Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heavy Duty Vehicle Futures Analysis.  

SciTech Connect (OSTI)

This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

2014-05-01T23:59:59.000Z

2

Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

3

WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...  

Energy Savers [EERE]

Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for...

4

Advanced Natural Gas Engine Technology for Heavy Duty Vehicles  

Broader source: Energy.gov (indexed) [DOE]

ALTERNATIVE. EVERY Advanced Natural Gas Engine Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Technology for Heavy Duty Vehicles Dr. Mostafa M Kamel Dr. Mostafa M...

5

Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low...  

Broader source: Energy.gov (indexed) [DOE]

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion &...

6

Pneumatic brake control for precision stopping of heavy-duty vehicles  

E-Print Network [OSTI]

6], heavy-duty vehicle maintenance automation, as well astrue” automation are applications on heavy-duty vehicles [

Bu, Fanping; Tan, Han-Shue

2007-01-01T23:59:59.000Z

7

Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles  

SciTech Connect (OSTI)

The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

2011-04-30T23:59:59.000Z

8

Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

9

A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power...

10

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network [OSTI]

a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

2006-01-01T23:59:59.000Z

11

Medium and Heavy Duty Vehicle Field Evaluations (Presentation)  

SciTech Connect (OSTI)

This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

Walkowicz, K.

2014-06-01T23:59:59.000Z

12

Medium and Heavy Duty Vehicle Field Evaluations  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

13

Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)  

SciTech Connect (OSTI)

Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

Not Available

2013-08-01T23:59:59.000Z

14

Lightweight Composite Materials for Heavy Duty Vehicles  

SciTech Connect (OSTI)

The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

2013-08-31T23:59:59.000Z

15

Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)  

SciTech Connect (OSTI)

Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

Not Available

2010-09-01T23:59:59.000Z

16

TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND  

E-Print Network [OSTI]

#12;#12;TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND EMISSIONS STUDY: PHASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current Diesel Idling Emissions Factors

17

A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions  

E-Print Network [OSTI]

A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions by Christopher D. Dresser OF WISCONSIN - MADISON Abstract A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions Christopher Studies This study presents a "bottom-up" emissions inventory for NOx, PM2.5, SO2, CO, and VOCs from heavy

Wisconsin at Madison, University of

18

Vehicle Technologies Office Merit Review 2014: Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)  

Broader source: Energy.gov [DOE]

Presentation given by Eaton Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy duty roots expander...

19

Heavy-duty diesel vehicle Nox? aftertreatment in 2010 : the infrastructure and compliance challenges of urea-SCR  

E-Print Network [OSTI]

Increasingly stringent heavy-duty vehicle emission regulations are prompting the use of PM and NOx aftertreatment systems in the US, the EU and Japan. In the US, the EPA Highway Diesel Rule, which will be fully implemented ...

Bodek, Kristian M

2008-01-01T23:59:59.000Z

20

Medium and Heavy Duty Vehicle and Engine Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | Department ofMeasuringofHeavy Duty Vehicle

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A Distributed Framework for Coordinated Heavy-duty Vehicle ...  

E-Print Network [OSTI]

floating car data) from a collection of HDVs. The probe data consists of the location and time of a vehicle and was collected by the in-cab GPS. Since the data is ...

2013-12-28T23:59:59.000Z

22

Hennepin County`s experience with heavy-duty ethanol vehicles  

SciTech Connect (OSTI)

From November 1993 to October 1996, Hennepin County, which includes Minneapolis, field-tested two heavy-duty snowplow/road maintenance trucks fueled by ethanol. The overall objective of this program was to collect data from original equipment manufacturer alternative fuel heavy-duty trucks, along with comparable data from a similarly configured diesel-powered vehicle, to establish economic, emissions, performance, and durability data for the alternative fuel technology. These ethanol trucks, along with an identical third truck equipped with a diesel engine, were operated year round to maintain the Hennepin county roads. In winter, the trucks were run in 8-hour shifts plowing and hauling snow from urban and suburban roads. For the rest of the year, the three trucks were used to repair and maintain these same roads. As a result of this project, a considerable amount of data was collected on E95 fuel use, as well as maintenance, repair, emissions, and operational characteristics. Maintenance and repair costs of the E95 trucks were considerably higher primarily due to fuel filter and fuel pump issues. From an emissions standpoint, the E95 trucks emitted less particulate matter and fewer oxides of nitrogen but more carbon monoxide and hydrocarbons. Overall, the E95 trucks operated as well as the diesel, as long as the fuel filters were changed frequently. This project was a success in that E95, a domestically produced fuel from a renewable energy source, was used in a heavy-duty truck application and performed the same rigorous tasks as the diesel counterparts. The drawbacks to E95 as a heavy-duty fuel take the form of higher operational costs, higher fuel costs, shorter range, and the lack of over-the-road infrastructure.

NONE

1998-01-01T23:59:59.000Z

23

PON-10-603 Advanced Medium-and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations Questions and Answers  

E-Print Network [OSTI]

-for-profit technology entities might include, but are not limited to: CalETC CALSTART California Biodiesel AlliancePON-10-603 Advanced Medium- and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations-for-profit technology entity who will be responsible for administering the block grant and coordinating projects

24

Natural Gas as a Future Fuel for Heavy-Duty Vehicles  

SciTech Connect (OSTI)

In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications.

Wai-Lin Litzke; James Wegrzyn

2001-05-14T23:59:59.000Z

25

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

43 McCormick, 2005 (Canola-1) McCormick,2005 (Soy-1)A: Animal-based; C: Canola; S: Soy-based; H-D: Heavy-Duty H-

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

26

Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.  

SciTech Connect (OSTI)

The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

2010-03-31T23:59:59.000Z

27

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ce001musculus2012o.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review...

28

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ace01musculus.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review...

29

Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications  

SciTech Connect (OSTI)

Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

Daniel T. Hennessy

2010-06-15T23:59:59.000Z

30

Medium and Heavy-Duty Vehicle Field Evaluations | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | Department ofMeasuringofHeavy Duty

31

Medium and Heavy-Duty Vehicle Field Evaluations | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | Department ofMeasuringofHeavy DutyMedium

32

Vehicle Technologies Office Merit Review 2014: Medium and Heavy-Duty Vehicle Field Evaluations  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

33

Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets  

SciTech Connect (OSTI)

This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

2002-02-06T23:59:59.000Z

34

Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed Natural Gas (CNG)-Powered Vehicles Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...

35

Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck  

SciTech Connect (OSTI)

We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

2013-01-01T23:59:59.000Z

36

Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles  

E-Print Network [OSTI]

Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and does not consider other...

Kader, Michael Kirk

2013-01-18T23:59:59.000Z

37

Analysis, Design, And Evaluation Of Avcs For Heavy-duty Vehicles With Actuator Delays  

E-Print Network [OSTI]

fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 4: Ten autonomous vehicles,fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 5: Ten autonomous vehicles,fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 8: Ten autonomous vehicles,

Yanakiev, Diana; Eyre, Jennifer; Kanellakopoulos, Ioannis

1998-01-01T23:59:59.000Z

38

Analysis, Design And Evaluation Of Avcs For Heavy-duty Vehicles  

E-Print Network [OSTI]

fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 2 : Ten autonomous vehicles,fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 3 : Ten autonomous vehicles,fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 6 : Ten autonomous vehicles,

Yanakiev, Diana; Kanellakopoulos, Ioannis

1996-01-01T23:59:59.000Z

39

Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about powertrain...

40

Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty Drayage Truck Demonstration  

Broader source: Energy.gov [DOE]

Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

42

Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves  

E-Print Network [OSTI]

Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. The original definition...

Gu, Chaoyi

2013-07-31T23:59:59.000Z

43

Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Duty Cycle and Performance Data Collection and Analysis Program Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks...

44

Zero Emission Heavy Duty Drayage Truck Demonstration | Department...  

Office of Environmental Management (EM)

Zero Emission Heavy Duty Drayage Truck Demonstration 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

45

Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles  

SciTech Connect (OSTI)

This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

Krause, T.; Kumar, R.; Krumpelt, M.

2000-05-15T23:59:59.000Z

46

TRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based  

E-Print Network [OSTI]

TRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based on Real-World Data H and Zhai 1 ABSTRACT Heavy-duty diesel vehicles contribute a substantial fraction of nitrogen oxides unloaded trucks. Replacing diesel fuel with biodiesel fuel for heavy-duty trucks may reduce tailpipe

Frey, H. Christopher

47

Heavy duty transport research needs assessment  

SciTech Connect (OSTI)

As a result of the desire to decrease the dependence of the US on foreign petroleum as a transportation fuel, this report assesses the research needs to further develop heavy duty engines. The topics covered include diesel engines, alternative fuels, electric vehicle technology, gas turbine engines, and stirling cycle alternative engines. (GHH)

Not Available

1991-09-13T23:59:59.000Z

48

Modelling the global prospects and impacts of heavy duty liquefied natural gas vehicles in computable general equilibrium  

E-Print Network [OSTI]

Natural gas vehicles have the prospects of making substantial contributions to transportation needs. The adoption of natural gas vehicles could lead to impacts on energy and environmental systems. An analysis of the main ...

Yip, Arthur Hong Chun

2014-01-01T23:59:59.000Z

49

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

Scora, George Alexander

2011-01-01T23:59:59.000Z

50

Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines  

Broader source: Energy.gov [DOE]

Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

51

Vehicle Technologies Office Merit Review 2014: Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

52

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ce001musculus2011o.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel...

53

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ce001musculus2010o.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel...

54

Heavy duty transport research needs assessment. Final report  

SciTech Connect (OSTI)

As a result of the desire to decrease the dependence of the US on foreign petroleum as a transportation fuel, this report assesses the research needs to further develop heavy duty engines. The topics covered include diesel engines, alternative fuels, electric vehicle technology, gas turbine engines, and stirling cycle alternative engines. (GHH)

Not Available

1991-09-13T23:59:59.000Z

55

Natural Gas-optimized Advanced Heavy-duty Engine  

E-Print Network [OSTI]

Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation of natural gas vehicles as a clean alternative is currently limited to smaller engine displacements and spark ignition, which results in lower performance. A large displacement natural gas engine has

56

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

57

Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

58

Emission Controls for Heavy-Duty Trucks  

Broader source: Energy.gov (indexed) [DOE]

DEER Conference Emission Controls for Heavy-Duty Trucks Overview Emission Standards - US and Worldwide Technology Options for Meeting Emissions System Integration ...

59

Scenario analysis of hybrid class 3-7 heavy vehicles.  

SciTech Connect (OSTI)

The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

1999-12-23T23:59:59.000Z

60

Heavy-duty truck population, activity and usage patterns. Final report  

SciTech Connect (OSTI)

The objective of the study was to update the heavy-duty truck (HDT) population, activity (e.g., vehicle miles traveled (VMT), numbers of starts and trips, trip duration, etc.), and usage patterns type of service/business (e.g., delivery, construction, etc.), area of operation (i.e., local, short-haul, long-haul) for HDT`s registered and/or operated in California. The population and activity estimates were done on a weight-class-specific basis light-heavy-duty, medium-heavy-duty and heavy-heavy-duty. Population, activity and usage estimates were based primarily on Department of Motor Vehicles (DMV) registration data and Truck Inventory and Usage Survey (TIUS) data. In addition to the analysis of existing data (i.e., DMV and TIUS), 42 HDTs were fitted with on-board data loggers that recorded numbers of trips and starts, daily VMT and travel by time-of-day.

Fischer, M.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in...

62

Design of Integrated Laboratory and Heavy-Duty Emissions Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Integrated Laboratory and Heavy-Duty Emissions Testing Center Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center Both simulated and actual diesel emissions...

63

California Policy Stimulates Carbon Negative CNG for Heavy Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks Describes system for fueling truck...

64

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...  

Broader source: Energy.gov (indexed) [DOE]

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

65

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

66

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

67

Vehicle Technologies Office Merit Review 2014: Advanced Heavy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions...

68

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

69

Vehicle Technologies Office: 21st Century Truck Partners  

Broader source: Energy.gov [DOE]

The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

70

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

71

Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

72

Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication  

SciTech Connect (OSTI)

In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

LaClair, Tim J [ORNL; Verma, Rajeev [Eaton Corporation; Norris, Sarah [Eaton Corporation; Cochran, Robert [Eaton Corporation

2014-01-01T23:59:59.000Z

73

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

74

Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference...

75

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

76

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...  

Broader source: Energy.gov (indexed) [DOE]

and CFD Modeling of In-Cylinder Chemical and Physical Processes * Combine planar laser-imaging diagnostics in an optical heavy-duty engine with multi-dimensional computer...

77

Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University  

SciTech Connect (OSTI)

This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

Nigle N. Clark

2006-12-31T23:59:59.000Z

78

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility  

E-Print Network [OSTI]

, hydrocarbons and carbon dioxide from transit buses and heavy-duty vehicles when they are tested on simulated · CO2, CO, HC, NOx, and particulates · Fuels: Diesel, gasoline, CNG, propane, LNG, LPG, ethanol · 30-ton axle capacity · 80 mph speed · Simulated road load curve · Test cycle simulation with driver

Lee, Dongwon

79

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network [OSTI]

yaw rate sensing. 3.2.5 Wireless Communication System Anyaw angle between the tractor longitudinal axis and the axis of the road coordinate systemyaw angle between the bus articulated section longitudinal axis and the axis of the road coordinate system

2006-01-01T23:59:59.000Z

80

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network [OSTI]

power train modeling for control, Transaction of ASME, J.power train modeling for control, Transaction of ASME, J.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

The Emergence of Hybrid Vehicles: Ending oil’s strangleholdthe benefits of hybrid vehicles Dr. Thomas Turrentine Dr.the benefits of hybrid vehicles Report prepared for CSAA Dr.

