National Library of Energy BETA

Sample records for heavy-duty diesel engines

  1. Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charge Motion for 2007-2010 Heavy Duty Diesel Engines Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines 2003 DEER Conference Presentation: AVL Powertrain Engineering ...

  2. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using ...

  3. 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines...

    Broader source: Energy.gov (indexed) [DOE]

    EGR-SCR-DPF and Advanced Fuel Formulations - A Progress Report State-of-the-Art and Emergin Truck Engine Technologies Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines

  4. High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_johansson.pdf More Documents & Publications Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Path to High Efficiency Gasoline Engine

  5. Heavy-duty H2-Diesel Dual Fuel Engines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Brake thermal efficiency can be improved with the addition of a large amount of hydrogen at medium to high loads PDF icon deer09_li.pdf More Documents & Publications Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine Status of APBF-DEC NOx Adsorber/DPF Projects Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology

  6. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines?

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_gautam.pdf More Documents & Publications Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine Effect of Engine-Out NOx Control Strategies on PM

  7. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel ...

  8. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review 2014: Heavy-Duty ...

  9. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ...

  10. Transient Simulation of a 2007 Prototype Heavy-Duty Engine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation of a 2007 Prototype Heavy-Duty Engine Transient Simulation of a 2007 Prototype Heavy-Duty Engine 2004 Diesel Engine Emissions Reduction (DEER) Conference PresentationL ...

  11. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Presents progress to date and plans to develop a viable Rankine engine to harness useful brake power from wasted heat energy in heavy duty truck engine exhaust PDF icon deer11_singh.pdf More Documents & Publications Increased Engine Efficiency via Advancements in Engine Combustion Systems Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles Super Truck -- 50% Improvement In Class 8 Freight Efficiency

  12. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. Heavy-Duty Truck Engine Program

  13. High-Load Partially Premixed Combustion in a Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine 2005 Diesel Engine Emissions Reduction ...

  14. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.; Veliz, M.

    2011-09-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was placed in the engine head. The engine was aggressively operated using a transient test cycle for 200 hours. The valve recession was periodically measured to determine valve performance. Upon completion of the test the valves were removed and returned to Caterpillar for additional assessment. Industrial in-kind support was available throughout the project period. Review of the status and research results were carried out on a regular basis (meetings and telecons) which included direction for future work activities. A significant portion of the industrial support was in the form of information exchange and technical consultation.

  15. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation PDF icon ace001musculus2011o.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty ...

  16. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). ...

  17. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    using Model-Based Transient Calibration | Department of Energy atkinson.pdf More Documents & Publications Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Next Generation Diesel Engine Control

  18. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine Reduction of Emissions from a High Speed Ferry Heavy-Duty Truck ...

  19. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Modeling | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace001_musculus_2011_o.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion

  20. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Collaborative Emissions Study (ACES):Phase 3 Evaluation of the European PMP Methodologies Using Chassis Dynamometer and On-road Testing of Heavy-duty Vehicles Advanced ...

  1. Cold starting capabilities of petroleum and syntehetic lubricants in heavy-duty diesel engines

    SciTech Connect (OSTI)

    Margeson, M.A.; Belmesch, B.J. )

    1989-01-01

    The objective of the work described in this paper was to compare the cold weather starting ability of diesel engines lubricated with SAE 15W-40 petroleum and SAE 5W-30 synthetic motor oil. Laboratory bench tests were used to compare rhelogical features such as borderline pumping temperature and cold cranking simulator profiles. A cold box provided a well controlled environment in which cranking and starting studies were carried out on the two oils in a turbocharged diesel engine. The SAE 5W-30 synthetic exhibited higher cranking speeds, lower starter amperage draw and immediate oil pressure readings when compared to the SAE l5W-40 petroleum. The SAE 5W-30 synthetic oil was safely started at {minus} l0 {sup 0}F oil temperature without auxiliary heaters. The comparative cylinder turbocharged diesel engines representing conditions commonly found in the commercial and off-highway sectors, These studies indicate that combining high capacity cold cranking amperage batteries, high pressure ether aid injection, and SAE 5W-30 synthetic oil resulted in a system that safely starts diesel engines down to actual oil temperatures of at least {minus} 10 {sup 0}F.

  2. Heavy-duty diesel engine NO{sub x} reduction with nitrogen-enriched combustion air. Final CRADA report.

    SciTech Connect (OSTI)

    McConnell, S.; Energy Systems

    2010-07-28

    The concept of engine emissions control by modifying intake combustion gas composition from that of ambient air using gas separation membranes has been developed during several programs undertaken at Argonne. These have led to the current program which is targeted at heavy-duty diesel truck engines. The specific objective is reduction of NO{sub x} emissions by the target engine to meet anticipated 2007 standards while extracting a maximum of 5 percent power loss and allowing implementation within commercial constraints of size, weight, and cost. This report includes a brief review of related past programs, describes work completed to date during the current program, and presents interim conclusions. Following a work schedule adjustment in August 2002 to accommodate problems in module procurement and data analysis, activities are now on schedule and planned work is expected to be completed in September, 2004. Currently, we believe that the stated program requirements for the target engine can be met, based upon extrapolation of the work completed. Planned project work is designed to experimentally confirm these projections and result in a specification for a module package that will meet program objectives.

  3. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.D.

    2008-07-15

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

  4. Heavy Duty Diesels- The Road Ahead

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation gives a landscape picture of diesel engine technologies from the Daimler point of view.

  5. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control PDF icon ...

  6. Rotating Liner Engine: Improving Efficiency of Heavy Duty Diesels by Significant Friction Reduction, and Extending the Life of Heavy Duty Engines.

    SciTech Connect (OSTI)

    Dardalis, Dimitrios

    2013-12-31

    This report describes the work on converting a 4 cylinder Cummins ISB engine into a single cylinder Rotating Liner Engine functioning prototype that can be used to measure the friction benefits of rotating the cylinder liner in a high pressure compression ignition engine. A similar baseline engine was also prepared, and preliminary testing was done. Even though the fabrication of the single cylinder prototype was behind schedule due to machine shop delays, the fundamental soundness of the design elements are proven, and the engine has successfully functioned. However, the testing approach of the two engines, as envisioned by the original proposal, proved impossible due to torsional vibration resonance caused by the single active piston. A new approach for proper testing has been proposed,

  7. SCRT Technology for Retrofit of Heavy-Duty Diesel Applications | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 05 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_conway.pdf More Documents & Publications The Development and On-Road Performance and Durability of the Four-Way Emission Control SCRTTM System Application Experience with a Combined SCR and DPF Technology for Heavy Duty Diesel Retrofit Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM and NOX Control

  8. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test

    Broader source: Energy.gov (indexed) [DOE]

    Harris, Director of the Department of Energy’s Office of Economic Impact and Diversity meets with students at Argonne National Laboratory’s Introduce a Girl to Engineering Day (Photo by Argonne National Laboratory) Dot Harris, Director of the Department of Energy's Office of Economic Impact and Diversity meets with students at Argonne National Laboratory's Introduce a Girl to Engineering Day (Photo by Argonne National Laboratory) Lauren Andersen Policy Advisor at White House Office of

  9. Development of Urea Dosing System for 10 Liter Heavy Duty Diesel Engine

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 7_usc_popov.pdf More Documents & Publications DOE's Fuel Cell Catalyst R&D Activities 2006 Alkaline Membrane Fuel Cell Workshop Final Report Highly Dispersed Alloy Cathode Catalyst for Durability Powered Vehicle | Department of Energy

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI,

  10. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions tests of in-use heavy-duty vehicles ...

  11. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements PDF icon deer11_johnson.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems Vehicle

  12. Lowest Engine-Out Emissions as the Key to the Future of the Heavy-Duty

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Engine: New Development Rersults | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: AVT LIST Gmbh, Austria PDF icon 2004_deer_moser.pdf More Documents & Publications Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines Injection System and Engine Strategies for Advanced Emission Standards A European Perspective of EURO 5/U.S. 07 Heavy-Duty Engine Technologies and Their Related Consequences

  13. High Efficiency Clean Combustion for Heavy-Duty Engine | Department...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon deer09zhang.pdf More Documents & Publications Heavy Truck Engine Development & HECC High Efficiency Clean Combustion for Heavy-Duty Engine Heavy-Duty Engine Combustion ...

  14. Making a Difference: Heavy-Duty Combustion Engine Research Saved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Combustion Engine Research Saved Billions Making a Difference: Heavy-Duty Combustion Engine Research Saved Billions December 29, 2015 - 12:22pm Addthis Sandia researcher ...

  15. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference ...

  16. Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab 2002 DEER Conference Presentation: University of ...

  17. ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses 2002 DEER Conference Presentation: ...

  18. Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM and NOX Control Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM and NOX Control The more ...

  19. NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation

    SciTech Connect (OSTI)

    Hakim, N; Hoelzer, J.; Liu, Y.

    2002-08-25

    This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

  20. Heavy Duty Low-Temperature & Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Temperature & Diesel Combustion - Sandia Energy Energy Search Icon Sandia Home ... EnergyWater History Water Monitoring & Treatment Technology Decision Models for ...

  1. A European Perspective of EURO 5/U.S. 07 Heavy-Duty Engine Technologies and

    Broader source: Energy.gov (indexed) [DOE]

    Their Related Consequences | Department of Energy 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Volvo Powertrain PDF icon 2004_deer_fayolle.pdf More Documents & Publications SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 State-of-the-Art and Emergin Truck Engine Technologies SCR Potential and Issues for Heavy-Duty Applications in the United States

  2. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion: Heavy-Duty Optical-Engine Research Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research 2009 DOE Hydrogen Program and Vehicle Technologies ...

  3. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR

    Broader source: Energy.gov (indexed) [DOE]

    and DPF | Department of Energy In reference to legacy heavy-duty vehicles, emissions and fuel use are less closely related to immediate engine load than was the case without the use of aftertreatments. PDF icon p-05_covington.pdf More Documents & Publications Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? On-Road Particle Matter Emissions from a MY 2010 Compliant HD Diesel Vehicle Driving Across the U.S. Effect of Engine-Out NOx Control Strategies on PM Size

  4. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon deer07zhang.pdf More Documents & Publications High Efficiency Clean Combustion for Heavy-Duty Engine Heavy Truck Engine Development & HECC A Micro-Variable Circular ...

  5. The new Mercedes-Benz OM 904 LA light heavy-duty diesel engine for class 6 trucks

    SciTech Connect (OSTI)

    Schittler, M.; Bergmann, H.; Flathmann, K.

    1996-09-01

    As part of a comprehensive strategic product initiative the most important commercial vehicle manufacturer--Mercedes-Benz AG--is step by step renewing its entire product range. This primarily refers to the heart of the vehicles--the engine. After the OM 457 LA, which was developed together with DDC for the special American market demands and which is produced and sold in the US by DDC under the label Series 55, has had its premiere in Freightliner`s Century Class, the OM 904 LA will now follow in the light commercial vehicle class. This engine has a completely new concept of a direct-injection, highly sophisticated turbocharged four-cylinder in-line engine with air-to-air intercooler, whose main characteristics can be outlined by the terms multi-valve technology, high-pressure injection via unit pumps and electronic engine control. This small engine has several interesting features, which--up to now--were only known from class 8 engines. In addition to fulfilling increased customer demands with regard to long service life, easy maintenance, reliability and economy, great attention was paid during the design of the engine to not only fulfill the global regulations, but also account for sufficient potential to comply with further aggravations to be expected. The most important design features and the attained engine ratings are indicated and explained in detail.

  6. Investigation of Bio-Diesel Fueled Engines under Low-Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ... Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions

  7. NAFTA Heavy Duty Engine and Aftertreatment Technology: Status...

    Broader source: Energy.gov (indexed) [DOE]

    Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006deerlysinger.pdf More Documents & Publications Heavy-Duty Engine ...

  8. Effects of Catalysts on Emissions from Heavy-Duty Diesel Retrofits for PM

    Broader source: Energy.gov (indexed) [DOE]

    and NOX Control | Department of Energy The more heavily catalyzed and the hotter the exhaust temperature, the more strongly the aftertreatment will oxidize the exhaust. PDF icon deer09_hu.pdf More Documents & Publications SCRT Technology for Retrofit of Heavy-Duty Diesel Applications ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses Diesel Health Impacts & Recent Comparisons to Other Fuels

  9. High temperature solid lubricant materials for heavy duty and advanced heat engines

    SciTech Connect (OSTI)

    DellaCorte, C.; Wood, J.C.

    1994-10-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

  10. Heavy Duty Low-Temperature & Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Temperature & Diesel Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  11. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Truck Engine Program PDF icon 2004deernelson.pdf More Documents & Publications High Engine Efficiency at 2010 Emissions Achieving High Efficiency at 2010 Emissions ...

  12. LNT + SCR Aftertreatment for Medium-Heavy Duty Applications:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  13. Performance of a High Speed Indirect Injection Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies The Linear Engine Pathway of Transformation High Fuel Economy Heavy-Duty Truck Engine

  14. Vehicle Technologies Office Merit Review 2015: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  15. Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  16. Demonstration of a 50% Thermal Efficient Diesel Engine - Including...

