixed helium/xenon clusters

    SciTech Connect (OSTI)

    Gaveau, Marc-Andr; Pothier, Christophe; Briant, Marc; Mestdagh, Jean-Michel

    2014-12-09

    We study how the laser induced fluorescence spectroscopy of the calcium dimer deposited on pure helium clusters is modified by the addition of xenon atoms. In the wavelength range between 365 and 385 nm, the Ca dimer is excited from its ground state up to two excited electronic states leading to its photodissociation in Ca({sup 1}P)+Ca({sup 1}S): this process is monitored by recording the Ca({sup 1}P) fluorescence at 422.7nm. One of these electronic states of Ca{sub 2} is a diexcited one correlating to the Ca(4s4p{sup 3}P(+Ca(4s3d{sup 3}D), the other one is a repulsive state correlating to the Ca(4s4p1P)+Ca(4s21S) asymptote, accounting for the dissociation of Ca{sub 2} and the observation of the subsequent Ca({sup 1}P) emission. On pure helium clusters, the fluorescence exhibits the calcium atomic resonance line Ca({sup 1}S?{sup 1}P) at 422.7 nm (23652 cm{sup ?1}) assigned to ejected calcium, and a narrow red sided band corresponding to calcium that remains solvated on the helium cluster. When adding xenon atoms to the helium clusters, the intensity of these two features decreases and a new spectral band appears on the red side of calcium resonance line; the intensity and the red shift of this component increase along with the xenon quantity deposited on the helium cluster: it is assigned to the emission of Ca({sup 1}P) associated with the small xenon aggregate embedded inside the helium cluster.

  5. Grain boundary chemistry effects on environment-induced crack growth of iron-based alloys

    SciTech Connect (OSTI)

    Jones, R.H.

    1992-11-01

    Relation between grain boundary chemistry and environment-induced crack growth of Fe-based alloys is reviewed. The importance of the cleanliness of steels is clearly demonstrated by direct relations between grain boundary chemistry and crack growth behavior for both H and anodic dissolution-induced crack growth. Relationships between strain to failure, work of fracture, K[sub ISCC], crack velocity and fracture mode and grain boundary chemistry are presented. Only results in which the grain boundary chemistry has been measured directly by Auger electron spectroscopy (AES) on intergranular surfaces exposed by in situ fracture have been considered in this review.

  6. Grain boundary chemistry effects on environment-induced crack growth of iron-based alloys

    SciTech Connect (OSTI)

    Jones, R.H.

    1992-11-01

    Relation between grain boundary chemistry and environment-induced crack growth of Fe-based alloys is reviewed. The importance of the cleanliness of steels is clearly demonstrated by direct relations between grain boundary chemistry and crack growth behavior for both H and anodic dissolution-induced crack growth. Relationships between strain to failure, work of fracture, K{sub ISCC}, crack velocity and fracture mode and grain boundary chemistry are presented. Only results in which the grain boundary chemistry has been measured directly by Auger electron spectroscopy (AES) on intergranular surfaces exposed by in situ fracture have been considered in this review.

  7. An Assessment of Remote Visual Testing System Capabilities for the Detection of Service Induced Cracking

    SciTech Connect (OSTI)

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2005-09-01

    Remote visual testing is typically employed to ascertain the condition of materials in components that are inaccessible for direct examination. In the power and petrochemical industries, remote visual testing is used to assess whether service-related degradation is being manifested that, if left unchecked, may eventually impair the structural reliability of a component. Several codes and standards require that visual examinations be periodically conducted. Many of these inspections must be performed remotely due to harsh environments or design geometries of the subject components. This paper describes the attributes and limitations of remote visual testing, performance demonstration standards for camera systems, typical dimensions for service-induced cracking phenomena, and an assessment of the reliability of remote video camera systems at finding cracks. Because many forms of service-induced cracks have very small crack opening dimensions, the reliability of remote visual testing may not be adequate to ensure component integrity, given the capabilities of current camera systems and application practices.

  8. Solvation of molecules in superfluid helium enhances the interaction induced localization effect

    SciTech Connect (OSTI)

    Walewski, ?ukasz Forbert, Harald; Marx, Dominik

    2014-04-14

    Atomic nuclei become delocalized at low temperatures as a result of quantum effects, whereas they are point-like in the high temperature (classical) limit. For non-interacting nuclei, the delocalization upon lowering the temperature is quantitatively described in terms of the thermal de Broglie wavelength of free particles. Clearly, light non-interacting nuclei the proton being a prominent one are much more delocalized at low temperatures compared to heavy nuclei, such as non-interacting oxygen having water in mind. However, strong interactions due to chemical bonding in conjunction with ultra-low temperatures characteristic to superfluid helium nanodroplets change this common picture substantially for nuclei in molecules or clusters. It turns out that protons shared in hydrogen bonds undergo an extreme interaction induced localization at temperatures on the order of 1 K, which compresses the protonic spatial distributions to the size of the much heavier donor or acceptor atoms, such as O or Cl nuclei, corresponding to about 0.1% of the volume occupied by a non-interacting proton at the same temperature. Moreover, applying our recently developed hybrid ab initio path integral molecular dynamics/bosonic path integral Monte Carlo quantum simulation technique to a HCl/water cluster, HCl(H{sub 2}O){sub 4}, we find that helium solvation has a significant additional localizing effect of up to about 30% in volume. In particular, the solvent-induced excess localization is the stronger the lesser the given nucleus is already localized in the gas phase reference situation.

  9. Simulation of streamers propagating along helium jets in ambient air: Polarity-induced effects

    SciTech Connect (OSTI)

    Naidis, G. V.

    2011-04-04

    Results of modeling of streamer propagation along helium jets for both positive and negative polarities of applied voltage are presented. Obtained patterns of streamer dynamics and structure in these two cases are similar to those observed in experiments with plasma jets.

  10. Develop baseline computational model for proactive welding stress management to suppress helium induced cracking during weld repair

    Broader source: Energy.gov [DOE]

    There are over 100 nuclear power plants operating in the U.S., which generate approximately 20% of the nation’s electricity. These plants range from 15 to 40 years old. Extending the service lives...

  11. Radiation-induced instability of MnS precipitates and its possible consequences on irradiation-induced stress corrosion cracking of austenitic stainless steels

    SciTech Connect (OSTI)

    Chung, H.M.; Sanecki, J.E.; Garner, F.A.

    1996-12-01

    Irradiation-assisted stress corrosion cracking (IASCC) is a significant materials issue for the light water reactor (LWR) industry and may also pose a problem for fusion power reactors that will use water as coolant. A new metallurgical process is proposed that involves the radiation-induced release into solution of minor impurity elements not usually thought to participate in IASCC. MnS-type precipitates, which contain most of the sulfur in stainless steels, are thought to be unstable under irradiation. First, Mn transmutes strongly to Fe in thermalized neutron spectra. Second, cascade-induced disordering and the inverse Kirkendall effect operating at the incoherent interfaces of MnS precipitates are thought to act as a pump to export Mn from the precipitate into the alloy matrix. Both of these processes will most likely allow sulfur, which is known to exert a deleterious influence on intergranular cracking, to re-enter the matrix. To test this hypothesis, compositions of MnS-type precipitates contained in several unirradiated and irradiated heats of Type 304, 316, and 348 stainless steels (SSs) were analyzed by Auger electron spectroscopy. Evidence is presented that shows a progressive compositional modification of MnS precipitates as exposure to neutrons increases in boiling water reactors. As the fluence increases, the Mn level in MnS decreases, whereas the Fe level increases. The S level also decreases relative to the combined level of Mn and Fe. MnS precipitates were also found to be a reservoir of other deleterious impurities such as F and O which could be also released due to radiation-induced instability of the precipitates.

  12. Helium bubble distributions in reactor tank repair specimens. Part 1

    SciTech Connect (OSTI)

    Tosten, M.H.; Kestin, P.A.

    1992-03-01

    This report discusses the Reactor Tank Repair (RTR) program was initiated to develop an in-tank repair process capable of repairing stress corrosion cracks within the SRS reactor tank walls, in the event that such a repair is needed. Previous attempts to repair C-reactor tank with a gas tungsten arc (GTA) welding process were unsuccessful due to significant cracking that occurred in the heat-affected-zones adjacent to the repair welds. It was determined that this additional cracking was a result of helium embrittlement caused by the combined effects of helium (existing within the tank walls), the high heat input associated with the GTA process, and weld shrinkage stresses. Based on the results of earlier studies it was suggested that the effects of helium embrittlement could be minimized by using a low heat input GMA process. Metallographic analysis played an important role throughout the investigation of alternative welding methods for the repair of helium-containing materials.

  13. Helium bubble distributions in reactor tank repair specimens

    SciTech Connect (OSTI)

    Tosten, M.H.; Kestin, P.A.

    1992-03-01

    This report discusses the Reactor Tank Repair (RTR) program was initiated to develop an in-tank repair process capable of repairing stress corrosion cracks within the SRS reactor tank walls, in the event that such a repair is needed. Previous attempts to repair C-reactor tank with a gas tungsten arc (GTA) welding process were unsuccessful due to significant cracking that occurred in the heat-affected-zones adjacent to the repair welds. It was determined that this additional cracking was a result of helium embrittlement caused by the combined effects of helium (existing within the tank walls), the high heat input associated with the GTA process, and weld shrinkage stresses. Based on the results of earlier studies it was suggested that the effects of helium embrittlement could be minimized by using a low heat input GMA process. Metallographic analysis played an important role throughout the investigation of alternative welding methods for the repair of helium-containing materials.

  14. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    SciTech Connect (OSTI)

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  15. The Capabilities and Limitation of Remote Visual Methods to Detect Service-Induced Cracks in Reactor Components

    SciTech Connect (OSTI)

    Cumblidge, Stephen E.; Doctor, Steven R.; Anderson, Michael T.

    2006-11-01

    Since 1977, the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research has funded a multiyear program at the Pacific Northwest National Laboratory (PNNL) to evaluate the reliability and accuracy of nondestructive evaluation (NDE) techniques employed for inservice inspection (ISI). Recently, the U.S. nuclear industry proposed replacing current volumetric and/or surface examinations of certain components in commercial nuclear power plants, as required by ASME Boiler and Pressure Vessel Code Section XI, with a simpler visual testing (VT) method. The advantages of VT are that these tests generally involve much less radiation exposure and examination times than do volumetric examinations such as ultrasonic testing (UT). However, for industry to justify supplamenting volumetric metods with VT, and analysis of pertinent issues is needed to support the reliability of VT in determining the structural intefrity of reactor components. As piping and pressure vessel compoents in a nuclear power station are generally underwater and in high radiation field, they need to be examined by VT from a distance with radiation-hardened video systems. Remote visual testing has been used by nuclear utilities to find cracks in pressure vessel cladding in pressurized water reactors, for shrouds in boiling water reactors, and to investigate leaks in piping and reactor components. These visual tests are performed using a wide variety of procedures and equipment. The techniques for remote visual testing use submersible closed-circuit video cameras to examine reactor components and welds. PNNL has conducted a parametric study that examines the important variables that affect the effectiveness of a remote visual test. Tested variables include lighting techniques, camera resolution, camera movement, and magnification. PNNL has also conductrd a laboratory test using a commercial visual testing camera system to experimentally determine the ability of the camera system to detect cracks of various widths under ideal conditions.

  16. Metal tritides helium emission

    SciTech Connect (OSTI)

    Beavis, L.C.

    1980-02-01

    Over the past several years, we have been measuring the release of helium from metal tritides (primarily erbium tritide). We find that qualitatively all tritides of interest to us behave the same. When they are first formed, the helium is released at a low rate that appears to be related to the amount of surface area which has access to the outside of the material (either film or bulk). For example, erbium tritide films initially release about 0.3% of the helium generated. Most tritide films emit helium at about this rate initially. At some later time, which depends upon the amount of helium generated, the parent occluding element and the degree of tritium saturation of the dihydride phase the helium emission changes to a new mode in which it is released at approximately the rate at which it is generated (for example, we measure this value to be approx. = .31 He/Er for ErT/sub 1/./sub 9/ films). If erbium ditritide is saturated beyond 1.9 T/Er, the critical helium/metal ratio decreases. For example, in bulk powders ErT/sub 2/./sub 15/ reaches critical release concentration at approx. = 0.03. Moderate elevation of temperature above room temperature has little impact on the helium release rate. It appears that the process may have approx. = 2 kcal/mol activation energy. The first helium formed is well bound. As the tritide ages, the helium is found in higher energy sites. Similar but less extensive measurements on scandium, titanium, and zirconium tritides are also described. Finally, the thermal desorption of erbium tritides of various ages from 50 days to 3154 days is discussed. Significant helium is desorbed along with the tritium in all but the youngest samples during thermodesorption.

  17. Helium Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Helium Energy Place: Spain Sector: Renewable Energy Product: Spain-based renewable energy development company. References: Helium Energy1...

  18. Is solid helium a supersolid?

    SciTech Connect (OSTI)

    Hallock, Robert

    2015-05-15

    Recent experiments suggest that helium-4 atoms can flow through an experimental cell filled with solid helium. But that incompletely understood flow is quite different from the reported superfluid-like motion that so excited physicists a decade ago.

  19. The relationship between crack-tip strain and subcritical cracking...

    Office of Scientific and Technical Information (OSTI)

    crack-tip strain and subcritical cracking thresholds for steels in high-pressure hydrogen gas. Citation Details In-Document Search Title: The relationship between crack-tip...

  20. Helium dilution refrigeration system

    DOE Patents [OSTI]

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  1. Helium dilution refrigeration system

    DOE Patents [OSTI]

    Roach, Patrick R. (Darien, IL); Gray, Kenneth E. (Naperville, IL)

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  2. LPG storage vessel cracking experience

    SciTech Connect (OSTI)

    Cantwell, J.E. )

    1988-10-01

    In order to evaluate liquefied petroleum gas (LPG) handling and storage hazards, Caltex Petroleum Corp. (Dallas) surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one-third of the storage vessels. In most cases, the cracking appeared to be due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems found were due to exposure to wet hydrogen sulfide. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. This article's recommendations concern minimizing cracking on new and existing LPG storage vessels.

  3. LPG storage vessel cracking experience

    SciTech Connect (OSTI)

    Cantwell, J.E.

    1988-01-01

    As part of an overall company program to evaluate LPG handling and storage hazards the authors surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one third of the storage vessels. In most cases the cracking appeared due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems due to exposure to wet hydrogen sulfide were found. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. Recommendations are made to minimize cracking on new and existing LPG storage vessels.

  4. Cavity morphology in a Ni based superalloy under heavy ion irradiation with hot pre-injected helium. II

    SciTech Connect (OSTI)

    Zhang, He; Yao, Zhongwen, E-mail: yaoz@me.queensu.ca; Daymond, Mark R. [Department of Mechanical and Materials Engineering, Queen's University Kingston, Ontario K7L 3N6 (Canada); Kirk, Marquis A. [Material Science Division, Argonne National Laboratory Argonne, Illinois 60439 (United States)

    2014-03-14

    In the current investigation, TEM in-situ heavy ion (1?MeV Kr{sup 2+}) irradiation with helium pre-injected at elevated temperature (400?C) was conducted to simulate in-reactor neutron irradiation induced damage in CANDU spacer material Inconel X-750, in an effort to understand the effects of helium on irradiation induced cavity microstructures. Three different quantities of helium, 400 appm, 1000 appm, and 5000 appm, were pre-injected directly into TEM foils at 400?C. The samples containing helium were then irradiated in-situ with 1?MeV Kr{sup 2+} at 400?C to a final dose of 5.4 dpa (displacement per atom). Cavities were formed from the helium injection solely and the cavity density and size increased with increasing helium dosage. In contrast to previous heavy ion irradiations with cold pre-injected helium, heterogeneous nucleation of cavities was observed. During the ensuing heavy ion irradiation, dynamical observation showed noticeable size increase in cavities which nucleated close to the grain boundaries. A bubble-void transformation was observed after Kr{sup 2+} irradiation to high dose (5.4?dpa) in samples containing 1000 appm and 5000 appm helium. Cavity distribution was found to be consistent with in-reactor neutron irradiation induced cavity microstructures. This implies that the distribution of helium is greatly dependent on the injection temperature, and helium pre-injection at high temperature is preferred for simulating the migration of the transmutation produced helium.

  5. ITER helium ash accumulation

    SciTech Connect (OSTI)

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  6. Catalytic cracking process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA); Baker, Richard W. (Palo Alto, CA)

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  7. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  8. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  9. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    SciTech Connect (OSTI)

    Saha, Dulal Chandra [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Chang, InSung [Automotive Production Development Division, Hyundai Motor Company (Korea, Republic of); Park, Yeong-Do, E-mail: ypark@deu.ac.kr [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-07-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: The HAZ liquation crack during resistance spot welding of TWIP steel was examined. Cracks were completely backfilled and healed with divorced eutectic secondary phase. Co-segregation of C and Mn was detected in the cracked zone. Heat input was the most influencing factor to initiate liquation crack. Cracks have less/no significant effect on static tensile properties.

  10. Energy, helium, and the future: II

    SciTech Connect (OSTI)

    Krupka, M.C.; Hammel, E.F.

    1980-01-01

    The importance of helium as a critical resource material has been recognized specifically by the scientific community and more generally by the 1960 Congressional mandate to institute a long-range conservation program. A major study mandated by the Energy Reorganization Act of 1974 resulted in the publication in 1975 of the document, The Energy-Related Applications of Helium, ERDA-13. This document contained a comprehensive review and analysis relating to helium resources and present and future supply/demand relationships with particular emphasis upon those helium-dependent energy-related technologies projected to be implemented in the post-2000 year time period, e.g., fusion. An updated overview of the helium situation as it exists today is presented. Since publication of ERDA-13, important changes in the data base underlying that document have occurred. The data have since been reexamined, revised, and new information included. Potential supplies of helium from both conventional and unconventional natural gas resources, projected supply/demand relationships to the year 2030 based upon a given power-generation scenario, projected helium demand for specific energy-related technologies, and the supply options (national and international) available to meet that demand are discussed. An updated review will be given of the energy requirements for the extraction of helium from natural gas as they relate to the concentration of helium. A discussion is given concerning the technical and economic feasibility of several methods available both now and conceptually possible, to extract helium from helium-lean natural gas, the atmosphere, and outer space. Finally, a brief review is given of the 1980 Congressional activities with respect to the introduction and possible passage of new helium conservation legislation.

  11. Peridynamic model for fatigue cracking.

    SciTech Connect (OSTI)

    Silling, Stewart A.; Abe Askari

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the %22remaining life%22 of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  12. LANL researchers simulate helium bubble behavior in fusion reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers simulate helium bubble behavior LANL researchers simulate helium bubble behavior in fusion reactors A team performed simulations to understand more fully how tungsten behaves in such harsh conditions, particularly in the presence of implanted helium that forms bubbles in the material. August 4, 2015 Simulation snapshots of the helium bubble just before bursting. Colors indicate tungsten atoms (red) and helium atoms (blue). Simulation snapshots of the helium bubble just before

  13. Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles...

    Office of Science (SC) Website

    larger when it bursts, creating more surface debris. The colors indicate helium atoms (blue) and tungsten atoms (red). The Science When simulated helium (He) bubbles grow quickly,...

  14. Innovative Approach to Establish Root Causes for Cracking in Aggressive Reactor Environments

    SciTech Connect (OSTI)

    Bruemmer, Stephen M.; Thomas, Larry E.; Vetrano, John S.; Simonen, Edward P.

    2003-10-31

    The research focuses on the high-resolution characterization of degradation microstructures and microchemistries in specimens tested under controlled conditions for the environment and for the material where in-service complexities can be minimized. Thermodynamic and kinetic modeling of crack-tip processes is employed to analyze corrosion-induced structures and gain insights into degradation mechanisms. Novel mechanistic ''fingerprinting'' of crack-tip structures is used to isolate causes of environmental cracking in tandem with quantitative measurements of crack growth. Sample preparation methods and advanced analytical techniques are used to characterize corrosion/oxidation reactions and crack-tip structures at near atomic dimensions in order to gain insight into fundamental environmental cracking mechanisms. Reactions at buried interfaces, not accessible by conventional approaches, are being systematically interrogated. Crack-growth experiments in high-temperature water environments are evaluating and isolating the effects of material condition (matrix strength, grain boundary composition and precipitation) on stress corrosion cracking (SCC). The fundamental understanding of crack advance mechanisms will establish the basis to design new corrosion-resistant alloys for current light-water reactors and advanced reactor systems.

  15. Nonlinear structural crack growth monitoring

    DOE Patents [OSTI]

    Welch, Donald E. (Oak Ridge, TN); Hively, Lee M. (Philadelphia, TN); Holdaway, Ray F. (Clinton, TN)

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  16. Helium refrigeration considerations for cryomodule design

    SciTech Connect (OSTI)

    Ganni, V.; Knudsen, P.

    2014-01-29

    Many of the present day accelerators are based on superconducting radio frequency (SRF) cavities, packaged in cryo-modules (CM), which depend on helium refrigeration at sub-atmospheric pressures, nominally 2 K. These specialized helium refrigeration systems are quite cost intensive to produce and operate. Particularly as there is typically no work extraction below the 4.5-K supply, it is important that the exergy loss between this temperature level and the CM load temperature(s) be minimized by the process configuration choices. This paper will present, compare and discuss several possible helium distribution process arrangements to support the CM loads.

  17. Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Kassner, T. F.; Ruther, W. E.; Shack, W. J.; Smith, J. L.; Soppet, W. K.; Strain; R. V.

    1999-10-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vessel and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments.

  18. Fatigue cracking of a bare steel first wall in an inertial confinement fusion chamber

    SciTech Connect (OSTI)

    Hunt, R. M.; Abbott, R. P.; Havstad, M. A.; Dunne, A. M.

    2013-06-01

    Inertial confinement fusion power plants will deposit high energy X-rays onto the outer surfaces of the first wall many times a second for the lifetime of the plant. These X-rays create brief temperature spikes in the first few microns of the wall, which cause an associated highly compressive stress response on the surface of the material. The periodicity of this stress pulse is a concern due to the possibility of fatigue cracking of the wall. We have used finite element analyses to simulate the conditions present on the first wall in order to evaluate the driving force of crack propagation on fusion-facing surface cracks. Analysis results indicate that the X-ray induced plastic compressive stress creates a region of residual tension on the surface between pulses. This tension film will likely result in surface cracking upon repeated cycling. Additionally, the compressive pulse may induce plasticity ahead of the crack tip, leaving residual tension in its wake. However, the stress amplitude decreases dramatically for depths greater than 80100 ?m into the fusion-facing surface. Crack propagation models as well as stress-life estimates agree that even though small cracks may form on the surface of the wall, they are unlikely to propagate further than 100 ?m without assistance from creep or grain erosion phenomena.

  19. TRANSPARENT HELIUM IN STRIPPED ENVELOPE SUPERNOVAE

    SciTech Connect (OSTI)

    Piro, Anthony L.; Morozova, Viktoriya S., E-mail: piro@caltech.edu [Theoretical Astrophysics, California Institute of Technology, 1200 E. California Blvd., M/C 350-17, Pasadena, CA 91125 (United States)

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  20. SCREW COMPRESSOR CHARACTERISTICS FOR HELIUM REFRIGERATION SYSTEMS

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Knudsen, Peter; Creel, Jonathan; Arenius, Dana; Casagrande, Fabio; Howell, Matt

    2008-03-01

    The oil injected screw compressors have practically replaced all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, minimal vibration, reliability and capability of handling helium's high heat of compression.At the present state of compressor system designs for helium systems, typically two-thirds of the lost input power is due to the compression system. Therefore it is important to understand the isothermal and volumetric efficiencies of these machines to help properly design these compression systems to match the refrigeration process. This presentation summarizes separate tests that have been conducted on Sullair compressors at the Superconducting Super-Collider Laboratory (SSCL) in 1993, Howden compressors at Jefferson Lab (JLab) in 2006 and Howden compressors at the Spallation Neutron Source (SNS) in 2006. This work is part of an ongoing study at JLab to understand the theoretical basis for these efficiencies and their loss

  1. Investigations of Low Temperature Time Dependent Cracking

    SciTech Connect (OSTI)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  2. Investigation of Cracked Lithium Hydride Reactor Vessels

    SciTech Connect (OSTI)

    bird, e.l.; mustaleski, t.m.

    1999-06-01

    Visual examination of lithium hydride reactor vessels revealed cracks that were adjacent to welds, most of which were circumferentially located in the bottom portion of the vessels. Sections were cut from the vessels containing these cracks and examined by use of the metallograph, scanning electron microscope, and microprobe to determine the cause of cracking. Most of the cracks originated on the outer surface just outside the weld fusion line in the base material and propagated along grain boundaries. Crack depths of those examined sections ranged from {approximately}300 to 500 {micro}m. Other cracks were reported to have reached a maximum depth of 1/8 in. The primary cause of cracking was the creation of high tensile stresses associated with the differences in the coefficients of thermal expansion between the filler metal and the base metal during operation of the vessel in a thermally cyclic environment. This failure mechanism could be described as creep-type fatigue, whereby crack propagation may have been aided by the presence of brittle chromium carbides along the grain boundaries, which indicates a slightly sensitized microstructure.

  3. Constraint effects observed in crack initiation stretch

    SciTech Connect (OSTI)

    Lambert, D.M.; Ernst, H.A.

    1995-12-31

    The current paper characterizes constraint in fracture: J-modified resistance (Jr) curves were developed for two tough structural materials, 6061-T651 (aluminum) and IN718-STA1 (nickel-base superalloy). A wide variety of configurations was tested to consider load configurations from bending to tension including three specimen types (compact tension, center-crack tension, and single-edge notched tension), and a range of ligament lengths and thicknesses, as well as side-grooved and smooth-sided ligaments. The Jr curves exhibited an inflection point after some crack extension, and the data were excluded beyond the inflection. Qualified Jr curves for the two materials showed similar behavior, but R-curves were identical for equal ligament length-to-thickness ratio (RL), for the aluminum alloy, with increasing slope for increasing RL, while for the nickel, the resistance curves aligned for equal ligament thickness, B, and the slope increased for decreasing B. Displacements at the original crack tip (CToD) were recorded throughout the test for several specimens. CToD-versus-crack extension curves were developed, and data were excluded beyond the inflection point (as with the Jr curves). The data collapsed into two distinct curves, thought to represent the surface, plane stress effect and the central, plane strain effect. This was observed for both materials. A technique called profiling is presented for the aluminum alloy only, where the crack face displacements are recorded at the final point of the test as a function of the position throughout the crack cavity, along with an effort to extract the observations in a usable form. Displacements were consistent throughout the cross-section at and behind the original crack tip. In the region where the crack grew, this displacement was developed by a combination of stretch and crack growth. The stretch required to initiate crack extension was a function of the depth beneath the surface into the cross-section.

  4. Uncommon Deformation Mechanisms during Fatigue-Crack Propagation...

    Office of Scientific and Technical Information (OSTI)

    Uncommon Deformation Mechanisms during Fatigue-Crack Propagation in Nanocrystalline Alloys Prev Next Title: Uncommon Deformation Mechanisms during Fatigue-Crack Propagation ...

  5. Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystall...

    Office of Scientific and Technical Information (OSTI)

    Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline Metals Citation Details In-Document Search Title: Intergranular Strain Evolution near Fatigue Crack Tips ...

  6. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    El-atwani, O.; Hattar, Khalid Mikhiel; Hinks, J. A.; Greaves, G.; Harilal, S. S.; Hassanein, A.

    2014-12-25

    We investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. Moreover,more » at energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. Finally, we discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formation.« less

  7. A comparison of hydrogen vs. helium glow discharge effects on fusion device first-wall conditioning

    SciTech Connect (OSTI)

    Dylla, H.F.

    1989-09-01

    Hydrogen- and deuterium-fueled glow discharges are used for the initial conditioning of magnetic fusion device vacuum vessels following evacuation from atmospheric pressure. Hydrogenic glow discharge conditioning (GDC) significantly reduces the near-surface concentration of simple adsorbates, such as H/sub 2/O, CO, and CH/sub 4/, and lowers ion-induced desorption coefficients by typically three orders of magnitude. The time evolution of the residual gas production observed during hydrogen-glow discharge conditioning of the carbon first-wall structure of the TFTR device is similar to the time evolution observed during hydrogen GDC of the initial first-wall configuration in TFTR, which was primarily stainless steel. Recently, helium GDC has been investigated for several wall-conditioning tasks on a number of tokamaks including TFTR. Helium GDC shows negligible impurity removal with stainless steel walls. For impurity conditioning with carbon walls, helium GDC shows significant desorption of H/sub 2/O, CO, and CO/sub 2/; however, the total desorption yield is limited to the monolayer range. In addition, helium GDC can be used to displace hydrogen isotopes from the near-surface region of carbon first-walls in order to lower hydrogenic retention and recycling. 38 refs., 6 figs.

  8. THERMAL OSCILLATIONS IN LIQUID HELIUM TARGETS.

    SciTech Connect (OSTI)

    WANG,L.; JIA,L.X.

    2001-07-16

    A liquid helium target for the high-energy physics was built and installed in the proton beam line at the Alternate Gradient Synchrotron of Brookhaven National Laboratory in 2001. The target flask has a liquid volume of 8.25 liters and is made of thin Mylar film. A G-M/J-T cryocooler of five-watts at 4.2K was used to produce liquid helium and refrigerate the target. A thermosyphon circuit for the target was connected to the J-T circuit by a liquid/gas separator. Because of the large heat load to the target and its long transfer lines, thermal oscillations were observed during the system tests. To eliminate the oscillation, a series of tests and analyses were carried out. This paper describes the phenomena and provides the understanding of the thermal oscillations in the target system.

  9. Closed-loop pulsed helium ionization detector

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  10. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, Donald P. (Southold, NY)

    1985-01-01

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  11. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, D.P.

    1984-06-05

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  12. Helium bubble linkage and the transition to rapid He release in aging Pd tritide.

    SciTech Connect (OSTI)

    Cowgill, Donald F.

    2006-02-01

    A model is presented for the linking of helium bubbles growing in aging metal tritides. Stresses created by neighboring bubbles are found to produce bubble growth toward coalescence. This process is interrupted by the fracture of ligaments between bubble arrays. The condition for ligament fracture percolates through the material to reach external surfaces, leading to material micro-cracking and the release of helium within the linked-bubble cluster. A comparison of pure coalescence and pure fracture mechanisms shows the critical HeM concentration for bubble linkage is not strongly dependent on details of the linkage process. The combined stress-directed growth and fracture process produces predictions for the onset of rapid He release and the He emission rate. Transition to this rapid release state is determined from the physical size of the linked-bubble clusters, which is calculated from dimensional invariants in classical percolation theory. The result is a transition that depends on material dimensions. The onset of bubble linkage and rapid He release are found to be quite sensitive to the bubble spacing distribution, which is log-normal for bubbles nucleated by self-trapping.

  13. Cracked-fuel mechanics. [PWR; BWR

    SciTech Connect (OSTI)

    Williford, R.E.; Lanning, D.D.

    1982-01-01

    This paper presents a modelling concept and a set of measurable parameters that have been shown to improve the prediction of the mechanical behavior of cracked fuel/cladding systems without added computational expense. The transition from classical annular gap/cylindrical pellet models to modified bulk properties and further to local behavior for cracked fuel systems is discussed. The results of laboratory experiments to verify these modelling parameters are shown. Data are also presented from laboratory experiments on unirradiated and irradiated rods which show that fuel rod mechanical response depends on fuel fragment size. The impact of these data on cracked fuel behavior and failure modelling is also discussed.

  14. 3:2:1 Crack Spread

    Gasoline and Diesel Fuel Update (EIA)

    :2:1 Crack Spread Figure 1 Source: U.S. Energy Information Administration, based on Thomson Reuters. A crack spread measures the difference between the purchase price of crude oil and the selling price of finished products, such as gasoline and distillate fuel, that a refinery produces from the crude oil. Crack spreads are an indicator of the short-term profit margin of oil refineries because they compare the cost of the crude oil inputs to the wholesale, or spot, prices of the outputs (although

  15. In situ controlled modification of the helium density in single helium-filled nanobubbles

    SciTech Connect (OSTI)

    David, M.-L. Pailloux, F.; Alix, K.; Mauchamp, V.; Pizzagalli, L.; Couillard, M.; Botton, G. A.

    2014-03-28

    We demonstrate that the helium density and corresponding pressure can be modified in single nano-scale bubbles embedded in semiconductors by using the electron beam of a scanning transmission electron microscope as a multifunctional probe: the measurement probe for imaging and chemical analysis and the irradiation source to modify concomitantly the pressure in a controllable way by fine tuning of the electron beam parameters. The control of the detrapping rate is achieved by varying the experimental conditions. The underlying physical mechanisms are discussed; our experimental observations suggest that the helium detrapping from bubbles could be interpreted in terms of direct ballistic collisions, leading to the ejection of the helium atoms from the bubble.

  16. Boron-10 Neutron Detectors for Helium-3 Replacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiencies comparable to Helium-3 detectors, with demonstrated gamma neutron discrimination. Available for thumbnail of Feynman Center (505) 665-9090 Email Boron-10 Neutron...

  17. Superfluid helium cryogenic systems for superconducting RF cavities...

    Office of Scientific and Technical Information (OSTI)

    K refrigerator cold boxes, helium gas pumping systems and high-performance transfer lines. ... LINEAR COLLIDERS; NIOBIUM; PULSES; PUMPING; REFRIGERATORS; SUPERFLUIDITY; VAPOR ...

  18. Helium isotopes in geothermal systems- Iceland, The Geysers,...

    Open Energy Info (EERE)

    isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Helium...

  19. Helium transport and ash control studies

    SciTech Connect (OSTI)

    Miley, G.H.

    1992-01-01

    The Primary goal of this research is to develop a helium (ash) transport scaling law based on experimental data from devices such as TFTR and JET. To illustrate the importance of this, we have studied ash accumulation effects on ignition requirements using a O-D transport model. Ash accumulation is characterized in the model by the ratio of the helium particle confinement time to the energy confinement time t{sub {alpha}}/t{sub E}. Results show that the ignition window'' shrinks rapidly as t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E}. A best'' value for t{sub {alpha}}/t{sub E} will ultimately be determined from our scaling law studies. A helium transport scaling law is being sought that expresses the transport coefficients (D{sub {alpha}}, V{sub {alpha}}) as a function of the local plasma parameters. This is necessary for use in transport code calculations, e.g. for BALDUR. Based on experimental data from L-mode plasma operation in TFTR, a scaling law to a power law expression has been obtained using a least-square fit method. It is found that the transport coefficients are strongly affected by the local magnetic field and safety factor q. A preliminary conclusion from this work is that active control of ash buildup must be developed. To study control, we have developed a O-D plasma model which employs a simple pole-placement control model. Some preliminary calculations with this model are presented.

  20. Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline

    Office of Scientific and Technical Information (OSTI)

    Metals (Journal Article) | SciTech Connect Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline Metals Citation Details In-Document Search Title: Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline Metals The deformation field near a steady fatigue crack includes a plastic zone in front of the crack tip and a plastic wake behind it, and the magnitude, distribution, and history of the residual strain along the crack path depend on the stress

  1. Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    SciTech Connect (OSTI)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.; Bulanov, S. V.; Margarone, D.; Korn, G.; Haberer, T.

    2015-06-24

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  2. Production of thorium-229 using helium nuclei

    DOE Patents [OSTI]

    Mirzadeh, Saed (Knoxville, TN) [Knoxville, TN; Garland, Marc Alan (Knoxville, TN) [Knoxville, TN

    2010-12-14

    A method for producing .sup.229Th includes the steps of providing .sup.226Ra as a target material, and bombarding the target material with alpha particles, helium-3, or neutrons to form .sup.229Th. When neutrons are used, the neutrons preferably include an epithermal neutron flux of at least 1.times.10.sup.13 n s.sup.-1cm.sup.-2. .sup.228Ra can also be bombarded with thermal and/or energetic neutrons to result in a neutron capture reaction to form .sup.229Th. Using .sup.230Th as a target material, .sup.229Th can be formed using neutron, gamma ray, proton or deuteron bombardment.

  3. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect (OSTI)

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  4. Liquid uranium alloy-helium fission reactor

    DOE Patents [OSTI]

    Minkov, Vladimir (Skokie, IL)

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  5. Liquid uranium alloy-helium fission reactor

    DOE Patents [OSTI]

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  6. Flaw Tolerance for Multiple Fatique Cracks

    SciTech Connect (OSTI)

    Gosselin, Stephen R.; Simonen, Fredric A.; Carter, R. G.

    2005-07-01

    This paper documents important details of the technical bases for changes to Appendix L. Calculations identified aspect ratios for equivalent single cracks (ESC) between the extremes of a 6:1 ratio and a full circumferential crack that can be used in Appendix L flaw tolerance assessments to account for the initiation, growth, and linking of multiple fatigue cracks. Probabilistic fracture mechanics (PFM) calculations determined ESC aspect ratios that result in the same through-wall crack probability as multiple small cracks (0.02 inch depth) that initiate and coalesce. The computations considered two materials (stainless and low alloy steels), three pipe diameters, five cyclic membrane-to-gradient stress ratios and a wide range of primary loads. Subsequent deterministic calculations identified the ESC aspect ratio for the hypothetical reference flaw depth assumptions in Appendix L. This paper also describes computations that compare the Appendix L flaw tolerance allowable operating period for the ESC models with results obtained when the a single default 6:1 aspect ratio reference flaw.

  7. STRESS CORROSION CRACKING IN TEAR DROP SPECIMENS

    SciTech Connect (OSTI)

    Lam, P; Philip Zapp, P; Jonathan Duffey, J; Kerry Dunn, K

    2009-05-01

    Laboratory tests were conducted to investigate the stress corrosion cracking (SCC) of 304L stainless steel used to construct the containment vessels for the storage of plutonium-bearing materials. The tear drop corrosion specimens each with an autogenous weld in the center were placed in contact with moist plutonium oxide and chloride salt mixtures. Cracking was found in two of the specimens in the heat affected zone (HAZ) at the apex area. Finite element analysis was performed to simulate the specimen fabrication for determining the internal stress which caused SCC to occur. It was found that the tensile stress at the crack initiation site was about 30% lower than the highest stress which had been shifted to the shoulders of the specimen due to the specimen fabrication process. This finding appears to indicate that the SCC initiation took place in favor of the possibly weaker weld/base metal interface at a sufficiently high level of background stress. The base material, even subject to a higher tensile stress, was not cracked. The relieving of tensile stress due to SCC initiation and growth in the HAZ and the weld might have foreclosed the potential for cracking at the specimen shoulders where higher stress was found.

  8. Unified continuum damage model for matrix cracking in composite rotor blades

    SciTech Connect (OSTI)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  9. Directory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    122410 4:52 AM Send Document Link Develpo Baseline Computational Model for Proactive Welding Stress Management to Suppress Helium-Induced Cracking During Weld Repair Develpo...

  10. Document Library | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 30, 2011 Develop baseline computational model for proactive welding stress management to suppress helium induced cracking during weld repair There are over 100 nuclear...

  11. Fracture of surface cracks loaded in bending

    SciTech Connect (OSTI)

    Chao, Y.J.; Reuter, W.G.

