Sample records for heavy-duty freight transportation

  1. Heavy duty transport research needs assessment

    SciTech Connect (OSTI)

    Not Available

    1991-09-13T23:59:59.000Z

    As a result of the desire to decrease the dependence of the US on foreign petroleum as a transportation fuel, this report assesses the research needs to further develop heavy duty engines. The topics covered include diesel engines, alternative fuels, electric vehicle technology, gas turbine engines, and stirling cycle alternative engines. (GHH)

  2. Heavy duty transport research needs assessment. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-09-13T23:59:59.000Z

    As a result of the desire to decrease the dependence of the US on foreign petroleum as a transportation fuel, this report assesses the research needs to further develop heavy duty engines. The topics covered include diesel engines, alternative fuels, electric vehicle technology, gas turbine engines, and stirling cycle alternative engines. (GHH)

  3. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01T23:59:59.000Z

    Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

  4. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31T23:59:59.000Z

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

  5. Transforming California's Freight Transport System

    E-Print Network [OSTI]

    California at Davis, University of

    Transforming California's Freight Transport System Policy Forum on the Role of Freight Transport Standard #12;2050 Vision- Key Conceptual Outcomes Technology Transformation Early Action Cleaner Combustion Multiple Strategies Federal Action Efficiency Gains Energy Transformation 9 #12;Further reduce localized

  6. Heavy-Duty Powertrain and Vehicle Development - A Look Toward...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain and Vehicle Development - A Look Toward 2020 Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine...

  7. Strategic Freight Transportation Contract Procurement

    E-Print Network [OSTI]

    Nandiraju, Srinivas

    2006-01-01T23:59:59.000Z

    for truckload service contract procurement. Truckloadgiven the details of new service contracts including: demandin auctions for freight service contract procurement. 1.3.1

  8. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01T23:59:59.000Z

    Duty Vehicle and Truck Emissions. Transportation Researchin on-highway truck emission certification standards in theclass (e.g. , car, truck), emission technology (e.g. , no

  9. Executive Education Program Freight Transportation and

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Executive Education Program Freight Transportation and Logistics: Delivering Results in a Volatile Environment September 9 ­11, 2013 Northwestern University Transportation Center NonprofitOrganization U.S.Postage PAID NorthwesternUniversity TransportationCenter RobertR.McCormickSchool of

  10. A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions by Christopher D. Dresser OF WISCONSIN - MADISON Abstract A Midwest Regional Inventory of Heavy-Duty Diesel Vehicle Emissions Christopher-duty diesel vehicles (HDDV) for a ten-state Midwest region (Mississippi Valley Freight Coalition) using

  11. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  12. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel Combustion &...

  13. Title: Best Practices in Urban Freight Management: Lessons from an International Survey Submission date: July 31, 2012

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    policies, and more stringent national fuel efficiency and emissions standards for heavy duty trucks. More Commercial transport is crucial for the functioning of metropolitan areas. Trucks and vans provide local "last mile" deliveries and pickups, as well as most medium haul freight transport. In metro areas

  14. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ce001musculus2010o.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel...

  15. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review 2014:...

  16. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    6 AEC001: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling This presentation does not contain any proprietary, confidential, or otherwise...

  17. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    2 AEC001: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling This presentation does not contain any proprietary, confidential, or otherwise...

  18. An analysis of robustness and flexibility in freight transportation systems

    E-Print Network [OSTI]

    Unahalekhaka, Atikhun

    2013-01-01T23:59:59.000Z

    Freight transportation is a complex large scale system that operates under a highly dynamic and uncertain environment. Due to the scale and complexity of the system, a highly interdependent set of decisions are made across ...

  19. Optimal capital structure of deep sea foreign freight transportation companies

    E-Print Network [OSTI]

    Georgiadis, Vasilis

    2014-01-01T23:59:59.000Z

    This thesis aims to understand the optimal leverage range for shipping companies (maritime foreign freight transportation companies - SIC 4412), through data analysis. This study confirms that in a traditional industry ...

  20. Natural Gas-optimized Advanced Heavy-duty Engine

    E-Print Network [OSTI]

    Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation of natural gas vehicles as a clean alternative is currently limited to smaller engine displacements and spark ignition, which results in lower performance. A large displacement natural gas engine has

  1. http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight

    E-Print Network [OSTI]

    http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation >>> Transportation operat > Freight traffic > Commodities > Travel time > Travel demand > http

  2. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ace01musculus.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review...

  3. Design and scenario assessment for collaborative logistics and freight transport systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Design and scenario assessment for collaborative logistics and freight transport systems Jesus Collaboration between partners is a very popular subject in both logistics and decision support research of logistics and freight transport, as well as to describe the links between freight transport and supply chain

  4. Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion &...

  5. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

  6. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

  7. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    ALTERNATIVE. EVERY Advanced Natural Gas Engine Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Technology for Heavy Duty Vehicles Dr. Mostafa M Kamel Dr. Mostafa M...

  8. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...

    Energy Savers [EERE]

    Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for...

  9. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2011 DOE Hydrogen and Fuel Cells...

  10. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01T23:59:59.000Z

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  11. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes

    E-Print Network [OSTI]

    Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat

  12. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01T23:59:59.000Z

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  13. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference...

  14. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program...

  15. Pneumatic brake control for precision stopping of heavy-duty vehicles

    E-Print Network [OSTI]

    Bu, Fanping; Tan, Han-Shue

    2007-01-01T23:59:59.000Z

    6], heavy-duty vehicle maintenance automation, as well astrue” automation are applications on heavy-duty vehicles [

  16. Emissions and Air Quality Impacts of Freight Transportation Erica Bickford

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    to investigate emissions impacts of swapping biodiesel blends into the Midwest diesel freight truck fleet. We also employ the inventory to investigate emissions and air quality impacts of truck-to-rail freight updated methods to build our bottom-up freight truck emissions inventory (WIFE) for 2007, we evaluate

  17. KEYNOTE SPEAKER: Gary Petersen, Director of Transportation, General Mills 8th Annual Freight and Logistics Symposium

    E-Print Network [OSTI]

    Minnesota, University of

    and Logistics Symposium Rising costs and low capacity mean major changes for the transportation industry. Freight and logistics professionals, researchers, and policymakers examined forces of change affecting Freight and Logistics Symposium. CTS director Robert Johns and Council of Supply Chain Management

  18. Assessing the Environmental and Health Impacts of Port-Related Freight Movement in a Major Urban Transportation Corridor

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    estimate heavy duty truck emissions after the 2002 modelnot for emissions from drayage trucks and trains serving theall heavy duty trucks **: 12hours = AM emission × (2hrs) +

  19. Heavy-Duty Low Temperature Combustion Development Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Development Activities at Caterpillar Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Presentation given at the 2007 Diesel...

  20. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions...

  1. Heavy-Duty Natural Gas Drayage Truck Replacement Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Natural Gas Drayage Truck Replacement Program Principal Investigator: Vicki White South Coast Air Quality Management District May 16, 2012 Project ID ARRAVT045 This...

  2. High Fuel Economy Heavy-Duty Truck Engine

    Broader source: Energy.gov (indexed) [DOE]

    or otherwise restricted information ACE060 High Fuel Economy Heavy Duty Truck Engine Overview Timeline October 2007 - October 2011 Barriers Barriers addressed: Reduced...

  3. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY...

  4. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 2003 DEER Conference Presentation: PUREM 2003deerfrank.pdf...

  5. Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Cycle and Performance Data Collection and Analysis Program Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks...

  6. Heavy-Duty Low-Temperature and Diesel Combustion Research (8748...

    Energy Savers [EERE]

    Heavy-Duty Low-Temperature and Diesel Combustion Research (8748) and Heavy-Duty Combustion Modeling (12349) Heavy-Duty Low-Temperature and Diesel Combustion Research (8748) and...

  7. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions tests of in-use heavy-duty vehicles...

  8. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy Heavy-Duty...

  9. Estimation of run times in a freight rail transportation network

    E-Print Network [OSTI]

    Bonsra, Kunal (Kunal Baldev)

    2012-01-01T23:59:59.000Z

    The objective of this thesis is to improve the accuracy of individual freight train run time predictions defined as the time between departure from an origin node to arrival at a destination node not including yard time. ...

  10. Streamlining Transportation Corridor Planning Processess: Freight and Traffic Information

    SciTech Connect (OSTI)

    Franzese, Oscar [ORNL

    2010-08-01T23:59:59.000Z

    The traffic investigation is one of the most important parts of an Environmental Impact Statement of projects involving the construction of new roadway facilities and/or the improvement of existing ones. The focus of the traffic analysis is on the determination of anticipated traffic flow characteristics of the proposed project, by the application of analytical methods that can be grouped under the umbrella of capacity analysis methodologies. In general, the main traffic parameter used in EISs to describe the quality of traffic flow is the Level of Service (LOS). The current state of the practice in terms of the traffic investigations for EISs has two main shortcomings. The first one is related to the information that is necessary to conduct the traffic analysis, and specifically to the lack of integration among the different transportation models and the sources of information that, in general, reside in GIS databases. A discussion of the benefits of integrating CRS&SI technologies and the transportation models used in the EIS traffic investigation is included. The second shortcoming is in the presentation of the results, both in terms of the appearance and formatting, as well as content. The presentation of traffic results (current and proposed) is discussed. This chapter also addresses the need of additional data, in terms of content and coverage. Regarding the former, other traffic parameters (e.g., delays) that are more meaningful to non-transportation experts than LOS, as well as additional information (e.g., freight flows) that can impact traffic conditions and safety are discussed. Spatial information technologies can decrease the negative effects of, and even eliminate, these shortcomings by making the relevant information that is input to the models more complete and readily available, and by providing the means to communicate the results in a more clear and efficient manner. The benefits that the application and use of CRS&SI technologies can provide to improve and expedite the traffic investigation part of the EIS process are presented.

  11. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01T23:59:59.000Z

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  12. Heavy-Duty Low-Temperature and Diesel Combustion Research (8748...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Manager: Gurpreet Singh Heavy-Duty Low-Temperature and Diesel Combustion Research (8748) and Heavy-Duty Combustion Modeling (12349) FY 2008 DOE Vehicle...

  13. Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed Natural Gas (CNG)-Powered Vehicles Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...

  14. New Demands on Heavy Duty Engine Management Systems

    Broader source: Energy.gov (indexed) [DOE]

    on Heavy Duty Engine Management Systems Excellence in Automotive R&D Emissions Based Process Control NOx-Reducing by EGR NOx -Reducing by SOI Freez e Activation Signal...

  15. Greenhouse gas emissions and the surface transport of freight in Canada

    E-Print Network [OSTI]

    Greenhouse gas emissions and the surface transport of freight in Canada Paul Steenhof a,*, Clarence committed to reducing its greenhouse gas (GHG) emissions to 6% below 1990 levels between 2008 and 2012's emissions of 740 million metric tonnes of carbon dioxide (mmTCO2e), and 41% of the CO2e emitted from

  16. Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  17. Vehicle Technologies Office Merit Review 2015: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  18. 208 | Intermodal transportatIon: movIng FreIght In a global economy 7.1 Introduction

    E-Print Network [OSTI]

    Keskinocak, Pinar

    208 | Intermodal transportatIon: movIng FreIght In a global economy #12;7 7.1 Introduction Air become an indispensible part of the world's global economy, holding an important niche in the transport al mutawaly | 209© 2010 EnoTransportation Foundation.www.enotrans.com Reprinted from IntermodalTransportation:MovingFreightinaGlobalEconomy

  19. Effect of a sudden fuel shortage on freight transport in the United States: an overview

    SciTech Connect (OSTI)

    Hooker, J N

    1980-01-01T23:59:59.000Z

    A survey was made of the potential effects of a sudden reduction of fuel supplies on freight transport via truck, rail, water, and pipeline. After a brief discussion of the energy characteristics of each of these modes of transport, short-term strategies for making better use of fuel in a crisis are investigated. Short-term is taken to mean something on the order of six months, and a crisis is taken to be the result of something on the order of a 20% drop in available fuel. Although no succinct or well-established conclusions are drawn, the gist of the paper is that the potential for short-term conservation, without a serious disruption of service, exists but does not appear to be large. It is remarked that it is possible, through further study, to obtain a fairly accurate reckoning of the physical ability of the freight transport network to weather a fuel crisis, but that it is impossible to say in advance what freight carriers will in fact do with the network.

  20. High-Load Partially Premixed Combustion in a Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine 2005 Diesel Engine Emissions Reduction...

  1. High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel...

  2. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Poster presentation at the 2007...

  3. A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power...

  4. When is it Fuel Efficient for a Heavy Duty Vehicle to Catch Up With a Platoon?

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    research field for the vehicle industry. By establishing a platoon of heavy duty vehicles, the fuelWhen is it Fuel Efficient for a Heavy Duty Vehicle to Catch Up With a Platoon? Kuo-Yun Liang Jonas study the problem of when it is beneficial for a heavy duty vehicle to drive faster in order to catch up

  5. TRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based

    E-Print Network [OSTI]

    Frey, H. Christopher

    TRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based on Real-World Data H and Zhai 1 ABSTRACT Heavy-duty diesel vehicles contribute a substantial fraction of nitrogen oxides unloaded trucks. Replacing diesel fuel with biodiesel fuel for heavy-duty trucks may reduce tailpipe

  6. On-Road Remote Sensing of Heavy-duty Diesel Truck

    E-Print Network [OSTI]

    Denver, University of

    On-Road Remote Sensing of Heavy-duty Diesel Truck Emissions in the Austin- San Marcos Area: August, HC, and NO to CO2 and to get percent opacity readings for heavy-duty diesel trucks with elevated. The fleet of these heavy-duty diesel trucks exhibits a distribution that is close to normal where the top 20

  7. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122Technologies61-2008Medium- and Heavy-Duty

  8. Measuring the Value of Time in Highway Freight Transportation

    E-Print Network [OSTI]

    Miao, Qing

    2014-01-13T23:59:59.000Z

    ) .............................. 37 Table 4.4: Value of Time for Ubiquitous Congestion (80% Known Demand) ............... 37 Table 5.1: Logistic Operation Data by Industry Type...................................................... 53 Table 5.2: Single-Vehicle Value of Time... transportation cost, which 4 has been escalating over the years. For example, between 1981 and 2002, transportation costs increased from $228 billion to $577 billion, which corresponds to 45.1 percent and 63.4 percent of the total logistics cost...

  9. Medium and Heavy Duty Vehicle Field Evaluations (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2014-06-01T23:59:59.000Z

    This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

  10. 15th Annual Freight & Logistics Steven Elmer

    E-Print Network [OSTI]

    Minnesota, University of

    of freight #12;Railroad expansion helped the metro region develop its industrial and commercial base impact freight transportation in Twin Cities Funding uncertainties Energy shortages/Regional Freight Issues #12;A robust, efficient freight transportation system is critical to the region's economic

  11. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2002deeraardahl.pdf More Documents & Publications Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Selective reduction of NOx in...