    Broader source: Energy.gov (indexed) [DOE]

    The Path to a 50% Thermal Efficient Engine Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle ...

  17. New Demands on Heavy Duty Engine Management Systems

    Broader source: Energy.gov [DOE]

    The purpose of this research was to investigate the potential of emissions-based process control to meet future heavy-duty emissions legislation by identifying suitable actuated variables and developing hardware and related controllers.

  18. SCR Potential and Issues for Heavy-Duty Applications in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential and Issues for Heavy-Duty Applications in the United States SCR Potential and Issues for Heavy-Duty Applications in the United States 2004 Diesel Engine Emissions ...

  19. APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEC Heavy-Duty NOx AdsorberDPF Project: Catalyst Aging Study APBF- DEC Heavy-Duty NOx AdsorberDPF Project: Catalyst Aging Study 2004 Diesel Engine Emissions Reduction (DEER) ...

  20. Development of all-ceramic glow plugs for heavy-duty engines: Phase 2

    SciTech Connect (OSTI)

    Johar, S.; Das Gupta, S.

    1997-12-31

    Details the development work performed in phase 2 of a project to develop all-ceramic glow plugs for heavy-duty diesel engines. All-ceramic glow plugs, compared to traditional metallic plugs, offer a number of advantages including high corrosion resistance, operation at higher temperatures allowing for quicker start and improved engine performance, low power use, high dimensional stability, and longer service life. Work in phase 2 focused on increasing the operational voltage ratings of the proof-of-concept plugs developed in phase 1 in order to meet all commercial expectations in terms of performance, reliability, durability, and economic manufacture. The work involved optimization of the material composition to meet design specifications, development of a manufacturing process, fabrication of plugs, and bench and engine tests. Results compare the all-ceramic plugs to conventional plugs.

  1. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    SciTech Connect (OSTI)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  2. Heavy-Duty Engine Technology for High Thermal Efficiency at EPA...

    Broader source: Energy.gov (indexed) [DOE]

    Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006deeraneja.pdf More Documents & Publications NAFTA Heavy Duty Engine ...

  3. A European Perspective of EURO 5/U.S. 07 Heavy-Duty Engine Technologie...

    Broader source: Energy.gov (indexed) [DOE]

    Towards Meeting Euro 4 Emission Standards in 2005 State-of-the-Art and Emergin Truck Engine Technologies SCR Potential and Issues for Heavy-Duty Applications in the United States

  4. On-Road Development of the C-Gas Plus Engine in Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    Fact sheet details on-road development of C-Gas Plus natural gas engine in Viking Freight heavy-duty trucks, including emissions, fuel costs, and petroleum displacement.

  5. High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Sandia National ... Report - Acronyms Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ...

  6. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 1

    SciTech Connect (OSTI)

    2000-03-02

    The transportation sector accounts for approximately 65% of US petroleum consumption. Consumption for light-duty vehicles has stabilized in the last 10--15 years; however, consumption in the heavy-duty sector has continued to increase. For various reasons, the US must reduce its dependence on petroleum. One significant way is to substitute alternative fuels (natural gas, propane, alcohols, and others) in place of petroleum fuels in heavy-duty applications. Most alternative fuels have the additional benefit of reduced exhaust emissions relative to petroleum fuels, thus providing a cleaner environment. The best long-term technology for heavy-duty alternative fuel engines is the 4-stroke cycle, direct injected (DI) engine using a single fuel. This DI, single fuel approach maximizes the substitution of alternative fuel for diesel and retains the thermal efficiency and power density of the diesel engine. This report summarizes the results of the first year (Phase 1) of this contract. Phase 1 focused on developing a 4-stroke cycle, DI single fuel, alternative fuel technology that will duplicate or exceed diesel power density and thermal efficiency, while having exhaust emissions equal to or less than the diesel. Although the work is currently on a 3500 Series DING engine, the work is viewed as a basic technology development that can be applied to any engine. Phase 1 concentrated on DING engine component durability, exhaust emissions, and fuel handling system durability. Task 1 focused on identifying primary areas (e.g., ignition assist and gas injector systems) for future durability testing. In Task 2, eight mode-cycle-averaged NO{sub x} emissions were reduced from 11.8 gm/hp-hr (baseline conditions) to 2.5 gm/hp-hr (modified conditions) on a 3501 DING engine. In Task 3, a state-of-the-art fuel handling system was identified.

  7. The Road to Improved Heavy Duty Fuel Economy

    Broader source: Energy.gov [DOE]

    Heavy duty diesel engine fuel economy is improved by lowering the viscosity of engine lubricant, especially when engine speed is increased or load is decreased, as in long distance on-highway driving

  8. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Engine Fuel Injectors | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pm_05_lin.pdf More Documents & Publications Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors Vehicle Technologies Office Merit Review 2014: Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel

  9. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Discusses Detroit Diesel collaborative multi-year technology program which includes systematic experimental and analytical assessment of enabling technologies for post-2020 NAFTA ...

  10. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses Detroit Diesel collaborative multi-year technology program which includes systematic experimental and analytical assessment of enabling technologies for post-2020 NAFTA line haul trucks

  11. Development of High Performance Heavy Duty Engine Oils

    Broader source: Energy.gov [DOE]

    FAME biodiesel will likely remain a part of the global diesel pool for the coming years and the use of biodiesel can lead to lubrication issues.

  12. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    of HD vehicle applications. PDF icon deer09kamel.pdf More Documents & Publications Light-Duty Diesel Market Potential in ... Meet Future Exhaust Emission Limits Advances in ...

  13. The transportable heavy-duty engine emissions testing laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be driven'' through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle's exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

  14. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...

    Broader source: Energy.gov (indexed) [DOE]

    This report provides the results of an analytical and experimental sA PDF icon 2002deerhakim.pdf More Documents & Publications Use of a Diesel Fuel Processor for Rapid and ...

  15. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This report provides the results of an analytical and experimental sA PDF icon 2002_deer_hakim.pdf More Documents & Publications Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Cleaner Vehicles, Cleaner Fuel & Cleaner Air

  16. Emission Controls for Heavy-Duty Trucks | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_clerc.pdf More Documents & Publications SCRT Technology for Retrofit of Heavy-Duty Diesel Applications Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications

  17. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of ...

  18. Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_lin_ht.pdf More Documents & Publications Durability of ACERT Engine Components Durability of ACERT Engine Components Durability of ACERT Engine Components

  19. H2 Internal Combustion Engine Research Towards 45% efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

  20. Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Advanced Petroleum-Based Fuels-Diesel Emission Control (APBF-DEC) Project

  1. Engine-External HC-Dosing for Regeneration of Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-External HC-Dosing for Regeneration of Diesel Particulate Filters for Heavy Duty and NRMM According to Annex XXVII StVZO Engine-External HC-Dosing for Regeneration of Diesel ...

  2. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy PDF icon 2002_deer_aardahl.pdf More Documents & Publications Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies

  3. Development of SCR on Diesel Particulate Filter System for Heavy Duty

    Broader source: Energy.gov (indexed) [DOE]

    Applications | Department of Energy Evaluation of a system consisting of SCRDPF in comparison to a commercial 2010 CDPF system on an engine under high and low engine-out NOx conditions PDF icon deer12_naseri.pdf More Documents & Publications Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings Combination & Integration of DPF-SCR Aftertreatment

  4. The ethanol heavy-duty truck fleet demonstration project

    SciTech Connect (OSTI)

    1997-06-01

    This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

  5. Simulation of high-altitude effects on heavy-duty diesel emissions. Final report, 31 October 1988-30 September 1989

    SciTech Connect (OSTI)

    Human, D.M.; Ullman, T.L.

    1989-09-01

    Exhaust emissions from heavy-duty diesel engines operating at high altitude are of concern. EPA and Colorado Department of Health sponsored the project to characterize regulated and selected unregulated emissions from a naturally-aspirated Caterpillar 3208 and a turbocharged Cummins NTC-350 diesel engine at both low and simulated high altitude conditions (about 6000 ft). Emissions testing was performed over cold- and hot-start transient cycles as well as selected steady-state modes. Additionally, the turbocharged engine was operated with mechanically variable and fixed retarded fuel injection timing to represent normal and malfunction conditions, respectively. High altitude operation generally reduced NOx emissions approximately 10% for both engines. Average composite transient emissions of HC, CO, particulate matter, and aldehydes measured at high altitude for the naturally-aspirated engine were 2 to 4 times the levels noted for low altitude conditions. The same emission constituents from the turbocharged engine at high altitude with normal timing were 1.2 to 2 times the low altitude levels, but were 2 to 4 times the low altitude levels with malfunction timing.

  6. Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2002 DEER Conference Presentation: University of California, Riverside PDF icon 2002_deer_miller.pdf More Documents & Publications The California Demonstration Program for Control of PM from Diesel Backup Generators (BUGs) The California Demonstration Program for Control of PM from Diesel Backup Generators = Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel

  7. Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control

    Broader source: Energy.gov (indexed) [DOE]

    Technology | Department of Energy 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_puetz.pdf More Documents & Publications Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Thermal Efficiency Improvement While Meeting Emissions of 2007, 2010 and Beyond

  8. The Role of the Internal Combustion Engine in our Energy Future

    Broader source: Energy.gov [DOE]

    Reviews heavy-duty vehicle market, alternatives to internal combustion engines, and pathways to increasing diesel engine efficiency

  9. U.S. Navy Marine Diesel Engines and the Environment - Part 3...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 U.S. Navy Marine Diesel Engines and the Environment - Part 3 2002 DEER Conference ... High Fuel Economy Heavy-Duty Truck Engine The Maritime Administration's Energy and ...

  10. ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DEER Conference Presentation: California Environmental Protection Agency Air Resources Board PDF icon 2002_deer_ayala.pdf More Documents & Publications CNG and Diesel Transite Bus Emissions in Review Diesel Health Impacts & Recent Comparisons to Other Fuels Investigation of the Effects of Fuels and Aftertreatment Devices on the Emission Profiles of Trucks and Buses

  11. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  12. Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Transient Simulation of a 2007 Prototype Heavy-Duty Engine Diesel Aftertreatment Systems development Demonstration of a 50% Thermal Efficient Diesel ...

  13. Computational Fluid Dynamics Modeling of Diesel Engine Combustion and

    Broader source: Energy.gov (indexed) [DOE]

    Emissions | Department of Energy 05 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_reitz.pdf More Documents & Publications Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control

  14. Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles

    SciTech Connect (OSTI)

    Krause, T.; Kumar, R.; Krumpelt, M.

    2000-05-15

    This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

  15. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  16. Making a Difference: Heavy-Duty Combustion Engine Research Saved Billions

    Broader source: Energy.gov [DOE]

    More than 10 million heavy-duty vehicles drive on U.S. roads each day, hauling goods, transporting people, and performing essential tasks like utility repair. However, these vehicles would be very different today if it wasn’t for the work of the Energy Department’s Vehicle Technologies Office (VTO).

  17. A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System

    Broader source: Energy.gov (indexed) [DOE]

    of Diesel and WHR-ORC Engines | Department of Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_regner.pdf More Documents & Publications Cummins Waste Heat Recovery Daimler's SuperTruck Program; 50% Brake Thermal Efficiency Engine Waste Heat Recovery Concept Demonstration

  18. Experiences with CNG and LPG operated heavy duty vehicles with emphasis on US HD diesel emission standards

    SciTech Connect (OSTI)

    VanDerWeide, J.; Seppen, J.J.; VanLing, J.A.N.; Dekker, H.J

    1988-01-01

    The lengthy experience of TNO with the application of gaseous fuels in engines is discussed. The emphasis is on emissions and efficiency of optimal gaseous fuelled engines in comparison to systems with partial diesel fuel replacement. In spark ignition operation (100% diesel fuel replacement) lean-burn and stoichiometric (electronic control and 3-way catalyst) concepts have been developed. In the optimization mathematical modelling of combustion and flow phenomena is used in combination with engine test bed work. Essential new hardware including micro-electronic control systems is developed.

  19. Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Natural gas and other liquid feedstocks for transportation fuels are compared for use in a dual-fuel engine. Benefits include economic stability, national security, environment, and cost. PDF icon deer12_kargul.pdf More Documents & Publications A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswith Comprehensive Fuel & Emission Control Natural Gas Basics, Vehicle Technologies Program (VTP) (Fact Sheet) Characterization of Dual-Fuel Reactivity Controlled

  20. Heavy Duty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with the U.S. automotive and heavy-duty diesel engine industries, energy companies, and other ... The strategies include: ultra-low-emission, low-temperature combustion; ...

  2. Visualization of UHC Emissions for Low-Temperature Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling Heavy-Duty Low-Temperature and Diesel ...