    1997-12-31

    Theoretical background of the constraint effect in brittle fracture of solids is reviewed. Fracture test data from D6-aC, a high strength steel, using three-point-bend (SE(B)) specimens and surface cracked plate (SC(B)) specimens under bending are presented. It is shown that the SE(B) data has an elevated fracture toughness for increasing a/W, i.e., a crack geometry with a larger T/K corresponds to a higher K{sub c} which is consistent with the theoretical prediction. The fundamental fracture properties, i.e., the critical strain and the critical distance, determined from the SE(B) test data are then applied to the interpretation and prediction of the SC(B) test data. Reasonable agreement is achieved for the crack growth initiation site and the load.

  12. Crack detection using resonant ultrasound spectroscopy

    DOE Patents [OSTI]

    Migliori, A.; Bell, T.M.; Rhodes, G.W.

    1994-10-04

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.

  13. Crack detection using resonant ultrasound spectroscopy

    DOE Patents [OSTI]

    Migliori, Albert (Santa Fe, NM); Bell, Thomas M. (Santa Fe, NM); Rhodes, George W. (Albuquerque, NM)

    1994-01-01

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.

  14. Environmentally assisted cracking of LWR materials.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Kassner, T. F.; Park, J. H.; Shack, W. J.; Zhang, J.; Brust, F. W.; Dong, P.

    1997-12-05

    The effect of dissolved oxygen level on fatigue life of austenitic stainless steels is discussed and the results of a detailed study of the effect of the environment on the growth of cracks during fatigue initiation are presented. Initial test results are given for specimens irradiated in the Halden reactor. Impurities introduced by shielded metal arc welding that may affect susceptibility to stress corrosion cracking are described. Results of calculations of residual stresses in core shroud weldments are summarized. Crack growth rates of high-nickel alloys under cyclic loading with R ratios from 0.2-0.95 in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 C are summarized.

  15. Cavity morphology in a Ni based superalloy under heavy ion irradiation with cold pre-injected helium. I

    SciTech Connect (OSTI)

    Zhang, He; Yao, Zhongwen Daymond, Mark R.; Kirk, Marquis A.

    2014-03-14

    In order to understand radiation damage in the nickel based superalloy Inconel X-750 in thermal reactors, where (n, ?) transmutation reaction also occurred in addition to fast neutron induced atomic displacement, heavy ion (1?MeV Kr{sup 2+}) irradiation with pre-injected helium was performed under in-situ observations of an intermediate voltage electron microscope at Argonne National Laboratory. By comparing to our previous studies using 1?MeV Kr{sup 2+} irradiation solely, the pre-injected helium was found to be essential in cavity nucleation. Cavities started to be visible after Kr{sup 2+} irradiation to 2.7 dpa at ?200?C in samples containing 200 appm, 1000 appm, and 5000 appm helium, respectively, but not at lower temperatures. The cavity growth was observed during the continuous irradiation. Cavity formation appeared along with a reduced number density of stacking fault tetrahedra, vacancy type defects. With higher pre-injected helium amount, a higher density of smaller cavities was observed. This is considered to be the result of local trapping effect of helium which disperses vacancies. The average cavity size increases with increasing irradiation temperatures; the density reduced; and the distribution of cavities became heterogeneous at elevated temperatures. In contrast to previous characterization of in-reactor neutron irradiated Inconel X-750, no obvious cavity sink to grain boundaries and phase boundaries was found even at high doses and elevated temperatures. MC-type carbides were observed as strong sources for agglomeration of cavities due to their enhanced trapping strength of helium and vacancies.

  16. Helium isotopes and tectonics in southern Italy

    SciTech Connect (OSTI)

    Sano, Yuji; Wakita, Hiroshi ); Nuccio, M.P. ); Italiano, F.

    1989-06-01

    Geodynamic evolution of southern Italy can be understood within the framework of the Mediterranean-Alpine System. Subduction of a plate along the Sicily-Calabrian forearc under the Tyrrhenian Sea has been suggested by many geophysicists, although it is not yet confirmed and remains somewhat controversial. Helium isotope ratios provide useful information on the geotectonic structure of the region. The authors report here the {sup 3}H/{sup 4}He ratios of terrestrial gas samples from southern Italy. The observed {sup 3}He/{sup 4}He ratios are relatively high in the Eolian volcanic arc region and low in the other areas. Dichotomous explanations are presented. Firstly, volcanic arc-forearc hypothesis suggests the subduction along the Sicily-Calabrian forearc. Secondly, horizontal transport hypothesis is described based on the relationship between the ratios and radial distance from the recent spreading basin in Southern Tyrrhenian Sea.

  17. Helium Loop Cooling Channel Hydraulic Characterization

    SciTech Connect (OSTI)

    Olivas, Eric Richard; Morgan, Robert Vaughn; Woloshun, Keith Albert

    2015-07-02

    New methods for generating ??Mo are being explored in an effort to eliminate proliferation issues and provide a domestic supply of ??mTc for medical imaging. Electron accelerating technology is used by sending an electron beam through a series of ??Mo targets. During this process a large amount of heat is created, which directly affects the operating temperature set for the system. In order to maintain the required temperature range, helium gas is used to serve as a cooling agent that flows through narrow channels between the target disks. Currently we are tailoring the cooling channel entrance and exits to decrease the pressure drop through the targets. Currently all hardware has be procured and manufactured to conduct flow measurements and visualization via solid particle seeder. Pressure drop will be studied as a function of mass flow and diffuser angle. The results from these experiments will help in determining target cooling geometry and validate CFD code results.

  18. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  19. Strip edge cracking simulation in cold rolling

    SciTech Connect (OSTI)

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  20. Corrosion fatigue crack growth in clad low-alloy steel. Part 2, Water flow rate effects in high sulfur plate steel

    SciTech Connect (OSTI)

    James, L.A; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1996-04-01

    Corrosion fatigue crack propagation tests were conducted on a high- sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, cyclic frequency) conducive to environmentally-assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/sec. or 4.7 m/sec. was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi- stagnant conditions, but water flow rates at 1.7 m/sec. and 5.0 m/sec. parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity.

  1. Underground helium travels to the Earth's surface via aquifers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tweet EmailPrint Before it can put the party in party balloons, helium is carried from deep within the Earth's crust to the surface via aquifers, according to new research...

  2. Research questions reality of 'supersolid' in helium-4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the helium-4 lattice. To illustrate on a very basic level, Balatsky uses a rotating egg. A fresh egg is a mixture of yolk and albumen within a shell. When spun, the...

  3. The Hall D solenoid helium refrigeration system at JLab

    SciTech Connect (OSTI)

    Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.; Ganni, Venkatarao; Martin, Floyd D.; Norton, Robert O.; Radovic, Sasa

    2014-01-01

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields with liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.

  4. US NRC-Sponsored Research on Stress Corrosion Cracking Susceptibility of Dry Storage Canister Materials in Marine Environments - 13344

    SciTech Connect (OSTI)

    Oberson, Greg; Dunn, Darrell; Mintz, Todd; He, Xihua; Pabalan, Roberto; Miller, Larry

    2013-07-01

    At a number of locations in the U.S., spent nuclear fuel (SNF) is maintained at independent spent fuel storage installations (ISFSIs). These ISFSIs, which include operating and decommissioned reactor sites, Department of Energy facilities in Idaho, and others, are licensed by the U.S. Nuclear Regulatory Commission (NRC) under Title 10 of the Code of Federal Regulations, Part 72. The SNF is stored in dry cask storage systems, which most commonly consist of a welded austenitic stainless steel canister within a larger concrete vault or overpack vented to the external atmosphere to allow airflow for cooling. Some ISFSIs are located in marine environments where there may be high concentrations of airborne chloride salts. If salts were to deposit on the canisters via the external vents, a chloride-rich brine could form by deliquescence. Austenitic stainless steels are susceptible to chloride-induced stress corrosion cracking (SCC), particularly in the presence of residual tensile stresses from welding or other fabrication processes. SCC could allow helium to leak out of a canister if the wall is breached or otherwise compromise its structural integrity. There is currently limited understanding of the conditions that will affect the SCC susceptibility of austenitic stainless steel exposed to marine salts. NRC previously conducted a scoping study of this phenomenon, reported in NUREG/CR-7030 in 2010. Given apparent conservatisms and limitations in this study, NRC has sponsored a follow-on research program to more systematically investigate various factors that may affect SCC including temperature, humidity, salt concentration, and stress level. The activities within this research program include: (1) measurement of relative humidity (RH) for deliquescence of sea salt, (2) SCC testing within the range of natural absolute humidity, (3) SCC testing at elevated temperatures, (4) SCC testing at high humidity conditions, and (5) SCC testing with various applied stresses. Results to date indicate that the deliquescence RH for sea salt is close to that of MgCl{sub 2} pure salt. SCC is observed between 35 and 80 deg. C when the ambient (RH) is close to or higher than this level, even for a low surface salt concentration. (authors)

  5. Helium Pumping Wall for a Liquid Lithium Tokamak Richard Majeski |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Helium Pumping Wall for a Liquid Lithium Tokamak Richard Majeski This invention is designed to be a subsystem of a device, a tokamak with walls or plasma facing components of liquid lithium. This approach to constructing the lithium-bearing walls of the tokamak allows the wall to fulfill a necessary function -- helium pumping - for which a complex structure was formerly required. The primary novel feature of the invention is that a permeable wall is used to

  6. David Lee, Douglas Osheroff, Superfluidity, and Helium 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Lee, Douglas Osheroff, Superfluidity, and Helium 3 Resources with Additional Information David M. Lee and Douglas D. Osheroff received the 1996 Nobel Prize in Physics for 'their discovery of superfluidity in helium-3'. "In 1976, Lee shared with Richardson and Osheroff their earliest recognition for studies of superfluidity, the Simon Memorial Prize of the British Physical Society. The Buckley Prize of the American Physical Society followed for the trio in 1981. ... Douglas D. Osheroff

  7. Process Options for Nominal 2-K Helium Refrigeration System Designs

    SciTech Connect (OSTI)

    Peter Knudsen, Venkatarao Ganni

    2012-07-01

    Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).

  8. Superfluid helium cryogenic systems for superconducting RF cavities at KEK

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Superfluid helium cryogenic systems for superconducting RF cavities at KEK Citation Details In-Document Search Title: Superfluid helium cryogenic systems for superconducting RF cavities at KEK Recent accelerator projects at KEK, such as the Superconducting RF Test Facility (STF) for R and D of the International Linear Collider (ILC) project and the compact Energy Recovery Linac (cERL), employ superconducting

  9. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect (OSTI)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with local sensors and the other for low- temperature helium tests with the PLIF technique. The results from the two instruments will provide a means to cross-calibrate the measurement techniques.

  10. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, R.D.

    1993-10-05

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  11. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, Richard D. (Lisle, IL)

    1993-01-01

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  12. Structures for dense, crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  13. Improvement of microbead cracking catalyst manufacture

    SciTech Connect (OSTI)

    Mirskii, Ya.B.; Kosolapova, A.P.; Meged, N.F.

    1986-11-01

    In order to improve the manufacturing process for KMTsR microbead catalyst for use in new cracking units, the authors consider the method of increasing the content of aluminum oxide in its amorphous part. A microbead catalyst of zeolite, containing rare-earth elements of the KMTsR type was obtained by spray-drying a slurry prepared by mechanical dispersion of hydrogel beads, with the subsequent molding and processing operations the same as in the production of bead catalyst.

  14. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore »the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  15. Method and apparatus for generating a natural crack

    DOE Patents [OSTI]

    Fulton, Fred J. (Livermore, CA); Honodel, Charles A. (Tracy, CA); Holman, William R. (Danville, CA); Weingart, Richard C. (Livermore, CA)

    1984-01-01

    A method and apparatus for generating a measurable natural crack includes forming a primary notch in the surface of a solid material. A non-sustained single pressure pulse is then generated in the vicinity of the primary notch, resulting in the formation of a shock wave which travels through the material. The shock wave creates a measurable natural crack within the material which extends from the primary notch. The natural crack formed possesses predictable geometry, location and orientation.

  16. Method and apparatus for generating a natural crack

    DOE Patents [OSTI]

    Fulton, F.J.; Honodel, C.A.; Holman, W.R.; Weingart, R.C.

    1982-05-06

    A method and apparatus for generating a measurable natural crack includes forming a primary notch in the surface of a solid material. A nonsustained single pressure pulse is then generated in the vicinity of the primary notch, reuslting in the formation of a shock wave which travels through the material. The shock wave creates a measurable natural crack within the material which extends from the primary notch. The natural crack formed possesses predictable geometry, location and orientation.

  17. Controlled Chemistry Helium High Temperature Materials Test Loop

    SciTech Connect (OSTI)

    Richard N. WRight

    2005-08-01

    A system to test aging and environmental effects in flowing helium with impurity content representative of the Next Generation Nuclear Plant (NGNP) has been designed and assembled. The system will be used to expose microstructure analysis coupons and mechanical test specimens for up to 5,000 hours in helium containing potentially oxidizing or carburizing impurities controlled to parts per million levels. Impurity levels in the flowing helium are controlled through a feedback mechanism based on gas chromatography measurements of the gas chemistry at the inlet and exit from a high temperature retort containing the test materials. Initial testing will focus on determining the nature and extent of combined aging and environmental effects on microstructure and elevated temperature mechanical properties of alloys proposed for structural applications in the NGNP, including Inconel 617 and Haynes 230.

  18. P wave anisotropy, stress, and crack distribution at Coso geothermal...

    Open Energy Info (EERE)

    scalar. The resulting anisotropy distribution is used to estimate variations in crack density, stress distribution and permeability within the producing geothermal field. A...

  19. Isotope Effects and Helium Retention Behavior in Vanadium Tritide

    SciTech Connect (OSTI)

    Bowman, Jr., R. C.; Attalla, A.; Craft, B. D.

    1985-04-01

    The relaxation times of the H, T, and 3He nuclei have been measured in vanadium hydride and tritide samples. Substantial isotope effects in both the phase transition temperatures and diffusion parameters have been found. When compared to hydrides, the tritide samples have lower transition temperatures and faster mobilities. The differences in the occupancies of the interstitial sites are largely responsible for these isotope effects. Most of the helium atoms generated by tritium decay remain trapped in microscopic bubbles formed with the VTx lattice. Evidence is presented for the gradual growth of the helium bubbles over periods of hundreds of days.

  20. Analysis of Mode III Elastodynamic Cracked Plane using the Fractal Two-Level Finite Element Method

    SciTech Connect (OSTI)

    Fan, J.; Lee, Y. Y.; Leung, A. Y. T.

    2010-05-21

    In this study, the fractal two-level finite element method, which has mainly been used for static cracked plane problems, is applied to the cracked plane problem. Using the transformation process in the proposed method, the infinite dimension of the finite element matrices that are assembled for a singular region is made finite in terms of the dynamics stress intensity factors directly, and thus the computational time can be reduced significantly. The Newmark time integration scheme is then used to obtain the dynamic stress intensity factors. The results from the proposed method are in reasonable agreement with those of classical methods. The main drawback of the time integration scheme is that numerical oscillations are induced in some cases.

  1. Statistical properties of inter-series mixing in helium: From integrability to chaos

    SciTech Connect (OSTI)

    Puttner, R; Gremaud, B.; Delande, D.; Domke, M.; Martins, M.; Schlachter, A.S.; Kaindl, G.

    2001-04-23

    The photoionization spectrum of helium near the double-ionization threshold shows structure which indicated a transition towards quantum chaos.

  2. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    SciTech Connect (OSTI)

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 C inlet temperature. We investigated flow perturbations caused by a 30 MW/m2 off-normal heat flux applied over a 25 mm2 area in addition to the nominal 5 MW/m2 applied over a 75 mm2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm2 heated area.

  3. An investigation of thermally driven acoustical oscillations in helium systems

    SciTech Connect (OSTI)

    Fuerst, J.D.

    1990-08-01

    The phenomenon of thermal-acoustic oscillation is seen to arise spontaneously in gas columns subjected to steep temperature gradients, particularly in tubes connecting liquid helium reservoirs with the ambient environment. This if often the arrangement for installed cryogenic instrumentation and is accompanied by undesirably large heat transfer rates to the cold region. Experimental data are collected and matched to theoretical predictions of oscillatory behavior; these results are in good agreement with the analytical model and with previously collected data. The present experiment places the open ends of oscillating tubes of the various lengths and cross sections in communication with flowing helium in the subcooled, 2-phase, or superheated state while the other ends are maintained at some controlled, elevated temperature. Assorted cold end conditions are achieved through adjustments to the Fermilab Tevatron satellite test refrigerator to which the test cryostat is connected. The warm, closed ends of the tubes are maintained by isothermal baths of liquid nitrogen, ice water, and boiling water. The method is contrasted to previous arrangements whereby tubes are run from room temperature into or adjacent to a stagnant pool of liquid helium. Additionally, the effect of pulsations in the flowing helium stream is explored through operation of the refrigerator's wet and dry expanders during data collection. These data confirm the theory to which try were compared and support its use in the design of cryogenic sensing lines for avoidance of thermoacoustic oscillation.

  4. Predicting crack growth in continuous-fiber composite materials

    SciTech Connect (OSTI)

    Cordes, J.A.; Yazici, R.

    1995-12-31

    Pre-notched composite lamina with unidirectional fibers were studied experimentally and using finite element analysis. Experiments were conducted on notched graphite/aluminum and glass/epoxy panels and the results were compared to a finite element method. Under remote tensile loading, cracks in the graphite/aluminum panels propagated perpendicular to the applied load without stable crack growth. In the glass/epoxy panels, crack propagation was initially stable and parallel to the fibers. A nonlinear damage zone method (DZM) was used to predict the crack growth directions, estimate damages, model stable and unstable crack growths, and predict the loads at failure. For both materials, the predicted loads at failure were within 20% of experimental loads.

  5. Cracking in liquid petroleum gas Horton spheres

    SciTech Connect (OSTI)

    Trivedi, D.K. Gupta, S.C.

    1997-07-01

    A gas processing plant on the western coast of India produces sweet gas after processing sour natural gas. Liquid petroleum gas (LPG) is recovered from the sweet gas. The LPG, containing a H{sub 2}S concentration of 10 ppm to 20 ppm, is stored in Horton spheres, each 17 m in diameter with a capacity of {minus}27 C to 55 C. Horton spheres for containing liquid petroleum gas (LPG) were fabricated on-site using prestressed plates of high-strength carbon steel (CS) SA 537 Class-1 with post-weld heat treatment. High-residual tensile stresses and hydrogen absorption from H{sub 2}S present in LPG could be the cause of cracking at weld and heat-affected zone interfaces at high hardness locations. Recommendations are given for inspection and use of lower-strength CS and improved welding procedures.

  6. Helium Release Behavior of Aged Titanium Tritides

    SciTech Connect (OSTI)

    SHANAHAN, KIRKL.

    2004-07-27

    One sample of bulk Ti has been loaded with a 50 per cent / 50 per cent deuterium/tritium mixture and statically aged for 6.5 years. Thermal desorption of the sample shows an initial release of hydrogen isotopes followed by 3He release. Subsequent D2 loading/desorption was used to quantify the trapped tritium heel. The sample shows an excess hydrogen capacity as a second thermal desorption peak that partially disappears and shifts with annealing at 923-973K. The main hydrogen desorption peak also shifts to higher temperature, indicating a partial reversal of the tritium-decay induced damage by annealing.

  7. Impurity gettering in silicon using cavities formed by helium implantation and annealing

    DOE Patents [OSTI]

    Myers, Jr., Samuel M. (Albuquerque, NM); Bishop, Dawn M. (Albuquerque, NM); Follstaedt, David M. (Albuquerque, NM)

    1998-01-01

    Impurity gettering in silicon wafers is achieved by a new process consisting of helium ion implantation followed by annealing. This treatment creates cavities whose internal surfaces are highly chemically reactive due to the presence of numerous silicon dangling bonds. For two representative transition-metal impurities, copper and nickel, the binding energies at cavities were demonstrated to be larger than the binding energies in precipitates of metal silicide, which constitutes the basis of most current impurity gettering. As a result the residual concentration of such impurities after cavity gettering is smaller by several orders of magnitude than after precipitation gettering. Additionally, cavity gettering is effective regardless of the starting impurity concentration in the wafer, whereas precipitation gettering ceases when the impurity concentration reaches a characteristic solubility determined by the equilibrium phase diagram of the silicon-metal system. The strong cavity gettering was shown to induce dissolution of metal-silicide particles from the opposite side of a wafer.

  8. Impurity gettering in silicon using cavities formed by helium implantation and annealing

    DOE Patents [OSTI]

    Myers, S.M. Jr.; Bishop, D.M.; Follstaedt, D.M.

    1998-11-24

    Impurity gettering in silicon wafers is achieved by a new process consisting of helium ion implantation followed by annealing. This treatment creates cavities whose internal surfaces are highly chemically reactive due to the presence of numerous silicon dangling bonds. For two representative transition-metal impurities, copper and nickel, the binding energies at cavities were demonstrated to be larger than the binding energies in precipitates of metal silicide, which constitutes the basis of most current impurity gettering. As a result the residual concentration of such impurities after cavity gettering is smaller by several orders of magnitude than after precipitation gettering. Additionally, cavity gettering is effective regardless of the starting impurity concentration in the wafer, whereas precipitation gettering ceases when the impurity concentration reaches a characteristic solubility determined by the equilibrium phase diagram of the silicon-metal system. The strong cavity gettering was shown to induce dissolution of metal-silicide particles from the opposite side of a wafer. 4 figs.

  9. Patterned Exfoliation of GaAs Based on Masked Helium Implantation and Subsequent Rapid Thermal Annealing

    SciTech Connect (OSTI)

    Woo, H. J.; Choi, H. W.; Kim, G. D.; Hong, W.; Kim, J. K.

    2009-03-10

    A method of patterning single crystal GaAs based on ion implantation induced selective area exfoliation is suggested. Samples were implanted with 200-500 keV helium ions to a fluence range of 2-4x10{sup 16} He{sup +}/cm{sup 2} at room temperature through masks of Ni mesh (40 {mu}m opening) or stainless steel wire (50 {mu}m in diameter), and subsequent rapid thermal annealing at 350-500{open_square} resulted in expulsion of ion beam exposed material. The influences of ion energy, ion fluence, implantation temperature, subsequent annealing conditions (temperature and ramp rate), and mask pattern and its orientation with GaAs lattice on the patterned exfoliation were examined.

  10. Three-dimensional crack growth assessment by microtopographic examination

    SciTech Connect (OSTI)

    Lloyd, W.R.; Piascik, R.S.

    1995-12-31

    The initial stage of the stable tearing process in two 2.3 mm sheet 2024-T3 aluminum alloy M(T) specimens are analyzed using fracture surface microtopography reconstruction techniques. The local crack tip opening angles (CTOA) in the interior of the specimens are determined relative to both crack extension and through-thickness position. The microtopographic analysis of cracks grown in the L-T and T-L orientations reveal that interior CTOA is comparable to those measured on the surface using standard optical analysis methods. Similar to surface CTOA results, interior (mid-thickness) CTOA exhibit a transient behavior; CTOA transitions from high angles, at near crack initiation, to a lower steady-state value of 5 deg. and 4.2 deg. for L-T and T-L, respectively, at crack lengths greater than 1.5mm. Fracture surface topographic projection maps are used to study the evolution of crack front tunneling during the initial stage of the fracture process. Stable tearing initiates at mid-thickness followed by a crack front tunneling process to a depth of approximately 2mm. A brief discussion of the basis of the fracture process reconstruction method is provided and comments on the general utility of microtopographic fracture surface examination for general assessment of elastic-plastic and fully-plastic fracture processes are made.

  11. Fatigue crack growth behavior of Ti-1100 at elevated temperature

    SciTech Connect (OSTI)

    Maxwell, D.C.; Nicholas, T.

    1995-12-31

    Effects of temperature, frequency, and cycles with superimposed hold times are evaluated in Ti-1100 in order to study the complex creep-fatigue-environment interactions in this material. Crack growth rate tests conducted at cyclic loading frequency of 1.0 Hz show that raising the temperature from 593 to 650 C has only a slightly detrimental effect on crack growth rate, although these temperatures produce growth rates significantly higher than at room temperature. From constant {Delta}K tests, the effects of temperature at constant frequency show a minimum crack growth rate at 250 C. From the minimum crack growth rate at 250 C, the crack growth rate increases linearly with temperature. Increases in frequency at constant temperatures of 593 and 650 C produce a continuous decrease in growth rate in going from 0.001 to 1.0 Hz, although the behavior is primarily cycle dependent in this region. Tests at 1.0 Hz with superimposed hold times from 1 to 1,000 s are used to evaluate creep-fatigue-environment interactions. Hold times at maximum load are found to initially decrease and then increase the cyclic crack growth rate with increasing duration. This is attributed to crack-tip blunting during short hold times and environmental degradation at long hold times. Hold times at minimum load show no change in growth rates, indicating that there is no net environmental degradation to the bulk material beyond that experienced during the baseline 1 Hz cycling.

  12. Stress-corrosion cracking of copper single crystals

    SciTech Connect (OSTI)

    Sieradzki, K.; Newman, R.C.; Sabatini, R.L.

    1984-10-01

    Constant extension rate tests have been carried out in a sodium nitrite solution. Crack velocities up to 30 nm per second were obtained at 30/sup 0/C. If dynamic straining is stopped, the cracks apparently stop growing within about 20 ..mu..m. The steps between adjacent flat facets are more energy-absorbing than in ..cap alpha..-brass, providing a possible explanation for the importance of dynamic strain. Simultaneous acoustic emission and electrochemical current transients suggest that cracking proceeds by discontinuous cleavage.

  13. Quantum entanglement for helium atom in the Debye plasmas

    SciTech Connect (OSTI)

    Lin, Yen-Chang; Fang, Te-Kuei; Ho, Yew Kam

    2015-03-15

    In the present work, we present an investigation on quantum entanglement of the two-electron helium atom immersed in weakly coupled Debye plasmas, modeled by the Debye-Hckel, or screened Coulomb, potential to mimic the interaction between two charged particles inside the plasma. Quantum entanglement is related to correlation effects in a multi-particle system. In a bipartite system, a measurement made on one of the two entangled particles affects the outcome of the other particle, even if such two particles are far apart. Employing wave functions constructed with configuration interaction B-spline basis, we have quantified von Neumann entropy and linear entropy for a series of He {sup 1,3}S{sup e} and {sup 1,3}P{sup o} states in plasma-embedded helium atom.

  14. Elastic Electron Scattering from Tritium and Helium-3

    DOE R&D Accomplishments [OSTI]

    Collard, H.; Hofstadter, R.; Hughes, E. B.; Johansson, A.; Yearian, M. R.; Day, R. B.; Wagner, R. T.

    1964-10-01

    The mirror nuclei of tritium and helium-3 have been studied by the method of elastic electron scattering. Absolute cross sections have been measured for incident electron energies in the range 110 - 690 MeV at scattering angles lying between 40 degrees and 135 degrees in this energy range. The data have been interpreted in a straightforward manner and form factors are given for the distributions of charge and magnetic moment in the two nuclei over a range of four-momentum transfer squared 1.0 - 8.0 F{sup -2}. Model-independent radii of the charge and magnetic moment distributions are given and an attempt is made to deduce form factors describing the spatial distribution of the protons in tritium and helium-3.

  15. Source localization of brain activity using helium-free interferometer

    SciTech Connect (OSTI)

    Dammers, Jürgen Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.

    2014-05-26

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.

  16. Investigation of Cellular Interactions of Nanoparticles by Helium Ion Microscopy

    SciTech Connect (OSTI)

    Arey, Bruce W.; Shutthanandan, V.; Xie, Yumei; Tolic, Ana; Williams, Nolann G.; Orr, Galya

    2011-06-01

    The helium ion mircroscope (HIM) probes light elements (e.g. C, N, O, P) with high contrast due to the large variation in secondary electron yield, which minimizes the necessity of specimen staining. A defining characteristic of HIM is its remarkable capability to neutralize charge by the implementation of an electron flood gun, which eliminates the need for coating non-conductive specimens for imaging at high resolution. In addition, the small convergence angle in HeIM offers a large depth of field (~5x FE-SEM), enabling tall structures to be viewed in focus within a single image. Taking advantage of these capabilities, we investigate the interactions of engineered nanoparticles (NPs) at the surface of alveolar type II epithelial cells grown at the air-liquid interface (ALI). The increasing use of nanomaterials in a wide range of commercial applications has the potential to increase human exposure to these materials, but the impact of such exposure on human health is still unclear. One of the main routs of exposure is the respiratory tract, where alveolar epithelial cells present a vulnerable target at the interface with ambient air. Since the cellular interactions of NPs govern the cellular response and ultimately determine the impact on human health, our studies will help delineating relationships between particle properties and cellular interactions and response to better evaluate NP toxicity or biocompatibility. The Rutherford backscattered ion (RBI) is a helium ions imaging mode, which backscatters helium ions from every element except hydrogen, with a backscatter yield that depends on the atomic number of the target. Energy-sensitive backscatter analysis is being developed, which when combined with RBI image information, supports elemental identification at helium ion nanometer resolution. This capability will enable distinguishing NPs from cell surface structures with nanometer resolution.

  17. Action Plan Submissions

    Office of Environmental Management (EM)

    Helium 600 appm helium Decay Helium Reduces Threshold For Cracking Tritium Causes Slow Crack Growth 10 Failure Assessment Approach for Pressure Vessels Requires Fracture...

  18. Mathematical modeling of a Fermilab helium liquefier coldbox

    SciTech Connect (OSTI)

    Geynisman, M.G.; Walker, R.J.

    1995-12-01

    Fermilab Central Helium Liquefier (CHL) facility is operated 24 hours-a-day to supply 4.6{degrees}K for the Fermilab Tevatron superconducting proton-antiproton collider Ring and to recover warm return gases. The centerpieces of the CHL are two independent cold boxes rated at 4000 and 5400 liters/hour with LN{sub 2} precool. These coldboxes are Claude cycle and have identical heat exchangers trains, but different turbo-expanders. The Tevatron cryogenics demand for higher helium supply from CHL was the driving force to investigate an installation of an expansion engine in place of the Joule-Thompson valve. A mathematical model was developed to describe the thermo- and gas-dynamic processes for the equipment included in the helium coldbox. The model is based on a finite element approach, opposite to a global variables approach, thus providing for higher accuracy and conversion stability. Though the coefficients used in thermo- and gas-dynamic equations are unique for a given coldbox, the general approach, the equations, the methods of computations, and most of the subroutines written in FORTRAN can be readily applied to different coldboxes. The simulation results are compared against actual operating data to demonstrate applicability of the model.

  19. Stress corrosion cracking of zirconium used in the reprocessing plant

    SciTech Connect (OSTI)

    Kato, Chiaki; Motooka, Takafumi; Yamamoto, Masahiro

    2007-07-01

    We investigated stress corrosion cracking (SCC) of zirconium by constant load test and the small-scale mock-up test simulated the fuel dissolve. These tests operated in the simulated solution, which substituted non-radioactive elements, i.e. V with radioactive elements such as Pu and Np. From the results of constant load test, the cracks were not observed on 150 MPa after 908 hours in approximately 3 % strain. However a lot of cracks caused by SCC were observed over 20 % strain under high tensile stress in the simulated solution and the heat-transfer condition having more corrosive circumstance and noble potential accelerated the susceptibility of SCC. The cracking behavior would be caused by the creep phenomena. The small-scale mock-up test had been operated for about 50000 hours during 7 year. From the results, zirconium showed excellent corrosion resistance and no SCC was observed during these long-term operations. (authors)

  20. Helium-Based Soundwave Chiller: Trillium: A Helium-Based Sonic Chiller- Tons of Freezing with 0 GWP Refrigerants

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

  1. Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control | Department of Energy Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control PDF icon hot_rolling.pdf More Documents & Publications ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) Vehicle Technologies Office: 2012 Lightweight Materials R&D Annual Progress Report ITP Aluminum: Aluminum Industry Technology Roadmap

  2. Uncommon Deformation Mechanisms during Fatigue-Crack Propagation in

    Office of Scientific and Technical Information (OSTI)

    Nanocrystalline Alloys (Journal Article) | DOE PAGES Uncommon Deformation Mechanisms during Fatigue-Crack Propagation in Nanocrystalline Alloys « Prev Next » Title: Uncommon Deformation Mechanisms during Fatigue-Crack Propagation in Nanocrystalline Alloys Authors: Cheng, Sheng ; Lee, Soo Yeol ; Li, Li ; Lei, Changhui ; Almer, Jon ; Wang, Xun-Li ; Ungar, Tamas ; Wang, Yinmin ; Liaw, Peter K. Publication Date: 2013-03-25 OSTI Identifier: 1103961 Type: Publisher's Accepted Manuscript Journal

  3. Analytical determination of critical crack size in solar cells

    SciTech Connect (OSTI)

    Chen, C.P.

    1988-05-01

    Although solar cells usually have chips and cracks, no material specifications concerning the allowable crack size on solar cells are available for quality assurance and engineering design usage. Any material specifications that the cell manufacturers use were developed for cosmetic reasons that have no technical basis. Therefore, the Applied Solar Energy Corporation (ASEC) has sponsored a continuing program for the fracture mechanics evaluation of GaAs. Fracture mechanics concepts were utilized to develop an analytical model that can predict the critical crack size of solar cells. This model indicates that the edge cracks of a solar cell are more critical than its surface cracks. In addition, the model suggests that the material specifications on the allowable crack size used for Si solar cells should not be applied to GaAs solar cells. The analytical model was applied to Si and GaAs solar cells, but it would also be applicable to the semiconductor wafers of other materials, such as a GaAs thin film on a Ge substrate, using appropriate input data.

  4. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m2 off-normal heat flux applied over a 25 mm2 area in addition to the nominal 5 MW/m2 applied over a 75 mm2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less

  5. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    SciTech Connect (OSTI)

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    2015-09-10

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impeded hydrogen diffusion across the banded pearlite.

  6. Strengthening, Crack Arrest And Multiple Cracking In Brittle Materials Using Residual Stresses.

    DOE Patents [OSTI]

    Green, David J. (State College, PA); Sglavo, Vincenzo M. (Roncegno, IT); Tandon, Rajan (Fremont, CA)

    2003-02-11

    Embodiments include a method for forming a glass which displays visible cracking prior to failure when subjected to predetermined stress level that is greater than a predetermined minimum stress level and less than a failure stress level. The method includes determining a critical flaw size in the glass and introducing a residual stress profile to the glass so that a plurality of visible cracks are formed prior to failure when the glass is subjected to a stress that is greater than the minimum stress level and lower than the critical stress. One method for forming the residual stress profile includes performing a first ion exchange so that a first plurality of ions of a first element in the glass are exchanged with a second plurality of ions of a second element that have a larger volume than the first ions. A second ion exchange is also performed so that a plurality of the second ions in the glass are exchanged back to ions of the first element.

  7. Asteroseismic estimate of helium abundance of a solar analog binary system

    SciTech Connect (OSTI)

    Verma, Kuldeep; Antia, H. M.; Faria, Joo P.; Monteiro, Mrio J. P. F. G.; Basu, Sarbani; Mazumdar, Anwesh; Appourchaux, Thierry; Chaplin, William J.; Garca, Rafael A.

    2014-08-01

    16 Cyg A and B are among the brightest stars observed by Kepler. What makes these stars more interesting is that they are solar analogs. 16 Cyg A and B exhibit solar-like oscillations. In this work we use oscillation frequencies obtained using 2.5 yr of Kepler data to determine the current helium abundance of these stars. For this we use the fact that the helium ionization zone leaves a signature on the oscillation frequencies and that this signature can be calibrated to determine the helium abundance of that layer. By calibrating the signature of the helium ionization zone against models of known helium abundance, the helium abundance in the envelope of 16 Cyg A is found to lie in the range of 0.231 to 0.251 and that of 16 Cyg B lies in the range of 0.218 to 0.266.

  8. Production of carbon monoxide-free hydrogen and helium from a high-purity source

    DOE Patents [OSTI]

    Golden, Timothy Christopher (Allentown, PA); Farris, Thomas Stephen (Bethlehem, PA)

    2008-11-18

    The invention provides vacuum swing adsorption processes that produce an essentially carbon monoxide-free hydrogen or helium gas stream from, respectively, a high-purity (e.g., pipeline grade) hydrogen or helium gas stream using one or two adsorber beds. By using physical adsorbents with high heats of nitrogen adsorption, intermediate heats of carbon monoxide adsorption, and low heats of hydrogen and helium adsorption, and by using vacuum purging and high feed stream pressures (e.g., pressures of as high as around 1,000 bar), pipeline grade hydrogen or helium can purified to produce essentially carbon monoxide -free hydrogen and helium, or carbon monoxide, nitrogen, and methane-free hydrogen and helium.

  9. Nanoporous Metals for Prevention of Helium Bubble Formation in Pd Tritides

    Office of Environmental Management (EM)

    | Department of Energy Nanoporous Metals for Prevention of Helium Bubble Formation in Pd Tritides Nanoporous Metals for Prevention of Helium Bubble Formation in Pd Tritides Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013. PDF icon Nanoporous Metals for Prevention of Helium Bubble Formation in Pd Tritides More Documents & Publications Hard Carbon Materials for High-Capacity Li-ion Battery Anodes Tritium Aging Studies of

  10. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  11. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1997-12-30

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  12. Helium measurements of pore-fluids obtained from SAFOD drillcore

    SciTech Connect (OSTI)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B.M.

    2010-04-15

    {sup 4}He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk {sup 4}He diffusion coefficient of 3.5 {+-} 1.3 x 10{sup -8} cm{sup 2}s{sup -1} at 21 C, compared to previously published diffusion coefficients of 1.2 x 10{sup -18} cm{sup 2}s{sup -1} (21 C) to 3.0 x 10{sup -15} cm{sup 2}s{sup -1} (150 C) in the sands and clays. Correcting the diffusion coefficient of {sup 4}He{sub water} for matrix porosity ({approx}3%) and tortuosity ({approx}6-13) produces effective diffusion coefficients of 1 x 10{sup -8} cm{sup 2}s{sup -1} (21 C) and 1 x 10{sup -7} (120 C), effectively isolating pore fluid {sup 4}He from the {sup 4}He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 {+-} 0.4% (SD, n=4) and mudstones 3.1 {+-} 0.8% (SD, n=4).

  13. Helium nano-bubble evolution in aging metal tritides.

    SciTech Connect (OSTI)

    Cowgill, Donald F.

    2004-05-01

    A continuum-scale, evolutionary model of helium (He) nano-bubble nucleation, growth and He release for aging bulk metal tritides is presented which accounts for major features of the experimental database. Bubble nucleation, modeled as self-trapping of interstitially diffusing He atoms, is found to occur during the first few days following tritium introduction into the metal and is sensitive to the He diffusivity and pairing energy. An effective helium diffusivity of 0.3 x 10{sup -16} cm{sup 2}/s at 300 K is required to generate the average bubble density of 5x 1017 bubbles/cm3 observed by transmission electron microscopy (TEM). Early bubble growth by dislocation loop punching with a l/radius bubble pressure dependence produces good agreement with He atomic volumes and bubble pressures determined from swelling data, nuclear magnetic resonance (NMR) measurements, and hydride pressure-composition-temperature (PCT) shifts. The model predicts that later in life neighboring bubble interactions may first lower the loop punching pressure through cooperative stress effects, then raise the pressure by partial blocking of loops. It also accounts for the shape of the bubble spacing distribution obtained from NMR data. This distribution is found to remain fixed with age, justifying the separation of nucleation and growth phases, providing a sensitive test of the growth formulation, and indicating that further significant bubble nucleation does not occur throughout life. Helium generated within the escape depth of surfaces and surface-connected porosity produces the low-level early helium release. Accelerated or rapid release is modeled as inter-bubble fracture using an average ligament stress criterion. Good agreement is found between the predicted onset of fracture and the observed He-metal ratio (HeM) for rapid He release from bulk palladium tritide. An examination of how inter-bubble fracture varies over the bubble spacing distribution shows that the critical Hem will be lower for thin films or small particle material. It is concluded that control of He retention can be accomplished through control of bubble nucleation.