  12. Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

  13. A European Perspective of EURO 5/U.S. 07 Heavy-Duty Engine Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 State-of-the-Art and Emergin Truck Engine Technologies SCR...

  14. Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    2005. “NAFTA/Mexican Truck Emissions Overview. ” AccessedMexico Heavy Duty Diesel Truck Emission Rates by Truck ModelFor Mexico-registered trucks, emissions characteristics have

  15. TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND

    E-Print Network [OSTI]

    #12;#12;TECHNICAL NOTE HEAVY-DUTY DIESEL VEHICLE (HDDV) IDLING ACTIVITY AND EMISSIONS STUDY: PHASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current Diesel Idling Emissions Factors

  16. Reduction of Heavy-Duty Fuel Consumption and CO2 Generation ...

    Energy Savers [EERE]

    deer09aneja.pdf More Documents & Publications BLUETEC - Heading for 50 State Diesel Heavy-Duty Powertrain DevelopmentCurrent Status and Future Opportunities Daimler...

  17. SCR Potential and Issues for Heavy-Duty Applications in the United...

    Broader source: Energy.gov (indexed) [DOE]

    Detroit Diesel Corporation SCR Potential and Issues for Heavy Duty Applications in the USA Rakesh Aneja, Kuno Flathmann, Craig Savonen, Tim Tindall 02 September 2004 10 th Annual...

  18. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction (DEER)...

  19. High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Rolf D. Reitz, Reed Hanson, Derek Splitter, Sage Kokjohn Engine Research Center...

  20. 3M heavy duty roto peen: Baseline report; Summary

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    The roto peen scaler allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy duty flexible flap. The peens are coupled with a commercially available piece of equipment that is used to scabble or remove the concrete. The scabbled debris is then collected into 55 gallon drums by means of a vacuum system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  1. Energy 101: Heavy Duty Vehicle Efficiency | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavy Duty Vehicle Efficiency Energy 101: Heavy

  2. Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction Reduction

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction the friction losses of a heavy duty diesel engine. In addition, a tear down procedure needed to be created needs Discussed test cell configuration with Diesel Combustion & Emissions Laboratory Performed

  3. The Effects of Altitude on Heavy-Duty Diesel Truck On-Road

    E-Print Network [OSTI]

    Denver, University of

    The Effects of Altitude on Heavy-Duty Diesel Truck On-Road Emissions G A R Y A . B I S H O P , * J oxide from 5772 heavy-duty diesel trucks at five locations in the United States and Europe show slightly health risk (2). These and other factors have brought new attention to diesel truck emissions. Because

  4. Remote Sensing of In-Use Heavy-Duty Diesel Trucks

    E-Print Network [OSTI]

    Denver, University of

    Remote Sensing of In-Use Heavy-Duty Diesel Trucks D A N I E L A . B U R G A R D , G A R Y A . B I from 1641 individually identified heavy-duty diesel trucks at two locations in Colorado are reported- duty diesel trucks. Ammonia emissions from this study were below the detection limit of the instrument

  5. Urban driving cycle results of retrofitted diesel oxidation catalysts on heavy duty vehicles

    SciTech Connect (OSTI)

    Brown, K.F. [Engine Control Systems Ltd., Aurora, Ontario (Canada); Rideout, G.

    1996-09-01T23:59:59.000Z

    This paper presents the emissions testing results of various heavy duty engines and vehicles with and without retrofitted diesel oxidation catalyst technology. 1987 Cummins L10 and 1991 DDC 6V92TA DDECII engine results over the US Heavy Duty Transient Test are presented for comparison to chassis test results. The vehicles in this study include two urban buses, two school buses and three heavy duty trucks. The Central Business District, New York Bus and New York Composite urban driving cycles have been used to evaluate baseline emissions and the catalyst performance on a heavy duty chassis dynamometer. The results demonstrate that 25--45% particulate reduction is readily achievable on a wide variety of heavy duty vehicles. Significant carbon monoxide and hydrocarbon reductions were also observed.

  6. Using LNG as a Fuel in Heavy-Duty Tractors

    SciTech Connect (OSTI)

    Liquid Carbonic, Inc. and Trucking Research Institute

    1999-08-09T23:59:59.000Z

    Recognizing the lack of operational data on alternative fuel heavy-truck trucks, NREL contracted with the Trucking Research Institute (TRI) in 1994 to obtain a cooperative agreement with Liquid Carbonic. The purpose of this agreement was to (1) purchase and operate liquid natural gas- (LNG-) powered heavy-duty tractor-trailers with prototype Detroit Diesel Corporation (DDC) Series 60 natural gas (S60G) engines in over-the-road commercial service applications; and (2) collect and provide operational data to DDC to facilitate the on-road prototype development of the engine and to NREL for the Alternative Fuels Data Center. The vehicles operated from August 1994 through April of 1997 and led to a commercially available, emissions-certified S60G in 1998. This report briefly documents the engine development, the operational characteristics of LNG, and the lessons learned during the project.

  7. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    heavy- duty long-haul Class 8 trucks getting approximately 6which the trucks are sold from long-haul freight companiesof these trucks commonly involves initial use in long-haul

  8. Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool of tomorrowChemCam toEnergyDepartment

  9. Title: Best Practices in Urban Freight Management: Lessons from an International Survey Submission date: July 31, 2012

    E-Print Network [OSTI]

    Boyer, Edmond

    areas. Trucks and vans provide local "last mile" deliveries and pickups, as well as most medium haul reductions programs, local land use and parking policies, and more stringent national fuel efficiency and emissions standards for heavy duty trucks. More research is needed on intra- metropolitan freight movements

  10. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPA 2010

  11. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPA 2010Modeling |

  12. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPA 2010Modeling

  13. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPA 2010ModelingModeling

  14. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis...

  15. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ft004mueller2010o.pdf More Documents & Publications Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research Fuels and Combustion Strategies for...

  16. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Soybean and Rapeseed Oil Combustion in a Heavy Duty On-roadengine lubricating oil into the combustion chamber. 47 It isMcCormick, R. L. Combustion of Fat and Vegetable Oil Derived

  17. A Fuel-Based Inventory for Heavy-Duty Diesel Truck Emissions

    E-Print Network [OSTI]

    Dreher, David B.; Harley, Robert A.

    1998-01-01T23:59:59.000Z

    for Heavy-Duty Diesel Truck Emissions David B. Dreher andheavy-duty diesel truck emissions is described. In thisheavy-duty diesel truck emissions are regulated per unit of

  18. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States...

  19. Vehicle Technologies Office Merit Review 2015: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero-emission heavy-duty drayage truck...

  20. Vehicle Technologies Office Merit Review 2014: Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy duty roots expander...

  1. Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    ID-NR.12345-1 Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines Deer Conference 2003 Presented by Josef Maier AVL Powertrain Engineering ID-NR.12345-2 Overview of...

  2. Heavy-duty truck population, activity and usage patterns. Final report

    SciTech Connect (OSTI)

    Fischer, M.

    1998-07-01T23:59:59.000Z

    The objective of the study was to update the heavy-duty truck (HDT) population, activity (e.g., vehicle miles traveled (VMT), numbers of starts and trips, trip duration, etc.), and usage patterns type of service/business (e.g., delivery, construction, etc.), area of operation (i.e., local, short-haul, long-haul) for HDT`s registered and/or operated in California. The population and activity estimates were done on a weight-class-specific basis light-heavy-duty, medium-heavy-duty and heavy-heavy-duty. Population, activity and usage estimates were based primarily on Department of Motor Vehicles (DMV) registration data and Truck Inventory and Usage Survey (TIUS) data. In addition to the analysis of existing data (i.e., DMV and TIUS), 42 HDTs were fitted with on-board data loggers that recorded numbers of trips and starts, daily VMT and travel by time-of-day.

  3. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles 2011 Directions in Engine-Efficiency and Emissions Research (DEER) October 3-6, 2011 Presented By: Kent...

  4. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

    2013-01-01T23:59:59.000Z

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  5. Demonstrating and evaluating heavy-duty alternative fuel operations

    SciTech Connect (OSTI)

    Peerenboom, W. [Trucking Research Inst., Alexandria, VA (United States)] [Trucking Research Inst., Alexandria, VA (United States)

    1998-02-01T23:59:59.000Z

    The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

  6. Delivering the Green: The Future of California's Freight Transportation System Summary and Reading List

    E-Print Network [OSTI]

    California at Davis, University of

    List California's freight sector is a critical part of California's economic engine, generating-duty vehicles in California. This includes, in the near term: efficiency improvements in the engines-in electric and hydrogen fuel cell electric powertrains and lower-carbon fuels. · In addition to their energy

  7. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Wai-Lin Litzke; James Wegrzyn

    2001-05-14T23:59:59.000Z

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications.

  8. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J [ORNL; Verma, Rajeev [Eaton Corporation; Norris, Sarah [Eaton Corporation; Cochran, Robert [Eaton Corporation

    2014-01-01T23:59:59.000Z

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  9. Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility

    E-Print Network [OSTI]

    Lee, Dongwon

    , hydrocarbons and carbon dioxide from transit buses and heavy-duty vehicles when they are tested on simulated · CO2, CO, HC, NOx, and particulates · Fuels: Diesel, gasoline, CNG, propane, LNG, LPG, ethanol · 30-ton axle capacity · 80 mph speed · Simulated road load curve · Test cycle simulation with driver

  10. Freight Transportation Electronic Marketplaces: A Survey of the Industry and Exploration of Important Research Issues

    E-Print Network [OSTI]

    Nandiraju, Srinivas; Regan, Amelia

    2008-01-01T23:59:59.000Z

    Coia, A. , Evolving transportation exchanges, World trade,of Carrier strategies in an auction based transportationmarketplace, Transportation Research Board, Journal of the

  11. Heavy-duty diesel vehicle Nox? aftertreatment in 2010 : the infrastructure and compliance challenges of urea-SCR

    E-Print Network [OSTI]

    Bodek, Kristian M

    2008-01-01T23:59:59.000Z

    Increasingly stringent heavy-duty vehicle emission regulations are prompting the use of PM and NOx aftertreatment systems in the US, the EU and Japan. In the US, the EPA Highway Diesel Rule, which will be fully implemented ...

  12. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01T23:59:59.000Z

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  13. High temperature solid lubricant materials for heavy duty and advanced heat engines

    SciTech Connect (OSTI)

    DellaCorte, C.; Wood, J.C.

    1994-10-01T23:59:59.000Z

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

  14. Hennepin County`s experience with heavy-duty ethanol vehicles

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    From November 1993 to October 1996, Hennepin County, which includes Minneapolis, field-tested two heavy-duty snowplow/road maintenance trucks fueled by ethanol. The overall objective of this program was to collect data from original equipment manufacturer alternative fuel heavy-duty trucks, along with comparable data from a similarly configured diesel-powered vehicle, to establish economic, emissions, performance, and durability data for the alternative fuel technology. These ethanol trucks, along with an identical third truck equipped with a diesel engine, were operated year round to maintain the Hennepin county roads. In winter, the trucks were run in 8-hour shifts plowing and hauling snow from urban and suburban roads. For the rest of the year, the three trucks were used to repair and maintain these same roads. As a result of this project, a considerable amount of data was collected on E95 fuel use, as well as maintenance, repair, emissions, and operational characteristics. Maintenance and repair costs of the E95 trucks were considerably higher primarily due to fuel filter and fuel pump issues. From an emissions standpoint, the E95 trucks emitted less particulate matter and fewer oxides of nitrogen but more carbon monoxide and hydrocarbons. Overall, the E95 trucks operated as well as the diesel, as long as the fuel filters were changed frequently. This project was a success in that E95, a domestically produced fuel from a renewable energy source, was used in a heavy-duty truck application and performed the same rigorous tasks as the diesel counterparts. The drawbacks to E95 as a heavy-duty fuel take the form of higher operational costs, higher fuel costs, shorter range, and the lack of over-the-road infrastructure.

  15. Heavy Duty Diesels - The Road Ahead | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson HazleRyan

  16. Heavy Duty HCCI Development Activities - DOE High Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson HazleRyanCombustion (HECC) |

  17. Heavy Duty Vehicle Modeling & Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson HazleRyanCombustion (HECC)&

  18. Heavy Duty Vehicle Modeling and Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson HazleRyanCombustion

  19. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPA 2010 Emissions |

  20. Heavy-Duty HCCI Development Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPA 2010 EmissionsDuty

  1. Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPA 2010 EmissionsDuty|

  2. Heavy-Duty Vehicle Field Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPALeanDepartment

  3. Hydrogen in the Heavy Duty Market? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen and Fuelasin the

  4. Merging qualitative and quantitative criteria for freight investment using scenario planning

    E-Print Network [OSTI]

    Sánchez-Valero, Miguel Ángel

    2011-01-01T23:59:59.000Z

    Freight transportation is vital to the economy of the United States. The total volume of freight moving inside the nation is expected to continue growing, while the U.S. transportation system is aging and becoming more ...

  5. Combustion Commonality and Differences Between HSDI and Heavy Duty Truck Engines

    SciTech Connect (OSTI)

    Chen, Rong

    2000-08-20T23:59:59.000Z

    Experimental understanding of the diesel spray and combustion process at the fundamental level has helped advance the virtual lab simulation tools. The computational fluid dynamics (CFD)-based simulation has been globally verified in many engines, providing substantial credibility to the use of this technology in advanced engine development. This paper highlights the common aspects and differences between the smallbore HSDI and the larger displacement heavy-duty truck engine spray and combustion processes. Implications for combustion system strategies will be delineated. Detroit Diesel integrated ''Wired'' approach will be explained with pointers towards future tool enhancements.

