National Library of Energy BETA

Sample records for heavy-duty vehicle equipped

  1. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  2. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Engine Technology for Heavy Duty Vehicles Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Natural gas engine technology has evolved to meet the...

  3. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

  4. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and...

  5. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference...

  6. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation vss043barnitt2011o.pdf More Documents & Publications Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium and Heavy-Duty Vehicle Field...

  7. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles Discusses Detroit Diesel collaborative multi-year technology program which includes systematic...

  8. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Broader source: Energy.gov (indexed) [DOE]

    Meeting vss043gonder2012o.pdf More Documents & Publications Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Battery Pack Requirements and Targets...

  9. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis PI: Jeff Gonder (NREL) Team: Laurie Ramroth and Aaron Brooker May 15, 2012 Project ID : VSS043 This...

  10. Heavy Duty Vehicle In-Use Emission Performance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use Emission Performance Heavy Duty Vehicle In-Use Emission Performance 2003 DEER Conference Presentation: VTT Technical Research Centre of Finland deer2003ikonen.pdf More...

  11. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art 2003 DEER...

  12. Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  13. Vehicle Technologies Office Merit Review 2015: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  14. Medium- and Heavy-Duty Vehicle Field Evaluations; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Kelly, Kenneth; Cosgrove, Jon; Duran, Adam; Konan, Arnaud; Lammert, Mike; Prohaska, Bob

    2015-06-09

    This presentation summarizes medium-duty and heavy-duty vehicle field evaluation test results, aggregated data, and detailed analysis.

  15. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  16. Medium and Heavy Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Medium and Heavy Duty Vehicle Field Evaluations (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2014-06-01

    This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

  18. Lightweight Composite Materials for Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  19. Guaranteeing safety for heavy duty vehicle platooning: Safe set computations and experimental evaluations

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    be increased and emissions can be reduced. Additionally, when governing vehicle platoons by an automatedGuaranteeing safety for heavy duty vehicle platooning: Safe set computations and experimental December 2013 Keywords: Heavy duty vehicle Platooning Game theory Safety analysis Vehicle-to-vehicle

  20. TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND

    E-Print Network [OSTI]

    #12;#12;TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND EMISSIONS STUDY: PHASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current Diesel Idling Emissions Factors

  1. Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

  2. Heavy-Duty Powertrain and Vehicle Development- A Look Toward 2020

    Broader source: Energy.gov [DOE]

    Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine and powertrain advancements, vehicle improvements, and optimized system integration

  3. A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions by Christopher D. Dresser OF WISCONSIN - MADISON Abstract A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions Christopher-duty diesel vehicles (HDDV) for a ten-state Midwest region (Mississippi Valley Freight Coalition) using

  4. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

    Broader source: Energy.gov [DOE]

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

  5. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

  6. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF

    Broader source: Energy.gov [DOE]

    In reference to legacy heavy-duty vehicles, emissions and fuel use are less closely related to immediate engine load than was the case without the use of aftertreatments.

  7. Urban driving cycle results of retrofitted diesel oxidation catalysts on heavy duty vehicles

    SciTech Connect (OSTI)

    Brown, K.F. [Engine Control Systems Ltd., Aurora, Ontario (Canada); Rideout, G.

    1996-09-01

    This paper presents the emissions testing results of various heavy duty engines and vehicles with and without retrofitted diesel oxidation catalyst technology. 1987 Cummins L10 and 1991 DDC 6V92TA DDECII engine results over the US Heavy Duty Transient Test are presented for comparison to chassis test results. The vehicles in this study include two urban buses, two school buses and three heavy duty trucks. The Central Business District, New York Bus and New York Composite urban driving cycles have been used to evaluate baseline emissions and the catalyst performance on a heavy duty chassis dynamometer. The results demonstrate that 25--45% particulate reduction is readily achievable on a wide variety of heavy duty vehicles. Significant carbon monoxide and hydrocarbon reductions were also observed.

  8. Vehicle Technologies Office Merit Review 2014: Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy duty roots expander...

  9. Vehicle Technologies Office Merit Review 2015: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero-emission heavy-duty drayage truck...

  10. Energy 101: Heavy Duty Vehicle Efficiency | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES ScienceInformationInformation AdministrationHeavy Duty

  11. Fuel-efficient heavy-duty vehicle platooning by look-ahead control

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Fuel-efficient heavy-duty vehicle platooning by look-ahead control Valerio Turri, Bart Besselink intervehicular distances (known as platoons) has been shown to be an effective way of reducing fuel consumption be exploited to obtain fuel savings. The current paper aims at the inclusion of preview information

  12. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  13. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  14. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Research and development RPM Revolutions per minute SI Spark ignition SMC Sheet molding compound SUV Sport utility vehicle VIUS Vehicle Inventory and Use Survey VTO Vehicle...

  15. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Creation of the Heavy-Duty Diesel Engine Test Schedule forfor the heavy-duty chassis and engine dynamometer tests wererather than a heavy-duty engine dynamometer test. 31 The GTL

  16. Heavy-duty diesel vehicle Nox? aftertreatment in 2010 : the infrastructure and compliance challenges of urea-SCR

    E-Print Network [OSTI]

    Bodek, Kristian M

    2008-01-01

    Increasingly stringent heavy-duty vehicle emission regulations are prompting the use of PM and NOx aftertreatment systems in the US, the EU and Japan. In the US, the EPA Highway Diesel Rule, which will be fully implemented ...

  17. Heavy-Duty Powertrain and Vehicle Development - A Look Toward...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system integration deer11groeneweg.pdf More Documents & Publications View from the Bridge: Commercial Vehicle Perspective High-Efficiency Engine Technologies Session...

  18. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parameter FedEx HEV C d 0.7 Frontal area (m 2 ) 7.02 Vehicle mass (kg) 4,472 Engine power (kW) 182 Motor power (kW) 100 Battery power (kW) 60 Battery capacity (kWh) 2.45...

  19. Heavy-Duty Vehicle Field Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £SpaceFrictionEnergyVehicle

  20. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review 2014:...

  1. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  2. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Cai, Hao; Burnham, Andrew; Wang, Michael; Hang, Wen; Vyas, Anant

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  3. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    SciTech Connect (OSTI)

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  4. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Wai-Lin Litzke; James Wegrzyn

    2001-05-14

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications.

  5. On-Road Development of the C-Gas Plus Engine in Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    Fact sheet details on-road development of C-Gas Plus natural gas engine in Viking Freight heavy-duty trucks, including emissions, fuel costs, and petroleum displacement.

  6. Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.

    SciTech Connect (OSTI)

    Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

    2010-03-31

    The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

  7. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions tests of in-use heavy-duty vehicles...

  8. Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty Vehicle Field Evaluations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  9. Vehicle Technologies Office Merit Review 2014: Medium and Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  10. Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets

    SciTech Connect (OSTI)

    Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

    2002-02-06

    This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

  11. Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed Natural Gas (CNG)-Powered Vehicles Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...

  12. Evaluation of the European PMP Methodologies Using Chassis Dynamometer and On-road Testing of Heavy-duty Vehicles

    Broader source: Energy.gov [DOE]

    Critical evaluation of new protocol for measurement of heavy-duty diesel engine particulate matter emissions proposed for potential use in California.

  13. Norcal Waste Systems, Inc. Advanced Technology Vehicles in Service, LNG Heavy-Duty Trucks Fact Sheet.

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter toTRUCKS ARE EQUIPPED

  14. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Natural Gas Liquids Natural Gas Vehicle Ammonia Non-methanein emissions for natural gas vehicles (NGVs), emissions for226. Timmons, S. Natural Gas Fuel Effects on Vehicle Exhaust

  15. Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles 

    E-Print Network [OSTI]

    Kader, Michael Kirk

    2013-01-18

    Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and ...

  16. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Commission Neste Oil biomass-to-liquid Natural Gas NaturalGas Liquids Natural Gas Vehicle Ammonia Non-methanerecover valuable natural gas liquids (NGLs), such as ethane,

  17. Vehicle Technologies Office Merit Review 2015: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about powertrain...

  18. Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about powertrain...

  19. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking

    Broader source: Energy.gov [DOE]

    Presentation discusses a virtual lab which can model sophisticated future vehicle systems using three layers of model fidelity supporting each other.

  20. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    and Greenhouse Gas Emissions from CNG Transit Buses EquippedOxidation Catalyst Effect on CNG Transit Bus Emissions. SAEOxidation Catalyst Effect on CNG Transit Bus Emissions. SAE

  1. Investigation of the Application of the European PMP Method to Clean Heavy Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  2. Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

  3. Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves 

    E-Print Network [OSTI]

    Gu, Chaoyi

    2013-07-31

    Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. ...

  4. Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  5. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  6. Summary of In-Use Evaluation of Two Heavy Duty Hybrid Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Can We...

  7. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel Combustion &...

  8. Sandia Energy - Heavy Duty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling TechnologyHeavy Duty Home Transportation

  9. Modelling the global prospects and impacts of heavy duty liquefied natural gas vehicles in computable general equilibrium

    E-Print Network [OSTI]

    Yip, Arthur Hong Chun

    2014-01-01

    Natural gas vehicles have the prospects of making substantial contributions to transportation needs. The adoption of natural gas vehicles could lead to impacts on energy and environmental systems. An analysis of the main ...

  10. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01

    Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

  11. Vehicle Technologies Office Merit Review 2014: Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  12. Vehicle Technologies Office Merit Review 2015: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  13. Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  14. Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced heavy...

  15. Sandia Energy - Heavy Duty Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling TechnologyHeavy Duty Home

  16. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission...

  17. Design and Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck

    Broader source: Energy.gov [DOE]

    Presents plume characterization of three vehicles with different aftertreatment configuration, representative of legacy, current and future heavy-duty truck fleets

  18. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

  19. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in...

  20. Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion 2009 DOE Hydrogen Program...

  1. NAFTA Heavy Duty Engine and Aftertreatment Technology: Status...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAFTA Heavy Duty Engine and Aftertreatment Technology: Status and Outlook NAFTA Heavy Duty Engine and Aftertreatment Technology: Status and Outlook Presentation given at DEER 2006,...

  2. California Policy Stimulates Carbon Negative CNG for Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks Describes system for fueling truck fleet with...

  3. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

  4. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions...

  5. Complex System Method to Assess Commercial Vehicle Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. Transonic...

  6. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  7. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  8. TRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based

    E-Print Network [OSTI]

    Frey, H. Christopher

    for approximately 46% of NOx and 54% of PM10 of the nationwide on-road vehicle emission inventory (2). ThereforeTRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based on Real-World Data H and particulate matter to on-road vehicle emission inventory. The objectives of this study are to estimate roadway

  9. 3M heavy duty roto peen: Baseline report; Summary

    SciTech Connect (OSTI)

    NONE

    1997-07-31

    The roto peen scaler allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy duty flexible flap. The peens are coupled with a commercially available piece of equipment that is used to scabble or remove the concrete. The scabbled debris is then collected into 55 gallon drums by means of a vacuum system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  10. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

  11. Transient Simulation of a 2007 Prototype Heavy-Duty Engine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation of a 2007 Prototype Heavy-Duty Engine Transient Simulation of a 2007 Prototype Heavy-Duty Engine 2004 Diesel Engine Emissions Reduction (DEER) Conference PresentationL...

  12. APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Status of APBF-DEC NOx AdsorberDPF Projects APBF- DEC Heavy-Duty NOx AdsorberDPF Project: Catalyst Aging Study APBF-DEC Light-duty NOx AdsorberDPF Project...

  13. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01

    by compressed natural gas (CNG) in spark-ignition engines,buses are powered by a CNG spark-ignition engine, providedno matter whether it is a CNG or a diesel engine [4, 5].

  14. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01

    Moskwa, J. J. , 1995, Turbocharged diesel engine modelinganalysis and control of turbocharged diesels, Prof. IEEEof variable geometry turbocharged engines, Systems Modeling

  15. Using LNG as a Fuel in Heavy-Duty Tractors

    SciTech Connect (OSTI)

    Liquid Carbonic, Inc. and Trucking Research Institute

    1999-08-09

    Recognizing the lack of operational data on alternative fuel heavy-truck trucks, NREL contracted with the Trucking Research Institute (TRI) in 1994 to obtain a cooperative agreement with Liquid Carbonic. The purpose of this agreement was to (1) purchase and operate liquid natural gas- (LNG-) powered heavy-duty tractor-trailers with prototype Detroit Diesel Corporation (DDC) Series 60 natural gas (S60G) engines in over-the-road commercial service applications; and (2) collect and provide operational data to DDC to facilitate the on-road prototype development of the engine and to NREL for the Alternative Fuels Data Center. The vehicles operated from August 1994 through April of 1997 and led to a commercially available, emissions-certified S60G in 1998. This report briefly documents the engine development, the operational characteristics of LNG, and the lessons learned during the project.