  14. Fatigue crack growth behavior of Al-Li alloy 1441

    SciTech Connect (OSTI)

    Prakash, R.V.; Parida, B.K.

    1995-12-31

    Fatigue crack growth behavior of Al-Li alloy 1441 having a marginally lower lithium content, compared to 80xx and 20xx series Al-Li alloys is presented in this paper. This investigation was conducted on single edge tension--SE(T)--specimens, under constant amplitude as well as under MiniLCA flight spectrum loading with the specific objective of determining the effects of stress ratio, orientation, thickness and cladding. Three thicknesses were considered: 1.2 mm(clad and unclad), 2.0 mm(clad and unclad) and 8.0 mm unclad. Constant amplitude fatigue tests were conducted at stress ratios of {minus}0.3, 0.1 and 0.7. Testing was performed under ambient conditions and along three orientations, namely L-T, T-L and L+45 degrees. Crack growth characteristics of this alloy are compared with that of BS:L73 (2014-T4 equivalent) for assessing the possibility of replacing BS:L73. Significant effect of stress ratio on crack growth rate was observed in all thicknesses. However, in case of 1.2 and 2.0 mm thick sheets, the effect was minimal at intermediate-crack growth regime. The orientation of the specimen does not adversely affect the fatigue crack growth behavior of 8.0 mm and 2.0 mm thick specimens. However, for 1.2 mm unclad sheet crack growth resistance in L-T direction was found to be superior to that along T-L direction. In majority of test cases considered, no significant effect was observed on crack growth rate due to thickness or cladding. Crack growth characteristics of Al-Li alloy 1441 and Al-Cu alloy BS:L73 under constant amplitude as well as MiniLCA spectrum loading are similar in the low and intermediate-crack growth rate regime. Based on these observations, it is felt that this Al-Li alloy has the potential for future aerospace applications.

  15. Gettering of Hydrogen and Methane from a Helium Gas Mixture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cardenas, Rosa E.; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-10-21

    In our study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H2 and CH4 can be removed simultaneously from the mixture using two SAES St 172® getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. Moreover, the optimum combination involved operating one getter at 650°C to decompose the methane, and the second at 110°C to remove the hydrogen. Finally, this approach eliminatedmore » the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.« less

  16. Helium Nano-Bubble Evolution in Aging Metal Tritides

    SciTech Connect (OSTI)

    Cowgill, Donald F.

    2005-07-15

    A continuum-scale, evolutionary model of bubble nucleation, growth and He release for aging metal tritides is described which accounts for major features of the tritide database. Bubble nucleation, modeled as self-trapping of interstitially diffusing He atoms, occurs during the first few days following tritium introduction into the metal. Bubble growth by dislocation loop punching yields good agreement between He atomic volumes and bubble pressures determined from bulk swelling and {sup 3}He NMR data. The bubble spacing distribution determined from NMR is shown to remain fixed with age, justifying the separation of nucleation and growth phases and providing a sensitive test of the growth formulation. Late in life, bubble interactions are proposed to produce cooperative stress effects, which lower the bubble pressure. Helium generated near surfaces and surface-connected porosity accounts for the low-level early helium release. Use of an average ligament stress criterion predicts an onset of inter-bubble fracture in good agreement with the He/Metal ratio observed for rapid He release. From the model, it is concluded that He retention can be controlled through control of bubble nucleation.

  17. Gettering of hydrogen and methane from a helium gas mixture

    SciTech Connect (OSTI)

    Crdenas, Rosa Elia; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-11-01

    In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup } getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650?C to decompose the methane, and the second at 110?C to remove the hydrogen. This approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  18. Gettering of Hydrogen and Methane from a Helium Gas Mixture

    SciTech Connect (OSTI)

    Cardenas, Rosa E.; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-10-21

    In our study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H2 and CH4 can be removed simultaneously from the mixture using two SAES St 172 getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. Moreover, the optimum combination involved operating one getter at 650C to decompose the methane, and the second at 110C to remove the hydrogen. Finally, this approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  19. Ignition and extinction phenomena in helium micro hollow cathode discharges

    SciTech Connect (OSTI)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R.; Overzet, L. J.

    2013-12-28

    Micro hollow cathode discharges (MHCD) were produced using 250??m thick dielectric layer of alumina sandwiched between two nickel electrodes of 8??m thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2??s long current peak as high as 24?mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400?Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few ?s relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.

  20. Method for fabrication of crack-free ceramic dielectric films

    DOE Patents [OSTI]

    Ma, Beihai; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan; Narayanan, Manoj

    2014-02-11

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  1. Relationships between stress corrosion cracking tests and utility operating experience

    SciTech Connect (OSTI)

    Baum, Allen

    1999-10-22

    Several utility steam generator and stress corrosion cracking databases are synthesized with the view of identifying the crevice chemistry that is most consistent with the plant cracking data. Superheated steam and neutral solution environments are found to be inconsistent with the large variations in the observed SCC between different plants, different support plates within a plant, and different crevice locations. While the eddy current response of laboratory tests performed with caustic chemistries approximates the response of the most extensively affected steam generator tubes, the crack propagation kinetics in these tests differ horn plant experience. The observations suggest that there is a gradual conversion of the environment responsible for most steam generator ODSCC from a concentrated, alkaline-forming solution to a progressively more steam-enriched environment.

  2. Weld solidification cracking in 304 to 304L stainless steel

    SciTech Connect (OSTI)

    Hochanadel, Patrick W; Lienert, Thomas J; Martinez, Jesse N; Martinez, Raymond J; Johnson, Matthew Q

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  3. Weld solidification cracking in 304 to 204L stainless steel

    SciTech Connect (OSTI)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-09-15

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  4. Dynamic crack initiation toughness : experiments and peridynamic modeling.

    SciTech Connect (OSTI)

    Foster, John T.

    2009-10-01

    This is a dissertation on research conducted studying the dynamic crack initiation toughness of a 4340 steel. Researchers have been conducting experimental testing of dynamic crack initiation toughness, K{sub Ic}, for many years, using many experimental techniques with vastly different trends in the results when reporting K{sub Ic} as a function of loading rate. The dissertation describes a novel experimental technique for measuring K{sub Ic} in metals using the Kolsky bar. The method borrows from improvements made in recent years in traditional Kolsky bar testing by using pulse shaping techniques to ensure a constant loading rate applied to the sample before crack initiation. Dynamic crack initiation measurements were reported on a 4340 steel at two different loading rates. The steel was shown to exhibit a rate dependence, with the recorded values of K{sub Ic} being much higher at the higher loading rate. Using the knowledge of this rate dependence as a motivation in attempting to model the fracture events, a viscoplastic constitutive model was implemented into a peridynamic computational mechanics code. Peridynamics is a newly developed theory in solid mechanics that replaces the classical partial differential equations of motion with integral-differential equations which do not require the existence of spatial derivatives in the displacement field. This allows for the straightforward modeling of unguided crack initiation and growth. To date, peridynamic implementations have used severely restricted constitutive models. This research represents the first implementation of a complex material model and its validation. After showing results comparing deformations to experimental Taylor anvil impact for the viscoplastic material model, a novel failure criterion is introduced to model the dynamic crack initiation toughness experiments. The failure model is based on an energy criterion and uses the K{sub Ic} values recorded experimentally as an input. The failure model is then validated against one class of problems showing good agreement with experimental results.

  5. Cracking a Cold Case and Enduring Mystery | Department of Energy

    Office of Environmental Management (EM)

    Cracking a Cold Case and Enduring Mystery Cracking a Cold Case and Enduring Mystery July 1, 2013 - 3:04pm Addthis Chris Brandon of the ROMACONS project collects a sample of ancient Roman concrete drilled from a breakwater in Pozzuoli Bay, near Naples, Italy. The breakwater dates back to roughly 37 B.C. | Photo courtesy of J.P. Oleson. Chris Brandon of the ROMACONS project collects a sample of ancient Roman concrete drilled from a breakwater in Pozzuoli Bay, near Naples, Italy. The breakwater

  6. Fundamental and applied studies of helium ingrowth and aging in plutonium

    SciTech Connect (OSTI)

    Stevens, M.F.; Zocco, T.; Albers, R.; Becker, J.D.; Walter, K.; Cort, B.; Paisley, D.; Nastasi, M.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project was to develop new capabilities to assess the nucleation and growth of helium-associated defects in aged plutonium metal. This effort involved both fundamental and applied models to assist in predicting the transport and kinetics of helium in the metal lattice as well as ab initio calculations of the disposition of gallium in the fcc plutonium lattice and its resulting effects on phase stability. Experimentally this project aimed to establish experimental capabilities crucial to the prediction of helium effects in metals, such as transmission electron microscopy, thermal helium effusion, and the development of a laser-driven mini-flyer for understanding the role of helium and associated defects on shock response of plutonium surrogates.

  7. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    SciTech Connect (OSTI)

    Chen, Y.; Alexandreanu, B.; Natesan, K.

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3 were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.

  8. Transient Eddy Current Response Due to a Subsurface Crack in a Conductive Plate

    SciTech Connect (OSTI)

    Fangwei Fu

    2006-08-09

    Eddy current nondestructive evaluation (NDE) is usually carried out by exciting a time harmonic field using an inductive probe. However, a viable alternative is to use transient eddy current NDE in which a current pulse in a driver coil produces a transient .eld in a conductor that decays at a rate dependent on the conductivity and the permeability of the material and the coil configuration. By using transient eddy current, it is possible to estimate the properties of the conductive medium and to locate and size potential .aws from the measured probe response. The fundamental study described in this dissertation seeks to establish a theoretical understanding of the transient eddy current NDE. Compared with the Fourier transform method, the derived analytical formulations are more convenient when the transient eddy current response within a narrow time range is evaluated. The theoretical analysis provides a valuable tool to study the effect of layer thickness, location of defect, crack opening as well as the optimization of probe design. Analytical expressions have been developed to evaluate the transient response due to eddy currents in a conductive plate based on two asymptotic series. One series converges rapidly for a short time regime and the other for a long time regime and both of them agree with the results calculated by fast Fourier transform over all the times considered. The idea of asymptotic expansion is further applied to determine the induced electromotive force (EMF) in a pick-up coil due to eddy currents in a cylindrical rod. Starting from frequency domain representation, a quasi-static time domain dyadic Green's function for an electric source in a conductive plate has been derived. The resulting expression has three parts; a free space term, multiple image terms and partial reflection terms. The dyadic Green's function serves as the kernel of an electric field integral equation which defines the interaction of an ideal crack with the transient eddy currents in a conductive plate. The crack response is found using the reciprocity theorem. Good agreement is observed between the predictions of the magnetic field due to the crack and experimental measurements.

  9. The application of a logic framework for fatigue crack growth analyses to microstructural effects

    SciTech Connect (OSTI)

    Xu, J.G.; Liu, H.W.

    1995-12-31

    {Delta}K has been widely used to correlate da/dN data. The relation between da/dN and {Delta}K is usually found empirically. However, fatigue crack growth relations can also be derived theoretically. Three fatigue crack growth theories are derived for the state of small scale yielding and plane strain. These three theories constitute a logic framework useful for fatigue crack growth analyses. The application of the logic framework to the analyses of microstructural effects on fatigue crack growth is illustrated. The fatigue crack growth curve of 7075-T651 aluminum alloy has five distinct regions. A fatigue crack grows by crack-tip shear decohesion forming striations and by brittle fractures of particles followed by localized shear decohesion at these microcracks forming dimples. The logic framework helps to relate the fatigue crack growth behaviors in these five regions to the fractures of inclusions and to the resistance of grain boundaries and dispersoids to shear decohesion.

  10. Device build at ODU to crack nature's code takes ride to JLab (Device build

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at ODU to crack nature's code takes ride to JLab | Jefferson Lab hamptonroads.com/2012/02/device-built-odu-crack-natures-code-takes-ride Submitted: Tuesday, February 14

  11. Thin film with oriented cracks on a flexible substrate

    DOE Patents [OSTI]

    Feng, Bao; McGilvray, Andrew; Shi, Bo

    2010-07-27

    A thermoelectric film is disclosed. The thermoelectric film includes a substrate that is substantially electrically non-conductive and flexible and a thermoelectric material that is deposited on at least one surface of the substrate. The thermoelectric film also includes multiple cracks oriented in a predetermined direction.

  12. Incipient Crack Detection in Composite Wind Turbine Blades

    SciTech Connect (OSTI)

    Taylor, Stuart G.; Choi, Mijin; Jeong, Hyomi; Jang, Jae Kyeong; Park, Gyuhae; Farinholt, Kevin; Farrar, Charles R.; Ammerman, Curtt N.; Todd, Michael D.; Lee, Jung-Ryul

    2012-08-28

    This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results in detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.

  13. Crack-resistant siloxane molding compounds. [Patent application

    DOE Patents [OSTI]

    McFarland, J.W.; Swearngin, C.B.

    1980-11-03

    The crack resistance of phenyl silicone molding resins containing siliceous fillers is improved by incorporating therein about 0.5 to 5.5% by weight of ..beta..-eucryptite, a lithium aluminum silicate having a negative thermal expansion coefficient. These molding resins are particularly suitable for encapsulating electronic devices such as diodes, coils, resistors, and the like.

  14. Method of making crack-free zirconium hydride

    DOE Patents [OSTI]

    Sullivan, Richard W. (Denver, CO)

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  15. Effect of helium on the electronic structure of palladium tritide

    SciTech Connect (OSTI)

    Gupta, R.P.; Gupta, M.

    1998-12-31

    Tritium is usually stored in the form of a metal tritide since it is safe to handle in this form, easily recoverable, and further large quantities of tritium can be stored. However, since tritium is radioactive it decays into {sup 3}He and an electron. Helium recoil energy in this reaction is very small, and not enough to create defects. The authors have performed ab-initio electronic structure calculations that show that in PdT, a considerable amount of {sup 3}He can be accommodated at the octahedral interstitial sites where it is produced. Their calculations also show that the presence of {sup 3}He results in an overall enhancement in the strength of the metal-tritium bonding that leads to the lowering of the plateau pressure. They also find that there is a weakening of the metal-metal bonds due to the repulsive interaction with {sup 3}He.

  16. Options for Cryogenic Load Cooling with Forced Flow Helium Circulation

    SciTech Connect (OSTI)

    Peter Knudsen, Venkatarao Ganni, Roberto Than

    2012-06-01

    Cryogenic pumps designed to circulate super-critical helium are commonly deemed necessary in many super-conducting magnet and other cooling applications. Acknowledging that these pumps are often located at the coldest temperature levels, their use introduces risks associated with the reliability of additional rotating machinery and an additional load on the refrigeration system. However, as it has been successfully demonstrated, this objective can be accomplished without using these pumps by the refrigeration system, resulting in lower system input power and improved reliability to the overall cryogenic system operations. In this paper we examine some trade-offs between using these pumps vs. using the refrigeration system directly with examples of processes that have used these concepts successfully and eliminated using such pumps

  17. Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meirer, F.; Kalirai, S.; Weker, J. Nelson; Liu, Y.; Andrews, J. C.; Weckhuysen, B. M.

    2015-04-14

    Metal accumulation at the catalyst particle surface plays a role in particle agglutination during fluid catalytic cracking.

  18. Dependence of dynamic fracture resistance on crack velocity in tungsten: Pt. II. Bicrystals and polycrystals

    SciTech Connect (OSTI)

    Liv, J.M.; Shen, B.W.

    1986-06-01

    The experimental techniques for crack velocity measurements have been applied to bicrystals of tungsten with twist orientations about (100) and polycrystals. The hesitation of the propagating cleavage crack in the vicinity of the grain boundary is examined. The contributions to energy dissipation from deformation and fracture processes in the grain boundary region as well as the in direct effects of crack deceleration are discussed. These findings have been applied to explain th dynamic fracture resistance and crack arrest in polycrystals.

  19. Evaluation of the Gas Turbine Modular Helium Reactor

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Recent advances in gas-turbine and heat exchanger technology have enhanced the potential for a Modular Helium Reactor (MHR) incorporating a direct gas turbine (Brayton) cycle for power conversion. The resulting Gas Turbine Modular Helium Reactor (GT-MHR) power plant combines the high temperature capabilities of the MHR with the efficiency and reliability of modern gas turbines. While the passive safety features of the steam cycle MHR (SC-MHR) are retained, generation efficiencies are projected to be in the range of 48% and steam power conversion systems, with their attendant complexities, are eliminated. Power costs are projected to be reduced by about 20%, relative to the SC-MHR or coal. This report documents the second, and final, phase of a two-part evaluation that concluded with a unanimous recommendation that the direct cycle (DC) variant of the GT-MHR be established as the commercial objective of the US Gas-Cooled Reactor Program. This recommendation has been endorsed by industrial and utility participants and accepted by the US Department of Energy (DOE). The Phase II effort, documented herein, concluded that the DC GT-MHR offers substantial technical and economic advantages over both the IDC and SC systems. Both the DC and IDC were found to offer safety advantages, relative to the SC, due to elimination of the potential for water ingress during power operations. This is the dominant consequence event for the SC. The IDC was judged to require somewhat less development than the direct cycle, while the SC, which has the greatest technology base, incurs the least development cost and risk. While the technical and licensing requirements for the DC were more demanding, they were judged to be incremental and feasible. Moreover, the DC offers significant performance and cost improvements over the other two concepts. Overall, the latter were found to justify the additional development needs.

  20. Preparation and thermal desorption properties of dc sputtered zirconium-hydrogen-helium thin films

    SciTech Connect (OSTI)

    Wei, Y. C.; Shi, L. Q.; Zhang, L.; He, Z. J.; Zhang, B.; Wang, L. B.

    2008-11-15

    We developed a new approach for preparing hydrogen and helium co-containing zirconium films (Zr-H-He) to simulate aging metal tritides. We also studied the effect of hydrogen on helium behavior, in which we applied direct current magnetron sputtering in a mixture of working gases (helium, argon, and hydrogen). The amount and depth profile of helium and hydrogen trapped in the films were determined using the elastic recoil detection analysis. The microstructure and surface morphology of the Zr-H-He films were studied by x-ray diffraction, transmission electron microscopy, and atomic force microscopy. To investigate the effect of hydrogen on the thermal release behavior of helium in the Zr film, thermal desorption spectrometry (TDS) was used, which revealed a similar desorption behavior to aged tritides. TDS experiments showed that the spectra were constituted by low-temperature peaks around 300 deg. C and high temperature peaks above 750 deg. C. Furthermore, the solid-phase {alpha} to {delta} transformation changed the shapes of the high-temperature peaks related to microstates of helium bubbles and caused the peak with a massive helium release shift toward lower temperature obviously.

  1. Development of a novel technique to assess the vulnerability of micro-mechanical system components to environmentally assisted cracking.

    SciTech Connect (OSTI)

    Enos, David George; Goods, Steven Howard

    2006-11-01

    Microelectromechanical systems (MEMS) will play an important functional role in future DOE weapon and Homeland Security applications. If these emerging technologies are to be applied successfully, it is imperative that the long-term degradation of the materials of construction be understood. Unlike electrical devices, MEMS devices have a mechanical aspect to their function. Some components (e.g., springs) will be subjected to stresses beyond whatever residual stresses exist from fabrication. These stresses, combined with possible abnormal exposure environments (e.g., humidity, contamination), introduce a vulnerability to environmentally assisted cracking (EAC). EAC is manifested as the nucleation and propagation of a stable crack at mechanical loads/stresses far below what would be expected based solely upon the materials mechanical properties. If not addressed, EAC can lead to sudden, catastrophic failure. Considering the materials of construction and the very small feature size, EAC represents a high-risk environmentally induced degradation mode for MEMS devices. Currently, the lack of applicable characterization techniques is preventing the needed vulnerability assessment. The objective of this work is to address this deficiency by developing techniques to detect and quantify EAC in MEMS materials and structures. Such techniques will allow real-time detection of crack initiation and propagation. The information gained will establish the appropriate combinations of environment (defining packaging requirements), local stress levels, and metallurgical factors (composition, grain size and orientation) that must be achieved to prevent EAC.

  2. DEUTERIUM, TRITIUM, AND HELIUM DESORPTION FROM AGED TITANIUM TRITIDES. PART I.

    SciTech Connect (OSTI)

    Shanahan, K; Jeffrey Holder, J

    2006-07-10

    Six new samples of tritium-aged bulk titanium have been examined by thermal desorption and isotope exchange chemistry. The discovery of a lower temperature hydrogen desorption state in these materials, previously reported, has been confirmed in one of the new samples. The helium release of the samples shows the more severe effects obtained from longer aging periods, i.e. higher initial He/M ratios. Several of the more aged samples were spontaneously releasing helium. Part I will discuss the new results on the new lower temperature hydrogen desorption state found in one more extensively studied sample. Part II will discuss the hydrogen/helium release behavior of the remaining samples.

  3. DEUTERIUM, TRITIUM, AND HELIUM DESORPTION FROM AGED TITANIUM TRITIDES. PART II.

    SciTech Connect (OSTI)

    Shanahan, K; Jeffrey Holder, J

    2006-08-17

    Six new samples of tritium-aged bulk titanium have been examined by thermal desorption and isotope exchange chemistry. The discovery of a lower temperature hydrogen desorption state in these materials, previously reported, has been confirmed in one of the new samples. The helium release of the samples shows the more severe effects obtained from longer aging periods, i.e. higher initial He/M ratios. Several of the more aged samples were spontaneously releasing helium. Part I discussed the new results on the new lower temperature hydrogen desorption state found in one more extensively studied sample. Part II will discuss the hydrogen/helium release behavior of the remaining samples.

  4. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    SciTech Connect (OSTI)

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  5. Measurements of the intercombination and forbidden lines from helium-like

    Office of Scientific and Technical Information (OSTI)

    ions in Tokamaks and Electron Beam Ion Traps (Journal Article) | SciTech Connect Journal Article: Measurements of the intercombination and forbidden lines from helium-like ions in Tokamaks and Electron Beam Ion Traps Citation Details In-Document Search Title: Measurements of the intercombination and forbidden lines from helium-like ions in Tokamaks and Electron Beam Ion Traps The paper reviews the results from tokamak experiments for the line ratios x/w, y/w, and z/w from helium-like ions

  6. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    SciTech Connect (OSTI)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  7. Blunt-crack band propagation in finite-element analysis for concrete structures. [LMFBR

    SciTech Connect (OSTI)

    Pfeiffer, P.A.; Bazant, Z.P.; Marchertas, A.H.

    1983-01-01

    The knowledge of concrete fracture is needed in nuclear reactor safety. The question of safety arises from the potential of concrete to crack under thermal loading. It has been postulated that structural concrete could be exposed to very high temperature, which may result from hot reactor coolant or even core debris coming in direct contact with the concrete. The utilization of the blunt crack approach for simulating concrete cracking in a general-purpose code is explored. The difficulties encountered in establishing the proper direction of crack propagation in an arbitrary discretization are described. Crack propagation is considered within the context of two types of solution techniques: (1) implicit solution of the static crack advance, and (2) explicit time integration using a dynamic relaxation technique to simulate the static crack advance. Also, in both solution techniques an elastic model is used to characterize the concrete.

  8. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    SciTech Connect (OSTI)

    Felice, Maria V.; Velichko, Alexander Wilcox, Paul D.; Barden, Tim; Dunhill, Tony

    2015-03-31

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.

  9. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    2015-09-10

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  10. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    SciTech Connect (OSTI)

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  11. Formulation of cracking catalyst based on zeolite and natural clays

    SciTech Connect (OSTI)

    Aliev, R.R.; Lupina, M.I.

    1995-11-01

    Domestically manufactured cracking catalysts are based on a synthetic amorphous aluminosilicate matrix and Y zeolite. A multistage {open_quotes}gel{close_quotes} technology is used in manufacturing the catalysts. The process includes mixing solutions of sodium silicate and acidic aluminum sulfate, forming, syneresis, and activation of the beaded gel. In the manufacture of bead catalysts, the next steps in the process are washing, drying, and calcining; in the manufacture of microbead catalysts, the next steps are dispersion and formation of a hydrogel slurry, spray-drying, and calcining. The Y zeolite is either introduced into the alumina-silica sol in the stage of forming the beads, or introduced in the dispersion stage. With the aim of developing an active and selective cracking catalyst based on Y zeolite and natural clays, with improved physicomechanical properties, the authors carried out a series of studies, obtaining results that are set forth in the present article.

  12. Method for making dense crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2007-01-16

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  13. Radon and helium in soil gases in the Phlegraean Fields, central Italy

    SciTech Connect (OSTI)

    Lombardi, S. ); Reimer, G.M. )

    1990-05-01

    The distribution and migration of radon and helium soil-gas concentrations in the Phlegraean Fields, Italy, are controlled by the tectonic features of the area. Radon is supplied from surficial sources and helium has both surficial and deep origins. There is no direct correlation between the two noble gases on a point-to-point basis but the areal distribution of both gases is similar, suggesting that the distribution is controlled primarily by fractures and movement of geothermal fluids.

  14. Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth System Models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gnanadesikan, A.; Abernathey, R.; Pradal, M.-A.

    2014-11-20

    This paper uses a suite of Earth System models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science. The helium-heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in the earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedi that link it to baroclinic instability project it to be small (of order a fewmore » hundred m2 s−1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Because helium isotopes equilibrate rapidly with the atmosphere, but radiocarbon equilibrates slowly, it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the Southeast Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi in the deep ocean than is seen in theoretical parameterizations based on baroclinic growth rates. We argue that a key part of resolving the isopycnal mixing paradox is to abandon the idea that ARedi has a direct relationship to local baroclinic instability and to the so called "thickness" mixing coefficient AGM.« less

  15. Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium Citation Details In-Document Search Title: Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium Positron annihilation lifetime spectroscopy is a sensitive probe of vacancies and voids in materials. This non-destructive measurement technique can identify the presence of specific defects in materials at the part-per-million level. Recent experiments by Asoka-Kumar

  16. Crack growth monitoring in harsh environments by electrical potential measurements

    SciTech Connect (OSTI)

    W. R. Lloyd; W. G. Reuter; D. M. Weinberg

    1999-09-19

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique is applicable to many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed.

  17. Crack Growth Monitoring in Harsh Environments by Electric Potential Measurements

    SciTech Connect (OSTI)

    Lloyd, Wilson Randolph; Reuter, Walter Graham; Weinberg, David Michael

    1999-09-01

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique applicable is many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed.

  18. The initiation and propagation of helium detonations in white dwarf envelopes

    SciTech Connect (OSTI)

    Shen, Ken J. [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Moore, Kevin, E-mail: kenshen@astro.berkeley.edu [Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064 (United States)

    2014-12-10

    Detonations in helium-rich envelopes surrounding white dwarfs have garnered attention as triggers of faint thermonuclear '.Ia' supernovae and double detonation Type Ia supernovae. However, recent studies have found that the minimum size of a hotspot that can lead to a helium detonation is comparable to, or even larger than, the white dwarf's pressure scale height, casting doubt on the successful ignition of helium detonations in these systems. In this paper, we examine the previously neglected effects of C/O pollution and a full nuclear reaction network, and we consider hotspots with spatially constant pressure in addition to constant density hotspots. We find that the inclusion of these effects significantly decreases the minimum hotspot size for helium-rich detonation ignition, making detonations far more plausible during turbulent shell convection or during double white dwarf mergers. The increase in burning rate also decreases the minimum shell mass in which a helium detonation can successfully propagate and alters the composition of the shell's burning products. The ashes of these low-mass shells consist primarily of silicon, calcium, and unburned helium and metals and may explain the high-velocity spectral features observed in most Type Ia supernovae.

  19. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    SciTech Connect (OSTI)

    Knudsen, P.; Ganni, V.; Dixon, K.; Norton, R.; Creel, J.

    2015-08-10

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which may be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.

  20. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knudsen, P.; Ganni, V.; Dixon, K.; Norton, R.; Creel, J.

    2015-08-10

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less

  1. Performance Characterization of the Production Facility Prototype Helium Flow System

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen; Romero, Frank Patrick

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 ?A on each side of the target, 5.72 ?A total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.

  2. Atomic-scale mechanisms of helium bubble hardening in iron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    Generation of helium due to (n,α) transmutation reactions changes the response of structural materials to neutron irradiation. The whole process of radiation damage evolution is affected by He accumulation and leads to significant changes in the material s properties. A population of nanometric He-filled bubbles affects mechanical properties and the impact can be quite significant because of their high density. Understanding how these basic mechanisms affect mechanical properties is necessary for predicting radiation effects. In this paper we present an extensive study of the interactions between a moving edge dislocation and bubbles using atomic-scale modeling. We focus on the effectmore » of He bubble size and He concentration inside bubbles. Thus, we found that ability of bubbles to act as an obstacle to dislocation motion is close to that of voids when the He-to-vacancy ratio is in the range from 0 to 1. A few simulations made at higher He contents demonstrated that the interaction mechanism is changed for over-pressurized bubbles and they become weaker obstacles. The results are discussed in light of post-irradiation materials testing.« less

  3. Ultrasonic Flaw Detection of Cracks and Machined Flaws as Observed Through Austenitic Stainless Steel Piping Welds

    SciTech Connect (OSTI)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.

    2009-07-01

    Piping welds in the pressure boundary of light water reactors (LWRs) are subject to a volumetric examination based on Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. Due to access limitations and high background radiation levels, the technique used is primarily ultrasonic rather than radiographic. Many of the austenitic welds in safety-related piping systems provide limited access to both sides of the weld, so a far-side examination is necessary. Historically, far-side inspections have performed poorly because of the coarse and elongated grains that make up the microstructures of austenitic weldments. The large grains cause the ultrasound to be scattered, attenuated, and redirected. Additionally, grain boundaries or weld geometry may reflect coherent ultrasonic echoes, making flaw detection and discrimination a more challenging endeavor. Previous studies conducted at the Pacific Northwest National Laboratory (PNNL) on ultrasonic far-side examinations in austenitic piping welds involved the application of conventional transducers, use of low-frequency Synthetic Aperture Focusing Techniques (SAFT), and ultrasonic phased-array (PA) methods on specimens containing implanted thermal fatigue cracks and machined reflectors [1-2]. From these studies, PA inspection provided the best results, detecting nearly all of the flaws from the far side. These results were presented at the Fifth International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components in 2006. This led to an invitation to examine field-removed specimens containing service-induced intergranular stress corrosion cracks (IGSCC) at the Electric Power Research Institute’s (EPRI) Nondestructive Evaluation (NDE) Center, in Charlotte, North Carolina. Results from this activity are presented.

  4. Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors

    SciTech Connect (OSTI)

    Gary S. Was; Michael Atzmon; Lumin Wang

    2003-04-28

    The overall goal of the project is to determine the mechanism of irradiation assisted stress corrosion cracking (IASCC). IASCC has been linked to hardening, microstructural and microchemical changes during irradiation. Unfortunately, all of these changes occur simultaneously and at similar rates during irradiation, making attribution of IASCC to any one of these features nearly impossible to determine. The strategy set forth in this project is to develop means to separate microstructural from microchemical changes to evaluate each separately for their effect on IASCC. In the first part, post irradiation annealing (PIA) treatments are used to anneal the irradiated microstructure, leaving only radiation induced segregation (RIS) for evaluation for its contribution to IASCC. The second part of the strategy is to use low temperature irradiation to produce a radiation damage dislocation loop microstructure without radiation induced segregation in order to evaluate the effect of the dislocation microstructure alone. A radiation annealing model was developed based on the elimination of dislocation loops by vacancy absorption. Results showed that there were indeed, time-temperature annealing combinations that leave the radiation induced segregation profile largely unaltered while the dislocation microstructure is significantly reduced. Proton irradiation of 304 stainless steel irradiated with 3.2 MeV protons to 1.0 or 2.5 dpa resulted in grain boundary depletion of chromium and enrichment of nickel and a radiation damaged microstructure. Post irradiation annealing at temperatures of 500 ? 600C for times of up to 45 min. removed the dislocation microstructure to a greater degree with increasing temperatures, or times at temperature, while leaving the radiation induced segregation profile relatively unaltered. Constant extension rate tensile (CERT) experiments in 288C water containing 2 ppm O2 and with a conductivity of 0.2 mS/cm and at a strain rate of 3 x 10-7 s-1 showed that the IASCC susceptibility, as measured by the crack length per unit strain, decreased with very short anneals and was almost completely removed by an anneal at 500C for 45 min. This annealing treatment removed about 15% of the dislocation microstructure and the irradiation hardening, but did not affect the grain boundary chromium depletion or nickel segregation, nor did it affect the grain boundary content of other minor impurities. These results indicate that RIS is not the sole controlling feature of IASCC in irradiated stainless steels in normal water chemistry. The isolation of the irradiated microstructure was approached using low temperature irradiation or combinations of low and high temperature irradiations to achieve a stable, irradiated microstructure without RIS. Experiments were successful in achieving a high degree of irradiation hardening without any evidence of RIS of either major or minor elements. The low temperature irradiations to doses up to 0.3 dpa at T<75C were also very successful in producing hardening to levels considerably above that for irradiations conducted under nominal conditions of 1 dpa at 360C. However, the microstructure consisted of an extremely fine dispersion of defect clusters of sizes that are not resolvable by either transmission electron microscopy (TEM) or small angle x-ray scattering (SAXS). The microstructure was not stable at the 288C IASCC test temperature and resulted in rapid reduction of hardening and presumably, annealing of the defect clusters at this temperature as well. Nevertheless, the annealing studies showed that treatments that resulted in significant decreases in the hardening produced small changes in the dislocation microstructure that were confined to the elimination of the finest of loops (~1 nm). These results substantiate the importance of the very fine defect microstructure in the IASCC process. The results of this program provide the first definitive evidence that RIS is not the sole controlling factor in the irradiation assisted stress corrosion cracking of austenitic stain

  5. Design, fabrication, and testing of a getter-based atmosphere purification and waste treatment system for a nitrogen-hydrogen-helium glovebox

    SciTech Connect (OSTI)

    Bibeault, M. L.; Paglieri, S. N.; Tuggle, D. G.; Wermer, J. R.; Nobile Jr, A.

    2008-07-15

    A system containing a combination of getters (Zr-Mn-Fe, SAES St909; and Zr{sub 2}Fe, SAES St198) was used to process the nitrogen-hydrogen-helium atmosphere in a glovebox used for handling metal tritide samples. During routine operations, the glovebox atmosphere is recirculated and hydrogenous impurities (i.e. CQ{sub 4}, Q{sub 2}O, and NQ{sub 3}, where Q =H, D, T) are decomposed (cracked) and removed by Zr-Mn-Fe without absorbing elemental hydrogen isotopes. If the tritium content of the glovebox atmosphere becomes unacceptably high, the getter system can rapidly strip the glovebox atmosphere of all hydrogen isotopes by absorption on the Zr{sub 2}Fe, thus lessening the burden on the facility waste gas treatment system. The getter system was designed for high flowrate ( > 100 1/min), which is achieved by using a honeycomb support for the getter pellets and 1.27-cm diameter tubing throughout the system for reduced pressure drop. The novel getter bed design also includes an integral preheater and copper liner to accommodate swelling of the getter pellets, which occurs during loading with oxygen and carbon impurities. Non-tritium functional tests were conducted to determine the gettering efficiencies at different getter bed temperatures and flowrates by recirculating gas through the system from, a 6-m{sup 3} glovebox containing known concentrations of impurities. (authors)

  6. Dependence of dynamic fracture resistance on crack velocity in tungsten: Pt. 1. Single crystals

    SciTech Connect (OSTI)

    Liv, J.M.; Shen, B.W.

    1984-06-01

    The dependence of dynamic fracture resistance on crack propagation velocity on (100) in tungsten has been examined. A correlation is obtained between the measured local crack velocity with the surfac and subsurface deformations. Based on the experimental results on one pass, two passes, and prestrained, electron beam zone refined single crystals, a discussion is given on the slip modes activated at the crack tip, the contributions to the dynamic fracture resistance from dislocations and surface features and from the preexisting deformed microstructure.

  7. J-integral for a semi-elliptical surface crack at a bimaterial interface

    SciTech Connect (OSTI)

    Sharobeam, M.H.; Landes, J.D.

    1995-12-31

    Surface cracks are common defects in welded, bonded, and composite structures. The elastic-plastic fracture of these defects may be analyzed using the J-integral. The authors have recently developed a new approach to evaluate the J-integral for semi-elliptical surface cracks in panels made of homogeneous materials and subject to remote tension. This approach, which is based on load separation, allows the evaluation of J for such a three-dimensional geometry using a single specimen test record. It is analogous to the single specimen technique in two-dimensional geometries. In this article, the authors extend their study to surface cracks at bimaterial interfaces. A three-dimensional finite element model is developed to model such a crack. The J-integral is evaluated along the crack front using the virtual crack extension method. The elastic-plastic fracture behavior of the crack is studied. Load separation is also examined and the new single specimen approach for surface cracks in single material panels is extended to those at bimaterial interfaces. The study also includes a comparison between the results of surface cracks in single material panels and those at bimaterial interfaces.

  8. Elucidation of fundamental properties of helium in metals by nuclear magnetic resonance techniques

    SciTech Connect (OSTI)

    Abell, G.C.

    1990-01-01

    The nuclear magnetic resonance (NMR) properties of very high density {sup 3}He in metals are discussed in the context of the corresponding properties in relatively high density bulk {sup 3}He. In particular, the effects of the {sup 3}He diffusion on the contribution of the {sup 3}He-{sup 3}He dipolar interaction to the lineshape and to the spin-lattice relaxation parameter (T{sub 1}) are described. It is shown that the temperature dependence of the lineshape and of T{sub 1} are independent sources of information about helium density and also about helium diffusivity. Moreover, T{sub 1} is shown to be a sensitive indicator of melting transitions in bulk {sup 3}He. Palladium tritide is presented as a model system for NMR studies of {sup 3}He in metals. Experimental NMR studies of this system reveal behavior analogous to what has been observed for bulk helium. Evidence for a {sup 3}He phase transition near 250 K is provided by the temperature dependence of T{sub 1}. Assuming this to be a melting transition, a density is obtained from the bulk helium EOS that is in good agreement with theory and with swelling measurements on related metal tritides. {sup 3}He NMR measurements have also provided information about the density distribution, helium diffusivity, and mean bubble size in palladium tritide. 22 refs., 8 figs.