  3. Diesel Engine Oil Technology Insights and Opportunities | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Perrformance of API CJ-4 diesel engine lubricating oil and emerging lubricant technologiy are examined with respect to protection and fuel economy benefits. PDF icon deer08_arcy.pdf More Documents & Publications Development of High Performance Heavy Duty Engine Oils Verification of Shell GTL Fuel as CARB Alternative Diesel Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion

  4. Engine-External HC-Dosing for Regeneration of Diesel Particulate Filters

    Broader source: Energy.gov (indexed) [DOE]

    for Heavy Duty and NRMM According to Annex XXVII StVZO | Department of Energy This presentation discusses how a diesel particulate filter can be integrated in the exhaust piping of a heavy-duty engine. PDF icon deer08_rembor.pdf More Documents & Publications Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications A Bimetmallic Fuel-Borne Catalyst for Reduce Precious Metal Use in Medium-Duty Diesel Engines APBF-DEC

  5. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  6. The transportable heavy-duty engine emissions testing laboratory. Annual progress report, April 1990--April 1991

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be ``driven`` through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle`s exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

  7. Comparative Study on Exhaust Emissions from Diesel- and CNG-Powered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses 2003 DEER Conference Presentations: French Agency of Environment and Energy ... Transient Heavy-Duty Chassis Dynamometer French perspective on diesel engines & emissions

  8. Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  9. Clean and Efficient Diesel Engines - Designing for the Customer |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy A look at the key role that clean and efficient diesel engines will play in achieving climate and energy goals, and further improvements needed to perform this role. PDF icon deer08_charlton.pdf More Documents & Publications Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements Cummins Indy Racing Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations

  10. Demonstration of a 50% Thermal Efficient Diesel Engine - Including HTCD

    Broader source: Energy.gov (indexed) [DOE]

    Program Overview | Department of Energy DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_milam.pdf More Documents & Publications The Path to a 50% Thermal Efficient Engine Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking

  11. Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-02-01

    Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

  12. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization

    Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this

  13. Cummins Improving Pick-Up Truck Engine Efficiency with DOE and Nissan

    Broader source: Energy.gov [DOE]

    Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

  14. EERE Success Story—Cummins Improving Pick-Up Truck Engine Efficiency with DOE and Nissan

    Broader source: Energy.gov [DOE]

    Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

  15. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated

    Broader source: Energy.gov (indexed) [DOE]

    Lean NOx Catalysis | Department of Energy 03 DEER Conference Presentation: Pacific Northwest National Laboratory PDF icon 2003_deer_aardahl.pdf More Documents & Publications Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Lean-NOx Catalyst Development for Diesel Engine Applications

  16. Development of a Waste Heat Recovery System for Light Duty Diesel Engines |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system PDF icon deer09_briggs.pdf More Documents & Publications Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid

  17. Calibraton of a Directly Injected Natural Gas HD Engine for Class...

    Broader source: Energy.gov (indexed) [DOE]

    This poster offers a comparison of high-pressure direct injection (HPDI) of natural gas engines with pilot diesel ignition with diesel engines used in heavy-duty diesel engine ...

  18. California Policy Stimulates Carbon Negative CNG for Heavy Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Describes system for fueling truck fleet with biomethane generated from anaerobic ... Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Technical Workshop: Annual ...

  19. Development Methodology for Power-Dense Military Diesel Engine | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Laboratory data and modeling results are presented on a military auxiliary power unit engine that has a peak efficiency of 35.3% at an output shaft power of 25 kW. PDF icon p-26_sykes.pdf More Documents & Publications Oxygen-Enriched Combustion for Military Diesel Engine Generators Ultra-Efficient and Power-Dense Electric Motors Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to

  20. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  1. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 3 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2003_deer_west.pdf More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update

  2. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    SciTech Connect (OSTI)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  3. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect (OSTI)

    Elsner, N. B.; Bass, J. C.; Ghamaty, S.; Krommenhoek, D.; Kushch, A.; Snowden, D.; Marchetti, S.

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

  4. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2

    SciTech Connect (OSTI)

    Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

    2000-03-02

    This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

  5. Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst: Final Report, 24 February 2004 -- 23 February 2006

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst Final Report February 24, 2004 - February 23, 2006 T. Reppert Mack Trucks, Inc. Allentown, Pennsylvania J. Chiu Southwest Research Institute San Antonio, Texas Subcontract Report NREL/SR-540-38222 September 2005 Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst Final Report February 24, 2004 - February 23, 2006 T.

  6. APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update APBF-DEC Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update 2003 DEER ...

  7. An Experimental Investigation of Low Octane Gasoline in Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Enable Low Temperature Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel ... of Two-Stage Combustion in Low-Emissions Diesel Engines

  8. Using LNG as a Fuel in Heavy-Duty Tractors

    SciTech Connect (OSTI)

    Liquid Carbonic, Inc. and Trucking Research Institute

    1999-08-09

    Recognizing the lack of operational data on alternative fuel heavy-truck trucks, NREL contracted with the Trucking Research Institute (TRI) in 1994 to obtain a cooperative agreement with Liquid Carbonic. The purpose of this agreement was to (1) purchase and operate liquid natural gas- (LNG-) powered heavy-duty tractor-trailers with prototype Detroit Diesel Corporation (DDC) Series 60 natural gas (S60G) engines in over-the-road commercial service applications; and (2) collect and provide operational data to DDC to facilitate the on-road prototype development of the engine and to NREL for the Alternative Fuels Data Center. The vehicles operated from August 1994 through April of 1997 and led to a commercially available, emissions-certified S60G in 1998. This report briefly documents the engine development, the operational characteristics of LNG, and the lessons learned during the project.

  9. Lean-NOx Catalyst Development for Diesel Engine Applications | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 2 DEER Conference Presentation: Caterpillar Inc. PDF icon 2002_deer_park.pdf More Documents & Publications Lean NOx Catalysis Research and Development Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

  10. In-Cylinder Processes of EGR-Diluted Low-Load, Low-Temperature Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Combustion | Department of Energy In-Cylinder Processes of EGR-Diluted Low-Load, Low-Temperature Diesel Combustion PDF icon deer09_musculus.pdf More Documents & Publications A Conceptual Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Visualization of UHC Emissions for Low-Temperature Diesel Engine

  11. Heavy Duty HCCI Development Activities - DOE High Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck ... Compression Ignition (HCCI) Engines Heavy-Duty Low Temperature Combustion Development ...

  12. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  16. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Advanced Combustion Technologies for Increased Thermal Efficiency Biodiesel Research Update Effect of the Composition of Hydrocarbon ...

  17. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived

    Broader source: Energy.gov (indexed) [DOE]

    Fuels | Department of Energy 3 DEER Conference Presentation: National Research Council Canada, Ottawa, Ontario, Canada PDF icon 2003_deer_neill.pdf More Documents & Publications Development of Advanced Combustion Technologies for Increased Thermal Efficiency Biodiesel Research Update Effect of the Composition of Hydrocarbon Streams on HCCI Performance

  18. Development of the Cummins L10 engine to operate on natural gas for heavy duty transit bus applications. Final report, August 1988-December 1991

    SciTech Connect (OSTI)

    Welliver, D.R.

    1993-07-01

    This report covers all of the activities of a program undertaken to develop a natural gas fueled engine using the Cummins L10 diesel engine as the base engine. The base diesel engine is a 10 liter turbocharged jacket water aftercooled carcass that develops 270 hp at 2100 rpm. The design goals included developing a natural gas version at 240 hp with 750 lb-ft of peak torque with exhaust emission level demonstration meeting the 1991 EPA Urban Bus Emission Mandate. Additional goals included demonstrating diesel like vehicle performance and diesel like reliability and durability. Two fuel delivery systems were evaluated, one mechanical and the other electronic closed loop. Field and laboratory test engines were utilized to document reliability. Results of this program led to the production release of the gas engine for transit bus applications and California Air Resources Board certification during 1992.

  19. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of ...

  20. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  1. The Potential of Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_millo.pdf More Documents & Publications Design & Development of e-TurboTM for SUV and Light Truck Applications Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve Drive Cycle Fuel Economy Design and Development of e-Turbo for SUV and Light Truck Applications

  2. Comparing the Performance of SunDiesel and Conventional Diesel in a

    Broader source: Energy.gov (indexed) [DOE]

    Light-Duty Vehicle and Engines | Department of Energy ng.pdf More Documents & Publications Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines

  3. Heavy-Duty Powertrain and Vehicle Development- A Look Toward 2020

    Broader source: Energy.gov [DOE]

    Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine and powertrain advancements, vehicle improvements, and optimized system integration

  4. Heavy Truck Engine Development & HECC | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications High Efficiency Clean Combustion for Heavy-Duty Engine High Efficiency Clean Combustion for Heavy-Duty Engine Heavy-Duty Engine Combustion ...

  5. European Diesel Engine Technology: An Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2002 DEER Conference Presentation: AVL Powertrain Engineering, Inc. PDF icon 2002_deer_brueckner.pdf More Documents & Publications 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions Heavy Duty Vehicle In-Use Emission Performance Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer

  6. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  7. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    SciTech Connect (OSTI)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions at full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.

  8. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect (OSTI)

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

  9. Heavy Duty Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ... Laser enters piston bowl through windows in cylinder wall (not shown) and piston bowl-rim. ...

  10. Lowest Engine-Out Emissions as the Key to the Future of the Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lowest Engine-Out Emissions as the Key to the Future of the Heavy-Duty Diesel Engine: New Development Rersults Lowest Engine-Out Emissions as the Key to the Future of the ...

  11. Effect of Engine-Out NOx Control Strategies on PM Size Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 Effect of Engine-Out NOx Control Strategies on PM Size Distribution in ...

  12. Heavy Duty Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  13. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

  14. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.

    SciTech Connect (OSTI)

    Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

    2003-01-01

    The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

  15. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  16. Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    with Control Technologies for Reduced Diesel Exhaust Emissions | Department of Energy 03 DEER Conference Presentation: Ricardo Inc., Chicago Technical Center PDF icon 2003_deer_may.pdf More Documents & Publications Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update Coal-Derived Liquids to Enable HCCI Technology

  17. Isuzu's new 12. 0L micro-computer controlled turbocharged diesel engine

    SciTech Connect (OSTI)

    Wakabayashi, M.; Sakata, S.; Hamanaka, K.

    1984-01-01

    Isuzu Motors Limited introduced in the Japanese market a new micro-computer controlled turbocharged 6RA1TC diesel engine which powers new Isuzu heavy-duty trucks in 1983. This engine has successfully achieved both fuel economy and vehicle performance. This was realized by the combination of the newly developed micro-computer controlled fuel injection system and turbocharged air-to-air intercooled four valve low friction diesel engine. The purpose of the computer control system is flexible and precise control of fuel flow rate and fuel injection timing. This provides maximum engine performance and driveability, best fuel economy combined with the gearing of the vehicle, and easy operation for drivers. Additionally, this engine offers the following features: Good cold startability; Constant speed Cruise Control; Automatic schedule idling speed during warm-up; Stable low speed idling; Light and quick throttle response; Monitoring display for best fuel economy operation; Monitor display for engine diagnosis.

  18. Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 3 DEER Conference Presentation: Caterpillar Incorporated PDF icon 2003_deer_milam.pdf More Documents & Publications Transient Simulation of a 2007 Prototype Heavy-Duty Engine Diesel Aftertreatment Systems development Demonstration of a 50% Thermal Efficient Diesel Engine - Including HTCD Program Overview

  19. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  20. Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Poster presentaiton at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_clark.pdf More Documents & Publications Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer Heavy Duty Vehicle In-Use Emission Performance Comparison of

  1. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  2. Heavy Duty Vehicle In-Use Emission Performance | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer Fuel Efficiency of New European HD Vehicles HEAVY-DUTY TRUCK EMISSIONS AND ...

  3. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer Heavy Duty Vehicle In-Use Emission Performance Fuel Efficiency of New European ...

  4. Heavy-Duty Powertrain and Vehicle Development - A Look Toward...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Powertrain and Vehicle Development - A Look Toward 2020 Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty ...

  5. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and ...

  6. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2011 DOE Hydrogen and Fuel Cells ...

  7. Next Generation Diesel Engine Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation PDF icon 2003deerbolton1.pdf ...

  9. An Assessment of the Evidence for the Carcinogenic Potential of Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Exhaust | Department of Energy bunn.pdf More Documents & Publications ACES: Evaluation of Tissue Response to Inhaled 2007-Compliant Diesel Exhaust A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines National Idling Reduction Network News - March 2012

  10. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine ...

  11. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions ...

  12. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  13. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine ...

  14. Vehicle Technologies Office Merit Review 2014: Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  15. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylindermore » chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.« less

  16. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    SciTech Connect (OSTI)

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylinder chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.