  16. Heavy-Duty Low Temperature Combustion Development Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Development Activities at Caterpillar Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Presentation given at the 2007 Diesel...

  17. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions...

  18. Secretary Chu Announces $187 Million to Improve Vehicle Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles Secretary Chu Announces 187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and...

  19. Natural Gas-optimized Advanced Heavy-duty Engine

    E-Print Network [OSTI]

    Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation the research and development of an advanced natural gas engine concepts that can be used in the heavy duty Treatment System) simulations have been performed and reported. · The EATS hardware for engine tests has

  20. Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charge Motion for 2007-2010 Heavy Duty Diesel Engines Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines 2003 DEER Conference Presentation: AVL Powertrain Engineering...

  1. 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2002 DEER Conference Presentation: Southwest Research...

  2. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

  3. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  4. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. Heavy-Duty Truck Engine Program

  5. New Demands on Heavy Duty Engine Management Systems

    Broader source: Energy.gov [DOE]

    The purpose of this research was to investigate the potential of emissions-based process control to meet future heavy-duty emissions legislation by identifying suitable actuated variables and developing hardware and related controllers.

  6. The Road to Improved Heavy Duty Fuel Economy

    Broader source: Energy.gov [DOE]

    Heavy duty diesel engine fuel economy is improved by lowering the viscosity of engine lubricant, especially when engine speed is increased or load is decreased, as in long distance on-highway driving

  7. An Investigation on an Ethylene Gylcol/Water Nanofluid for Heavy Vehicle Cooling Applications

    Broader source: Energy.gov [DOE]

    Use of nanofluids can help reduce radiator frontal area for heavy-duty vehicles and improves fuel efficiency.

  8. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fuel Consumption Standards, 2016-17 (Gallons per Thousand Ton-Mile) Size Category Truck Weight Class Year 2016 2017 Light heavy-duty Class 2b-5 38.1 36.7 Medium heavy-duty...

  9. Zero Emission Heavy Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle...

    Energy Savers [EERE]

    Application Technology Manufacturer Fleet Years Collected Delivery Trucks All Electric Smith Newton Various 2012-2014 Class 8 Diesel Tractors Hybrid Electric Kenworth and...

  11. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnable Low Temperature Combustion(EVSE) Testingand

  12. Sandia Energy - Heavy Duty Low-Temperature & Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling TechnologyHeavy Duty HomeHeavy Duty

  13. High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel...

  14. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy...

  15. ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses 2002 DEER Conference Presentation:...

  16. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Poster presentation at the 2007...

  17. Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM and NOX Control Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM and NOX Control The more...

  18. A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power...

  19. High-Load Partially Premixed Combustion in a Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine 2005 Diesel Engine Emissions Reduction...

  20. Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab 2002 DEER Conference Presentation: University of...

  1. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference Presentation:...

  2. Reduction of Heavy-Duty Fuel Consumption and CO2 Generation ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Fuel Consumption and CO2 Generation -- What the Industry Does and What the Government Can Do Reduction of Heavy-Duty Fuel Consumption and CO2 Generation -- What the...

  3. APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEC Heavy-Duty NOx AdsorberDPF Project: Catalyst Aging Study APBF- DEC Heavy-Duty NOx AdsorberDPF Project: Catalyst Aging Study 2004 Diesel Engine Emissions Reduction (DEER)...

  4. Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about NOx control ...

  5. Remote Sensing of NO and NO2 Emissions from Heavy-Duty Diesel

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    Research Remote Sensing of NO and NO2 Emissions from Heavy-Duty Diesel Trucks Using Tunable Diode to measure the NOx emissions of heavy-duty diesel trucks (HDDTs). The remote sensor could operate tightly controlled, the relative importance of heavy-duty diesel trucks (HDDTs) as a NOx source has

  6. Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2010-01-01

    use emissions from heavy-duty diesel vehicles. Environ. Sci.Sci. Technol. (7) Johnson, T. V. Diesel Emission Control inNO x control on heavy-duty diesel truck emissions. Environ.

  7. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  9. In-Use Performance Results of Medium Duty Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2012-07-01

    This presentation describes a DOE program to monitor and report on vehicle performance and energy utilization of medium-duty and heavy-duty electric vehicles.

  10. Heavy-Duty Engine Technology for High Thermal Efficiency at EPA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations Heavy-Duty Engine Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations Presentation...

  11. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Selective reduction of NOx in oxygen rich environments with plasma-assisted...

  12. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction (DEER)...

  13. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    Presents progress to date and plans to develop a viable Rankine engine to harness useful brake power from wasted heat energy in heavy duty truck engine exhaust

  14. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve Drive Cycle Fuel Economy Downspeeding a Heavy-Duty Pickup Truck with a Combined...

  15. Technologies for a Sustainable Heavy-Duty On-Road Fleet

    Broader source: Energy.gov [DOE]

    Only selected energy pathways for the heavy-duty on-road fleet are consistent with the joint objectives of reducing petroleum dependence and mitigating climate change

  16. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles

    Broader source: Energy.gov [DOE]

    Discusses Detroit Diesel collaborative multi-year technology program which includes systematic experimental and analytical assessment of enabling technologies for post-2020 NAFTA line haul trucks

  17. Heavy Duty Vehicle Modeling & Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £Space HeatingEmerging|&

  18. Heavy Duty Vehicle Modeling and Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £Space HeatingEmerging|&and

  19. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

  20. Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance,recyclabilit...

  1. The Effects of Altitude on Heavy-Duty Diesel Truck On-Road

    E-Print Network [OSTI]

    Denver, University of

    The Effects of Altitude on Heavy-Duty Diesel Truck On-Road Emissions G A R Y A . B I S H O P , * J oxide from 5772 heavy-duty diesel trucks at five locations in the United States and Europe show slightly emissions has largely been focused on the regulation and control of exhaust emissions from light

  2. Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction Reduction

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction the friction losses of a heavy duty diesel engine. In addition, a tear down procedure needed to be created in order to guide the engine disassembly and testing. The overall goal was to improve fuel economy

  3. Vehicle and Heavy Equipment Integrated Product & Process Development (IPPD)

    E-Print Network [OSTI]

    Beckermann, Christoph

    Test & Evaluation Enterprise and Engineering Information Infrastructure Design & Development ConcurrentVehicle and Heavy Equipment Integrated Product & Process Development (IPPD) Technology Development: Casting Process Simulation Christoph Beckermann Associate Professor Department of Mechanical Engineering

  4. Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffrey Birkel

    2007-10-31

    The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

  5. Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter toTRUCKS ARECompliance

  6. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States Predicted Impact of Idling Reduction Options for Heavy-Duty...

  7. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis...

  8. Lng vehicle technology, economics, and safety assessment. Final report, April 1991-June 1993

    SciTech Connect (OSTI)

    Powars, C.A.; Moyer, C.B.; Lowell, D.D.

    1994-02-01

    Liquid natural gas (LNG) is an attractive transportation fuel because of its high heating value and energy density (i.e. Btu/lb and Btu/gal), clean burning characteristics, relatively low cost ($/Btu), and domestic availability. This research evaluated LNG vehicle and refueling system technology, economics, and safety. Prior and current LNG vehicle projects were studied to identify needed technology improvements. Life-cycle cost analyses considered various LNG vehicle and fuel supply options. Safety records, standards, and analysis methods were reviewed. The LNG market niche is centrally fueled heavy-duty fleet vehicles with high fuel consumption. For these applications, fuel cost savings can amortize equipment capital costs.

  9. Vehicle Technologies Office- AVTA: Hybrid-Electric Tractor Vehicles

    Broader source: Energy.gov [DOE]

    The following set of reports describes performance data collected from hybrid-electric heavy-duty tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

  10. Heavy Duty Roots Expander for Waste Heat Energy Recovery

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Heavy Duty Powertrain System Optimization and Emissions Test Procedure Development

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from a Heavy-Duty

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from waste heat from a heavy- duty diesel engine. For this system, a hierarchical and modular control) for recovering waste heat from a heavy-duty diesel engine. For this system, a hierarchical and modular control

  13. Remote Sensing of In-Use Heavy-Duty Diesel Trucks

    E-Print Network [OSTI]

    Denver, University of

    -road measurements in 2005 of carbon monoxide (CO), hydrocarbons, nitric oxide, nitrogen dioxide, and sulfur dioxideRemote Sensing of In-Use Heavy-Duty Diesel Trucks D A N I E L A . B U R G A R D , G A R Y A . B I. Carbon monoxide and nitric oxide show increasing emissions with increased altitude. Oxides of nitrogen

  14. On-Road Remote Sensing of Heavy-duty Diesel Truck

    E-Print Network [OSTI]

    Denver, University of

    measure the concentrations of CO, HC, NO, and CO2 in automobile and truck emissions while in route, HC, and NO to CO2 and to get percent opacity readings for heavy-duty diesel trucks with elevated the source. The data show, on average, a correlation between high CO emissions and reported opacity

  15. REAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS

    E-Print Network [OSTI]

    Frey, H. Christopher

    REAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS Gurdas Sandhu H 0121 NOx(g/gal) Truck Number Highway Arterial Comparison of Trucks: Fuel-Based NO Emission Rates NOx emissions are substantially lower than Truck 5715. 1999 2005 2007 2009 2010 Fuel-Based Emission

  16. Analysis of parasitic losses in heavy duty diesel engines

    E-Print Network [OSTI]

    James, Christopher Joseph

    2012-01-01

    Fuel economy of large, on-road diesel engines has become even more critical in recent years for engine manufactures, vehicle OEMs, and truck operators, in view of pending CO2 emission regulations. Demands for increased ...

  17. Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  18. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect (OSTI)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  19. Collecting Construction Equipment Activity Data from Caltrans Project Records

    E-Print Network [OSTI]

    Kable, Justin M

    2008-01-01

    nonroad equipment. Light trucks may also run on gasolinerecord versus reality for light trucks is probably dramatic,TOTAL NONROAD 1. Light Duty Truck 2. Heavy Duty Truck 3.

  20. The Ethanol Heavy-Duty Truck Fleet Demonstration Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat LetterPresidentEnergy

  1. High temperature solid lubricant materials for heavy duty and advanced heat engines

    SciTech Connect (OSTI)

    DellaCorte, C.; Wood, J.C.

    1994-10-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

  2. Alternative fuel vehicles: The emerging emissions picture. Interim results, Summer 1996

    SciTech Connect (OSTI)

    1996-10-01

    In this pamphlet, program goal, description, vehicles/fuels tested, and selected emissions results are given for light-duty and heavy-duty vehicles. Other NREL R&D programs and publications are mentioned briefly.

  3. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  4. Engine-External HC-Dosing for Regeneration of Diesel Particulate Filters for Heavy Duty and NRMM According to Annex XXVII StVZO

    Broader source: Energy.gov [DOE]

    This presentation discusses how a diesel particulate filter can be integrated in the exhaust piping of a heavy-duty engine.

  5. Combustion Commonality and Differences Between HSDI and Heavy Duty Truck Engines

    SciTech Connect (OSTI)

    Chen, Rong

    2000-08-20

    Experimental understanding of the diesel spray and combustion process at the fundamental level has helped advance the virtual lab simulation tools. The computational fluid dynamics (CFD)-based simulation has been globally verified in many engines, providing substantial credibility to the use of this technology in advanced engine development. This paper highlights the common aspects and differences between the smallbore HSDI and the larger displacement heavy-duty truck engine spray and combustion processes. Implications for combustion system strategies will be delineated. Detroit Diesel integrated ''Wired'' approach will be explained with pointers towards future tool enhancements.

  6. Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst: Final Report, 24 February 2004 -- 23 February 2006

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat IsHeavy-Duty Waste Hauler with

  7. Analysis of C1, C2, and C10 through C33 particle-phase and semi-volatile organic compound emissions from heavy-duty diesel engines

    E-Print Network [OSTI]

    Wu, Mingshen

    from heavy-duty diesel engines Z. Gerald Liu a,*, Devin R. Berg a , Victoria N. Vasys a , Melissa E 18 November 2009 Keywords: Organic compound emissions Particulate matter emissions Heavy-duty diesel engines Aftertreatment technology Diesel particulate filter Chemical speciation a b s t r a c t To meet

  8. Master Thesis Proposal: Simulation of Vehicle

    E-Print Network [OSTI]

    Zhao, Yuxiao

    of the engine or the battery in a hybrid electric vehicle determines how effective the components are used factors. If a vehicle manufacturer wants to do tests with varying combinations of driver models, vehicle. · Possibly focus more on passenger cars or on heavy-duty-trucks. · Documentation and presentation of results

  9. Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Lightweight Materials activity (LM) focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance,recyclability, and cost.