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

82

Hybrid Vehicle Program. Final report  

SciTech Connect (OSTI)

This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

None

1984-06-01T23:59:59.000Z

83

Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions...

84

Very High Fuel Economy, Heavy Duty Truck, Narrow Range Speed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy Duty Truck, Narrow Range Speed Engine, Optimized Via Unique Energy Recovery Turbines and Facilitated by High Efficiency Continuously Variable Drivetrain Very High Fuel...

85

Heavy-Duty Natural Gas Drayage Truck Replacement Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Natural Gas Drayage Truck Replacement Program Principal Investigator: Vicki White South Coast Air Quality Management District May 16, 2012 Project ID ARRAVT045 This...

86

High Fuel Economy Heavy-Duty Truck Engine  

Broader source: Energy.gov (indexed) [DOE]

contain any proprietary, confidential, or otherwise restricted information ACE060 High Fuel Economy Heavy Duty Truck Engine Overview Timeline October 2007 - October 2011 Barriers...

87

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles  

SciTech Connect (OSTI)

This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

2014-10-01T23:59:59.000Z

88

Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I  

E-Print Network [OSTI]

Vehicle Symposium, "The Hybrid Vehicle Revisited", OctoberBus Hv REFERENCES “Hybrid Vehicle Assessment, Phase I,Laboratory, March 1984 “Hybrid Vehicle Engineering Task”

Gris, Arturo E.

1991-01-01T23:59:59.000Z

89

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction...

90

Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile...  

Broader source: Energy.gov (indexed) [DOE]

Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab 2002 DEER Conference Presentation:...

91

In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks  

SciTech Connect (OSTI)

This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

2013-10-01T23:59:59.000Z

92

Transportable Heavy Duty Emissions Testing Laboratory and Research Program  

SciTech Connect (OSTI)

The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

David Lyons

2008-03-31T23:59:59.000Z

93

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

94

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationsand performance. Hybrid vehicles utilizing a load leveling

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

95

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-10-01T23:59:59.000Z

96

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-05-01T23:59:59.000Z

97

New Demands on Heavy Duty Engine Management Systems  

Broader source: Energy.gov (indexed) [DOE]

on Heavy Duty Engine Management Systems Excellence in Automotive R&D Emissions Based Process Control NOx-Reducing by EGR NOx -Reducing by SOI Freez e Activation Signal...

98

The ethanol heavy-duty truck fleet demonstration project  

SciTech Connect (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

99

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Broader source: Energy.gov [DOE]

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

100

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect (OSTI)

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

secrets, but the price of hybrid cars and trucks are betweenCosts of hybrid vehicles Depending on whether a car companydiesel-hybrid prototypes that attained 70 MPG (Green Car

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

102

Hybrid vehicle motor alignment  

DOE Patents [OSTI]

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

103

Demonstrating and evaluating heavy-duty alternative fuel operations  

SciTech Connect (OSTI)

The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

Peerenboom, W. [Trucking Research Inst., Alexandria, VA (United States)] [Trucking Research Inst., Alexandria, VA (United States)

1998-02-01T23:59:59.000Z

104

2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...  

Energy Savers [EERE]

Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

105

2013 Annual Merit Review Results Report - Hybrid Vehicle Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

106

2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

107

System Simulations of Hybrid Electric Vehicles with Focus on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid...

108

Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReport | Department ofEnergyService

109

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

110

Chicago Area Alternative Fuels Deployment Project (CAAFDP)  

Broader source: Energy.gov (indexed) [DOE]

Objectives - Increase the number of alt fuel vehicles & hybrids (528 vehicles) * 286 Gasoline Hybrids * 233 CNG Vehicles (41 Heavy Duty) * 9 Heavy Duty Diesel Hybrids and...

111

Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

112

High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel...

113

Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM and NOX Control Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM and NOX Control The more...

114

ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses 2002 DEER Conference Presentation:...

115

Reduction of Heavy-Duty Fuel Consumption and CO2 Generation ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Fuel Consumption and CO2 Generation -- What the Industry Does and What the Government Can Do Reduction of Heavy-Duty Fuel Consumption and CO2 Generation -- What the...

116

Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Poster presentation at the 2007...

117

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy...

118

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Broader source: Energy.gov (indexed) [DOE]

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference...

119

Hybrid vehicle-centric route guidance  

E-Print Network [OSTI]

This thesis proposes a hybrid route guidance system in which predictive guidance is generated in a centralized layer and revised in a reactive, decentralized layer that resides on-board the vehicle. This hybrid approach ...

Farver, Jennifer M. (Jennifer Margaret), 1976-

2005-01-01T23:59:59.000Z

120

Plug-In Hybrid Electric Vehicles (Presentation)  

SciTech Connect (OSTI)

Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

Markel, T.

2006-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles  

E-Print Network [OSTI]

use emissions from heavy-duty diesel vehicles. Environ. Sci.Sci. Technol. (7) Johnson, T. V. Diesel Emission Control inNO x control on heavy-duty diesel truck emissions. Environ.

Millstein, Dev E.; Harley, Robert A

2010-01-01T23:59:59.000Z

122

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

SciTech Connect (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

123

On-Road Remote Sensing of Heavy-duty Diesel Truck  

E-Print Network [OSTI]

On-Road Remote Sensing of Heavy-duty Diesel Truck Emissions in the Austin- San Marcos Area: August, HC, and NO to CO2 and to get percent opacity readings for heavy-duty diesel trucks with elevated. The fleet of these heavy-duty diesel trucks exhibits a distribution that is close to normal where the top 20

Denver, University of

124

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

Not Available

2014-05-01T23:59:59.000Z

125

Hybrid options for light-duty vehicles.  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

126

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network [OSTI]

Power Battery for Hybrid Vehicle Applications. ProceedingsAF. Electric and Hybrid Vehicle Design and Performance.A, Thornton M. Plug-in Hybrid Vehicle Analysis. NREL/MP-540-

Burke, Andy

2009-01-01T23:59:59.000Z

127

Environmental Assessment of Plug-In Hybrid Electric Vehicles...  

Energy Savers [EERE]

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:...

128

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Would You Buy a Hybrid Vehicle? Study #715238, conducted forcars/high-cost-of-hybrid-vehicles- 406/overview.htm ConsumerRelease. (2005) Most Hybrid Vehicles Not as Cost-Effective

Heffner, Reid R.

2007-01-01T23:59:59.000Z

129

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network [OSTI]

In contrast to a hybrid vehicle whichcombines multipleor 180 mile hybrid electric vehicle. Natural gas vehicles (1994) "Demand Electric Vehicles in Hybrid for Households:

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

130

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network [OSTI]

Table ES-3: Summaryof Hybrid Vehicle Fuel Economy Results onmal ICE and Series Hybrid Vehicles (t) Vehicle Test Weight (I) Conventional and Series Hybrid Vehicles had same weight,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

131

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network [OSTI]

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliot William

2009-01-01T23:59:59.000Z

132

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network [OSTI]

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliott William

2009-01-01T23:59:59.000Z

133

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network [OSTI]

Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-20 th International Electric Vehicle Symposium, Long Beach,

Burke, Andy

2009-01-01T23:59:59.000Z

134

AVTA: Hybrid-Electric Tractor Vehicles  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

135

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

136

In-Use Performance Results of Medium Duty Electric Vehicles (Presentation)  

SciTech Connect (OSTI)

This presentation describes a DOE program to monitor and report on vehicle performance and energy utilization of medium-duty and heavy-duty electric vehicles.

Walkowicz, K.

2012-07-01T23:59:59.000Z

137

Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in January 2000 and...

138

Hybrid & electric vehicle technology and its market feasibility  

E-Print Network [OSTI]

In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the current limitations and the future potential ...

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

139

AVTA: Hybrid-Electric Delivery Vehicles  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

140

Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers  

SciTech Connect (OSTI)

The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 – Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 – Conduct a fleet evaluation with selected device combination. Phase 3 – Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operators have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 – 7.8% fuel economy with the devices (This does not include tire contribution).

Beck, Jason; Salari, Kambiz; Ortega, Jason; Brown, Andrea

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories  

SciTech Connect (OSTI)

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work.

Robert W. Carling; Gurpreet Singh

2000-06-19T23:59:59.000Z

142

Heavy Duty Vehicle In-Use Emission Performance  

Broader source: Energy.gov (indexed) [DOE]

engine 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 0.01 0.1 1 10 Aerodynamic diameter Da m dNdlogDp cm3 raw CNG dr 25-40 uninsulated 6 cm x 0.6 cm...

143

Robust Lateral Control of Heavy Duty Vehicles: Final Report  

E-Print Network [OSTI]

system tracks the desired front wheel steering angle ? 1 exactly, then the sliding variable asymptotically converges to a ball

Tai, Meihua; Tomizuka, Masayoshi

2003-01-01T23:59:59.000Z

144

Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for post-2020 NAFTA line haul trucks deer11gruden.pdf More Documents & Publications High-Efficiency Engine Technologies Session Introduction The New ICE Age The New ICE Age...

145

Advanced Natural Gas Engine Technology for Heavy Duty Vehicles | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE2011 DOEOperationModeling ofof

146

Heavy Duty Vehicle Modeling & Simulation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat Pump Water Heaters|In-Use&

147

Heavy Duty Vehicle Modeling and Simulation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat Pump Water Heaters|In-Use&and

148

Heavy-Duty Vehicle Field Evaluations | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat PumpDutyEnergy 0Department

149

Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for Bioenergy and Biobased ProductsT hisDepartment

150

Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NOx Catalysis for Heavy-Duty Diesel Emissions Control Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic...

151

Heavy-Duty Low-Temperature and Diesel Combustion Research (8748...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling Heavy-Duty Low-Temperature and Diesel...

152

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents [OSTI]

A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-07-21T23:59:59.000Z

153

Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles  

E-Print Network [OSTI]

D R.L. Polk & Co. , 2006. Hybrid Vehicle Registrations Morecapital cost of the hybrid vehicle, subsidy providedfor the hybrid vehicle, horsepower of the hybrid vehicle,

Axsen, Jonn; Mountain, Dean C.; Jaccard, Mark

2009-01-01T23:59:59.000Z

154

3M heavy duty roto peen: Baseline report; Summary  

SciTech Connect (OSTI)

The roto peen scaler allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy duty flexible flap. The peens are coupled with a commercially available piece of equipment that is used to scabble or remove the concrete. The scabbled debris is then collected into 55 gallon drums by means of a vacuum system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

NONE

1997-07-31T23:59:59.000Z

155

Hydrogen in the Heavy Duty Market? | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and the Federalas ain the Heavy Duty

156

2010 Plug-In Hybrid and Electric Vehicle Research  

E-Print Network [OSTI]

2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: · Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

157

Predictive energy management for hybrid electric vehicles -Prediction horizon and  

E-Print Network [OSTI]

Predictive energy management for hybrid electric vehicles - Prediction horizon and battery capacity of a combined hybrid electric vehicle. Keywords: Hybrid vehicles, Energy Management, Predictive control, Optimal vehicle studied uses a complex transmission composed of planetary gear sets and two electric motors

Paris-Sud XI, Université de

158

Optimal Power Train Design of a Hybrid Refuse Collector Vehicle  

E-Print Network [OSTI]

Optimal Power Train Design of a Hybrid Refuse Collector Vehicle Tobias Knoke, Joachim Böcker 5251 60 2212 Abstract-- Due to the stop-and-go drive cycle of refuse collector vehicles, hybrid power), optimization, refuse collector vehicle I. INTRODUCTION Today, hybrid electric vehicles are accepted as a step

Paderborn, Universität

159

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

160

Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC...  

Broader source: Energy.gov (indexed) [DOE]

Cummins-ORNLFEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions...

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationssupervises testing in the Hybrid Vehicle Propulsion Systems

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

162

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network [OSTI]

converted plug-in hybrid vehicles. Transportation ResearchM. , 2006. Plug-In Hybrid Vehicle Analysis. Nationalgas emissions from plug-in hybrid vehicles: implications for

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

163

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

supervises testing in the Hybrid Vehicle Propulsion Systemsbattery for plug-in hybrid vehicle is complicated processstorage for Plug-in Hybrid vehicles EVS24 International

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

164

Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available...

165

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways #  

E-Print Network [OSTI]

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways # Alain Girault a a Inria the problem of the hybrid control of autonomous vehicles driving on automated highways. Vehicles to be dealt with: a vehicle driving in a single­lane highway must never collide with its leading vehicle

Girault, Alain

166

The Effects of Altitude on Heavy-Duty Diesel Truck On-Road  

E-Print Network [OSTI]

The Effects of Altitude on Heavy-Duty Diesel Truck On-Road Emissions G A R Y A . B I S H O P , * J oxide from 5772 heavy-duty diesel trucks at five locations in the United States and Europe show slightly health risk (2). These and other factors have brought new attention to diesel truck emissions. Because

Denver, University of

167

Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction Reduction  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction the friction losses of a heavy duty diesel engine. In addition, a tear down procedure needed to be created needs Discussed test cell configuration with Diesel Combustion & Emissions Laboratory Performed

Demirel, Melik C.