  17. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  18. Effects of Biomass Fuels on Engine & System Out Emissions for Short Term

    Broader source: Energy.gov (indexed) [DOE]

    Endurance | Department of Energy Results of an investigation into effects of biofuels on engine- and system-out emissions, specifically US 2010 EPA exhaust after-treatment system from Mack Trucks PDF icon deer11_barnum.pdf More Documents & Publications High Fuel Economy Heavy-Duty Truck Engine A European Perspective of EURO 5/U.S. 07 Heavy-Duty Engine Technologies and Their Related Consequences Lowest Engine-Out Emissions as the Key to the Future of the Heavy-Duty Diesel Engine: New

  19. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions

    Broader source: Energy.gov (indexed) [DOE]

    Reduction | Department of Energy 05 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_rumsey.pdf More Documents & Publications High Engine Efficiency at 2010 Emissions Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits

  20. BPM Diesel Engineering | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: WR12 7NL Product: Converts diesel engines to operate on Dual Fuel using a digital generic system. References: BPM Diesel Engineering1 This article is a stub. You can...

  1. Nanocatalysts for Diesel Engine Emissions Remediation

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop durable zeolite nanocatalysts with broad temperature operating windows to treat diesel engine emissions, thus enabling diesel engine equipment and vehicles to meet regulatory requirements.

  2. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  3. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  4. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  5. 2007 Diesel Particulate Measurement Research (E-66 Project) | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 4 Diesel Engine Emissions Reduction (DEER) Conference: Southwest Research Institute PDF icon 2004_deer_khalek.pdf More Documents & Publications Investigation of the Effects of Fuels and Aftertreatment Devices on the Emission Profiles of Trucks and Buses Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel Diesel and Gasoline Engine Emissions: Characterization of

  6. Fuel and Fuel Additive Registration Testing of Ethanol-Diesel Blend for O2Diesel, Inc.

    SciTech Connect (OSTI)

    Fanick, E. R.

    2004-02-01

    O2 Diesel Inc. (formerly AAE Technologies Inc.) tested a heavy duty engine with O2Diesel (diesel fuel with 7.7% ethanol and additives) for regulated emissions and speciation of vapor-phase and semi-volatile hydrocarbon compounds. This testing was performed in support of EPA requirements for registering designated fuels and fuel additives as stipulated by sections 211(b) and 211(e) of the Clean Air Act.

  7. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel ...

  8. Diesel Desulfurization Filter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_rohrbach.pdf More Documents & Publications Desulfurization Fuel Filter NOx Adsorber Regeneration Phenomena In Heavy Duty Applications Investigation of the Effects of Fuels and Aftertreatment Devices on the Emission Profiles of Trucks and Buses

  9. Durability Evaluation of an Integrated Diesel NOx Adsorber A/T Subsystem at

    Broader source: Energy.gov (indexed) [DOE]

    Light-Duty Operation | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. and Johnson-Matthey PDF icon 2004_deer_li.pdf More Documents & Publications Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Desulfurization Fuel Filter Update on Diesel Exhaust Emission Control Technology and Regulations

  10. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

  11. Diesel Engine Light Truck Application

    SciTech Connect (OSTI)

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  12. Cleaning Up Diesel Engines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_witherspoon.pdf More Documents & Publications ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines DIesel Emission Control Technology Developments The Need to Reduce Mobile Source Emissions in the South Coast Air Basin

  13. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program ...

  14. SCR Potential and Issues for Heavy-Duty Applications in the United States

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Daimler Chrysler Detroit Diesel Corporation

  15. Materials-Enabled High-Efficiency Diesel Engines (CRADA with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA ... More Documents & Publications Materials-Enabled High-Efficiency Diesel Engines ...

  16. An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel

    Broader source: Energy.gov [DOE]

    Optical engine experiments suggest that near stoichiometric charge-gas mixtures in the standing premixed autoignition zone near flame lift-off length explains biodiesel NOx increase under all conditions

  17. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  18. Heavy-Truck Clean Diesel (HTCD) Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Caterpillar PDF icon 2004deerduffy.pdf More Documents & Publications Diesel HCCI Results at Caterpillar Diesel HCCI Results at Caterpillar Heavy-Duty HCCI Development Activities

  19. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine ...

  20. Diesel HCCI Results at Caterpillar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Caterpillar PDF icon 2002_deer_duffy.pdf More Documents & Publications Diesel HCCI Results at Caterpillar Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar

  1. Simulation and control of a HD diesel engine equipped with new EGR technology

    SciTech Connect (OSTI)

    Dekker, H.J.; Sturm, W.L.

    1996-09-01

    A dynamic model of a Heavy Duty (HD) turbocharged and aftercooled diesel engine was developed. The engine was equipped with high pressure diesel injection, a Variable Geometry Turbine (VGT) and an Exhaust Gas Recirculation (EGR) system. This engine was targeted at meeting EURO4 emission requirements. The final emission results were 2.4 g/k Wh NO{sub x} and 0.107 g/kWh particulates for the European 13 mode test. Better than 3.0 g/k Wh NO{sub x} and 0.10 g/k Wh particulates are expected to be characteristic EURO4 emission requirements (approximate year of implementation is 2004). In the design of the EGR system the model provided initial assessments of the properties of this system. Associated engine and turbocharger behavior as well as optimal control strategies were predicted. A transient engine control algorithm was developed using the dynamic engine model. The VGT is closed loop controlled and EGR is shut off during a short time after a load increase. The simulation results were confirmed by actual measurements, demonstrating acceptable transient behavior.

  2. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  3. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of ...

  4. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  5. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG ...

  6. Recent Diesel Engine Emission Mitigation Activities of the Maritime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime ...

  7. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will ...

  8. 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS ...

  9. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions ...

  10. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine ...

  11. Integrated Engine and Aftertreatment Technology Roadmap for EPA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions ...

  12. Energy 101: Heavy Duty Vehicle Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty Vehicle Efficiency Energy 101: Heavy Duty Vehicle Efficiency Addthis Description Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time. Topic Vehicles Text Version Below is the text version for the Energy 101: Heavy Duty Vehicle Efficiency

  13. APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform

    Broader source: Energy.gov (indexed) [DOE]

    Project Update | Department of Energy Ricardo Inc., Chicago Technical Center PDF icon deer_2003_may.pdf More Documents & Publications Status of APBF-DEC NOx Adsorber/DPF Projects APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study APBF-DEC Light-duty NOx Adsorber/DPF Project

  14. Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling...

    Broader source: Energy.gov (indexed) [DOE]

    Program Truck Duty Cycle and Performance Data Collection and Analysis Program Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty ...

  15. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration ... More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary ...

  16. Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Presentation: North East States for Coordinated Air Use Management

  17. Technology Development for Light Duty High Efficient Diesel Engines

    Broader source: Energy.gov [DOE]

    Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization.

  18. Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Focus is the heavy duty, US dynamometer certification using the Duramax 6.6 liter diesel PDF icon deer09_blint.pdf More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Development of HC-SCR System Using Diesel Fuel as a Reductant

  19. Sandia Energy - HCCI/SCCI Engine Fundamentals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty HCCISCCI Engine Fundamentals HCCISCCI Engine...

  20. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine

    Broader source: Energy.gov [DOE]

    This study measured the effects of hydrogen substitution on engine performance and reducing NOx emissions in a diesel engine

  1. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine and Aftertreatment Integration - Strategy and Experimental Results Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and ...

  2. Feasibility evaluation of fuel cells for selected heavy-duty transportation systems

    SciTech Connect (OSTI)

    Huff, J.R.; Murray, H.S.

    1982-10-01

    A study of the feasibility of using fuel cell power plants for heavy duty transportation applications is performed. It is concluded that it will be feasible to use fuel cell technology projected as being available by 1995 to 2000 for powering 3000-hp freight locomotives and 6000-hp river boats. The fuel cell power plant is proposed as an alternative to the currently used diesel or diesel-electric system. Phosphoric acid and solid polymer electrolyte fuel cells are determined to be the only applicable technologies in the desired time frame. Methanol, chemically reformed to produce hydrogen, is determined to be the most practical fuel for the applications considered. Feasibility is determined on the basis of weight and volume constraints, compatibility with existing propulsion components, and adequate performance relative to operational requirements. Simulation results show that performance goals are met and that overall energy consumption of heavy duty fuel cell power plants is lower than that of diesels for the same operating conditions. Overall energy consumption is substantially improved over diesel operation for locomotives. Operating cost comparisons are made using assumed diesel fuel and methanol costs. Development areas are identified to achieve the desired fuel cell capabilities. The required activities are in the areas of fuel cell electrode performance, catalyst development, fuel processing, controls, power conditioning, and system integration.

  3. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  5. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak pressure can result from oxygen-enriched diesel ...

  8. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

    Broader source: Energy.gov (indexed) [DOE]

    of Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art Development of Remove Sensing Instrumentation for NOx and PM Emissions from Heavy Duty Trucks

  9. Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Truck Idle Reduction Technologies to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Delicious Rank Alternative Fuels Data Center: Heavy-Duty

  10. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow 2004 Diesel Engine Emissions Reduction (DEER) ...

  11. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    SciTech Connect (OSTI)

    Khalifa, H.E.

    1983-12-01

    This report presents an evaluation of Brayton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. It is also shown that, if installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or $170/Bhp. Technical and economic barriers that would hinder the commercial introduction of bottoming systems were identified.

  12. Consider the DME alternative for diesel engines

    SciTech Connect (OSTI)

    Fleisch, T.H.; Meurer, P.C.

    1996-07-01

    Engine tests demonstrate that dimethyl ether (DME, CH{sub 3}OCH{sub 3}) can provide an alternative approach toward efficient, ultra-clean and quiet compression ignition (CI) engines. From a combustion point of view, DME is an attractive alternative fuel for CI engines, primarily for commercial applications in urban areas, where ultra-low emissions will be required in the future. DME can resolve the classical diesel emission problem of smoke emissions, which are completely eliminated. With a properly developed DME injection and combustion system, NO{sub x} emissions can be reduced to 40% of Euro II or U.S. 1998 limits, and can meet the future ULEV standards of California. Simultaneously, the combustion noise is reduced by as much as 15 dB(A) below diesel levels. In addition, the classical diesel advantages such as high thermal efficiency, compression ignition, engine robustness, etc., are retained.

  13. 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 29-September 2, 2004 Coronado, California The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: Diesel Efficiency and Emissions Policy Session 7: Combustion and Homogeneous Charge Compression Ignition Regimes Session 1: Emerging Diesel Technologies Session 8A: Diesel Engine

  14. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Broader source: Energy.gov (indexed) [DOE]

    Technology | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy PDF icon 2004_deer_hopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011

  15. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis DOE VTP Annual Merit Review PI: Robb A. Barnitt Organization: NREL May 10, 2011 Project ID: VSS043 This ...

  16. An Experimental Study of PM Emission Characteristics of Commercial Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Engine with Urea-SCR System | Department of Energy Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_lee.pdf More Documents & Publications SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 Solid SCR Demonstration Truck Application

  17. THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM

    SciTech Connect (OSTI)

    Fairbanks, John W.

    2000-08-20

    Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

  18. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  19. NREL: Transportation Research - Heavy-Duty Vehicle Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy-Duty Vehicle Thermal Management Infrared image of a semi cab and two people. NREL testing and modeling assess the energy saving impact of advanced climate control materials and equipment on heavy-duty vehicles. Photo by Dennis Schroeder, NREL Illustration of a truck with labeled energy-saving elements. NREL researchers assess the energy saving potential of films, paints, advanced insulation, micro-environmental design, and idle reduction technologies. Illustration by Ray David, NREL

  20. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  1. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  2. Durability Evaluation of an Integrated Diesel NOx Adsorber A...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Desulfurization Fuel Filter Update on Diesel Exhaust Emission Control ...

  3. 2002 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2002 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 25-29, 2002 San Diego, California The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Session 1: Diesel Engine Emissions Reduction Strategies Session 7: Emissions-Related Technologies and Regulations Session 2: Applied Thermoelectric Generator R&D Session 8: Emerging Diesel Engine Technology

  4. Light-duty diesel engine development status and engine needs

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  5. Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. Heavy-Duty Low Temperature Combustion Development Activities...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of ...

  7. Design of Integrated Laboratory and Heavy-Duty Emissions Testing...

    Broader source: Energy.gov (indexed) [DOE]

    Both simulated and actual diesel emissions were able to be ... More Documents & Publications Bench-Top Engine System for ... Biodiesel and EGR for Low-Temperature NOx and PM Reductions

  8. New 11 liter Komatsu diesel engine

    SciTech Connect (OSTI)

    Mizusawa, M.; Tanosaki, T.; Kawase, M.; Oguchi, T.

    1984-01-01

    New 6 cylinder direct injection 11 liter diesel engines which have naturally aspirated, turbocharged, and turbocharged-aftercooled versions have been developed and moved in production at the end of 1983. The highest output of the turbocharged-aftercooled version is 276 kW (375 ps) at 2200 RPM. Based on Komatsu new technologies 125 mm bore diesel has been designed to meet the users' demands, such as compact in size, light in weight, extremely high performance, high reliability and durability. The turbocharged and turbocharged-aftercooled engines are characterized by the adoption of the ductile cast iron piston which is the first application into the high speed, four cycle diesels in production in the world, and which was enabled by Komatsu design and precision casting technologies. This paper also covers the other design aspects and performance characteristics.