  9. Helium release and microstructural changes in Er(D,T)2-x3Hex films).

    SciTech Connect (OSTI)

    Gelles, D. S.; Browning, James Frederick; Snow, Clark Sheldon; Banks, James Clifford; Mangan, Michael A.; Rodriguez, Mark Andrew; Brewer, Luke N.; Kotula, Paul Gabriel

    2007-12-01

    Er(D,T){sub 2-x} {sup 3}He{sub x}, erbium di-tritide, films of thicknesses 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm were grown and analyzed by Transmission Electron Microscopy, X-Ray Diffraction, and Ion Beam Analysis to determine variations in film microstructure as a function of film thickness and age, due to the time-dependent build-up of {sup 3}He in the film from the radioactive decay of tritium. Several interesting features were observed: One, the amount of helium released as a function of film thickness is relatively constant. This suggests that the helium is being released only from the near surface region and that the helium is not diffusing to the surface from the bulk of the film. Two, lenticular helium bubbles are observed as a result of the radioactive decay of tritium into {sup 3}He. These bubbles grow along the [111] crystallographic direction. Three, a helium bubble free zone, or 'denuded zone' is observed near the surface. The size of this region is independent of film thickness. Four, an analysis of secondary diffraction spots in the Transmission Electron Microscopy study indicate that small erbium oxide precipitates, 5-10 nm in size, exist throughout the film. Further, all of the films had large erbium oxide inclusions, in many cases these inclusions span the depth of the film.

  10. Commissioning of helium compression system for the 12 GeV refrigerator

    SciTech Connect (OSTI)

    Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.; Norton, Robert O.; Creel, Jonathan D.; Arenius, Dana M.

    2014-01-01

    The compressor system used for the Jefferson Lab (JLab) 12 GeV upgrade, also known as the CHL-2 compressor system, incorporates many design changes to the typical compressor skid design to improve the efficiency, reliability and maintainability from previous systems. These include a considerably smaller bulk oil separator design that does not use coalescing elements/media, automated control of cooling oil injection based on the helium discharge temperature, a helium after-cooler design that is designed for and promotes coalescing of residual oil and a variable speed bearing oil pump to reduce oil bypass. The CHL-2 helium compression system has five compressors configured with four pressure levels that supports the three pressure levels in the cold box. This paper will briefly review several of these improvements and discuss some of the recent commissioning results.

  11. Ab initio study of formation, migration and binding properties of helium-vacancy clusters in aluminum

    SciTech Connect (OSTI)

    Yang, Li; Zu, Xiaotao T.; Gao, Fei

    2008-08-01

    Ab initio calculations based on density functional theory have been performed to study the dissolution and migration of helium, and the stability of small helium-vacancy clusters HenVm (n, m=0 to 4) in aluminum. The results indicate that the octahedral configuration is more stable than the tetrahedral. Interstitial helium atoms are predicted to have attractive interactions and jump between two octahedral sites via an intermediate tetrahedral site with low migration energy of 0.10 eV. The binding energies of an interstitial He atom and an isolated vacancy to a HenVm cluster are also obtained from the calculated formation energies of the clusters. We find that the divacancy and tri--vacancy clusters are not stable, but He atoms can increase the stability of vacancy clusters. The interactions of He atoms with a vacancy are found to be in good agreement with the experimental results.

  12. Effect of helium growth and carbon impurities on the properties of aged metal tritides

    SciTech Connect (OSTI)

    McConville, G.T.; Menke, D.A.; West, D.; Woods, C.M.

    1995-10-01

    The interaction of tritium with metals is made complex by two phenomena. The beta decay in the metal produces {sup 3}He. The helium moves to form bubbles. We shall show that the growth of the bubbles produces a two stage swelling of the metal coming first from the appearance of the helium and second from the relaxation of the lattice disorder caused by the bubble growth. The second phenomenon is the steady state ion and free radical concentration in the tritium over gas which interacts with impurities on the metal surface. We shall show that the reaction rates are much faster than for normal hydrogen cleaning. 12 refs., 7 figs., 3 tabs.

  13. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    SciTech Connect (OSTI)

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W.; Zhang, M. M.; Xu, D.

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  14. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.; Casagrande, Fabio

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  15. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect (OSTI)

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-29

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  16. Apparatus and method for prevention of cracking in welded brittle alloys

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC); Younkins, Robert M. (New Ellenton, SC)

    2000-01-01

    An apparatus and method for reducing cracking in a heated material as the material cools. The apparatus includes a variable frequency electric signal generator that is coupled to a transducer. The transducer produces a variable frequency acoustic signal in response to the variable frequency electric signal, which is applied to the heated material to reduce cracking as the material cools.

  17. Effects of helium implantation on the tensile properties and microstructure of Ni??P?? metallic glass nanostructures

    SciTech Connect (OSTI)

    Liontas, Rachel; Gu, X. Wendy; Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan; Greer, Julia R.

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ~130 nm diameter Ni??P?? metallic glass nano-cylinders. The nano-cylinders were fabricated by a templated electroplating process and implanted with He? at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ~3 at. % throughout the nano-cylinders. Transmission electron microscopy (TEM) imaging and through-focus analysis reveal that the specimens contained ~2 nm helium bubbles distributed uniformly throughout the nano-cylinder volume. In-situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens, with no sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation.

  18. Effects of helium implantation on the tensile properties and microstructure of Ni₇₃P₂₇ metallic glass nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liontas, Rachel; Gu, X. Wendy; Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan; Greer, Julia R.

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ~130 nm diameter Ni₇₃P₂₇ metallic glass nano-cylinders. The nano-cylinders were fabricated by a templated electroplating process and implanted with He⁺ at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ~3 at. % throughout the nano-cylinders. Transmission electron microscopy (TEM) imaging and through-focus analysis reveal that the specimens contained ~2 nm helium bubbles distributed uniformly throughout the nano-cylinder volume. In-situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens, with nomore » sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation.« less

  19. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect (OSTI)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes the Design Data Needs to: (1) fabricate the coated particle fuel, (2) predict its performance in the reactor core, (3) predict the radionuclide release rates from the reactor core, and (4) predict the performance of spent fuel in a geological repository. The heart of this fuel development plan is Section 6, which describes the development activities proposed to satisfy the DDNs presented in Section 5. The development scope is divided into Fuel Process Development, Fuel Materials Development, Fission Product Transport, and Spent Fuel Disposal. Section 7 describes the facilities to be used. Generally, this program will utilize existing facilities. While some facilities will need to be modified, there is no requirement for major new facilities. Section 8 states the Quality Assurance requirements that will be applied to the development activities. Section 9 presents detailed costs organized by WBS and spread over time. Section 10 presents a list of the types of deliverables that will be prepared in each of the WBS elements. Four Appendices contain supplementary information on: (a) design data needs, (b) the interface with the separations plant, (c) the detailed development schedule, and (d) the detailed cost estimate.

  20. Stress Corrosion Cracking Issues in Light Metals for Automotive Applications

    SciTech Connect (OSTI)

    Jones, Russell H.; Danielson, Michael J.; Baer, Donald R.; Windisch, Charles F.; Vetrano, John S.; Edwards, Daniel J.

    2000-12-31

    The Partnership for New Generation Vehicle has the goal of producing lightweight automobiles that achieve 80 mpg. To accomplish this will require liberal use of Al and Mg alloys such as AA5083 and AZ91D. The corrosion and stress corrosion of alloy AA5083 is controlled by the precipitation of the b-phase (Al3Mg2) at grain boundaries and by the precipitation of the g-phase (Mg17Al12) in AZ91D. The b-phase is anodic to the Al matrix while the g-phase is cathodic to the Mg matrix. The effects of crack propagation along grain boundaries with electrochemically active particles is a key factor in the SCC performance of these materials.

  1. CRACK GROWTH ANALYSIS OF SOLID OXIDE FUEL CELL ELECTROLYTES

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-10-01

    Defects and Flaws control the structural and functional property of ceramics. In determining the reliability and lifetime of ceramics structures it is very important to quantify the crack growth behavior of the ceramics. In addition, because of the high variability of the strength and the relatively low toughness of ceramics, a statistical design approach is necessary. The statistical nature of the strength of ceramics is currently well recognized, and is usually accounted for by utilizing Weibull or similar statistical distributions. Design tools such as CARES using a combination of strength measurements, stress analysis, and statistics are available and reasonably well developed. These design codes also incorporate material data such as elastic constants as well as flaw distributions and time-dependent properties. The fast fracture reliability for ceramics is often different from their time-dependent reliability. Further confounding the design complexity, the time-dependent reliability varies with the environment/temperature/stress combination. Therefore, it becomes important to be able to accurately determine the behavior of ceramics under simulated application conditions to provide a better prediction of the lifetime and reliability for a given component. In the present study, Yttria stabilized Zirconia (YSZ) of 9.6 mol% Yttria composition was procured in the form of tubes of length 100 mm. The composition is of interest as tubular electrolytes for Solid Oxide Fuel Cells. Rings cut from the tubes were characterized for microstructure, phase stability, mechanical strength (Weibull modulus) and fracture mechanisms. The strength at operating condition of SOFCs (1000 C) decreased to 95 MPa as compared to room temperature strength of 230 MPa. However, the Weibull modulus remains relatively unchanged. Slow crack growth (SCG) parameter, n = 17 evaluated at room temperature in air was representative of well studied brittle materials. Based on the results, further work was planned to evaluate the strength degradation, modulus and failure in more representative environment of the SOFCs.

  2. Ordinary SQUID interferometers and superfluid helium matter wave interferometers: The role of quantum fluctuations

    SciTech Connect (OSTI)

    Golovashkin, A. I.; Zherikhina, L. N. Tskhovrebov, A. M.; Izmailov, G. N.; Ozolin, V. V.

    2010-08-15

    When comparing the operation of a superfluid helium matter wave quantum interferometer (He SQUID) with that of an ordinary direct-current quantum interferometer (dc SQUID), we estimate their resolution limitation that correspond to quantum fluctuations. An alternative mode of operation of the interferometer as a unified macroquantum system is considered.

  3. Statistical Properties of Inter-Series Mixing in Helium: From Integrability to Chaos

    SciTech Connect (OSTI)

    Pu''ttner, R.; Gremaud, B.; Delande, D.; Domke, M.; Martins, M.; Schlachter, A. S.; Kaindl, G.

    2001-04-23

    The photoionization spectrum of helium shows considerable complexity close to the double-ionization threshold. By analyzing the results from both our recent experiments and ab initio three- and one-dimensional calculations, we show that the statistical properties of the spacings between neighboring energy levels clearly display a transition towards quantum chaos.

  4. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    SciTech Connect (OSTI)

    Sharma, Rohit; Singh, Kuldip

    2014-03-15

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Z?, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter ?(= T{sub e}/T{sub h}) has been investigated for the ground and excited state helium and argon plasmas at pressures 1?atm, 10?atm, and 100?atm in the temperature range from 6000?K to 60?000?K. For a given value of non-equilibrium parameter, the relationship of Z? with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  5. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    DOE R&D Accomplishments [OSTI]

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  6. Field and laboratory investigations of coring-induced damage in core recovered from Marker Bed 139 at the waste isolation pilot plant underground facility

    SciTech Connect (OSTI)

    Holcomb, D.J.; Zeuch, D.H.; Morin, K.; Hardy, R.; Tormey, T.V.

    1995-09-01

    A combined laboratory and field investigation was carried out to determine the extent of coring-induced damage done to samples cored from Marker Bed 139 at the WIPP site. Coring-induced damage, if present, has the potential to significantly change the properties of the material used for laboratory testing relative to the in situ material properties, resulting in misleading conclusions. In particular, connected, crack-like damage could make the permeability of cored samples orders of magnitude greater than the in situ permeabilities. Our approach compared in situ velocity and resistivity measurements with laboratory measurements of the same properties. Differences between in situ and laboratory results could be attributed to differences in the porosity due to cracks. The question of the origin of the changes could not be answered directly from the results of the measurements. Pre-existing cracks, held closed by the in situ stress, could open when the core was cut free, or new cracks could be generated by coring-induced damage. We used core from closely spaced boreholes at three orientations (0{degree}, {plus_minus}45{degrees} relative to vertical) to address the origin of cracks. The absolute orientation of pre-existing cracks would be constant, independent of the borehole orientation. In contrast, cracks induced by coring were expected to show an orientation dependent on that of the source borehole.

  7. Recent Observation of Hydrogen-Induced Cracking of High-Strength Steels

    SciTech Connect (OSTI)

    McMahon, Jr, C J; Liu, Xinyu; Kameda, Jun; Morgan, Michael J

    2008-09-14

    The present progress report shows that the ultra-high-strength 4340-type steel, even if ideally pure, cannot safely be used for service in a hydrogen environment. Some of the strength must be given up in favor of more toughness, which can be achieved by reducing the carbon content and increasing the nickel content. The 5%NiCrMoV steel with about 0.1% carbon shows promise in this regard, especially in an aqueous environment and in hydrogen at around atmospheric pressure. However, we have not yet achieved a purity level high enough to establish the baseline behavior of an ideally pure version of this steel in high-pressure hydrogen.

  8. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    SciTech Connect (OSTI)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C.

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  9. Repair welding of fusion reactor components. Second year technical report

    SciTech Connect (OSTI)

    Chin, B.A.

    1993-05-15

    Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  10. Repair welding of fusion reactor components

    SciTech Connect (OSTI)

    Chin, B.A.

    1993-05-15

    Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  11. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect (OSTI)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear fuels are critical to understand the burnup, and thus the fuel efficiency.

  12. Coolant Sub-Channel and Smeared-Cracking Models in BISON | Department of

    Energy Savers [EERE]

    Energy Coolant Sub-Channel and Smeared-Cracking Models in BISON Coolant Sub-Channel and Smeared-Cracking Models in BISON January 29, 2013 - 10:45am Addthis Coolant Sub-Channel and Smeared-Cracking Models in BISON A single-pin coolant sub-channel model was implemented in BISON, the pin-scale simulation code. This enables BISON to compute the heat transfer coefficient and coolant temperature as a function of axial position along the fuel pin (rather than requiring this information to be

  13. Webinar: Impacts of Impurities on Hydrogen Assisted Fatigue Crack Growth in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structural Steels | Department of Energy Impacts of Impurities on Hydrogen Assisted Fatigue Crack Growth in Structural Steels Webinar: Impacts of Impurities on Hydrogen Assisted Fatigue Crack Growth in Structural Steels January 12, 2016 12:00PM to 1:00PM EST The Energy Department will present a live webinar titled "Impacts of Impurities on Hydrogen Assisted Fatigue Crack Growth in Structural Steels" on Tuesday, January 12, from 12 to 1 p.m. Eastern Standard Time (EST).

  14. On the Use of the Polynomial Annihilation Edge Detection for Locating Cracks in Beam-Like Structures

    SciTech Connect (OSTI)

    Saxena, Rishu; Surace, Cecilia; Archibald, Richard K

    2013-01-01

    A crack in a structure causes a discontinuity in the first derivative of the mode shapes: On this basis, a numerical method for detecting discontinuities in smooth piecewise functions and their derivatives, based on a polynomial annihilation technique, has been applied to the problem of crack detection and localisation in beam-like structures for which only post-damage mode shapes are available. Using a finite-element model of a cracked beam, the performance of this methodology has been analysed for different crack depths and increasing amounts of noise. Given the crack position, a procedure to estimate its depth is also proposed and corresponding results shown.

  15. STRESS CORROSION CRACK GROWTH RESPONSE FOR ALLOY 152/52 DISSIMILAR METAL WELDS IN PWR PRIMARY WATER

    SciTech Connect (OSTI)

    Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.; Bruemmer, Stephen M.

    2015-08-15

    As part of ongoing research into primary water stress corrosion cracking (PWSCC) susceptibility of alloy 690 and its welds, SCC tests have been conducted on alloy 152/52 dissimilar metal (DM) welds with cracks positioned with the goal to assess weld dilution and fusion line effects on SCC susceptibility. No increased crack growth rate was found when evaluating a 20% Cr dilution zone in alloy 152M joined to carbon steel (CS) that had not undergone a post-weld heat treatment (PWHT). However, high SCC crack growth rates were observed when the crack reached the fusion line of that material where it propagated both on the fusion line and in the heat affected zone (HAZ) of the carbon steel. Crack surface and crack profile examinations of the specimen revealed that cracking in the weld region was transgranular (TG) with weld grain boundaries not aligned with the geometric crack growth plane of the specimen. The application of a typical pressure vessel PWHT on a second set of alloy 152/52 – carbon steel DM weld specimens was found to eliminate the high SCC susceptibility in the fusion line and carbon steel HAZ regions. PWSCC tests were also performed on alloy 152-304SS DM weld specimens. Constant K crack growth rates did not exceed 5x10-9 mm/s in this material with post-test examinations revealing cracking primarily on the fusion line and slightly into the 304SS HAZ.

  16. WARM BREEZE FROM THE STARBOARD BOW: A NEW POPULATION OF NEUTRAL HELIUM IN THE HELIOSPHERE

    SciTech Connect (OSTI)

    Kubiak, M. A.; Bzowski, M.; Sok?, J. M.; Swaczyna, P.; Grzedzielski, S.; Alexashov, D. B.; Izmodenov, V. V.; Mbius, E.; Leonard, T.; Fuselier, S. A.; McComas, D. J.; Wurz, P.

    2014-08-01

    We investigate the signals from neutral helium atoms observed in situ from Earth orbit in 2010 by the Interstellar Boundary Explorer (IBEX). The full helium signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral helium that we call the Warm Breeze. The Warm Breeze is approximately 2 times slower and 2.5 times warmer than the primary interstellar He population, and its density in front of the heliosphere is ?7% that of the neutral interstellar helium. The inflow direction of the Warm Breeze differs by ?19 from the inflow direction of interstellar gas. The Warm Breeze seems to be a long-term, perhaps permanent feature of the heliospheric environment. It has not been detected earlier because it is strongly ionized inside the heliosphere. This effect brings it below the threshold of detection via pickup ion and heliospheric backscatter glow observations, as well as by the direct sampling of GAS/Ulysses. We discuss possible sources for the Warm Breeze, including (1) the secondary population of interstellar helium, created via charge exchange and perhaps elastic scattering of neutral interstellar He atoms on interstellar He{sup +} ions in the outer heliosheath, or (2) a gust of interstellar He originating from a hypothetic wave train in the Local Interstellar Cloud. A secondary population is expected from models, but the characteristics of the Warm Breeze do not fully conform to modeling results. If, nevertheless, this is the explanation, IBEX-Lo observations of the Warm Breeze provide key insights into the physical state of plasma in the outer heliosheath. If the second hypothesis is true, the source is likely to be located within a few thousand AU from the Sun, which is the propagation range of possible gusts of interstellar neutral helium with the Warm Breeze characteristics against dissipation via elastic scattering in the Local Cloud. Whatever the nature of the Warm Breeze, its discovery exposes a critical new feature of our heliospheric environment.

  17. Methodology for extracting local constants from petroleum cracking flows

    DOE Patents [OSTI]

    Chang, Shen-Lin (Woodridge, IL); Lottes, Steven A. (Naperville, IL); Zhou, Chenn Q. (Munster, IN)

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  18. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E.

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  19. Aluminum nitride transitional layer for reducing dislocation density and cracking of AIGan epitaxial films

    DOE Patents [OSTI]

    Allerman, Andrew A. (Tijeras, NM); Crawford, Mary H. (Albuquerque, NM); Koleske, Daniel D. (Albuquerque, NM); Lee, Stephen R. (Albuquerque, NM)

    2011-03-29

    A denticulated Group III nitride structure that is useful for growing Al.sub.xGa.sub.1-xN to greater thicknesses without cracking and with a greatly reduced threading dislocation (TD) density.

  20. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    Broader source: Energy.gov [DOE]

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today’s nuclear power reactor fleet and affects critical structural components within the reactor core. The...

  1. Prediction of crack propagation paths in the unit cell of SOFC stacks

    SciTech Connect (OSTI)

    Joulaee, N.; Makradi, A.; Ahzi, Said; Khaleel, Mohammad A.; Koeppel, Brian J.

    2009-08-01

    Planar Solid Oxide Fuel Cells (SOFC) stacks are multi-material layered systems with different thermo-mechanical properties. Due to their severe thermal loading, these layers have to meet high demands to preserve their mechanical integrity without initiation and propagation of fracture. Here, we focus on a typical unit cell of the stack which consists of positive electrode-electrolyte-negative electrode (PEN). Based on the mechanical properties of each layer and their interfaces, an energy criterion as a function of crack length is used for the prediction of possible crack extensions in the PEN. This criterion is a pure local criterion, independent of applied loads and geometry of the specimen. An analysis of the competition between crack deflections in the interfaces and crack penetration in layers is presented.

  2. The effect of helium from tritium decay on the gas-solid equilibrium constant for La-Ni-Al tritides

    SciTech Connect (OSTI)

    Walters, R.T.

    1988-01-01

    Change in the equilibrium vapor pressure over LaNi/sub 4.25/ Al/sub 0.75/ tritide with helium in-growth has been observed for helium concentrations up to 10,000 appm. The change is a decrease in pressure from about 500 torr to 90 torr at 80/degree/C. This decrease is believed to be associated with a crystal lattice expansion due to helium, and is similar to the plateau pressure decrease as function of aluminum concentration for the family of LaNi/sub 5-x/Al/sub x/ alloys with O < x < 1. Subsequent tritium cycling recovers the plateau pressure. These data suggest that helium has very short range diffusion for the time of these observations. 18 refs., 4 figs., 2 tabs.

  3. Evolution of an interfacial crack on the concrete-embankment boundary

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Evolution of an interfacial crack on the concrete-embankment boundary Citation Details In-Document Search Title: Evolution of an interfacial crack on the concrete-embankment boundary Authors: Glascoe, L ; Antoun, T ; Kanarska, Y ; Lomove, I ; Hall, R ; Woodson, S ; Smith, J Publication Date: 2013-07-10 OSTI Identifier: 1119958 Report Number(s): LLNL-TR-645956 DOE Contract Number: W-7405-ENG-48 Resource Type: Technical Report Research

  4. Tests and analyses for fully plastic fracture mechanics of plane strain mode I crack growth

    SciTech Connect (OSTI)

    McClintock, F.A.; Parks, D.M.; Kim, Y.J.

    1995-12-31

    Under monotonic loading, structures should ideally be ductile enough to provide continued resistance during crack growth. For fully plastic crack growth in low strength alloys, existing asymptotic solutions for elastic-plastic growing cracks are not applicable because they reach the fracture strain only in regions small compared to the inhomogeneities of the actual fracture process. For the limiting case of non-hardening fully-plastic plane strain crack growth, in a number of geometries and loadings the near-tip fields are characterized in terms of three parameters: an effective angle 2{theta}{sub s} between a pair of slip planes, and the normal stress {sigma}{sub s} and the increment of displacement {delta}u{sub s} across the planes. This three-parameter characterization is in contrast to the one- or two-parameter (K or J and T or Q) characterization in linear or non-linear elastic fracture mechanics. These {theta}{sub s}, {sigma}{sub s}, and {delta}u{sub s} parameters are found form the far-field geometries and loadings through slip line fields or least upper bound analyses based on circular arcs. The resulting crack growth, in terms of the crack tip opening angle (CTOA), is a function of {theta}{sub s}, {sigma}{sub s}, and the material. The geometry of the crack growing between two moving slip planes emanating from its tip reduces this function to the critical fracture shear strain left behind the slip planes, {gamma}f, as a function of {sigma}{sub s}. {gamma}f({sigma}{sub s}) is found theoretically from a hole initiation and growth model. It is also found from preliminary fully plastic crack growth experiments on unequally grooved specimens with fixed-grip extension or 4-point bending of a 1018 CF steel.

  5. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    SciTech Connect (OSTI)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-02-18

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  6. Fatigue-crack propagation in aluminum-lithium alloys processed by power and ingot metallurgy

    SciTech Connect (OSTI)

    Venkateswara Rao, K.T.; Ritchie, R.O. ); Kim, N.J. ); Pizzo, P.P. )

    1990-04-01

    Fatigue-crack propagation behavior in powder-metallurgy (P/M) aluminum-lithium alloys, namely, mechanically-alloyed (MA) Al-4.0Mg-1.5Li-1.1C-0.80{sub 2} (Inco 905-XL) and rapid-solidification-processed (RSP) Al-2.6Li-1.0Cu-0.5Mg-0.5Zr (Allied 644-B) extrusions, has been studied, and results compared with data on an equivalent ingot-metallurgy (I/M) Al-Li alloy, 2090-T81 plate. Fatigue-crack growth resistance of the RSP Al-Li alloy is found to be comparable to the I/M Al-Li alloy; in contrast, crack velocities in MA 905-XL extrusions are nearly three orders of magnitude faster. Growth-rate response in both P/M Al-Li alloys, however, is high anisotropic. Results are interpreted in terms of the microstructural influence of strengthening mechanism, slip mode, grain morphology and texture on the development of crack-tip shielding from crack-path deflection and crack closure. 14 refs., 7 figs., 2 tabs.

  7. Influence of Radiation-Induced Voids and Bubbles on Physical Properties of Austenitic Structural Alloys

    SciTech Connect (OSTI)

    Shcherbakov, E. N.; Kozlov, A. V.; Portnykh, I. A.; Balachov, Iouri I.; Garner, Francis A.

    2004-08-01

    Void swelling in austenitic stainless steels induces significant changes in their electrical resistivity and elastic moduli, as demonstrated in this study using a Russian stainless steel irradiated as fuel pin cladding in BN-600. Precipitation induced by irradiation also causes second-order changes in these properties. When cavities are full of helium as expected under some fusion irradiation conditions, additional second-order changes are expected but they will be small enough to exclude from the analysis.

  8. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  9. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    SciTech Connect (OSTI)

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged AlZnMgCu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  10. The role of correlation in the ground state energy of confined helium atom

    SciTech Connect (OSTI)

    Aquino, N.

    2014-01-14

    We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.

  11. Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301)

  12. Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information »

  13. Supply and Demand of Helium-3| U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Supply and Demand of Helium-3 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » Isotope Development & Production for Research and Applications (IDPRA) Supply and Demand

  14. Final Technical Report for the Neutron Detection without Helium-3 Project

    SciTech Connect (OSTI)

    Ely, James H.; Bliss, Mary; Kouzes, Richard T.; Lintereur, Azaree T.; Robinson, Sean M.; Siciliano, Edward R.; Swinhoe, Martyn T.; Woodring, Mitchell L.

    2013-11-01

    This report details the results of the research and development work accomplished for the Neutron Detection without Helium-3 project conducted during the 2011-2013 fiscal years. The primary focus of the project was to investigate commercially available technologies that might be used in safeguards applications in the relatively near term. Other technologies that are being developed may be more applicable in the future, but were outside the scope of this study.

  15. Improvements of fuel failure detection in boiling water reactors using helium measurements

    SciTech Connect (OSTI)

    Larsson, I.; Sihver, L.; Grundin, A.; Helmersson, J. O.

    2012-07-01

    To certify a continuous and safe operation of a boiling water reactor, careful surveillance of fuel integrity is of high importance. The detection of fuel failures can be performed by off-line gamma spectroscopy of off-gas samples and/or by on-line nuclide specific monitoring of gamma emitting noble gases. To establish the location of a leaking fuel rod, power suppression testing can be used. The accuracy of power suppression testing is dependent on the information of the delay time and the spreading of the released fission gases through the systems before reaching the sampling point. This paper presents a method to improve the accuracy of power suppression testing by determining the delay time and gas spreading profile. To estimate the delay time and examine the spreading of the gas in case of a fuel failure, helium was injected in the feed water system at Forsmark 3 nuclear power plant. The measurements were performed by using a helium detector system based on a mass spectrometer installed in the off-gas system. The helium detection system and the results of the experiment are presented in this paper. (authors)

  16. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    SciTech Connect (OSTI)

    Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael; Walker, Matthew

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  17. A novel scheme to handle highly pulsed loads with a standard helium refrigerator

    SciTech Connect (OSTI)

    Slack, D.S.

    1993-06-30

    Helium refrigerator performance degrades rapidly when it has to handle a varying or pulsed heat load. A novel scheme is presented to handle highly pulsed 4.5 K cryogenic loads with a standard helium refrigerator by isolating it from these pulses. The scheme uses a relatively simple arrangement of control valves, heat exchangers, and a storage dewar. Applications include pulsed tokamak machines such as TPX (Tokamak Physics Experiment) and ITER (International Thermonuclear Experimental Reactor). For example, the TPX (currently in the conceptual design phase in a DoE contract) requires an average 4.5 K refrigerator capacity of about 10 kW; however, pulsed loads caused by eddy current and nuclear heating will exceed 100 kW. The scheme presented here provides a method for handling these pulsed loads. Because of the simple and proven nature of the components involved and the thermodynamic properties of the helium, the system could be implemented for projects such as TPX or ITER with little or no development.

  18. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This workmore » also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.« less

  19. Comparison between a propane-air combustion front and a helium-air simulated combustion front

    SciTech Connect (OSTI)

    Barraclough, S.

    1983-12-01

    Turbulent combustion experiments were performed in a right cylindrical combustion bomb using a premixed propane-air gaseous fuel. The initial conditions inside the combustion chamber were three psig and room temperature. Prior to spark firing, the turbulence intensity inside the combustion chamber was measured and could be varied over a ten fold range. The effect of initial turbulence intensity on turbulent flame propagation was investigated. Two regimes of turbulent combustion were identified, which is in agreement with a previous investigator's results. One of them, a ''transition regime'' occurs when the turbulence intensity is approximately twice the laminar flame speed. Within the transition regime, the turbulent burning speed is linearly proportional to initial turbulence intensity and independent of laminar flame speed and turbulence length scale. A high pressure helium front was injected into the combustion chamber to simulate the combustion front. Since the helium front is isothermal, hot-wire anemometry can be used to quantify the change in turbulence intensity ahead of the propagating front. The helium front was found to have different characteristics than the combustion front.

  20. Investigation of helium ion production in constricted direct current plasma ion source with layered-glows

    SciTech Connect (OSTI)

    Lee, Yuna; Chung, Kyoung-Jae; Park, Yeong-Shin; Hwang, Y. S.; Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744

    2014-02-15

    Generation of helium ions is experimentally investigated with a constricted direct current (DC) plasma ion source operated at layered-glow mode, in which electrons could be accelerated through multiple potential structures so as to generate helium ions including He{sup 2+} by successive ionization collisions in front of an extraction aperture. The helium discharge is sustained with the formation of a couple of stable layers and the plasma ball with high density is created near the extraction aperture at the operational pressure down to 0.6 Torr with concave cathodes. The ion beam current extracted with an extraction voltage of 5 kV is observed to be proportional to the discharge current and inversely proportional to the operating pressure, showing high current density of 130 mA/cm{sup 2} and power density of 0.52 mA/cm{sup 2}/W. He{sup 2+} ions, which were predicted to be able to exist due to multiple-layer potential structure, are not observed. Simple calculation on production of He{sup 2+} ions inside the plasma ball reveals that reduced operating pressure and increased cathode area will help to generate He{sup 2+} ions with the layered-glow DC discharge.

  1. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This workmorealso studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.less

  2. Helium in chirped laser fields as a time-asymmetric atomic switch

    SciTech Connect (OSTI)

    Kaprlov-?nsk, Petra Ruth; Moiseyev, Nimrod

    2014-07-07

    Tuning the laser parameters exceptional points in the spectrum of the dressed laser helium atom are obtained. The weak linearly polarized laser couples the ground state and the doubly excited P-states of helium. We show here that for specific chirped laser pulses that encircle an exceptional point one can get the time-asymmetric phenomenon, where for a negative chirped laser pulse the ground state is transformed into the doubly excited auto-ionization state, while for a positive chirped laser pulse the resonance state is not populated and the neutral helium atoms remains in the ground state as the laser pulse is turned off. Moreover, we show that the results are very sensitive to the closed contour we choose. This time-asymmetric state exchange phenomenon can be considered as a time-asymmetric atomic switch. The optimal time-asymmetric switch is obtained when the closed loop that encircles the exceptional point is large, while for the smallest loops, the time-asymmetric phenomenon does not take place. A systematic way for studying the effect of the chosen closed contour that encircles the exceptional point on the time-asymmetric phenomenon is proposed.

  3. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less

  4. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    SciTech Connect (OSTI)

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This work also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.

  5. A MEASUREMENT OF THE ADIABATIC COOLING INDEX FOR INTERSTELLAR HELIUM PICKUP IONS IN THE INNER HELIOSPHERE

    SciTech Connect (OSTI)

    Saul, Lukas; Wurz, Peter; Kallenbach, Reinald

    2009-09-20

    Interstellar neutral gas enters the inner heliosphere where it is ionized and becomes the pickup ion population of the solar wind. It is often assumed that this population will subsequently cool adiabatically, like an expanding ideal gas due, to the divergent flow of the solar wind. Here, we report the first independent measure of the effective adiabatic cooling index in the inner heliosphere from SOHO CELIAS measurements of singly charged helium taken during times of perpendicular interplanetary magnetic field. We use a simple adiabatic transport model of interstellar pickup helium ions, valid for the upwind region of the inner heliosphere. The time averaged velocity spectrum of helium pickup ions measured by CELIAS/CTOF is fit to this model with a single free parameter which indicates an effective cooling rate with a power-law index of gamma = 1.35 +- 0.2. While this average is consistent with the 'ideal-gas' assumption of gamma = 1.5, the analysis indicates that such an assumption will not apply in general, and that due to observational constraints further measurements are necessary to constrain the cooling process. Implications are discussed for understanding the transport processes in the inner heliosphere and improving this measurement technique.

  6. Cracking of n-butane catalyzed by iron- and maganese-promoted sulfated zirconia

    SciTech Connect (OSTI)

    Cheung, T.K.; d`Itri, J.L.; Gates, B.C.

    1995-05-01

    Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, the significant reactions were isomerization and disproportionation; in the range of 225-300{degrees}C, these reactions were accompanied by cracking, and at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup {minus}9}mol/(g of catalyst {center_dot}s). This comparison suggests that the catalytic activity of the promoted sulfated zirconia at 450{degrees}C is about the same as that of the zeolite, although its activity for n-butane isomerization and disproportionation at temperatures <100{degrees}C is orders of magnitude greater than those of zeolites. Thus the indication of superacidity of the promoted sulfated zirconia does not extend to high temperatures. The results raise questions about the nature of the presumed superacidity: perhaps the low-temperature reactions may involve catalyst functions other than the acidic function responsible for high-temperature cracking reactions or perhaps superacidic sites may be very rapidly poisoned at cracking temperatures. 14 refs., 8 figs., 3 tabs.

  7. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    SciTech Connect (OSTI)

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (?3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC. The effect of neutron irradiation on the fracture toughness of austenitic SSs was also evaluated at dose levels relevant to BWR internals.

  8. The effect of residuals on the presence of intergranular surface cracks on continuously cast billets

    SciTech Connect (OSTI)

    Wijngaarden, M.J.U.T. van; Visagie, G.P.

    1996-12-31

    During 1991, Iscor Vereeniging experienced a dramatic increase in the rejection rate of specialty steel bars rolled from continuously cast billets due to the presence of seams on the bars. The seams originated from tearing of the billets during the first 2 passes in the roughing mill during hot rolling. The defective billets were found to contain fine intergranular cracks on the surface. Such cracks have been described in the literature and have been attributed to the presence of high levels of residuals resulting in the well-known phenomenon of surface hot shortness which results from the enrichment of residuals at the grain boundaries after preferential oxidation of iron during scaling of the steel. The present investigation revealed that the effect of residuals on intergranular surface cracking is a complex interaction between steel composition and casting conditions such as casting speed, intensity of secondary cooling, section size, and mold type. This paper quantifies the effect of residuals on the intergranular surface cracking of continuously cast billets and quantitatively relates the incidence of these cracks to parameters which can be controlled during steelmaking and continuous casting.

  9. Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics

    SciTech Connect (OSTI)

    Zhang Jun; Li, Victor C

    2004-02-01

    Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K{sub IC}) and the crack bridging law, so-called stress-crack width ({sigma}-{delta}) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K{sub IC} and ({sigma}-{delta}) relationship, are known.

  10. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  11. Detection of submicron scale cracks and other surface anomalies using positron emission tomography

    DOE Patents [OSTI]

    Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.

    2004-02-17

    Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.

  12. Fracture toughness results and preliminary analysis for International Cooperative Test Program on specimens containing surface cracks

    SciTech Connect (OSTI)

    Reuter, W.G.; Elfer, N.C.; Hull, D.A.; Newman, J.C. Jr.; Munz, D.; Panontin, T.L.

    1997-12-31

    Specimens containing surface cracks were tested in either tension or bending to compare the stress intensity factor at failure with plane strain fracture toughness (K{sub Ic}) in an International Cooperative Test Program. The material was heat treated to {sigma}{sub ys} = 1 587 MPa and K{sub Ic} = 54 MPa m{sub 1/2}. Because substantial stable crack growth occurred for some specimens, the test plan was modified to include detecting the onset of crack growth. It is shown that P{sub max} and the original fatigue precrack size cannot be employed to calculate K{sub max} for comparison with K{sub Ic} when significant stable crack growth occurs. However, using P{sub init} (load at which stable crack growth is initiated) and the original fatigue precrack size to calculate K{sub max} or K{sub {phi}=30{degree}} provides a very useful comparison with K{sub Ic}. The influence of variations in fatigue precrack configuration on test results are also discussed.

  13. Fracture behavior of ceramic laminates in bending-I. Modeling of crack propagation

    SciTech Connect (OSTI)

    Phillipps, A.J.; Clegg, W.J.; Clyne, T.W. . Dept. of Materials Science and Metallurgy)

    1993-03-01

    This paper concerns the fracture behavior of specimens made up of ceramic sheets, separated by thin interlayers, which act to deflect cracks and thus to prevent catastrophic failure of the specimen. The treatment is divided into two parts. In this paper, the behavior of this type of material during bending is quantitatively modeled. The model is based on through-thickness cracks propagating when a critical stress is reached and interfacial cracks then advancing a distance dictated by the available energy. The variation in laminae strengths is modeled using a Monte Carlo method to determine the strength of successive laminae for a given Weibull modulus. The model is used to predict load/displacement plots and to explore the effects of changes in loading geometry and specimen variables, including Young's modulus, lamina strength, loading span, interfacial toughness, as well as lamina and sample thickness. A distinction is drawn between the energy actually absorbed in causing complete failure of the specimen as measured from the area under the load/displacement curve, and the amount of energy necessary to cause the crack propagation which occurred. These differ if the energy available to drive the interfacial cracks is more than sufficient for them to reach the ends of the specimen or if energy is dissipated elsewhere in the system. A criterion is derived by which specimens can be designed so as to minimize the difference between these two quantities. The significance of this concept in optimizing the toughness of these laminated materials is briefly discussed.

  14. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510C to 650C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  15. Helium transport and ash control studies. Annual progress report, 1 June 1991--31 March 1992

    SciTech Connect (OSTI)

    Miley, G.H.

    1992-06-01

    The Primary goal of this research is to develop a helium (ash) transport scaling law based on experimental data from devices such as TFTR and JET. To illustrate the importance of this, we have studied ash accumulation effects on ignition requirements using a O-D transport model. Ash accumulation is characterized in the model by the ratio of the helium particle confinement time to the energy confinement time t{sub {alpha}}/t{sub E}. Results show that the ignition ``window`` shrinks rapidly as t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E}. A ``best`` value for t{sub {alpha}}/t{sub E} will ultimately be determined from our scaling law studies. A helium transport scaling law is being sought that expresses the transport coefficients (D{sub {alpha}}, V{sub {alpha}}) as a function of the local plasma parameters. This is necessary for use in transport code calculations, e.g. for BALDUR. Based on experimental data from L-mode plasma operation in TFTR, a scaling law to a power law expression has been obtained using a least-square fit method. It is found that the transport coefficients are strongly affected by the local magnetic field and safety factor q. A preliminary conclusion from this work is that active control of ash buildup must be developed. To study control, we have developed a O-D plasma model which employs a simple pole-placement control model. Some preliminary calculations with this model are presented.