  6. New Demands on Heavy Duty Engine Management Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNew CatalyticDemands on Heavy Duty Engine

  7. Analysis of C1, C2, and C10 through C33 particle-phase and semi-volatile organic compound emissions from heavy-duty diesel engines

    E-Print Network [OSTI]

    Wu, Mingshen

    from heavy-duty diesel engines Z. Gerald Liu a,*, Devin R. Berg a , Victoria N. Vasys a , Melissa E 18 November 2009 Keywords: Organic compound emissions Particulate matter emissions Heavy-duty diesel engines Aftertreatment technology Diesel particulate filter Chemical speciation a b s t r a c t To meet

  8. Freight Wing Trailer Aerodynamics

    SciTech Connect (OSTI)

    Graham, Sean (Primary Investigator); Bigatel, Patrick

    2004-10-17T23:59:59.000Z

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  9. Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine and pumping frictional losses on Volvo-Mack's 11 liter Diesel Engine. Thermocouples and pressure transducers use this rig in the future to quantify frictional losses and improve on the efficiency of their diesel

  10. Effects of a Zeolite-Selective Catalytic Reduction System on Comprehensive Emissions from a Heavy-Duty Diesel Engine

    E-Print Network [OSTI]

    Wu, Mingshen

    -Duty Diesel Engine Z. Gerald Liu and Devin R. Berg Cummins Emission Solutions, Stoughton, WI James J. Schauer spec- trum of chemical species from diesel engine emissions were investigated in this study with established procedures and com- pared between the measurements taken from a baseline heavy-duty diesel engine

  11. PON-10-603 Advanced Medium-and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations Questions and Answers

    E-Print Network [OSTI]

    -for-profit technology entities might include, but are not limited to: CalETC CALSTART California Biodiesel AlliancePON-10-603 Advanced Medium- and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations-for-profit technology entity who will be responsible for administering the block grant and coordinating projects

  12. Heavy-Duty Truck Emissions in the South Coast Air Basin of Gary A. Bishop,* Brent G. Schuchmann,

    E-Print Network [OSTI]

    Denver, University of

    Heavy-Duty Truck Emissions in the South Coast Air Basin of California Gary A. Bishop,* Brent G, Colorado 80208, United States ABSTRACT: California and Federal emissions regulations for 2007 and newer of nitrogen spurring the introduction of new aftertreatment systems. Since 2008, four emission measurement

  13. Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from a Heavy-Duty

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from, Antonio Sciarretta, Luc Voise, Pascal Dufour, Madiha Nadri Abstract-- In recent years, waste heat recovery waste heat from a heavy- duty diesel engine. For this system, a hierarchical and modular control

  14. Evolution of Westinghouse heavy-duty power generation and industrial combustion turbines

    SciTech Connect (OSTI)

    Scalzo, A.J.; Bannister, R.L. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; DeCorso, M.; Howard, G.S.

    1996-04-01T23:59:59.000Z

    This paper reviews the evolution of heavy-duty power generation and industrial combustion turbines in the United States from a Westinghouse Electric Corporation perspective. Westinghouse combustion turbine genealogy began in March of 1943 when the first wholly American designed and manufactured jet engine went on test in Philadelphia, and continues today in Orlando, Florida, with the 230 MW, 501G combustion turbine. In this paper, advances in thermodynamics, materials, cooling, and unit size will be described. Many basic design features such as two-bearing rotor, cold-end drive, can-annular internal combustors, CURVIC{sup 2} clutched turbine disks, and tangential exhaust struts have endured successfully for over 40 years. Progress in turbine technology includes the clean coal technology and advanced turbine systems initiatives of the US Department of Energy.

  15. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  16. Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers

    SciTech Connect (OSTI)

    Beck, Jason; Salari, Kambiz; Ortega, Jason; Brown, Andrea

    2013-09-30T23:59:59.000Z

    The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 – Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 – Conduct a fleet evaluation with selected device combination. Phase 3 – Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operators have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 – 7.8% fuel economy with the devices (This does not include tire contribution).

  17. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Robert W. Carling; Gurpreet Singh

    2000-06-19T23:59:59.000Z

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work.

  18. Time- and space-resolved quantitative LIF measurements of formaldehyde in a heavy-duty diesel engine

    SciTech Connect (OSTI)

    Donkerbroek, A.J.; van Vliet, A.P.; Klein-Douwel, R.J.H.; Meerts, W.L.; ter Meulen, J.J. [Institute for Molecules and Materials, Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Somers, L.M.T.; Frijters, P.J.M. [Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dam, N.J. [Institute for Molecules and Materials, Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2010-01-15T23:59:59.000Z

    Formaldehyde (CH{sub 2}O) is a characteristic species for the ignition phase of diesel-like fuels. As such, the spatio-temporal distribution of formaldehyde is an informative parameter in the study of the ignition event in internal combustion engines, especially for new combustion modes like homogeneous charge compression ignition (HCCI). This paper presents quantitative data on the CH{sub 2}O distribution around diesel and n-heptane fuel sprays in the combustion chamber of a commercial heavy-duty diesel engine. Excitation of the 4{sub 0}{sup 1} band (355 nm) as well as the 4{sub 0}{sup 1}2{sub 0}{sup 1} band (339 nm) is applied. We use quantitative, spectrally resolved laser-induced fluorescence, calibrated by means of formalin seeding, to distinguish the contribution from CH{sub 2}O to the signal from those of other species formed early in the combustion. Typically, between 40% and 100% of the fluorescence in the wavelength range considered characteristic for formaldehyde is in fact due to other species, but the latter are also related to the early combustion. Numerical simulation of a homogeneous reactor of n-heptane and air yields concentrations that are in reasonable agreement with the measurements. Formaldehyde starts to be formed at about 2 CA (crank angle degrees) before the rise in main heat release. There appears to be a rather localised CH{sub 2}O formation zone relatively close to the injector, out of which formaldehyde is transported downstream by the fuel jet. Once the hot combustion sets in, formaldehyde quickly disappears. (author)

  19. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    SciTech Connect (OSTI)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01T23:59:59.000Z

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  20. Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffrey Birkel

    2007-10-31T23:59:59.000Z

    The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

  1. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.; Veliz, M. (Caterpillar, Inc.) [Caterpillar, Inc.

    2011-09-30T23:59:59.000Z

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was placed in the engine head. The engine was aggressively operated using a transient test cycle for 200 hours. The valve recession was periodically measured to determine valve performance. Upon completion of the test the valves were removed and returned to Caterpillar for additional assessment. Industrial in-kind support was available throughout the project period. Review of the status and research results were carried out on a regular basis (meetings and telecons) which included direction for future work activities. A significant portion of the industrial support was in the form of information exchange and technical consultation.

  2. Freight Shuttle System: Cross-Border Movement of Goods

    SciTech Connect (OSTI)

    None

    2011-05-31T23:59:59.000Z

    The Freight Shuttle System (FSS) is designed to provide freight transportation services between those short and intermediate distance locations (within 600 miles) that are currently handling large volumes of freight traffic. Much like trucks, the FSS's transporters are autonomous: each transporter has its own propulsion and travels independently of other transporters. Inspired by railroads, each FSS transporter has steel wheels operating on a steel running surface and can carry either a standardsize freight container or an over-the-road truck trailer. However, unlike either rail or trucks, the FSS runs on an elevated, dedicated guideway to avoid the interference of other transportation systems. The objective of this report is to examine the potential viability for an alternative transportation system for trailers and containers in a multi-national, cross-border setting. The El Paso-Ciudad Juarez region serves as the environment of this analysis.

  3. Multivariate analysis of exhaust emissions from heavy-duty diesel fuels

    SciTech Connect (OSTI)

    Sjoegren, M.; Ulf, R.; Li, H.; Westerholm, R. [Stockholm Univ. (Sweden)

    1996-01-01T23:59:59.000Z

    Particulate and gaseous exhaust emission phases from running 10 diesel fuels on two makes of heavy-duty diesel engines were analyzed with respect to 63 chemical descriptors. Measurements for one of the fuels were also made in the presence of an exhaust aftertreatment device. The variables included 28 polycyclic aromatic compounds (PAC), regulated pollutants (CO, HC, NO{sub x}, particles), and 19 other organic and inorganic exhaust emission components. Principal components analysis (PCA) was applied for the statistical exploration of the obtained data. In addition, relationships between chemical (12 variables) and physical (12 variables) parameters of the fuels to the exhaust emissions were derived using partial least squares (PLS) regression. Both PCA and PLS models were derived for the engine makes separately. The PCA showed that the most descriptive exhaust emission factors from these diesel fuels included fluoranthene as a representative of PAC, the regulated pollutants, sulfates, methylated pyrenes, and monoaromatics. Exhaust emissions were significantly decreased in the presence of an exhaust aftertreatment device. Both engine makes exhibited similar patterns of exhaust emissions. Discrepancies were observed for the exhaust emissions of CO{sub 2} and oil-derived soluble organic fractions, owing to differences in engine design. The PLS analysis showed a good correlation of exhaust emission of the regulated pollutants and PAC with the contents of PAC in the fuels and the fuel aromaticity. 41 refs., 6 figs., 6 tabs.

  4. Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.

    SciTech Connect (OSTI)

    Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

    2010-03-31T23:59:59.000Z

    The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

  5. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15T23:59:59.000Z

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  6. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01T23:59:59.000Z

    measured second-by-second fuel use. Mesoscale Modeling DataSet and Mesoscale ModelCalibration Mesoscale model calibration and validation

  7. Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative Transportation Fuels Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat Transfer inoperationSince 1988,

  8. Optimizing the aerodynamic efficiency of intermodal freight trains

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    and energy efficiency of railroad intermodal trains. Several recommendations regarding railway equipment use efficiency; Aerodynamics; Fuel use; Railroad intermodal transportation; Loading assignment; Urban freight 1 practices on train make-up and energy efficiency. They found that aerodynamic characteristics significantly

  9. FREIGHT CONTAINER LIFTING STANDARD

    SciTech Connect (OSTI)

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13T23:59:59.000Z

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  10. Freight Performance Measures Guide Rob Harrison

    E-Print Network [OSTI]

    Texas at Austin, University of

    -Otway Dan Middleton Jason West TxDOT Project 0-5410: Developing Freight Highway Corridor Performance Measure Strategies in Texas DECEMBER 2006 Performing Organization: Center for Transportation Research The University of Texas at Austin 3208 Red River, Suite 200 Austin, Texas 78705-2650 Sponsoring Organization: Texas

  11. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    transport fuel use come from renewable sources (including biofuels).transport fuel use to come from renewable sources (including biofuels).

  12. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01T23:59:59.000Z

    of biofuels. Heavy duty truck GHG emissions are projected toto decline, heavy duty truck GHG emissions are projected toperiod. Heavy duty truck GHG emissions are projected to grow

  13. Look-Ahead Cruise Control for Heavy Duty Vehicle Platooning Assad Alam1, Jonas Martensson2, and Karl H. Johansson2

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Look-Ahead Cruise Control for Heavy Duty Vehicle Platooning Assad Alam1, Jonas M°artensson2, and Karl H. Johansson2 Abstract-- Vehicle platooning has become important for the vehicle industry. Yet of vehicle platooning is not new. The first investigation into control for heavy vehicle platooning

  14. Unintended environmental impacts of nighttime freight logistics activities

    E-Print Network [OSTI]

    Sathaye, Nakul; Harley, Robert; Madanat, Samer

    2009-01-01T23:59:59.000Z

    Heavy?Duty Diesel Truck  Emissions.   Journal of the Air Restrictions: Impacts on Truck  Emissions and Performance Reducing port?related truck emissions: The terminal gate 

  15. Service quality planning for freight distribution with time windows in large networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    as a quality factor of the service, since its nature and configuration also affects the total transportation1 Service quality planning for freight distribution with time windows in large networks Francesco introduces a methodology whose aim is to evaluate how the quality of a freight distribution service with time

  16. 6 TRANSPORTATION OF SPECIMENS All samples to be transported should be packaged in heavy-duty containers and should comply

    E-Print Network [OSTI]

    Marsh, Helene

    plastic bags (see Webb 1998). Place samples in a strong insulated container or cardboard box. Addresses-duty containers and should comply with the appropriate local protocol. It is important that all agencies involved with tape and enclosed in sealed plastic bags. Specimens can also be sent wrapped; place tissues in paper

  17. Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122Technologies |Measurements of PM

  18. Medium and Heavy-Duty Vehicle Field Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122Technologies61-2008

  19. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h y dDepartment of

  20. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h y dDepartment

  1. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h yDepartmentusing

  2. LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade |Vessel into

  3. Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms Loan TermsLong Island HTS

  4. Lowest Engine-Out Emissions as the Key to the Future of the Heavy-Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment1 DOEEmissionLowell,2Watts

  5. Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment1| Department of

  6. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122Technologies | DepartmentState-of-the-Art

  7. Medium and Heavy Duty Vehicle and Engine Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122Technologies61-2008 JuneMedication

  8. Medium and Heavy-Duty Vehicle Field Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122Technologies61-2008 JuneMedicationMedium

  9. Medium- and Heavy-Duty Vehicle Field Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122Technologies61-2008Medium- and

  10. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration0-1HAWAI'I CLEANDepartment ofEPA2010-

  11. Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson HazleRyan Gist,HeatApplications

  12. Heavy Duty Vehicle In-Use Emission Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson HazleRyanCombustion (HECC)

  13. Heavy-Duty Engine Technology for High Thermal Efficiency at EPA 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPA 2010 Emissions

  14. Heavy-Duty Low-Temperature and Diesel Combustion Research (8748) and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPA

  15. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPALean NOx Catalysis |

  16. Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPALean NOx Catalysis

  17. Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPALean NOx

  18. Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPALean NOxEnergy 0

  19. Heavy-Duty Powertrain and Vehicle Development - A Look Toward 2020 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPALean

  20. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargeting EPALeanDepartment of

  1. Heavy-duty H2-Diesel Dual Fuel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargetingduty H2-Diesel Dual Fuel

  2. High Efficiency Clean Combustion for Heavy-Duty Engine | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnology Validation »Engines |

  3. High Efficiency Clean Combustion for Heavy-Duty Engine | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnology Validation »Engines |Energy

  4. High Fuel Economy Heavy-Duty Truck Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh Efficiency Low

  5. High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r r tEnergy

  6. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry Research U.S. DepartmentDrive

  7. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by...

    Broader source: Energy.gov (indexed) [DOE]

    According to the preliminary 2012 Commodity Flow Survey (CFS) data, trucks transport the vast majority of freight by both weight and value. The two pie charts below show the share...

  8. Current Directions in Freight and Logistics Industry

    E-Print Network [OSTI]

    Minnesota, University of

    Current Directions in Freight and Logistics Industry CTS Freight and Logistics Symposium November- the-box #12;Perspective Be sure to look-up from time-to-time #12;Why Discuss Freight and Logistics....Large Part of the Economy Logistics Cost As A Percent of GDP ­ 10% Source: CSCMP State of Logistics 2007 #12

  9. STATE-OF-THE-PRACTICE IN FREIGHT DATA: A REVIEW OF AVAILABLE FREIGHT DATA IN THE U.S.

    E-Print Network [OSTI]

    Texas at Austin, University of

    procedures, freight demand characteristics, freight data quality control procedures, freight database, survey method, quality control procedure, geographical coverage, frequency of updates of each publicly available database, and the available documentation of commercial databases. In total, 31

  10. Fact #602: December 21, 2009 Freight Statistics by Mode, 2007...

    Energy Savers [EERE]

    2: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Fact 602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Results from the...