  10. Department of Mechanical and Nuclear Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis Overview Volvo Group Powertrain Engineering is interested performed to educate the team on engine friction testing. A 3D CAD model was initially produced to design

  11. Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine Engineering Specifications Concept Generation of Test Cell Test Cell Design Cad Drawings Labview Program. Future groups will be able to use this test rig to run a multitude of engine tests Volvo will be able

  12. Heavy-Duty Truck Emissions in the South Coast Air Basin of Gary A. Bishop,* Brent G. Schuchmann,

    E-Print Network [OSTI]

    Denver, University of

    Heavy-Duty Truck Emissions in the South Coast Air Basin of California Gary A. Bishop,* Brent G, Colorado 80208, United States ABSTRACT: California and Federal emissions regulations for 2007 and newer of nitrogen spurring the introduction of new aftertreatment systems. Since 2008, four emission measurement

  13. Next Generation Natural Gas Vehicle (NGNGV) Program Brochure

    SciTech Connect (OSTI)

    Elling, J.

    2000-10-26

    The Department of Energy's Office of Transportation Technologies is initiating the Next Generation Natural Gas Vehicle (NGNGV) Program to develop commercially viable medium- and heavy-duty natural gas vehicles. These new vehicles will incorporate advanced alternative fuel vehicle technologies that were developed by DOE and others.

  14. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  15. Evolution of Westinghouse heavy-duty power generation and industrial combustion turbines

    SciTech Connect (OSTI)

    Scalzo, A.J.; Bannister, R.L.; DeCorso, M.; Howard, G.S.

    1996-04-01

    This paper reviews the evolution of heavy-duty power generation and industrial combustion turbines in the United States from a Westinghouse Electric Corporation perspective. Westinghouse combustion turbine genealogy began in March of 1943 when the first wholly American designed and manufactured jet engine went on test in Philadelphia, and continues today in Orlando, Florida, with the 230 MW, 501G combustion turbine. In this paper, advances in thermodynamics, materials, cooling, and unit size will be described. Many basic design features such as two-bearing rotor, cold-end drive, can-annular internal combustors, CURVIC{sup 2} clutched turbine disks, and tangential exhaust struts have endured successfully for over 40 years. Progress in turbine technology includes the clean coal technology and advanced turbine systems initiatives of the US Department of Energy.

  16. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    600 hp General Electric DC electric engine dynamometer. Thehp General Electric DC electric engine dynamometer. For allhp General Electric DC electric engine dynamometer and is

  17. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    of vegetable oils, animal fats, and waste cooking oils, withof vegetable oils, animal fats, and waste cooking oils.Fuel Wobbe Number Waste Vegetable Oil xxiv Chapter One:

  18. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    of Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuel

  19. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    20% share of biodiesel and bioethanol should be blended with20% share of biodiesel and bioethanol shall be blended with

  20. Development of Urea Dosing System for 10 Liter Heavy Duty Diesel Engine Powered Vehicle

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  1. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    A. Potential Methods for NOx Reduction from Biodiesel. SAECombustion on NOx Emissions and their Reduction Approaches.Combustion on NOx Emissions and their Reduction Approaches.

  2. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

  3. Pneumatic brake control for precision stopping of heavy-duty vehicles

    E-Print Network [OSTI]

    Bu, Fanping; Tan, Han-Shue

    2007-01-01

    stopping” of a 40 foot CNG bus for the Bus Precision Dockingfor two different 40 foot CNG buses (c1 and c2). Althoughpressure of two different CNG buses (c1 and c2) speeds since

  4. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    effects, driven by fuel chemistry and fluid dynamics, andeffects, driven by fuel chemistry and fluid dynamics, and

  5. Pneumatic brake control for precision stopping of heavy-duty vehicles

    E-Print Network [OSTI]

    Bu, Fanping; Tan, Han-Shue

    2007-01-01

    IEEE/ASME Trans. on Mechatronics, vol. 5, no. 1, pp. 79–91,Advanced Intelligent Mechatronics (AIM), Italy, 2001. [21

  6. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    with a 10% aromatic, ultra-low sulfur diesel fuel used inequivalent 10% aromatic ultra-low sulfur diesel fuel used inx emissions compared to ultra-low sulfur diesel fuel (ULSD).

  7. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements.

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  8. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    larger reserves compared to crude oil. However, the qualitylarger reserves than crude oil, and also the potential forreserves compared to crude oil, and also the potential for

  9. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    J. ; Hamze, F. ; Mak, C. LNG Research Study. Gutierrez, J.Saldivar, A. R. ; Mora, J. R. LNG Research Study-Phase 1.is representative of Peruvian LNG that has been modified to

  10. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    horizontal drilling and hydraulic fracturing. Such advancedhorizontal drilling and hydraulic fracturing. Such advanced

  11. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    tcf in 2035. 3 The quality of natural gas depends on bothQuality Standards National Development Reform Commission Neste Oil biomass-to-liquid Natural Gasair quality. In this study, six blends of natural gas with

  12. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Testing Certification Testing B5-WVO CARB ULSD vs.B5-WVO B5-Animal CARB ULSD vs. B5-Animal B5-Soy B5-WVO B5-Certification Testing B5-WVO CARB ULSD vs. B5-WVO B5-Animal

  13. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    J. W. The Effect of Natural Gas Composition on the RegulatedOperating on Various Natural Gas Compositions. Journal ofimpacts of varying natural gas composition on the exhaust

  14. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    sizable 44% increase. 51 Shale gas production, which alreadyof this expansion, with shale gas production going from 6.8sizable 44% increase. 2 Shale gas production, which already

  15. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Effects of Methyl Ester Biodiesel Blends on NOx Emissions.Increase When Burning Biodiesel; A New (Old) Theory. FuelE. ; Natarajan, M. Effects of Biodiesel Fuels Upon Criteria

  16. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    of Energy National Renewable Energy Laboratory Dieseland Specifications. Renewable and Sustainable Energy Reviewstheir Reduction Approaches. Renewable and Sustainable Energy

  17. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    using an Optical Direct Injection Diesel Engine. 2006, 7,using an Optical Direct Injection Diesel Engine. 2006, 7,Emissions Using an Optical Direct Injection Diesel Engine.

  18. Second Stage Intercooling Using LNG for Turbocharged Heavy Duty Road Vehicles Phase I Final Report

    SciTech Connect (OSTI)

    1999-09-21

    It is well documented in engine performance literature that reduced engine inlet air temperature increases power output and reduces NO, emissions for both diesel and spark ignited (SI) engines. In addition, reduced inlet temperature increases the knock resistance of SI engines. In that most HD natural gas engines are SI derivatives of diesel engines it is appropriate to evaluate the benefits of reduced engine air temperature through LNG fuel. This project investigated the ''real world'' possibilities of a patented process for utilizing the ''cold'' in LNG to chill engine inlet air. The results support the conclusion that doing so is a practical means to increase engine power and reduce engine-out NO{sub x}.

  19. Analysis, Design, And Evaluation Of AVCS For Heavy-duty Vehicles: Phase 1 Report

    E-Print Network [OSTI]

    Yanakiev, Diana; Kanellakopoulos, Ioannis

    1995-01-01

    Mean value modeling of large turbocharged two-stroke dieselvalue modeling of a small turbocharged diesel engine," SAEM. Kao and J. J. Moskwa, Turbocharged diesel engine modeling

  20. Analysis, Design, And Evaluation Of Avcs For Heavy-duty Vehicles With Actuator Delays

    E-Print Network [OSTI]

    Yanakiev, Diana; Eyre, Jennifer; Kanellakopoulos, Ioannis

    1998-01-01

    Mean value modeling of large turbocharged two-stroke dieselvalue modeling of a small turbocharged diesel engine. SAEand J. J. Moskwa. 1993. Turbocharged diesel engine modeling

  1. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    52, 23-37. Lewtas, J. Air Pollution Combustion Emissions:Reference Lewtas, J. Air Pollution Combustion Emissions:

  2. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Development Plan for Renewable Energy. In India, a NationalDevelopment Plan for Renewable Energy. In India, a National

  3. Medium and Heavy Duty Vehicle and Engine Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to change FacRepMeasuring OFFICEMedium Base

  4. Medium and Heavy-Duty Vehicle Field Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to change FacRepMeasuring OFFICEMedium BaseMedium and

  5. Medium and Heavy-Duty Vehicle Field Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to change FacRepMeasuring OFFICEMedium BaseMedium

  6. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to change FacRepMeasuring OFFICEMedium

  7. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to change FacRepMeasuring OFFICEMediumDepartment of

  8. Medium- and Heavy-Duty Vehicle Field Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to change FacRepMeasuring OFFICEMediumDepartment

  9. Effects of Biodiesel Blends on Vehicle Emissions: Fiscal Year 2006 Annual Operating Plan Milestone 10.4

    SciTech Connect (OSTI)

    McCormick, R. L.; Williams, A.; Ireland, J.; Hayes, R. R.

    2006-10-01

    The objective was to determine if testing entire vehicles, vs. just the engines, on a heavy-duty chassis dynamometer provides a better, measurement of the impact of B20 on emissions.

  10. Specialty Vehicles and Material Handling EquipmentSpecialty Vehicles and Material Handling EquipmentSpecialty Vehicles and Material Handling EquipmentSpecialty Vehicles and Material Handling Equipment Matching Federal Government Energy Needs with Energy E

    E-Print Network [OSTI]

    Environmental BenefitsEnvironmental Benefits "Well-to-Tank" Greenhouse Gas Factors Hydrogen fuel cell vehicles), producing hydrogensolar), producing hydrogen from natural gas at the stationfrom natural gas at the stationfrom natural gas at the stationfrom natural gas at the station has the lowest carbonhas the lowest

  11. Specialty Vehicles and Material Handling Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof2 Special Report:Specialty Vehicles and

  12. Minimization of Impact from Electric Vehicle Supply Equipment to the

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) |(Patent)Inter-NucleonMiniapplications: VehiclesElectric

  13. Costs Associated With Non-Residential Electric Vehicle Supply Equipment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is onis3 Annual41

  14. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.; Veliz, M.

    2011-09-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was placed in the engine head. The engine was aggressively operated using a transient test cycle for 200 hours. The valve recession was periodically measured to determine valve performance. Upon completion of the test the valves were removed and returned to Caterpillar for additional assessment. Industrial in-kind support was available throughout the project period. Review of the status and research results were carried out on a regular basis (meetings and telecons) which included direction for future work activities. A significant portion of the industrial support was in the form of information exchange and technical consultation.

  15. CRC program for quantifying performance of knock-sensor-equipped vehicles with varying octane level

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    A pilot study was conducted under the auspices of the Coordinating Research Council, Inc. (CRC) to assess the potential effects of gasoline octane quality on acceleration performance, fuel economy and driveability in vehicles equipped with electronic spark control systems (knock sensors). Fourteen vehicles were tested by five participating laboratories on CRC unleaded reference fuels of varying octane quality (78 to 104 RON). The test vehicles included nine naturally-aspirated and five turbocharged models. The results showed that acceleration performance was the parameter most sensitive to octane quality changes, particularly in the turbocharged models.

  16. An Investigation of Natural Gas as a Substitute for Diesel in Heavy Duty Trucks and Associated Considerations

    E-Print Network [OSTI]

    Mohammad, Muneer

    2015-01-01

    In this paper, applicability of natural gas fuel for transportation as compared to diesel is investigated. This study investigates a promising technology for the heavy duty truck sector of transportation as a target for conversion from diesel to natural gas. The supply of natural gas is limited so we also verify the available domestic supply quantities both before and after a fleet conversion. This paper concludes with an economic discussion regarding Javon's paradox and the fungibility of natural gas as compared to that of oil. In order to determine if natural gas can replace diesel for the country's heavy duty truck transportation needs, the energy equivalent and efficiency of natural gas alternatives should be compared to diesel. There are two alternatives for using natural gas as a replacement for diesel; compressed natural gas and liquefied natural gas.

  17. Multivariate analysis of exhaust emissions from heavy-duty diesel fuels

    SciTech Connect (OSTI)

    Sjoegren, M.; Ulf, R.; Li, H.; Westerholm, R. [Stockholm Univ. (Sweden)

    1996-01-01

    Particulate and gaseous exhaust emission phases from running 10 diesel fuels on two makes of heavy-duty diesel engines were analyzed with respect to 63 chemical descriptors. Measurements for one of the fuels were also made in the presence of an exhaust aftertreatment device. The variables included 28 polycyclic aromatic compounds (PAC), regulated pollutants (CO, HC, NO{sub x}, particles), and 19 other organic and inorganic exhaust emission components. Principal components analysis (PCA) was applied for the statistical exploration of the obtained data. In addition, relationships between chemical (12 variables) and physical (12 variables) parameters of the fuels to the exhaust emissions were derived using partial least squares (PLS) regression. Both PCA and PLS models were derived for the engine makes separately. The PCA showed that the most descriptive exhaust emission factors from these diesel fuels included fluoranthene as a representative of PAC, the regulated pollutants, sulfates, methylated pyrenes, and monoaromatics. Exhaust emissions were significantly decreased in the presence of an exhaust aftertreatment device. Both engine makes exhibited similar patterns of exhaust emissions. Discrepancies were observed for the exhaust emissions of CO{sub 2} and oil-derived soluble organic fractions, owing to differences in engine design. The PLS analysis showed a good correlation of exhaust emission of the regulated pollutants and PAC with the contents of PAC in the fuels and the fuel aromaticity. 41 refs., 6 figs., 6 tabs.