  16. A passively-safe fusion reactor blanket with helium coolant and steel structure

    SciTech Connect (OSTI)

    Crosswait, K.M.

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  17. Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site

    SciTech Connect (OSTI)

    ANANTATMULA, R.P.

    1999-10-20

    In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

  18. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  19. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    1997-01-01

    A method for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap therebetween. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition.

  20. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lower frequenciesmore » relevant to PSA vessel operation.« less

  1. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOE Patents [OSTI]

    Kong, P.C.

    1997-05-06

    A method is described for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap there between. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition. 6 figs.

  2. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    SciTech Connect (OSTI)

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (?K) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ?K values up to 18.5 MPa m1/2, the baseline da/dN versus ?K relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ?K values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lower frequencies relevant to PSA vessel operation.

  3. Can surface cracks and unipolar arcs explain breakdown and gradient limits?

    SciTech Connect (OSTI)

    Insepov, Zeke; Norem, Jim

    2013-01-15

    The authors argue that the physics of unipolar arcs and surface cracks can help understand rf breakdown and vacuum arc data. They outline a model of the basic mechanisms involved in breakdown and explore how the physics of unipolar arcs and cracks can simplify the picture of breakdown and gradient limits in accelerators, tokamaks as well as laser ablation, micrometeorites, and other applications. Cracks are commonly seen in SEM images of arc damage and they are produced as the liquid metal cools. They can produce the required field enhancements to explain field emission data and can produce mechanical failure of the surface that would trigger breakdown events. Unipolar arcs can produce currents sufficient to short out rf structures, and can cause the sort of damage seen in SEM images. They should be unstable, and possibly self-quenching, as seen in optical fluctuations and surface damage. The authors describe some details and consider the predictions of this simple model.

  4. Method and apparatus for detecting external cracks from within a metal tube

    DOE Patents [OSTI]

    Caffey, Thurlow W. H. (Albuquerque, NM)

    2001-08-07

    A method and tool using a continuous electromagnetic wave from a transverse magnetic-dipole source with a coaxial electric-dipole receiver is described for the detection of external sidewall cracks and other anomalies in boiler tubes and other enclosures. The invention utilizes the concept of radar backscatter rather than eddy-currents or ultrasound, which are sometimes used in prior art crack-detection methods. A numerical study of the distribution of the fields shows that the direct transmission from the source to the receiver is reduced from that in free space. Further, if the diameter of the receiver dipole is made sufficiently small, it should be possible to detect cracks with a scattering loss of up to -40 dB in thin-walled boiler tubes.

  5. Numerical simulation of alumina spraying in argon-helium plasma jet

    SciTech Connect (OSTI)

    Chang, C.H.

    1992-01-01

    A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)

  6. Numerical simulation of alumina spraying in argon-helium plasma jet

    SciTech Connect (OSTI)

    Chang, C.H.

    1992-08-01

    A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)

  7. Mechanisms of stress corrosion cracking for iron-based alloys in high-temperature water

    SciTech Connect (OSTI)

    Zhou, X.Y.; Congleton, J.; Bahraloloom, A.

    1998-11-01

    Stress corrosion cracking (SCC) susceptibilities of a series of iron-based alloys (IBA), including some high-purity irons, were evaluated in lithiated water at temperatures up to 300 C. Inclusion distributions in each material were established using quantitative metallography and energy dispersive x-ray analysis (EDX). Electrochemical measurements were performed to investigate film formation kinetics. Results showed the minimum potential for SCC was a function of the inclusion content. Reducing the inclusion content in IBA moved the minimum potential for SCC in the anodic direction and/or increased the temperature for the onset of cracking but did not eliminate SCC.

  8. A tool to detect external cracks from within a metal tube

    SciTech Connect (OSTI)

    Caffey, T.W.H.

    1997-01-01

    A tool using a continuous electromagnetic wave from a transverse magnetic-dipole source with a coaxial electric-dipole receiver is outlined for the detection of external sidewall cracks in boiler tubes. A numerical study of the distribution of the fields shows that the direct transmission from the source to the receiver is reduced from that in free space. Further, if the diameter of the receiver dipole is made sufficiently small, it should be possible to detect cracks with a scattering loss of up to 40dB in thin-walled boiler tubes.

  9. Proceedings of the Workshop on the Structural Cracking of the Cupola of

    Office of Scientific and Technical Information (OSTI)

    Santa Maria del Fiore (Technical Report) | SciTech Connect Proceedings of the Workshop on the Structural Cracking of the Cupola of Santa Maria del Fiore Citation Details In-Document Search Title: Proceedings of the Workshop on the Structural Cracking of the Cupola of Santa Maria del Fiore × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  10. Cracking Molecular Structures with Bright Lights - and a Few Good Eggs |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Cracking Molecular Structures with Bright Lights - and a Few Good Eggs Cracking Molecular Structures with Bright Lights - and a Few Good Eggs June 22, 2012 - 11:04am Addthis This rendering shows a lysozyme structural model against its X-ray diffraction pattern from SLAC’s Linac Coherent Light Source (LCLS), a powerful X-ray laser facility. Researchers have achieved high-resolution images of these simple biomolecules using advanced crystallography at LCLS. | Photo by

  11. Cohesive Modeling of Dynamic Crack Growth in Homogeneous and Functionally Graded Materials

    SciTech Connect (OSTI)

    Zhang Zhengyu; Paulino, Glaucio H.; Celes, Waldemar

    2008-02-15

    This paper presents a Cohesive Zone Model (CZM) approach for investigating dynamic crack propagation in homogeneous and Functionally Graded Materials (FGMs). The failure criterion is incorporated in the CZM using both a finite cohesive strength and work to fracture in the material description. A novel CZM for FGMs is explored and incorporated into a finite element framework. The material gradation is approximated at the element level using a graded element formulation. A numerical example is provided to demonstrate the efficacy of the CZM approach, in which the influence of the material gradation on the crack growth pattern is studied.

  12. Keep Customers-and Energy-From Slipping Through the Cracks | Department

    Energy Savers [EERE]

    of Energy Keep Customers-and Energy-From Slipping Through the Cracks Keep Customers-and Energy-From Slipping Through the Cracks A photo of three people standing and talking to each other, two men and a woman, inside a home. The most successful energy efficiency upgrade programs have customers who are willing and able to implement energy efficiency upgrades. This may seem like an obvious statement; however, many upgrade programs are struggling to reach their upgrade goals because they allow

  13. Microstructure-sensitive small fatigue crack growth assessment. Effect of strain ratio multiaxial strain state and geometric discontinuities

    SciTech Connect (OSTI)

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-09-16

    Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loading conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.

  14. Microstructure-sensitive small fatigue crack growth assessment. Effect of strain ratio multiaxial strain state and geometric discontinuities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-09-16

    Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loadingmore » conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.« less

  15. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    SciTech Connect (OSTI)

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection methods often need to be addressed as plants age. Shutdown inspection intervals can only be designed using creep and creep-fatigue crack growth techniques. (5) The use of crack growth procedures can aid in examining the seriousness of creep damage in structural components. How cracks grow can be used to assess margins on components and lead to further safe operation. After examining the pros and cons of all these methods, the R5 code was chosen as the most up-to-date and validated high temperature creep and creep fatigue code currently used in the world at present. R5 is considered the leader because the code: (1) has well established and validated rules, (2) has a team of experts continually improving and updating it, (3) has software that can be used by designers, (4) extensive validation in many parts with available data from BE resources as well as input from Imperial college's database, and (5) was specifically developed for use in nuclear plants. R5 was specifically developed for use in gas cooled nuclear reactors which operate in the UK and much of the experience is based on materials and temperatures which are experienced in these reactors. If the next generation advanced reactors to be built in the US used these same materials within the same temperature ranges as these reactors, then R5 may be appropriate for consideration of direct implementation within ASME code NH or Section XI. However, until more verification and validation of these creep/fatigue crack growth rules for the specific materials and temperatures to be used in the GEN IV reactors is complete, ASME should consider delaying this implementation. With this in mind, it is this authors opinion that R5 methods are the best available for code use today. The focus of this work was to examine the literature for creep and creep-fatigue crack growth procedures that are well established in codes in other countries and choose a procedure to consider implementation into ASME NH. It is very important to recognize that all creep and creep fatigue crack growth procedures that are part of high temperature design codes are related and very similar. This effort made no attempt to develop a new creep-fatigue crack growth predictive methodology. Rather examination of current procedures was the only goal. The uncertainties in the R5 crack growth methods and recommendations for more work are summarized here also.

  16. Influence of helium puff on divertor asymmetry in Experimental Advanced Superconducting Tokamak

    SciTech Connect (OSTI)

    Liu, S. C., E-mail: lshch@ipp.ac.cn; Xu, G. S.; Wang, H. Q.; Ding, R.; Duan, Y. M.; Gan, K. F.; Shao, L. M.; Chen, L.; Zhang, W.; Chen, R.; Xiong, H.; Ding, S.; Hu, G. H.; Liu, Y. L.; Zhao, N.; Li, Y. L.; Gao, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Guo, H. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China) [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Tri Alpha Energy, Inc., Post Office Box 7010, Rancho Santa Margarita, California 92688 (United States); Wang, L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China) [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); School of Physics and Optoelectronic Technology, Dalian university of Technology, Dalian 116024 (China); Yan, N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China) [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Association Euratom-Ris DTU, DK-4000 Roskilde (Denmark)

    2014-02-15

    Divertor asymmetries with helium puffing are investigated in various divertor configurations on Experimental Advanced Superconducting Tokamak (EAST). The outer divertor electron temperature decreases significantly during the gas injection at the outer midplane. As soon as the gas is injected into the edge plasma, the power deposition drops sharply at the lower outer target while increases gradually at the lower inner target in LSN configuration; the power deposition increases quickly at the upper outer target while remains unchanged at the upper inner target in upper single null configuration; the power deposition increases slightly at the outer targets while shows no obvious variation at the inner targets in double null configuration. The radiated power measured by the extreme ultraviolet arrays increases significantly due to helium gas injection, especially in the outer divertor. The edge parameters are measured by reciprocating probes at the outer midplane, showing that the electron temperature and density increase but the parallel Mach number decreases significantly due to the gas injection. Effects of poloidal E??B drifts and parallel SOL flows on the divertor asymmetry observed in EAST are also discussed.

  17. Determination of effective axion masses in the helium-3 buffer of CAST

    SciTech Connect (OSTI)

    Ruz, J

    2011-11-18

    The CERN Axion Solar Telescope (CAST) is a ground based experiment located in Geneva (Switzerland) searching for axions coming from the Sun. Axions, hypothetical particles that not only could solve the strong CP problem but also be one of the favored candidates for dark matter, can be produced in the core of the Sun via the Primakoff effect. They can be reconverted into X-ray photons on Earth in the presence of strong electromagnetic fields. In order to look for axions, CAST points a decommissioned LHC prototype dipole magnet with different X-ray detectors installed in both ends of the magnet towards the Sun. The analysis of the data acquired during the first phase of the experiment yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV/c{sup 2}. During the second phase, CAST extends its mass sensitivity by tuning the electron density present in the magnetic field region. Injecting precise amounts of helium gas has enabled CAST to look for axion masses up to 1.2 eV/c{sup 2}. This paper studies the determination of the effective axion masses scanned at CAST during its second phase. The use of a helium gas buffer at temperatures of 1.8 K has required a detailed knowledge of the gas density distribution. Complete sets of computational fluid dynamic simulations validated with experimental data have been crucial to obtain accurate results.

  18. Constraints on helium enhancement in the globular cluster M4 (NGC 6121): The horizontal branch test

    SciTech Connect (OSTI)

    Valcarce, A. A. R.; De Medeiros, J. R.; Catelan, M.; Alonso-Garca, J.; Corts, C.

    2014-02-20

    Recent pieces of evidence have revealed that most, and possibly all, globular star clusters are composed of groups of stars that formed in multiple episodes with different chemical compositions. In this sense, it has also been argued that variations in the initial helium abundance (Y) from one population to the next are also the rule, rather than the exception. In the case of the metal-intermediate globular cluster M4 (NGC 6121), recent high-resolution spectroscopic observations of blue horizontal branch (HB) stars (i.e., HB stars hotter than the RR Lyrae instability strip) suggest that a large fraction of blue HB stars are second-generation stars formed with high helium abundances. In this paper, we test this scenario by using recent photometric and spectroscopic data together with theoretical evolutionary computations for different Y values. Comparing the photometric data with the theoretically derived color-magnitude diagrams, we find that the bulk of the blue HB stars in M4 have ?Y ? 0.01 with respect to the cluster's red HB stars (i.e., HB stars cooler than the RR Lyrae strip)a result which is corroborated by comparison with spectroscopically derived gravities and temperatures, which also favor little He enhancement. However, the possible existence of a minority population on the blue HB of the cluster with a significant He enhancement level is also discussed.

  19. Commissioning of helium refrigeration system at JLab for 12 GeV upgrade

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Dixon, Kelly D.; Knudsen, Peter N.; Norton, Robert O.; Creel, Jonathan D.

    2014-01-01

    The new 4.5 K refrigerator system added to the Jefferson Lab (JLab) Central Helium Liquefier (CHL) for the 12 GeV upgrade will double its previous capacity. It includes a 4.5 K cold box system and compressor system with associated oil removal and gas management systems. At its maximum capacity condition, this new system supports an additional 238 g/s 30 K 1.16 bar cold compressor return flow, a 15 g/s 4.5 K liquefaction load and a 12.6 kW 35–55 K shield load. Five more design conditions, ranging from liquefaction to refrigeration and a stand-by/reduced load state, were specified for the sizing and selection of its components. The cold box system is comprised of a 300–60 K vertical cold box that incorporates a liquid nitrogen pre-cooler and a 60–4.5 K horizontal cold box housing seven turbines that are configured in four expansion stages including one Joule-Thompson expander. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will briefly review the salient 4.5 K system design features and discuss the recent commissioning results.

  20. OPTIMAL DESIGN AND OPERATION OF HELIUM REFRIGERATION SYSTEMS USING THE GANNI CYCLE

    SciTech Connect (OSTI)

    Venkatarao Ganni, Peter Knudsen

    2010-04-01

    The constant pressure ratio process, as implemented in the floating pressure - Ganni cycle, is a new variation to prior cryogenic refrigeration and liquefaction cycle designs that allows for optimal operation and design of helium refrigeration systems. This cycle is based upon the traditional equipment used for helium refrigeration system designs, i.e., constant volume displacement compression and critical flow expansion devices. It takes advantage of the fact that for a given load, the expander sets the compressor discharge pressure and the compressor sets its own suction pressure. This cycle not only provides an essentially constant system Carnot efficiency over a wide load range, but invalidates the traditional philosophy that the (‘TS’) design condition is the optimal operating condition for a given load using the as-built hardware. As such, the Floating Pressure- Ganni Cycle is a solution to reduce the energy consumption while increasing the reliability, flexibility and stability of these systems over a wide operating range and different operating modes and is applicable to most of the existing plants. This paper explains the basic theory behind this cycle operation and contrasts it to the traditional operational philosophies presently used.

  1. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOE Patents [OSTI]

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  2. Spent Nuclear Fuel (SNF) Project Cask and MCO Helium Purge System Design Review Completion Report Project A.5 and A.6

    SciTech Connect (OSTI)

    ARD, K.E.

    2000-04-19

    This report documents the results of the design verification performed on the Cask and Multiple Canister Over-pack (MCO) Helium Purge System. The helium purge system is part of the Spent Nuclear Fuel (SNF) Project Cask Loadout System (CLS) at 100K area. The design verification employed the ''Independent Review Method'' in accordance with Administrative Procedure (AP) EN-6-027-01.

  3. Hierarchical Petascale Simulation Framework for Stress Corrosion Cracking

    SciTech Connect (OSTI)

    Vashishta, Priya

    2014-12-01

    Reaction Dynamics in Energetic Materials: Detonation is a prototype of mechanochemistry, in which mechanically and thermally induced chemical reactions far from equilibrium exhibit vastly different behaviors. It is also one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. The CACS group has performed multimillion-atom reactive MD simulations to reveal a novel two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine (RDX) crystal. Rapid production of N2 and H2O within ~10 ps is followed by delayed production of CO molecules within ~ 1 ns. They found that further decomposition towards the final products is inhibited by the formation of large metastable C- and O-rich clusters with fractal geometry. The CACS group has also simulated the oxidation dynamics of close-packed aggregates of aluminum nanoparticles passivated by oxide shells. Their simulation results suggest an unexpectedly active role of the oxide shell as a nanoreactor.

  4. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOE Patents [OSTI]

    Not Available

    1980-05-28

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking is described. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  5. Catalytic cracking. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The bibliography contains citations concerning applications of catalytic cracking in fluidized beds, moving beds, refineries, vacuum distillation, and reformers. Design criteria, models, controls, and operating procedures are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  6. Catalytic cracking. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning applications of catalytic cracking in fluidized beds, moving beds, refineries, vacuum distillation, and reformers. Design criteria, models, controls, and operating procedures are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  7. Numerical modeling and experiments of creep crack growth under cyclic loading

    SciTech Connect (OSTI)

    Brust, F.W.

    1995-12-31

    This paper presents a summary of some recent studies of creep crack growth under history dependent load conditions. The effect of a proper constitutive law is illustrated. Moreover, the asymptotic fields are reconsidered under cyclic creep conditions. In addition, several experiments are modeled and the behavior of integral parameters is discussed.

  8. Cracking catalysts comprising phosphorus and method of preparing and using the same

    SciTech Connect (OSTI)

    Absil, R.P.L.; Herbst, J.A.

    1993-07-27

    A zeolite catalyst is described for cracking hydrocarbons formed by a process comprising the steps of: forming a slurry comprising clay, a source of phosphorus and an acid stable zeolite; and spray drying said slurry in the absence of other non-zeolitic inorganic oxide matrices at a pH which is sufficiently low to provide a calcined attrition index of [<=] 10.

  9. The crystallography of fatigue crack initiation in Incoloy-908 and A-286 steel

    SciTech Connect (OSTI)

    Krenn, C.R. |

    1996-12-01

    Fatigue crack initiation in the austenitic Fe-Ni superalloys Incoloy-908 and A-286 is examined using local crystallographic orientation measurements. Results are consistent with sharp transgranular initiation and propagation occurring almost exclusively on {l_brace}111{r_brace} planes in Incoloy-908 but on a variety of low index planes in A-286. This difference is attributed to the influence of the semicoherent grain boundary {eta} phase in A-286. Initiation in each alloy occurred both intergranularly and transgranularly and was often associated with blocky surface oxide and carbide inclusions. Taylor factor and resolved shear stress and strain crack initiation hypotheses were tested, but despite an inconclusive suggestion of a minimum required {l_brace}111{r_brace} shear stress, none of the hypotheses were found to convincingly describe preferred initiation sites, even within the subsets of transgranular cracks apparently free from the influence of surface inclusions. Subsurface inclusions are thought to play a significant role in crack initiation. These materials have applications for use in structural conduit for high field superconducting magnets designed for fusion energy use.

  10. Fatigue of polycrystalline silicon for MEMS applications: Crack growth and stability under resonant loading conditions

    SciTech Connect (OSTI)

    Muhlstein, C.L.; Howe, R.T.; Ritchie, R.O.

    2001-12-05

    Although bulk silicon is not known to exhibit susceptibility to cyclic fatigue, micron-scale structures made from silicon films are known to be vulnerable to degradation by fatigue in ambient air environments, a phenomenon that has been recently modeled in terms of a mechanism of sequential oxidation and stress-corrosion cracking of the native oxide layer.

  11. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOE Patents [OSTI]

    Steeves, Arthur F.; Stewart, James C.

    1981-01-01

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  12. Overview of recent studies and modifications being made to RHIC to mitigate the effects of a potential failure to the helium distribution system

    SciTech Connect (OSTI)

    Tuozzolo, J.; Bruno, D.; DiLieto, A.; Heppner, G.; Karol, R.; Lessard,E.; Liaw, C-J; McIntyre, G; Mi, C.; Reich, J.; Sandberg, J.; Seberg, S.; Smart, L.; Tallerico, T.; Theisen, C.; Todd, R.; Zapasek R.

    2011-03-28

    In order to cool the superconducting magnets in RHIC, its helium refrigerator distributes 4.5 K helium throughout the tunnel along with helium distribution for the magnet line recoolers, the heat shield, and the associated return lines. The worse case for failure would be a release from the magnet distribution line which operates at 3.5 to 4.5 atmospheres and contains the energized magnet but with a potential energy of 70 MJoules should the insulation system fail or an electrical connection opens. Studies were done to determine release rate of the helium and the resultant reduction in O{sub 2} concentration in the RHIC tunnel and service buildings. Equipment and components were also reviewed for design and reliability and modifications were made to reduce the likelihood of failure and to reduce the volume of helium that could be released.

  13. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    SciTech Connect (OSTI)

    Das, S.K.; Ningileri, S.; Long, Z.; Saito, K.; Khraisheh, M.; Hassan, M.H.; Kuwana, K.; Han, Q.; Viswanathan, S.; Sabau, A.S.; Clark, J.; Hyrn, J. (ANL)

    2006-08-15

    Approximately 68% of the aluminum produced in the United States is first cast into ingots prior to further processing into sheet, plate, extrusions, or foil. The direct chill (DC) semi-continuous casting process has been the mainstay of the aluminum industry for the production of ingots due largely to its robust nature and relative simplicity. Though the basic process of DC casting is in principle straightforward, the interaction of process parameters with heat extraction, microstructural evolution, and development of solidification stresses is too complex to analyze by intuition or practical experience. One issue in DC casting is the formation of stress cracks [1-15]. In particular, the move toward larger ingot cross-sections, the use of higher casting speeds, and an ever-increasing array of mold technologies have increased industry efficiencies but have made it more difficult to predict the occurrence of stress crack defects. The Aluminum Industry Technology Roadmap [16] has recognized the challenges inherent in the DC casting process and the control of stress cracks and selected the development of 'fundamental information on solidification of alloys to predict microstructure, surface properties, and stresses and strains' as a high-priority research need, and the 'lack of understanding of mechanisms of cracking as a function of alloy' and 'insufficient understanding of the aluminum solidification process', which is 'difficult to model', as technology barriers in aluminum casting processes. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress cracks from the current level of 5% to 2%. Decreasing stress crack incidence is important for improving product quality and consistency as well as for saving resources and energy, since considerable amounts of cast metal could be saved by eliminating ingot cracking, by reducing the scalping thickness of the ingot before rolling, and by eliminating butt sawing. Full-scale industrial implementation of the results of the proposed research would lead to energy savings in excess of 6 trillion Btu by the year 2020. The research undertaken in this project aimed to achieve this objective by a collaboration of industry, university, and national laboratory personnel through Secat, Inc., a consortium of aluminum companies. During the four-year project, the industrial partners and the research team met in 16 quarterly meetings to discuss research results and research direction. The industrial partners provided guidance, facilities, and experience to the research team. The research team went to two industrial plants to measure temperature distributions in commercial 60,000-lb DC casting ingot production. The project focused on the development of a fundamental understanding of ingot cracking and detailed models of thermal conditions, solidification, microstructural evolution, and stress development during the initial transient in DC castings of the aluminum alloys 3004 and 5182. The microstructure of the DC casting ingots was systematically characterized. Carefully designed experiments were carried out at the national laboratory and university facilities as well as at the industrial locations using the industrial production facilities. The advanced computational capabilities of the national laboratories were used for thermodynamic and kinetic simulations of phase transformation, heat transfer and fluid flow, solidification, and stress-strain evolution during DC casting. The achievements of the project are the following: (1) Identified the nature of crack formation during DC casting; (2) Developed a novel method for determining the mechanical properties of an alloy at the nonequilibrium mushy zone of the alloy; (3) Measured heat transfer coefficients (HTCs) between the solidifying ingot and the cooling water jet; (4) Determined the material constitutive model at high temperatures; and (5) Developed computational capabilities for the simulation of cracking formation in DC casting ingot. The models and the database de

  14. Free radicals induced in aqueous solution by non-contact atmospheric-pressure cold plasma

    SciTech Connect (OSTI)

    Tani, Atsushi; Fukui, Satoshi; Ono, Yusuke; Kitano, Katsuhisa; Ikawa, Satoshi

    2012-06-18

    To understand plasma-induced chemical processing in liquids, we investigated the formation of free radicals in aqueous solution exposed to different types of non-contact atmospheric-pressure helium plasma using the spin-trapping technique. Both hydroxyl radical (OH{center_dot}) and superoxide anion radical (O{sub 2}{sup -}{center_dot}) adducts were observed when neutral oxygen gas was additionally supplied to the plasma. In particular, O{sub 2}{sup -}{center_dot} can be dominantly induced in the solution via oxygen flow into the afterglow gas of helium plasma. This type of plasma treatment can potentially be used in medical applications to control infectious diseases, because the O{sub 2}{sup -}{center_dot} is crucial for sterilization of liquids via atmospheric-pressure plasma.

  15. In-Line Crack and Stress Detection in Silicon Solar Cells Using Resonance Ultrasonic Vibrations

    SciTech Connect (OSTI)

    Ostapenko, Sergei

    2013-04-03

    Statement of Problem and Objectives. Wafer breakage in automated solar cell production lines is identified as a major technical problem and a barrier for further cost reduction of silicon solar module manufacturing. To the best of our knowledge, there are no commercial systems addressing critical needs for in-line inspection of the mechanical quality of solar wafers and cells. The principal objective of the SBIR program is to validate through experiments and computer modeling the applicability of the Resonance Ultrasonic Vibrations system, which ultimately can be used as a real-time in-line manufacturing quality control tool for fast detection of mechanically unstable silicon solar cells caused by cracks. The specific objective of Phase II is to move the technology of in-line crack detection from the laboratory level to commercial demonstration through development of a system prototype. The fragility of silicon wafers possessing low mechanical strength is attributed to peripheral and bulk millimeter-length cracks. The research program is based on feasibility results obtained during Phase I, which established that: (i) the Resonance Ultrasonic Vibrations method is applicable to as-cut, processed wafers and finished cells; (ii) the method sensitivity depends on the specific processing step; it is highest in as-cut wafers and lowest in wafers with metallization pattern and grid contacts; (iii) the system is capable of matching the 2.0 seconds per wafer throughput rate of state-of-art solar cell production lines; (iv) finite element modeling provides vibration mode analysis along with peak shift versus crack length and crack location dependence; (v) a high 91% crack rejection rate was confirmed through experimentation and statistical analysis. The Phase II project has the following specific tasks: (i) specify optimal configurations of the in-line system?¢????s component hardware and software; (ii) develop and justify a system prototype that meets major specifications for an in-line crack detection unit, such as high throughput rate, high level of stability, reproducibility of data acquisition and analysis, and high sensitivity with respect to crack length and crack location; (iii) design a system platform that allows easy integration within and adaptation to various solar cell belt-type production lines; (iv) develop a testing protocol providing quality certification of the production-grade system. Commercial Application of the proposed activity consists of bringing to the solar market a new high-tech product based on an innovative solution and patented methodology to contribute to cost reduction of silicon solar module production. The solar industry, with crystalline silicon as a dominant segment, shows outstanding performance, with approximately 25% yearly growth during the last years. Despite a slowdown with only 5.6 GW installations in 2009, solar module production for the 2010 and 2011 years was recovered. According to European Photonics Industry Consortium new solar PV installations grow by 56% compared to 2010 reached 64.7 GW in 2011. Revenues in the PV industry reached a record high of $93 billion in 2011, a 13.4 percent gain over 2010 â?? and 150 percent over 2009. This growth was forecasted to continue in 2013 with double digits growth. The solar industry is economically driven to make solar panels of the highest conversion efficiency and reliability at the lowest production cost. The Resonance Ultrasonic Vibration system addresses critical needs of the silicon-based solar industry by providing a quality control method and tool, which will improve productivity, increase reliability of products and reduce manufacturing cost of solar panels.

  16. Numerical investigation of pulse-modulated atmospheric radio frequency discharges in helium under different duty cycles

    SciTech Connect (OSTI)

    Sun Jizhong; Ding Zhengfen; Li Xuechun; Wang Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Wang Qi [Dalian Institute of Semiconductor Technology, School of Electronics Science and Technology, Dalian University of Technology, Dalian 116023 (China)

    2011-12-15

    Experiments observed that the pulse duty cycle has effects on the plasma homogeneity in pulse-modulated radio frequency (rf) discharges. In this paper, pulse-modulated rf (13.56 MHz) helium discharges are theoretically investigated using a two dimensional fluid model. With the pulse period being fixed to 15 {mu}s, it is found that when the pulse-on duration is over 4 {mu}s, i.e., the duty cycle is larger than approximately 27%, the discharge transits from an inhomogeneous to a homogeneous mode in every specific part of each pulse cycle under currently-used simulation parameters. More quantitative analysis shows that the discharge becomes more homogeneous as the duty cycle is increased but does not reach complete homogeneity. Possible reasons for the homogeneity improvement are discussed.

  17. Corrosion and Creep of Candidate Alloys in High Temperature Helium and Steam Environments for the NGNP

    SciTech Connect (OSTI)

    Was, Gary; Jones, J. W.

    2013-06-21

    This project aims to understand the processes by which candidate materials degrade in He and supercritical water/steam environments characteristic of the current NGNP design. We will focus on understanding the roles of temperature, and carbon and oxygen potential in the 750-850 degree C range on both uniform oxidation and selective internal oxidation along grain boundaries in alloys 617 and 800H in supercritical water in the temperature range 500-600 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature rang 750-850 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature range 750-850 degree C over a range of oxygen and carbon potentials in helium. Combined, these studies wil elucidate the potential high damage rate processes in environments and alloys relevant to the NGNP.

  18. First Principles Calculations of Helium Solution Energies in BCC Transition Metals

    SciTech Connect (OSTI)

    Willaime, Francois; Fu, Chu Chun

    2008-07-01

    Density functional theory calculations of the solution energies of helium in substitutional, tetrahedral and octahedral sites have been performed for all BCC transition metals: V, Nb, Ta, Cr, Mo, W and Fe. The effects of exchange correlation functional and of pseudopotential have been investigated in Fe; they are relatively small. The solution energies are found to be weakly dependent on the element for the substitutional site whereas for the interstitial sites they are much smaller in group V than in group VI and they decrease from 3d to 4d and 5d metals. As a result an inversion is observed from V, Nb and Ta - which tend to favor the interstitial site - to Mo and W, which favor the substitutional one, with an intermediate behavior for Cr and Fe. Finally, the results indicate that the tetrahedral site is always energetically more favorable than the octahedral one by 0.2 to 0.3 eV. (authors)

  19. Comparison of classical and quantal calculations of helium three-body recombination

    SciTech Connect (OSTI)

    Prez-Ros, Jess Greene, Chris H.; Ragole, Steve; Wang, Jia

    2014-01-28

    A general method to study classical scattering in n-dimension is developed. Through classical trajectory calculations, the three-body recombination is computed as a function of the collision energy for helium atoms, as an example. Quantum calculations are also performed for the J{sup ?} = 0{sup +} symmetry of the three-body recombination rate in order to compare with the classical results, yielding good agreement for E ? 1 K. The classical threshold law is derived and numerically confirmed for the Newtonian three-body recombination rate. Finally, a relationship is found between the quantum and classical three-body hard hypersphere elastic cross sections which is analogous to the well-known shadow scattering in two-body collisions.

  20. The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid

    SciTech Connect (OSTI)

    Wang, L.; Wu, H.; Li, L.K.; Green, M.A.; Liu, C.S.; Li, L.Y.; Jia, L.X.; Virostek, S.P.

    2007-08-27

    The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail.

  1. A modified heat leak test facility employing a closed-cycle helium refrigerator

    SciTech Connect (OSTI)

    Boroski, W.N.

    1996-01-01

    A Heat Leak Test Facility (HLTF) has been in use at Fermilab for many years. The apparatus has successfully measured the thermal performance of a variety of cryostat components under simulated operating conditions. While an effective tool in the cryostat design process, the HLTF has several limitations. Temperatures are normally fixed at cryogen boiling points and run times are limited to cryogen inventory. Moreover, close personnel attention is required to maintain system inventories and sustain system equilibrium. To provide longer measurement periods without perturbation and to minimize personnel interaction, a new heat leak measurement facility (HLTF-2) has been designed that incorporates a closed-cycle helium refrigerator. The two-stage refrigerator provides cooling to the various temperature stations of the HLTF while eliminating the need for cryogens. Eliminating cryogen inventories has resulted in a reduction of the amount of direct personnel attention required.

  2. Transient analysis of an FHR coupled to a helium Brayton power cycle

    SciTech Connect (OSTI)

    Chen, Minghui; Kim, In Hun; Sun, Xiaodong; Christensen, Richard; Utgikar, Vivek; Sabharwall, Piyush

    2015-08-01

    The Fluoride salt-cooled High-temperature Reactor (FHR) features a passive decay heat removal system and a high-efficiency Brayton cycle for electricity generation. It typically employs an intermediate loop, consisting of an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX), to couple the primary system with the power conversion unit (PCU). In this study, a preliminary dynamic system model is developed to simulate transient characteristics of a prototypic 20-MWth Fluoride salt-cooled High-temperature Test Reactor (FHTR). The model consists of a series of differential conservation equations that are numerically solved using the MATLAB platform. For the reactor, a point neutron kinetics model is adopted. For the IHX and SHX, a fluted tube heat exchanger and an offset strip-fin heat exchanger are selected, respectively. Detailed geometric parameters of each component in the FHTR are determined based on the FHTR nominal steady-state operating conditions. Three initiating events are simulated in this study, including a positive reactivity insertion, a step increase in the mass flow rate of the PCU helium flow, and a step increase in the PCU helium inlet temperature to the SHX. The simulation results show that the reactor has inherent safety features for those three simulated scenarios. It is observed that the increase in the temperatures of the fuel pebbles and primary coolant is mitigated by the decrease in the reactor power due to negative temperature feedbacks. The results also indicate that the intermediate loop with the two heat exchangers plays a significant role in the transient progression of the integral reactor system.

  3. Environmentally assisted cracking in light water reactors : semiannual report, July 2000 - December 2000.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.; Energy Technology

    2002-04-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from July 2000 to December 2000. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. The fatigue strain-vs.-life data are summarized for the effects of various material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Effects of the reactor coolant environment on the mechanism of fatigue crack initiation are discussed. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. A fracture toughness J-R curve test was conducted on a commercial heat of Type 304 SS that was irradiated to {approx}2.0 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. The results were compared with the data obtained earlier on steels irradiated to 0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) (0.45 and 1.35 dpa). Neutron irradiation at 288 C was found to decrease the fracture toughness of austenitic SSs. Tests were conducted on compact-tension specimens of Alloy 600 under cyclic loading to evaluate the enhancement of crack growth rates in LWR environments. Then, the existing fatigue crack growth data on Alloys 600 and 690 were analyzed to establish the effects of temperature, load ratio, frequency, and stress intensity range on crack growth rates in air.

  4. Microstructure-based approach for predicting crack initiation and early growth in metals.

    SciTech Connect (OSTI)

    Cox, James V.; Emery, John M.; Brewer, Luke N.; Reedy, Earl David, Jr.; Puskar, Joseph David; Bartel, Timothy James; Dingreville, Remi P. M.; Foulk, James W., III; Battaile, Corbett Chandler; Boyce, Brad Lee

    2009-09-01

    Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models for deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.

  5. Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Improved Performance Demanded of Future Aircraft  significant weight savings needed to reduce fuel consumption and emissions  longer inspection intervals over baseline  lower life-cycle cost  fault tolerant design depends on understanding of crack growth!  Objectives  Develop integrated models that

  6. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    SciTech Connect (OSTI)

    Singbeil, D.L.; Prescott, R.; Keiser, J.R.; Swindeman, R.W.

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  7. Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control Improving Energy Efficiency in Hot Rolling by Increasing Recovery Rates Hot rolling of large ingots is the predominant process for producing plate, sheet, and foil aluminum products. Hot rolling has typical recovery rates of 82%, because 18% of the original material is lost as planned end cuts and scalping, or as incidental (unplanned) scrap. Hot rolled scrap is then typically re-melted to either form fresh ingot

  8. Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control

    Office of Environmental Management (EM)

    Armand J Beaudoin Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 Project Objective  Objectives  Develop integrated models that link properties of aluminum alloy plate to microstructure and rolling process parameters.  Validate the model by predicting the stress intensity factor at onset of crack branching in hard alloys within 20%.  Provide a

  9. Aluminum nitride transitional layer for reducing dislocation density and cracking of AlGaN epitaxial films

    DOE Patents [OSTI]

    Allerman, Andrew A.; Crawford, Mary H.; Lee, Stephen R.

    2013-01-08

    A denticulated Group III nitride structure that is useful for growing Al.sub.xGa.sub.1-xN to greater thicknesses without cracking and with a greatly reduced threading dislocation (TD) density.

  10. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels and Alloy 690 from Halden Phase-II Irradiations

    SciTech Connect (OSTI)

    Chen, Y.; Chopra, O. K.; Soppet, W. K.; Dietz Rago, Nancy L.; Shack, W. J.

    2008-09-01

    This work is an ongoing effort at Argonne National Laboratory on the mechanistic study of irradiation-assisted stress corrosion cracking (IASCC) in the core internals of light water reactors.

  11. Production of hydrogen by thermocatalytic cracking of natural gas. Task 4 report; Annual report

    SciTech Connect (OSTI)

    1995-10-01

    The conventional methods of hydrogen production from natural gas, for example, steam reforming (SR), are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere. One alternative is the single-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. The comparative assessment of SR and TCC processes was conducted. Thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500--900 C) and flow rates was conducted. Two types of fix bed catalytic reactors were designed, built and tested: continuous flow and pulse reactors. Ni-Mo/Alumina and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at the range of temperatures 600--800 C. Fe-catalyst demonstrated fairly good stability, whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity. Methane decomposition reaction over Ni-Mo/alumina was studied over wide range of space velocities in a continuous flow fixed bed catalytic reactor. The experimental results indicate that the hydrogen yield decreases noticeably with an increase in the space velocity of methane. The pulse type catalytic reactor was used to test the activity of the catalysts. It was found that induction period on the kinetic curve of hydrogen production corresponded to the reduction of metal oxide to metallic form of the catalyst. SEM method was used to study the structure of the carbon deposited on the catalyst surface.

  12. Adaptation of Crack Growth Detection Techniques to US Material Test Reactors

    SciTech Connect (OSTI)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Joy L. Rempe; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter

    2014-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some materials testing reactors (MTRs) outside the U.S., such as the Halden Boiling Water Reactor (HBWR), have deployed a technique to measure crack growth propagation during irradiation. This technique incorporates a compact loading mechanism to stress the specimen during irradiation. A crack in the specimen is monitored using the Direct Current Potential Drop (DCPD) method. A project is underway to develop and demonstrate the performance of a similar type of test rig for use in U.S. MTRs. The first year of this three year project was devoted to designing, analyzing, fabricating, and bench top testing a mechanism capable of applying a controlled stress to specimens while they are irradiated in a pressurized water loop (simulating PWR reactor conditions). During the second year, the mechanism will be tested in autoclaves containing high pressure, high temperature water with representative water chemistries. In addition, necessary documentation and safety reviews for testing in a reactor environment will be completed. In the third year, the assembly will be tested in the Massachusetts Institute of Technology Reactor (MITR) and Post Irradiation Examinations (PIE) will be performed.