  11. Fourteenth Annual Freight & Logistics Symposium December 2010

    E-Print Network [OSTI]

    Minnesota, University of

    Fourteenth Annual Freight & Logistics Symposium December 2010 Sustainability: Does It Make Cents social responsibility ·Transparency ·Sustainable logistics ·Fuel efficiency ·Energy efficiency ·Quality

  12. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #846: Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

  13. Costs and benefits of logistics pooling for urban freight distribution: scenario

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Costs and benefits of logistics pooling for urban freight distribution: scenario simulation Collaborative transportation and logistics pooling are relatively new concepts in research, but are very popular in practice. In the last years, collaborative transportation seems a good city logistics alternative

  14. OVERVIEW OF PROPOSED TRANSPORTATION ENERGY

    E-Print Network [OSTI]

    ......................................................................................................................12 California Freight Energy Demand Model..............................................................................................13 California Transit Energy Demand ModelOVERVIEW OF PROPOSED TRANSPORTATION ENERGY ANALYSES FOR THE 2007 INTEGRATED ENERGY POLICY REPORT

  15. Freight Analysis Framework version 3 (FAF3)

    E-Print Network [OSTI]

    Freight Analysis Framework version 3 (FAF3) Oak Ridge National Laboratory managed by UT Technologies Research Brief T he Freight Analysis Framework version 3 (FAF3) database is a Federal Highway data to enable users to perform train analysis. FAF3 Geography Figure 1 shows the analysis regions

  16. Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System

    SciTech Connect (OSTI)

    Oliveira Neto, Francisco Moraes [ORNL] [ORNL; Chin, Shih-Miao [ORNL] [ORNL; Hwang, Ho-Ling [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

  17. Modelling the global prospects and impacts of heavy duty liquefied natural gas vehicles in computable general equilibrium

    E-Print Network [OSTI]

    Yip, Arthur Hong Chun

    2014-01-01T23:59:59.000Z

    Natural gas vehicles have the prospects of making substantial contributions to transportation needs. The adoption of natural gas vehicles could lead to impacts on energy and environmental systems. An analysis of the main ...

  18. Michael W. Hancock, P.E., President Secretary, Kentucky Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    (202) 624-5806 * transportation.org * centennial.transportation.org Statement of Chris Smith Senior Program Manager for Freight American Association of State Highway and...

  19. [Interstate Clean Transportation]. Final Report for FG02-99EE50591

    SciTech Connect (OSTI)

    Wendt, Lee

    2002-07-19T23:59:59.000Z

    The Interstate Clean Transportation (ICTC) purpose is to develop a public-private partnership dedicated to accelerating the market penetration of clean, alternative fuel vehicles (AFVs) in interstate goods movement. In order to foster project development, the ICTC activity sought to increase awareness of heavy-duty AFVs among truck fleet operators.

  20. Freight logistics services for rural economies: User needs and future challenges Angela Cristina Marqui

    E-Print Network [OSTI]

    Edwards, Pete

    Freight logistics services for rural economies: User needs and future challenges Angela Cristina requirements for logistics and transport services of small and micro rural businesses. This paper explores for the logistics requirements of rural businesses calls for intelligent software platforms that provide solutions

  1. Integrating regional strategic transportation planning and supply chain management : along the path to sustainability

    E-Print Network [OSTI]

    Sgouridis, Sgouris P

    2005-01-01T23:59:59.000Z

    A systems perspective for regional strategic transportation planning (RSTP) for freight movements involves an understanding of Supply Chain Management (SCM). This thesis argues that private sector freight shippers and ...

  2. Automated Transportation Management System (ATMS) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy's (DOE's) Automated Transportation Management System is an integrated web-based logistics management system allowing users to manage inbound and outbound freight...

  3. Center for Transportation Analysis 2360 Cherahala Boulevard

    E-Print Network [OSTI]

    22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy, aviation, schools, drinking water, wastewater, dams, solid waste, hazardous waste, navigable waterways

  4. Information House Committee on Transportation

    E-Print Network [OSTI]

    . The energy efficiency and environmental advantage of rail over trucks are well established in terms Transportation Institute Page 2 MULTIMODAL FREIGHT Texas has a well developed and efficient multimodal, or more than $690 billion. Railroads transport more than a third of the tonmiles for freight valued

  5. NEMS Freight Transportation Module Improvement Study

    U.S. Energy Information Administration (EIA) Indexed Site

    basic shapes 33. Articles of base metal 41. Waste and scrap 3. Processed food 5. Meat, fish, seafood, and their preparations 6. Milled grain products and preparations, and bakery...

  6. Effects of diesel fuel combustion-modifier additives on In-cylinder soot formation in a heavy-duty Dl diesel engine.

    SciTech Connect (OSTI)

    Musculus, Mark P. (Sandia National Laboratories, Livermore, CA); Dietz, Jeff (The Lubrizol Corp.)

    2005-07-01T23:59:59.000Z

    Based on a phenomenological model of diesel combustion and pollutant-formation processes, a number of fuel additives that could potentially reduce in-cylinder soot formation by altering combustion chemistry have been identified. These fuel additives, or ''combustion modifiers'', included ethanol and ethylene glycol dimethyl ether, polyethylene glycol dinitrate (a cetane improver), succinimide (a dispersant), as well as nitromethane and another nitro-compound mixture. To better understand the chemical and physical mechanisms by which these combustion modifiers may affect soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured, using an optically-accessible, heavy-duty, direct-injection diesel engine. A line-of-sight laser extinction diagnostic was employed to measure the relative soot concentration within the diesel jets (''jetsoot'') as well as the rates of deposition of soot on the piston bowl-rim (''wall-soot''). An OH chemiluminescence imaging technique was utilized to measure the lift-off lengths of the diesel diffusion flames so that fresh oxygen entrainment rates could be compared among the fuels. Measurements were obtained at two operating conditions, using blends of a base commercial diesel fuel with various combinations of the fuel additives. The ethanol additive, at 10% by mass, reduced jet-soot by up to 15%, and reduced wall-soot by 30-40%. The other fuel additives also affected in-cylinder soot, but unlike the ethanol blends, changes in in-cylinder soot could be attributed solely to differences in the ignition delay. No statistically-significant differences in the diesel flame lift-off lengths were observed among any of the fuel additive formulations at the operating conditions examined in this study. Accordingly, the observed differences in in-cylinder soot among the fuel formulations cannot be attributed to differences in fresh oxygen entrainment upstream of the soot-formation zones after ignition.

  7. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31T23:59:59.000Z

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  8. U.S Department of Transportation Office of Public Affairs

    E-Print Network [OSTI]

    U.S Department of Transportation Office of Public Affairs 1200 New Jersey Ave., S.E. Washington, DC Telephone: 202-366-0660 DOT Releases New Freight Transportation Data U.S. Department of Transportation, the most comprehensive publicly available data set of freight movement. "A transportation network

  9. Reducing Freight Greenhouse Gas Emissions in the California Corridor: The potential of short sea shipping

    E-Print Network [OSTI]

    Zou, Bo; Smirti, Megan; Hansen, Mark

    2008-01-01T23:59:59.000Z

    the standard emission factor for trucks quoted in Table 1 islower emission alternative mode to heavy-duty trucks. It hasduty trucks and diesel trains (Table 1). Emission factors of

  10. An analysis of international grain freight rates 

    E-Print Network [OSTI]

    Jonnala, Sneha Latha

    1999-01-01T23:59:59.000Z

    of the dependent variable was included in the model as an explanatory variable. The estimated econometric model was designed to explain ocean freight rates for grain. Results indicate rates increase at a decreasing rate with distance and rates decrease at a...

  11. Transportation Faculty Position The Department of Civil and Environmental Engineering at the University of Washington continues

    E-Print Network [OSTI]

    Transportation Faculty Position The Department of Civil and Environmental Engineering of this action, applications are being solicited for a full-time, tenure-track faculty position in transportation in traffic operations, freight transportation, transportation planning, transportation safety

  12. Personal revised version of: Howitt et al. (2011), Carbon dioxide emissions from international air freight. Paper to appear in

    E-Print Network [OSTI]

    Otago, University of

    2011-01-01T23:59:59.000Z

    presents a methodology to calculate the amount of fuel burnt and the resulting CO2 emissions from New calculated. The total amount of fuel consumed for the international air transport of New Zealand's imports to other nations and/or regions. Using data on fuel uplift, air freight and air craft movements

  13. Planning for Freight Management: Urban Freight and Gateway Strategies

    E-Print Network [OSTI]

    California at Davis, University of

    Low Low Off-hours deliveries High Medium Intelligent Transport Systems (ITS) Medium Medium Environment and parking regulations Medium High Local planning policy High High City logistics and consolidation programs Truck fuel efficiency and emissions standards High High Alternative fuels and vehicles Low Medium Low

  14. The Potential for Using Transit Infrastructure for Air Freight Cargo Movement: Feasibility Analysis of Freight Train Operation Logistics, Phase II

    E-Print Network [OSTI]

    Lu, Xiao-Yun

    2015-01-01T23:59:59.000Z

    Freight Train Operation Logistics 6. PERFORMING ORGANIZATIONsupply chain in an urban logistics context, METRAN Nationaland A. Papson, Modeling the Logistics of FedEx International

  15. Design and Development of a Continuous Precast Prestressed Concrete Bridge System for the Multimodal Freight Shuttle Project

    E-Print Network [OSTI]

    Parkar, Anagha 1984-

    2011-04-27T23:59:59.000Z

    American Society for Testing and Materials CARD Control and Repairability Damage CIP Cast-in-place DAD Damage Avoidance Design DBE Design Basis Earthquake DC Dead load of structural components and nonstructural attachments Ec Modulus of Elasticity... Pretensioned Precast Bulb T PCI Precast Concrete Institute viii SIP Stay-in-place TTI Texas Transportation Institute TxDOT Texas Department of Transportation MFS Multimodal Freight Shuttle NCHRP National Cooperative Highway Research Program NU...

  16. Multistage Methods for Freight Train Classification Riko Jacob1

    E-Print Network [OSTI]

    Riko Jacob

    Multistage Methods for Freight Train Classification Riko Jacob1 , Peter M´arton2 , Jens Maue3 , and Marc Nunkesser3 1 Computer Science Department, TU M¨unchen, Germany jacob@in.tum.de 2 Faculty, train classification 1 Introduction In real-world railways, a freight train consists of an engine

  17. Freight Best Practice Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreight Best Practice Website Jump to:

  18. CENTER FOR TRANSPORTATION The University of Texas at Austin

    E-Print Network [OSTI]

    Texas at Austin, University of

    ............................................................................... 59 Introduction: West Texas Region1 CENTER FOR TRANSPORTATION RESEARCH The University of Texas at Austin February 2010 Freight Perspective on Texas's Transportation System #12;#12;Table of Contents Introduction

  19. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast Ten YearsU.S.74% of Freight by Value

  20. Rail Focused US DOTRITA Tier I University Transportation Center University of Illinois at Urbana-Champaign

    E-Print Network [OSTI]

    Entekhabi, Dara

    .S. freight railroad system is one of the transportation success stories of the latter 20th and early 21st centuries. The efficiency of North American freight rail transport is a world leader, providing the nation with substantial economic, energy, and environmental benefits. Meanwhile, increasingly congested highway and air

  1. Freight Distribution Tours in Congested Urban Areas: Characteristics and Implications for Carriers' Operations and

    E-Print Network [OSTI]

    Bertini, Robert L.

    trip generation, distribution, or network assignment are scant or nonexistent [1]. ConfidentialityFreight Distribution Tours in Congested Urban Areas: Characteristics and Implications for Carriers;FREIGHT DISTRIBUTION TOURS IN CONGESTED URBAN AREAS: CHARACTERISTICS AND IMPLICATIONS FOR CARRIERS

  2. Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710

    E-Print Network [OSTI]

    Hudda, N.; Fruin, S.; Delfino, R. J; Sioutas, C.

    2013-01-01T23:59:59.000Z

    Turnover on Drayage Truck Emissions at the Port of Oakland.heavy duty diesel trucks emissions were measured either at aexpected NO x emission from trucks may affect attainability

  3. THE INSTITUTE OF TRANSPORT AND LOGISTICS STUDIES (ITLS)

    E-Print Network [OSTI]

    Viglas, Anastasios

    THE INSTITUTE OF TRANSPORT AND LOGISTICS STUDIES (ITLS) Aviation Management THE UNIVERSITY, terminal management and cargo logistics, supply chain management, distribution, international freight. 2002 Graduate Frederic Horst has worked as National Project Officer­ Logistics and Synergies at Veolia

  4. NEMS Freight Transportation Module Improvement Study - Energy Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events - Fermilab

  5. Options for Improving the Energy Efficiency of Intermodal Freight Trains

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Options for Improving the Energy Efficiency of Intermodal Freight Trains Yung-Cheng (Rex) Lai and improves energy efficiency, despite the additional weight penalty and consequent increase in bearing, that intermodal cars are loaded to maximize energy-efficient operation. Two trains may have identical slot uti

  6. William W. Hay Railroad Engineering Seminar Freight Railroad Energy

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    fuel & alternatives (Btu's per gallon) Biodiesel, Fischer-Tropsch syn fuel & DME Liquefied natural.2008 Billion US gallons = 27.258 Billion liters of diesel fuel equivalent * Ton-mile statistics from US DOT (importance v difficulties) North American freight RRs (defining characteristics) Energy density of diesel

  7. Emission Controls for Heavy-Duty Trucks

    Broader source: Energy.gov (indexed) [DOE]

    Introduction teams in place with defined VPI project milestones gates Design for Six Sigma (DFSS) tools applied during design development Analysis Led Design ...

  8. Lightweight Composite Materials for Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31T23:59:59.000Z

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  9. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    such as data buses and electronic engine controls) to use asengine for the Freightliner Century Truck has internal electronic

  10. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    power modeling for control, Journal of Dynamic Systems,power train modeling for control, Transaction of ASME, J. Dynamic Systems,power train modeling for control, Transaction of ASME, J. Dynamic Systems,

  11. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

  12. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    role, while the automatic control system takes care of thefor the automatic steering control system of the Advancedto the automatic steering control system. A typical bus

  13. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    speed (using the Doppler effect) while relative distance ispractice, due to the Doppler effect, which causes much rangecases with loss of Doppler effect when the speed difference

  14. Medium and Heavy Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    power train modeling for control, Transaction of ASME, J.power train modeling for control, Transaction of ASME, J.

  16. Zero Emission Heavy Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Cognitive Radio will revolutionize American transportation

    ScienceCinema (OSTI)

    None

    2013-12-06T23:59:59.000Z

    Cognitive Radio will revolutionize American transportation. Through smart technology, it will anticipate user needs; detect available bandwidths and frequencies then seamlessly connect vehicles, infrastructures, and consumer devices; and it will support the Department of Transportation IntelliDrive Program, helping researchers, auto manufacturers, and Federal and State officials advance the connectivity of US transportation systems for improved safety, mobility, and environmental conditions. Using cognitive radio, a commercial vehicle will know its driver, onboard freight and destination route. Drivers will save time and resources communicating with automatic toll booths and know ahead of time whether to stop at a weigh station or keep rolling. At accident scenes, cognitive radio sensors on freight and transportation modes can alert emergency personnel and measure on-site, real-time conditions such as a chemical leak. The sensors will connect freight to industry, relaying shipment conditions and new delivery schedules. For industry or military purposes, cognitive radio will enable real-time freight tracking around the globe and its sensory technology can help prevent cargo theft or tampering by alerting shipper and receiver if freight is tampered with while en route. For the average consumer, a vehicle will tailor the transportation experience to the passenger such as delivering age-appropriate movies via satellite. Cognitive radio will enhance transportation safety by continually sensing what is important to the user adapting to its environment and incoming information, and proposing solutions that improve mobility and quality of life.