  18. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01

    GPS data along with vehicle and emission data. The collectedLoad on Motor Vehicle Emissions. Environmental Science andthe CRC 11th On-Road Vehicle Emission Workshop. San Diego,

  19. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Bennett, Brion

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  1. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Exposure Evaluation for Benzene, Lead and Noise in Vehicle and Equipment Repair Shops

    SciTech Connect (OSTI)

    Sweeney, Lynn C.

    2013-04-10

    An exposure assessment was performed at the equipment and vehicle maintenance repair shops operating at the U. S. Department of Energy Hanford site, in Richland, Washington. The maintenance shops repair and maintain vehicles and equipment used in support of the Hanford cleanup mission. There are three general mechanic shops and one auto body repair shop. The mechanics work on heavy equipment used in construction, cranes, commercial motor vehicles, passenger-type vehicles in addition to air compressors, generators, and farm equipment. Services include part fabrication, installation of equipment, repair and maintenance work in the engine compartment, and tire and brake services. Work performed at the auto body shop includes painting and surface preparation which involves applying body filler and sanding. 8-hour time-weighted-average samples were collected for benzene and noise exposure and task-based samples were collected for lead dust work activities involving painted metal surfaces. Benzene samples were obtained using 3M™ 3520 sampling badges and were analyzed for additional volatile organic compounds. These compounds were selected based on material safety data sheet information for the aerosol products used by the mechanics for each day of sampling. The compounds included acetone, ethyl ether, toluene, xylene, VM&P naphtha, methyl ethyl ketone, and trichloroethylene. Laboratory data for benzene, VM&P naphtha, methyl ethyl ketone and trichloroethylene were all below the reporting detection limit. Airborne concentrations for acetone, ethyl ether, toluene and xylene were all less than 10% of their occupational exposure limit. The task-based samples obtained for lead dusts were submitted for a metal scan analysis to identify other metals that might be present. Laboratory results for lead dusts were all below the reporting detection limit and airborne concentration for the other metals observed in the samples were less than 10% of the occupational exposure limit. Noise dosimetry sampling was performed on a random basis and was representative of the different work activities within the four shops. Twenty three percent of the noise samples exceeded the occupational exposure limit of 85 decibels for an 8-hour time-weightedaverage. Work activities where noise levels were higher included use of impact wrenches and grinding wheels.

  4. Vehicle Technologies Office- AVTA: All Electric USPS Long Life Vehicle Conversions

    Office of Energy Efficiency and Renewable Energy (EERE)

    The following set of reports (part of the medium and heavy-duty truck data) describes performance data collected from all-electric conversions of U.S. Postal Service (USPS) Long-Life Vehicles. This research was conducted by Idaho National Laboratory, which has several additional reports available.

  5. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  6. Heavy-Duty Powertrain DevelopmentCurrent Status and Future Opportuniti...

    Office of Environmental Management (EM)

    2010. deer10aneja.pdf More Documents & Publications BLUETEC - Heading for 50 State Diesel Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project...

  7. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01

    300 vehicles and three drive cycles. The model framework wasover a 1000 second drive cycle with two apparent drivingrepresenting individual drive cycles, characterized by their

  8. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. Effects of blending a heavy alcohol (C20H40O with diesel in a heavy-duty compression-ignition engine

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    Effects of blending a heavy alcohol (C20H40O with diesel in a heavy-duty compression phytol (C20H40O) with diesel in 5%, 10%, and 20% by volume blends. 3-D, transient, turbulent nozzle flow and emissions experiments of the different phytol/diesel blends. Combustion event depicted by high

  11. Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  12. Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-02-01

    Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

  13. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  14. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines?

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  15. LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  16. Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  17. Experiments for Online Estimation of Heavy Vehicle's Mass and Time-Varying Road Grade

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    for online estimation of Heavy Duty Vehicle mass and road grade. The test data is obtained from high- wayExperiments for Online Estimation of Heavy Vehicle's Mass and Time-Varying Road Grade Ardalan Vahidi 1 Anna Stefanopoulou Huei Peng Mechanical Engineering Dept., University of Michigan, Ann Arbor

  18. Vehicle Technologies Office: 2012 Lightweight Materials R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of the U.S. Department of Energys (DOEs) Vehicle Technologies Office (VTO), the Lightweight Materials activity (LM) focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  19. FY2012 Annual Progress Report for Vehicle and Systems Simulation and Testing

    SciTech Connect (OSTI)

    Slezak, Lee [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-03-29

    Annual progress report that evaluates the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context. These evaluations address light-, medium-, and heavy-duty vehicle platforms. This work is directed toward evaluating and verifying the targets of the VTO R&D teams and to providing guidance in establishing roadmaps for achievement of these goals.

  20. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  1. Road Grade Estimation for Look-ahead Vehicle Control

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    power comsumption scheduling over time can improve total energy efficiency, as explored in Pettersson the longitudinal dynamics and energy flow in a heavy duty vehicle. It is used in engine and gearbox controllers determining if a gearshift should be performed or the state of some energy buffer changed. In order to reap

  2. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  3. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    SciTech Connect (OSTI)

    1997-12-01

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  4. Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative Transportation Fuels Market

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is

  5. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art

    Broader source: Energy.gov [DOE]

    2003 DEER Conference Presentation: West Virginia University - Dept. of Mechanical and Aerospace Engineering

  6. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2

    SciTech Connect (OSTI)

    Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

    2000-03-02

    This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

  7. Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehicles andProductionRental CarsFueling

  8. Longitudinal Control of Commercial Heavy Vehicles Equipped with Variable Compression Brake

    E-Print Network [OSTI]

    Moklegaard, Lasse; Druzhinina, Maria; Stefanopoulou, Anna G.

    2002-01-01

    tively converting the turbocharged diesel engine, t h a tvalve of the vehicle's turbocharged diesel engine using avalve of the vehicle's turbocharged diesel engine using a

  9. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  10. Heavy-duty diesel engine NO{sub x} reduction with nitrogen-enriched combustion air. Final CRADA report.

    SciTech Connect (OSTI)

    McConnell, S.; Energy Systems

    2010-07-28

    The concept of engine emissions control by modifying intake combustion gas composition from that of ambient air using gas separation membranes has been developed during several programs undertaken at Argonne. These have led to the current program which is targeted at heavy-duty diesel truck engines. The specific objective is reduction of NO{sub x} emissions by the target engine to meet anticipated 2007 standards while extracting a maximum of 5 percent power loss and allowing implementation within commercial constraints of size, weight, and cost. This report includes a brief review of related past programs, describes work completed to date during the current program, and presents interim conclusions. Following a work schedule adjustment in August 2002 to accommodate problems in module procurement and data analysis, activities are now on schedule and planned work is expected to be completed in September, 2004. Currently, we believe that the stated program requirements for the target engine can be met, based upon extrapolation of the work completed. Planned project work is designed to experimentally confirm these projections and result in a specification for a module package that will meet program objectives.

  11. Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

    SciTech Connect (OSTI)

    Rose McCallen; Richard Couch; Juliana Hsu; Fred Browand; Mustapha Hammache; Anthony Leonard; Mark Brady; Kambiz Salari; Walter Rutledge; James Ross; Bruce Storms; J.T. Heineck; David Driver; James Bell; Gregory Zilliac

    1999-12-31

    This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of-the-art techniques, with the intention of implementing more complex methods in the future.

  12. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    SciTech Connect (OSTI)

    Mindy Kirkpatrick

    2012-05-01

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

  13. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes the progress made on the research and development projects funded by the Vehicle and Systems Simulation and Testing subprogram. The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  14. Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report

    SciTech Connect (OSTI)

    Alvarez, R.A.; Yost, D.M.

    1995-11-01

    A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

  15. EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

    E-Print Network [OSTI]

    Kammen, Daniel M.

    fuel passenger cars, light-duty trucks, and heavy-duty vehicles. 1. Introduction The use of energy). In most industrialized countries, trans- portation fuel use produces a major fraction of all energy/electric hybrid and fuel cell/electric hybrid drivetrain technologies offers the potential for significant

  16. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.D.

    2008-07-15

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

  17. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    SciTech Connect (OSTI)

    Richard Barney Carlson; Don Scoffield; Brion Bennett

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  18. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  19. Vehicle Technologies Office: 21st Century Truck Partners

    Broader source: Energy.gov [DOE]

    The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

  20. Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTIONEnergyHeavy-Duty Trucks and Passenger Vehicles |

  1. FY2011 Annual Progress Report for Vehicle and Systems Simulation and Testing

    SciTech Connect (OSTI)

    2012-01-15

    The VSST team's mission is to evaluate the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context. These evaluations address light-, medium-, and heavy-duty vehicle platforms. This work is directed toward evaluating and verifying the targets of the VTP R&D teams and to providing guidance in establishing roadmaps for achievement of these goals.

  2. Alternative Fuels Data Center: Vehicle Parts and Equipment to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More placesNaturalStateVehicle Parts and

  3. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  4. Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  5. Demonstration of Air-Power-Assist (APA) Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. Natural gas vehicles : Status, barriers, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  7. Articles published in the University of Alabama Research Magazine with vehicle or transportation relevance (press "ctrl+click" on link to access articles)

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    to make hydrogen-powered cars and trucks a reality. Truck with Prototype Fuel Cell Visits UA - May 26, 2003 - A heavy-duty highway tractor truck equipped with a first-of-its-kind fuel-cell auxiliary power on hydrogen fuel cells. Research at The University of Alabama is helping move this scenario toward reality

  8. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect (OSTI)

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  9. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    aromatic hydrocarbon and carbonyl measurements in heavy-dutyMeasurements Measurement of polycyclic aromatic hydrocarbon

  10. The new Mercedes-Benz OM 904 LA light heavy-duty diesel engine for class 6 trucks

    SciTech Connect (OSTI)

    Schittler, M.; Bergmann, H.; Flathmann, K.

    1996-09-01

    As part of a comprehensive strategic product initiative the most important commercial vehicle manufacturer--Mercedes-Benz AG--is step by step renewing its entire product range. This primarily refers to the heart of the vehicles--the engine. After the OM 457 LA, which was developed together with DDC for the special American market demands and which is produced and sold in the US by DDC under the label Series 55, has had its premiere in Freightliner`s Century Class, the OM 904 LA will now follow in the light commercial vehicle class. This engine has a completely new concept of a direct-injection, highly sophisticated turbocharged four-cylinder in-line engine with air-to-air intercooler, whose main characteristics can be outlined by the terms multi-valve technology, high-pressure injection via unit pumps and electronic engine control. This small engine has several interesting features, which--up to now--were only known from class 8 engines. In addition to fulfilling increased customer demands with regard to long service life, easy maintenance, reliability and economy, great attention was paid during the design of the engine to not only fulfill the global regulations, but also account for sufficient potential to comply with further aggravations to be expected. The most important design features and the attained engine ratings are indicated and explained in detail.

  11. Simulation of high-altitude effects on heavy-duty diesel emissions. Final report, 31 October 1988-30 September 1989

    SciTech Connect (OSTI)

    Human, D.M.; Ullman, T.L.

    1989-09-01

    Exhaust emissions from heavy-duty diesel engines operating at high altitude are of concern. EPA and Colorado Department of Health sponsored the project to characterize regulated and selected unregulated emissions from a naturally-aspirated Caterpillar 3208 and a turbocharged Cummins NTC-350 diesel engine at both low and simulated high altitude conditions (about 6000 ft). Emissions testing was performed over cold- and hot-start transient cycles as well as selected steady-state modes. Additionally, the turbocharged engine was operated with mechanically variable and fixed retarded fuel injection timing to represent normal and malfunction conditions, respectively. High altitude operation generally reduced NOx emissions approximately 10% for both engines. Average composite transient emissions of HC, CO, particulate matter, and aldehydes measured at high altitude for the naturally-aspirated engine were 2 to 4 times the levels noted for low altitude conditions. The same emission constituents from the turbocharged engine at high altitude with normal timing were 1.2 to 2 times the low altitude levels, but were 2 to 4 times the low altitude levels with malfunction timing.