  13. Cohesive zone finite element analysis of crack initiation from a butt joint’s interface corner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reedy, E. D.

    2014-09-06

    The Cohesive zone (CZ) fracture analysis techniques are used to predict the initiation of crack growth from the interface corner of an adhesively bonded butt joint. In this plane strain analysis, a thin linear elastic adhesive layer is sandwiched between rigid adherends. There is no preexisting crack in the problem analyzed, and the focus is on how the shape of the traction–separation (T–U) relationship affects the predicted joint strength. Unlike the case of a preexisting interfacial crack, the calculated results clearly indicate that the predicted joint strength depends on the shape of the T–U relationship. Most of the calculations usedmore » a rectangular T–U relationship whose shape (aspect ratio) is defined by two parameters: the interfacial strength σ* and the work of separation/unit area Γ. The principal finding of this study is that for a specified adhesive layer thickness, there is any number of σ*, Γ combinations that generate the same predicted joint strength. For each combination there is a corresponding CZ length. We developed an approximate CZ-like elasticity solution to show how such combinations arise and their connection with the CZ length.« less

  14. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect (OSTI)

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  15. Experimental study of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys

    SciTech Connect (OSTI)

    Bannikov, Mikhail E-mail: oborin@icmm.ru Oborin, Vladimir E-mail: oborin@icmm.ru Naimark, Oleg E-mail: oborin@icmm.ru

    2014-11-14

    Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and SEM to improve methods of monitoring of damage accumulation during fatigue test and to verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue regime using the Luong method [1] by in-situ infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both high cycle fatigue and gigacycle fatigue regimes. Fracture surface analysis for plane and cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometer-profiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ?300 ?m has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics.

  16. Strain and texture evolution during mechanical loading of a crack tip in martensitic shape-memory NiTi.

    SciTech Connect (OSTI)

    Daymond, M. R.; Young, M. L.; Almer, J. D.; Dunand, D. C.; Queen's Univ.; Northwestern Univ.

    2007-06-01

    In situ synchrotron X-ray diffraction measurements are used to create two-dimensional maps of elastic strain and texture, averaged over a compact-tension specimen thickness, near a crack tip in a martensitic NiTi alloy. After fatigue crack propagation, the material ahead of the crack and in its wake exhibits a strong texture, which is eliminated by subsequent shape-memory heat treatment, indicating that this texture is due to detwinning, the main deformation mechanism of NiTi. Upon subsequent application of a static tensile stresses, the highly textured zone reappears and grows around the crack tip as the applied stress is increased. At the highest applied stress intensity of 35MPam1/2, large tensile strains are measured ahead of the crack tip and considerable elastic anisotropy is observed. This detwinning zone is similar to the plastic zone produced by dislocation slip present around cracks in other metals. The texture in this zone is not significantly altered after mechanical unloading, despite the development of substantial triaxial compressive residual strains in this zone.

  17. Cyclic fatigue-crack propagation in ceramics: Behavior in overaged and partially-stabilized MgO-zirconia

    SciTech Connect (OSTI)

    Dauskardt, R.H.; Marshall, D.B.; Ritchie, R.O.; Rockwell International Corp., Thousand Oaks, CA; Lawrence Berkeley Lab., CA )

    1988-06-01

    The growth of fatigue cracks under (tension-tension) cyclic loading is unequivocally demonstrated for ceramic materials, based on experiments using compact-tension specimens of a MgO partially-stabilized zirconia (PSZ), heat treated to vary the fracture toughness K{sub c} from {approximately}3 MPa{radical}m (overaged condition) to 16 MPa{radical}m (peak-toughness condition) and tested in inert and moist environments. Analogous to behavior in metals, cyclic fatigue-crack growth rates (over the range 10{sup {minus}11} to 10{sup {minus}5} m/cycle) are found to be a function of the stress-intensity range, environment, fracture toughness and load ratio, and to show evidence of crack closure. Similarly under variable-amplitude cyclic loading conditions, crack-growth rates show transient accelerations following low-high block overloads and transient retardations following high-low block overloads or single tensile overloads, again analogous to behavior commonly observed in ductile meals. Cyclic crack-growth rates are observed at stress intensities as low as 50% of K{sub c}, and are typically some 7 orders of magnitude faster than corresponding stress-corrosion crack-growth rates under sustained-loading conditions. 23 refs., 6 figs.

  18. Environmentally assisted cracking in light water reactors - annual report, January-December 2001.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E; Hiller, R. W.; Shack, W. J.; Soppet, W. K.; Strain, R. V.; Energy Technology

    2003-06-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2001. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (c) EAC of Alloy 600. The effects of key material and loading variables, such as strain amplitude, strain rate, temperature, dissolved oxygen (DO) level in water, and material heat treatment, on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The mechanism of fatigue crack initiation in austenitic SSs in LWR environments has also been examined. The results indicate that the presence of a surface oxide film or difference in the characteristics of the oxide film has no effect on fatigue crack initiation in austenitic SSs in LWR environments. Slow-strain-rate tensile tests and post-test fractographic analyses were conducted on several model SS alloys irradiated to {approx}2 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) ({approx}3 dpa) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. Corrosion fatigue tests were conducted on nonirradiated austenitic SSs in high-purity water at 289 C to establish the test procedure and conditions that will be used for the tests on irradiated materials. A comprehensive irradiation experiment was initiated to obtain many tensile and disk specimens irradiated under simulated pressurized water reactor conditions at {approx}325 C to 5, 10, 20, and 40 dpa. Crack growth tests were completed on 30% cold-worked Alloy 600 in high-purity water under various environmental and loading conditions. The results are compared with data obtained earlier on several heats of Alloy 600 tested in high-DO water under several heat treatment conditions.

  19. Single and double resonance spectroscopy of methanol embedded in superfluid helium nanodroplets

    SciTech Connect (OSTI)

    Raston, Paul L.; Douberly, Gary E.; Jger, Wolfgang

    2014-07-28

    Methanol is one of the simplest molecules that undergo torsional oscillations, and so it has been extensively studied in the gas phase by various spectroscopic techniques. At 300 K, a large number of rotational, torsional, and vibrational energy levels is populated, and this makes for a rather complicated spectrum, which is still not fully understood. It is expected that in going from 300 K to 0.4 K (the temperature of helium nanodroplets) the population distribution of methanol will mainly collapse into two states; the J{sub K} = 0{sub 0} state for the A{sub 1} nuclear spin symmetry species (with I{sub CH{sub 3}} = 3/2), and the J{sub K} = 1{sub ?1} state for the E species (I{sub CH{sub 3}} = 1/2). This results in a simplified spectrum that consists of narrow a-type (?K = 0) lines and broader b- and c-type (?K = 1) lines. We have recorded the rotovibrational spectrum of CH{sub 3}OH in the OH stretching, CH{sub 3} stretching and bending, CH{sub 3} rocking, and CO stretching regions, and have firmly assigned five bands (v{sub 1}, v{sub 2}, v{sub 3}, v{sub 7}, and v{sub 8}), and tentatively assigned five others (v{sub 9}, 2v{sub 4}, v{sub 4} + v{sub 10}, 2v{sub 10}, and v{sub 4} + v{sub 5}). To our knowledge, the transitions we have assigned within the v{sub 4} + v{sub 10}, 2v{sub 10}, and v{sub 4} + v{sub 5} bands have not yet been assigned in the gas phase, and we hope that considering the very small matrix shift in helium nanodroplets (<1 cm{sup ?1} for most subband origins of CH{sub 3}OH), those made here can aid in their gas phase identification. Microwave-infrared double resonance spectroscopy was used to confirm the initially tentative a-type infrared assignments in the OH stretching (v{sub 1}) band of A{sub 1} species methanol, in addition to revealing warm b-type lines. From a rotovibrational analysis, the B rotational constant is found to be reduced quite significantly (56%) with respect to the gas phase, and the torsional tunneling splittings are relatively unaffected and are at most reduced by 16%. While most rovibrational peaks are Lorentzian shaped, and those which are significantly perturbed by vibrational coupling in the gas phase are additionally broadened, the narrowest ?J = +1 peaks are asymmetric, and a skew-type analysis suggests that the response time of the helium solvent upon excitation is of the order of 1 ns.

  20. EVOLUTION OF POST-IMPACT REMNANT HELIUM STARS IN TYPE Ia SUPERNOVA REMNANTS WITHIN THE SINGLE-DEGENERATE SCENARIO

    SciTech Connect (OSTI)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu

    2013-08-10

    The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx} 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.

  1. First principles assessment of helium trapping in Y{sub 2}TiO{sub 5} in nano-featured ferritic alloys

    SciTech Connect (OSTI)

    Jin, Yanan; Jiang, Yong E-mail: odette@engineering.ucsb.edu; Yang, Litong; Lan, Guoqiang; Robert Odette, G. E-mail: odette@engineering.ucsb.edu; Yamamoto, Takuya; Shang, Jiacheng; Dang, Ying

    2014-10-14

    Nano-scale Y{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}TiO{sub 5} oxides are the major features that provide high strength and irradiation tolerance in nano-structured ferritic alloys. Here, we employ density functional theory to study helium trapping in Y{sub 2}TiO{sub 5}. The results suggest that helium is more deeply trapped in Y{sub 2}TiO{sub 5} compared to Y{sub 2}Ti{sub 2}O{sub 7}. Helium occupies open channels in Y{sub 2}TiO{sub 5}, where it weakly chemically interacts with neighboring oxygen anions, and results in less volume expansion compared to Y{sub 2}Ti{sub 2}O{sub 7}, reducing strains in the iron matrix. The corresponding helium mobility in these channels is very high. While its ultimate fate is to form oxide/matrix interface bubbles, transient deep trapping of helium in oxides plays a major role in the ability of NFA to manage helium distribution.

  2. Rotational fluctuation of molecules in quantum clusters. II. Molecular rotation and superfluidity in OCS-doped helium-4 clusters

    SciTech Connect (OSTI)

    Miura, Shinichi [Institute for Molecular Science, 38 Myodaiji, Okazaki 444-8585 (Japan)

    2007-03-21

    In this paper, quantum fluctuations of a carbonyl sulfide molecule in helium-4 clusters are studied as a function of cluster size N in a small-to-large size regime (2{<=}N{<=}64). The molecular rotation of the dopant shows nonmonotonic size dependence in the range of 10{<=}N{<=}20, reflecting the density distribution of the helium atoms around the molecule. The size dependence on the rotational constant shows a plateau for N{>=}20, which is larger than the experimental nanodroplet value. Superfluid response of the doped cluster is found to show remarkable anisotropy especially for N{<=}20. The superfluid fraction regarding the axis perpendicular to the molecular axis shows a steep increase at N=10, giving the significant enhancement of the rotational fluctuation of the molecule. On the other hand, the superfluid fraction regarding the axis parallel to the molecular axis reaches 0.9 at N=5, arising from the bosonic exchange cycles of the helium atoms around the molecular axis. The anisotropy in the superfluid response is found to be the direct consequence of the configurations of the bosonic exchange cycles.

  3. Oil, gas, and helium references index for the Navajo Indian Reservation, Arizona, New Mexico, and Utah. [223 references

    SciTech Connect (OSTI)

    Bliss, J.D.

    1982-02-01

    The references which are listed in this document represent the readily available literature about oil, gas, and helium resources on or adjacent to the Navajo Indian Reservation. They were selected during the developmental phase of the Navajo Resource Information System (NRIS). The system contains a set of computerized data bases addressing various resource categories. The system was developed by the US Geological Survey in coordination with the Minerals Department, Navajo Nation. Literature is the foundation of resource assessment and the absence of such a compilation for the Navajo Nation prompted the development of a reference data base entitled nref, which consists of over 1300 records. The following reference list of approximately 230 references was selected from those citations which contain oil, gas, or helium in a keyword list attached to each citation. References to general literature on oil, gas, or helium may also be present. The main attempt was to list most of the literature published in the 1960's and 1970's for areas in, or adjacent to, the Navajo Reservation. References published prior to this were included only if readily available or if they seemed to represent areas or topics not covered in later publications. 223 references.

  4. Radial behavior of the pulsed dielectric-barrier discharge in atmospheric helium

    SciTech Connect (OSTI)

    Zhang Dingzong; Wang Yanhui; Wang Dezhen [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-12-15

    The radial behavior of the pulsed dielectric-barrier discharge in atmospheric helium is studied by a two-dimensional, self-consistent fluid model. It is found that the two discharges ignited during one voltage pulse can possess different radial behaviors, and the discharge behavior is determined by the electron density distribution right before this discharge is ignited. The electron density distributions before the two discharges start depend on the time intervals between two discharges and their previous discharge processes. If the electron density distribution is radially uniform at the end of the previous discharge, the shorter the time interval between two discharges is, the more uniform the electron density distribution before the next discharge is, and thus the more homogenous the subsequent discharge becomes. In pulsed discharge, the time intervals between two discharges are mainly determined by the duration and repetition frequency of applied voltage pulse. These results are further supported by the investigation of the discharge behaviors under different pulse durations and repetition frequencies.

  5. High-resolution thermal expansion measurements under helium-gas pressure

    SciTech Connect (OSTI)

    Manna, Rudra Sekhar; Wolf, Bernd; Souza, Mariano de; Lang, Michael

    2012-08-15

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K Less-Than-Or-Slanted-Equal-To T Less-Than-Or-Slanted-Equal-To 300 K and hydrostatic pressure P Less-Than-Or-Slanted-Equal-To 250 MPa. Helium ({sup 4}He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P Asymptotically-Equal-To 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu{sub 3}(CO{sub 3}){sub 2}(OH){sub 2}, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  6. Maskless Lithography and in situ Visualization of Conductivity of Graphene using Helium Ion Microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Iberi, Vighter O.; Vlassiouk, Ivan V.; Zhang, X. -G.; Matola, Brad R.; Linn, Allison R.; Joy, David Charles; Adam Justin Rondinone

    2015-07-07

    The remarkable mechanical and electronic properties of graphene make it an ideal candidate for next generation nanoelectronics. With the recent development of commercial-level single-crystal graphene layers, the potential for manufacturing household graphene-based devices has improved, but significant challenges still remain with regards to patterning the graphene into devices. In the case of graphene supported on a substrate, traditional nanofabrication techniques such as e-beam lithography (EBL) are often used in fabricating graphene nanoribbons but the multi-step processes they require can result in contamination of the graphene with resists and solvents. In this letter, we report the utility of scanning helium ionmore » lithography for fabricating functional graphene nanoconductors that are supported directly on a silicon dioxide layer, and we measure the minimum feature size achievable due to limitations imposed by thermal fluctuations and ion scattering during the milling process. Further we demonstrate that ion beams, due to their positive charging nature, may be used to observe and test the conductivity of graphene-based nanoelectronic devices in situ.« less

  7. Performance evaluation approach for the supercritical helium cold circulators of ITER

    SciTech Connect (OSTI)

    Vaghela, H.; Sarkar, B.; Bhattacharya, R.; Kapoor, H. [ITER-India, Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar-382428 (India); Chalifour, M.; Chang, H.-S.; Serio, L. [ITER Organization, Route de Vinon sur Verdon - 13115 St Paul Lez Durance (France)

    2014-01-29

    The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe cold circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.

  8. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect (OSTI)

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er; University of Chinese Academy of Sciences, Beijing 100049

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 ??mm?mrad and the fraction of He+ is about 99%.

  9. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    SciTech Connect (OSTI)

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  10. Process and installation for purification of the helium contained in a mixture of gas

    SciTech Connect (OSTI)

    Avon, M.F.; Markarian, G.R.

    1984-04-24

    The present invention relates to a process and an installation for purification of the helium contained in a mixture of gas, employing a pre-treatment unit to retain the impurities such as water, carbon dioxide gas and heavy organic compounds, and at least one reactor of the chromatographic type located downstream of said pre-treatment unit, said process comprising the following steps of: (a) adjusting the pressure of the mixture of gas until the working pressure of the phase of adsorption is obtained, this pressure being between 10 and 30 bars, and preferably 12 to 15 bars; (b) taking the temperature of the mixture of gas at the outlet of said pre-treatment unit until it is located in the range -15/sup 0/ C./-35/sup 0/ C., and preferably -25/sup 0/ C.; (c) and sending the mixture of gas into the reactor and passing it through an absorbent, which is constituted by a microporous charcoal whose pores are of dimensions less than or equal to 20 A.

  11. Oxidation of PCEA nuclear graphite by low water concentrations in helium

    SciTech Connect (OSTI)

    Contescu, Cristian I; Mee, Robert; Wang, Peng; Romanova, Anna V; Burchell, Timothy D

    2014-10-01

    Accelerated oxidation tests were performed to determine kinetic parameters of the chronic oxidation reaction of PCEA graphite in contact with helium coolant containing low moisture concentrations in high temperature gas-cooled reactors. To the authors best knowledge such a study has not been done since the detailed analysis of reaction of H-451 graphite with steam [Velasquez, Hightower, Burnette, 1978]. Since that H-451 graphite is now unavailable, it is urgently needed to characterize chronic oxidation behavior of new graphite grades under qualification for gas-cooled reactors. The Langmuir-Hinshelwood mechanism of carbon oxidation by water results in a non-linear reaction rate expression, with at least six different parameters. They were determined in accelerated oxidation experiments that covered a large range of temperatures (800 to 1100 oC), and partial pressures of water (15 to 850 Pa) and hydrogen (30 to 150 Pa) and used graphite specimens thin enough (4 mm) in order to avoid diffusion effects. Data analysis employed a statistical method based on multiple likelihood estimation of parameters and simultaneous fitting of non-linear equations. The results show significant material-specific differences between graphite grades PCEA and H-451 which were attributed to microstructural dissimilarity of the two materials. It is concluded that kinetic data cannot be transferred from one graphite grade to another.

  12. Analysis Of Ductile Crack Growth In Pipe Test In STYLE Project

    SciTech Connect (OSTI)

    Yin, Shengjun; Williams, Paul T; Klasky, Hilda B; Bass, Bennett Richard

    2012-01-01

    The Oak Ridge National Laboratory (ORNL) is conducting structural analyses, both deterministic and probabilistic, to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management non-RPV Components (STYLE). The paper summarizes current ORNL analyses of STYLE s Mock-up3 experiment to simulate/evaluate ductile crack growth in a cladded ferritic pipe. Deterministic analyses of the large-scale bending test of ferritic surge pipe, with an internal circumferential crack, are simulated with a number of local micromechanical approaches, such as Gurson-Tvergaard-Needleman (GTN) model and cohesive-zone model. Both WARP 3D and ABAQUS general purpose finite element programs are being used to predict the failure load and the failure mode, i.e. ductile tearing or net-section collapse, as part of the pre-test phase of the project. Companion probabilistic analyses of the experiment are utilizing the ORNL developed open-source Structural Integrity Assessment Modular - Probabilistic Fracture Mechanics (SIAM-PFM) framework. SIAM-PFM contains engineering assessment methodology such as the tearing instability (J-T analysis) module developed for inner surface cracks under bending load. The driving force J-integral estimations are based on the SC.ENG1 or SC.ENG2 models. The J-A2 methodology is used to transfer (constraint-adjust) J-R curve material data from standard test specimens to the Mock-up3 experiment configuration. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those generated using the deterministic finite element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite-element solutions and to also assess the level of confidence that can be placed in the best-estimate finite-element solutions.

  13. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    Office of Scientific and Technical Information (OSTI)

    Aluminum Industry of the Future Managed by UT-Battelle, LLC Final Technical Report Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking June 2006 Principal Investigator: Subodh K. Das Secat, Inc. ORNL/TM-2006/56 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the

  14. EXPERT PANEL OVERSIGHT COMMITTEE ASSESSMENT OF FY2008 CORROSION AND STRESS CORROSION CRACKING SIMULANT TESTING PROGRAM

    SciTech Connect (OSTI)

    BOOMER KD

    2009-01-08

    The Expert Panel Oversight Committee (EPOC) has been overseeing the implementation of selected parts of Recommendation III of the final report, Expert Panel workshop for Hanford Site Double-Shell Tank Waste Chemistry Optimization, RPP-RPT-22126. Recommendation III provided four specific requirements necessary for Panel approval of a proposal to revise the chemistry control limits for the Double-Shell Tanks (DSTs). One of the more significant requirements was successful performance of an accelerated stress corrosion cracking (SCC) experimental program. This testing program has evaluated the optimization of the chemistry controls to prevent corrosion in the interstitial liquid and supernatant regions of the DSTs.

  15. Pacific Northwest National Laboratory Investigation of the Stress Corrosion Cracking in Nickel-Base Alloys, Volume 2

    SciTech Connect (OSTI)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.

    2012-03-01

    The objective of this program is to evaluate the primary water stress corrosion cracking (PWSCC) susceptibility of high chromium alloy 690 and its weld metals, establish quantitative measurements of crack-growth rates and determine relationships among cracking susceptibility, environmental conditions and metallurgical characteristics. Stress-corrosion, crack-growth rates have been determined for 12 alloy 690 specimens, 11 alloy 152/52/52M weld metal specimens, 4 alloy 52M/182 overlay specimens and 2 alloy 52M/82 inlay specimens in simulated PWR primary water environments. The alloy 690 test materials included three different heats of extruded control-rod-drive mechanism (CRDM) tubing with variations in the initial material condition and degree of cold work for one heat. Two cold-rolled (CR) alloy 690 plate heats were also obtained and evaluated enabling comparisons to the CR CRDM materials. Weld metal, overlay and inlay specimens were machined from industry mock ups to provide plant-representative materials for testing. Specimens have been tested for one alloy 152 weld, two alloy 52 welds and three alloy 52M welds. The overlay and inlay specimens were prepared to propagate stress-corrosion cracks from the alloy 182 or 82 material into the more resistant alloy 52M. In all cases, crack extension was monitored in situ by direct current potential drop (DCPD) with length resolution of about +1 m making it possible to measure extremely low growth rates approaching 5x10-10 mm/s. Most SCC tests were performed at 325-360C with hydrogen concentrations from 11-29 cc/kg; however, environmental conditions were modified during a few experiments to evaluate the influence of temperature, water chemistry or electrochemical potential on propagation rates. In addition, low-temperature (~50C) cracking behavior was examined for selected alloy 690 and weld metal specimens. Extensive characterizations have been performed on material microstructures and stress-corrosion cracks by optical and electron microscopy techniques and linked to crack-growth test results to help define material and environmental parameters controlling SCC susceptibility.

  16. Developing Fatigue Pre-crack Procedure to Evaluate Fracture Toughness of Pipeline Steels Using Spiral Notch Torsion Test

    SciTech Connect (OSTI)

    Wang, Jy-An John; Tan, Ting; Jiang, Hao; Zhang, Wei; Feng, Zhili

    2012-10-01

    The spiral notch torsion test (SNTT) has been utilized to investigate the crack growth behavior of X52 steel base and welded materials used for hydrogen infrastructures. The X52 steel materials are received from a welded pipe using friction stir welding techniques. Finite element models were established to study the crack growth behavior of steel SNTT steel samples, which were assumed to be isotropic material. A series SNTT models were set up to cover various crack penetration cases, of which the ratios between crack depth to diameter (a/D ratio) ranging from 0.10 to 0.45. The evolution of compliance and energy release rates in the SNTT method have been investigated with different cases, including different geometries and materials. Indices of characteristic compliance and energy release rates have been proposed. Good agreement has been achieved between predictions from different cases in the same trend. These work shed lights on a successful protocol for SNTT application in wide range of structural materials. The further effort needed for compliance function development is to extend the current developed compliance function to the deep crack penetration arena, in the range of 0.55 to 0.85 to effectively determine fracture toughness for extremely tough materials.

  17. Derivation of a crack opening deflection relationship for fibre reinforced concrete panels using a stochastic model: Application for predicting the flexural behaviour of round panels using stress crack opening diagrams

    SciTech Connect (OSTI)

    Nour, Ali; Massicotte, Bruno; De Montaignac, Renaud; Charron, Jean-Philippe

    2011-09-15

    This study is aimed at proposing a simple analytical model to investigate the post-cracking behaviour of FRC panels, using an arbitrary tension softening, stress crack opening diagram, as the input. A new relationship that links the crack opening to the panel deflection is proposed. Due to the stochastic nature of material properties, the random fibre distribution, and other uncertainties that are involved in concrete mix, this relationship is developed from the analysis of beams having the same thickness using the Monte Carlo simulation (MCS) technique. The softening diagrams obtained from direct tensile tests are used as the input for the calculation, in a deterministic way, of the mean load displacement response of round panels. A good agreement is found between the model predictions and the experimental results.

  18. Multiple use of waste catalysts with and without regeneration for waste polymer cracking

    SciTech Connect (OSTI)

    Salmiaton, A.; Garforth, A.A.

    2011-06-15

    Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidised bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C{sub 2}-C{sub 7}) remained fairly constant. For the first time, these results indicate that 'waste' FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.

  19. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-05-22

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less

  20. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less

  1. Assessment of NDE Technologies for Detection and Characterization of Stress Corrosion Cracking in LWRs

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Toloczko, Mychailo B.; Bond, Leonard J.; Montgomery, Robert O.

    2012-12-31

    Stress corrosion cracking (SCC) in light water reactors (LWRs) has been a persistent form of degradation in the nuclear industry. Examples of SCC can be found for a range of materials in boiling and pressurized water reactor environments, including carbon steels, stainless steels, and nickel-base stainless alloys. The evolution of SCC is often characterized by a long initiation stage followed by a phase of more rapid crack growth to failure. This provides a relatively short window of opportunity to detect the start of observable SCC, and it is conceivable that SCC could progress from initiation to failure between subsequent examinations when managed by applying periodic in-service inspection techniques. Implementation of advanced aging management paradigms in the current fleet of LWRs will require adaptation of existing measurement technologies and development of new technologies to perform on-line measurements during reactor operation to ensure timely detection of material degradation and to support the implementation of advanced diagnostics and prognostics. This paper considers several non-destructive examination (NDE) technologies with known sensitivity to detection of indicators for SCC initiation and/or propagation, and assesses these technologies with respect to their ability to detect and accurately characterize the significance of an SCC flaw. Potential strategies to improve SCC inspection or monitoring performance are offered to benefit management of SCC degradation in LWRs.

  2. Effect of material heat treatment on fatigue crack initiation in austenitic stainless steels in LWR environments.

    SciTech Connect (OSTI)

    Chopra, O. K.; Alexandreanu, B.; Shack, W. J.; Energy Technology

    2005-07-31

    The ASME Boiler and Pressure Vessel Code provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify design curves for applicable structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. The existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives of austenitic stainless steels (SSs) can be a factor of 20 lower in water than in air. This report presents experimental data on the effect of heat treatment on fatigue crack initiation in austenitic Type 304 SS in LWR coolant environments. A detailed metallographic examination of fatigue test specimens was performed to characterize the crack morphology and fracture morphology. The key material, loading, and environmental parameters and their effect on the fatigue life of these steels are also described. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic SSs as a function of material, loading, and environmental parameters. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented.

  3. Mechanism and estimation of fatigue crack initiation in austenitic stainless steels in LWR environments.

    SciTech Connect (OSTI)

    Chopra, O. K.; Energy Technology

    2002-08-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of fatigue crack initiation in austenitic stainless steels in LWR coolant environments. The existing fatigue {var_epsilon}-N data have been evaluated to establish the effects of key material, loading, and environmental parameters (such as steel type, strain range, strain rate, temperature, dissolved-oxygen level in water, and flow rate) on the fatigue lives of these steels. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. The influence of reactor environments on the mechanism of fatigue crack initiation in these steels is also discussed.

  4. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    SciTech Connect (OSTI)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  5. Microstructure and Mesh Sensitivities of Mesoscale Surrogate Driving Force Measures for Transgranular Fatigue Cracks in Polycrystals

    SciTech Connect (OSTI)

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-05-22

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipated fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.

  6. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.

    SciTech Connect (OSTI)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-02-13

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  7. Aberration-corrected X-ray spectrum imaging and Fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT

    SciTech Connect (OSTI)

    Miller, Michael K; Parish, Chad M

    2014-01-01

    Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized helium bubbles from the Ti-Y-O rich nanoclustsers (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-corrected scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging have been used for such a purpose. Results indicate that Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs, and MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.

  8. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    SciTech Connect (OSTI)

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that can determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.

  9. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that canmore » determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.« less

  10. Tunneling effects in the kinetics of helium and hydrogen isotopes desorption from single-walled carbon nanotube bundles

    SciTech Connect (OSTI)

    Danilchenko, B. A. Yaskovets, I. I.; Uvarova, I. Y.; Dolbin, A. V.; Esel'son, V. B.; Basnukaeva, R. M.; Vinnikov, N. A.

    2014-04-28

    The kinetics of desorption both helium isotopes and molecules of hydrogen and deuterium from open-ended or ?-irradiated single-walled carbon nanotube bundles was investigated in temperature range of 10300?K. The gases desorption rates obey the Arrhenius law at high temperatures, deviate from it with temperature reduction and become constant at low temperatures. These results indicate the quantum nature of gas outflow from carbon nanotube bundles. We had deduced the crossover temperature below which the quantum corrections to the effective activation energy of desorption become significant. This temperature follows linear dependence against the inverse mass of gas molecule and is consistent with theoretical prediction.

  11. An experimental study of CTOD for Mode I/Mode II stable crack growth in thin 2024-T3 aluminum specimens

    SciTech Connect (OSTI)

    Amstutz, B.E.; Sutton, M.A.; Dawicke, D.S.; Newman, J.C.

    1995-12-31

    An experimental study of crack tip opening displacement (CTOD) for Mode I/Mode II stable crack growth in thin sheet 2024-T3 aluminum has been conducted. To perform the experiments, an Arcan specimen and fixture was modified so that (1) slippage in the grips was eliminated, (2) large rotations of the fixture components were achievable and (3) bending stresses were minimized. Defining {Theta} to be the angle between the Mode I loading direction (perpendicular to the crack line) and the direction of applied loading, experimental results indicate that (a) for large amounts of crack extension, a {ge} 10mm, the value of CTOD at 1 mm behind the crack tip appears to approach a constant value of 0.1 mm for all modes of loading, (b) the direction of crack extension varied with applied mixed mode loading, (c) Mode I crack extension is predominant for 0{degree} {le} {Theta} {le} 60{degree}, (d) Mode II crack extension is predominant for 75{degree} {le} {Theta} {le} 90{degree} and (e) a transition zone exists for angles {Theta} near 75{degree}.

  12. Validation and transfer of NDI techniques for corrosion quantification and small crack/disbond detection

    SciTech Connect (OSTI)

    Smith, C.D.; Shurtleff, W.W.

    1997-07-01

    A coordinated program in inspection system research was started at the Federal Aviation Administration (FAA) Technical Center in 1990 as part the National Aging Aircraft Research Program. The primary objectives of the Inspection Systems Research Initiative are to act in concert with other government agencies and private industry to develop improved inspection techniques to address specific airframe and engine inspection problems and to evaluate and validate existing and emerging inspection systems. Advanced conventional technologies, emerging technologies, or combinations of technologies are investigated for their ability to accurately and reliably detect cracks, disbonds, corrosion, and other damage. This paper will present an overview of the FAA inspection system research initiative with special focus on the successes through validation and technology transfer.

  13. Methods of cracking a crude product to produce additional crude products

    DOE Patents [OSTI]

    Mo, Weijian; Roes, Augustinus Wilhelmus Maria; Nair, Vijay

    2009-09-08

    A method for producing a crude product is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce one or more crude products. At least one of the crude products has a boiling range distribution from 38.degree. C. and 343.degree. C. as determined by ASTM Method D5307. The crude product having the boiling range distribution from 38.degree. C. and 343.degree. C. is catalytically cracked to produce one or more additional crude products. At least one of the additional crude products is a second gas stream. The second gas stream has a boiling point of at most 38.degree. C. at 0.101 MPa.

  14. Method for the preparation of catalyst composition for use in cracking hydrocarbons

    SciTech Connect (OSTI)

    Nishimura, Y.; Ogata, M.; Ida, T.

    1987-01-13

    A method is described for preparing a catalyst composition for cracking hydrocarbons, which consists essentially of: spray drying an aqueous slurry containing (i) flash calcined alumina particles which have been prepared by contacting aluminum hydroxide which has been made by the Bayer process, with hot air having a temperature in the range of 350/sup 0/ to 700/sup 0/C., for 5 seconds or less, (ii) kaolin, (iii) a precursor of a siliceous inorganic oxide matrix, and (iv) a crystalline aluminosilicate zeolite, to obtain catalyst particles consisting essentially of from 10 to 30 wt. % of the flash-calcined alumina, from 30 to 55 wt. % of the kaolin, from 3 to 40 wt. % crystalline aluminosilicate zeolite and the balance is the siliceous inorganic oxide matrix. A method is also described in which the zeolite is rare earth exchange zeolite Y or hydrogen exchanged zeolite Y.

  15. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    SciTech Connect (OSTI)

    Busby, Jeremy T; Gussev, Maxim N

    2011-04-01

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be related to the formation of second-phases under irradiation, although further examination is required

  16. An Assessment of Remote Visual Methods to Detect Cracking in Reactor Components

    SciTech Connect (OSTI)

    Cumblidge, Stephen E.; Anderson, Michael T.; Doctor, Steven R.; Simonen, Fredric A.; Elliot, Anthony J.

    2008-01-01

    Recently, the U.S. nuclear industry has proposed replacing current volumetric and/or surface examinations of certain components in commercial nuclear power plants, as required by the American Society of Mechanical Engineers Boiler and Pressure Vessel Code Section XI, “Inservice Inspection of Nuclear Power Plant Components,” with a simpler visual testing (VT) method. The advantages of VT are that these tests generally involve much less radiation exposure and time to perform the examination than do volumetric examinations such as ultrasonic testing. The issues relative to the reliability of VT in determining the structural integrity of reactor components were examined. Some piping and pressure vessel components in a nuclear power station are examined using VT as they are either in high radiation fields or component geometry precludes the use of ultrasonic testing (UT) methodology. Remote VT with radiation-hardened video systems has been used by nuclear utilities to find cracks in pressure vessel cladding in pressurized water reactors, core shrouds in boiling water reactors, and to investigate leaks in piping and reactor components. These visual tests are performed using a wide variety of procedures and equipment. The techniques for remote VT use submersible closed-circuit video cameras to examine reactor components and welds. PNNL conducted a parametric study that examined the important variables influencing the effectiveness of a remote visual test. Tested variables included lighting techniques, camera resolution, camera movement, and magnification. PNNL also conducted a limited laboratory test using a commercial visual testing camera system to experimentally determine the ability of the camera system to detect cracks of various widths under ideal conditions. The results of these studies and their implications are presented in this paper.

  17. Characterization of deuterium clusters mixed with helium gas for an application in beam-target-fusion experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bang, W.; Quevedo, H. J.; Bernstein, A. C.; Dyer, G.; Ihn, Y. S.; Cortez, J.; Aymond, F.; Gaul, E.; Donovan, M. E.; Barbui, M.; et al

    2014-12-10

    We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less

  18. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    SciTech Connect (OSTI)

    Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-10-15

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs.

  19. Characterization of deuterium clusters mixed with helium gas for an application in beam-target-fusion experiments

    SciTech Connect (OSTI)

    Bang, W.; Quevedo, H. J.; Bernstein, A. C.; Dyer, G.; Ihn, Y. S.; Cortez, J.; Aymond, F.; Gaul, E.; Donovan, M. E.; Barbui, M.; Bonasera, A.; Natowitz, J. B.; Albright, B. J.; Fernndez, J. C.; Ditmire, T.

    2014-12-10

    We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure the average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.

  20. SRNL SHELF LIFE STUDIES - SCC STUDIES AT ROOM TEMPERTURE [stress corrosion cracking

    SciTech Connect (OSTI)

    Mickalonis, J.; Duffey, J.

    2014-11-12

    Phase II, Series 2 corrosion testing performed by the Savannah River National Laboratory (SRNL) for the Department of Energy 3013 container has been completed. The corrosion tests are part of an integrated plan conducted jointly by Los Alamos National Laboratory and the Savannah River Site. SRNL was responsible for conducting corrosion studies in small-scale vessels to address the influence of salt composition, water loading, and type of oxide/salt contact on the relative humidity inside a 3013 container and on the resulting corrosion of Type 304L and 316L stainless steel (304L and 316L). This testing was conducted in two phases: Phase I evaluated a broad spectrum of salt compositions and initial water loadings on the salt mixtures exposed to 304L and 316L and the resulting corrosion; Phase II evaluated the corrosion of 304L at specific water loadings and a single salt composition. During Phase I testing at high initial moisture levels (0.35 to 1.24 wt%)a, the roomtemperature corrosion of 304L exposed to a series of plutonium oxide/chloride salt mixtures ranged from superficial staining to pitting and stress corrosion cracking (SCC). 304L teardrop coupons that exhibited SCC were directly exposed to a mixture composed of 98 wt % PuO2, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl2. Cracking was not observed in a 316L teardrop coupon. Pitting was also observed in this environment for both 304L and 316L with depths ranging from 20 to 100 ?m. Neither pitting nor SCC was observed in mixtures with a greater chloride salt concentration (5 and 28 wt%). These results demonstrated that for a corrosive solution to form a balance existed between the water loading and the salt chloride concentration. This chloride solution results from the interaction of loaded water with the hydrating CaCl2 salt. In Phase II, Series 1 tests, the SCC results were shown to be reproducible with cracking occurring in as little as 85 days. The approximate 0.5 wt% moisture level was found to result in an initial relative humidity of ~55% within the small-scale vessels. Pits were found to be associated with cracks and appeared to act as initiators for the cracking. In a vapor-space only exposure, the weld oxide, which results from the TIG closure weld used to fabricate the teardrop coupon, was also shown to be more susceptible to pitting corrosion than a surface free from weld oxide. This result has important implications for the closure weld of the 3013 inner can since the weld oxide on the can internal surface cannot be removed. The results from the Phase II, Series 2 tests further demonstrated the significance of forming a solution with a critical chloride concentration for corrosion to proceed. 304L teardrop coupons were found to corrode only by pitting with a similar oxide/salt mixture as used in Series 1 testing but with a lower water loading of 0.2 wt%, which resulted in an initial relative humidity of 35-38%. These tests ran twice as long as those for Series 1 testing. The exposure condition was also found to impact the corrosion with salt-exposed surfaces showing lower corrosion resistance. Additional analyses of the Series 2 coupons are recommended especially for determining if cracks emanate from the bottom of pits. Data generated under the 2009 3013 corrosion test plan, as was presented here, increased the understanding of the corrosion process within a sealed 3013 container. Along with the corrosion data from destructive evaluations of 3013 containers, the inner can closure weld region (ICCWR) has been identified as the most vulnerable area of the inner can where corrosion may lead to corrosive species leaking to the interior surface of the outer container, thereby jeopardizing the integrity of the 3013 container. A new corrosion plan has been designed that will characterize the corrosion at the ICCWR of 3013 DEs as well as parameters affecting this corrosion.

  1. POTENTIAL FOR STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS CONTAINING HIGHLY CAUSTIC SOLUTIONS

    SciTech Connect (OSTI)

    Lam, P.; Stripling, C.; Fisher, D.; Elder, J.