168

Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks  

E-Print Network [OSTI]

Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks of California, Dept. of Civil & Environmental Engineering, Berkeley, CA 94720-1710 Abstract Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel

169

Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

has expanded throughout the automotive industry and now the list is dominated by hybrid vehicles, many of which are midsized cars and even SUVs. The only non hybrid...

170

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

i Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Resources Board (CARB), battery and fuel cell EDVs are considered Zero Emission Vehicles (ZEV), hybrids for carrying power from hybrid and fuel cell vehicles to the grid. Implications for current industry directions

Firestone, Jeremy

171

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-01-01T23:59:59.000Z

172

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-12-01T23:59:59.000Z

173

Powertrain system for a hybrid electric vehicle  

DOE Patents [OSTI]

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

1999-08-31T23:59:59.000Z

174

Powertrain system for a hybrid electric vehicle  

DOE Patents [OSTI]

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

1999-08-31T23:59:59.000Z

175

Two-Phase Spray Cooling of Hybrid Vehicle Electronics: Preprint  

SciTech Connect (OSTI)

Spray cooling is a feasible cooling technology for hybrid vehicle electronics; HFE 7100 is a promising coolant.

Mudawar, I.; Bharathan, D.; Kelly, K.; Narumanchi, S.

2008-07-01T23:59:59.000Z

176

OPTIMAL DESIGN OF HYBRID FUEL CELL VEHICLES  

E-Print Network [OSTI]

Fuel cells are being considered increasingly as a viable alternative energy source for automobiles because of their clean and efficient power generation. Numerous technological concepts have been developed and compared in terms of safety, robust operation, fuel economy, and vehicle performance. However, several issues still exist and must be addressed to improve the viability of this emerging technology. Despite the relatively large number of models and prototypes, a model-based vehicle design capability with sufficient fidelity and efficiency is not yet available in the literature. In this article we present an analysis and design optimization model for fuel cell vehicles that can be applied to both hybrid and non-hybrid vehicles by integrating a fuel cell vehicle simulator with a physics-based fuel cell model. The integration is achieved via quasi-steady fuel cell performance maps, and provides the ability to modify the characteristics of fuel cell systems with sufficient accuracy (less than 5 % error) and efficiency (98 % computational time reduction on average). Thus, a vehicle can be optimized subject to constraints that include various performance metrics and design specifications so that the overall efficiency of the hybrid fuel cell vehicle can be improved by 14 % without violating any constraints. The obtained optimal fuel cell system is also compared to other, not vehicle-related, fuel cell systems optimized for maximum power density or maximum efficiency. A tradeoff between power density and efficiency can be observed depending on the size of compressors. Typically, a larger compressor results in higher fuel cell power density at the cost of fuel cell efficiency because it operates in a wider current region. When optimizing the fuel cell

Jeongwoo Han; Michael Kokkolaras; Panos Papalambros

177

Plug-In Hybrid Electric Vehicle Value Proposition Study  

E-Print Network [OSTI]

Plug-In Hybrid Electric Vehicle Value Proposition Study IInntteerriimm RReeppoorrtt:: PPhhaassee 11 Government or any agency thereof. ORNL/TM-2008/076 #12;Plug-in Hybrid Electric Vehicle Value Proposition 2009 i ACKNOWLEDGEMENTS The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study

Pennycook, Steve

178

Plug-In Hybrid Electric Vehicle Value Proposition Study  

E-Print Network [OSTI]

Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 3:Phase 1, Task 3: Technic Government or any agency thereof. #12;ORNL/TM-2008/068 Plug-in Hybrid Electric Vehicle Value Proposition The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study is a collaborative effort between

Pennycook, Steve

179

Plug-In Hybrid Electric Vehicle Value Proposition Study  

E-Print Network [OSTI]

Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 2: Select Value Propositions Government or any agency thereof. #12;ORNL/TM-2008/056 Plug-in Hybrid Electric Vehicle Value Proposition-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007

Pennycook, Steve

180

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains  

E-Print Network [OSTI]

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains By Jeffrey of the author. #12;ii Modelling, Simulation, Testing and Optimization of Advanced Hybrid Vehicle Powertrains prototypes. A comprehensive survey of the state of the art of commercialized hybrid vehicle powertrains

Victoria, University of

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hybrid & Hydrogen Vehicle Research Laboratory  

E-Print Network [OSTI]

such as Challenge X use this facility to develop advanced vehicles. Hydrogen Fueling Station Developed byAir Products and Chemicals, Inc. with funding from US DOE, the commercial hydrogen fueling station was installed at Penn State University Park in Fall 2004. This station will be used to fuel in-service hydrogen

Lee, Dongwon

182

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Hybrid Vehicle? Study #715238, conducted for National Renewableand Renewable Energy, Report DOE/EE-0314 Valdes-Dapena, P. (2005) Hybrids:

Heffner, Reid R.

2007-01-01T23:59:59.000Z

183

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways  

E-Print Network [OSTI]

A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways Alain Girault a aInria Rh of the hybrid control of autonomous vehicles driving on automated highways. Vehicles are autonomous, so they do not commu- nicate with each other nor with the infrastructure. Two problems have to be dealt with: a vehicle

Girault, Alain

184

Chicago Area Alternative Fuels Deployment Project (CAAFDP)  

Broader source: Energy.gov (indexed) [DOE]

310 CNG Vehicles (129 Medium & Heavy Duty), 83 Gasoline Hybrids, 10 Heavy Duty Diesel Hybrids and PHEVs 316 Electric Charging stations (73 DC Fast Charging), 17 CNG...

185

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network [OSTI]

detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

186

U.S. Department of Energy: State of Clean Cities Program Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

vehicle & infrastructure * Electricity * Ethanol * Propane * Natural Gas * Hydrogen * Biodiesel (B100) Idle Reduction Increase Technology UsePractices * Heavy-duty trucks *...

187

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

SciTech Connect (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

188

Hybrid Human Powered Vehicle (Phase 3) The Zero EMission (ZEM) Vehicle Project  

E-Print Network [OSTI]

The Construction of ZEM Car ­ a hybrid human/electric/solar powered vehicle (P-2) (2007-2008) Principal) Hybrid human pedaling/ electric powered vehicle- Designed and constructed P-1 prototype Sponsor: SJSU) Hybrid human pedaling/ Electric/solar powered vehicle (HPV-ZEM)-Designed P-2 Sponsor: SJSU-COE 16 ME + 3

Su, Xiao

189

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

190

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network [OSTI]

to approximately 40 kW. The hybrid vehicles are of interestat $0.84/therm). The hybrid vehicles in motor-generator modegas reformer, and the hybrid vehicle. However, the simple

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

191

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network [OSTI]

by electric and hybrid vehicles", SAETechmcal Papers No.$ not Q 4. If you chose the Hybrid Vehicle - can you specifymay response to hybrid vehicles Finally, we suggest that

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

192

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network [OSTI]

by electric and hybrid vehicles", SAE Technical Papers No.household response to hybrid vehicles. Finally, we suggestas electric or hybrid vehicles. Transitions in choices of

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

193

Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits...  

Broader source: Energy.gov (indexed) [DOE]

9 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Dearborn, Michigan, August 3-6, 2009 Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits...

194

Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

ID-NR.12345-1 Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines Deer Conference 2003 Presented by Josef Maier AVL Powertrain Engineering ID-NR.12345-2 Overview of...

195

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Broader source: Energy.gov (indexed) [DOE]

Research Council Canada Ottawa, Ontario, Canada Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels W. Stuart Neill 9 th DEER Conference, Newport, Rhode...

196

Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

Eskandari Halvaii, Ali

2012-07-16T23:59:59.000Z

197

Brake blending strategy for a hybrid vehicle  

DOE Patents [OSTI]

A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

Boberg, Evan S. (Hazel Park, MI)

2000-12-05T23:59:59.000Z

198

Modeling and Simulation of Electric and Hybrid Vehicles  

E-Print Network [OSTI]

, and fuel cell vehicles, such as electric machines, power electronics, electronic continuously variableINVITED P A P E R Modeling and Simulation of Electric and Hybrid Vehicles Tools that can model embedded software as well as components, and can automate the details of electric and hybrid vehicle design

Mi, Chunting "Chris"

199

Hybrid Vehicles: a Temporary Step J.J. CHANARON1  

E-Print Network [OSTI]

of full electric vehicles probably with hydrogen powered fuel cells. Such assumption is shared by several the diffusion of hybrid electric technology in vehicles. It is put into question whether the current strong electric components. It is found that most companies integrate hybrid electric vehicles in their technology

Paris-Sud XI, Université de

200

Robust Hybrid Control for Autonomous Vehicle Motion Planning  

E-Print Network [OSTI]

Robust Hybrid Control for Autonomous Vehicle Motion Planning Emilio Frazzoli 1 Munther A. Dahleh 2 on a hybrid automaton, the states of which represent feasible trajectory primitives for the vehicle Eric Feron 3 Abstract The operation of an autonomous vehicle in an unknown, dynamic environment

Sontag, Eduardo

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles Hui Zhang1 , Leon M -- The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain

Tolbert, Leon M.

202

ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric  

E-Print Network [OSTI]

ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

203

Optimally controlling hybrid electric vehicles using path forecasting  

E-Print Network [OSTI]

Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

Katsargyri, Georgia-Evangelina

2008-01-01T23:59:59.000Z

204

Power Conditioning for Plug-In Hybrid Electric Vehicles  

E-Print Network [OSTI]

Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) connect to external sources to charge the batteries. Moreover, PHEVs can supply...

Farhangi, Babak

2014-07-25T23:59:59.000Z

205

Optimally Controlling Hybrid Electric Vehicles using Path Forecasting  

E-Print Network [OSTI]

The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

Kolmanovsky, Ilya V.

206

Hybrid Energy Storage System Integration For Vehicles , Hai Zhou  

E-Print Network [OSTI]

electric-drive vehicles have shown promises for substantial reductions in petroleum use and vehicle emis, Electric-Drive Vehicle, Design, Optimization 1. Introduction Transportation electrification has drawn these challenges [3]. Hybrid electric vehicles (HEVs) have been fast adopted and widely deployed over the past

Zhou, Hai

207

A study in hybrid vehicle architectures : comparing efficiency and performance  

E-Print Network [OSTI]

This paper presents a comparison of performance and efficiencies for four vehicle power architectures; the internal combustion engine (ICE), the parallel hybrid (i.e. Toyota Prius), the serial hybrid (i.e. Chevrolet Volt), ...

Cotter, Gavin M

2009-01-01T23:59:59.000Z

208

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

SciTech Connect (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

209

System Simulations of Hybrid Electric Vehicles with Focus on...  

Broader source: Energy.gov (indexed) [DOE]

System Simulations of Hybrid Electric Vehicles with Focus on Emissions Zhiming Gao Veerathu K. Chakravarthy Josh Pihl C. Stuart Daw Maruthi Devarakonda Jong Lee...

210

2011 Annual Merit Review Results Report - Hybrid and Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

01.pdf More Documents & Publications 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Introduction 2012...

211

Toyota Gen III Prius Hybrid Electric Vehicle Accelerated Testing...  

Broader source: Energy.gov (indexed) [DOE]

HEV Accelerated Testing - September 2011 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a fleet in...

212

Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)  

SciTech Connect (OSTI)

Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

Pesaran, A.; Gonder, J.; Keyser, M.

2009-04-01T23:59:59.000Z

213

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network [OSTI]

T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents’

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

214

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

215

Ultracapacitors for Electric and Hybrid Vehicles - Performance Requirements, Status of the Technology, and R&D Needs  

E-Print Network [OSTI]

5. Burke, A.F. , Electric/Hybrid Vehicle Super Car Designsin Electric and Hybrid Vehicles, SAE Paper No. 951951,for Electric and Hybrid Vehicles - A Technology Update,

Burke, Andrew F

1995-01-01T23:59:59.000Z

216

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybrid Electric Vehicles

217

A Verified Hybrid Controller For Automated Vehicles  

E-Print Network [OSTI]

con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

Lygeros, J.; Godbole, D. N.; Sastry, S.

1997-01-01T23:59:59.000Z

218

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network [OSTI]

travel by electric and hybrid vehicles. SAE Technical PapersIn contrast to a hybrid vehicle which combines multipleElectric, Hybrid and Other Alternative Vehicles. A r t h u r

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

219

Symbolism in California’s Early Market for Hybrid Electric Vehicles  

E-Print Network [OSTI]

new-cars/ high-cost-of-hybrid-vehicles-406/overview.htm>.For Tony and Ellen, a hybrid vehicle category exists thata larger category of hybrid vehicles, which includes compact

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2008-01-01T23:59:59.000Z

220

Optimal design of hybrid and non-hybrid fuel cell vehicles  

E-Print Network [OSTI]

Optimal design of hybrid and non-hybrid fuel cell vehicles by Jeongwoo Han A thesis submitted cell vehicles by Jeongwoo Han Chair: Panos Y. Papalambros Fuel cells are under development technology, however, still has many issues to be addressed for market acceptance. Several fuel cell vehicle

Papalambros, Panos

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Heavy Duty Roots Expander for Waste Heat Energy Recovery  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

222

Heavy Duty Powertrain System Optimization and Emissions Test Procedure Development  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

223

Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Results of...