  9. Fuels and Lubricants to Support Advanced Diesel Engine Technology |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_baranescu.pdf More Documents & Publications New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine Challenges

  10. The effect of diesel injection timing on a turbocharged diesel engine fumigated with ethanol

    SciTech Connect (OSTI)

    Schroeder, A.R.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    A study has been done to determine the effect of changes in diesel injection timing on engine performance using a multicylinder, turbocharged diesel engine fumigated with ethanol. Tests at half load with engine speeds of 2000 and 2400 rpm indicated that a 4% increase in thermal efficiency could be obtained by advancing the diesel injection timing from 18 to 29/sup 0/BTDC. The effect of changes in diesel timing was much more pronounced at 2400 rpm. Advancing the diesel timing decreased CO and unburned HC levels significantly. The increase in NO levels due to advances in diesel timing was offset by the decrease in NO due to ethanol addition.

  11. Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Trucks Truck Stop Electrification for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Delicious Rank Alternative

  12. Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Station Adds Regional Heavy-Duty LNG Fueling Station to someone by E-mail Share Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG Fueling Station on Facebook Tweet about Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG Fueling Station on Twitter Bookmark Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG Fueling Station on Google Bookmark Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG Fueling

  13. Automotive HCCI Engine Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_06_steeper.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

  14. Exploring Low Emission Lubricants for Diesel Engines

    SciTech Connect (OSTI)

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  15. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  16. Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines Discusses engine technology enablers that help achieve overall system integration effectively PDF icon deer12suresh.pdf More ...

  17. Cleaner, More Efficient Diesel Engines

    SciTech Connect (OSTI)

    Musculus, Mark

    2013-08-13

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  18. Cleaner, More Efficient Diesel Engines

    ScienceCinema (OSTI)

    Musculus, Mark

    2014-02-26

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  19. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  20. Application of the AT Research Capabilities: Investigation of Diesel Soot

    Broader source: Energy.gov (indexed) [DOE]

    Oxidation and of the Catalysts Degradation | Department of Energy 2002 DEER Conference Presentation: Cummins Inc. PDF icon 2002_deer_currier.pdf More Documents & Publications Degradation Mechanisms of Urea Selective Catalytic Reduction Technology Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems Vehicle Technologies Office: 2013 Fuel and Lubricant

  1. Development of Advanced Diesel Particulate Filtration (DPF) Systems

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency | Department of Energy Investigation of fuel effects on low-temperature combustion, particularly HCCI / PCCI combustion PDF icon deer09_gehrke.pdf More Documents & Publications The Role of Advanced Combustion in Improving Thermal Efficiency Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine (ANL/Corning/Caterpillar CRADA) | Department of Energy

    PDF icon ace_22_lee.pdf More

  2. Exhaust Heat Recovery for Rural Alaskan Diesel Generators | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_lin_cs.pdf More Documents & Publications An Information Dependant Computer Program for Engine Exhaust Heat Recovery for Heating A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and

  3. Hydrogen in the Heavy Duty Market? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DEER Conference Presentation: Sandia National Laboratories PDF icon 2002_deer_keller.pdf More Documents & Publications Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Overview of DOE Advanced Combustion Engine R&D Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report

  4. Adaptive Control to Improve Low Temperature Diesel Engine Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications An Enabling Study of Diesel Low-Temperautre Combustion via ... Regimes? ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines

  5. Active Diesel Emission Control Technology for Sub-50 HP Engines...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon deer08depetrillo.pdf More Documents & Publications Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine 2005deerdePetrillo.pdf Active Diesel Emission ...

  6. Impact of Real Field Diesel Quality Variability on Engine Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon p-07hermitte.pdf More Documents & Publications BioDiesel Content On-board monitoring A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics On ...

  7. Diesel Engines: Environmental Impact and Control | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    California Air Resources Board PDF icon 2002_deer_lloyd.pdf More Documents & Publications Cleaning Up Diesel Engines DIesel Emission Control Technology Developments South Coast AQMD Clean Transportation Programs

  8. Clean and Efficient Diesel Engine

    SciTech Connect (OSTI)

    2010-12-31

    Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

  9. Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-15

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

  10. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbates storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  11. Utiization of alternate fuels in diesel engines

    SciTech Connect (OSTI)

    Lestz, S.S.

    1980-09-01

    Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

  12. Efficiency Improvement in an Over the Road Diesel Powered Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Hybridization of heavy-duty truck propulsion with thermoelectric generator and potential efficiency enhancement PDF icon deer08schock.pdf More Documents & Publications ...

  13. How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...DPF Project: Heavy Duty Linehaul Platform Project Update Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode

  14. Load Expansion with Diesel/Gasoline RCCI for Improved Engine Efficiency and Emissions

    Broader source: Energy.gov [DOE]

    This poster will describe preliminary emission results of gasoline/diesel RCCI in a medium-duty diesel engine.

  15. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    SciTech Connect (OSTI)

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  16. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  17. Demonstrating and evaluating heavy-duty alternative fuel operations

    SciTech Connect (OSTI)

    Peerenboom, W.

    1998-02-01

    The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

  18. Understanding diesel engine lubrication at low temperature

    SciTech Connect (OSTI)

    Smith, M.F. Jr.

    1990-01-01

    This paper reports on oil pumpability in passenger car gasoline engines that was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at {minus}18{degrees} C (0{degrees} F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier has better performance that a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance. The apparent shear rate of the oil in the pump inlet tube was calculated from the oil pump flow rate measured at idle speed at low temperature and the pump inlet tube diameter. The shear rate and oil viscosity were used to estimate the shear stress in the pump inlet tube. The shear stress level of the engine is 56% higher than the Mini-Rotary Viscometer (MRV). Hence, the current MRV procedure is rheologically unsuitable to predict pumpability in a large diesel engine. A new device was developed for measuring the oil film thickness in the turbocharge bearing and noting the time when a full oil film is formed. Results indicate that a full oil film occurs almost immediately, well before any oil pressure is observed at the turbocharge inlet. Residual oil remaining in the bearing after shutdown may account of this observation. The oil film maintained its thickness both before, and after the first indication of oil pressure. More work is needed to study this effect.

  19. Reduction of Heavy-Duty Fuel Consumption and CO2 Generation ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Fuel Consumption and CO2 Generation -- What the Industry Does and What the Government Can Do Reduction of Heavy-Duty Fuel Consumption and CO2 Generation -- What the ...

  20. Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2

    Broader source: Energy.gov (indexed) [DOE]

    Emissions | Department of Energy 3 DEER Conference Presentation: Detroit Diesel Corporation PDF icon 2003_deer_bolton1.pdf More Documents & Publications Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results Analytical Tool Development for Aftertreatment Sub-Systems Integration Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market

  1. Nanocatalysts for Diesel Engine Emissions Remediation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nanocatalysts for Diesel Engine Emissions Remediation Nanocatalysts for Diesel Engine Emissions Remediation PDF icon nanocatalysts_diesel_engine.pdf More Documents & Publications Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber

  2. 2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy 6 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations August 20-24, 2006 Detroit, Michigan The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session 1: A View from the Bridge Concurrent Technical Session 3: Diesel Engine Development Technical Session 1: Advanced Combustion Technologies, Part 1

  3. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound

    Broader source: Energy.gov (indexed) [DOE]

    Technology | Department of Energy 3 DEER Conference Presentation: Caterpillar Inc. PDF icon 2003_deer_algrain.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  4. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Broader source: Energy.gov (indexed) [DOE]

    Technology | Department of Energy Caterpillar Inc. PDF icon 2002_deer_hopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  5. Medium- and Heavy-Duty Vehicle Field Evaluations; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Kelly, Kenneth; Cosgrove, Jon; Duran, Adam; Konan, Arnaud; Lammert, Mike; Prohaska, Bob

    2015-06-09

    This presentation summarizes medium-duty and heavy-duty vehicle field evaluation test results, aggregated data, and detailed analysis.

  6. The 60% Efficient Diesel Engine: Probably, Possible, Or Just...

    Broader source: Energy.gov (indexed) [DOE]

    05 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deerfairbanks2.pdf More Documents & Publications DOE's Launch of High-Efficiency ...

  7. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials 2002 ...

  8. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Broader source: Energy.gov (indexed) [DOE]

    Combustion Demonstrator for High Efficiency Clean Combustion Multicylinder Diesel Engine Design for HCCI Operation Impact of Variable Valve Timing on Low Temperature Combustion

  9. Advanced Modeling of Direct-Injection Diesel Engines | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deerzellat.pdf More Documents & Publications Effects of Ambient Density and Temperature ...

  10. Estimation and Control of Diesel Engine Processes Utilizing Variable...

    Broader source: Energy.gov (indexed) [DOE]

    Air handling system model for multi-cylinder variable geometry turbocharged diesel engine ... Experimental Activities Impact of Variable Valve Timing on Low Temperature Combustion

  11. Natural Oils - The Next Generation of Diesel Engine Lubricants...

    Energy Savers [EERE]

    Oils - The Next Generation of Diesel Engine Lubricants? JOE PEREZ 1 & SHAWN WHITACRE 2 1 The ... TEST PURPOSE COMMENT BOSCH INJECTOR HIGH TEMPERATURE - HIGH SHEAR BOSCH INJECTOR SHEAR ...

  12. Technology Development for High Efficiency Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deer09stanton.pdf More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency...

  13. Update on Modeling for Effective Diesel Engine Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    complex with numerous interacting variables and an unlimited number of control options. ... A viable and robust diesel engine aftertreatment system can thus be developed within ...

  14. Diesel Engine Strategy & North American Market Challenges, Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy & North American Market Challenges, Technology and Growth Diesel Engine Strategy & North American Market Challenges, Technology and Growth Presentation given at the 2007 ...

  15. Natural Oils - The Next Generation of Diesel Engine Lubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil ...

  16. Development of wear-resistant ceramic coatings for diesel engine components

    SciTech Connect (OSTI)

    Naylor, M.G.S. )

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ring'' samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased soot sensitivity'' is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  17. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    SciTech Connect (OSTI)

    Blau, Peter Julian

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats run for hundreds of hours in heavy-duty diesels provided insights into the kinds of complexity that the contact conditions in engines can produce, and suggested the physical basis for the current approach to modeling. The model presented here involves four terms, two representing the valve response and two for its mating seat material. The model's structure assumes that wear that takes place under a complex combination of plastic deformation, tangential shear, and oxidation. Tribolayers form, are removed, and may reform. Layer formation affects the friction forces in the interface, and in turn, the energy available to do work on the materials to cause wear. To provide friction data for the model at various temperatures, sliding contact experiments were conducted from 22 to 850 C in a pin-on-disk apparatus at ORNL. In order to account for the behavior of different materials and engine designs, parameters in all four terms of the model can be adjusted to account for wear-in and incubation periods before the dominant wear processes evolve to their steady-state rates. For example, the deformation rate is assumed to be maximum during the early stages of operation, and then, due to material work-hardening and the increase in nominal contact area (which reduces the load per unit area), decreases to a lower rate at long times. Conversely, the rate of abrasion increases with time or number of cycles due to the build-up of oxides and tribo-layers between contact surfaces. The competition between deformation and abrasion results in complex, non-linear behavior of material loss per cycle of operation. Furthermore, these factors are affected by valve design features, such as the angle of incline of the valve seat. Several modeling scenarios are presented to demonstrate how the wear profile versus number of cycles changes in response to: (a) different relative abrasion rates of the seat and valve materials, (b) the friction coefficient as a function of temperature, (c) the relative deformation contribution of valve and seat materials, and (d) an interruption in the dominant we

  18. 2003 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2003 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 24-28, 2003 Newport, Rhode Island The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Session 6: Environmentally Concerned Public Sector Organization Panel Session 1: Emerging Diesel Technologies Session 7: Combustion and HCCI Regimes Session 2: Fuels and

  19. 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 21-25, 2005 Chicago, Illinois The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Technical Session 4: Emission Control Technologies, Part 1 Technical Session 1: Advanced Combustion Technologies Part 1 Poster Session 2: Light-Duty Diesels and Emission

  20. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  1. Heavy-Duty HCCI Development Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Posters PDF icon 2005deerduffy.pdf More Documents & Publications Heavy-Truck Clean Diesel (HTCD) Program Diesel HCCI Results at Caterpillar Diesel HCCI Results at ...

  2. Medium and Heavy Duty Vehicle Field Evaluations (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2014-06-01

    This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

  3. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Cai, Hao; Burnham, Andrew; Wang, Michael; Hang, Wen; Vyas, Anant

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  4. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 ... Multicylinder Diesel Engine for Low Temperature Combustion Operation Development of ...

  5. Federal certification test results for 1992 model year. Control of air pollution from new motor vehicles and new motor vehicle engines

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Each manufacturer of a passenger car, (light-duty-vehicle), light-duty truck, motorcycle, heavy-duty gasoline engine, and heavy-duty diesel engine is required to demonstrate compliance with the applicable exhaust emission standard. This report contains all of the individual tests that were required by the certification-procedures found in Title 40 of the Code of Federal Regulations in Part 86. These data were submitted to the Environmental Protection Agency's Certification Division at the National Vehicle and Fuel Emissions Laboratory.