  18. Cognitive Radio will revolutionize American transportation

    SciTech Connect (OSTI)

    None

    2013-07-22T23:59:59.000Z

    Cognitive Radio will revolutionize American transportation. Through smart technology, it will anticipate user needs; detect available bandwidths and frequencies then seamlessly connect vehicles, infrastructures, and consumer devices; and it will support the Department of Transportation IntelliDrive Program, helping researchers, auto manufacturers, and Federal and State officials advance the connectivity of US transportation systems for improved safety, mobility, and environmental conditions. Using cognitive radio, a commercial vehicle will know its driver, onboard freight and destination route. Drivers will save time and resources communicating with automatic toll booths and know ahead of time whether to stop at a weigh station or keep rolling. At accident scenes, cognitive radio sensors on freight and transportation modes can alert emergency personnel and measure on-site, real-time conditions such as a chemical leak. The sensors will connect freight to industry, relaying shipment conditions and new delivery schedules. For industry or military purposes, cognitive radio will enable real-time freight tracking around the globe and its sensory technology can help prevent cargo theft or tampering by alerting shipper and receiver if freight is tampered with while en route. For the average consumer, a vehicle will tailor the transportation experience to the passenger such as delivering age-appropriate movies via satellite. Cognitive radio will enhance transportation safety by continually sensing what is important to the user adapting to its environment and incoming information, and proposing solutions that improve mobility and quality of life.

  19. Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics

    E-Print Network [OSTI]

    Heiser, Gernot

    Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics in logistics and supply chain management. · We are seeking customers and financial partners to scale a stand

  20. 1.221J / 11.527J / ESD.201J Transportation Systems, Fall 2002

    E-Print Network [OSTI]

    Sussman, Joseph

    Introduces transportation as a large-scale, integrated system that interacts directly with the social, political, and economic aspects of contemporary society. Fundamental elements and issues shaping passenger and freight ...

  1. An Econometrics Analysis of Freight Rail Demand Growth in Albert Wijeweera a, *

    E-Print Network [OSTI]

    1 An Econometrics Analysis of Freight Rail Demand Growth in Australia Albert Wijeweera a, * , Hong of non-bulk freight demand in Australia. The paper uses a simple but robust econometrics method this growth at about four per cent per year (BTRE, 2006). The econometric model used herein enables us

  2. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    effects on LTC (SNL) Develop wall temperature diagnostic for studying liquid film dynamics (UW+SNL) Improve computer modeling for LTCdiesel sprays and study piston geometry...

  4. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Gurpreet Singh FY 2013 DOE Vehicle Technologies Program Annual Merit Review Advanced Combustion Engine R&DCombustion Research 8:30 - 9:00 AM, Tuesday, May 14, 2013 Mark P. B....

  5. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Gurpreet Singh FY 2014 DOE Vehicle Technologies Program Annual Merit Review Advanced Combustion Engine R&DCombustion Research 11:00 - 11:30 AM, Tuesday, June 17, 2014 Mark P. B....

  6. APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic FrameworkRoadmap ANSI Electric Vehicle3-BAPBFProject

  7. 2008 Guidelines to Defra's GHG Conversion Methodology Paper for Transport Emission Factors

    E-Print Network [OSTI]

    2008 Guidelines to Defra's GHG Conversion Factors: Methodology Paper for Transport Emission Factors: Methodology Paper for Transport Emission Factors Contents I. INTRODUCTION 3 II. AVIATION 4 Previous Approach 4 New Passenger Air Transport Emission Factors 5 New Freight Air Transport Emission Factors 10 Other

  8. ANALYSIS OF THE NON LINEAR DYNAMICS OF A 2AXLE FREIGHT WAGON IN CURVES

    E-Print Network [OSTI]

    and trucks continuously requires to increase the capacity on modern freight wagons. In order to reach this objective two options are available, increasing the total hauled mass or raising the speed of the wagons

  9. Estimation of economic impact of freight distribution due to highway closure

    E-Print Network [OSTI]

    Hu, Shiyin

    2008-01-01T23:59:59.000Z

    The main aim of this study is to provide a theoretical framework and methodology to estimate and analyze the economic impact of freight disruption due to highway closure. The costs in this study will be classified into ...

  10. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee Getting to Berkeley...

  11. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Print Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee Getting to...

  12. UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA

    SciTech Connect (OSTI)

    Davis, S.C.

    2000-11-16T23:59:59.000Z

    The Energy Information Administration's (EIA's) National Energy Modeling System (NEMS) Freight Truck Stock Adjustment Model (FTSAM) was created in 1995 relying heavily on input data from the 1992 Economic Census, Truck Inventory and Use Survey (TIUS). The FTSAM is part of the NEMS Transportation Sector Model, which provides baseline energy projections and analyzes the impacts of various technology scenarios on consumption, efficiency, and carbon emissions. The base data for the FTSAM can be updated every five years as new Economic Census information is released. Because of expertise in using the TIUS database, Oak Ridge National Laboratory (ORNL) was asked to assist the EIA when the new Economic Census data were available. ORNL provided the necessary base data from the 1997 Vehicle Inventory and Use Survey (VIUS) and other sources to update the FTSAM. The next Economic Census will be in the year 2002. When those data become available, the EIA will again want to update the FTSAM using the VIUS. This report, which details the methodology of estimating and extracting data from the 1997 VIUS Microdata File, should be used as a guide for generating the data from the next VIUS so that the new data will be as compatible as possible with the data in the model.

  13. Transportation

    E-Print Network [OSTI]

    Vinson, Steve

    2013-01-01T23:59:59.000Z

    Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

  14. HYDROGEN COMMERCIALIZATION: TRANSPORTATION FUEL FOR THE 21ST CENTURY

    SciTech Connect (OSTI)

    APOLONIO DEL TORO

    2008-05-27T23:59:59.000Z

    Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.

  15. Freight mode choice : air transport versus ocean transport in the 1990's

    E-Print Network [OSTI]

    Lewis, Dale B.

    1994-01-01T23:59:59.000Z

    Value density is often considered when considering the choice whether to ship cargo by air or by water. However, although cargo value is directly linked to the overall cost of shipment, it is the deciding factor in mode ...

  16. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Toolsearch keywordsclear search

  17. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01T23:59:59.000Z

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. Transportation Outlook 2035: Creating a Blueprint for the Sherman-Denison Region's Future

    E-Print Network [OSTI]

    Sherman-Denison Metropolitan Planning Organization

    2009-11-18T23:59:59.000Z

    ........................................................................................................................................... 61 7.1 Freight Transportation ....................................................................................................................................... 65 8.1 North Texas Regional Airport Share of Aircraft... days as small settlements in the Texoma region the cities of Sherman-Denison- VanAlstyne-Howe-Pottsboro fortunes have been tied to transportation. From historical roads, followed by railroads followed by, highways, and a county airport have all shaped...

  19. A Vision System for Monitoring Intermodal Freight Trains Avinash Kumar, Narendra Ahuja, John M Hart

    E-Print Network [OSTI]

    Ahuja, Narendra

    of gaps between the loads of the IM train is esti- mated and is used to analyze the aerodynamic efficiency the most widespread and fastest growing portion of the North Amer- ican Freight Railroads. Their traffic between IM loads, thus resulting in high energy cost. This is a timely issue because of the fuel crisis

  20. Machine vision analysis of the energy efficiency of intermodal freight trains

    E-Print Network [OSTI]

    Ahuja, Narendra

    353 Machine vision analysis of the energy efficiency of intermodal freight trains Y-C Lai1 , C P L into the software support systems used for loading assignment. Keywords: environment, energy efficiency, and M P Stehly of moving trains, energy efficient design of railway vehicles, more efficient operations

  1. Freight & Logistics Success of Supply Chain in the Public and Private

    E-Print Network [OSTI]

    Minnesota, University of

    Freight & Logistics Symposium Success of Supply Chain in the Public and Private Sector #12;Tim Thoma International Logistics + Compliance Manager at Northern Tool + Equipment 25 years experience in Intl Logistics BA International Business / German from UST Lifelong resident of the area #12;Northern

  2. Trucking Industry Demand for Urban Shared Use Freight Terminals

    E-Print Network [OSTI]

    Regan, Amelia C.; Golob, Thomas F.

    2003-01-01T23:59:59.000Z

    for Urban Shared Use Terminals Taniguchi, E. , M. Noritake,of public logistics terminals. Transportation Research –Demand for Urban Shared Use Terminals References Aitchison,

  3. Productivity of the U.S. freight rail industry: a review of the past and prospects for the future

    E-Print Network [OSTI]

    Kriem, Youssef

    2011-01-01T23:59:59.000Z

    Productivity growth in the U.S. freight rail industry has slowed in recent years, raising the issue of the sustainability of the significant improvements achieved during the past three decades. Indeed, between 1979 and ...

  4. The Gravity of Annual Freight and Logistics Symposium

    E-Print Network [OSTI]

    Minnesota, University of

    : Continuing Professional Education, University of Minnesota Center for transportation studies #12;2 Keynote 24- tics industry] will feel better about what we're doing, because we are doing a lot of really good

  5. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for post-2020 NAFTA line haul trucks deer11gruden.pdf More Documents & Publications High-Efficiency Engine Technologies Session Introduction The New ICE Age The New ICE Age...

  6. Heavy-Duty Low Temperature Combustion Development Activities...

    Broader source: Energy.gov (indexed) [DOE]

    combustion Develop a fundamental understanding of low-temperature combustion process Collaborate with technology experts Optical Engine Testing with Sandia National...

  7. A Distributed Framework for Coordinated Heavy-duty Vehicle ...

    E-Print Network [OSTI]

    2013-12-28T23:59:59.000Z

    floating car data) from a collection of HDVs. The probe data consists of the location and time of a vehicle and was collected by the in-cab GPS. Since the data is ...

  8. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle...

    Energy Savers [EERE]

    Application Technology Manufacturer Fleet Years Collected Delivery Trucks All Electric Smith Newton Various 2012-2014 Class 8 Diesel Tractors Hybrid Electric Kenworth and...

  9. Analysis of parasitic losses in heavy duty diesel engines

    E-Print Network [OSTI]

    James, Christopher Joseph

    2012-01-01T23:59:59.000Z

    Fuel economy of large, on-road diesel engines has become even more critical in recent years for engine manufactures, vehicle OEMs, and truck operators, in view of pending CO2 emission regulations. Demands for increased ...

  10. California Policy Stimulates Carbon Negative CNG for Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with biomethane generated from anaerobic digestion of organic waste it collects p-10edgar.pdf More Documents & Publications Advanced Natural Gas Engine Technology for Heavy...

  11. Design of Integrated Laboratory and Heavy-Duty Emissions Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emission Reductions Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions...

  12. NAFTA Heavy Duty Engine and Aftertreatment Technology: Status...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status and Outlook Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century...

  13. Very High Fuel Economy, Heavy Duty Truck, Narrow Range Speed...

    Broader source: Energy.gov (indexed) [DOE]

    habibzadeh.pdf More Documents & Publications An Engine System Approach to Exhaust Waste Heat Recovery Turbo Compounding: A Technology Whose Time Has Come Electric Turbo...

  14. Heavy Duty Roots Expander for Waste Heat Energy Recovery

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Heavy Duty Powertrain System Optimization and Emissions Test Procedure Development

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. LNT + SCR Aftertreatment for Medium-Heavy Duty Applications:...

    Broader source: Energy.gov (indexed) [DOE]

    DOE DEER Conference Poster Location: P-1 2 TOPIC AREAS 1. System Overview 2. System Optimization 3. Desulfation Testing 4. On-Road Vehicle Testing 3 System Overview reformer + LNT...

  17. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Demonstrating Fuel Consumption and Emissions Reductions with...

  18. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment ofConstruction|(EVSE) Testing

  19. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l i c e L i p

  20. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D *DepartmentTS NOT MEASUREMENTDiesel

  1. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D *DepartmentTS NOT

  2. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D *DepartmentTS NOTDiesel Engine Fuel

  3. Development of High Performance Heavy Duty Engine Oils | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterials Development of HighDepartment

  4. California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change Request |82:91:4Applications |Energy

  5. Emission Controls for Heavy-Duty Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily Knouse About Us Emily KnouseControls

  6. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment of EnergyModeling of Direct-Injectionof

  7. The Ethanol Heavy-Duty Truck Fleet Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafetyTed5,Audit ReportTheThe Energy

  8. NAFTA Heavy Duty Engine and Aftertreatment Technology: Status and Outlook |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, New Mexico |Myriant SuccinicN

  9. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock,Department ofNO2Marsh#47120) | Departmentof

  10. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock,Department ofNO2Marsh#47120) |

  11. Reducing the environmental impacts of intermodal transportation: a multi-criteria analysis based on ELECTRE and AHP methods

    E-Print Network [OSTI]

    Boyer, Edmond

    Reducing the environmental impacts of intermodal transportation: a multi-criteria analysis on a case of freight transport between Paris and Marseille. Keywords: Supply chain, Environmental impacts with lower environmental impacts, such as rail and waterways. The dilemma here is that all motorized modes

  12. Freight/logistics symposium .2 TRB conference ......................3

    E-Print Network [OSTI]

    Minnesota, University of

    of the Department of Commerce) to investigate the economic and environmental implications of instituting a low Hotel in Bloomington May 19 and 20. Vanderbilt writes on design, technology, science, and culture, among for Transportation Finance study. Attendees will have the oppor- tunity to ask questions of the researchers

  13. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01T23:59:59.000Z

    lowering GHG emissions from the heavy-duty truck sector isuse and GHG emissions from long-haul heavy-trucks are likelytrucks, but while these fuels could reduce GHG emissions,

  14. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01T23:59:59.000Z

    capacity and range. Long-haul trucks typically have a fuelin heavy-duty long-haul trucks is used in the realisticcase. For smaller, short-haul trucks such as delivery vans (

  15. Environmental Impact Assessment of Transportation Networks with Degradable Links in an Era of Climate Change

    E-Print Network [OSTI]

    Nagurney, Anna

    contributors to climate change and global warming. According to a US EPA (2006) report, the transportation of Electrical and Computer Engineering University of Hartford West Hartford, Connecticut 06117 January 2008 a freight capacity crisis that threatens US eco- nomic productivity. As reported in Jeanneret (2006

  16. Revised rail-stop exposure model for incident-free transport of nuclear waste

    SciTech Connect (OSTI)

    Ostmeyer, R.M.