  12. TRANSPORTATION ENERGY RESEARCH PIER Transportation Research

    E-Print Network [OSTI]

    . The project also tested a Caterpillar C15 engine certified to 2007 U.S. Environmental Protection Agency.energy.ca.gov/research/ transportation/ January 2011 Heavy-Duty Vehicle Emissions and Fuel Consumption Improvement Illustration of a heavy-duty tractor-trailer modified to meet the SmartWayTM Equipment Standards for lower fuel

  13. Energy use and emissions of idling-reduction options for heavy-duty diesel truacks a comparison.

    SciTech Connect (OSTI)

    Gaines, L. L.; Hartman, C. J. B.; Solomon, M. J.; Energy Systems; James Madison Univ.; Northeast States for Coordinated Air Use Management

    2009-01-01

    Pollution and energy analyses of different idling-reduction (IR) technologies have been limited to localized vehicle emissions and have neglected upstream energy use and regional emissions. In light of increasing regulation and government incentives for IR, this research analyzed the full fuel cycle effects of contemporary approaches. It compared emissions, energy use, and proximity to urban populations for nine alternatives, including idling, electrified parking spaces, auxiliary power units, and several combinations of these. It also compared effects for the United States and seven states: California, Florida, Illinois, New York, Texas, Virginia, and West Virginia. U.S. average emissions impacts from all onboard IR options were found to be lower than those from a 2007-compliant idling truck. Total particulate emissions from electrified parking spaces were found to be greater than those from a 2007 truck, but such emissions generally occurred in areas with low population density. The lowest energy use, carbon dioxide emissions, and nitrogen oxide emissions are seen with a direct-fired heater combined with electrified parking spaces for cooling, and the lowest particulate-matter emissions were found with a direct-fired heater combined with an onboard device for cooling. As expected, state-to-state variations in the climate and grid fuel mix influence the impacts of the full fuel cycle from IR technologies, and the most effective choice for one location may be less effective elsewhere.

  14. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

  15. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect (OSTI)

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

  16. Electric Vehicle Supply Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will constitute the conditions of the contract with the successful supplier after the award. Additionally, some organizations request that the supplier include certification that...

  17. Electric Vehicle Supply Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EVtheEnergyPrepared forEnergy 10

  18. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on asPublicationsFuelsSchool Bus * Shuttle

  19. Effects of diesel fuel combustion-modifier additives on In-cylinder soot formation in a heavy-duty Dl diesel engine.

    SciTech Connect (OSTI)

    Musculus, Mark P. (Sandia National Laboratories, Livermore, CA); Dietz, Jeff (The Lubrizol Corp.)

    2005-07-01

    Based on a phenomenological model of diesel combustion and pollutant-formation processes, a number of fuel additives that could potentially reduce in-cylinder soot formation by altering combustion chemistry have been identified. These fuel additives, or ''combustion modifiers'', included ethanol and ethylene glycol dimethyl ether, polyethylene glycol dinitrate (a cetane improver), succinimide (a dispersant), as well as nitromethane and another nitro-compound mixture. To better understand the chemical and physical mechanisms by which these combustion modifiers may affect soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured, using an optically-accessible, heavy-duty, direct-injection diesel engine. A line-of-sight laser extinction diagnostic was employed to measure the relative soot concentration within the diesel jets (''jetsoot'') as well as the rates of deposition of soot on the piston bowl-rim (''wall-soot''). An OH chemiluminescence imaging technique was utilized to measure the lift-off lengths of the diesel diffusion flames so that fresh oxygen entrainment rates could be compared among the fuels. Measurements were obtained at two operating conditions, using blends of a base commercial diesel fuel with various combinations of the fuel additives. The ethanol additive, at 10% by mass, reduced jet-soot by up to 15%, and reduced wall-soot by 30-40%. The other fuel additives also affected in-cylinder soot, but unlike the ethanol blends, changes in in-cylinder soot could be attributed solely to differences in the ignition delay. No statistically-significant differences in the diesel flame lift-off lengths were observed among any of the fuel additive formulations at the operating conditions examined in this study. Accordingly, the observed differences in in-cylinder soot among the fuel formulations cannot be attributed to differences in fresh oxygen entrainment upstream of the soot-formation zones after ignition.

  20. Lifecycle-analysis for heavy vehicles.

    SciTech Connect (OSTI)

    Gaines, L.

    1998-04-16

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

  1. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

  2. Thermal management for heavy vehicles (Class 7-8 trucks)

    SciTech Connect (OSTI)

    Wambsganss, M.W.

    2000-04-03

    Thermal management is a crosscutting technology that has an important effect on fuel economy and emissions, as well as on reliability and safety, of heavy-duty trucks. Trends toward higher-horsepower engines, along with new technologies for reducing emissions, are substantially increasing heat-rejection requirements. For example, exhaust gas recirculation (EGR), which is probably the most popular near-term strategy for reducing NO{sub x} emissions, is expected to add 20 to 50% to coolant heat-rejection requirements. There is also a need to package more cooling in a smaller space without increasing costs. These new demands have created a need for new and innovative technologies and concepts that will require research and development, which, due to its long-term and high-risk nature, would benefit from government funding. This document outlines a research program that was recommended by representatives of truck manufacturers, engine manufacturers, equipment suppliers, universities, and national laboratories. Their input was obtained through personal interviews and a plenary workshop that was sponsored by the DOE Office of Heavy Vehicle Technologies and held at Argonne National Laboratory on October 19--20, 1999. Major research areas that received a strong endorsement by industry and that are appropriate for government funding were identified and included in the following six tasks: (1) Program management/coordination and benefits/cost analyses; (2) Advanced-concept development; (3) Advanced heat exchangers and heat-transfer fluids; (4) Simulation-code development; (5) Sensors and control components development; and (6) Concept/demonstration truck sponsorship.

  3. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    SciTech Connect (OSTI)

    Ward, J.; Stephens, T. S.; Birky, A. K.

    2012-08-10

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  4. Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat IsHeavy-DutyCELLs

  5. Very High Fuel Economy, Heavy Duty Truck, Narrow Range Speed Engine, Optimized Via Unique Energy Recovery Turbines and Facilitated by High Efficiency Continuously Variable Drivetrain

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  6. Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  7. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve Drive Cycle Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses forward looking dynamic models developed for 6.6L diesel engine and a ¾ ton pickup truck with 8500 lb. curb weight, and validation against in-house engine and vehicle data library

  8. Spatial Disaggregation of CO2 Emissions for the State of California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2008-01-01

    by fuel and sector Light trucks Cars Heavy- duty trucksVentura Yolo Yuba Car Light truck Medium-/Heavy-duty truckvehicles, by vehicle type Light truck Medium/ Heavy-duty

  9. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat IsHeavy-Duty Waste

  10. Industry and Education Experts Work Together to Establish Alternative Fuel Vehicle (AFV) Technician Training Standards

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat IsHeavy-DutyCELLs more and

  11. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  12. Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station

    SciTech Connect (OSTI)

    B. Wilding; D. Bramwell

    1999-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

  13. Development of the Cummins L10 engine to operate on natural gas for heavy duty transit bus applications. Final report, August 1988-December 1991

    SciTech Connect (OSTI)

    Welliver, D.R.

    1993-07-01

    This report covers all of the activities of a program undertaken to develop a natural gas fueled engine using the Cummins L10 diesel engine as the base engine. The base diesel engine is a 10 liter turbocharged jacket water aftercooled carcass that develops 270 hp at 2100 rpm. The design goals included developing a natural gas version at 240 hp with 750 lb-ft of peak torque with exhaust emission level demonstration meeting the 1991 EPA Urban Bus Emission Mandate. Additional goals included demonstrating diesel like vehicle performance and diesel like reliability and durability. Two fuel delivery systems were evaluated, one mechanical and the other electronic closed loop. Field and laboratory test engines were utilized to document reliability. Results of this program led to the production release of the gas engine for transit bus applications and California Air Resources Board certification during 1992.

  14. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    SciTech Connect (OSTI)

    Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

    2013-10-01

    This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

  15. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  16. Application for certification, 1991 model-year light-duty vehicles - Sterling

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems or exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  17. Heavy Duty Diesels- The Road Ahead

    Broader source: Energy.gov [DOE]

    This presentation gives a landscape picture of diesel engine technologies from the Daimler point of view.

  18. Emission Controls for Heavy-Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  19. Scenario analysis of hybrid class 3-7 heavy vehicles.

    SciTech Connect (OSTI)

    An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

    1999-12-23

    The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

  20. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  1. U31: Vehicle Stability and Dynamics: Electronic Stability Control

    SciTech Connect (OSTI)

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Delorenzis, Damon; LaClair, Tim J; Lim, Alvin; Pape, Doug

    2011-01-01

    A team led by NTRCI is working to improve the roll and yaw stability of heavy duty combination trucks through developing stability algorithms, assembling demonstration hardware, and investigating robust wireless communication. Modern electronic stability control (ESC) products automatically slow a vehicle rounding a corner too quickly or apply individual brakes when necessary to improve the steering characteristics of a vehicle. Air brake systems in North America provide no electronic communication between a tractor and semitrailer, limiting the degree to which control systems can be optimized. Prior research has demonstrated stability improvements where dynamic measurements and control commands are communicated between units of a vehicle. Three related activities were undertaken: (1) Develop an algorithm for the optimum yaw and roll control of a combination vehicle. Vehicle state parameters needed to control the vehicle and the proper brake response were determined. An integrated stability control for the tractor and semitrailer requires communication between the two units. Dynamic models were used to assess the algorithm. (2) Implement the ESC algorithm in the laboratory. Hardware components suitable for the harsh environment for measurement, sensor-to-controller communication, and semitrailer-to-tractor communication and brake actuation were specified and assembled as a working system. The goal was to collect the needed vehicle state information, transmit the information to the ESC system, and then actuate the brakes in response to controller commands. (3) Develop a wireless network with the data rate and reliability necessary to communicate dynamic signals for a vehicle stability control system. Adaptive connectivity-aware, multi-hop routing was selected because it can perform in the harsh environment where packet collisions and fading often will exist. The protocol is to give high priority to urgent messages.

  2. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  3. Atmos. Chem. Phys., 9, 33853396, 2009 www.atmos-chem-phys.net/9/3385/2009/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    , the Inn- and the Wipp-valley face particularly high HDV (Heavy-Duty- Vehicle) traffic density. The traffic

  4. NREL & DOE Activities: Update (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2009-10-28

    Describes results to date of NREL's real-world fleet testing of medium- and heavy-duty hybrid vehicles.

  5. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  6. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect (OSTI)

    Willson, B.

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

  7. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect (OSTI)

    Willson, B. )

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

  8. Retrospective Benefit-Cost Evaluation of U.S. DOE Vehicle Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    benefits to society from investments by DOE (both EERE and cooperative CRF efforts) in laser diagnostic and optical engine technologies and combustion modeling for heavy-duty...

  9. Trajectory Optimization for Target Localization Using Small Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Trajectory Optimization for Target Localization Using Small Unmanned Aerial Vehicles Sameera S. Ponda , Richard M. Kolacinski and Emilio Frazzoli Small unmanned aerial vehicles (UAVs) equipped in technology are encouraging the use of small unmanned aerial vehicles (UAVs) for intelli- gence

  10. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  11. Heavy Vehicle Propulsion Materials

    SciTech Connect (OSTI)

    Ray Johnson

    2000-01-31

    The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

  12. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £SpaceFriction &

  13. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £SpaceFriction &Modeling |

  14. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £SpaceFriction &Modeling

  15. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £SpaceFriction

  16. Propane vehicles : status, challenges, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

    2010-06-17

    Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

  17. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    SciTech Connect (OSTI)

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  18. Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)

    Broader source: Energy.gov [DOE]

    Jurisdiction's can use this template to develop a standard permit for residential charging stations that allows for quick, safe installation of EVSE.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Emission Vehicle Requirement All Model Year (MY) 2007 and later heavy-duty vehicles sold, leased, or registered in the state must meet California vehicle emissions and...

  20. Learning, Modeling, and Understanding Vehicle Surround Using Multi-Modal Sensing /

    E-Print Network [OSTI]

    Sivaraman, Sayanan

    2013-01-01

    sion and radar sensor fusion,” Intelligent Transportationa platform for sensor-equipped intelligent vehicles. Basedin multi-sensor acc,” in Intelligent Vehicles Symposium,

  1. The California Demonstration Program for Control of PM from Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of PM from Diesel Backup Generators Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles...

  2. Energy Department Announces $11 Million to Accelerate Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Million to Accelerate Alternative Fuel Use in Medium- and Heavy-Duty Vehicles Energy Department Announces 11 Million to Accelerate Alternative Fuel Use in Medium- and Heavy-Duty...