224

2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Matthew Shirk; Tyler Gray; Jeffrey Wishart

2014-09-01T23:59:59.000Z

225

Robust Hybrid Control for Autonomous Vehicle Motion Planning  

E-Print Network [OSTI]

Robust Hybrid Control for Autonomous Vehicle Motion Planning Emilio Frazzoli Munther A. Dahleh y Eric Feron z Abstract The operation of an autonomous vehicle in an unknown, dynamic environment is a very complex problem, especially when the vehicle is required to use its full maneuvering capabilities

Feron, Eric

226

Distributing Urea for the On-Road Vehicle Market  

Broader source: Energy.gov (indexed) [DOE]

Urea for the On-Road Vehicle Market Estimated Urea Consumption Several Light- and Heavy-Duty EngineVehicle Manufacturers Have Selected SCR as Their NOx Control Strategy *...

227

Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle  

SciTech Connect (OSTI)

This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

Nelson, S.C.

2002-11-14T23:59:59.000Z

228

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Broader source: Energy.gov (indexed) [DOE]

testing does not in any way reflect the properties of the vehicle itself (weight, aerodynamic drag, design of the driveline etc.) - no requirements to report fuel economy VTT...

229

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed, and fuel cell. Battery EDVs can store electricity, charging during low demand times and discharging when power is scarce and prices are high. Fuel cell and hybrid EDVs are sources of new power generation

Firestone, Jeremy

230

Zero-Emission Heavy-Duty Drayage Truck Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to start in 514 10 Battery Modules Induction Motor BMS System Battery BMS Hydrogen Cylinders Fuel Cell DCDC Converter Battery Modules Powertrain Balqon US Hybrid...

231

Hybrid vehicle powertrain system with power take-off driven vehicle accessory  

DOE Patents [OSTI]

A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

2006-09-12T23:59:59.000Z

232

Hybrid & electric vehicle technology and its market feasibility ; Hybrid and electric vehicle technology and its market feasibility ; HEV technology and its market feasibility ; PHEV technology and its market feasibility ; EV technology and its market feasibility .  

E-Print Network [OSTI]

??In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the… (more)

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

233

Analysis of parasitic losses in heavy duty diesel engines  

E-Print Network [OSTI]

Fuel economy of large, on-road diesel engines has become even more critical in recent years for engine manufactures, vehicle OEMs, and truck operators, in view of pending CO2 emission regulations. Demands for increased ...

James, Christopher Joseph

2012-01-01T23:59:59.000Z

234

LNT + SCR Aftertreatment for Medium-Heavy Duty Applications:...  

Broader source: Energy.gov (indexed) [DOE]

DOE DEER Conference Poster Location: P-1 2 TOPIC AREAS 1. System Overview 2. System Optimization 3. Desulfation Testing 4. On-Road Vehicle Testing 3 System Overview reformer + LNT...

235

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network [OSTI]

rd International Electric Vehicle Symposium and Exposition (Electric and Hybrid Electric Vehicle Applications, Sandiaand Impacts of Hybrid Electric Vehicle Options EPRI, Palo

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

236

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network [OSTI]

for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

237

Close Look at Hybrid Vehicle Loyalty and Ownership  

SciTech Connect (OSTI)

In a news release dated April 9, 2012, Polk stated that only 35% of hybrid owners bought a hybrid again when they returned to market in 2011. These findings were based on an internal study conducted by Polk. The study also indicated that if repurchase behavior among the high volume audience of Toyota Prius owners wasn t factored in; hybrid loyalty would drop to under 25%. This news release has generated a lot of interest and concern by the automobile industry as well as consumers, since it was published, and caused many to think about the idea of hybrid loyalty as well as factors that influence consumers. Most reactions to the 35% hybrid loyalty dealt with concerns of the viability of hybrid technology as part of the solution to address transportation energy challenges. This paper attempts to shed more light on Polk s hybrid loyalty study as well as explore several information sources concerning hybrid loyalty status. Specifically, major factors that might impact the selection and acquisition of hybrid vehicles are addressed. This includes investigating the associations between hybrid market shares and influencing factors like fuel price and hybrid incentives, as well as the availability of hybrid models and other highly fuel efficient vehicle options. This effort is not in-depth study, but rather a short study to see if Polk s claim could be validated. This study reveals that Polk s claim was rather misleading because its definition of loyalty was very narrow. This paper also suggests that Polk s analysis failed to account for some very important factors, raising the question of whether it is fair to compare a vehicle drive train option (which hybrids are) with a vehicle brand in terms of loyalty and also raises the question of whether hybrid loyalty is even a valid point to consider. This report maintains that Polk s study does not prove that hybrid owners were dissatisfied with their vehicles, which was a common theme among reporting news agencies when Polk initially released their findings. In this brief review, the team has looked at factors that might contribute to a consumer choosing to not purchase a hybrid; including the increase in manufacture s overall vehicle mpg and the percentage of the vehicle market owned by hybrids.

Hwang, Ho-Ling [ORNL] [ORNL; Chin, Shih-Miao [ORNL] [ORNL; Wilson, Daniel W [ORNL] [ORNL; Oliveira Neto, Francisco Moraes [ORNL] [ORNL; Taylor, Rob D [ORNL] [ORNL

2013-01-01T23:59:59.000Z

238

Cold-Start Emissions Control in Hybrid Vehicles Equipped with...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Z. Gao, C.S. Daw, M.-Y. Kim, J.-S. Choi, J.E. Parks II, and D.E. Smith Oak Ridge...

239

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network [OSTI]

hybrids with high power electric motors for which it may beusing only a 6 kW electric motor. Vehicle projects inhybrids with high power electric motors for which it may be

Burke, Andy

2009-01-01T23:59:59.000Z

240

Control system design for a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the design of control systems for a parallel hybrid electric drive train which is an alternative to conventional passenger vehicles. The principle components of the drive train are a small internal combustion engine...

Buntin, David Leighton

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Optimized control studies of a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the development of a control scheme to maximize automobile fuel economy and battery state-of-charge (SOC) while meeting exhaust emission standards for parallel hybrid electric vehicles, which are an alternative to conventional...

Bougler, Benedicte Bernadette

1995-01-01T23:59:59.000Z

242

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

1 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy National...

243

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

2 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results Tyler Gray Mathew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

244

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

5 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

245

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

6 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

246

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

3 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

247

Path dependent receding horizon control policies for hybrid electric vehicles  

E-Print Network [OSTI]

Future hybrid electric vehicles (HEVs) may use path-dependent operating policies to improve fuel economy. In our previous work, we developed a dynamic programming (DP) algorithm for prescribing the battery state of charge ...

Kolmanovsky, Ilya V.

248

Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric Vehicles.  

E-Print Network [OSTI]

??This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated… (more)

Moshirvaziri, Mazhar

2012-01-01T23:59:59.000Z

249

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network [OSTI]

AF. Comparisons of Lithium-ion Batteries and UltracapacitorsResults with Lithium-ion Batteries. EET- 2008 European Ele-Comparisons with Lithium- ion Batteries for Hybrid vehicle

Burke, Andy

2009-01-01T23:59:59.000Z

250

Success Stories | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev...

251

Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology  

SciTech Connect (OSTI)

This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

Simpson, A.

2006-11-01T23:59:59.000Z

252

Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network [OSTI]

promoted electric and hybrid vehicles to reduce urban airthe vehicle, and from hybrid vehicles, i.e. , adding batteryHaving researched hybrid vehicle and other pro-environmental

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

253

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

hybrid vehicle applications ultracap energy stored Wh ultracap peak power kW systemhybrid-electric vehicles Type of hybrid System Useable energysystem. In the case of a charge sustaining hybrid, the useable energy

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

254

A hybrid vehicle evaluation code and its application to vehicle design  

SciTech Connect (OSTI)

This report describes a hybrid vehicle simulation model, which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates interactively, with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This report also documents the application of the code to a hybrid vehicle that operates with a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine-generator efficiency, flywheel efficiency, and flywheel energy and power capacities.

Aceves, S.M.; Smith, J.R.

1994-07-15T23:59:59.000Z

255

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

General Motors’ Silverado truck is a “light“ hybrid. It replaces the normal flywheel of a gasoline engine

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

256

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

257

Assessment of the validity of conductivity as an estimate of total dissolved solids in heavy-duty coolants  

SciTech Connect (OSTI)

Conductivity is widely used in the analysis of heavy-duty coolants to estimate total dissolved solids. TDS is of concern in heavy-duty coolants because the practice of adding supplemental coolant additives (SCAs) to the coolant can lead to overloading and to subsequent water pump seal weepage and failure. Conductivity has the advantage of being quick and easy to measure and the equipment is inexpensive. However, questions are continually raised as to whether conductivity truly is a valid method of estimating TDS and, if so, over what concentration range. The introduction of new chemistries in heavy-duty coolants and new extended service interval (ESI) technologies prompts a critical assessment. Conductivity and TDS measurements for all of the coolants and SCAs used in heavy-duty engines in North America will be presented. The effects of glycol concentration on conductivity will also be examined.

Carr, R.P. [Penray Companies, Inc., Wheeling, IL (United States)

1999-08-01T23:59:59.000Z

258

High temperature solid lubricant materials for heavy duty and advanced heat engines  

SciTech Connect (OSTI)

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

DellaCorte, C.; Wood, J.C.

1994-10-01T23:59:59.000Z

259

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle  

E-Print Network [OSTI]

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor

Mi, Chunting "Chris"

260

Navigation and Control of the Nereus Hybrid Underwater Vehicle for Global Ocean Science to  

E-Print Network [OSTI]

Navigation and Control of the Nereus Hybrid Underwater Vehicle for Global Ocean Science to 11,000m an overview of the navigation and control system design for the new Nereus hybrid underwater vehicle Nereus hybrid underwater vehicle and summarizes the vehicle's navigation and control performance during

Whitcomb, Louis L.

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

market, plug-in hybrid vehicles (PHEVs) are now consideredof Current Knowledge of Hybrid Vehicle Characteristics andalso called PHEV (Plug-in Hybrid Vehicle) because they are

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

262

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

of Conventional vs. Hybrid Vehicles, paper to be presented15 Table 10 Hybrid Vehicle Sales to Date - North America &Power Projections of Hybrid Vehicle Characteristics (1999-

Burke, Andy

2004-01-01T23:59:59.000Z

263

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

is not true—remember the diesel electric locomotive. One bigrunning on gasoline or diesel with electric motors that usediesel vehicles, as well as encouraging improvements in electric

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

264

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

gasoline or diesel with electric motors that use electricityadditional power from an electric motor. Future designs maypower plant and larger electric motor. Hybrid technology is

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

265

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

266

Electromagnetic gearing applications in hybrid-electric vehicles  

E-Print Network [OSTI]

switched reluctance electromagnetic gear in mode 2b. . . . . 67 3. 12 Mode 2c. m, = 0, m, & 0, T, & 0. 68 LIST OF FIGURES (Continued) Figure Page 3. 13 Mode 2d. ca, = 0, c0, & 0, T, & 0. 69 3. 14 a). Phase A-A' is permanently energized. Rotor poles 1...-up of the transmotor hybrid. 127 5. 10 Engine runs at no load and the transmotor is de-energized. . . . 128 5. 11 Forward motion of the transmotor hybrid. 129 5. 12 Forward braking of the vehicle. 133 5. 13 Reverse direction motion of the vehicle. 135 5. 14...

Sodhi, Sameer

1994-01-01T23:59:59.000Z

267

Intelligent energy management agent for a parallel hybrid vehicle  

E-Print Network [OSTI]

INTELLIGENT ENERGY MANAGEMENT AGENT FOR A PARALLEL HYBRID VEHICLE A Dissertation by JONG-SEOB WON Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree of DOCTOR OF PHILOSOPHY May... 2003 Major Subject: Mechanical Engineering INTELLIGENT ENERGY MANAGEMENT AGENT FOR A PARALLEL HYBRID VEHICLE A Dissertation by JONG-SEOB WON Submitted to Texas A&M University in partial ful llment of the requirements for the degree of DOCTOR...

Won, Jong-Seob

2004-09-30T23:59:59.000Z

268

A hybrid vehicle evaluation code and its application to vehicle design. Revision 2  

SciTech Connect (OSTI)

This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates power train dimensions, fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a range of 480 km (300 miles), with a predicted gasoline equivalent fuel efficiency of 33.7 km/liter (79.3 mpg).

Aceves, S.M.; Smith, J.R.

1994-12-13T23:59:59.000Z

269

A hybrid vehicle evaluation code and its application to vehicle design. Revision 1  

SciTech Connect (OSTI)

This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0--96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a predicted range of 480 km (300 miles), with a gasoline equivalent fuel efficiency of 34.2 km/liter (80.9 mpg).

Aceves, S.M.; Smith, J.R.

1994-09-15T23:59:59.000Z

270

Ultracapacitor Boosted Fuel Cell Hybrid Vehicle  

E-Print Network [OSTI]

With the escalating number of vehicles on the road, great concerns are drawn to the large amount of fossil fuels they use and the detrimental environmental impacts from their emissions. A lot of research and development have been conducted...