    1986-02-01T23:59:59.000Z

    This report documents a model for estimating railstop doses that occur during incident-free transport of nuclear waste by rail. The model, which has been incorporated into the RADTRAN III risk assessment code, can be applied to general freight and dedicated train shipments of waste.

  17. Freight Wing & Aerodynamic Fairings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE March, 20152LLC and FLNG

  18. THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : LET, ISH, 14 avenue Berthelot, 69363 LYON Cedex 07, France. Email: charles and their potential for practical implementation are analysed. Two proposals of "tradable rights for fuel consumption issue. One might well guess, given announcements that oil reserves will run out rapidly, whether one

  19. Behavioural insights into the Modelling of Freight Transportation and Distribution Systems

    E-Print Network [OSTI]

    Bertini, Robert L.

    fuelled the extension of supply chains and the globalization of the world economy. At the micro-step modelling paradigm cannot provide adequate answers in the twenty-first century global customer-driven economy. This special issue is dedicated to innovative modelling efforts that provide new insights

  20. Aerodynamic Analysis of Intermodal Freight Trains Using Machine Vision World Congress on Railway Research, May 22-26, 2011

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    train loading can be more energy efficient. #12; 2 1.0 Introduction One of the largest sources for North American freight railroads and has experienced considerable growth over the past few decades developed to automatically monitor and analyze an intermodal train's aerodynamic efficiency based

  1. Schewel and Schipper 1 FOSSIL FREIGHT: HOW MUCH FOSSIL FUEL DOES IT TAKE TO MOVE FOSSIL1

    E-Print Network [OSTI]

    Kammen, Daniel M.

    understanding of the full cost of5 fossil fuel reliance, and help create the foundation for models to analyzeSchewel and Schipper 1 FOSSIL FREIGHT: HOW MUCH FOSSIL FUEL DOES IT TAKE TO MOVE FOSSIL1 FUEL?2.schewel@berkeley.edu)13 UC Berkeley Energy and Resources Group14 310 Barrows Hall15 UC Berkeley16 Berkeley CA 9470917 Cell

  2. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Toolsearch keywordsclear search showFUELSDEMAND

  3. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    biofuels in 2050 are about 13 bgge/yr, or about half of the projected 2050 residual fuel demand including heavy duty transport,

  4. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    biofuels in 2050 are about 13 bgge/yr, or about half of the projected 2050 residual fuel demand including heavy duty transport,

  5. Cleaner Vehicles, Cleaner Fuel & Cleaner Air

    Broader source: Energy.gov (indexed) [DOE]

    EPA Office of Transportation and Air Quality Cleaner Vehicles, Cleaner Fuel, & Cleaner Air Overview of the 2007 Heavy-Duty Engine & Low Sulfur Diesel Fuel Program 2 Presentation...

  6. Ferrocarriles nacionales de Mexico: the existing rate structure for grain/soybean shipments and likely effect on freight rates as a result of railroad privatization in Mexico 

    E-Print Network [OSTI]

    Neyer, David McAlister

    1994-01-01T23:59:59.000Z

    The government owned railway monopoly in Mexico, Ferrocarriles Nacionales de Mexico (FNM), is undergoing a series of reforms designed to create a market orientated railroad company. Railroad freight rates are being deregulated ...

  7. Freight pipelines

    SciTech Connect (OSTI)

    Liu, H. (University of Missouri, Columbia, MO (US)); Round, G.F. (McMaster University (CA))

    1989-01-01T23:59:59.000Z

    This book presents papers on slurry pipelines, pneumatic pipelines, capsule pipelines, pipeline education, and pipeline research.

  8. Automated Transportation Management System (ATMS) Software Project Management Plan (SPMP). Revision 2

    SciTech Connect (OSTI)

    Weidert, R.S.

    1995-05-26T23:59:59.000Z

    As a cabinet level federal agency with a diverse range of missions and an infrastructure spanning the United States, the US Department of Energy (DOE) has extensive freight transportation requirements. Performance and management of this freight activity is a critical function. DOE`s Transportation Management Division (TMD) has an agency-wide responsibility for overseeing transportation activities. Actual transportation operations are handled by government or contractor staff at the field locations. These staff have evolved a diverse range of techniques and procedures for performing transportation functions. In addition to minimizing the economic impact of transportation on programs, facility transportation staff must be concerned with the increasingly complex task of complying with complex shipment safety regulations. Maintaining the department`s safety record for shipping hazardous and radioactive materials is a primary goal. Use of automation to aid transportation functions is not widespread within DOE, though TMD has a number of software systems designed to gather and analyze data pertaining to field transportation activities. These systems are not integrated. Historically, most field facilities have accomplished transportation-related tasks manually or with minimal computer assistance. At best, information and decision support systems available to transportation staffs within the facilities are fragmented. In deciding where to allocate resources for automation, facility managers have not tended to give the needs of transportation departments a high priority. This diversity causes TMD significant difficulty in collecting data for use in managing department-wide transportation activities.

  9. Current Trends and Future Challenges in the Freight Railroad Industry: Balancing Private Industry Interests and the Public Welfare

    E-Print Network [OSTI]

    Allen, Sarah; Kelson, Kendra; Migl, Hayden; Schmidt, Rodney; Shoemaker, David; Thomson, Heather

    2008-01-01T23:59:59.000Z

    ?dimensional?impact?on?the?public?welfare,?local,?state,?and?federal?government?entities?play?a? significant?role?in?ensuring?the?industry?operates?efficiently?and?safely.?In?October?2006,?the?Government? Accountability?Office?(GAO)?released?a?report?on...? ? Current?Trends?and?Future?Challenges?in? the?Freight?Railroad?Industry Balancing?Private?Industry?Interests?and?the?Public?Welfare? ? ? ? Sarah?Allen? Kendra?Kelson? Hayden?Migl? Rodney?Schmidt? David?Shoemaker? Heather?Thomson? ? ? A?Report...

  10. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  11. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.

    2009-05-01T23:59:59.000Z

    Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

  12. Review of petroleum transport network models and their applicability to a national refinery model

    SciTech Connect (OSTI)

    Hooker, J. N.

    1982-04-01T23:59:59.000Z

    This report examines four petroleum transport network models to determine whether parts of them can be incorporated into the transportation component of a national refinery model. Two questions in particular are addressed. (a) How do the models under examination represent the oil transport network, estimate link capacities, and calculate transport costs. (b) Are any of these network representations, capacity estimates, or cost functions suitable for inclusion in a linear programming model of oil refinery and primary distribution in the US. Only pipeline and waterway transport is discussed. The models examined are the Department of Energy's OILNET model, the Department of Transportation's Freight Energy Model, the Federal Energy Administration Petroleum Transportation Network Model, and an Oak Ridge National Laboratory oil pipeline energy model. Link capacity and cost functions are recommended for each transport mode. The coefficients of the recommended pipeline cost functions remain to be estimated.

  13. Transportation Statistics Annual Report 1997

    SciTech Connect (OSTI)

    Fenn, M.

    1997-01-01T23:59:59.000Z

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

  14. Rotating Liner Engine: Improving Efficiency of Heavy Duty Diesels by Significant Friction Reduction, and Extending the Life of Heavy Duty Engines.

    SciTech Connect (OSTI)

    Dardalis, Dimitrios

    2013-12-31T23:59:59.000Z

    This report describes the work on converting a 4 cylinder Cummins ISB engine into a single cylinder Rotating Liner Engine functioning prototype that can be used to measure the friction benefits of rotating the cylinder liner in a high pressure compression ignition engine. A similar baseline engine was also prepared, and preliminary testing was done. Even though the fabrication of the single cylinder prototype was behind schedule due to machine shop delays, the fundamental soundness of the design elements are proven, and the engine has successfully functioned. However, the testing approach of the two engines, as envisioned by the original proposal, proved impossible due to torsional vibration resonance caused by the single active piston. A new approach for proper testing has been proposed,

  15. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

    2001-01-25T23:59:59.000Z

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  16. Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure to Accommodate

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure Project Natural gas is often touted as a `bridge' to low carbon fuels in the heavy duty transportation sector, and the number of natural gas-fueled medium and heavy-duty fleets is growing rapidly. Research

  17. Assessing the Environmental and Health Impacts of Port-Related Freight Movement in a Major Urban Transportation Corridor

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    NO X for port trucks, line-haul, and railyards for winterhaul movements. Compared to PM and NO X emission from port truckshaul distance and speed of locomotives are used. After estimating emissions for both trains and drayage trucks

  18. Statistical Modeling of Freight Train Derailments at Highway-Rail Level Crossings Samantha G. Chadwick, C. Tyler Dick, Mohd Rapik Saat, Christopher P.L. Barkan

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    discusses level-crossing-caused freight train derailments in a larger risk-analysis context. We generalize an additional tool for decision makers to prioritize level crossings upgrades and/or closures. 2. Development reduction in the risk of level crossings to North American highway users over the past several decades. Much

  19. Causal Analysis of Passenger Train Accidents on Freight Rail Corridors Chen-Yu Lin, Mohd Rapik Saat, Christopher P.L. Barkan

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Causal Analysis of Passenger Train Accidents on Freight Rail Corridors Chen-Yu Lin, Mohd Rapik Saat. Comprehensive understanding of train accidents on shared-use corridors is critical for rational allocation of resources to reduce train accident risk. Nevertheless, little research has been undertaken to quantify

  20. The impacts of congestion on time-definitive urban freight distribution networks CO2 emission levels: Results from a case study in Portland,

    E-Print Network [OSTI]

    Bertini, Robert L.

    The impacts of congestion on time-definitive urban freight distribution networks CO2 emission Accepted 29 November 2010 Keywords: Vehicle routing Time-dependent travel time speed GHG or CO2 emissions pressures to limit the impacts associated with CO2 emissions are mounting rapidly. A key challenge

  1. The Impacts of Congestion on Time-definitive Urban Freight Distribution1 Networks CO2 Emission Levels: results from a case study in Portland,2

    E-Print Network [OSTI]

    Bertini, Robert L.

    1 The Impacts of Congestion on Time-definitive Urban Freight Distribution1 Networks CO2 Emission pressures to limit the impacts13 associated with CO2 emissions are mounting rapidly. A key challenge on CO2 emissions are hindered by the complexities of vehicle routing18 problems with time

  2. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31T23:59:59.000Z

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

  3. Transportation and Greenhouse Gas Emissions Trading. Final Technical Report

    SciTech Connect (OSTI)

    Steve Winkelman; Tim Hargrave; Christine Vanderlan

    1999-10-01T23:59:59.000Z

    The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation-specific policies, they recommend (in addition to the land use policies mentioned above), that they combine an upstream trading system with a carbon efficiency standard similar to the current CAFE standard. Under this approach a fuel price signal would be complemented by incentives for manufacturers to produce more carbon efficient vehicles. To prevent vehicle manufacturers from being forced to pay more than other sectors for reducing GHG emissions, they recommend that the vehicle makers be allowed to pay a cash penalty equal to the market price of allowances in lieu of meeting carbon efficiency requirements.

  4. Scheduling Freight Trains Traveling on Complex etworks SHI MU and MAGED DESSOUKY*

    E-Print Network [OSTI]

    Dessouky, Maged

    , namely a simple look-ahead greedy heuristic and a global neighborhood search algorithm, in terms goods from other countries usually enter the United States through ports and then transported inland

  5. Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about powertrain...

  6. Vehicle Technologies Office Merit Review 2015: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about powertrain...

  7. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    on Natural Gas Interchangeability and Non-Combustion Endon Natural Gas Interchangeability and Non-Combustion Endnatural gas (CNG) buses equipped with lean burn combustion

  8. The Influence of Light Weight Materials on Fuel Economy and Emissions in Heavy Duty Diesel Engine

    SciTech Connect (OSTI)

    Becker, Paul C.

    2000-08-20T23:59:59.000Z

    Technologies being developed that will allow for the substitution of aluminum for cast iron in engine heads and blocks, while maintaining performance and durability. Development of lightweight diesel engine technology: funded by NAVY, DOE and TACOM

  9. Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    Highway Patrol ( CHP), 2006. Personal Communication. “OtayCA: Caltrans: CARB: CDFA: CEC: CHP: CVIS: g/bhp: g/mi: GVWR:California Highway Patrol (CHP) enforcement facilities and

  10. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    of Energy National Renewable Energy Laboratory Dieseland Specifications. Renewable and Sustainable Energy Reviewstheir Reduction Approaches. Renewable and Sustainable Energy

  11. Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets

    SciTech Connect (OSTI)

    Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

    2002-02-06T23:59:59.000Z

    This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

  12. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Natural Gas Liquids Natural Gas Vehicle Ammonia Non-methanein emissions for natural gas vehicles (NGVs), emissions for226. Timmons, S. Natural Gas Fuel Effects on Vehicle Exhaust

  13. Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves

    E-Print Network [OSTI]

    Gu, Chaoyi

    2013-07-31T23:59:59.000Z

    Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. The original definition...

  14. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ft04mueller.pdf More Documents &...

  15. Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks

    E-Print Network [OSTI]

    Ban-Weiss, George A.

    2009-01-01T23:59:59.000Z

    each. In this study, HD truck emissions were measured in theuphill on a 4% grade. Truck emissions were measured on 4only a subset of the truck emissions analyzed previously; (

  16. A ZEV Credit Scheme for Zero-Emission Heavy-Duty Trucks

    E-Print Network [OSTI]

    Lipman, Timothy

    2000-01-01T23:59:59.000Z

    Emissions from Diesel Trucks Emissions from diesel enginesTrucks 5 Diesel Emissionsdiesel truck, but some emissions would necessarily be

  17. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    its lower heating value compared to diesel fuel. Biodiesellower in heating value compared to typical diesel fuel on aGTL diesel fuel, which is due to the lower heating value of

  18. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    20% share of biodiesel and bioethanol should be blended with20% share of biodiesel and bioethanol shall be blended with

  19. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Effects of Methyl Ester Biodiesel Blends on NOx Emissions.Increase When Burning Biodiesel; A New (Old) Theory. FuelE. ; Natarajan, M. Effects of Biodiesel Fuels Upon Criteria

  20. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    fuel produced from renewable biomass sources, such as fattyfuel is produced from renewable biomass sources, such aswith Oxygenated Biomass Fuels. Renewable and Sustainable

  1. Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile...

    Broader source: Energy.gov (indexed) [DOE]

    San Diego, CA. August 29, 2002 University of California, Riverside Bourns College of Engineering Center for Environmental Research and Technology (909) 781-5791 http:...