  3. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  4. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    SciTech Connect (OSTI)

    2005-12-15

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

  5. Vehicle Technologies Office - AVTA: All Electric Delivery Trucks...

    Broader source: Energy.gov (indexed) [DOE]

    of reports (part of the medium and heavy-duty truck data) describes data collected from Smith Newton all-electric delivery trucks in a variety of fleets. This research was...

  6. Clean Cities Plug-In Electric Vehicle Handbook for Electrical Contractors

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  7. Subsea equipment marriage is top ROV priority

    SciTech Connect (OSTI)

    Redden, J.

    1985-04-01

    Interfacing subsea equipment with remotely operated vehicles (ROV's) and the further development of arctic-class units are the primary challenges facing manufacturers. Worldwide use of the ROV for drilling support has exploded during this decade as oil companies continue their search in deeper waters. If the unmanned vehicles are to become an even more integral tool of the oilman, experts say they must be able to perform more complex tasks. The evolution of more multi-purpose ROVs, however, hinges on the redesigning of subsea equipment. The severe limitations on subsea support (by ROVs) is the obsolete design associated with the subsea equipment itself. These limitations are discussed.

  8. TRANSPORTATION SERVICES VEHICLE RENTAL FEES

    E-Print Network [OSTI]

    ) $120.00 PARTS + 10% BRAKE SHOE REPLACEMENT (REAR) $180.00 PARTS + 10% ENGINE FLUSH $60.00 OIL CHANGE $60.00 QM HEAVY EQUIPMENT & OTHERS QM VEHICLES $250.00 SAFETY CHECK $20.00 TIRE SERVICE HEAVY EQUIPMENT TIRE SERVICE FLAT REPAIR $30.00 TIRE SERVICE REPLACEMENT

  9. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL’s Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  10. Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnable Low Temperature Combustion(EVSE) Testing Data |

  11. PM PEM’s On-Road Investigation – With and Without DPF Equipped Engines

    E-Print Network [OSTI]

    Durbin, T; Jung, H; Cocker III, D R; Johnson, K

    2009-01-01

    Under the Heavy-Duty Diesel Engine In-Use Testing Program,Emissions from Diesel Engines. 1. Regulated GaseousEmissions from Diesel Engines. 2. Sampling and Toxics and

  12. Fact #722: April 9, 2012 Hybrid Vehicles Can Save Money over...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: April 9, 2012 Hybrid Vehicles Can Save Money over Time Fact 722: April 9, 2012 Hybrid Vehicles Can Save Money over Time Hybrid vehicles are typically very well equipped with...

  13. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    None

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  14. Lean product development for the automotive niche vehicle marketplace

    E-Print Network [OSTI]

    Kupczewski, Celeste D., 1974-

    2005-01-01

    The automotive low volume niche vehicle marketplace is growing, evidenced by increasing media coverage and fierce competition between original equipment manufacturers. Development of niche vehicles must be lean and therefore ...

  15. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Light-duty vehicle recruitment - Smog check * California Trucking Associations - Heavy-duty vehicle recruitment * Ralphs Grocery Distribution Center - Test site and...

  16. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Association - Heavy-duty vehicle recruitment * Ralphs Grocery Distribution Center - Test site and logistics * U.S. Environmental Protection Agency and CAVTCBKI - LD vehicle...

  17. Katherine Riley | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric...

  18. National Clean Fleets Partners Get the Best of Both Worlds with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can also benefit from incorporating hybrid technology in their fleet of medium- and heavy-duty vehicles. In fact, medium-duty delivery vehicles with hybrid technology can...

  19. Paul Hewett | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric...

  20. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    . Heavy-Duty Engine Dynamometer Test Cell Heavy-duty engines are certified as meeting emission regulations by the manufacturer using an engine dynamometer. These protocols, known as the Heavy-Duty Federal Test Procedures (HD engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment

  1. Simulation and control of a HD diesel engine equipped with new EGR technology

    SciTech Connect (OSTI)

    Dekker, H.J.; Sturm, W.L.

    1996-09-01

    A dynamic model of a Heavy Duty (HD) turbocharged and aftercooled diesel engine was developed. The engine was equipped with high pressure diesel injection, a Variable Geometry Turbine (VGT) and an Exhaust Gas Recirculation (EGR) system. This engine was targeted at meeting EURO4 emission requirements. The final emission results were 2.4 g/k Wh NO{sub x} and 0.107 g/kWh particulates for the European 13 mode test. Better than 3.0 g/k Wh NO{sub x} and 0.10 g/k Wh particulates are expected to be characteristic EURO4 emission requirements (approximate year of implementation is 2004). In the design of the EGR system the model provided initial assessments of the properties of this system. Associated engine and turbocharger behavior as well as optimal control strategies were predicted. A transient engine control algorithm was developed using the dynamic engine model. The VGT is closed loop controlled and EGR is shut off during a short time after a load increase. The simulation results were confirmed by actual measurements, demonstrating acceptable transient behavior.

  2. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  4. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric...

  5. Heavy vehicle propulsion system materials program semi-annual progress report for October 1997 through March 1998

    SciTech Connect (OSTI)

    Johnson, D.R.

    1998-06-01

    The purpose of the Heavy Vehicle Propulsion System materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  6. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  7. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  8. Design of an underwater vertical glider for subsea equipment delivery

    E-Print Network [OSTI]

    Ambler, Charles Kirby

    2010-01-01

    Delivery of subsea equipment and sensors is generally accomplished with unguided sinking platforms or powered autonomous underwater vehicles (AUVs). An alternative would be to augment existing platforms with navigation and ...

  9. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  10. Chapter 15 -Motor Vehicle Maintenance Safety Rules

    E-Print Network [OSTI]

    Tullos, Desiree

    . Employees shall not use defective electrical or mechanical shop equipment or hand tools. All automotive shop and protective clothing shall also be worn. 2. Mechanics shall not wear loose clothing around rotating equipment lifts or jacks. 8. Mechanics shall not work under vehicles that are not properly supported with approved

  11. Sandia Energy - Heavy Duty Low-Temperature & Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduce engine-out emissions. These approaches could allow advanced diesel combustion or low-temperature combustion strategies with potential for enabling both increased fuel...

  12. High Efficiency Clean Combustion for Heavy-Duty Engine

    Broader source: Energy.gov [DOE]

    Explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize engine-out emissions while optimizing fuel economy.

  13. Heavy-duty H2-Diesel Dual Fuel Engines

    Broader source: Energy.gov [DOE]

    Brake thermal efficiency can be improved with the addition of a large amount of hydrogen at medium to high loads

  14. Design of Integrated Laboratory and Heavy-Duty Emissions Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Houston and City of Houston: Collaboration to Determine Best Solutions for Diesel Emission Reductions Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions...

  15. SCRT Technology for Retrofit of Heavy-Duty Diesel Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications The Development and On-Road Performance and Durability of the Four-Way Emission Control SCRTTM System Application Experience with a Combined SCR and DPF...

  16. California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Describes system for fueling truck fleet with biomethane generated from anaerobic digestion of organic waste it collects

  17. Heavy Duty HCCI Development Activities - DOE High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Combustion (HECC) Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st...

  18. Policy Discussion- Heavy-Duty Truck Fuel Economy

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presesntation: National Commission on Energy Policy

  19. High Efficiency Clean Combustion for Heavy-Duty Engine | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative dual mode combustion strategy enabled by variable fuel injection offers emission reduction and efficiency improvement advantages. deer08zhang.pdf More Documents &...

  20. NAFTA Heavy Duty Engine and Aftertreatment Technology: Status and Outlook

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  1. Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |production atmeasurement forces.comparisonTrailers (Technical Report)

  2. Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |production atmeasurement forces.comparisonTrailers (Technical

  3. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Danielthrough theKDesert Peak EGS ProjectTSDesign

  4. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Danielthrough theKDesert Peak EGS ProjectTSDesignDiesel

  5. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Danielthrough theKDesert Peak EGS

  6. Development of High Performance Heavy Duty Engine Oils | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy 1 DOEEnergyEnergyEnergy

  7. Ford`s 1996 Crown Victoria dedicated natural gas vehicle

    SciTech Connect (OSTI)

    Lapetz, J.; Fulton, B.; LeRoux, M.; Locke, J.; Peters, E.; Roman, L.; Walsh, R. [Ford Motor Co., Dearborn, MI (United States); Beitler, J.; Wolff, W.

    1995-12-31

    Ford Motor Company has introduced a Crown Victoria dedicated natural gas vehicle (NGV) to meet rising demand for vehicles powered by cleaner burning fuels and to reduce dependency on foreign energy imports. The Crown Victoria NGS is a production vehicle maintaining Original Equipment Manufacturer (OEM) quality and warranty while complying with all applicable corporate, federal and state requirements.

  8. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect (OSTI)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  9. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  10. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  11. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions CRADA:...

  12. Bench-Top Engine System for Fast Screening of Alternative Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory and Heavy-Duty Emissions Testing Center Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D Annual Progress Report Low-Friction Hard Coatings...

  13. Components Responsible for the Health Effects of Inhaled Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed Natural Gas (CNG)-Powered Vehicles Assessment of Health Hazards of Repeated Inhalation of Diesel...

  14. Analysis Led Intake Port Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premixed Combustion in a Heavy-Duty Diesel Engine Vehicle Technologies Office Merit Review 2013: Accelerating Predictive Simulation of IC Engines with High Performance Computing...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Search results Search results Enter terms Search Showing 1 - 3 of 3 results. Video Energy 101: Heavy Duty Vehicle Efficiency Although Class 8 Trucks only make...

  16. The Role of the Internal Combustion Engine in our Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Internal Combustion Engine in our Energy Future The Role of the Internal Combustion Engine in our Energy Future Reviews heavy-duty vehicle market, alternatives to internal...

  17. Biodiesel Impact on Engine Lubricant Oil Dilution

    Office of Energy Efficiency and Renewable Energy (EERE)

    Heavy-duty engine and light-duty vehicle experiments were conducted to investigate the potential for lubricant dilution by fuel during DPF regeneration events.

  18. Natural Gas Engine Development: July 2003 -- July 2005

    SciTech Connect (OSTI)

    Lekar, T. C.; Martin, T. J.

    2006-11-01

    Discusses project to develop heavy-duty, 8.1L natural gas vehicle engines that would be certifiable below the 2004 federal emissions standards and commercially viable.

  19. Comparative Toxicity of Combined Particle and Semi-Volatile Organic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Components Responsible for the Health Effects of Inhaled Engine Emissions Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed Natural Gas (CNG)-Powered Vehicles...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and less expensive to operate over time. http:energy.goveerevideosenergy-101-heavy-duty-vehicle-efficiency Video Energy 101: Feedstocks for Biofuels and More See how...

  1. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    duty fuel demand in alternate scenarios. ..for light-duty fuel demand in alternate scenarios. Minimum52 Heavy-duty vehicle fuel demand for each alternate

  2. European Diesel Engine Technology: An Overview | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2002deerbrueckner.pdf More Documents & Publications 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions Heavy Duty Vehicle In-Use...

  3. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing...

  4. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2008-01-01

    Inventory for Heavy-Duty Diesel Truck Emissions. J. Air &T. A. Cackette (2001), Diesel engines: Environmental impact2003), http://www.arb.ca.gov/diesel/diesel.htm BAAQMD, Bay

  5. Energy Audit Equipment 

    E-Print Network [OSTI]

    Phillips, J.

    2012-01-01

    The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple...

  6. Power equipment applications

    SciTech Connect (OSTI)

    Seeley, R.S. (Consultant, Bridgewater, NJ (United States))

    1993-11-01

    Many considerations are taken into account in selecting equipment for power projects. The project often becomes a proving ground, benefiting equipment suppliers and developers. In designing and building power generation projects, developers and engineering and construction firms must go through the process of choosing the right equipment for the job. In doing so, a number of considerations regarding the benefits of selection and ease of installation must be taken into account. Understanding the selection process demonstrates how the independent power generation industry becomes a proving ground for different applications of power equipment. In turn, this adds more innovation and versatility to the entire power generation industry. It also provides lenders with examples of proven equipment that will more readily lead to successful financing in the future. Several developers and equipment vendors recently talked about how and why the choices were made for equipment like gas turbines, fluidized bed boilers, water treatment, power cooling equipment, and instruments and controls. 3 figs.