Chen, Bo

2010-01-14T23:59:59.000Z

271

Design of a fuzzy controller for energy management of a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the design of a control scheme based on Fuzzy Logic to minimize automobile fuel consumption and exhaust emissions while maximizing battery state of charge (SOC) for hybrid vehicles. The advantages the hybrid vehicle has over...

Estrada Gutierrez, Pedro Cuauhtemoc

1997-01-01T23:59:59.000Z

272

E-Print Network 3.0 - advanced hybrid vehicle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Saving Cash Toyota Supra HV-R Hybrid Race Car Trends: GM Natural Gas Vehicles See All Search Honda... Vehicles Search Our Inventory of Quality Used Hybrids, Research & more...

273

UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE...  

Energy Savers [EERE]

UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence Presentation...

274

Plug-In Hybrid Vehicle Analysis (Milestone Report)  

SciTech Connect (OSTI)

NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

2006-11-01T23:59:59.000Z

275

Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Demonstrates the application of an artificial neural network (ANN) for modeling the energy storage system of a hybrid electric vehicle.

Bhatikar, S. R.; Mahajan, R. L.; Wipke, K.; Johnson, V.

1999-08-01T23:59:59.000Z

276

Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint  

SciTech Connect (OSTI)

This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

277

Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)  

SciTech Connect (OSTI)

Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

Pesaran, A.; Markel, T.; Simpson, A.

2006-10-01T23:59:59.000Z

278

Optimization of a CNG series hybrid concept vehicle  

SciTech Connect (OSTI)

Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

1995-09-22T23:59:59.000Z

279

Heavy Vehicle Systems, Int. J. of Vehicle Design, Vol. 11, Nos. 3/4, 2004 349 Modelling and control of a medium-duty hybrid  

E-Print Network [OSTI]

tool, and its application to the design of a power management control algorithm. The hybrid electric to improve vehicle fuel economy significantly, compared with the original vehicle, powered only by a diesel engine. Keywords: electric vehicles, electric-vehicle simulation, hybrid electric vehicles, hybrid

Peng, Huei

280

City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program  

SciTech Connect (OSTI)

The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

None

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electric machine for hybrid motor vehicle  

DOE Patents [OSTI]

A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

Hsu, John Sheungchun (Oak Ridge, TN)

2007-09-18T23:59:59.000Z

282

Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scaleof EnergyVehicle

283

Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scaleof EnergyVehicleDepartment of Energy

284

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles  

E-Print Network [OSTI]

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du1 , Leon M vehicle motor drive applications and hybrid electric vehicle motor drive applications. Keywords: hybrid cascaded H-bridge multilevel converter, DC voltage balance control, multilevel motor drive, electric

Tolbert, Leon M.

285

Fig. 1. Typical topological arrangement of a hybrid fuel cell vehicle drive train [2].  

E-Print Network [OSTI]

Fig. 1. Typical topological arrangement of a hybrid fuel cell vehicle drive train [2]. TABLE I designed with more robust features. I. INTRODUCTION Fuel cell vehicles (FCV) are widely considered of a hybrid fuel cell vehicle is shown in Fig. 1 [2]. Developments in hybrid automobile industry have

Tolbert, Leon M.

286

Paper No. 09-3009 Plug-In Hybrid Electric Vehicles' Potential for  

E-Print Network [OSTI]

Paper No. 09-3009 Plug-In Hybrid Electric Vehicles' Potential for Petroleum Use Reduction: Issues of the Government. #12;Vyas, Santini, and Johnson Page 1 Plug-In Hybrid Electric Vehicles' Potential for Petroleum of petroleum use reduction by widespread introduction of plug-in hybrid electric vehicles (PHEVs). Travel day

Kemner, Ken

287

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in  

E-Print Network [OSTI]

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks Committee Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks) Departmental Member Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction

Victoria, University of

288

2001-01-1334 Integrated, Feed-Forward Hybrid Electric Vehicle  

E-Print Network [OSTI]

1 2001-01-1334 Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use of Automotive Engineers, Inc. ABSTRACT A hybrid electric vehicle simulation tool (HE-VESIM) has been developed global crude oil supplies stimulate research aimed at new, fuel-efficient vehicle technologies. Hybrid-electric

Peng, Huei

289

An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles  

E-Print Network [OSTI]

An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles F. Khoucha1 presents a fuzzy logic controller for a Parallel Hybrid Electric Vehicle (PHEV). The PHEV required driving economy, and emissions. Index Terms--Parallel Hybrid Electric Vehicle (PHEV), Internal Combustion Engine

Brest, Université de

290

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES  

E-Print Network [OSTI]

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES.e., the engine and electric machines) in a plug-in hybrid electric vehicle (PHEV). Existing studies focus mostly. INTRODUCTION This paper examines plug-in hybrid electric vehicles (PHEVs), i.e., automobiles that can extract

Krstic, Miroslav

291

Design of Electric or Hybrid vehicle alert sound system for pedestrian  

E-Print Network [OSTI]

Design of Electric or Hybrid vehicle alert sound system for pedestrian J.-C. Chamard and V, France 1691 #12;The arrival of fully or hybrid electric vehicles raised safety problems respect the environment to warn of his approach. However, hybrid and electric vehicles can potentially be dangerous

Boyer, Edmond

292

Optimal Design of Power-Split Transmissions for Hydraulic Hybrid Passenger Vehicles  

E-Print Network [OSTI]

Optimal Design of Power-Split Transmissions for Hydraulic Hybrid Passenger Vehicles Kai Loon Cheong, Perry Y. Li and Thomas R. Chase Abstract-- Hydraulic hybrid vehicles are inherently power dense. Power and input coupled power-split configurations. Keywords: Hybrid vehicles, hydraulics, power-split, engine

Li, Perry Y.

293

Quasi-Static Analysis of a Leg-Wheel Hybrid Vehicle for Enhancing Stair Climbing Ability  

E-Print Network [OSTI]

Quasi-Static Analysis of a Leg-Wheel Hybrid Vehicle for Enhancing Stair Climbing Ability Pattaramon}@kmutt.ac.th stl@kmitnb.ac.th Abstract - This paper presents quasi-static analysis of a leg- wheel hybrid vehicle. Index Terms - Leg-Wheel hybrid vehicle, Stair climbing ability, Quasi-static analysis I. INTRODUCTION

Laksanacharoen, Sathaporn

294

Field Trials of the Nereus Hybrid Underwater Robotic Vehicle in the Challenger Deep of the  

E-Print Network [OSTI]

Field Trials of the Nereus Hybrid Underwater Robotic Vehicle in the Challenger Deep of the Mariana of the Nereus hybrid underwater robotic vehicle (HROV) conducted in May and June 2009 in the Challenger Deep. INTRODUCTION On May 31, 2009 the Nereus hybrid remotely operated vehicle (HROV) successfully completed its

Whitcomb, Louis L.

295

A Stochastic Control Strategy for Hybrid Electric Vehicles Chan-Chiao Lin1  

E-Print Network [OSTI]

A Stochastic Control Strategy for Hybrid Electric Vehicles Chan-Chiao Lin1 , Huei Peng1 , and J-2122 grizzle@umich.edu Abstract The supervisory control strategy of a hybrid vehicle coordinates the operation-based control strategy trained from deterministic DP results. 1. Introduction Hybrid vehicle powertrains have

Grizzle, Jessy W.

296

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-09-01T23:59:59.000Z

297

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

298

Adaptive powertrain control for plugin hybrid electric vehicles  

DOE Patents [OSTI]

A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

Kedar-Dongarkar, Gurunath; Weslati, Feisel

2013-10-15T23:59:59.000Z

299

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

efficiency range and obtaining additional power from an electric motor.efficiency, and emissions. The computer controls when the gasoline engine and electric motorelectric motors that use electricity stored in batteries. The purpose of these hybrid designs is to increase efficiency.

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

300

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWith PropaneHeavy-Duty

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Symbolism in California’s Early Market for Hybrid Electric Vehicles  

E-Print Network [OSTI]

2006. The Dollars and Sense of Hybrid Cars. AvailableSurvey of Oregon Hybrid Gas-Electric Car Owners. Portland.cars/new-cars/ high-cost-of-hybrid-vehicles-406/overview.htm

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2008-01-01T23:59:59.000Z

302

Control system and method for a hybrid electric vehicle  

DOE Patents [OSTI]

A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2001-01-01T23:59:59.000Z

303

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

2014: Robust Nitrogen oxideAmmonia Sensors for Vehicle on-board Emissions Control CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines...

304

Control system and method for a hybrid electric vehicle  

DOE Patents [OSTI]

Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

Tamor, Michael Alan (Toledo, OH)

2001-03-06T23:59:59.000Z

305

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

306

Analysis of C1, C2, and C10 through C33 particle-phase and semi-volatile organic compound emissions from heavy-duty diesel engines  

E-Print Network [OSTI]

from heavy-duty diesel engines Z. Gerald Liu a,*, Devin R. Berg a , Victoria N. Vasys a , Melissa E 18 November 2009 Keywords: Organic compound emissions Particulate matter emissions Heavy-duty diesel engines Aftertreatment technology Diesel particulate filter Chemical speciation a b s t r a c t To meet

Wu, Mingshen

307

Journal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 Uncontrolled Generation of Traciton Motors in Hybrid Electric Vehicles  

E-Print Network [OSTI]

magnet synchronous machines (PMSM) are provided with advantages of small size, light weight, and high power density, therefore PMSM are primary choice as traction motors in hybrid vehicles. In addition hybrid vehicles use PMSM [Kassakian , 2000]. However, interior permanent magnet synchronous motor (IPMSM

Mi, Chunting "Chris"

308

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

309

Nonlinear adaptive sliding mode control of a powertrain supplying Fuel Cell Hybrid Vehicle  

E-Print Network [OSTI]

Nonlinear adaptive sliding mode control of a powertrain supplying Fuel Cell Hybrid Vehicle M. D, Fuel cell vehicle, hybrid powertrain, dc/dc converter. I. INTRODUCTION The transport domain remains with Fuel Cell Vehicles (FCV). Although this fuel cell, which serves to produce electricity by oxidizing

Paris-Sud XI, Université de

310

Addendum to 'An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles'  

E-Print Network [OSTI]

to `An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles' Derek electric vehicles' (D M Lemoine et al 2008 Environ. Res. Lett. 3 014003) to the case of all-electric in which EVs could dramatically change the results we obtained for plug-in hybrid electric vehicles (PHEVs

Kammen, Daniel M.

311

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

312

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks  

E-Print Network [OSTI]

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks management system for hybrid electric vehicles (HEV), using neural networks (NN), was developed and tested. The system minimizes the energy requirement of the vehicle and can work with different primary power sources

Catholic University of Chile (Universidad Católica de Chile)

313

A Collision Avoidance Control for Multi-Vehicle Using PWA/MLD Hybrid System Representation  

E-Print Network [OSTI]

A Collision Avoidance Control for Multi-Vehicle Using PWA/MLD Hybrid System Representation Masakazu for multi-vehicle systems which are modeled as a class of hybrid systems, piecewise affine (PWA) systems. We propose an optimal trajectory path which guarantees that the vehicle moves to the objective point

314

The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

such as wind and solar energy and from nuclear energy. Fuel cell vehicles (FCV) use hydrogen as fuel to produceINVITED P A P E R The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles, and constraints on energy resources, the electric, hybrid, and fuel cell vehicles have attracted more and more

Leung, Ka-Cheong

315

Periodically Controlled Hybrid Systems Verifying A Controller for An Autonomous Vehicle  

E-Print Network [OSTI]

Periodically Controlled Hybrid Systems Verifying A Controller for An Autonomous Vehicle Tichakorn Hybrid Au- tomata (PCHA) for describing a class of hybrid control systems. In a PCHA, control actions of the planner-controller subsystem of an autonomous ground vehicle, and in deriving geometric properties

Murray, Richard M.

316

Safety in Semi-autonomous Multi-vehicle Systems: A Hybrid Control Approach  

E-Print Network [OSTI]

1 Safety in Semi-autonomous Multi-vehicle Systems: A Hybrid Control Approach Rajeev Verma, Member illustrate our results on an in-scale multi-vehicle roundabout test-bed. Index Terms--Safety, hybrid control on the problem of safe design in the presence of human operators and employ a formal hybrid control approach. We

Entekhabi, Dara

317

Heavy-Duty Truck Emissions in the South Coast Air Basin of Gary A. Bishop,* Brent G. Schuchmann,  

E-Print Network [OSTI]

Heavy-Duty Truck Emissions in the South Coast Air Basin of California Gary A. Bishop,* Brent G, Colorado 80208, United States ABSTRACT: California and Federal emissions regulations for 2007 and newer of nitrogen spurring the introduction of new aftertreatment systems. Since 2008, four emission measurement

Denver, University of

318

Effects of a Zeolite-Selective Catalytic Reduction System on Comprehensive Emissions from a Heavy-Duty Diesel Engine  

E-Print Network [OSTI]

-Duty Diesel Engine Z. Gerald Liu and Devin R. Berg Cummins Emission Solutions, Stoughton, WI James J. Schauer spec- trum of chemical species from diesel engine emissions were investigated in this study with established procedures and com- pared between the measurements taken from a baseline heavy-duty diesel engine

Wu, Mingshen

319

Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis  

E-Print Network [OSTI]

PENNSTATE Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine and pumping frictional losses on Volvo-Mack's 11 liter Diesel Engine. Thermocouples and pressure transducers is to quantify friction losses on Volvo's current 11-liter engine model. Team members will remove hardware

Demirel, Melik C.