  6. Multicylinder Diesel Engine Design for HCCI operation | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_deojeda.pdf More Documents & Publications Multicylinder Diesel Engine Design for HCCI Operation Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Multicylinder Diesel Engine for Low Temperature Combustion Operation

  7. Starting low compression ratio rotary Wankel diesel engine

    SciTech Connect (OSTI)

    Kamo, R.; Yamada, T.Y.; Hamada, Y.

    1987-01-01

    The single stage rotary Wankel engine is difficult to convert into a diesel version having an adequate compression ratio and a compatible combustion chamber configuration. Past efforts in designing a rotary-type Wankel diesel engine resorted to a two-stage design. Complexity, size, weight, cost and performance penalties were some of the drawbacks of the two-stage Wankel-type diesel designs. This paper presents an approach to a single stage low compression ratio Wankel-type rotary engine. Cold starting of a low compression ratio single stage diesel Wankel becomes the key problem. It was demonstrated that the low compression single stage diesel Wankel type rotary engine can satisfactorily be cold started with a properly designed combustion chamber in the rotor and a variable heat input combustion aid.

  8. Dynamic behaviour of a turbocharged diesel engine

    SciTech Connect (OSTI)

    Backhouse, R.; Winterbone, D.E.

    1986-01-01

    The transient behaviour of torque and smoke produced by a turbocharged diesel engine has been measured by frequency response methods, with a sinusoidal peturbation applied to the fuel. A dynamic torque parameter (dmep) has been introduced and the response of this to changes in speed and load can be separated. The dmep also enables the delay associated with torque production to be obtained: this is compared to the widely accepted values. The results have also been analysed to show the relationship between air-fuel ratio and smoke produced during a transient. The conclusion is that the production of smoke under dynamic condition behaves similarly to that under steady running but that it is more dependent on the initial load (air-fuel ratio) level.

  9. Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

    Broader source: Energy.gov (indexed) [DOE]

    Emissions Control | Department of Energy 04 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Catalytica Energy Systems PDF icon 2004_deer_catalytica.pdf More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Retrofit Diesel Emissions Control System Providing 50% NOxControl

  10. Dual fuel combustion in a turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Newlyn, H.A.

    1987-01-01

    The modification of a turbocharged diesel engine to a dual-fuel engine using methane as the supplementary fuel has been carried out. The effect of the gaseous fuel in a turbo-charged diesel engine has been investigated by means of a heat release study and a computer program already developed at Leicester Polytechnic. It is used in order to examine the rate of heat released under any operational condition.

  11. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere

    Broader source: Energy.gov (indexed) [DOE]

    Composition and Health Responses to Inhaled Emissions | Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_mcdonald.pdf More Documents & Publications The Effect of Changes in Diesel Exhaust Composition and After-Treatment Technology on Lung Inflammation and Resistance to Viral Infection Relationship Between Composition and Toxicity of Engine Emissions Components Responsible for the Health Effects of Inhaled Engine

  12. Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst: Final Report, 24 February 2004 -- 23 February 2006

    SciTech Connect (OSTI)

    Reppert, T.; Chiu, J.

    2005-09-01

    This report discusses the development of a E7G 12-liter, lean-burn natural gas engine--using stoichiometric combustion, cooled exhaust gas recirculation, and three-way catalyst technologies--for refuse haulers.

  13. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/CP-5400-60098. Posted with permission. Presented at the SAE 2013 Commercial Vehicle Engineering Congress. 2013-01-2468 Published 09/24/2013 doi:10.4271/2013-01-2468 saecomveh.saejournals.org In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks Jonathan Burton, Kevin Walkowicz, Petr Sindler, and Adam Duran National Renewable Energy Laboratory ABSTRACT This study compared fuel economy and emissions between heavy-duty

  14. An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control

    Broader source: Energy.gov [DOE]

    Describes glow plug with integrated pressure sensor for closed-loop control of diesel engine combustion

  15. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany

  16. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Debusk, Melanie Moses; Mullins, David R; Mahurin, Shannon Mark; Wu, Zili

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

  17. Effects of Biomass Fuels on Engine & System Out Emissions for...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications High Fuel Economy Heavy-Duty Truck Engine A European Perspective of EURO 5U.S. 07 Heavy-Duty Engine Technologies and Their Related Consequences ...

  18. Hydrogen as a Supplemental Fuel in Diesel Engines

    Broader source: Energy.gov [DOE]

    Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SuperTruck is Making Heavy Duty Vehicles More Efficient INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient March 1, 2016 - 10:45am Addthis Our latest infographic explains how heavy-duty trucks are more getting more sustainable thanks to the Energy Department's SuperTruck initiative. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Our latest infographic explains how heavy-duty trucks are more

  20. Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

  1. Alternative Fuels Data Center: Coca-Cola Continues to Expand Its Heavy-Duty

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Fleet in Atlanta Coca-Cola Continues to Expand Its Heavy-Duty Hybrid Fleet in Atlanta to someone by E-mail Share Alternative Fuels Data Center: Coca-Cola Continues to Expand Its Heavy-Duty Hybrid Fleet in Atlanta on Facebook Tweet about Alternative Fuels Data Center: Coca-Cola Continues to Expand Its Heavy-Duty Hybrid Fleet in Atlanta on Twitter Bookmark Alternative Fuels Data Center: Coca-Cola Continues to Expand Its Heavy-Duty Hybrid Fleet in Atlanta on Google Bookmark Alternative

  2. 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy 7 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations August 13-16, 2007 Detroit, Michigan The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Tuesday Dinner Monday Lunch Concurrent Technical Session 4 : Emission Control Technologies, Part 2 Technical Session 1: Advanced

  3. 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations August 4-7, 2008 Dearborn, Michigan The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Concurrent Technical Session 4: Emission Control Technologies, Part 2 Lunch: Sponsored by Caterpillar, Inc. Concurrent Technical

  4. Multicylinder Diesel Engine Design for HCCI Operation | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 07 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_deojeda.pdf More Documents & Publications Multicylinder Diesel Engine for Low Temperature Combustion Operation Impact of Variable Valve Timing on Low Temperature Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean

  5. Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations Oil Bypass Filter and Diesel ... More Documents & Publications Demonstrated Petroleum Reduction Using Oil Bypass Filter ...

  6. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

  7. High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_35_patton.pdf More Documents & Publications High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Expanding Robust HCCI Operation (Delphi CRADA)

  8. Evolution of Westinghouse heavy-duty power generation and industrial combustion turbines

    SciTech Connect (OSTI)

    Scalzo, A.J.; Bannister, R.L.; DeCorso, M.; Howard, G.S.

    1996-04-01

    This paper reviews the evolution of heavy-duty power generation and industrial combustion turbines in the United States from a Westinghouse Electric Corporation perspective. Westinghouse combustion turbine genealogy began in March of 1943 when the first wholly American designed and manufactured jet engine went on test in Philadelphia, and continues today in Orlando, Florida, with the 230 MW, 501G combustion turbine. In this paper, advances in thermodynamics, materials, cooling, and unit size will be described. Many basic design features such as two-bearing rotor, cold-end drive, can-annular internal combustors, CURVIC{sup 2} clutched turbine disks, and tangential exhaust struts have endured successfully for over 40 years. Progress in turbine technology includes the clean coal technology and advanced turbine systems initiatives of the US Department of Energy.

  9. BLUETEC - Heading for 50 State Diesel | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Worldwide Perspectives SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 State-of-the-Art and Emergin Truck Engine Technologies

  10. Adaptive Control to Improve Low Temperature Diesel Engine Combustion |

    Broader source: Energy.gov (indexed) [DOE]

    Sheet, April 2014 | Department of Energy The University of Minnesota, Morris, in collaboration with the University of Minnesota Center for Diesel Research, Cummins Power Generation Inc., ALL Power Labs, and Hammel, Green & Abrahamson (HGA), integrated a biomass gasifier and a reciprocating engine generator set into a combined platform, enabling electricity generation from waste biomass while reducing diesel fuel consumption and greenhouse gas (GHG) emissions. PDF icon

  11. The development of a prechamber diesel engine family

    SciTech Connect (OSTI)

    Filtri, G.; Morello, L.; Stroppiana, B.

    1989-01-01

    The development of a new family of prechamber diesel engines, based on a technological commonalty with the gasoline engines is reported. The range of diesel engines, all of them four-cylinder-in line, consist of 3 displacements: 1365cc - 1697cc - 1930cc either naturally aspirated or turbocharged. Mention is also made of their most significant technical innovations about their architecture and combustion chambers, and the main components such as block cylinder, head, crankshaft, connecting rods, pistons, timing gear and injection pump control, intake and exhaust manifolds.

  12. DEMONSTRATION OF POTENTIAL FOR SELECTIVE CATALYTIC REDUCTION AND DIESEL PARTICULATE FILTERS

    SciTech Connect (OSTI)

    McGILL,R; KHAIR, M; SHARP, C

    2003-08-24

    This project addresses the potential for Selective Catalytic Reduction (SCR) devices (using urea as reductant) together with Diesel Particulate Filters (DPF) and low-pressure loop exhaust gas recirculation (EGR) to achieve future stringent emissions standards for heavy-duty engines powering Class 8 vehicles. Two emission control systems consisting of the three technologies (EGR, SCR, and DPF) were calibrated on a Caterpillar C-12 heavy-duty diesel engine. Results of these calibrations showed good promise in meeting the 2010 heavy-duty emission standards as set forth by the Environmental Protection Agency (EPA). These two emission control systems were developed to evaluate a series of fuels that have similar formulations except for their sulfur content. Additionally, one fuel, code-named BP15, was also evaluated. This fuel was prepared by processing straight-run distillate stocks through a commercial, single stage hydrotreater employing high activity catalyst at maximum severity. An additional goal of this program is to provide data for an on-going EPA technology review that evaluates progress toward meeting 2007/2010 emission standards. These emissions levels were to be achieved not only on the transient test cycles but in other modes of operation such as the steady-state Euro-III style emission test known as the OICA (Organisation Internationale des Compagnies d'Automobiles) or the ESC (European Stationary Cycle). Additionally, hydrocarbon and carbon monoxide emissions standards are to be met.

  13. High Fuel Economy Heavy-Duty Truck Engine

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  14. Medium and Heavy Duty Vehicle and Engine Testing

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. High Efficiency Clean Combustion for Heavy-Duty Engine

    Broader source: Energy.gov [DOE]

    Innovative dual mode combustion strategy enabled by variable fuel injection offers emission reduction and efficiency improvement advantages.

  16. NAFTA Heavy Duty Engine and Aftertreatment Technology: Status and Outlook

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  17. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    2015: Class 8 Truck Freight Efficiency Improvement Project Impact of Vehicle Efficiency Improvements on Powertrain Design Roadmap and Technical White Papers for 21st Century Truck ...

  18. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  19. Dual fuel control of a high speed turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Sardari, P.

    1987-01-01

    The modification of a Ford 7600 turbocharged diesel engine to a dual fuel engine using methane as the supplementary fuel has been carried out. The paper describes the preliminary work of dual fuel control. Two systems are examined and their behaviour is presented.

  20. Diesel Engines: What Role Can They Play in an Emissions-Constrained World?

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation; California Air Resources Board PDF icon 2004_deer_cackette.pdf More Documents & Publications Light-duty Diesels: Clean Enough? The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow Light-Duty Diesel Market Potential in North America

  1. Emissions Control for Lean Gasoline Engines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace033_toops_2012_o.pdf More Documents & Publications NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems Spatiotemporal Distribution of NOx Storage: a

  2. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2015-02-14

    Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed naturalmore » gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.« less

  3. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2015-02-14

    Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.

  4. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2015-02-14

    Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 78 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.

  5. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Broader source: Energy.gov [DOE]

    WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

  6. Diesel Emission Control Technology in Review | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Review of light- and heavy-duty diesel emission regulations and state-of-the-art emission control technologies and strategies to meet them. PDF icon deer08_johnson.pdf More Documents & Publications Diesel Emission Control Review Review of Emerging Diesel Emissions and Control Diesel Emission Control in Review

  7. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

  8. Prediction of transient exhaust soot for a turbocharged diesel engine

    SciTech Connect (OSTI)

    Xiaoping, B.; Shu, H.

    1995-12-31

    A generalized computer model for prediction of transient exhaust soot and response of turbocharged diesel engines is developed. It includes detailed thermodynamic and dynamic processes. This model utilizes a multi-zone combustion submodel that emphasizes simple and economical calculations for combustion behavior and zonal soot, so overall transient exhaust soot can be predicted. This model is applied to a turbocharged diesel engine. The steady state exhaust soot and performance are calculated and validated, and on the basis, the exhaust soot and response under three classes of transient operating conditions are predicted. The parametric study is carried out by using this model. The effects of valve overlap period, exhaust manifold volume, turbocharger inertia and ambient pressure are predicted. Applications of this model have proved that it is a convenient analytical tool in the study for turbocharged diesel engines. 18 refs., 14 figs., 2 tabs.