  2. Vehicle Technologies Office Merit Review 2014: Medium and Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  3. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    effects, driven by fuel chemistry and fluid dynamics, andeffects, driven by fuel chemistry and fluid dynamics, and

  4. Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  5. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    feedstock, biodiesel blend level, engine technology, andx emissions from biodiesel in newer engine technologies in aBiodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology

  6. Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    standards/us/ hd.html. Hadder, G.D. , R.W. , Crawford, H.T.example, U.S. EPA, 2001; Hadder et al. , 2002). A thorough

  7. Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model

    E-Print Network [OSTI]

    Barth, Matthew; Younglove, Theodore; Scora, George

    2005-01-01T23:59:59.000Z

    6. E. Mueller and M. Zillmer, (1998), “Modeling of Nitric970753. Mueller, E. and M. Zillmer, (1998), “Modeling of

  8. Heavy-Duty Powertrain DevelopmentCurrent Status and Future Opportuniti...

    Office of Environmental Management (EM)

    2010. deer10aneja.pdf More Documents & Publications BLUETEC - Heading for 50 State Diesel Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project...

  9. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.D.

    2008-07-15T23:59:59.000Z

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

  10. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    with a 10% aromatic, ultra-low sulfur diesel fuel used inequivalent 10% aromatic ultra-low sulfur diesel fuel used inx emissions compared to ultra-low sulfur diesel fuel (ULSD).

  11. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Sands Derived Fuels 2003 DEER Conference Presentation: National Research Council Canada, Ottawa, Ontario, Canada 2003deerneill.pdf More Documents & Publications Development...

  12. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Diesel or Compressed Natural Gas. Environmental Science &Diesel or Compressed Natural Gas. Environmental Science &Emissions of a Variety of Natural Gas Engines. SAE Technical

  13. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    J. ; Hamze, F. ; Mak, C. LNG Research Study. Gutierrez, J.Saldivar, A. R. ; Mora, J. R. LNG Research Study-Phase 1.is representative of Peruvian LNG that has been modified to

  14. Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-02-01T23:59:59.000Z

    Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

  15. Second Stage Intercooling Using LNG for Turbocharged Heavy Duty Road Vehicles Phase I Final Report

    SciTech Connect (OSTI)

    None

    1999-09-21T23:59:59.000Z

    It is well documented in engine performance literature that reduced engine inlet air temperature increases power output and reduces NO, emissions for both diesel and spark ignited (SI) engines. In addition, reduced inlet temperature increases the knock resistance of SI engines. In that most HD natural gas engines are SI derivatives of diesel engines it is appropriate to evaluate the benefits of reduced engine air temperature through LNG fuel. This project investigated the ''real world'' possibilities of a patented process for utilizing the ''cold'' in LNG to chill engine inlet air. The results support the conclusion that doing so is a practical means to increase engine power and reduce engine-out NO{sub x}.

  16. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    of Biodiesel and Second Generation Biofuels on NOx Emissionsof Biodiesel and Second Generation Biofuels on NOx EmissionsBiodiesel and Second Generation Biofuels on NO x Emissions

  17. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Fueled with Diesel or Compressed Natural Gas. EnvironmentalFueled with Diesel or Compressed Natural Gas. EnvironmentalToxic pollutants from Compressed Natural Gas and Low Sulfur

  18. Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles 

    E-Print Network [OSTI]

    Kader, Michael Kirk

    2013-01-18T23:59:59.000Z

    Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and does not consider other...

  19. Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  20. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Broader source: Energy.gov (indexed) [DOE]

    measuring cycloparaffins are not as well developed as those for aromatics Canadian refinery streams have been sampled and are currently being characterized in preparation for a...

  1. Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    Salinas North Central Coast San Diego San Diego In order to distribute the drivers’ reported California trip mileage into Air Basins,

  2. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with 8500 lb. curb weight, and validation against in-house engine and vehicle data library deer12wetzel.pdf More Documents & Publications Advanced Combustion Concepts -...

  3. Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles

    SciTech Connect (OSTI)

    Krause, T.; Kumar, R.; Krumpelt, M.

    2000-05-15T23:59:59.000Z

    This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

  4. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    of Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuel

  5. Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

  6. SCR Potential and Issues for Heavy-Duty Applications in the United...

    Broader source: Energy.gov (indexed) [DOE]

    Emissions Reduction (DEER) Conference Presentation: Daimler Chrysler Detroit Diesel Corporation 2004deeraneja.pdf More Documents & Publications Aftertreatment Modeling...

  7. Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling

    SciTech Connect (OSTI)

    Detroit Diesel Corporation; Trucking Research Institute

    1998-12-03T23:59:59.000Z

    In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

  8. ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit...

    Broader source: Energy.gov (indexed) [DOE]

    Session Alberto Ayala*, Norman Kado, Robert Okamoto, Michael Gebel, and Paul Rieger Air Resources Board California Environmental Protection Agency Britt A. Holmn Department...

  9. Pneumatic brake control for precision stopping of heavy-duty vehicles

    E-Print Network [OSTI]

    Bu, Fanping; Tan, Han-Shue

    2007-01-01T23:59:59.000Z

    desirable that the automatic brake control system uses thesystems,” IEEE Transactions on Automatic Control, vol. 41,enables automatic control of the pneumatic brake system and

  10. Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    California-registered long-haul trucks that travel throughreferred to as “long haul” trucks. These trucks tend to beto include both “long haul” trucks and trucks that operate

  11. Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    haul” trucks. These trucks tend to be the newest (median model year of 2004), have higher average fuel economy,

  12. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Presentation: West Virginia University - Dept. of Mechanical and Aerospace Engineering 2003deergautam.pdf More Documents & Publications Evaluation of NTE Windows...

  13. Analysis, Design, And Evaluation Of Avcs For Heavy-duty Vehicles With Actuator Delays

    E-Print Network [OSTI]

    Yanakiev, Diana; Eyre, Jennifer; Kanellakopoulos, Ioannis

    1998-01-01T23:59:59.000Z

    fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 4: Ten autonomous vehicles,fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 5: Ten autonomous vehicles,fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 8: Ten autonomous vehicles,

  14. Analysis, Design And Evaluation Of Avcs For Heavy-duty Vehicles

    E-Print Network [OSTI]

    Yanakiev, Diana; Kanellakopoulos, Ioannis

    1996-01-01T23:59:59.000Z

    fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 2 : Ten autonomous vehicles,fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 3 : Ten autonomous vehicles,fuel/brake (deg) time (s) acceleration (m/s 2 ) time (s) Figure 6 : Ten autonomous vehicles,

  15. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    x emissions from biodiesel in newer engine technologies in afeedstock, biodiesel blend level, engine technology, andBiodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology

  16. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Lean NOx Catalysis l Chemistry l Reducing Agent Effects l Collaboration with LEP CRADA l Aging Studies Plasma Initiation - + Electron Avalanche e - e - e - e - e - e - e -...

  17. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Broader source: Energy.gov (indexed) [DOE]

    Acknowledgements K. Rappe, R. Rozmiarek, D. Mendoza - PNNL J. Hoard, C. Peden - LEP NTP CRADA G. Singh, K. Stork, DOE-OFCVT Outline Background Flowsheets Motivation for examination...

  19. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

  20. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30T23:59:59.000Z

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  1. Guaranteeing safety for heavy duty vehicle platooning: Safe set computations and experimental evaluations

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    naturally gives a higher fossil fuel usage and inherently a higher emission of harmful exhaust gas. Hence-15187 Södertälje, Sweden b ACCESS Linnaeus Centre, Royal Institute of Technology, 100 44 Stockholm, Sweden c Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720-1770, USA a r t i

  2. Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles

    E-Print Network [OSTI]

    Kader, Michael Kirk

    2013-01-18T23:59:59.000Z

    Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and does not consider other...

  3. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Second Generation Biofuels on NOx Emissions for Clean DieselSecond Generation Biofuels on NOx Emissions for CARB DieselSecond Generation Biofuels on NOx Emissions for Clean Diesel

  5. Heavy-Duty Truck Idling Characteristics: Results from a Nationwide Survey

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Brodrick, Christie-Joy; Sperling, Dan; Oglesby, Carollyn

    2004-01-01T23:59:59.000Z

    fuel consumption long-heul for trucks. CONCLUSIONS This study provides an enhanced understanding of long-haul

  6. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    N. -O. Field Testing of NExBTL Renewable Diesel in HelsinkiAakko, P. ; Harju, T. NExBTL-Biodiesel Fuel of the SecondAakko, P. ; Harju, T. NExBTL-Biodiesel Fuel of the Second

  7. APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging...

    Broader source: Energy.gov (indexed) [DOE]

    Shawn D. Whitacre August 30, 2004 Presented at: 10 th Annual Diesel Engine Emission Reduction Conference San Diego, California Contact info: (303) 275-4267 ShawnWhitacre@nrel.go...

  8. Heavy-Duty Powertrain DevelopmentCurrent Status and Future Opportunities |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy CompletingPresented By: WALTER E. JOHNSTON,

  9. SCR Potential and Issues for Heavy-Duty Applications in the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundAofSCE&G-4-E

  10. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundAofSCE&G-4-EStandards in 2005 |

  11. SCRT Technology for Retrofit of Heavy-Duty Diesel Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundAofSCE&G-4-EStandards inof

  12. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts for the Energy Conscious

  13. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & GasTechnical PublicationsDepartment of

  14. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & GasTechnical PublicationsDepartment ofDepartment of Energy

  15. Simulation and Analysis of HP/LP EGR for Heavy-Duty Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus GroupSherrell R. GreeneTianyueon

  16. 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OFDecember| Department Energy U.S.

  17. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuaryDominionDow St.

  18. Reduction of Heavy-Duty Fuel Consumption and CO2 Generation -- What the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuary 29, 2013RedbirdThis hybridThis

  19. Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D *DepartmentTSDepartment

  20. Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D *DepartmentTSDepartment3,

  1. Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergy Aaandwith Control

  2. Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterialsDepartmentFiltration

  3. Development of SCR on Diesel Particulate Filter System for Heavy Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries with WideNOx

  4. Development of Urea Dosing System for 10 Liter Heavy Duty Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries with WideNOxSi-based|

  5. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * SEnergyTemperatureDepartment

  6. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlanned Audits andTechnicalPlasma

  7. Policy Discussion - Heavy-Duty Truck Fuel Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlannedEvaluationEnergyPolicy

  8. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60PowersubsidiaryDepartment ofPreacceptancePrecursorA

  9. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC) Richard2015 RD WorkshopEnergy Use and CostsThe Department

  10. Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of Innovativeof Energy Charge Motion

  11. Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of&Systems and Emissions Control

  12. Very High Fuel Economy, Heavy Duty Truck, Narrow Range Speed Engine,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | DepartmentTRU Passive DPFBatteries |Batteries

  13. The Road to Improved Heavy Duty Fuel Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector, January 2000 |TheReemploymentThe RoadThe Road to

  14. Transient Simulation of a 2007 Prototype Heavy-Duty Engine | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter Gets People Work,Amy

  15. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change Request |82:91:4ApplicationsofCompetesDepartment of|

  16. Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board ContributionsreductionRefineries |Endurance | Department

  17. Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient Cooling in EnginesEnergy 0of

  18. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily Knouse About Us

  19. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily Knouse About UsEnergy

  20. Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduceNewPropaneEVsFacility

  1. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGenerationEducational OpportunitiesEngineRecovery:

  2. Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2NorthAvailability to

  3. Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuelsConversionsTelework to someoneFuels

  4. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships Toolkit VoluntaryHURRICANE * FLASHAWIPRiskGaps for

  5. Technologies for a Sustainable Heavy-Duty On-Road Fleet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWindBuildingOffice28-98Production |Energy

  6. A European Perspective of EURO 5/U.S. 07 Heavy-Duty Engine Technologies and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015Gross Gamma-RayDesign-Builder'sP

  7. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA Few Simple Steps

  8. A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA4, Fourthof Diesel and WHR-ORC

  9. APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic FrameworkRoadmap ANSI Electric Vehicle3-BAPBF

  10. ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic FrameworkRoadmap ANSIthe conveyance ofDepartment of

  11. Summary of In-Use Evaluation of Two Heavy Duty Hybrid Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety Goals StrategictheEnergy 4,Department ofGaps

  12. Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy ScoreEnergyFuel2008 | DepartmentFlow

  13. Fact #655: December 27, 2010 New Freight Analysis Tool | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of EnergyEnergyWestern

  14. Fact #672: April 25, 2011 Freight Gateways in the U.S. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment of Energy 0: April 11, 20111:

  15. Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofof Energy 1: April 2, 2012 Heavy

  16. Automated Transportation Management System (ATMS)

    Office of Environmental Management (EM)

    s lading, fre * W * C S * A * H * E * * O 0 mated T artment of Ene tation Manage ated web-base lowing users freight shipm arly developm E Inspector G t opportunitie al...

  17. Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses

    SciTech Connect (OSTI)

    Ring, S.

    1994-12-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

  18. Study of deposit formation inside diesel injectors nozzles

    E-Print Network [OSTI]

    Wang, YinChun, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Diesel engines are widely used in heavy duty transportation applications such as in trucks, buses and ships because of their reliability and high torque output. A key diesel technology is the injection system which is ...

  19. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  20. Local Transportation

    E-Print Network [OSTI]

    Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

  1. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work...

  2. Chamber transport

    SciTech Connect (OSTI)

    OLSON,CRAIG L.

    2000-05-17T23:59:59.000Z

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  3. Articles published in the University of Alabama Research Magazine with vehicle or transportation relevance (press "ctrl+click" on link to access articles)

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    to develop systems designed to reduce harmful emissions, produce new ways to harness energy, improve to make hydrogen-powered cars and trucks a reality. Truck with Prototype Fuel Cell Visits UA - May 26, 2003 - A heavy-duty highway tractor truck equipped with a first-of-its-kind fuel-cell auxiliary power

  4. For more information about Clean Transportation projects at the North Carolina Solar Center visit www.cleantransportation.org 12/3/13 Clean Fuel Advanced Technology Information Matrix

    E-Print Network [OSTI]

    www.cleantransportation.org 12/3/13 Clean Fuel Advanced Technology Information Matrix Fuel Type Infrastructure Biodiesel Light Duty (LD), Medium Duty (MD), and Heavy Duty (HD) diesel vehicles and equipment. Biodiesel used in all diesel engines as B100 or in a blend with ULSD. ASTM standards consider B5 (5

  5. Energy use and emissions of idling-reduction options for heavy-duty diesel truacks a comparison.

    SciTech Connect (OSTI)

    Gaines, L. L.; Hartman, C. J. B.; Solomon, M. J.; Energy Systems; James Madison Univ.; Northeast States for Coordinated Air Use Management

    2009-01-01T23:59:59.000Z

    Pollution and energy analyses of different idling-reduction (IR) technologies have been limited to localized vehicle emissions and have neglected upstream energy use and regional emissions. In light of increasing regulation and government incentives for IR, this research analyzed the full fuel cycle effects of contemporary approaches. It compared emissions, energy use, and proximity to urban populations for nine alternatives, including idling, electrified parking spaces, auxiliary power units, and several combinations of these. It also compared effects for the United States and seven states: California, Florida, Illinois, New York, Texas, Virginia, and West Virginia. U.S. average emissions impacts from all onboard IR options were found to be lower than those from a 2007-compliant idling truck. Total particulate emissions from electrified parking spaces were found to be greater than those from a 2007 truck, but such emissions generally occurred in areas with low population density. The lowest energy use, carbon dioxide emissions, and nitrogen oxide emissions are seen with a direct-fired heater combined with electrified parking spaces for cooling, and the lowest particulate-matter emissions were found with a direct-fired heater combined with an onboard device for cooling. As expected, state-to-state variations in the climate and grid fuel mix influence the impacts of the full fuel cycle from IR technologies, and the most effective choice for one location may be less effective elsewhere.