320

Department of Mechanical and Nuclear Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis Overview Volvo Group Powertrain Engineering is interested will need to be constructed that can motor the engine and measure power losses using a torque sensor built

Demirel, Melik C.

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer  

DOE Patents [OSTI]

An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

Tamai, Goro; Zhou, Jing; Weslati, Feisel

2014-09-02T23:59:59.000Z

322

DOE Supports PG&E Development of Next Generation Plug-in Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office (VTO), Pacific Gas and Electric (PG&E) is demonstrating that plug-in electric vehicles can provide significant benefits to medium and heavy-duty fleets,...

323

Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards  

SciTech Connect (OSTI)

Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

2005-11-01T23:59:59.000Z

324

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

horizontal drilling and hydraulic fracturing. Such advancedhorizontal drilling and hydraulic fracturing. Such advanced

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

325

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

of Biodiesel and Second Generation Biofuels on NOx Emissionsof Biodiesel and Second Generation Biofuels on NOx EmissionsBiodiesel and Second Generation Biofuels on NO x Emissions

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

326

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Fueled with Diesel or Compressed Natural Gas. EnvironmentalFueled with Diesel or Compressed Natural Gas. EnvironmentalToxic pollutants from Compressed Natural Gas and Low Sulfur

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

327

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

x emissions from biodiesel in newer engine technologies in afeedstock, biodiesel blend level, engine technology, andBiodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

328

Second Stage Intercooling Using LNG for Turbocharged Heavy Duty Road Vehicles Phase I Final Report  

SciTech Connect (OSTI)

It is well documented in engine performance literature that reduced engine inlet air temperature increases power output and reduces NO, emissions for both diesel and spark ignited (SI) engines. In addition, reduced inlet temperature increases the knock resistance of SI engines. In that most HD natural gas engines are SI derivatives of diesel engines it is appropriate to evaluate the benefits of reduced engine air temperature through LNG fuel. This project investigated the ''real world'' possibilities of a patented process for utilizing the ''cold'' in LNG to chill engine inlet air. The results support the conclusion that doing so is a practical means to increase engine power and reduce engine-out NO{sub x}.

None

1999-09-21T23:59:59.000Z

329

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Effects of Methyl Ester Biodiesel Blends on NOx Emissions.Increase When Burning Biodiesel; A New (Old) Theory. FuelE. ; Natarajan, M. Effects of Biodiesel Fuels Upon Criteria

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

330

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

natural gas engines are predominately unburned fuel, therefore, the non-methane hydrocarbon fraction of THC exhaust emissions typically trends

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

331

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

D86-96 °F °F °F Net Heat of Combustion Carbon per Unit ofenergy content or net heat of combustion than the other test

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

332

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

feedstock, biodiesel blend level, engine technology, andx emissions from biodiesel in newer engine technologies in aBiodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

333

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

of Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuel

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

334

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

of Energy National Renewable Energy Laboratory Dieseland Specifications. Renewable and Sustainable Energy Reviewstheir Reduction Approaches. Renewable and Sustainable Energy

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

335

Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2003 DEER Conference Presentation: West Virginia University - Dept. of Mechanical and Aerospace Engineering 2003deergautam.pdf More Documents & Publications...

336

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

N. -O. Field Testing of NExBTL Renewable Diesel in HelsinkiAakko, P. ; Harju, T. NExBTL-Biodiesel Fuel of the SecondAakko, P. ; Harju, T. NExBTL-Biodiesel Fuel of the Second

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

337

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

J. ; Hamze, F. ; Mak, C. LNG Research Study. Gutierrez, J.Saldivar, A. R. ; Mora, J. R. LNG Research Study-Phase 1.is representative of Peruvian LNG that has been modified to

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

338

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Emissions Comparisons from Alternative Fuel Buses and DieselEmissions Comparisons from Alternative Fuel Buses and Dieselof Biodiesel as an Alternative Fuel for Current and Future

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

339

Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | Department of Energy

340

Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | Department ofMeasuringofHeavy

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | Department ofMeasuringofHeavyDepartment of

342

Medium- and Heavy-Duty Vehicle Field Evaluations | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | Department ofMeasuringofHeavyDepartment

343

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

344

A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-Cylinder Laser DiagnosticsDOEA

345

Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Companya new high capacity anodewith Control

346

Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstructionApplications |Applications

347

Heavy Duty Vehicle In-Use Emission Performance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat Pump Water Heaters|In-Use

348

Heavy-Duty Powertrain and Vehicle Development - A Look Toward 2020 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat PumpDutyEnergy 0

349

Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.IndianaofPilot ProjectDepartment ofDepartment ofRulemaking

350

WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| DepartmentVolvo Trucksof Energy WIPPGaps for

351

Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilities |

352

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

to assist the energy storage battery (12 kWh) in providingbattery and ultracapacitors in the vehicles when the characteristics of the energy storageBattery, Hybrid and Fuel Cell Electric Vehicle Symposium the energy storage

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

353

A simulation-based assessment of plug-in hybrid electric vehicle architectures  

E-Print Network [OSTI]

Plug-in hybrid electric vehicles (PHEVs) are vehicles that utilize power from both an internal combustion engine and an electric battery that can be recharged from the grid. Simulations of series, parallel, and split-architecture ...

Sotingco, Daniel (Daniel S.)

2012-01-01T23:59:59.000Z

354

Prospects for plug-in hybrid electric vehicles in the United States : a general equilibrium analysis  

E-Print Network [OSTI]

The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions in carbon dioxide emissions from personal vehicle transportation in the United States over the next century, depending on the ...

Karplus, Valerie Jean

2008-01-01T23:59:59.000Z

355

DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon  

E-Print Network [OSTI]

DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon Department of Electrical vehicles has been implemented and tested successfully. The system can work with different primary power the vehicle with minimum help of the primary power source. The vehicle uses a brushless dc motor

Catholic University of Chile (Universidad Católica de Chile)

356

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

passenger cars using the ultracapacitors in micro-hybrid,passenger car using both carbon/carbon and hybrid carbonhybrid vehicle designs and operating strategies are shown in Table 1 for a mid-size passenger car.

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

357

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network [OSTI]

that could be powered entirely by electricity using plug- in vehicles. Thus, plug-in vehicles have assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas

Michalek, Jeremy J.

358

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network [OSTI]

) Note: PSAT included after-treatment thermal efficiency penalty to the diesel fuel economy · CD ElectricWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad engine vehicles (ICEVs) Regular hybrid electric vehicles (HEVs) Plug-in hybrid electric vehicles (PHEVs

359

Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

Gonder, J.; Simpson, A.

2006-11-01T23:59:59.000Z

360

Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale  

SciTech Connect (OSTI)

Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Modeling grid-connected hybrid electric vehicles using advisor, in: Applications and Advances, 2001. The Sixteenth Annual Battery Con- ference on, IEEE. pp.

2014-07-22T23:59:59.000Z

362

Optimal Control of Plug-In Hybrid Electric Vehicles with Market ...  

E-Print Network [OSTI]

Jan 13, 2014 ... Optimal Control of Plug-In Hybrid Electric Vehicles with Market Impact and Risk Attitude. Lai Wei (laiwei ***at*** ufl.edu) Yongpei Guan (guan ...

Lai Wei

2014-01-13T23:59:59.000Z

363

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

Capacitors as Energy Storage in Hybrid- Electric Vehicles:uncertainty regarding the energy storage technologies.Whether a particular energy storage technology is suitable

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

364

P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

J. Francfort

2006-06-01T23:59:59.000Z

365

Analysis of data from electric and hybrid electric vehicle student competitions  

SciTech Connect (OSTI)

The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

Wipke, K.B. [National Renewable Energy Lab., Golden, CO (United States); Hill, N.; Larsen, R.P. [Argonne National Lab., IL (United States)

1994-01-01T23:59:59.000Z

366

Thetis: A real-time Multi-Vehicles Hybrid Simulator for Heterogeneous Olivier Parodi, Lionel Lapierre, Bruno Jouvencel  

E-Print Network [OSTI]

Thetis: A real-time Multi-Vehicles Hybrid Simulator for Heterogeneous Vehicles Olivier Parodi is to present Thetis: a real-time multi-vehicles hybrid simulator for heterogeneous vehicles. This simulator, the vehicles, sensors and communication simulators and, of course, the actual embedded controller which

Boyer, Edmond

367

Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

Donald Karner

2007-12-01T23:59:59.000Z

368

Summary of In-Use Evaluation of Two Heavy Duty Hybrid Applications |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 RecoveryJuly 1, 2013 -Department

369

A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBasedToward a More Secure andMotors2012of Diesel

370

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network [OSTI]

production of further hybrid cars. ” Similarly, Larry Rhodesbuying Priuses as commute cars—hybrids were “fairly popularhybrid vehicles are being made available to (predominately new-car

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

371

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

372

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

373

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

A.A. (2007) “Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric UtilitiesWould You Buy a Hybrid Vehicle? Study #715238, conducted for

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

374

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

Greer, Mark R

2012-01-01T23:59:59.000Z

375

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

376

Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines  

SciTech Connect (OSTI)

The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was placed in the engine head. The engine was aggressively operated using a transient test cycle for 200 hours. The valve recession was periodically measured to determine valve performance. Upon completion of the test the valves were removed and returned to Caterpillar for additional assessment. Industrial in-kind support was available throughout the project period. Review of the status and research results were carried out on a regular basis (meetings and telecons) which included direction for future work activities. A significant portion of the industrial support was in the form of information exchange and technical consultation.

Kass, M.; Veliz, M. (Caterpillar, Inc.) [Caterpillar, Inc.

2011-09-30T23:59:59.000Z

377

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

378

A versatile computer model for the design and analysis of electric and hybrid vehicles  

E-Print Network [OSTI]

The primary purpose of the work reported in this thesis was to develop a versatile computer model to facilitate the design and analysis of hybrid vehicle drive-trains. A hybrid vehicle is one in which power for propulsion comes from two distinct...

Stevens, Kenneth Michael

1996-01-01T23:59:59.000Z

379

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

E-Print Network [OSTI]

An agent-based model to study market penetration of plug-in hybrid electric vehicles Margaret J 2011 Available online 29 April 2011 Keywords: Plug-in hybrid electric vehicles Market penetration Agent-based models. A recent joint report by the Electric Power Research Institute (EPRI) and the Natural Resources

Vermont, University of

380

Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger Vehicle  

E-Print Network [OSTI]

Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger Vehicle Perry Y. Li Felicitas Mensing Center for Compact and Efficient Fluid Power, University of Minnesota, Minneapolis, USA ABSTRACT Hydro-mechanical transmission (HMT) based hybrid hydraulic vehicle

Li, Perry Y.

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electrically heated particulate filter regeneration methods and systems for hybrid vehicles  

DOE Patents [OSTI]

A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

2010-10-12T23:59:59.000Z

382

Hybrid Control of a Truck and Trailer Vehicle Claudio Altafini1  

E-Print Network [OSTI]

Hybrid Control of a Truck and Trailer Vehicle Claudio Altafini1 , Alberto Speranzon2 , and Karl, SE-10044 Stockholm, Sweden, albspe@s3.kth.se, kallej@s3.kth.se Abstract. A hybrid control scheme is proposed for the stabilization of backward driving along simple paths for a miniature vehicle composed

Johansson, Karl Henrik

383

Hybrid and Hydrogen Vehicle Research Laboratory 21st Century Automotive Challenge April 17-19, 2009  

E-Print Network [OSTI]

, fuel cell, or alternative fuel. And imagine that you also have the ability to buy and sell energy fromHybrid and Hydrogen Vehicle Research Laboratory 21st Century Automotive Challenge April 17-19, 2009 Contact: J.R. Anstrom, Ph.D., Director Hybrid and Hydrogen Vehicle Research Laboratory The Thomas D

Lee, Dongwon

384

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

385

Wear and wear mechanism simulation of heavy-duty engine intake valve and seat inserts  

SciTech Connect (OSTI)

A silicon-chromium alloy frequently used for heavy-duty diesel engine intake valves was tested against eight different insert materials with a valve seat wear simulator. Wear resistance of these combinations was ranked. For each test, the valve seat temperature was controlled at approximately 510 C, the number of cycles was 864,000 (or 24 h), and the test load was 17,640 N. The combination of the silicon-chromium valve against a cast iron insert produced in the least valve seat wear, whereas a cobalt-base alloy insert produced the highest valve seat wear. In the overall valve seat recession ranking, however, the combination of the silicon-chromium valve and an iron-base chromium-nickel alloy insert had the least total seat recession, whereas the silicon-chromium valve against cobalt-base alloy, cast iron, and nickel-base alloy inserts had significant seat recession. Hardness and microstructure compatibility of valve and insert materials are believed to be significant factors in reducing valve and insert wear. The test results indicate that the mechanisms of valve seat and insert wear are a complex combination of adhesion and plastic deformation. Adhesion was confirmed by material transfer, while plastic deformation was verified by shear strain (or radial flow) and abrasion. The oxide films formed during testing also played a significant role. The prevented direct metal-to-metal contact and reduced the coefficient of friction on seat surfaces, thereby reducing adhesive and deformation-controlled wear.