    2010-04-26

    The evaporator recycle streams of nuclear waste tanks may contain waste in a chemistry and temperature regime that exceeds the current corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history found that two of these A537 carbon steel tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved tanks of similar construction. Therefore, it appears that the efficacy of stress relief of welding residual stress is the primary corrosion-limiting mechanism. The objective of this experimental program is to test A537 carbon steel small scale welded U-bend specimens and large welded plates (30.48 x 30.38 x 2.54 cm) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in these nuclear waste tanks. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test was completed after 12 weeks of immersion in a similar solution at 125 C except that the aluminate concentration was reduced to 0.3 M. Visual inspection of the plate revealed that stress corrosion cracking had not initiated from the machined crack tips in the weld or in the heat affected zone. NDE ultrasonic testing also confirmed subsurface cracking did not occur. Based on these results, it can be concluded that the environmental condition of these tests was unable to develop stress corrosion cracking within the test periods for the small welded U-bends and for the large plates, which were welded with an identical procedure as used in the construction of the actual nuclear waste tanks in the 1960s. The absence of evidence of stress corrosion cracking and general corrosion in the laboratory-scaled specimens indicate that this type of nuclear waste tank is not susceptible to highly caustic solutions up to 12 M hydroxide at 125 C when sufficient nitrite inhibitor is present.

  2. Irradiation-induced grain growth in nanocrystalline reduced activation ferrite/martensite steel

    SciTech Connect (OSTI)

    Liu, W. B.; Chen, L. Q. [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Zhang, C., E-mail: chizhang@tsinghua.edu.cn; Yang, Z. G. [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ji, Y. Z. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Zang, H. [Department of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049 (China); Shen, T. L. [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)

    2014-09-22

    In this work, we investigate the microstructure evolution of surface-nanocrystallized reduced activation ferrite/martensite steels upon high-dose helium ion irradiation (24.3 dpa). We report a significant irradiation-induced grain growth in the irradiated buried layer at a depth of 300500?nm, rather than at the peak damage region (at a depth of ?840?nm). This phenomenon can be explained by the thermal spike model: minimization of the grain boundary (GB) curvature resulting from atomic diffusion in the cascade center near GBs.

  3. Design, Project Execution, and Commissioning of the 1.8 K Superfluid Helium Refrigeration System for SRF Cryomodule Testing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Treite, P.; Nuesslein, U.; Jia, Yi; Klebaner, A.; Theilacker, J.

    2015-07-15

    The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features ofmore » the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.« less

  4. Helium bombardment leak testing of the closure disk weld for MC2949, MC3004, and MC3095 pyrotechnic devices

    SciTech Connect (OSTI)

    Dudley, W.A.

    1980-03-31

    A helium bombardment leak test procedure was developed to determine the leak level of the closure disk weld performed on three nearly identical pyrotechnic actuators. The inspection procedure is capable of leak testing any of the three product types at a rate better than 120 units per 8-hr work shift. Testing is performed on a 100% sample plan and employs a go/no-go bombardment leak rate acceptance specification of 3 x 10/sup -9/ atm-cm/sup 3/-sec/sup -1/. In addition to the current test procedure and results, this report includes a description of procedure and results associated with the test as initially performed. Other applications of the current technique are also listed.

  5. The Cost of Helium Refrigerators and Coolers for SuperconductingDevices as a Function of Cooling at 4 K

    SciTech Connect (OSTI)

    Green, Michael A.

    2007-08-27

    This paper is an update of papers written in 1991 and in1997 by Rod Byrns and this author concerning estimating the cost ofrefrigeration for superconducting magnets and cavities. The actual costsof helium refrigerators and coolers (escalated to 2007 dollars) areplotted and compared to a correlation function. A correlation functionbetween cost and refrigeration at 4.5 K is given. The capital cost oflarger refrigerators (greater than 10 W at 4.5 K) is plotted as afunction of 4.5-K cooling. The cost of small coolers is plotted as afunction of refrigeration available at 4.2 K. A correlation function forestimating efficiency (percent of Carnot) of both types of refrigeratorsis also given.

  6. Design, Project Execution, and Commissioning of the 1.8 K Superfluid Helium Refrigeration System for SRF Cryomodule Testing

    SciTech Connect (OSTI)

    Treite, P.; Nuesslein, U.; Jia, Yi; Klebaner, A.; Theilacker, J.

    2015-07-15

    The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features of the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.

  7. Two-dimensional numerical study of two counter-propagating helium plasma jets in air at atmospheric pressure

    SciTech Connect (OSTI)

    Yan, Wen; Sang, Chaofeng; Wang, Dezhen; Liu, Fucheng

    2014-06-15

    In this paper, a computational study of two counter-propagating helium plasma jets in ambient air is presented. A two-dimensional fluid model is applied to investigate the physical processes of the two plasma jets interaction (PJI) driven by equal and unequal voltages, respectively. In all studied cases, the PJI results in a decrease of both plasma bullets propagation velocity. When the two plasma jets are driven by equal voltages, they never merge but rather approach each other around the middle of the gas gap at a minimum approach distance, and the minimal distance decreases with the increase of both the applied voltages and initial electron density, but increases with the increase of the relative permittivity. When the two plasma jets are driven by unequal voltages, we observe the two plasma jets will merge at the position away from the middle of the gas gap. The effect of applied voltage difference on the PJI is also studied.

  8. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    SciTech Connect (OSTI)

    Ostafiychuk, B. K.; Yaremiy, I. P. Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  9. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    SciTech Connect (OSTI)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  10. Proceedings of the IAEA specialists` meeting on cracking in LWR RPV head penetrations

    SciTech Connect (OSTI)

    Pugh, C.E.; Raney, S.J.

    1996-07-01

    This report contains 17 papers that were presented in four sessions at the IAEA Specialists` meeting on Cracking in LWR RPV Head Penetrations held at ASTM Headquarters in Philadelphia on May 2-3, 1995. The papers are compiled here in the order that presentations were made in the sessions, and they relate to operational observations, inspection techniques, analytical modeling, and regulatory control. The goal of the meeting was to allow international experts to review experience in the field of ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. The emphasis was to allow a better understanding of RPV material behavior, to provide guidance supporting reliability and adequate performance, and to assist in defining directions for further investigations. The international nature of the meeting is illustrated by the fact that papers were presented by researchers from 10 countries. There were technical experts present form other countries who participated in discussions of the results presented. This present document incorporates the final version of the papers as received from the authors. The final chapter includes conclusions and recommendations. Individual papers have been cataloged separately.

  11. Eddy Current for Sizing Cracks in Canisters for Dry Storage of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Jones, Anthony M.; Pardini, Allan F.

    2014-01-01

    The storage of used nuclear fuel (UNF) in dry canister storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSI) sites is a temporary measure to accommodate UNF inventory until it can be reprocessed or transferred to a repository for permanent disposal. Policy uncertainty surrounding the long-term management of UNF indicates that DCSSs will need to store UNF for much longer periods than originally envisioned. Meanwhile, the structural and leak-tight integrity of DCSSs must not be compromised. The eddy current technique is presented as a potential tool for inspecting the outer surfaces of DCSS canisters for degradation, particularly atmospheric stress corrosion cracking (SCC). Results are presented that demonstrate that eddy current can detect flaws that cannot be detected reliably using standard visual techniques. In addition, simulations are performed to explore the best parameters of a pancake coil probe for sizing of SCC flaws in DCSS canisters and to identify features in frequency sweep curves that may potentially be useful for facilitating accurate depth sizing of atmospheric SCC flaws from eddy current measurements.

  12. INVESTIGATION OF THE POTENTIAL FOR CAUSTIC STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS

    SciTech Connect (OSTI)

    Lam, P.

    2009-10-15

    The evaporator recycle streams contain waste in a chemistry and temperature regime that may be outside of the current waste tank corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history (1998-2008) of Tanks 30 and 32 showed that these tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved F-Area tanks. Therefore, for the Type III/IIIA waste tanks the efficacy of the stress relief of welding residual stress is the only corrosion-limiting mechanism. The objective of this experimental program is to test carbon steel small scale welded U-bend specimens and large welded plates (12 x 12 x 1 in.) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in Tanks 30 and 32. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test is currently in progress, but no cracking has been observed after 9 weeks of immersion. Based on the preliminary results, it appears that the environmental conditions of the tests are unable to develop stress corrosion cracking within the duration of these tests.

  13. Assessment of the Mechanical Stress Improvement Process for Mitigating Primary Water Stress Corrosion Cracking in Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2013-01-01

    This report provides an assessment of the use of Mechanical Stress Improvement Process to reduce, or decrease, stress-driven degradation, i.e., primary water stress corrosion cracking.

  14. Percolation Cooling of the Three Mile Island Unit 2 Lower Head by Way of Thermal Cracking and Gap Formation

    SciTech Connect (OSTI)

    Thomsen, K.L.

    2002-01-15

    Two partial models have been developed to elucidate the Three Mile Island Unit 2 lower head coolability by water percolation from above into the thermally cracking debris bed and into a gap between the debris and the wall. The bulk permeability of the cracked top crust is estimated based on simple fracture mechanics and application of Poiseuille's law to the fractures. The gap is considered as an abstraction representing an initially rugged interface, which probably expanded by thermal deformation and cracking in connection with the water ingress. The coupled flow and heat conduction problem for the top crust is solved in slab geometry based on the two-phase Darcy equations together with quasi-steady mass and energy conservation equations. The resulting water penetration depth is in good agreement with the depth of the so-called loose debris bed. The lower-head and bottom-crust problem is treated analogously by a two-dimensional axisymmetric model. The notion of a gap is maintained as a useful concept in the flow analysis. Simulations show that a central hot spot with a peak wall temperature of 1075 to 1100 deg. C can be obtained, but the quenching rates are not satisfactory. It is concluded that a three-dimensional model with an additional mechanism to explain the sudden water ingress to the hot spot center would be more appropriate.

  15. Irradiation-assisted stress corrosion cracking of austenitic stainless steels: Recent progress and new approaches

    SciTech Connect (OSTI)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Hins, A.; Zaluzec, N.J.; Kassner, T.F.

    1996-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of several types of BWR field components fabricated from solution-annealed austenitic stainless steels (SSs), including a core internal weld, were investigated by means of slow-strain-rate test (SSRT), scanning electron microscopy (SEM), Auger electron spectroscopy (AES), and field-emission-gun advanced analytical electron microscopy (FEG-AAEM). Based on the results of the tests and analyses, separate effects of neutron fluence, tensile properties, alloying elements and major impurities identified in the American Society for Testing and Materials (ASTM) specifications, minor impurities, water chemistry, and fabrication-related variables were determined. The results indicate strongly that minor impurities not specified by the ASTM-specifications play important roles, probably through a complex synergism with grain-boundary Cr depletion. These impurities, typically associated with steelmaking and component fabrication processes, are very low or negligible in solubility in steels and are the same impurities that have been known to promote intergranular SCC significantly when they are present in water as ions or soluble compounds. It seems obvious that IASCC is a complex integral problem which involves many variables that are influenced strongly by not only irradiation conditions, water chemistry, and stress but also iron and steelmaking processes, fabrication of the component, and joining and welding. Therefore, for high-stress components in particular, it would be difficult to mitigate IASCC problems at high fluence based on the consideration of water chemistry alone, and other considerations based on material composition and fabrication procedure would be necessary as well.

  16. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750800 C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 C/1.02.7 MPa for the cold side and 208790 C/1.02.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.

  17. Two plateaux for palladium hydride and the effect of helium from tritium decay on the desorption plateau pressure for palladium tritide

    SciTech Connect (OSTI)

    Walters, R.T.; Lee, M.W. )

    1991-10-01

    Two plateaux are observed in the desorption isotherm for palladium hydride: a lower plateau pressure for a hydrogen/metal atom ratio (H/M) less than about 0.3 and a slightly higher plateau pressure for H/M greater than about 0.3. This higher pressure corresponds to the reported pressure for palladium hydride. These observations were made for a large surface area palladium powder exposed to both protium and tritium. Helium buildup form tritium decay decreases the lower plateau pressure but does not affect the observations for H/M greater than about 0.3. In this paper, a multiple-energy hydrogen site occupancy model is proposed to explain qualitatively both the dual plateau and the helium effect in palladium hydride.

  18. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    SciTech Connect (OSTI)

    Lewis, J. M. Kelley, R. P.; Jordan, K. A.; Murer, D.

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  19. Modeling of ns and ps laser-induced soft X-ray sources using nitrogen gas puff target

    SciTech Connect (OSTI)

    Vrba, P.; Vrbova, M.; Zakharov, S. V.

    2014-07-15

    Gas puff laser plasma is studied as a source of water window radiation with 2.88?nm wavelength, corresponding to quantum transition 1s{sup 2} ? 1s2p of helium-like nitrogen ions. Spatial development of plasma induced by Nd:YAG laser beam is simulated by 2D Radiation-Magneto-Hydro-Dynamic code Z*. The results for nitrogen gas layer (0.72?mm thickness, 1?bar pressure) and two different laser pulses (600 mJ/7?ns and 525 mJ/170 ps), corresponding to the experiments done in Laser Laboratory Gottingen are presented.

  20. Does one need a 4.5 K screen in cryostats of superconducting accelerator devices operating in superfluid helium? lessons from the LHL

    SciTech Connect (OSTI)

    Lebrun, Philippe [DG unit, CERN, CH-1211 Geneva 23 (Switzerland); Parma, Vittorio; Tavian, Laurent [TE department, CERN, CH-1211 Geneva 23 (Switzerland)

    2014-01-29

    Superfluid helium is increasingly used as a coolant for superconducting devices in particle accelerators: the lower temperature enhances the performance of superconductors in high-field magnets and reduces BCS losses in RF acceleration cavities, while the excellent transport properties of superfluid helium can be put to work in efficient distributed cooling systems. The thermodynamic penalty of operating at lower temperature however requires careful management of the heat loads, achieved inter alia through proper design and construction of the cryostats. A recurrent question appears to be that of the need and practical feasibility of an additional screen cooled by normal helium at around 4.5 K surrounding the cold mass at about 2 K, in such cryostats equipped with a standard 80 K screen. We introduce the issue in terms of first principles applied to the configuration of the cryostats, discuss technical constraints and economical limitations, and illustrate the argumentation with examples taken from large projects confronted with this issue, i.e. CEBAF, SPL, ESS, LHC, TESLA, European X-FEL, ILC.

  1. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect (OSTI)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  2. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    SciTech Connect (OSTI)

    Sorenson, D. S.; Pazuchanics, P.; Johnson, R.; Malone, R. M.; Kaufman, M. I.; Tibbitts, A.; Tunnell, T.; Marks, D.; Capelle, G. A.; Grover, M.; Marshall, B.; Stevens, G. D.; Turley, W. D.; LaLone, B.

    2014-06-30

    An ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/?sec. This report will discuss the development of the diagnostic, including the high-powered laser system and high-resolution optical relay system. In addition, we will also describe the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles. Finally, we will present results from six high-explosive (HE), shock-driven Sn-ejecta experiments. Particle-size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double-pulsed experiment will be described.

  3. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    SciTech Connect (OSTI)

    Sorenson, Danny S.; Pazuchanics, Peter; Johnson, Randall P.; Malone, R. M.; Kaufman, M. I.; Tibbitts, A.; Tunnell, T.; Marks, D.; Capelle, G. A.; Grover, M.; Marshall, B.; Stevens, G. D.; Turley, W. D.; LaLone, B.

    2014-06-25

    An Ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/?sec. This report will discuss the development of the diagnostic including the high-powered laser system and high-resolution optical relay system. In addition, the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles will also be described. Finally, results from six high-explosive (HE), shock-driven Sn ejecta experiments will be presented. Particle size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double pulsed experiment will be described.

  4. Dynamic MRI of Grid-Tagged Hyperpolarized Helium-3 for the Assessment of Lung Motion During Breathing

    SciTech Connect (OSTI)

    Cai Jing; Sheng Ke; Benedict, Stanley H.; Read, Paul W.; Larner, James M.; Mugler, John P.; Lange, Eduard E. de; Cates, Gordon D.; Miller, G. Wilson

    2009-09-01

    Purpose: To develop a dynamic magnetic resonance imaging (MRI) tagging technique using hyperpolarized helium-3 (HP He-3) to track lung motion. Methods and Materials: An accelerated non-Cartesian k-space trajectory was used to gain acquisition speed, at the cost of introducing image artifacts, providing a viable strategy for obtaining whole-lung coverage with adequate temporal resolution. Multiple-slice two-dimensional dynamic images of the lung were obtained in three healthy subjects after inhaling He-3 gas polarized to 35%-40%. Displacement, strain, and ventilation maps were computed from the observed motion of the grid peaks. Results: Both temporal and spatial variations of pulmonary mechanics were observed in normal subjects, including shear motion between different lobes of the same lung. Conclusion: These initial results suggest that dynamic imaging of grid-tagged hyperpolarized magnetization may potentially be a powerful tool for observing and quantifying pulmonary biomechanics on a regional basis and for assessing, validating, and improving lung deformable image registration algorithms.

  5. Cracking behavior and microstructure of austenitic stainless steels and alloy 690 irradiated in BOR-60 reactor, phase I.

    SciTech Connect (OSTI)

    Chen, Y.; Chopra, O. K.; Soppet, W. K.; Shack, W. J.; Yang, Y.; Allen, T. R.; Univ. of Wisconsin at Madison

    2010-02-16

    Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier tests with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.

  6. Irradiation Programs and Test Plans to Assess High-Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility.

    SciTech Connect (OSTI)

    Teysseyre, Sebastien

    2015-03-01

    . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. The use of existing, available, materials and the generation of additional materials via irradiation in a research reactor are considered.

  7. Possibility of phase transitions inducing cold fusion in palladium/deuterium systems

    SciTech Connect (OSTI)

    Zhang, W.X. )

    1992-01-01

    In this paper a tentative theory is presented in which {beta}-phase PdD{sub x} containing supersaturated deuterium transits into {beta}-phase PdD{sub x} containing less deuterium and {alpha}-phase PdD{sub x}. High-pressure ({approx}10 GPa) deuterium bubbles form at the same time. As the bubbles release energy, cracks are created in the PdD{sub x} crystal, and charge separation of deuterium occurs. Thus would cold fusion be induced. This proposal supports the fracture mechanism for cold fusion.

  8. Irradiation-induced reduction of microcracking in zirconolite

    SciTech Connect (OSTI)

    Clinard, F.W. Jr.; Tucker, D.S.; Hurley, G.F.; Kise, C.D.; Rankin, J.

    1984-01-01

    /sup 238/Pu-substituted zirconolite (CaPuTi/sub 2/O/sub 7/) was stored near ambient temperature for 231 days, equivalent to an alpha decay dose of 3.1x10/sup 25/ ..cap alpha../m/sup 3/ or 3x10/sup 5/ years of storage time for SYNROC ceramic nuclear waste. Periodic indentation testing showed that hardness was decreased by alpha decay-induced conversion to the metamict state, while fracture toughness and resistance to cracking were increased, apparently as a consequence of the formation of a heterogeneous microstructure. These results imply improved stability of this nuclear waste phase as a result of self-irradiation damage. 21 references, 4 figures.

  9. Application of Direct Current Potential Drop for the J-integral vs. Crack Growth Resistance Curve Characterization

    SciTech Connect (OSTI)

    Chen, Xiang; Nanstad, Randy K; Sokolov, Mikhail A

    2014-01-01

    The direct current potential drop (DCPD) technique has been applied to derive the J-integral vs. crack growth resistance curve (J-R curve) for fracture toughness characterization of structural materials. The test matrix covered three materials including type 316LN stainless steels, Ni-based alloy 617, and one ferritic-martensitic steel, three specimen configurations including standard compact, single edge bending, and disk-shaped compact specimens, and temperatures ranging from 20 C to 650 C. When compared with baseline J-R curves derived from the ASTM normalization method, the original J-R curves from the DCPD technique yielded much smaller Jq values due to the influence of crack blunting, plastic deformation, etc. on potential drop. To counter these effects, a new procedure for adjusting DCPD J-R curves was proposed. After applying the new adjustment procedure, the average difference in Jq between the DCPD technique and the normalization method was only 5.2% and the difference in tearing modulus was 7.4%. The promising result demonstrates the applicability of the DCPD technique for the J-R curve characterization especially in extreme environments, such as elevated temperatures, where the conventional elastic unloading compliance method faces considerable challenges.

  10. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    SciTech Connect (OSTI)

    Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rueda, Jorge A.; Ruffini, Remo [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy)

    2014-10-01

    The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales ?10{sup 2}-10{sup 3} s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.

  11. Cavitation-resistant inducer

    DOE Patents [OSTI]

    Dunn, Charlton (Calabasas, CA); Subbaraman, Maria R. (Canoga Park, CA)

    1989-01-01

    An improvement in an inducer for a pump wherein the inducer includes a hub, a plurality of radially extending substantially helical blades and a wall member extending about and encompassing an outer periphery of the blades. The improvement comprises forming adjacent pairs of blades and the hub to provide a substantially rectangular cross-sectional flow area which cross-sectional flow area decreases from the inlet end of the inducer to a discharge end of the inducer, resulting in increased inducer efficiency improved suction performance, reduced susceptibility to cavitation, reduced susceptibility to hub separation and reduced fabrication costs.

  12. Cavitation-resistant inducer

    DOE Patents [OSTI]

    Dunn, C.; Subbaraman, M.R.

    1989-06-13

    An improvement in an inducer for a pump is disclosed wherein the inducer includes a hub, a plurality of radially extending substantially helical blades and a wall member extending about and encompassing an outer periphery of the blades. The improvement comprises forming adjacent pairs of blades and the hub to provide a substantially rectangular cross-sectional flow area which cross-sectional flow area decreases from the inlet end of the inducer to a discharge end of the inducer, resulting in increased inducer efficiency improved suction performance, reduced susceptibility to cavitation, reduced susceptibility to hub separation and reduced fabrication costs. 11 figs.

  13. HELIUM IN NATAL H II REGIONS: THE ORIGIN OF THE X-RAY ABSORPTION IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect (OSTI)

    Watson, Darach; Andersen, Anja C.; Fynbo, Johan P. U.; Hjorth, Jens; Kruehler, Thomas; Laursen, Peter; Leloudas, Giorgos; Malesani, Daniele [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Zafar, Tayyaba [Laboratoire d'Astrophysique de Marseille - LAM, Universite Aix-Marseille and CNRS, UMR 7326, 38 rue F. Joliot-Curie, F-13388, Marseille Cedex 13 (France); Gorosabel, Javier [Instituto de Astrofisica de Andalucia (IAA-CSIC), Glorieta de la Astronomia s/n, E-18008, Granada (Spain); Jakobsson, Pall, E-mail: darach@dark-cosmology.dk [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland)

    2013-05-01

    Soft X-ray absorption in excess of Galactic is observed in the afterglows of most gamma-ray bursts (GRBs), but the correct solution to its origin has not been arrived at after more than a decade of work, preventing its use as a powerful diagnostic tool. We resolve this long-standing problem and find that absorption by He in the GRB's host H II region is responsible for most of the absorption. We show that the X-ray absorbing column density (N{sub H{sub X}}) is correlated with both the neutral gas column density and with the optical afterglow's dust extinction (A{sub V} ). This correlation explains the connection between dark bursts and bursts with high N{sub H{sub X}} values. From these correlations, we exclude an origin of the X-ray absorption which is not related to the host galaxy, i.e., the intergalactic medium or intervening absorbers are not responsible. We find that the correlation with the dust column has a strong redshift evolution, whereas the correlation with the neutral gas does not. From this, we conclude that the column density of the X-ray absorption is correlated with the total gas column density in the host galaxy rather than the metal column density, in spite of the fact that X-ray absorption is typically dominated by metals. The strong redshift evolution of N{sub H{sub X}}/A{sub V} is thus a reflection of the cosmic metallicity evolution of star-forming galaxies and we find it to be consistent with measurements of the redshift evolution of metallicities for GRB host galaxies. We conclude that the absorption of X-rays in GRB afterglows is caused by He in the H II region hosting the GRB. While dust is destroyed and metals are stripped of all of their electrons by the GRB to great distances, the abundance of He saturates the He-ionizing UV continuum much closer to the GRB, allowing it to remain in the neutral or singly-ionized state. Helium X-ray absorption explains the correlation with total gas, the lack of strong evolution with redshift, as well as the absence of dust, metal or hydrogen absorption features in the optical-UV spectra.

  14. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao (Yorktown, VA)

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  15. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao (Yorktown, VA)

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  16. Dynamics of helium films

    SciTech Connect (OSTI)

    Clements, B.E.; Epstein, J.L.; Krotscheck, E.; Tymczak, C.J.; Saarela, M.

    1992-11-01

    The authors present quantitative calculations for the static structure and the dynamics of quantum liquid films on a translationally invariant substrate. The excitation spectrum is calculated by solving the equations of motion for time-dependent one- and two-body densities. They find significant corrections to the Feynman spectrum for the phonon-like collective excitations. 8 refs., 2 figs.

  17. Evidence of the 2s2p({sup 1}P) doubly excited state in the harmonic generation spectrum of helium

    SciTech Connect (OSTI)

    Ngoko Djiokap, J. M.; Starace, Anthony F.

    2011-07-15

    By solving the two-active-electron time-dependent Schroedinger equation in an intense, ultrashort laser field, we investigate evidence of electron correlations in the high-order harmonic generation spectrum of helium. As the frequency of the driving laser pulse varies from 4.6 to 6.6 eV, the 13th, 11th, and 9th harmonics sequentially become resonant with the transition between the ground state and the isolated 2s2p({sup 1}P) autoionizing state of helium, which dramatically enhances these harmonics and changes their profiles. When each of the 9th and 13th harmonics are in resonance with this autoionizing state, there is also a low-order multiphoton resonance with a Rydberg state, resulting in a particularly large enhancement of these harmonics relative to neighboring harmonics. When the 11th harmonic is in resonance with the 2s2p({sup 1}P) autoionizing state, the 13th harmonic is simultaneously in resonance with numerous higher-energy autoionizing states, resulting in a competition between these two harmonics for intensity. These results demonstrate that even electron correlations occurring over a narrow energy interval can have a significant effect on strong-field processes such as harmonic generation.

  18. Excitation of helium Rydberg states and doubly excited resonances in strong extreme ultraviolet fields: Full-dimensional quantum dynamics using exponentially tempered Gaussian basis sets

    SciTech Connect (OSTI)

    Kaprlov-?nsk, Petra Ruth; mydke, Jan; Department of Radiation and Chemical Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 ; Civi, Svatopluk

    2013-09-14

    Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 3858 nm and large intensities up to 100 TW/cm{sup 2} are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments.

  19. Use Computational Model to Design and Optimize Welding Conditions to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Suppress Helium Cracking during Welding | Department of Energy Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium Cracking during Welding Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium Cracking during Welding Today, welding is widely used for repair, maintenance and upgrade of nuclear reactor components. As a critical technology to extend the service life of nuclear power plants beyond 60 years, weld technology must be

  20. Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jones, S.; Hirschi, R.; Pignatari, M.; Heger, A.; Georgy, C.; Nishimura, N.; Fryer, C.; Herwig, F.

    2015-01-15

    We present a comparison of 15M⊙ , 20M⊙ and 25M⊙ stellar models from three different codes|GENEC, KEPLER and MESA|and their nucleosynthetic yields. The models are calculated from the main sequence up to the pre-supernova (pre-SN) stage and do not include rotation. The GENEC and KEPLER models hold physics assumptions that are characteristic of the two codes. The MESA code is generally more flexible; overshooting of the convective core during the hydrogen and helium burning phases in MESA is chosen such that the CO core masses are consistent with those in the GENEC models. Full nucleosynthesis calculations are performed for allmore » models using the NuGrid post-processing tool MPPNP and the key energy-generating nuclear reaction rates are the same for all codes. We are thus able to highlight the key diferences between the models that are caused by the contrasting physics assumptions and numerical implementations of the three codes. A reasonable agreement is found between the surface abundances predicted by the models computed using the different codes, with GENEC exhibiting the strongest enrichment of H-burning products and KEPLER exhibiting the weakest. There are large variations in both the structure and composition of the models—the 15M⊙ and 20M⊙ in particular—at the pre-SN stage from code to code caused primarily by convective shell merging during the advanced stages. For example the C-shell abundances of O, Ne and Mg predicted by the three codes span one order of magnitude in the 15M⊙ models. For the alpha elements between Si and Fe the differences are even larger. The s-process abundances in the C shell are modified by the merging of convective shells; the modification is strongest in the 15M⊙ model in which the C-shell material is exposed to O-burning temperatures and the γ -process is activated. The variation in the s-process abundances across the codes is smallest in the 25M⊙ models, where it is comparable to the impact of nuclear reaction rate uncertainties. In general the differences in the results from the three codes are due to their contrasting physics assumptions (e.g. prescriptions for mass loss and convection). The broadly similar evolution of the 25M⊙ models gives us reassurance that different stellar evolution codes do produce similar results. For the 15M⊙ and 20M⊙ models, however, the different input physics and the interplay between the various convective zones lead to important differences in both the pre-supernova structure and nucleosynthesis predicted by the three codes. For the KEPLER models the core masses are different and therefore an exact match could not be expected.« less

  1. Towards the Understanding of Induced Seismicity in Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the reservoir and the surrounding country rock * To investigate relationship between ... crack opening due to cooling of reservoir rock from slip events 15 | US DOE Geothermal ...

  2. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOE Patents [OSTI]

    Panitz, Janda K. (Sandia Park, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Neiser, Richard A. (Albuquerque, NM); Moffatt, William C. (Albuquerque, NM)

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  3. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOE Patents [OSTI]

    Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.

    1999-07-20

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.

  4. Crack growth rates and metallographic examinations of Alloy 600 and Alloy 82/182 from field components and laboratory materials tested in PWR environments.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

    2008-05-05

    In light water reactors, components made of nickel-base alloys are susceptible to environmentally assisted cracking. This report summarizes the crack growth rate results and related metallography for field and laboratory-procured Alloy 600 and its weld alloys tested in pressurized water reactor (PWR) environments. The report also presents crack growth rate (CGR) results for a shielded-metal-arc weld of Alloy 182 in a simulated PWR environment as a function of temperature between 290 C and 350 C. These data were used to determine the activation energy for crack growth in Alloy 182 welds. The tests were performed by measuring the changes in the stress corrosion CGR as the temperatures were varied during the test. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. These values are in good agreement with the data reported in the literature. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed.

  5. A Qualitative Comparison of the C-Ring Test and the Jones Test as Standard Practice Test Methods for Studying Stress Corrosion Cracking in Ferritic Steels

    SciTech Connect (OSTI)

    Thomson, Jeffery K; Pawel, Steven J

    2015-01-01

    Creep-strength-enhanced-ferritic (CSEF) steels have been widely implemented as water wall alloy materials in the coal-fired power industry for many years. The stress corrosion cracking (SCC) behavior of this class of materials is currently of significant interest to the industry due to recent failures. To better understand the test methods used to characterize SCC behavior in the laboratory, three representative CSEF alloys (T23, T24, and T92) were subjected to two SCC test protocols: the Jones Test set forth in DIN 50915, and the C-ring SCC test set forth in ASTM G38-01. Samples were tested in either the as-received (normalized + tempered) condition or in the normalized condition (quenched from 1065 C). Samples were exposed to aerated water in one test case and de-aerated water in a second test case for a period of 7 days at 200 C. It was found that for both test protocols, the normalized condition with aerated water led to severe cracking for all three alloys, whereas no evidence of cracking was found for the other conditions.

  6. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    SciTech Connect (OSTI)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  7. Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2005-10-01

    Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A., and high-volatile bituminous coal from the Uinta-Piceance basin of Utah, U.S.A. using a newly developed strain measurement apparatus. The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain. The swelling and shrinkage (strain) in the coal samples resulting from the adsorption of carbon dioxide, nitrogen, methane, helium, and a mixture of gases was measured. Sorption-induced strain processes were shown to be reversible and easily modeled with a Langmuir-type equation. Extended Langmuir theory was applied to satisfactorily model strain caused by the adsorption of gas mixtures using the pure gas Langmuir strain constants. The amount of time required to obtain accurate strain data was greatly reduced compared to other strain measurement methods. Sorption-induced changes in permeability were also measured as a function of pres-sure. Cleat compressibility was found to be variable, not constant. Calculated variable cleat-compressibility constants were found to correlate well with previously published data for other coals. During permeability tests, sorption-induced matrix shrinkage was clearly demonstrated by higher permeability values at lower pore pressures while holding overburden pressure constant. Measured permeability data were modeled using three dif-ferent permeability models from the open literature that take into account sorption-induced matrix strain. All three models poorly matched the measured permeability data because they overestimated the impact of measured sorption-induced strain on permeabil-ity. However, by applying an experimentally derived expression to the measured strain data that accounts for the confining overburden pressure, pore pressure, coal type, and gas type, the permeability models were significantly improved.

  8. Collison-induced rototranslational absorption spectra of H/sub 2/-He pairs at temperatures from 40 to 3000 K

    SciTech Connect (OSTI)

    Borysow, J.; Frommhold, L.; Birnbaum, G.

    1988-03-01

    The zeroth, first, and second spectral moments of the rototranslational collision-induced absorption (RT CIA) spectra of hydrogen-helium mixtures are calculated from the fundamental theory, for temperatures from 40 to 3000 K. With the help of simple analytical functions of three parameters and the information given, the RT CIA spectra of H/sub 2/-He pairs can be generated on computers of small capacity, with rms deviations from exact quantum profiles of not more than a few percent. Such representations of the CIA spectra are of interest for work related to the atmospheres of the outer planets and cool stars. The theoretical spectra are in close agreement with existing laboratory measurements at various temperatures from about 77 to 3000 K. 28 references.

  9. Shrouded inducer pump

    DOE Patents [OSTI]

    Meng, S.Y.

    1989-08-08

    An improvement in a pump is described including a shrouded inducer, the improvement comprising first and second sealing means which cooperate with a first vortex cell and a series of secondary vortex cells to remove any tangential velocity components from the recirculation flow. 3 figs.

  10. Improving the homogeneity of alternating current-drive atmospheric pressure dielectric barrier discharges in helium with an additional low-amplitude radio frequency power source: A numerical study

    SciTech Connect (OSTI)

    Wang Qi [Dalian Institute of Semiconductor Technology, School of Electronics Science and Technology, Dalian University of Technology, Dalian 116023 (China); Sun Jizhong; Zhang Jianhong; Wang Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Liu Liying [Department of Electrical Engineering, Shenyang Institute of Engineering, Shenyang 110136 (China)

    2013-04-15

    It was proposed in this paper that the homogeneity of the atmospheric pressure discharge driven by an ac power source could be improved by applying an auxiliary low-amplitude rf power source. To verify the idea, a two-dimensional fluid model then was applied to study the atmospheric discharges in helium driven by ac power, low-amplitude rf power, and combined ac and low-amplitude rf power, respectively. Simulation results confirmed that an auxiliary rf power could improve the homogeneity of a discharge driven by an ac power source. It was further found that there existed a threshold voltage of the rf power source leading to the transition from inhomogeneous to homogeneous discharge. As the frequency of the rf power source increased from 2 to 22 MHz, the magnitude of the threshold voltage dropped first rapidly and then to a constant value. When the frequency was over 13.56 MHz, the magnitude of the threshold voltage was smaller than one-sixth of the ac voltage amplitude under the simulated discharge parameters.

  11. AB INITIO EQUATIONS OF STATE FOR HYDROGEN (H-REOS.3) AND HELIUM (He-REOS.3) AND THEIR IMPLICATIONS FOR THE INTERIOR OF BROWN DWARFS

    SciTech Connect (OSTI)

    Becker, Andreas; Lorenzen, Winfried; Schttler, Manuel; Redmer, Ronald; Fortney, Jonathan J.; Nettelmann, Nadine

    2015-01-01

    We present new equations of state (EOSs) for hydrogen and helium covering a wide range of temperatures from 60 K to 10{sup 7} K and densities from 10{sup 10} g cm{sup 3} to 10{sup 3} g cm{sup 3}. They include an extended set of ab initio EOS data for the strongly correlated quantum regime with an accurate connection to data derived from other approaches for the neighboring regions. We compare linear mixing isotherms based on our EOS tables with available real mixture data. A first important astrophysical application of this new EOS data is the calculation of interior models for Jupiter and comparison with recent results. Second, mass-radius relations are calculated for Brown Dwarfs (BDs) which we compare with predictions derived from the widely used EOS of Saumon, Chabrier, and van Horn. Furthermore, we calculate interior models for typical BDs with different masses, namely, Corot-3b, Gliese-229b, and Corot-15b, and the giant planet KOI-889b. The predictions for the central pressures and densities differ by up to 10% dependent on the EOS used. Our EOS tables are made available in the supplemental material of this paper.

  12. Polar catastrophe and the structure of KTa1-xNbxO? surfaces: Results from elastic and inelastic helium atom scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Flaherty, F. A.; Trelenberg, T. W.; Li, J. A.; Fatema, R.; Skofronick, J. G.; Van Winkle, D. H.; Safron, S. A.; Boatner, L. A.

    2015-07-13

    The structure and dynamics of cleaved (001) surfaces of potassium tantalates doped with niobium, KTa1-xNbxO? (KTN), with x ranging from 0% to 30%, were measured by helium atom scattering (HAS). Through HAS time-of-flight (TOF) experiments, a dispersionless branch (Einstein phonon branch) with energy of 13-14 meV was observed across the surface Brillouin zone in all samples. When this observation is combined with the results from earlier experimental and theoretical studies on these materials, a consistent picture of the stable surface structure emerges: After cleaving the single-crystal sample, the surface should be composed of equal areas of KO and TaO?/NbO? terraces.moreThe data, however, suggest that K? and O? ions migrate from the bulk to the surface, forming a charged KO lattice that is neutralized primarily by additional K? ions bridging pairs of surface oxygens. This structural and dynamic modification at the (001) surface of KTN appears due to its formally charged KO(-1) and TaO?/NbO?(+1) layers and avoids a polar catastrophe. This behavior is contrasted with the (001) surface behavior of the fluoride perovskite KMnF? with its electrically neutral KF and MnF? layers.less

  13. Investigation of mechanisms for He-I emission radial profile broadening in a weakly ionized cylindrical helium plasma with recombining edge

    SciTech Connect (OSTI)

    Hollmann, E. M.; Brandt, C.; Hudson, B.; Nishijima, D.; Pigarov, A. Yu.; Kumar, D.

    2013-09-15

    Spatially resolved spectroscopic measurements of He-I line emission are used to study the causes of emission profile broadening radially across the cylinder of a weakly ionized helium plasma. The plasma consists of an ionizing core (r < 2 cm) surrounded by a recombining edge (r > 2 cm) plasma. The brightness profiles of low-n EUV He-I resonance lines are shown to be strongly radially broadened due to opacity. The brightness profiles of high-n visible lines are also found to be strongly radially broadened, but dominantly due to edge recombination. Visible low-n lines are less strongly radially broadened, apparently by a combination of both recombination and EUV opacity. The low-n visible He-I line ratio method with central opacity correction is found to calculate central electron density and temperature well, with poor agreement at the edge, as expected for recombining plasma. In the recombining edge, high-n Boltzmann analysis is found to accurately measure the cold (T{sub e} < 0.2 eV) edge temperature. Near the core, however, high-n Boltzmann analysis can be complicated by electron-impact excitation, giving incorrect (T{sub e}? 0.1 eV) apparent temperatures. Probe measurements were not able to capture the cold edge temperature accurately, probably due to large potential fluctuations, even when using fast triple probe measurements. Fast spectroscopic measurements show that this discrepancy is not explained by recombining plasma alternating with ionizing plasma in the edge region.