  6. Potential Benefits of Utilizing Fuel Cell Auxiliary Power Units in Lieu of Heavy-Duty Truck Engine Idling

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    do not account for full fuel cycle emissions (e.g. emissionsfuel cell APUs, a full fuel cycle analysis should be done

  7. Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  8. Vehicle Technologies Office Merit Review 2015: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  9. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect (OSTI)

    Hyungsuk Kang; Chun Tai

    2010-05-01T23:59:59.000Z

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

  10. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2

    SciTech Connect (OSTI)

    Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

    2000-03-02T23:59:59.000Z

    This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

  11. Vehicle Technologies Office Merit Review 2014: Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  12. Heavy duty insulator assemblies for 500-kV bulk power transmission line with large diameter octagonalbundled conductor

    SciTech Connect (OSTI)

    Tsujimoto, K.; Hayase, I.; Hirai, J.; Inove, M.; Naito, K.; Yukino, T.

    1982-11-01T23:59:59.000Z

    This paper describes the design procedure and the results of field tests on mechanical performances of insulator assemblies newly developed to support octagonal-bundled conductors for 500-kV bulk power transmission. Taking account of conductor-motion-induced peak tensile load, fatigue, torsional torque and others, a successful design has been achieved in two prototype assemblies for such heavy mechanical duties as encountered during conductor galloping or swing. This has been proved throughout three years of the field tests.

  13. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |toVEHICLE TECHNOLOGIES OFFICE WORKSHOP REPORT:

  14. Computational Transportation

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ), in-vehicle computers, and computers in the transportation infrastructure are integrated ride- sharing, real-time multi-modal routing and navigation, to autonomous/assisted driving

  15. Transportation Market Distortions

    E-Print Network [OSTI]

    Litman, Todd

    2006-01-01T23:59:59.000Z

    of Highways, Volpe National Transportation Systems Center (Evaluating Criticism of Transportation Costing, VictoriaFrom Here: Evaluating Transportation Diversity, Victoria

  16. electrifyingthefuture transportation

    E-Print Network [OSTI]

    Birmingham, University of

    electrifyingthefuture transportation The UK Government's carbon reduction strategy vehicles and the new Birmingham Science City Energy Systems Integration Laboratory (ESIL) will further enhance this work. The laboratory - unique within the UK and world leading - brings together cutting edge

  17. The impact of fuel price volatility on transportation mode choice

    E-Print Network [OSTI]

    Kim, Eun Hie

    2009-01-01T23:59:59.000Z

    In recent years, the price of oil has driven large fluctuations in the price of diesel fuel, which is an important cost component in freight logistics. This thesis explores the impact of fuel price volatility on supply ...

  18. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    40 pp. IEA, 2004c: Biofuels for Transport: An Internationalthe ACT Map scenario, transport biofuels production reachesestimates that biofuels’ share of transport fuel could

  19. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  20. NREL: Transportation Research - Transportation and Hydrogen Newsletter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Future of Sustainable Transportation This is the January 2015 issue of the Transportation and Hydrogen Newsletter. Illustration of an electric vehicle Illustration of an...

  1. Transportation Research Record: Journal of the Transportation Research Board, No. 2289, Transportation Research Board of the National Academies, Washington,

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    the first step in a systematic process of quantitative risk analysis of railroad freight train safety statistical results representing the first step in a systematic process of quantitative risk analysis and risk.3141/2289-20 Analysis of the causes of train accidents is critical for rational allocation of resources to reduce

  2. NREL: Transportation Research - Transportation News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmissionResearchNewsTransportation News

  3. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31T23:59:59.000Z

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  4. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30T23:59:59.000Z

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  5. Transportation Security | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Security SHARE Global Threat Reduction Initiative Transportation Security Cooperation Secure Transport Operations (STOP) Box Security of radioactive material while...

  6. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    Applications of Natural Gas as Transportation Engine Fuel,duty vehicle transportation sector, but current natural gasnatural gas to displace fossil diesel fuel in the freight transportation

  7. "Educating transportation professionals."

    E-Print Network [OSTI]

    Acton, Scott

    "Educating transportation professionals." Michael Demetsky Henry L. Kinnier Professor mjd of Virginia Charlottesville, VA 434.924.7464 Transportation Engineering & Management Research Our group works closely with the Virginia Center for Transportation Innovation and Research (VCTIR), located

  8. Sustainability and Transport

    E-Print Network [OSTI]

    Gilbert, Richard

    2006-01-01T23:59:59.000Z

    2005. Integrating Sustainability into the Trans- portationTHOUGHT PIECE Sustainability and Transport by Richardof the concept of sustainability to transport planning. In

  9. Chapter 12 Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-1 November 2012 Words in bold and acronyms are defined in Chapter 32, Glossary and Acronyms. Chapter 12 Transportation This chapter describes existing transportation resources in...

  10. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to...

  11. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  12. Twenty-second automotive technology development contractors' coordination meeting: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-03-01T23:59:59.000Z

    Fifty-four papers and reviews are arranged under the following session headings: alcohol fuels; liquid hydrocarbon and gaseous fuels; Stirling technology (two sessions); industry perspectives; heavy duty transport technology (two sessions); gas turbine technology; and ceramic technology (two sessions). (DLC)

  13. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT NATURAL GAS OPTIMIZED ADVANCED HEAVY · Renewable Energy Technologies · Transportation Natural Gas-optimized Advanced Heavy-duty Engine is the final&R 412 88, Gothenburg, Sweden Telephone: +46-31-3220998 Mobile: +46-7390-20998 Contract Number: PIR-08

  14. Proceedings of the Symposium on Theory of Modeling and Simulation, 2010. An Agent-Based Approach to Modeling Yard Cranes at Seaport Container Terminals

    E-Print Network [OSTI]

    Vidal, Jose M.

    . Despite the relatively short distance of the truck movement compared to the rail or barge haul, drayage peak times at busy terminals. Drayage trucks are diesel-fueled, heavy-duty trucks that transport container terminals, truck turn time. Abstract Due to environmental concerns, terminal operators at seaport

  15. The U. S. transportation sector in the year 2030: results of a two-part Delphi survey.

    SciTech Connect (OSTI)

    Morrison, G.; Stephens, T.S. (Energy Systems); (Univ. of California at Davis); (ES)

    2011-10-11T23:59:59.000Z

    A two-part Delphi Survey was given to transportation experts attending the Asilomar Conference on Transportation and Energy in August, 2011. The survey asked respondents about trends in the US transportation sector in 2030. Topics included: alternative vehicles, high speed rail construction, rail freight transportation, average vehicle miles traveled, truck versus passenger car shares, vehicle fuel economy, and biofuels in different modes. The survey consisted of two rounds -- both asked the same set of seven questions. In the first round, respondents were given a short introductory paragraph about the topic and asked to use their own judgment in their responses. In the second round, the respondents were asked the same questions, but were also given results from the first round as guidance. The survey was sponsored by Argonne National Lab (ANL), the National Renewable Energy Lab (NREL), and implemented by University of California at Davis, Institute of Transportation Studies. The survey was part of the larger Transportation Energy Futures (TEF) project run by the Department of Energy, Office of Energy Efficiency and Renewable Energy. Of the 206 invitation letters sent, 94 answered all questions in the first round (105 answered at least one question), and 23 of those answered all questions in the second round. 10 of the 23 second round responses were at a discussion section at Asilomar, while the remaining were online. Means and standard deviations of responses from Round One and Two are given in Table 1 below. One main purpose of Delphi surveys is to reduce the variance in opinions through successive rounds of questioning. As shown in Table 1, the standard deviations of 25 of the 30 individual sub-questions decreased between Round One and Round Two, but the decrease was slight in most cases.

  16. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestr

    E-Print Network [OSTI]

    Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation ope

  17. Graduate Certificate in Transportation

    E-Print Network [OSTI]

    Bertini, Robert L.

    Graduate Certificate in Transportation Nohad A. Toulan School of Urban Studies and Planning of Engineering and Computer Science integrated transportation systems. The Graduate Certificate in Transportation their capabilities. Students in the program can choose among a wide range of relevant courses in transportation

  18. TRANSPORTATION Annual Report

    E-Print Network [OSTI]

    Minnesota, University of

    2003 CENTER FOR TRANSPORTATION STUDIES Annual Report #12;Center for Transportation Studies University of Minnesota 200 Transportation and Safety Building 511 Washington Avenue S.E. Minneapolis, MN publication is a report of transportation research, education, and outreach activities for the period July

  19. Minnesota's Transportation Economic Development (TED)

    E-Print Network [OSTI]

    Minnesota, University of

    Minnesota's Transportation Economic Development (TED) Pilot Program Center for Transportation Studies Transportation Research Conference May 24-25, 2011 #12;Transportation Role in Economic Development · Carefully targeted transportation infrastructure improvements will: ­ Stimulate new economic development

  20. Introduction Transport in disordered graphene

    E-Print Network [OSTI]

    Fominov, Yakov

    Introduction Transport in disordered graphene Summary Ballistic transport in disordered graphene P, Gornyi, Mirlin Ballistic transport in disordered graphene #12;Introduction Transport in disordered graphene Summary Outline 1 Introduction Model Experimental motivation Transport in clean graphene 2

  1. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-10-15T23:59:59.000Z

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  2. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE...

  3. Transportation Infrastructure and Sustainable Development

    E-Print Network [OSTI]

    Boarnet, Marlon G.

    2008-01-01T23:59:59.000Z

    A Better Forecasting Tool for Transportation Decision-making,” Mineta Transportation Institute, San Jose Stateat the 2008 meeting of the Transportation Research Board and

  4. Transportation Analysis | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

  5. Spent Fuel Transportation Package Response to the Baltimore Tunnel Fire Scenario

    SciTech Connect (OSTI)

    Adkins, Harold E.; Cuta, Judith M.; Koeppel, Brian J.; Guzman, Anthony D.; Bajwa, Christopher S.

    2006-11-15T23:59:59.000Z

    On July 18, 2001, a freight train carrying hazardous (non-nuclear) materials derailed and caught fire while passing through the Howard Street railroad tunnel in downtown Baltimore, Maryland. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook an investigation of the train derailment and fire to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by railroad. Shortly after the accident occurred, the USNRC met with the National Transportation Safety Board (NTSB, the U.S. agency responsible for determining the cause of transportation accidents), to discuss the details of the accident and the ensuing fire. Following these discussions, the USNRC assembled a team of experts from the National Institute of Standards and Technology (NIST), the Center for Nuclear Waste Regulatory Analyses (CNWRA), and Pacific Northwest National Laboratory (PNNL) to determine the thermal conditions that existed in the Howard Street tunnel fire and analyze the effects of this fire on various spent fuel transportation package designs. The Fire Dynamics Simulator (FDS) code, developed by NIST, was used to determine the thermal environment present in the Howard Street tunnel during the fire. The FDS results were used as boundary conditions in the COBRA-SFS and ANSYS® computer codes to evaluate the thermal performance of different package designs. The staff concluded that larger transportation packages resembling the HOLTEC Model No. HI STAR 100 and TransNuclear Model No. TN-68 would withstand a fire with thermal conditions similar to those that existed in the Baltimore tunnel fire event with only minor damage to peripheral components. This is due to their sizable thermal inertia and design specifications in compliance with currently imposed regulatory requirements. The staff also concluded that some components of smaller transportation packages resembling the NAC Model No. LWT, despite placement within an ISO container, could degrade. USNRC staff evaluated the radiological consequences of the package responses to the Baltimore tunnel fire. Though components in some packages heated up beyond their service temperatures, the staff determined that there would be no significant dose as a result of the fire for any of these and similar packages.

  6. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  7. Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks

    SciTech Connect (OSTI)

    Willigan, Rhonda

    2009-09-30T23:59:59.000Z

    The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

  8. Operation and maintenance experiences of DLN combustors for heavy duty gas turbines GE MS9001E (type DLN1) and FIAT 701D (type k point)

    SciTech Connect (OSTI)

    Arrighi, L.; Tirone, G.; Napoli, V.; Errico, R.; Ippolito, V.

    1998-07-01T23:59:59.000Z

    In ENEL at the moment (first half 1998) three 701D FIAT and six MS9001E GE/Nuovo Pignone gas turbines are in operation with DLN combustors; additional four 701D with DLN are in erection stage. The paper contains the operation and maintenance experience after some service years. The result of the combustion inspection of one 701D unit after four years of peak load operation and of two 701D units after two years of base load operation are included; the DLN combustors are ``K-point'' type. The paper contains also the results of the combustion inspection of two MS9001E units after three years of base load operation; the DLN combustors are type ``1''. Encountered problems and adopted repair actions are also included.

  9. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    SciTech Connect (OSTI)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31T23:59:59.000Z

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions at full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.

  10. Design and control of a semi-passive, heavy-duty paired mobile robot system with application to aircraft wing assembly

    E-Print Network [OSTI]

    Menon, Manas Chandran

    2010-01-01T23:59:59.000Z

    We describe the development of a robotic system capable of performing a class of manufacturing operations. An example of such an operation is commonly found in aircraft assembly - this demonstrates the immediate applicability ...

  11. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 Permit ModificationClayton

  12. Transportation Investment and

    E-Print Network [OSTI]

    Levinson, David M.

    Transportation Investment and Economic Development: Has the TIED turned? David Levinson University Transportation Investments was Historically Concomitant with Land and Economic Development #12;Canals Railways Surfaced Roads Crude Oil Pipelines Gas Pipelines Telegraph 1825 1985 Proportion of Maximum Extent Growth

  13. Transportation Management Research Collection /

    E-Print Network [OSTI]

    Handy, Todd C.

    , Peterbilt Motors, and General Electric. He was a national panel member of the American Arbitration, Noise and Environmental Pollution, Transportation Co-ordination and Consolidation, Transportation -- Docket 8613 1957 Civil Aeronautics Board ­ General passenger fare investigation -- Docket 8008 et al

  14. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  15. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  16. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  17. Biofuels and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

  18. Linear Motor Powered Transportation

    E-Print Network [OSTI]

    Thornton, Richard D.

    This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

  19. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  20. Indianapolis Public Transportation Corporation

    SciTech Connect (OSTI)

    Not Available

    2004-12-01T23:59:59.000Z

    Fact sheet describes the National Renewable Energy Laboratory's evaluation of Indianapolis Public Transportation Corporation's (IndyGo's) hybrid electric buses.