Wang, Y.S.; Narasimhan, S.; Larson, J.M.; Schaefer, S.K. [Eaton Corp., Marshall, MI (United States). Engine Components Operations] [Eaton Corp., Marshall, MI (United States). Engine Components Operations

1998-02-01T23:59:59.000Z

386

Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

Gonder, J.; Ireland, J.; Cosgrove, J.

2013-04-01T23:59:59.000Z

387

How green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more environmental friendly and  

E-Print Network [OSTI]

How green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more environmental friendly and produce less pollution. Examining other aspects of electric vehicles besides tailpipe vehicles are a life cycle analysis approach must be used. Electricity: Electric vehicles will require more

Toohey, Darin W.

388

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

of a Class 8 Line-Haul Truck, SAE 2010 Commercial VehicleHeavy-Duty Long Haul Combination Truck Fuel Consumption andhaul, and long haul driving cycles were constructed using truck

Zhao, Hengbing

2013-01-01T23:59:59.000Z

389

Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets  

SciTech Connect (OSTI)

This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

Short, W.; Denholm, P.

2006-04-01T23:59:59.000Z

390

Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis  

E-Print Network [OSTI]

for internal combustion engine (ICE)-only vehicles. Engineering cost estimates for the PHEV, as well Engineering ABSTRACT The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions, depending on the cost-competitiveness of the vehicle, the relative cost of refined fuels and electricity

391

Electric and hybrid vehicle project. Quarterly report of private-sector operations, first quarter 1982  

SciTech Connect (OSTI)

As of January 1, 1982 sixteen private-sector site operators at 30 sites in the US were involved in electric and hybrid electric-powered vehicle demonstration programs. Data for 1981 and the first quarter of 1982 are presented on vehicle selection, miles accumulated, energy usage, maintenance requirements, reliability and operating performance for demonstration vehicles at each site. (LCL)

None

1982-06-01T23:59:59.000Z

392

Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles  

E-Print Network [OSTI]

focused on single aerial vehicles. In particular, we have witnessed autonomous or aggressive control autonomous formation flying of autonomous aerial vehicles (UAVs) are [20]­[24]. In [22] and [23], the authorsHybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles Selcuk

Fainekos, Georgios E.

393

Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles  

E-Print Network [OSTI]

optimization of PEM fuel cell power system, and fuel cell powered, low speed electric vehicles. #12;iii TABLEModelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair Supervisors: Dr. Zuomin Dong ABSTRACT Electric vehicles, as an emerging transportation platform, have been

Victoria, University of

394

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

395

A hybrid metaheuristic to solve the vehicle routing problem with stochastic demand and  

E-Print Network [OSTI]

A hybrid metaheuristic to solve the vehicle routing problem with stochastic demand Introduction The vehicle routing problem with stochastic demands and probabilistic distance con- straints for a given product. Customer demands are met using an unlimited fleet of homogeneous vehicles located

Paris-Sud XI, Université de

396

Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)  

E-Print Network [OSTI]

on the internal combustion engine and fossil fuels to "greener" fuel cell and hybrid electric technology: · Vehicle integration and control expertise; · Alternative fuel infrastructure including hydrogen, LNG; · Vehicle test track and dynamometer facilities; · Vehicle fabrication facilities; and · Fuel cell

Lee, Dongwon

397

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network [OSTI]

The parallel hybrid passenger car (VW Golf) combined an EDLCpassenger cars using the ultracapacitors in micro-hybrid,passenger car using both carbon/carbon and hybrid carbon

Burke, Andy

2009-01-01T23:59:59.000Z

398

Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis  

E-Print Network [OSTI]

Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general-in hybrid electric vehicles Environmental policy Emissions a b s t r a c t The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low-carbon alternative to today's gasoline- and diesel-powered

399

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle  

E-Print Network [OSTI]

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing management method is proposed for a power-split plug-in hybrid electric vehicle (PHEV). Through analyzing and hybrid driving mode. During the pure electric driving mode, the vehicle is only powered by the battery

Mi, Chunting "Chris"

400

Abstract--Hybrid vehicle techniques have been widely studied recently because of their potential to significantly improve the  

E-Print Network [OSTI]

2002-182 1 Abstract-- Hybrid vehicle techniques have been widely studied recently because of this power management control strategy is studied by using the hybrid vehicle model HE-VESIM developed of a small increase in fuel consumption. Index Terms-- Hybrid Electric Vehicle, Power Management Strategy

Peng, Huei

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy control strategy for a hybrid electric vehicle  

DOE Patents [OSTI]

An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2002-01-01T23:59:59.000Z

402

Energy control strategy for a hybrid electric vehicle  

DOE Patents [OSTI]

An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2002-08-27T23:59:59.000Z

403

Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis  

E-Print Network [OSTI]

The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition ...

Reilly, John M.

404

The Nereus Hybrid Underwater Robotic Vehicle for Global Ocean Science Operations to 11,000m Depth  

E-Print Network [OSTI]

is to provide the U.S. oceanographic community with the first capable and cost- effective vehicle for routineThe Nereus Hybrid Underwater Robotic Vehicle for Global Ocean Science Operations to 11,000m Depth-- This paper reports an overview of the new Nereus hybrid underwater vehicle and summarizes the vehicle's per

Whitcomb, Louis L.

405

246 Int. J. Electric and Hybrid Vehicles, Vol. 3, No. 3, 2011 Copyright 2011 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

@ieee.org *Corresponding author Abstract: This paper studies the power management of a plug-in hybrid electric vehicle vehicles and plug-in hybrid electric vehicles. #12;Power management of PHEV using quadratic programming 247. Pure battery powered electric vehicle (EV) is considered as the future because it does not rely

Mi, Chunting "Chris"

406

Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program  

SciTech Connect (OSTI)

This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

Singh, M.K.; Bernard, M.J. III; Walsh, R.F

1980-11-01T23:59:59.000Z

407

Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and CO, compared to diesel vehicles, while meeting certification requirements deer11johnson.pdf More Documents & Publications Vehicle Emissions Review - 2012 Emissions Control...

408

Recursive least squares with forgetting for online estimation of vehicle mass and road grade: theory and experiments  

E-Print Network [OSTI]

mass and road grade are important in automation of heavy duty vehicles, vehicle following manoeuvresRecursive least squares with forgetting for online estimation of vehicle mass and road grade, University of Michigan, G008 Lay Auto Lab, 1231 Beal Ave., Ann Arbor, MI 48109, USA Good estimates of vehicle

Peng, Huei

409

Phase I of the Near Term Hybrid Passenger Vehicle Development Program. Final report  

SciTech Connect (OSTI)

The results of Phase I of the Near-Term Hybrid Vehicle Program are summarized. This phase of the program ws a study leading to the preliminary design of a 5-passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis. This report presents the following: overall summary of the Phase I activity; summary of the individual tasks; summary of the hybrid vehicle design; summary of the alternative design options; summary of the computer simulations; summary of the economic analysis; summary of the maintenance and reliability considerations; summary of the design for crash safety; and bibliography.

Not Available

1980-10-01T23:59:59.000Z

410

Yugang Sun | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric...

411

U.S. Energy Information Administration (EIA) - Source  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

personal vehicles increases more slowly than in the past.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles rise.... Read full section Heavy-duty...

412

Experiments for Online Estimation of Heavy Vehicle's Mass and Time-Varying Road Grade  

E-Print Network [OSTI]

's vehicle, and also marketing strategies in industry, has fuelled extensive research for automation of partExperiments for Online Estimation of Heavy Vehicle's Mass and Time-Varying Road Grade Ardalan for online estimation of Heavy Duty Vehicle mass and road grade. The test data is obtained from high- way

Stefanopoulou, Anna

413

10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1-in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum

Kammen, Daniel M.

414

Vehicle Technologies Office Merit Review 2014: Hoosier Heavy Hybrid Center of Excellence at Purdue University  

Broader source: Energy.gov [DOE]

Presentation given by Purdue University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Hoosier Heavy Hybrid Center...

415

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

2-29678 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results Tyler Gray Jeffrey Wishart Matthew Shirk July 2013 The Idaho National Laboratory is a U.S....

416

An analysis of hybrid-electric vehicles as the car of the future  

E-Print Network [OSTI]

This thesis will examine the validity of the benefits of the Hybrid-Electric Vehicle (HEV). With the recent focus on energy initiatives, reflected through Bush's state of the union, as well as President Hockfield's MIT ...

Kang, Heejay

2007-01-01T23:59:59.000Z

417

Fuel Economy and Performance of Mild Hybrids with Ultracapacitors: Simulations and Vehicle Test Results (Presentation)  

SciTech Connect (OSTI)

NREL worked with GM and demonstrated equivalent performance in the Saturn Vue Belt Alternator Starter (BAS) hybrid vehicle whether running with its stock batteries or a retrofit ultracapacitor system.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2009-06-01T23:59:59.000Z

418

Fact #731: June 11, 2012 Cost-Effectiveness of a Hybrid Vehicle...  

Energy Savers [EERE]

The U.S. Department of Energy and U.S. Environmental Protection Agency's Fuel Economy website at www.fueleconomy.gov has a hybrid vehicle comparison calculator that allows...

419

Heavy vehicle hybrid propulsion systems R and D program plan, FY 2000-2005  

SciTech Connect (OSTI)

This report contains the program plan and background information for the Heavy Vehicle Hybrid Propulsion R and D Program sponsored by the Department of Energy's Office of Heavy Vehicle Technologies. The program is a collaboration between industry and government established for the development of advanced hybrid-electric propulsion technology for urban cycle trucks and buses. It targets specific applications to enhance potential market success. Potential end-users are also involved.

None

2000-07-01T23:59:59.000Z

420

A Hybrid Multiobjective Evolutionary Algorithm For Solving Truck And Trailer Vehicle Routing Problems  

E-Print Network [OSTI]

cost) so that the day- to-day operational cost could be kept at the minimum. 1.2 Background on VehicleA Hybrid Multiobjective Evolutionary Algorithm For Solving Truck And Trailer Vehicle Routing Problems K. C. Tan, T. H. Lee, Y. H. Chew Department of Electrical and Computer Engineering National

Coello, Carlos A. Coello

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Optimization and Comparison of Heuristic Control Strategies for Parallel Hybrid-Electric Vehicles  

E-Print Network [OSTI]

, Electrical Engineering and Mathematics Institute of Power Electronics and Electrical Drives, D-33095 vehicles are composed of a combination of a combustion engine, one ore more electrical drivesOptimization and Comparison of Heuristic Control Strategies for Parallel Hybrid-Electric Vehicles

Paderborn, Universität

422

Microsimulation analysis of a hybrid system model of multiple merge junction highway and semiautomatic vehicles  

E-Print Network [OSTI]

Microsimulation analysis of a hybrid system model of multiple merge junction highway and semi­automatic vehicles Marco Antoniottiz Akash Deshpandez Alain Giraultx marcoxa@path.berkeley.edu akash Abstract In this paper we present a protocol that controls semi­automated autonomous vehicles driving

Girault, Alain

423

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009  

E-Print Network [OSTI]

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger and Fuel Cell Electric Vehicle Symposium & Exhibition, Stavanger : Norway (2009)" #12;EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2 that Discrete MDCM (Multi Criteria Decision

Boyer, Edmond

424

240 Int. J. Electric and Hybrid Vehicles, Vol. 2, No. 3, 2010 Simulation and analysis of powertrain hybridisation  

E-Print Network [OSTI]

systems, including hybrid electric and hydraulic vehicles, fuel cells and hydrogen. John Shepherd, particularly to autonomous vehicles. He also has a long-standing interest in the modelling of dynamic systems240 Int. J. Electric and Hybrid Vehicles, Vol. 2, No. 3, 2010 Simulation and analysis of powertrain

Cambridge, University of

425

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas  

E-Print Network [OSTI]

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse reliance on fossil fuels. Plug-In Hybrid Electric Vehicles (PHEVs) and wind power represent two practical Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett Kerrigan B.Eng., Carleton University

Victoria, University of

426

A Hybrid Human-Computer Autonomous Vehicle Architecture MichelleBayouth, Illah R. Nourbakhsh, Chuck E. Thorpe  

E-Print Network [OSTI]

1 A Hybrid Human-Computer Autonomous Vehicle Architecture MichelleBayouth, Illah R. Nourbakhsh-machine hybrid vehicle controllers. 1 Introduction The study of robot architecture plays an important role describe architecture development for the design of automated highway vehicles. These robots are unique

Nourbakhsh, Illah

427

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

428

Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

429

Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.  

SciTech Connect (OSTI)

This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

1999-06-18T23:59:59.000Z

430

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

431

2011 Hyundai Sonata Hybrid - vin 3539 Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

Pack Capacity: 5.3 Ah Cooling: ActiveCabin Air Pack Weight: 96 lb BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,730 mi Date of...

432

2013 Chevrolet Malibu ECO Hybrid ? VIN 6605, Advanced Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle...

433

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

with the simple load following strategy (non-hybridizeda Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAE

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

434

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Bradford, S. (2003) Are Hybrid Cars Worth It? Smartmoney 28p. C1. Hakim, D. (2005b) Hybrid-Car Tinkerers Scoff at No-Dollars and Sense of Hybrid Cars. Available from: http://

Heffner, Reid R.