  7. Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    This project discusses preliminary experimental results to find how thermoelectrics can be applied ot future hybrid vehicles and the optimum design of such equipment using heat pipes

  8. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  9. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  13. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  14. Federal Register / Vol. 58, No. 68 / Monday, April 12, 1993 / Proposed Rules (c) Controlledsubstancemeans a class

    E-Print Network [OSTI]

    Pollution From New Motor Vehicles and New Motor Vehicle Engines; Nonconformance Penalties for Heavy-Duty Engines and Heavy Duty Vehicles, Including Heavy Light- Duty Trucks AGENCY: Environmental Protection of the comment period for the Notice of Proposed Rulemaking (NPRM) entitled "Control of Air Pollution From New

  15. Distributed Road Grade Estimation

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Distributed Road Grade Estimation for Heavy Duty Vehicles PER SAH LHOLM Doctoral Thesis in Automatic Control Stockholm, Sweden 2011 #12;Distributed Road Grade Estimation for Heavy Duty Vehicles PER state-of-charge control decrease the energy consumption of vehicles and increase the safety

  16. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

    2005-01-01

    of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

  17. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  18. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C.

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  19. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for October 1998 Through March 1999

    SciTech Connect (OSTI)

    Johnson, R.D.

    1999-06-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.

  20. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery

    E-Print Network [OSTI]

    Zahawi, RA; Dandois, JP; Holl, KD; Nadwodny, D; Reid, JL; Ellis, EC

    2015-01-01

    multirotor hexacopter’ UAV using R.A. Zahawi et al. /and Ellis, 2013). The UAV was equipped with a lithium-unmanned aerial vehicles (UAV) are a cost-effective

  1. Commercial Electric Vehicle (EV) Development and Manufacturing Program

    SciTech Connect (OSTI)

    Leeve, Dion

    2014-06-30

    Navistar with the Department of Energy’s assistance undertook this effort to achieve the project objectives as listed in the next section. A wholly owned subsidiary of Navistar, Workhorse Sales Corporation was the original grant awardee and upon their discontinuation as a standalone business entity, Navistar assumed the role of principal investigator. The intent of the effort, as part of the American Recovery and Reinvestment Act (ARRA) was to produce zero emission vehicles that could meet the needs of the marketplace while reducing carbon emissions to zero. This effort was predicated upon the assumption that concurrent development activities in the lithium ion battery industry investigations would significantly increase their production volumes thus leading to substantial reductions in their manufacturing costs. As a result of this development effort much was learned about the overall system compatibility between the electric motor, battery pack, and charging capabilities. The original system was significantly revised and improved during the execution of this development effort. The overall approach that was chosen was to utilize a British zero emissions, class 2 truck that had been developed for their market, homologate it and modify it to meet the product requirements as specified in the grant details. All of these specific goals were achieved. During the course of marketing and selling the product valuable information was obtained as relates to customer expectations, price points, and product performance expectations, specifically those customer expectations about range requirements in urban delivery situations. While the grant requirements specified a range of 100 miles on a single charge, actual customer usage logs indicate a range of 40 miles or less is typical for their applications. The price point, primarily due to battery pack costs, was significantly higher than the mass market could bear. From Navistar’s and the overall industry’s perspective, valuable insights and lessons into this all-electric vehicle propulsion were gained during the performance of this effort and can be revisited when battery chemistry and technology advance to the point of more suitable economic viability. Additionally, another goal of the ARRA act and this specific grant was to manufacture the product in the, at that time, economically depressed Northwest Indiana area. Navistar chose a location in Wakarusa, Indiana which fulfilled this requirement. Navistar was and continues to be committed to alternative fuel and propulsion options as an industry leader in the medium and heavy duty truck industry.

  2. AVTA: Vehicle to EVSE Smart Grid Communications Report

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from research and testing on vehicle to EVSE smart grid communications interfaces, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  3. Compressed natural gas vehicles motoring towards a green Beijing

    SciTech Connect (OSTI)

    Yang, Ming; Kraft-Oliver, T. [International Institute for Energy Conservation (IIEC) - Asia, Bangkok (Thailand); Guo Xiao Yan [China North Vehicle Research Institute (CNVRI), Beijing (China)

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  4. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  5. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  6. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  7. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  9. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  10. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Energy Savers [EERE]

    AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as...

  11. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  12. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Well-to-Wheels Analysis of Energy Use and...

  13. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009avtaehvso.pdf More Documents &...

  14. Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    ,pedram}@usc.edu ABSTRACT This paper demonstrates that a partially solar powered EV can sig- nificantly save battery energy powered EV is equipped with PV cells on the vehicle panels that has the smallest solar incidence angleFast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles Jaemin Kim1 , Yanzhi

  15. Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation

    E-Print Network [OSTI]

    1 Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation PON successful applicants after the Notice of Proposed Awards to confirm this role and obtain any additional definition of "manufacturing equipment?" For example, would purchases of tooling or assembly line equipment

  16. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  17. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research,...

  18. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  19. Ford`s 1996 Crown Victoria dedicated natural gas vehicle. Final report, January 1991-December 1995

    SciTech Connect (OSTI)

    Dierker, J.B.; Dondlinger, K.A.

    1996-09-01

    Ford Motor Company has introduced a Crown Victoria dedicated natural gas vehicle (NGV) to meet rising demand for vehicles powered by cleaner buring fuels and to reduce dependency on foreign energy imports. The Crown Victoria NGV is a production vehicle that maintains Original Equipment Manufacturer (OEM) quality and warranty while complying with all applicable corporate, federal and state requirements.

  20. Early Equipment Management

    E-Print Network [OSTI]

    Schlie, Michelle

    2007-05-18

    Installed .................................................40 Exhibit 11: 400 Gallon Tank and K-Tron Feeder................................................42 Exhibit 12: Cardboard Box Layout of First Floor Equipment ..............................43... Exhibit 13: Continuous Mixer .............................................................................43 Exhibit 14: Gantry Palletizer...............................................................................44 Page 4 Acknowledgements I...

  1. Laboratory Equipment Donation Program - Equipment List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and masthead Berkeley LablooksEquipment List

  2. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

    2005-08-31

    Recent advances in the area of Metal Matrix Composites (MMC's) have brought these materials to a maturity stage where the technology is ready for transition to large-volume production and commercialization. The new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel, especially when they are selectively reinforced with carbon, silicon carbide, or aluminum oxide fibers. Most of the developments in the MMC materials have been spurred, mainly by applications that require high structural performance at elevated temperatures, the heavy vehicle industry could also benefit from this emerging technology. Increasing requirements of weight savings and extended durability are the main drivers for potential insertion of MMC technology into the heavy vehicle market. Critical elements of a typical tractor-trailer combination, such as highly loaded sections of the structure, engine components, brakes, suspensions, joints and bearings could be improved through judicious use of MMC materials. Such an outcome would promote the DOE's programmatic objectives of increasing the fuel efficiency of heavy vehicles and reducing their life cycle costs and pollution levels. However, significant technical and economical barriers are likely to hinder or even prevent broad applications of MMC materials in heavy vehicles. The tradeoffs between such expected benefits (lower weights and longer durability) and penalties (higher costs, brittle behavior, and difficult to machine) must be thoroughly investigated both from the performance and cost viewpoints, before the transfer of MMC technology to heavy vehicle systems can be properly assessed and implemented. MMC materials are considered to form one element of the comprehensive, multi-faceted strategy pursued by the High Strength/Weight Reduction (HS/WR) Materials program of the U.S. Department of Energy (DOE) for structural weight savings and quality enhancements in heavy vehicles. The research work planed for the first year of this project (June 1, 2003 through May 30, 2004) focused on a theoretical investigation of weight benefits and structural performance tradeoffs associated with the design, fabrication, and joining of MMC components for heavy-duty vehicles. This early research work conducted at West Virginia University yielded the development of integrated material-structural models that predicted marginal benefits and significant barriers to MMC applications in heavy trailers. The results also indicated that potential applications of MMC materials in heavy vehicles are limited to components identified as critical for either loadings or weight savings. Therefore, the scope of the project was expanded in the following year (June 1, 2004 through May 30, 2005) focused on expanding the lightweight material-structural design concepts for heavy vehicles from the component to the system level. Thus, the following objectives were set: (1) Devise and evaluate lightweight structural configurations for heavy vehicles. (2) Study the feasibility of using Metal Matrix Composites (MMC) for critical structural components and joints in heavy vehicles. (3) Develop analysis tools, methods, and validated test data for comparative assessments of innovative design and joining concepts. (4) Develop analytical models and software for durability predictions of typical heavy vehicle components made of particulate MMC or fiber-reinforced composites. This report summarizes the results of the research work conducted during the past two years in this projects.

  3. BCM 1 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and FuelsjBBEE Public1 Equipment

  4. BCM 2 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and FuelsjBBEE Public1 Equipment2

  5. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  6. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles

    SciTech Connect (OSTI)

    R.R. Fessler; G.R. Fenske

    1999-12-13

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 203 0, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of $24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency improvement over equivalent gasoline-fueled trucks. (2) Develop by 2004 the enabling technology for a Class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) that will meet prevailing emission standards, using either diesel or a liquid alternative fuel. (3) Develop by 2006 diesel engines with fuel flexibility and a thermal efficiency of 55% with liquid alternative fuels, and a thermal efficiency of 55% with dedicated gaseous fuels. (4) Develop a methodology for analyzing and evaluating the operation of a heavy vehicle as an integrated system, considering such factors as engine efficiency; emissions; rolling resistance; aerodynamic drag; friction, wear, and lubrication effects; auxiliary power units; material substitutions for reducing weight; and other sources of parasitic energy losses. Overarching these considerations is the need to preserve system functionality, cost, competitiveness, reliability, durability, and safety.

  7. Minimization of Impact from Electric Vehicle Supply Equipment...

    Office of Scientific and Technical Information (OSTI)

    of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest...

  8. Minimization of Impact from Electric Vehicle Supply Equipment to the

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: AchievementsTemperatures Year 6 -FINAL PROJECT REPORT Project1Electric Grid

  9. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  10. Equipment Operational Requirements

    SciTech Connect (OSTI)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  11. Commercial Vehicle Safety Alliance Commercial Vehicle Safety...

    Office of Environmental Management (EM)

    Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email:...

  12. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  13. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

  14. Vehicle Emissions Review- 2012

    Broader source: Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  15. Electrifying Vehicles Early Release

    E-Print Network [OSTI]

    Electrifying Vehicles Early Release Insights from the Canadian Plug-in Electric Vehicle Study #12;1 The Canadian Plug-in Electric Vehicle Study May 25 2015 Electric-mobility may be a key component-in electric vehicles will involve meaningful shifts in social and technical systems. This report considers

  16. Dreher and Harley 352 Journal of the Air & Waste Management Association Volume 48 April 1998

    E-Print Network [OSTI]

    Harley, Robert

    corresponding light-duty vehicle patterns. Weekend decreases in diesel truck ac- tivity and emissions may TECHNICAL PAPER A Fuel-Based Inventory for Heavy-Duty Diesel Truck Emissions David B. Dreher and Robert A ABSTRACT A fuel-based method for estimating heavy-duty diesel truck emissions is described. In this method

  17. REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3

    E-Print Network [OSTI]

    REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3 Notice (PON-12-504) entitled "Advanced Natural Gas Engine research and Development for Class 3 through of natural gas engine concepts for application in light heavy-duty vehicles (LHDV) and medium heavy duty

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    results Enter terms Search Showing 1 - 9 of 9 results. Video Energy 101: Heavy Duty Vehicle Efficiency Although Class 8 Trucks only make up 4% of the vehicles on the road, they...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Search results Search results Enter terms Search Showing 1 - 3 of 3 results. Video Energy 101: Heavy Duty Vehicle Efficiency Although Class 8 Trucks only make up 4% of...

  20. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  1. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  2. China production equipment sourcing strategy

    E-Print Network [OSTI]

    Chouinard, Natalie, 1979-

    2009-01-01

    This thesis recommends a China business and equipment strategy for the Controls Conveyor Robotics Welding (CCRW) group at General Motors. The current strategy is to use globally common equipment through predetermined global ...

  3. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vssarravt066karner2010p...

  4. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

  5. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

  6. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  7. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  8. Emission Impacts of Electric Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

    1990-01-01

    greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

  9. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  10. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  11. UNIRIB: Equipment Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0 - 19 Publications 1. Xie, Z.; Ma, L.;1Equipment

  12. CREATING A LOW-COST AUTONOMOUS VEHICLE Richard W. Wall Jerry Bennett, Greg Eis,

    E-Print Network [OSTI]

    Idaho, University of

    . The platform for developing this control system was a radio- controlled model car. II. NAVIGATION To navigate the design of a low budget autonomous vehicle using a modified radio control car chassis equipped with a GPS

  13. Safety of a multi-vehicle system in mixed communication environments

    E-Print Network [OSTI]

    Chakravarthy, Animesh

    2007-01-01

    Recent news events and statistics demonstrate the frequent occurrence of pile-up crashes on highways. A predominant reason for the occurrence of such crashes is that current vehicles (including those equipped with an ...