  9. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  10. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... GPS global positioning system HEV hybrid electric vehicle HHDDT Heavy Heavy-Duty Diesel Truck KI kinetic intensity lbs pounds mi miles mph miles per hour NO x nitrogen ...

  11. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect (OSTI)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  12. Overview of Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Robert W. Carling; Gurpreet Singh

    1999-04-26

    The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.

  13. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Discusses plan, baselining, and modeling, for new light ...

  14. Diesel Engines: What Role Can They Play in an Emissions-Constrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What Role Can They Play in an Emissions-Constrained World? Diesel Engines: What Role Can They Play in an Emissions-Constrained World? 2004 Diesel Engine Emissions Reduction (DEER) ...

  15. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S. Market 2004 Diesel Engine Emissions Reduction (DEER) ...

  16. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  17. Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion

    SciTech Connect (OSTI)

    Singh, Satbir; Musculus, Mark P.B.; Reitz, Rolf D.

    2009-10-15

    The structure of first- and second-stage combustion is investigated in a heavy-duty, single-cylinder optical engine using chemiluminescence imaging, Mie-scatter imaging of liquid-fuel, and OH planar laser-induced fluorescence (OH-PLIF) along with calculations of fluorescence quenching. Three different diesel combustion modes are studied: conventional non-diluted high-temperature combustion (HTC) with either (1) short or (2) long ignition delay, and (3) highly diluted low-temperature combustion (LTC) with early fuel injection. For the short ignition delay HTC condition, the OH fluorescence images show that second-stage combustion occurs mainly on the fuel jet periphery in a thickness of about 1 mm. For the long ignition delay HTC condition, the second-stage combustion zone on the jet periphery is thicker (5-6 mm). For the early-injection LTC condition, the second-stage combustion is even thicker (20-25 mm) and occurs only in the down-stream regions of the jet. The relationship between OH concentration and OH-PLIF intensity over a range of equivalence ratios is estimated from quenching calculations using collider species concentrations predicted by chemical kinetics simulations of combustion. The calculations show that both OH concentration and OH-PLIF intensity peak near stoichiometric mixtures and fall by an order of magnitude or more for equivalence ratios less than 0.2-0.4 and greater than 1.4-1.6. Using the OH fluorescence quenching predictions together with OH-PLIF images, quantitative boundaries for mixing are established for the three engine combustion modes. (author)

  18. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application Technology Manufacturer Fleet Years Collected Delivery Trucks All Electric Smith Newton Various 2012-2014 Class 8 Diesel Tractors Hybrid Electric Kenworth and ...

  19. Cummins/DOE Light Truck Diesel Engine Progress Report | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 2 DEER Conference Presentation: Cummins PDF icon 2002_deer_stang.pdf More Documents & Publications Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

  20. Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K; McFarlane, Joanna; Daw, C Stuart; Ra, Youngchul; Griffin, Jelani K

    2008-01-01

    In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

  1. The California Demonstration Program for Control of PM from Diesel Backup

    Broader source: Energy.gov (indexed) [DOE]

    Generators (BUGs) | Department of Energy 3 DEER Conference Presentation: University of California at Riverside PDF icon 2003_deer_miller.pdf More Documents & Publications The California Demonstration Program for Control of PM from Diesel Backup Generators = Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

  2. Technology Development for High Efficiency Clean Diesel Engines and a

    Broader source: Energy.gov (indexed) [DOE]

    Pathway to 50% Thermal Efficiency | Department of Energy Cost reduction is a key area of emphasis for the Cummins 2nd Generation ORC WHR System. PDF icon deer09_stanton.pdf More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency Clean Combustion

  3. Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance

    Broader source: Energy.gov (indexed) [DOE]

    Requirements of the U.S. Market | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ricardo, Inc. PDF icon 2004_deer_greaney.pdf More Documents & Publications Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market US Tier 2 Bin 2 Diesel Research Progress Review of Diesel Emission Control Technology

  4. Vehicle Technologies Office: AVTA – Medium and Heavy Duty Vehicle Data and Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office supports work to collect extensive data on light-duty, medium-duty and heavy-duty vehicles through the Advanced Vehicle Testing Activity  (AVTA). Idaho National...

  5. Technologies for a Sustainable Heavy-Duty On-Road Fleet | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Only selected energy pathways for the heavy-duty on-road fleet are consistent with the ... More Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical ...

  6. Vehicle Technologies Office Merit Review 2015: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero-emission heavy-duty drayage truck...

  7. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis ...

  8. Vehicle Technologies Office Merit Review 2014: Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy duty roots expander...

  9. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  10. Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced

    Broader source: Energy.gov (indexed) [DOE]

    Emissions and Improved Fuel Efficiency | Department of Energy An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel. PDF icon deer08_zajac.pdf More Documents & Publications Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine Evaluation of Variable Compression Ratio on Energy Efficiency

  11. Emission Performance of Modern Diesel Engines Fueled with Biodiesel |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This study presents full quantification of biodiesels impact on emissions and fuel economy with the inclusion of DPF regeneration events. PDF icon p-21_williams.pdf More Documents & Publications Impact of Biodiesel on Modern Diesel Engine Emissions Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies Biodiesel Impact on Engine Lubricant Oil Dilution

  12. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil- Impact on Wear

    Broader source: Energy.gov [DOE]

    Results of completed study on the effect of four exhaust gas recirculation levels on diesel engine oil during standard test with an API Cummins M-11 engine.

  13. Effect of EGR contamination of diesel engine oil on wear.

    SciTech Connect (OSTI)

    Ajayi, O. O.; Erdemir, A.; Fenske, G. R.; Aldajah, S.; Goldblatt, I. L.; Energy Systems; United Arab Emirates Univ.; BP-Global Lubricants Technology

    2007-09-01

    Exhaust gas recirculation (EGR) is one of the effective means to reduce the NO{sub X} emission from diesel engines. Returning exhaust product to the diesel engine combustion chamber accelerated the degradation of the lubricant engine oil, primarily by increasing the total acid number (TAN) as well as the soot content and, consequently, the viscosity. These oil degradation mechanisms were observed in engine oil exposed to EGR during a standard Cummins M-l 1 diesel engine test. Four-ball wear tests with M-50 balls showed that, although the used oils slightly decrease the friction coefficients, they increased the ball wear by two orders of magnitude when compared to tests with clean oil. Wear occurred primarily by an abrasive mechanism, but in oil with the highest soot loading of 12%, scuffing and soot particle embedment were also observed. Laboratory wear tests showed a linear correlation with the TAN, while the crosshead wear during the engine test was proportional to the soot content.

  14. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    SciTech Connect (OSTI)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  15. LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  16. Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of ...

  17. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger...

    Broader source: Energy.gov (indexed) [DOE]

    6.6L diesel engine and a ton pickup truck with 8500 lb. curb weight, and validation ... Design & Development of e-TurboTM for SUV and Light Truck Applications SuperTurbocharger

  18. Investigation of the Application of the European PMP Method to Clean Heavy Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. Cummins/DOE Light Truck Clean Diesel Engine Progress Report | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 3 DEER Conference Presentation: Cummins Inc. PDF icon 2003_deer_stang.pdf More Documents & Publications Cummins Light Truck Clean Diesel Cummins/DOE Light Truck Diesel Engine Progress Report Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US

  20. Regulation of Emissions from Stationary Diesel Engines (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    On July 11, 2006, the Environmental Protection Agency (EPA) issued regulations covering emissions from stationary diesel engines New Source Performance Standards that limit emissions of NOx, particulate matter, SO2, carbon monoxide, and hydrocarbons to the same levels required for nonroad diesel engines. The regulation affects new, modified, and reconstructed diesel engines. Beginning with model year 2007, engine manufacturers must specify that new engines less than 3,000 horsepower meet the same emissions standard as nonroad diesel engines. For engines greater than 3,000 horsepower, the standard will be fully effective in 2011. Stationary diesel engine fuel will also be subject to the same standard as nonroad diesel engine fuel, which reduces the sulfur content of the fuel to 500 parts per million by mid-2007 and 15 parts per million by mid-2010.

  1. Diesel Engine Alternatives | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2003 DEER Conference Presentation: Southwest Research Institute PDF icon 2003_deer_ryan.pdf More Documents & Publications Combustion Targets for Low Emissions and High Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency HCCI in a Variable Compression Ratio Engine: Effects of Engine Variables

  2. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect (OSTI)

    Ciatti, S. A.; Subramanian, S.

    2011-09-01

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  3. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    SciTech Connect (OSTI)

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  4. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  5. Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Johnson, R.N.; Lee, M.; White, R.A.

    1994-01-01

    Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

  6. Second Stage Intercooling Using LNG for Turbocharged Heavy Duty Road Vehicles Phase I Final Report

    SciTech Connect (OSTI)

    1999-09-21

    It is well documented in engine performance literature that reduced engine inlet air temperature increases power output and reduces NO, emissions for both diesel and spark ignited (SI) engines. In addition, reduced inlet temperature increases the knock resistance of SI engines. In that most HD natural gas engines are SI derivatives of diesel engines it is appropriate to evaluate the benefits of reduced engine air temperature through LNG fuel. This project investigated the ''real world'' possibilities of a patented process for utilizing the ''cold'' in LNG to chill engine inlet air. The results support the conclusion that doing so is a practical means to increase engine power and reduce engine-out NO{sub x}.

  7. Systems and methods for controlling diesel engine emissions

    DOE Patents [OSTI]

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  8. Complex System Method to Assess Commercial Vehicle Fuel Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. Transonic ...

  9. Advanced Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  10. Laser-Induced Fluorescence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  11. Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  12. Reacting Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  13. Roaming Molecule Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  14. Materials for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  15. Solid Fuels Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  16. Time-Resolved FTIR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  17. Photodissociation Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  18. Flame Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  19. Modeling the Effects of Steam-Fuel Reforming Products on Low...

    Broader source: Energy.gov (indexed) [DOE]

    to Maximize In-use Engine Efficiency Enabling Low Temperature Combustion Through Thermo-Chemical Recuperation Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ...

  20. Computations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  1. Co-Evolution of Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  2. Technical Reference for Hydrogen Compatibility of Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  3. Gas-Phase Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  4. High Pressure Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  5. Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  6. Nonlinear Laser Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  7. Greenhouse Gas Source Attribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  8. Pressurized Combustion and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  9. Materials Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  10. Photoionization Mass Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  11. Direct Numerical Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  12. Chemistry of Autoignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  13. Biofuels Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  14. Lignocellulosic Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  15. Scattering Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  16. High-Temperature Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  17. Long-Path Absorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  18. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  19. Uncertainty Quantification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  20. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ... (RCCI) Combustion in a Light-Duty Engine High Efficiency Fuel Reactivity ...

  1. Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  2. Stochastic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  3. Large-Scale Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  4. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  5. Exhaust Aftertreatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  6. Theory & Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  7. Electric Drive Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  8. Norcal Waste Systems, Inc. Advanced Technology Vehicles in Service, LNG Heavy-Duty Trucks Fact Sheet.

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    TRUCKS ARE EQUIPPED WITH CUMMINS WESTPORT'S ISXG HEAVY-DUT Y ENGINE. Cummins Westport Inc. is a joint venture company formed by Cummins Inc. and Westport Innovations Inc. to bring natural gas engines to market. Westport Innovations is an alternative fuel engine technology company that developed the High-Pressure Direct Injection (HPDI(tm)) system and other natural gas technologies; Cummins is a veteran diesel engine manufacturer that provides the compression ignition engines with technology for

  9. Diesel Engine Strategy & North American Market Challenges, Technology and

    Broader source: Energy.gov (indexed) [DOE]

    Growth | Department of Energy Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_freese.pdf More Documents & Publications A View from the Bridge The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Light-Duty

  10. Engine Materials for Clean Diesel Technology: An Overview | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_geissler.pdf More Documents & Publications Vehicle Technologies Office: 2014 Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D

  11. A Study of Emissions from a Light Duty Diesel Engine with the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a catalytic stripper for comparison with Europe's PMP protocol Evaluation of the European PMP Methodologies Using Chassis Dynamometer and On-road Testing of Heavy-duty Vehicles

  12. Energy Department Announces $11 Million to Accelerate Alternative Fuel Use in Medium- and Heavy-Duty Vehicles

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $11 million in available funding to support development and demonstration of innovative alternative technologies for medium- and heavy-duty vehicles, designed...

  13. Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.

    SciTech Connect (OSTI)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-08-10

    Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

  14. Heavy Truck Clean Diesel Cooperative Research Program

    SciTech Connect (OSTI)

    Milam, David

    2006-12-31

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  15. Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Both simulated and actual diesel emissions were able to be measured and analyzed using a bench-top adiabatic reactor. PDF icon deer08_muncrief.pdf More Documents & Publications Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives University of Houston and City of Houston: Collaboration to Determine Best Solutions for Diesel Emission Reductions Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions

  16. Series 50 propane-fueled Nova bus: Engine development, installation, and field trials

    SciTech Connect (OSTI)

    Smith, B.