  14. Ultra-low-temperature reactions of C({sup 3}P{sub 0}) atoms with benzene molecules in helium droplets

    SciTech Connect (OSTI)

    Krasnokutski, Serge A. Huisken, Friedrich

    2014-12-07

    The reaction of carbon atoms with benzene has been investigated in liquid helium droplets at T = 0.37 K. We found an addition of the carbon atom to form an initial intermediate complex followed by a ring opening and the formation of a seven-membered ring. In contrast to a previous gas phase study, the reaction is frozen after these steps and the loss of hydrogen does not occur. A calorimetric technique was applied to monitor the energy balance of the reaction. It was found that more than 267 kJ mol{sup ?1} were released in this reaction. This estimation is in line with quantum chemical calculations of the formation energy of a seven-membered carbon ring. It is suggested that reactions of this kind could be responsible for the low abundance of small polycyclic aromatic hydrocarbon molecules in the interstellar medium. We also found the formation of weakly bonded water-carbon adducts, in which the carbon atom is linked to the oxygen atom of the water molecule with a binding energy of about 33.4 kJ mol{sup ?1}.

  15. Improving the performance of stainless-steel DC high voltage photoelectron gun cathode electrodes via gas conditioning with helium or krypton

    SciTech Connect (OSTI)

    Bastaninejad, Mahzad; Elmustafa, Abdelmageed; Forman, Eric I.; Clark, James; Covert, Steven R.; Grames, Joseph M.; Hansknecht, John C.; Hernandez-Garcia, Carlos; Poelker, Bernard; Suleiman, Riad S.

    2014-10-01

    Gas conditioning was shown to eliminate field emission from cathode electrodes used inside DC high voltage photoelectron guns, thus providing a reliable means to operate photoguns at higher voltages and field strengths. Measurements and simulation results indicate that gas conditioning eliminates field emission from cathode electrodes via two mechanisms: sputtering and implantation, with the benefits of implantation reversed by heating the electrode. We have studied five stainless steel electrodes (304L and 316LN) that were polished to approximately 20 nm surface roughness using diamond grit, and evaluated inside a high voltage apparatus to determine the onset of field emission as a function of voltage and field strength. The field emission characteristics of each electrode varied significantly upon the initial application of voltage but improved to nearly the same level after gas conditioning using either helium or krypton, exhibiting less than 10 pA field emission at ?225 kV bias voltage with a 50 mm cathode/anode gap, corresponding to a field strength of ~13 MV/m. Field emission could be reduced with either gas, but there were conditions related to gas choice, voltage and field strength that were more favorable than others.

  16. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    SciTech Connect (OSTI)

    Klas, M.; Matej?ik, .; Radjenovi?, B.; Radmilovi?-Radjenovi?, M.

    2014-10-15

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1??m and 100??m. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100??m interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  17. Laser-Induced Fluorescence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Induced Fluorescence - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  18. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    SciTech Connect (OSTI)

    Martini, R., E-mail: roberto.martini@imec.be [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Kepa, J.; Stesmans, A. [Department of Physics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Poortmans, J. [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt (Belgium)

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ?100??s or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1??m of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461??s. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  19. Method for inducing hypothermia

    DOE Patents [OSTI]

    Becker, Lance B. (Chicago, IL); Hoek, Terry Vanden (Chicago, IL); Kasza, Kenneth E. (Palos Park, IL)

    2008-09-09

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  20. Method for inducing hypothermia

    DOE Patents [OSTI]

    Becker, Lance B. (Chicago, IL); Hoek, Terry Vanden (Chicago, IL); Kasza, Kenneth E. (Palos Park, IL)

    2003-04-15

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  1. Method for inducing hypothermia

    DOE Patents [OSTI]

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2005-11-08

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  2. Three-dimensional neutronics optimization of helium-cooled blanket for multi-functional experimental fusion-fission hybrid reactor (FDS-MFX)

    SciTech Connect (OSTI)

    Jiang, J.; Yuan, B.; Jin, M.; Wang, M.; Long, P.; Hu, L.

    2012-07-01

    Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate the demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)

  3. THE END OF HELIUM REIONIZATION AT z {approx_equal} 2.7 INFERRED FROM COSMIC VARIANCE IN HST/COS He II Ly{alpha} ABSORPTION SPECTRA

    SciTech Connect (OSTI)

    Worseck, Gabor; Xavier Prochaska, J. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); McQuinn, Matthew [Department of Astronomy, University of California, 601 Campbell Hall, Berkeley, CA 94720 (United States); Dall'Aglio, Aldo; Wisotzki, Lutz [Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam (Germany); Fechner, Cora; Richter, Philipp [Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam (Germany); Hennawi, Joseph F. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Reimers, Dieter, E-mail: gworseck@ucolick.org [Hamburger Sternwarte, Universitaet Hamburg, Gojenbergsweg 112, 21029 Hamburg (Germany)

    2011-06-01

    We report on the detection of strongly varying intergalactic He II absorption in HST/COS spectra of two z{sub em} {approx_equal} 3 quasars. From our homogeneous analysis of the He II absorption in these and three archival sightlines, we find a marked increase in the mean He II effective optical depth from <{tau}{sub eff},He{sub ii}>{approx_equal}1 at z {approx_equal} 2.3 to <{tau}{sub eff},He{sub ii}>{approx}>5 at z {approx_equal} 3.2, but with a large scatter of 2{approx}<{tau}{sub eff},He{sub ii}{approx}<5 at 2.7 < z < 3 on scales of {approx}10 proper Mpc. This scatter is primarily due to fluctuations in the He II fraction and the He II-ionizing background, rather than density variations that are probed by the coeval H I forest. Semianalytic models of He II absorption require a strong decrease in the He II-ionizing background to explain the strong increase of the absorption at z {approx}> 2.7, probably indicating He II reionization was incomplete at z{sub reion} {approx}> 2.7. Likewise, recent three-dimensional numerical simulations of He II reionization qualitatively agree with the observed trend only if He II reionization completes at z{sub reion} {approx_equal} 2.7 or even below, as suggested by a large {tau}{sub eff},He{sub ii}{approx}>3 in two of our five sightlines at z < 2.8. By doubling the sample size at 2.7 {approx}< z {approx}< 3, our newly discovered He II sightlines for the first time probe the diversity of the second epoch of reionization when helium became fully ionized.

  4. The effect of in-situ noble metal chemical addition on crack growth rate behavior of structural materials in 288 C water

    SciTech Connect (OSTI)

    Andresen, P.L.; Angeliu, T.

    1996-10-01

    Stress corrosion cracking (SCC), especially in existing boiling water reactor (BVM) components, is most effectively accomplished by reducing the corrosion potential. This was successfully demonstrated by adding hydrogen to BNM water, which reduced oxidant concentration and corrosion potential by recombining with the radiolytically formed oxygen and hydrogen peroxide. However, reduction in the corrosion potential for some vessel internals is difficult, and others require high hydrogen addition rates, which results in an increase in the main steam radiation level from volatile N{sup 16}. Noble metal electrocatalysis provides a unique opportunity to efficiently achieve a dramatic reduction in corrosion potential and SCC in BWRs, by catalytically reacting all oxidants that diffuse to a (catalytic) metal surface with hydrogen. There are many techniques for creating catalytic surfaces, including alloying with noble metals or applying noble metal alloy powders to existing BWR components by thermal spraying or weld cladding. A novel system-wide approach for producing catalytic surfaces on all wetted components has been developed which employs the reactor coolant water as the medium of transport. This approach is termed in-situ noble metal chemical addition (NMCA), and has been successfully used in extensive laboratory tests to coat a wide range of pre-oxidized structural materials. In turn, these specimens have maintained catalytic response in long term, cyclic exposures to extremes in dissolved gases, impurity levels, pH, flow rate, temperature, straining, etc. With stoichiometric excess H{sub 2}, the corrosion potential drops dramatically and crack initiation and growth are greatly reduced, even at high O{sub 2} or H{sub 2}O{sub 2} levels. Without excess H{sub 2} (i.e., in normal BWR water chemistry), noble metals do not increase the corrosion potential or SCC.

  5. Results of fracture mechanics analyses of the Ederer cranes in the Device Assembly Facility: The effect of using a general expression for fatigue crack growth of the crane material

    SciTech Connect (OSTI)

    Dalder, E.N.C.

    1997-02-03

    The subject analyses were conducted on 3 critical locations on the lower flange of the load-beam of the Ederer 5 ton and 4 ton cranes in the D.A.F. facility. An expression for the fatigue-crack growth behavior of ferritic-pearlitic constructional steels (``Barsom Equation``) was used in place of the previously used equation to describe fatigue-crack growth behavior in this steel (base-line equation) to evaluate the effects of varying the fatigue-crack growth rate. Results appear that: (1) Propagation of a 1/4-in. long flaw, previously undetected by NDE, to a length sufficient to cause failure of either flange, should not occur in at least 70.8 times the postulated operating scenario, down from 104 times as calculated using the base line equation. (2) Should each crane undergo annual inspection, any surface flaw with a length greater than 1.10 in. should be removed and repaired by qualified and approved repair procedures. This flaw length has increased from a surface flaw length of 0.9 in. (base line equation). (3) The indicated change in empirically measured fatigue-crack growth equation did not adversely affect the previous work on modeling fatigue performance of these cranes.

  6. Collision-induced infrared spectra of H2-He pairs at temperatures from 18 to 7000 K. II. Overtone and hot bands

    SciTech Connect (OSTI)

    Borysow, A.; Frommhold, L.; Texas Univ., Austin )

    1989-06-01

    The three lowest spectral moments of the collision induced absorption (CIA) spectra of H2-He pairs have been computed from first principles for temperatures T from 18 to 7000 K for a number of hydrogen overtone and hot bands involving vibrational quantum numbers nu = 0, 1, 2, 3 yields nu-prime = 0, 1, 2, 3. The data are given in a form suitable for the computation of CIA spectra of H2-He as function of frequency and temperature, using simple computer codes and model line shapes. The work is of interest for the spectroscopy of the atmospheres of the outer planets and of stars that contain neutral molecular hydrogen and helium (late stars, white dwarfs, and Population II stars) in the infrared and visible region of the spectrum. 13 refs.

  7. Damage evolution of yttria-stabilized zirconia induced by He irradiation

    SciTech Connect (OSTI)

    Yang, Tengfei; Huang, Xuejun; Gao, Yuan; Wang, Chenxu; Zhang, Yanwen; Xue, Jianming; Yan, Sha; Wang, Yugang

    2012-01-01

    The study presents an investigation of damage evolution of yttria-stabilized zirconia (YSZ) induced by irradiation of 100 keV He ions at room temperature as a function of fluence. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) were used in order to study the nature and evolution of structural damage at different levels. Our study shows that various kinds of defects are formed with the increasing fluence. Firstly, at low fluences, from 1 1016 to 4 1016 cm 2, of which maximum values of displacement per atom (dpa) range from 0.29 to 1.17, an elastic strain which is attributed to the accumulation of irradiation-induced discrete point defects, is presented. Secondly, in the intermediate fluences ranging from 8 1016 to 1 1017 cm 2 with corresponding dpa varying from 2.33 to 2.91, a large drop of elastic strain occurs accompanied by presence of an intensive damage region, which is comprised by large and interacted defect clusters. Thirdly, at the two high fluences of 2 1017 and 4 1017 cm 2, of which dpa are 5.83 and 11.65 respectively, a great amount of ribbon-like He bubbles with granular structure and cracks are presented at the depth of maximum concentration of deposited He atoms. The structural damage evolution and the mechanism of formation of He bubbles are discussed.

  8. Helium (3) Rich Solar Flares

    DOE R&D Accomplishments [OSTI]

    Colgate, S. A.; Audouze, J.; Fowler, W. A.

    1977-05-03

    The extreme enrichment of {sup 3} He {sup 4} He greater than or equal to 1 in some solar flares as due to spallation and the subsequent confinement of the products in a high temperature, kT approx. = 200 keV, high density, n{sub e} approx. = 3 x 10{sup 15} cm {sup -3} plasma associated with the magnetic instability producing the flare is interpreted. The pinch or filament is a current of high energy protons that creates the spallation and maintains the temperature that produces the high energy x-ray spectrum and depletes other isotopes D, Li, Be, and B as observed. Finally the high temperature plasma is a uniquely efficient spallation target that is powered by the interaction of stellar convection and self generated magnetic field.

  9. Inductively coupled helium plasma torch

    DOE Patents [OSTI]

    Montaser, Akbar (Potomac, MD); Chan, Shi-Kit (Washington, DC); Van Hoven, Raymond L. (Alexandria, VA)

    1989-01-01

    An inductively coupled plasma torch including a base member, a plasma tube and a threaded insert member within the plasma tube for directing the plasma gas in a tangential flow pattern. The design of the torch eliminates the need for a separate coolant gas tube. The torch can be readily assembled and disassembled with a high degree of alignment accuracy.

  10. Practical high resolution detection method for laser-induced breakdown spectroscopy

    SciTech Connect (OSTI)

    Andrew J. Effenberger Jr; Jill R. Scott

    2012-02-01

    A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer to acquire high-resolution measurements in laser-induced breakdown spectroscopy (LIBS). The spectrometer was built using an inexpensive etalon coupled to a standard 0.5-m imaging spectrometer. The Hg emission doublet at 313.2 nm was used to evaluate instrument performance because it has a splitting of 29 pm. The 313.2 nm doublet was chosen due to the similar splitting seen in isotope splitting from uranium at 424.437 nm, which is 25 pm. The Hg doublet was easily resolved from a continuous source Hg-lamp with a 2 s acquisition. The doublet was also resolved in LIBS spectra of cinnabar (HgS) from the accumulation of 600 laser shots at rate of 10 Hz, or 1 min, under a helium atmosphere. In addition to observed spitting of the 313.2 nm Hg doublet, the FWHM of the 313.1844 nm line from the doublet is reported at varying He atmospheric pressures. The high performance, low cost, and compact footprint makes this system highly competitive with 2-m double pass Czerny-Turner spectrometers.

  11. 2015 Accomplishments-Tritium aging studies on stainless steel. Effects of hydrogen isotopes, crack orientation, and specimen geometry on fracture toughness

    SciTech Connect (OSTI)

    Morgan, Michael J.

    2016-01-01

    This study reports on the effects of hydrogen isotopes, crack orientation, and specimen geometry on the fracture toughness of stainless steels. Fracture toughness variability was investigated for Type 21-6-9 stainless steel using the 7K0004 forging. Fracture toughness specimens were cut from the forging in two different geometric configurations: arc shape and disc shape. The fracture toughness properties were measured at ambient temperature before and after exposure to hydrogen gas and compared to prior studies. There are three main conclusions that can be drawn from the results. First, the fracture toughness properties of actual reservoir forgings and contemporary heats of steel are much higher than those measured in earlier studies that used heats of steel from the 1980s and 1990s and forward extruded forgings which were designed to simulate reservoir microstructures. This is true for as-forged heats as well as forged heats exposed to hydrogen gas. Secondly, the study confirms the well-known observation that cracks oriented parallel to the forging grain flow will propagate easier than those oriented perpendicular to the grain flow. However, what was not known, but is shown here, is that this effect is more pronounced, particularly after hydrogen exposures, when the forging is given a larger upset. In brick forgings, which have a relatively low amount of upset, the fracture toughness variation with specimen orientation is less than 5%; whereas, in cup forgings, the fracture toughness is about 20% lower than that forging to show how specimen geometry affects fracture toughness values. The American Society for Testing Materials (ASTM) specifies minimum specimen section sizes for valid fracture toughness values. However, sub-size specimens have long been used to study tritium effects because of the physical limitation of diffusing hydrogen isotopes into stainless steel at mild temperatures so as to not disturb the underlying forged microstructure. This study shows that fracture toughness values of larger specimens are higher and more representative of the material’s fracture behavior in a fully constrained tritium reservoir. The toughness properties measured for sub-size specimens were about 65-75% of the values for larger specimens. While the data from sub-size specimens are conservative, they may be overly so. The fracture toughness properties from sub-size specimens are valuable in that they can be used for tritium effects studies and show the same trends and alloy differences as those seen from larger specimen data. Additional work is planned, including finite element modeling, to see if sub-size specimen data could be adjusted in some way to be more closely aligned with the actual material behavior in a fully constrained pressure vessel.

  12. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Disorder-Induced Microscopic Magnetic Memory Print Wednesday, 26 October 2005 00:00 The magnetic-recording industry deliberately...

  13. Microscopic Description of Induced Nuclear Fission (Conference...

    Office of Scientific and Technical Information (OSTI)

    Microscopic Description of Induced Nuclear Fission Citation Details In-Document Search Title: Microscopic Description of Induced Nuclear Fission You are accessing a document...

  14. HYDROGEN EFFECTS ON STRAIN-INDUCED MARTENSITE FORMATION IN TYPE 304L STAINLESS STEEL

    SciTech Connect (OSTI)

    Morgan, M; Ps Lam, P

    2008-12-11

    Unstable austenitic stainless steels undergo a strain-induced martensite transformation. The effect of hydrogen on this transformation is not well understood. Some researchers believe that hydrogen makes the transformation to martensite more difficult because hydrogen is an austenite stabilizer. Others believe that hydrogen has little or no effect at all on the transformation and claim that the transformation is simply a function of strain and temperature. Still other researchers believe that hydrogen should increase the ability of the metal to transform due to hydrogen-enhanced dislocation mobility and slip planarity. While the role of hydrogen on the martensite transformation is still debated, it has been experimentally verified that this transformation does occur in hydrogen-charged materials. What is the effect of strain-induced martensite on hydrogen embrittlement? Martensite near crack-tips or other highly strained regions could provide much higher hydrogen diffusivity and allow for quicker hydrogen concentration. Martensite may be more intrinsically brittle than austenite and has been shown to be severely embrittled by hydrogen. However, it does not appear to be a necessary condition for embrittlement since Type 21-6-9 stainless steel is more stable than Type 304L stainless steel but susceptible to hydrogen embrittlement. In this study, the effect of hydrogen on strain-induced martensite formation in Type 304L stainless steel was investigated by monitoring the formation of martensite during tensile tests of as-received and hydrogen-charged samples and metallographically examining specimens from interrupted tensile tests after increasing levels of strain. The effect of hydrogen on the fracture mechanisms was also studied by examining the fracture features of as-received and hydrogen-charged specimens and relating them to the stress-strain behavior.

  15. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    SciTech Connect (OSTI)

    Young, Bruce Kai Fong

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub ..cap alpha..//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub ..gamma..//He/sub ..beta../'' and ''He/sub delta//He/sub ..beta../'' helium-like resonance line intensity ratios.

  16. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit

    SciTech Connect (OSTI)

    Wang, Hsin; Simunovic, Srdjan; Maleki, Hosein; Howard, Jason N.; Hallmark, Jerald A.

    2015-12-22

    The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25", 0.5", 1", 2" and 3" diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicate that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. As a result, the short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators.

  17. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hsin; Simunovic, Srdjan; Maleki, Hosein; Howard, Jason N.; Hallmark, Jerald A.

    2015-12-22

    The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25", 0.5", 1", 2" and 3" diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicatemore » that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. As a result, the short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators.« less

  18. Development of a robust modeling tool for radiation-induced segregation in austenitic stainless steels

    SciTech Connect (OSTI)

    Yang, Ying; Field, Kevin G; Allen, Todd R.; Busby, Jeremy T

    2015-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Mannings relation. The preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.

  19. Laser-induced incandescence (LII)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    induced incandescence (LII) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  20. Laser Induced Spectroscopy - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Induced Spectroscopy Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Laser Induced Spectroscopy technology detects and measures the composition of a material or the molecules in the material. It traces the constituents of the material by using laser induced breakdown spectroscopy and laser induced fluorescence under ambient conditions. The technology measures the decay emission values of the excited absorption state and compares it to decay

  1. Ion-induced nuclear radiotherapy

    DOE Patents [OSTI]

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  2. Ion-induced nuclear radiotherapy

    DOE Patents [OSTI]

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  3. Induced Seismicity Impact | Open Energy Information

    Open Energy Info (EERE)

    Seismicity Impact Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleInducedSeismicityImpact&oldid612409" Feedback Contact needs updating...

  4. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired...

  5. Photon Induced Positron Annihilation (PIPA) - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    define a non-destructive testing technology that uses photon induced positrons to measure volumetric changes in the lattice structure of metals, polymers, and ceramic components....

  6. Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most...

  7. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Teng, H. Henry PI, The George Washington University PI, The George...

  8. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Process Relevant to Carbon Sequestration (Technical Report) | SciTech Connect Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Citation Details In-Document Search Title: Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Mica, biotite, muscovite, diopside, tremolite, ultramafic rock, hematite, Ca-Mg-carbonate, calcite, aragonite, dolomite, crystal nucleation,

  9. Solvent-induced forces in protein folding

    SciTech Connect (OSTI)

    Ben-Naim, A. (Hebrew Univ., Jerusalem (Israel))

    1990-08-23

    The solvent-induced forces between various groups on the protein are examined. It is found that the intramolecular hydrophilic forces are likely to be the strongest forces mediated through the solvent. It is argued that these are probably the most important solvent-induced driving forces in the process of protein folding.

  10. Electron-impact excitation of the (2p{sup 2}) {sup 1}D and (2s2p) {sup 1}P{sup o} autoionizing states of helium

    SciTech Connect (OSTI)

    Sise, Omer; Dogan, Mevlut; Okur, Ibrahim; Crowe, Albert

    2011-08-15

    An experimental study of the excitation of the (2p{sup 2}) {sup 1}D and (2s2p) {sup 1}P{sup o} autoionizing states of helium by 250-eV electron impact is presented. The ejected-electron angular distributions and energy spectra are measured in coincidence with the corresponding scattered electrons for a scattering angle of -13 deg. and for a range of ejected-electron angles in both the forward and backward directions. Resonance profiles are analyzed in terms of the Shore-Balashov parametrization to obtain the resonance asymmetry A{sub {mu}} and yield B{sub {mu}} parameters and the direct ionization cross section f. The spectra and their parameters are compared to the previous measurements of Lower and Weigold [J. Phys. B. 23, 2819 (1990)] and McDonald and Crowe [J. Phys. B 26, 2887 (1993)]. Comparison is also made with the recent theoretical triply differential cross-section calculations based on the first and second Born approximations. In general, good qualitative agreement is found between the experimental results. Some differences are found at the forward and backward directions. These differences in the shape and magnitude of the cross sections are attributed to the different incoming electron energies used in the experiments. The second Born approximation with inclusion of the three-body Coulomb interaction in the final state agrees reasonably well with experiments in the binary region. However, the {sup 1}P{sup o} resonance yield parameter B{sub {mu}} is significantly overestimated at the recoil region, giving a relatively large recoil peak, in contradiction to the experiment. There is also a discrepancy between the two theories available for the {sup 1}D resonance yield parameter B{sub {mu}} in this region. Remaining discrepancies between theories and experiments are also discussed.

  11. Radiation-induced gene responses

    SciTech Connect (OSTI)

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-12-31

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5` region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression.

  12. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect (OSTI)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  13. Plastic cap evolution law derived from induced transverse isotropy in dilatational triaxial compression.

    SciTech Connect (OSTI)

    Macon, David James; Brannon, Rebecca Moss; Strack, Otto Eric

    2014-02-01

    Mechanical testing of porous materials generates physical data that contain contributions from more than one underlying physical phenomenon. All that is measurable is the (3z(Bensemble(3y (Bhardening modulus. This thesis is concerned with the phenomenon of dilatation in triaxial compression of porous media, which has been modeled very accurately in the literature for monotonic loading using models that predict dilatation under triaxial compression (TXC) by presuming that dilatation causes the cap to move outwards. These existing models, however, predict a counter-intuitive (and never validated) increase in hydrostatic compression strength. This work explores an alternative approach for modeling TXC dilatation based on allowing induced elastic anisotropy (which makes the material both less stiff and less strong in the lateral direction) with no increase in hydrostatic strength. Induced elastic anisotropy is introduced through the use of a distortion operator. This operator is a fourth-order tensor consisting of a combination of the undeformed stiffness and deformed compliance and has the same eigenprojectors as the elastic compliance. In the undeformed state, the distortion operator is equal to the fourth-order identity. Through the use of the distortion operator, an evolved stress tensor is introduced. When the evolved stress tensor is substituted into an isotropic yield function, a new anisotropic yield function results. In the case of the von Mises isotropic yield function (which contains only deviatoric components), it is shown that the distortion operator introduces a dilatational contribution without requiring an increase in hydrostatic strength. In the thesis, an introduction and literature review of the cap function is given. A transversely isotropic compliance is presented, based on a linear combination of natural bases constructed about a transverse-symmetry axis. Using a probabilistic distribution of cracks constructed for the case of transverse isotropy, a compliance expression is presented that demonstrated a decrease in lateral stiffness, but leaves axial stiffness unchanged. A demonstration of how the distortion operator could be used in the elastic/plastic analysis of a von Mises surface loaded in TXC is also presented.

  14. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Process Relevant to Carbon Sequestration (Technical Report) | SciTech Connect Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Citation Details In-Document Search Title: Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration We have approached the long-standing geochemical question why anhydrous high-Mg carbonate minerals (i.e., magnesite and dolomite) cannot be formed at

  15. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Disorder-Induced Microscopic Magnetic Memory Print Wednesday, 26 October 2005 00:00 The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over

  16. Sandia Energy - BES Highlight: Stress-Induced NanoparticleCrystalliza...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlight: Stress-Induced Nanoparticle Crystallization Home Highlights - Energy Research BES Highlight: Stress-Induced Nanoparticle Crystallization Previous Next BES Highlight:...

  17. Fault-induced delayed voltage recovery in a long inhomogeneous...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Fault-induced delayed voltage recovery in a long inhomogeneous power-distribution feeder Citation Details In-Document Search Title: Fault-induced delayed voltage ...

  18. Protocol for Addressing Induced Seismicity Associated with Enhanced...

    Energy Savers [EERE]

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems This...

  19. Protocol for Addressing Induced Seismicity Associated with Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS) Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems...

  20. Behavior of tritium permeation induced by water corrosion of...

    Office of Scientific and Technical Information (OSTI)

    induced by water corrosion of alpha iron around room temperature Citation Details In-Document Search Title: Behavior of tritium permeation induced by water corrosion of ...

  1. Proximity-induced magnetism in transition-metal substituted graphene...

    Office of Scientific and Technical Information (OSTI)

    Proximity-induced magnetism in transition-metal substituted graphene Citation Details In-Document Search Title: Proximity-induced magnetism in transition-metal substituted graphene ...

  2. Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide Citation Details In-Document Search Title: Pressure-Induced Hydrogen Bond Symmetrization in Iron ...

  3. Encapsulant-based Solution to Potential Induced Degradation of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Encapsulant-based Solution to Potential Induced Degradation of Photovoltaic Modules Encapsulant-based Solution to Potential Induced Degradation of Photovoltaic Modules Presented at ...

  4. Radiation-induced mechanical property changes in filled rubber...

    Office of Scientific and Technical Information (OSTI)

    Radiation-induced mechanical property changes in filled rubber Citation Details In-Document Search Title: Radiation-induced mechanical property changes in filled rubber Authors:...

  5. Weldability of tritium-charged 304L stainless steel

    SciTech Connect (OSTI)

    Kanne, W R; Angerman, C L; Eberhard, B J

    1987-02-01

    Attempts to repair the wall of C-Reactor Tank at the Savannah River Plant were halted when Gas Tungsten Arc (GTA) welds joining patches to the wall developed toe cracks in the heat affected zone (HAZ). The cause of the toe cracks was investigated by welding on 304L samples that were tritium charged and aged to produce helium. Helium embrittlement was shown to be the likely cause of weld toe cracking in C-Reactor Tank. GTA welds made on helium impregnated 304L produced toe cracks identical to those that caused leaking patches during C-Reactor Tank repair. Heating of a sample to remove deuterium and tritium without removing helium did not reduce cracking susceptibility. Low heat input and spot GTA welds also produced cracks, indicating possible problems using these techniques for reactor repair. However, cracks were not produced by solid state resistance welds, or by a very low heat GTA pass that did not produce melting. This indicates that non-melting or low tensile stress techniques could be used for repair.

  6. Magnetomechanically induced long period fiber gratings

    SciTech Connect (OSTI)

    Causado-Buelvas, Jesus D.; Gomez-Cardona, Nelson D.; Torres, Pedro

    2008-04-15

    In this work, we report a simple, flexible method to create long period fiber gratings mechanically by controlling the repulsion/attraction force between two magnets that pressing a plate with a periodic array of small glass cylinders to a short length of optical fiber. Via the photoelastic effect, the pressure points induce the required periodic refractive index modulation to create the LPFG. We found that the induced device exhibits spectral characteristics similar to those of other types of LPFG. As the optical properties of LPFGs are directly related to the nature of the applied perturbations, we show, to our knowledge for the frrst time, how is the evolution of birefringence effects in mechanically induced LPFGs.

  7. HIV transcription is induced in dying cells

    SciTech Connect (OSTI)

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |; Panozzo, J.; Libertin, C.R.

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  8. Impurity-induced moments in underdoped cuprates

    SciTech Connect (OSTI)

    Khaliullin, G.; Kilian, R.; Krivenko, S.; Fulde, P.

    1997-11-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  9. Femtosecond laser induced breakdown for combustion diagnostics

    SciTech Connect (OSTI)

    Kotzagianni, M.; Couris, S.

    2012-06-25

    The focused beam of a 100 fs, 800 nm laser is used to induce a spark in some laminar premixed air-methane flames operating with variable fuel content (equivalence ratio). The analysis of the light escaping from the plasma revealed that the Balmer hydrogen lines, H{sub {alpha}} and H{sub {beta}}, and some molecular origin emissions were the most prominent spectral features, while the CN ({Beta}{sup 2}{Sigma}{sup +}-{Chi}{sup 2}{Sigma}{sup +}) band intensity was found to depend linearly with methane content, suggesting that femtosecond laser induced breakdown spectroscopy can be a useful tool for the in-situ determination and local mapping of fuel content in hydrocarbon-air combustible mixtures.

  10. HIV transcription is induced in dying cells

    SciTech Connect (OSTI)

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |

    1995-06-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. 14 refs., 4 figs., 1 tab.

  11. Laser-induced breakdown spectroscopy of alkali metals in high...

    Office of Scientific and Technical Information (OSTI)

    alkali metals in high-temperature gas Citation Details In-Document Search Title: Laser-induced breakdown spectroscopy of alkali metals in high-temperature gas Laser-induced ...

  12. Study Determines Wind-Induced Cycling Impacts are Minimal | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study Determines Wind-Induced Cycling Impacts are Minimal Study Determines Wind-Induced Cycling Impacts are Minimal January 10, 2013 - 2:34pm Addthis This is an excerpt from the ...

  13. electrochemical battery stress-induced degradation mechanisms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electrochemical battery stress-induced degradation mechanisms - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  14. Electrically induced mechanical precompression of ferroelectric plates

    DOE Patents [OSTI]

    Chen, P.J.

    1987-03-02

    A method of electrically inducing mechanical precompression of ferroelectric plate covered with electrodes utilizes the change in strains of the plate as functions of applied electric field. A first field polarizes and laterally shrinks the entire plate. An outer portion of the electrodes are removed, and an opposite field partially depolarizes and expands the central portion of the plate against the shrunk outer portion. 2 figs.

  15. Induced seismicity associated with enhanced geothermal system

    SciTech Connect (OSTI)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

  16. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  17. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  18. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  19. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  20. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  1. Impurity-induced divertor plasma oscillations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  2. Erratum: "Composition- and pressure-induced ferroelectric to...

    Office of Scientific and Technical Information (OSTI)

    Erratum: "Composition- and pressure-induced ferroelectric to antiferroelectric phase ... Show Author Affiliations Department of Materials Science and Engineering, Pennsylvania ...

  3. Towards the Understanding of Induced Seismicity in Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity Microearthquake Technology for EGS Fracture Characterization

  4. Towards the Understanding of Induced Seismicity in Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Project objectives: To develop a combination of techniques to evaluate the relationship between EGS operations and the induced stress changes throughout the reservoir and the surrounding country rock. PDF icon seismicity_gritto_induced_seismicity.pdf More Documents & Publications Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS)

  5. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes

    SciTech Connect (OSTI)

    Ilias, Shamsuddin; Kumar, Dhananjay

    2012-07-31

    Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term performance and thermal cycling (573 - 723 - 573 K) at 15 psi pressure drop for 1200 hours. Pd membranes showed excellent hydrogen permeability and thermal stability during the operational period. Under thermal cycling (573 K - 873 K - 573 K), Pd-Cu-MPSS membrane was stable and retained hydrogen permeation characteristics for over three months of operation. From this limited study, we conclude that SIEP is viable method for fabrication of defect-free, robust Pd-alloy membranes for high-temperature H{sub 2}-separation applications.

  6. Characterization of geothermal reservoir crack patterns using...

    Open Energy Info (EERE)

    the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Authors Lou, M.; Rial and J.A. Published Journal...

  7. Face crack reduction strategy for particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2012-01-31

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.

  8. Revised calibration of the Sm:SrB{sub 4}O{sub 7} pressure sensor...

    Office of Scientific and Technical Information (OSTI)

    The pressure-induced shift of Sm:SrBsub 4Osub 7 fluorescence was calibrated in a ... CORRECTIONS; DOPED MATERIALS; FLUORESCENCE; HELIUM; PRESSURE DEPENDENCE; PRESSURE ...

  9. Allostery through protein-induced DNA bubbles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Traverso, Joseph J.; Manoranjan, Valipuram S.; Bishop, A. R.; Rasmussen, Kim Ø.; Voulgarakis, Nikolaos K.

    2015-03-12

    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resultingmore » melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.« less

  10. Neutrino-induced nucleosynthesis in supernovae

    SciTech Connect (OSTI)

    Hayakawa, Takehito

    2012-11-12

    The neutrino-induced reactions in supernova explosions produce some rare odd-odd nuclides. We have made a new time-dependent calculation of the supernova production ratio of the long-lived isomeric state of {sup 180}Ta. This time-dependent solution is crucial for understanding the production and survival of this isotope. We find that the explicit time evolution of the synthesis of {sup 180}Ta using the available nuclear data avoids the overproduction relative to {sup 138}La for a {nu}-process neutrino temperature of 4 MeV. An unstable isotope {sup 92}Nb decays to {sup 92}Zr with a half-life of 3.47 Multiplication-Sign 10{sup 7} years. We have proposed the {nu}-process origin for {sup 92}Nb. We calculate key neutrino-induced reactions and supernova {nu}-process. Our calculated result shows that the abundance of {sup 92}Nb can be explained by the {nu}-process.

  11. Troglitazone induces differentiation in Trypanosoma brucei

    SciTech Connect (OSTI)

    Denninger, Viola; Figarella, Katherine; Schoenfeld, Caroline; Brems, Stefanie; Busold, Christian; Lang, Florian; Hoheisel, Joerg; Duszenko, Michael . E-mail: michael.duszenko@uni-tuebingen.de

    2007-05-15

    Trypanosoma brucei, a protozoan parasite causing sleeping sickness, is transmitted by the tsetse fly and undergoes a complex lifecycle including several defined stages within the insect vector and its mammalian host. In the latter, differentiation from the long slender to the short stumpy form is induced by a yet unknown factor of trypanosomal origin. Here we describe that some thiazolidinediones are also able to induce differentiation. In higher eukaryotes, thiazolidinediones are involved in metabolism and differentiation processes mainly by binding to the intracellular receptor peroxisome proliferator activated receptor {gamma}. Our studies focus on the effects of troglitazone on bloodstream form trypanosomes. Differentiation was monitored using mitochondrial markers (membrane potential, succinate dehydrogenase activity, inhibition of oxygen uptake by KCN, amount of cytochrome transcripts), morphological changes (Transmission EM and light microscopy), and transformation experiments (loss of the Variant Surface Glycoprotein coat and increase of dihydroliponamide dehydrogenase activity). To further investigate the mechanisms responsible for these changes, microarray analyses were performed, showing an upregulation of expression site associated gene 8 (ESAG8), a potential differentiation regulator.

  12. Protocol for Addressing Induced Seismicity Associated with Enhanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Systems (EGS) | Department of Energy Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS) Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS) This document is intended to assist industry and regulators identify important issues and parameters that may be necessary for the evaluation and mitigation of adverse effects of induced seismicity. PDF icon egs-is-protocol-final-draft-20110531.pdf More

  13. Laser-induced breakdown spectroscopy at high temperatures in industrial

    Office of Scientific and Technical Information (OSTI)

    boilers and furnaces. (Journal Article) | SciTech Connect Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces. Citation Details In-Document Search Title: Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces. Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coat, or both, (2) at the exit of a glass-melting furnace burning

  14. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates

    Office of Scientific and Technical Information (OSTI)

    proliferation of human breast cancer MCF-7 cells (Journal Article) | SciTech Connect Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells Citation Details In-Document Search Title: Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced

  15. StatesFirst Releases Induced Seismicity Primer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    StatesFirst Releases Induced Seismicity Primer On September 28, the StatesFirst Induced Seismicity Working Group (ISWG) released a primer entitled "Potential Injection-Induced Seismicity Associated with Oil & Gas Development: A Primer on Technical and Regulatory Considerations Informing Risk Management and Mitigation." The report provides guidance in mitigating seismic risks associated with waste water disposal wells, not hydraulic fracturing. The primer is intended to be

  16. Drought-induced tree mortality accelerating in forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drought-induced tree mortality accelerating in forests Drought-induced tree mortality accelerating in forests Researchers at Los Alamos National Laboratory have found that drought and heat-induced tree mortality is accelerating in many forest biomes as a consequence of a warming climate in their paper published in the journal Nature Climate Change. May 19, 2015 Nathan McDowell examines an old, large tree, which could be impacted by future droughts. Nathan McDowell examines an old, large tree,

  17. DOE Releases Updated Induced Seismicity Protocol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases Updated Induced Seismicity Protocol DOE Releases Updated Induced Seismicity Protocol January 30, 2012 - 3:45pm Addthis At the 37th Stanford Geothermal Workshop in Stanford, California, the Geothermal Technologies Program at the U.S. Department of Energy (DOE) released an updated Induced Seismicity Protocol. This document supplements the existing International Energy Agency (IEA) protocol of 2009, and is intended to be a living document kept up-to-date with state-of-the-art knowledge and

  18. Understanding the Differences in Induced Stresses to Improve Variation in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Soak Response | Department of Energy Understanding the Differences in Induced Stresses to Improve Variation in Light Soak Response Understanding the Differences in Induced Stresses to Improve Variation in Light Soak Response Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps1_firstsolar_sorensen.pdf More Documents & Publications 2011 TEPP Annual Report Understanding the Differences in Induced Stresses to Improve Variation in

  19. Simultaneous observation of nascent plasma and bubble induced by laser

    Office of Scientific and Technical Information (OSTI)

    ablation in water with various pulse durations (Journal Article) | SciTech Connect Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations Citation Details In-Document Search Title: Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To

  20. Theoretical study on electromagnetically induced transparency in molecular

    Office of Scientific and Technical Information (OSTI)

    aggregate models using quantum Liouville equation method (Journal Article) | SciTech Connect Theoretical study on electromagnetically induced transparency in molecular aggregate models using quantum Liouville equation method Citation Details In-Document Search Title: Theoretical study on electromagnetically induced transparency in molecular aggregate models using quantum Liouville equation method Electromagnetically induced transparency (EIT), which is known as an efficient control method of