  14. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Experience with the German Hydrogen Fuel Project," HydrogenHydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would be

  15. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    ,500 for full battery electric vehicle (BEV) and $5,000 for plug- in hybrid electric vehicle (PHEV) · Financial 39 Tesla 39 BMW 26 Toyota 7 Honda 3 Cadillac 3 Mitsubishi 2 #12;Department of Public Utilities · DPU

  16. Vehicle & Systems Simulation & Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV - EVSE Interoperability Advanced Charging Grid Integration Vehicle Systems Optimization Fast and Wireless Charging Grid Integration Load Reduction, HVAC, & Preconditioning...

  17. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  19. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  20. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source:...

  1. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  2. Rotating Liner Engine: Improving Efficiency of Heavy Duty Diesels by Significant Friction Reduction, and Extending the Life of Heavy Duty Engines.

    SciTech Connect (OSTI)

    Dardalis, Dimitrios

    2013-12-31

    This report describes the work on converting a 4 cylinder Cummins ISB engine into a single cylinder Rotating Liner Engine functioning prototype that can be used to measure the friction benefits of rotating the cylinder liner in a high pressure compression ignition engine. A similar baseline engine was also prepared, and preliminary testing was done. Even though the fabrication of the single cylinder prototype was behind schedule due to machine shop delays, the fundamental soundness of the design elements are proven, and the engine has successfully functioned. However, the testing approach of the two engines, as envisioned by the original proposal, proved impossible due to torsional vibration resonance caused by the single active piston. A new approach for proper testing has been proposed,

  3. 36702 Federal Register / Vol. 61, No. 135 / Friday, July 12, 1996 / Proposed Rules TABLE 2.--PERCENTAGE OF LIGHT TRUCKS SOLD IN THE U.S., EQUIPPED WITH ABS 1--Continued

    E-Print Network [OSTI]

    .--PERCENTAGE OF LIGHT TRUCKS SOLD IN THE U.S., EQUIPPED WITH ABS 1--Continued Model year Import truck % ABS vehicles would increase to $1.75 billion. The cost estimate also projected that all light trucks would, an additional 25 percent of new light trucks or about 1.5 million vehicles, would be involuntarily equipped

  4. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  5. Clean Cities ozone air quality attainment and maintenance strategies that employ alternative fuel vehicles, with special emphasis on natural gas and propane

    SciTech Connect (OSTI)

    Santini, D.J.; Saricks, C.L.

    1998-08-04

    Air quality administrators across the nation are coming under greater pressure to find new strategies for further reducing automotive generated non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emissions. The US Environmental Protection Agency (EPA) has established stringent emission reduction requirements for ozone non-attainment areas that have driven the vehicle industry to engineer vehicles meeting dramatically tightened standards. This paper describes an interim method for including alternative-fueled vehicles (AFVs) in the mix of strategies to achieve local and regional improvements in ozone air quality. This method could be used until EPA can develop the Mobile series of emissions estimation models to include AFVs and until such time that detailed work on AFV emissions totals by air quality planners and emissions inventory builders is warranted. The paper first describes the challenges confronting almost every effort to include AFVs in targeted emissions reduction programs, but points out that within these challenges resides an opportunity. Next, it discusses some basic relationships in the formation of ambient ozone from precursor emissions. It then describes several of the salient provisions of EPA`s new voluntary emissions initiative, which is called the Voluntary Mobile Source Emissions Reduction Program (VMEP). Recent emissions test data comparing gaseous-fuel light-duty AFVs with their gasoline-fueled counterparts is examined to estimate percent emissions reductions achievable with CNG and LPG vehicles. Examples of calculated MOBILE5b emission rates that would be used for summer ozone season planning purposes by an individual Air Quality Control Region (AQCR) are provided. A method is suggested for employing these data to compute appropriate voluntary emission reduction credits where such (lighter) AFVs would be acquired. It also points out, but does not quantify, the substantial reduction credits potentially achievable by substituting gaseous-fueled for gasoline-fueled heavy-duty vehicles. Finally, it raises and expands on the relevance of AFVs and their deployment to some other provisions embedded in EPA`s current guidance for implementing 1-hour NAAQS--standards which currently remain in effect--as tools to provide immediate reductions in ozone, without waiting for promised future clean technologies.

  6. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  7. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  8. SEAPORT LIQUID NATURAL GAS STUDY

    SciTech Connect (OSTI)

    COOK,Z.

    1999-02-01

    The Seaport Liquid Natural Gas Study has attempted to evaluate the potential for using LNG in a variety of heavy-duty vehicle and equipment applications at the Ports of Los Angeles and Oakland. Specifically, this analysis has focused on the handling and transport of containerized cargo to, from and within these two facilities. In terms of containerized cargo throughput, Los Angeles and Oakland are the second and sixth busiest ports in the US, respectively, and together handle nearly 4.5 million TEUs per year. At present, the landside handling and transportation of containerized cargo is heavily dependent on diesel-powered, heavy-duty vehicles and equipment, the utilization of which contributes significantly to the overall emissions impact of port-related activities. Emissions from diesel units have been the subject of increasing scrutiny and regulatory action, particularly in California. In the past two years alone, particulate matter from diesel exhaust has been listed as a toxic air contaminant by CAM, and major lawsuits have been filed against several of California's largest supermarket chains, alleging violation of Proposition 65 statutes in connection with diesel emissions from their distribution facilities. CARE3 has also indicated that it may take further regulatory action relating to the TAC listing. In spite of these developments and the very large diesel emissions associated with port operations, there has been little AFV penetration in these applications. Nearly all port operators interviewed by CALSTART expressed an awareness of the issues surrounding diesel use; however, none appeared to be taking proactive steps to address them. Furthermore, while a less controversial issue than emissions, the dominance of diesel fuel use in heavy-duty vehicles contributes to a continued reliance on imported fuels. The increasing concern regarding diesel use, and the concurrent lack of alternative fuel use and vigorous emissions reduction activity at the Ports provide both the backdrop and the impetus for this study.

  9. Commercial Motor Vehicle Roadside Technology Consor um (CMVRTC)

    E-Print Network [OSTI]

    Roadside Technology Consortium (CMVRTC) is a series of specially equipped testing facilities at inspection, evaluation, and showcase innovative commercial motor vehicle (CMV) safety technologies under real-world an interagency agreement with the Department of Energy (DOE)/ORNL. Since 2007, ART has established internal

  10. Driving the Future Argonne's vehicle systems reseArch

    E-Print Network [OSTI]

    Kemner, Ken

    of alternative fuels and advanced technologies. Heating and air conditioning systems have significant impacts is equipped to evaluate vehicles and components under extreme hot and cold temperature conditions (from 20°F to 95°F). This capability enables researchers to: Validate performance targets for battery packs

  11. The period vehicle routing problem with service choice Peter Francis

    E-Print Network [OSTI]

    Smilowitz, Karen

    ). Department of Industrial Engineering and Management Sciences, Northwestern University Department in the delivery of groceries (or other products), the collection of waste, or the distribution of equipment of Industrial Engineering, Tel Aviv University 1 #12;The PVRP is a generalization of the classic vehicle routing

  12. MERIT Equipment MERIT Video Conference

    E-Print Network [OSTI]

    McDonald, Kirk

    of Energy MERIT Equipment Dismantlement 1 Sept 2010 #12;What's Left · Hydraulic Power Unit (HPU disposal Sept 2010 (estimated) 2 Managed by UT-Battelle for the U.S. Department of Energy MERIT Equipment secondary containmentco ta e t · Hydraulic fluid drained & cylinders removed& cy de s e o ed 3 Managed by UT

  13. UCI Equipment Management Peter's Exchange

    E-Print Network [OSTI]

    Wood, Marcelo A.

    the Asset Retirement Global document available in KFS under KFS Capital Asset Management (as the EIMR formUCI Equipment Management Peter's Exchange (UCI Surplus Sales) SURPLUS PICK-UP REQUEST Department) Phone: (949) 824-6111, 6447, 6519, 6100 Fax this form to (949) 824-4115, or e-mail Equipment-Management

  14. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program...

    Office of Environmental Management (EM)

    Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan...

  15. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  16. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  17. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  18. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  19. Venezuela natural gas for vehicles project

    SciTech Connect (OSTI)

    Marsicobetre, D.; Molero, T. [Corpoven S.A., Miami, FL (United States)

    1998-12-31

    The Natural Gas for Vehicles (NGV) Project in Venezuela describes the development and growth of the NGV project in the country. Venezuela is a prolific oil producer with advanced exploration, production, refining and solid marketing infrastructure. Gas production is 5.2 Bscfd. The Venezuelan Government and the oil state owned company Petroleos de Venezuela (PDVSA), pursued the opportunity of using natural gas for vehicles based on the huge amounts of gas reserves present and produced every day associated with the oil production. A nationwide gas pipeline network crosses the country from south to west reaching the most important cities and serving domestic and industrial purposes but there are no facilities to process or export liquefied natural gas. NGV has been introduced gradually in Venezuela over the last eight years by PDVSA. One hundred forty-five NGV stations have been installed and another 25 are under construction. Work done comprises displacement or relocation of existing gasoline equipment, civil work, installation and commissioning of equipment. The acceptance and usage of the NGV system is reflected in the more than 17,000 vehicles that have been converted to date using the equivalent of 2,000 bbl oil/day.

  20. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  1. Alternative Fuel Vehicle Forecasts Final report

    E-Print Network [OSTI]

    ....................................................................................................................................36 Commercial CNG and LNG Vehicles

  2. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  3. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  4. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    consumption improvement during European drivecycle Fuel consumption improvement during Motorway cruises for electrical heating to emulate thermal management of powertrain ·Installed in vehicle and drivecycle tested

  5. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  6. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  7. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  8. NREL's ReFUEL Laboratory: Center for Transportation Technologies and Systems (CTTS) Fact Sheet

    SciTech Connect (OSTI)

    Not Available

    2002-09-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  9. Renewable Fuels and Lubricants (ReFUEL) Laboratory

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    Fact sheet describing NREL's Renewable Fuels and Lubricants Laboratory (ReFUEL). ReFUEL is a world-class research and testing facility dedicated to future fuels and advanced heavy-duty vehicle research, located in Denver, Colorado.

  10. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  11. ESD_39v1

    Office of Scientific and Technical Information (OSTI)

    was developed to estimate fuel- cycle energy use and emissions of heavy-duty vehicles (class 2b to class 8 trucks). The Series 3 model draws data for upstream fuel production...

  12. Matthew Rodriquez Secretary for

    E-Print Network [OSTI]

    Hernes, Peter J.

    ................................................................................................. 22 The Feasibility of Renewable Natural Gas as a Large Scale, Low-Carbon Substitute ......... 25 Collection of Activity Data from On-road Heavy Duty Diesel Vehicles.................................. 13

  13. Development of the High-Pressure Direct-Injection ISX G Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    Fact sheet details work by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

  14. Development of the High-Pressure Direct-Injected, Ultra Low-NOx Natural Gas Engine: Final Report

    SciTech Connect (OSTI)

    Duggal, V. K.; Lyford-Pike, E. J.; Wright, J. F.; Dunn, M.; Goudie, D.; Munshi, S.

    2004-05-01

    Subcontractor report details work done by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

  15. 6-15-2010_EE_Final_Testimony_STEVEN-G-CHALK.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Heavy Duty Hybrid Vehicle Research, Development, and Demonstration Act (S. 679), the Gas Turbine Efficiency Act of 2009 (S. 2900). S. 3460 | 10 MILLION SOLAR ROOFS ACT OF 2010...

  16. Natural Gas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Natural Gas Many heavy-duty fleets depend on diesel fuel. But an increasing number of trucking companies are transitioning their vehicles to run on liquefied natural...

  17. Special Delivery for Sustainability: Clean Cities Supports UPS...

    Energy Savers [EERE]

    Southern California Association of Governments' Clean Cities project, UPS purchased 48 LNG heavy-duty vehicles and installed a public LNG station in Las Vegas. UPS is a founding...

  18. EECBG Success Story: How Chula Vista, California is Turning Cooking...

    Broader source: Energy.gov (indexed) [DOE]

    a new 10,000 gallon biodiesel fuel tank to facilitate the conversion of over 125 heavy-duty fleet vehicles to biodiesel which will lower greenhouse gas emissions and improve...

  19. Collaborative Lubricating Oil Study on Emissions (CLOSE) Project

    Broader source: Energy.gov [DOE]

    Extensive chemical and physical characterization performed on emissions from normal and high emitting light-, medium-, and heavy-duty vehicles to evaluate relative contributions of fuel and lubricating oil on tailpipe emissions.

  20. Emissions from a Suezmax Class Tanker | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-road and On-road Diesel Emissions Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? The FreedomCAR & Vehicle Technologies Health Impacts Program -...