2007-01-01T23:59:59.000Z

435

Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain  

SciTech Connect (OSTI)

The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

Bahman Habibzadeh

2010-01-31T23:59:59.000Z

436

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

of an experimental fuel cell/supercapacitor-powered hybridof fuel cell/battery/supercapacitor hybrid power source for

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

437

Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

2001-12-01T23:59:59.000Z

438

SCR Potential and Issues for Heavy-Duty Applications in the United...  

Broader source: Energy.gov (indexed) [DOE]

Economic Advantage Improved Fuel Consumption Net Benefit on Energy Consumption Reduced Engine Heat Rejection Resulting in Simplified Vehicle Cooling Requirements No Impact on...

439

Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with 8500 lb. curb weight, and validation against in-house engine and vehicle data library deer12wetzel.pdf More Documents & Publications Advanced Combustion Concepts -...

440

EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition  

E-Print Network [OSTI]

Vehicle Symposium & Exhibition Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid Michael) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs. Copyright Form of EVS25. Keywords-- Plug-in hybrid electric vehicles, production cost of electricity

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)  

SciTech Connect (OSTI)

Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

2007-05-01T23:59:59.000Z

442

2011 Hyundai Sonata Hybrid - vin 4932 Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

Sheets (MSDS) for all unique hazardous materials the vehicle is equipped with, including Energy Storage System (ESS) batteries or capacitors, and auxiliary batteries. (3)...

443

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss018cesiel2012...

444

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss018cesiel2011...

445

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vss02sell...

446

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss018cesiel2010...

447

UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence  

SciTech Connect (OSTI)

This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davisâ??s existing GATE centers have become the campusâ??s research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

Erickson, Paul

2012-05-31T23:59:59.000Z

448

Light Duty Plug-in Hybrid Vehicle Systems Analysis  

Broader source: Energy.gov (indexed) [DOE]

and Hybrids-Plus - Have experience with hardware from all three conversion vendors * Tesla Motors and AC Propulsion - Interest and support in testing next generation EVs for...

449

2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Gray, Tyler [Interek; Shirk, Matthew [Idaho National Laboratory; Wishart, Jeffrey [Interek

2014-09-01T23:59:59.000Z

450

2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2014-09-01T23:59:59.000Z

451

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

452

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

453

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

454

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

455

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

456

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

Electric Vehicles. EPRI: Palo Alto, CA. Report1009299. [9]Popular Science. July. [4] EPRI (2001) Comparing theHybrid Electric Vehicle Options. EPRI: Palo Alto, CA. Report

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

457

Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ft004mueller2010o.pdf More Documents &...

458

Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ft04mueller.pdf More Documents &...

459

Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results  

SciTech Connect (OSTI)

The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOE’s Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

James E. Francfort

2009-07-01T23:59:59.000Z

460

Method and apparatus for controlling battery charging in a hybrid electric vehicle  

DOE Patents [OSTI]

A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2003-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)  

Reports and Publications (EIA)

Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

2009-01-01T23:59:59.000Z

462

Robust hybrid control for autonomous vehicle motion planning  

E-Print Network [OSTI]

This dissertation focuses on the problem of motion planning for agile autonomous vehicles. In realistic situations, the motion planning problem must be solved in real-time, in a dynamic and uncertain environment. The ...

Frazzoli, Emilio, 1970-

2001-01-01T23:59:59.000Z

463

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

1] D.J. Friedman etc. , PEM Fuel Cell System Optimization,Pressure Operation of PEM Fuel Cell Systems, SAE 2001, 2001-Maximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

464

IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS  

E-Print Network [OSTI]

IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset with the emerging plug-in hybrid electric vehicle (PHEV) technology to meet the majority of the daily energy needs

465

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 2, FEBRUARY 2010 589 Electric, Hybrid, and Fuel-Cell Vehicles  

E-Print Network [OSTI]

, and Fuel-Cell Vehicles: Architectures and Modeling C. C. Chan, Fellow, IEEE, Alain Bouscayrol, Member, IEEE, fuel economy, and global warming, as well as energy resource constraints, electric, hybrid, and fuel-cell systems. This paper reviews the state of the art for electric, hybrid, and fuel-cell vehicles

Leung, Ka-Cheong

466

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network [OSTI]

9. Burke A, Miller M. Supercapacitors for Hybrid-electricP/E P/E voltage Wh/kg Carbon/carbon supercapacitors Hybridcarbon supercapacitors Lithium-ion batteries Iron phosphate

Burke, Andy

2009-01-01T23:59:59.000Z

467

Hybrid vehicle design using global optimisation Wenzhong Gao  

E-Print Network [OSTI]

systems, power system modelling and simulation, alternative power systems, renewable energy and electric and Computer Engineering, Center for Energy Systems Research, Tennessee Technological University, 1020 Stadium professor in Tennessee Tech University. His current research interests include hybrid electric propulsion

Mi, Chunting "Chris"

468

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

solely from stored electric energy during the day. With theIn Hybrid Electric Vehicles on Energy and Emissions UsingIn Hybrid Electric Vehicles on Energy and Emissions Using

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

469

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

470

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

Assessment of Plug-in Hybrid Vehicles on Electric Utilities and Regional US Power Grids, Part 1: Technical

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

471

U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

Jon P. Christophersen

2014-09-01T23:59:59.000Z

472

Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles Yanzhi, xuelin, pedram}@usc.edu, 2 {naehyuck}@elpl.snu.ac.kr ABSTRACT Photovoltaic (PV) energy harvesting system and Reliability]: Performance Analysis and Design Aids. General Terms Algorithms, Design, Management, Performance

Pedram, Massoud

473

HYBRID ELECTRIC VEHICLE OWNERSHIP AND FUEL ECONOMY ACROSS TEXAS: AN APPLICATION OF SPATIAL MODELS  

E-Print Network [OSTI]

and environmental policies (Koo et al. 2012). While EV sales (including both HEVs and PEVs) have risen considerably significant. If households registering more fuel- efficient vehicles, including hybrid EVs, are also more inclined to purchase plug-in EVs, these #12;findings can assist in spatial planning of charging

Kockelman, Kara M.

474

ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE  

E-Print Network [OSTI]

for optimal engine management. The hydro-mechanical drive train splits the engine power through two pathsANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE Teck Ping, Sim Minneapolis, Minnesota 55455 Email: tpsim@me.umn.edu Perry Y. Li Center for Compact and Efficient Fluid Power

Li, Perry Y.

475

Battery Health-conscious Plug-in Hybrid Electric Vehicle Grid Demand Prediction Saeid Bashash  

E-Print Network [OSTI]

at an incipient stage. A market share of about 25% is projected in the United States by year 2020, resulting in nearly five million PHEV sales per year [2]. The energy requirements of PHEVs depend significantlyBattery Health-conscious Plug-in Hybrid Electric Vehicle Grid Demand Prediction Saeid Bashash

Krstic, Miroslav

476

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network [OSTI]

backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are neededCost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b

Michalek, Jeremy J.

477

Navigation and Control of the Nereus Hybrid Underwater Vehicle for Global Ocean Science to 10,903 m Depth: Preliminary Results  

E-Print Network [OSTI]

Navigation and Control of the Nereus Hybrid Underwater Vehicle for Global Ocean Science to 10,903 m an overview of the navigation and control system design for the new Nereus hybrid underwa- ter robotic vehicle the Nereus hybrid remotely operated vehicle (HROV) successfully completed its first dive to the hadal ocean

Whitcomb, Louis L.

478

Stochastic Optimal Control for Series Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Increasing demand for improving fuel economy and reducing emissions has stimulated significant research and investment in hybrid propulsion systems. In this paper, we address the problem of optimizing online the supervisory control in a series hybrid configuration by modeling its operation as a controlled Markov chain using the average cost criterion. We treat the stochastic optimal control problem as a dual constrained optimization problem. We show that the control policy that yields higher probability distribution to the states with low cost and lower probability distribution to the states with high cost is an optimal control policy, defined as an equilibrium control policy. We demonstrate the effectiveness of the efficiency of the proposed controller in a series hybrid configuration and compare it with a thermostat-type controller.

Malikopoulos, Andreas [ORNL] [ORNL

2013-01-01T23:59:59.000Z

479

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

SciTech Connect (OSTI)

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01T23:59:59.000Z

480

U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

Kevin Morrow; Donald Darner; James Francfort

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy-duty vehicles hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2  

SciTech Connect (OSTI)

This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

2000-03-02T23:59:59.000Z

482

WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of EnergyDepartment of5Department of

483

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

SciTech Connect (OSTI)

The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

484

Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure  

SciTech Connect (OSTI)

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Dong, Jing [ORNL; Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

485

Utilization of rotor kinetic energy storage for hybrid vehicles  

DOE Patents [OSTI]

A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

Hsu, John S. (Oak Ridge, TN)

2011-05-03T23:59:59.000Z

486

Electric and Hybrid Vehicle Program; Site Operator Program  

SciTech Connect (OSTI)

Activities during the first quarter centered around integrating the new participants into the program. A meeting of the Site Operators, in conjunction with the first meeting of the Electric Vehicle Users Task Force, was held in October. A second meeting of the Task Force was held in December. During these meetings the new contractual requirements were explained to the participants. The Site Operator Data Base was distributed and explained. The Site Operators will begin using the data base in December 1991 and will supply the operating and maintenance data to the INEL on a monthly basis. The Operators requested that they be able to have access to the data of the other Operators and it was agreed that they would be provided this on floppy disk monthly from the INEL. Presentations were made to the DOE sponsored Automotive Technology Development-Contractors Coordination Meeting in October. An overview of the program was given by EG G. Representatives from Arizona Public Service, Texas A M University, and York Technical College provided details of their programs and the results and future goals. Work was begun on commercializing the Versatile Data Acquisition System (VDAS). A Scope of Work has been written for a Cooperative Research and Development Agreement (CRADA) to be submitted to the USABC. If implemented, the CRADA will provide funds for the development and commercialization of the VDAS. Participants in the Site Operator Program will test prototypes of the system within their fleets, making the data available to the USABC and other interested organizations. The USABC will provide recommendations on the data to be collected. Major activities by the majority of the Operators were involved with the continued operation and demonstration of existing vehicles. In addition, several of the operators were involved in identifying and locating vehicles to be added to their fleets. A list of the vehicles in each Site Operator fleet is included as Appendix A to this report.

Warren, J.F.

1992-01-01T23:59:59.000Z

487

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect (OSTI)

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

488

Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat PumpDutyEnergy 0 DOE Vehicle

489

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

SciTech Connect (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

490

[Electric and hybrid vehicle site operators program]: Thinking of the future  

SciTech Connect (OSTI)

Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid vans and two (2) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants' names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State's campus.

Not Available

1993-01-01T23:59:59.000Z

491

Issues in emissions testing of hybrid electric vehicles.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) has tested more than 100 prototype HEVs built by colleges and universities since 1994 and has learned that using standardized dynamometer testing procedures can be problematic. This paper addresses the issues related to HEV dynamometer testing procedures and proposes a new testing approach. The proposed ANL testing procedure is based on careful hybrid operation mode characterization that can be applied to certification and R and D. HEVs also present new emissions measurement challenges because of their potential for ultra-low emission levels and frequent engine shutdown during the test cycles.

Duoba, M.; Anderson, J.; Ng, H.

2000-05-23T23:59:59.000Z

492

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCenturyDistribution:Drive a Hybrid

493

Hybrid Vehicles: Cut Pollution & Save Money | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health and ProductivityEnergyEnergyHybrid Membrane System for

494

Recycling Hybrid and Elecectric Vehicle Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office of EnvironmentalRecycling CarbonHybrid

495

NREL: Transportation Research - Hydraulic Hybrid Fleet Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo ofHydraulic Hybrid Fleet

496

Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles: A Survey  

SciTech Connect (OSTI)

The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

Malikopoulos, Andreas [ORNL

2014-01-01T23:59:59.000Z

497

Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

498

A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues  

E-Print Network [OSTI]

The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL...

Shidore, Neeraj Shripad

2012-07-16T23:59:59.000Z

499

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect (OSTI)

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

500

Spatial, temporal, and hybrid decompositions for large-scale vehicle routing with time windows  

SciTech Connect (OSTI)

This paper studies the use of decomposition techniques to quickly find high-quality solutions to large-scale vehicle routing problems with time windows. It considers an adaptive decomposition scheme which iteratively decouples a routing problem based on the current solution. Earlier work considered vehicle-based decompositions that partitions the vehicles across the subproblems. The subproblems can then be optimized independently and merged easily. This paper argues that vehicle-based decompositions, although very effective on various problem classes also have limitations. In particular, they do not accommodate temporal decompositions and may produce spatial decompositions that are not focused enough. This paper then proposes customer-based decompositions which generalize vehicle-based decouplings and allows for focused spatial and temporal decompositions. Experimental results on class R2 of the extended Solomon benchmarks demonstrates the benefits of the customer-based adaptive decomposition scheme and its spatial, temporal, and hybrid instantiations. In particular, they show that customer-based decompositions bring significant benefits over large neighborhood search in contrast to vehicle-based decompositions.

Bent, Russell W [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z