    1999-01-01

    The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

  17. Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about NOx control ...

  18. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  19. Dual fueling of a Caterpillar 3406 diesel engine

    SciTech Connect (OSTI)

    Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E.

    1996-05-01

    A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

  20. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  1. Systems engineering approach towards performance monitoring of emergency diesel generator

    SciTech Connect (OSTI)

    Ramli, Nurhayati Yong-kwan, Lee

    2014-02-12

    Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort.

  2. Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine

    Energy Savers [EERE]

    Combustion Research | Department of Energy Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine Combustion Research Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine Combustion Research 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_07_oefelein.pdf More Documents & Publications Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine

  3. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 05 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_troy.pdf More Documents & Publications An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency

  4. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace PDF icon deer12_ruth.pdf More Documents & Publications Advanced Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine

  5. Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pm_06_kass.pdf More Documents & Publications Materials-Enabled High-Efficiency Diesel Engines Materials-Enabled High-Efficiency Diesel Engines Durability of ACERT Engine Components

  6. EXPLORING LOW EMISSION DIESEL ENGINE OILS WORKSHOP - A SUMMARY REPORT

    SciTech Connect (OSTI)

    Perez, Joseph

    2000-08-20

    This paper discusses and summarizes some of the results of the title workshop. The workshop was held January 31-February 2, 2000 in Phoenix, Arizona. The purpose of the workshop was ''To craft a shared vision for Industry-Government (DOE) research and development collaboration in Diesel Engine Oils to minimize emissions while maintaining or enhancing engine performance''. The final report of the workshop (NREL/SR-570-28521) was issued in June 2000 by the National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393. There were some 95 participants at the workshop representing industry, government and academia, Figure 1. The format for the workshop is described in Figure 2. This format allowed for considerable discussion of the various issues prior to deliberations in breakout groups. This process resulted in recommendations to solve the issues related to the next generation of diesel engine oils. Keynote addresses by SAE President Rodica Baranescu (International Truck and Engine Corporation), James Eberhardt of DOE and Paul Machiele of EPA focused on diesel progress, workshop issues and regulatory fuel issues. A panel of experts further defined the issues of interest, presenting snapshots of the current status in their areas of expertise. A Q&A session was followed by a series of technical presentations discussing the various areas. Some two dozen presentations covered the technical issues, Figure 3. An open forum was held to allow any participant to present related studies or comment on any of the technical issues. The participants broke into work groups addressing the various areas found on Figure 2. A group leader was appointed and reported on their findings, recommendations, suggested participants for projects and on related items.

  7. On the concept of separate aftercooling for locomotive diesel engines

    SciTech Connect (OSTI)

    Uzkan, T.; Lenz, M.A.

    1999-04-01

    This paper describes a patented cooling system concept for a turbocharged diesel engine. In particular, it defines a cooling system having the capability of transferring some of the cooling capacity of transferring some of the cooling capacity of engine jacket and engine oil cooling to cool the cylinder inlet air when more than the cooling capacity built into the system through the size of the radiators and fans is needed. This increased aftercooling will improve the engine performance and reduce emission levels. The cooling capacity of a locomotive is essentially determined by the radiator and fan size, among other factors, and is designed to cool the engine within acceptable metal temperatures at a specified maximum ambient temperature and at the maximum engine power. On the other hand, at lower ambient temperatures or engine power levels, the cooling needs of the engine will be less than this maximum cooling capacity of the cooling system. There remains some excess capacity. This paper describes the concept called the ``Separate Aftercooling System`` that uses some of this excess cooling capacity to cool the engine inlet air at the aftercoolers. It shows the feasibility of such a system, describes the order of magnitude of benefits that can be expected from such a system, and outlines the implementation of this concept to EMD built locomotives.

  8. Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Large Eddy Simulation (LES) Applied to LTCDiesel...

  9. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will ... Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins Next ...

  10. Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace007oefelein2010o.pdf More Documents & Publications Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Large Eddy Simulation (LES)...

  11. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace PDF icon deer11_ruth.pdf More Documents & Publications Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine

  12. Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency November 22, 2013 - 5:37pm Addthis As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of U.S. Army As part of the 21st Century Truck Partnership, the Army will demonstrate technology that

  13. Development of wear-resistant ceramic coatings for diesel engine components. Volume 1, Coating development and tribological testing: Final report: DOE/ORNL Ceramic Technology Project

    SciTech Connect (OSTI)

    Naylor, M.G.S.

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ``ring`` samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased ``soot sensitivity`` is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  14. Biodiesel Impact on Engine Lubricant Oil Dilution

    Broader source: Energy.gov [DOE]

    Heavy-duty engine and light-duty vehicle experiments were conducted to investigate the potential for lubricant dilution by fuel during DPF regeneration events.

  15. Future Breathing System Requirements for Clean Diesel Engines | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_czarnowski.pdf More Documents & Publications Can Future Emissions Limits be Met with a Hybrid EGR System Alone? Control Strategy for a Dual Loop EGR System to Meet Euro 6 and Beyond Strategies for In-Cylinder

  16. Effect of Engine-Out NOx Control Strategies on PM Size Distribution in

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Diesel Engines Developed for 2010 | Department of Energy A distinct relationship was found between engine-out and SCR-out PM distributions for single-mode testing. PDF icon deer08_ardanese.pdf More Documents & Publications Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations Advanced HD Engine Systems and Emissions Control Modeling and Analysis Can We Accurately Measure In-Use Emissions

  17. Simultaneously Low-Engine-Out NOx and PM with Highly Diluted Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Combustuion | Department of Energy 2002 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2002_deer_wagner.pdf More Documents & Publications Exploring Advanced Combustion Regimes for Efficiency and Emissions Achieving High-Effiency Clean Ccombustion in Diesel Engines Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S. Market

  18. Influence of diesel engine combustion on the rupture strength of partially stabilized zirconia

    SciTech Connect (OSTI)

    Brinkman, C.R.; VonCook, K.; Foster, B.E.; Graves, R.L.; Kahl, W.K.; Liu, K.C.; Simpson, W.A. )

    1989-08-01

    This article is on a study conducted to determine whether long-term exposure of two types of partially stabilized zirconia (PSZ) to the combustion environment of diesel engines would generate a change in mechanical properties. The author explains why PSZ was chosen for the study and goes on to discuss some reservations about the use of PSZ in diesel engines.

  19. Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits

    Broader source: Energy.gov [DOE]

    Drastic reduction of engine-out emissions and complicated aftertreatment system comprising of oxidation catalyst, particulate filter, and DeNOx catalyst are implemented to meet Tier 2 Bin 5 limits for U.S. market diesel engines.

  20. Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling

    SciTech Connect (OSTI)

    Detroit Diesel Corporation; Trucking Research Institute

    1998-12-03

    In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

  1. APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Renewable Energy Laboratory PDF icon 2004_deer_whitacre.pdf More Documents & Publications APBF-DEC Light-duty NOx Adsorber/DPF Project Status of APBF-DEC NOx Adsorber/DPF Projects APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform

  2. Taguchi methods applied to oxygen-enriched diesel engine experiments

    SciTech Connect (OSTI)

    Marr, W.W.; Sekar, R.R.; Cole, R.L.; Marciniak, T.J.; Longman, D.E.

    1992-12-01

    This paper describes a test series conducted on a six-cylinder diesel engine to study the impacts of controlled factors (i.e., oxygen content of the combustion air, water content of the fuel, fuel rate, and fuel-injection timing) on engine emissions using Taguchi methods. Three levels of each factor were used in the tests. Only the main effects of the factors were examined; no attempt was made to analyze the interactions among the factors. It was found that, as in the case of the single-cylinder engine tests, oxygen in the combustion air was very effective in reducing particulate and smoke emissions. Increases in NO{sub x} due to the oxygen enrichment observed in the single-cylinder tests also occurred in the present six-cylinder tests. Water in the emulsified fuel was found to be much less effective in decreasing NO{sub x} emissions for the six-cylinder engine than it was for the single-cylinder engine.

  3. Taguchi methods applied to oxygen-enriched diesel engine experiments

    SciTech Connect (OSTI)

    Marr, W.W.; Sekar, R.R.; Cole, R.L.; Marciniak, T.J. ); Longman, D.E. )

    1992-01-01

    This paper describes a test series conducted on a six-cylinder diesel engine to study the impacts of controlled factors (i.e., oxygen content of the combustion air, water content of the fuel, fuel rate, and fuel-injection timing) on engine emissions using Taguchi methods. Three levels of each factor were used in the tests. Only the main effects of the factors were examined; no attempt was made to analyze the interactions among the factors. It was found that, as in the case of the single-cylinder engine tests, oxygen in the combustion air was very effective in reducing particulate and smoke emissions. Increases in NO[sub x] due to the oxygen enrichment observed in the single-cylinder tests also occurred in the present six-cylinder tests. Water in the emulsified fuel was found to be much less effective in decreasing NO[sub x] emissions for the six-cylinder engine than it was for the single-cylinder engine.

  4. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications The PUREM SCR System with AdBlue State-of-the-Art and Emergin Truck Engine Technologies Ensuring the Availability and Reliability of Urea Dosing For ...

  5. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 2 Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 3 Table of Contents About the Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  6. Diesel Health Impacts & Recent Comparisons to Other Fuels | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Natural Resources Defense Council PDF icon 2002_deer_bailey.pdf More Documents & Publications Summary of Swedish Experiences on CNG and "Clean" Diesel Buses CNG and Diesel Transite Bus Emissions in Review ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit Buses

  7. Active Diesel Emission Control Systems

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conferencen Presentation: RYPOS Active Diesel Emission Control Systems

  8. Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.

    SciTech Connect (OSTI)

    Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

    2003-01-01

    The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  9. High Engine Efficiency at 2010 Emissions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Achieving High Efficiency at 2010 Emissions Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Technology Development for High ...

  10. Effect of Jatropha based Biodiesel, on Engine Hardware Reliability...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Performance of Biofuels and Biofuel Blends Development of High Performance Heavy Duty Engine Oils Biodiesel Progress: ASTM Specifications and 2nd ...

  11. Natural Gas Engine Development: July 2003 -- July 2005

    SciTech Connect (OSTI)

    Lekar, T. C.; Martin, T. J.

    2006-11-01

    Discusses project to develop heavy-duty, 8.1L natural gas vehicle engines that would be certifiable below the 2004 federal emissions standards and commercially viable.

  12. Oxygen-Enriched Combustion for Military Diesel Engine Generators

    Broader source: Energy.gov [DOE]

    Substantial increases in brake power and considerably lower peak pressure can result from oxygen-enriched diesel combustion

  13. Diesel engine performance and emissions using different fuel/additive combinations

    SciTech Connect (OSTI)

    Sutton, D.L.; Rush, M.W.; Richards, P.

    1988-01-01

    It is probable that diesel fuel quality in Europe will fall as the need to blend conversion components into the diesel pool increases. In particular diesel ignition quality and stability could decrease and carbon residue and aromatic content increase. This paper discusses the effects of worsening fuel quality on combustion, injection characteristics and emissions and the efficacy of appropriate additives in overcoming these effects. Both direct injection and indirect injection engines were used in the investigations.

  14. PCR+ In Diesel Fuels and Emissions Research

    SciTech Connect (OSTI)

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  15. Application Experience with a Combined SCR and DPF Technology for Heavy Duty Diesel Retrofit

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  16. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The

    Broader source: Energy.gov (indexed) [DOE]

    (IDIQ Attachment J-8) | Department of Energy Document outlines measurement and verification planning and savings calculation methods for an energy savings performance contract. Microsoft Office document icon Download the M&V Plan and Savings Calculations Methods Outline. More Documents & Publications Post-Installation Report Outline (IDIQ Attachment J-9) Annual Report Outline (IDIQ Attachment J-10) ESPC ENABLE Measurement and Verification Protocol Advanced Lighting Controls |

  17. Development of Urea Dosing System for 10 Liter Heavy Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Urea-SCR System Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials

  18. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis PI: Jeff Gonder (NREL) Team: Laurie Ramroth and Aaron Brooker May 15, 2012 Project ID #: VSS043 This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Overview Project Start Date: Oct 2009 Project End Date: Oct 2012 Percent Complete: 70% * Risk aversion * Cost * Computational models, design and simulation methodologies Total Project Funding: $740k DOE: $700k over multiple years

  19. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  20. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    SciTech Connect (OSTI)

    Yang, Li-Ping Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen; Litak, Grzegorz

    2015-01-15

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  1. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    SciTech Connect (OSTI)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  2. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD

    Broader source: Energy.gov (indexed) [DOE]

    Presents additional resources on loan standards and requirements from Elise Avers' presentation on HEAT Loan Minimum Standards and Requirements. PDF icon Minimum Standards and Requirements More Documents & Publications Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners STEP Financial Incentives Summary Energy Saver 101: Home Heating DRIVING IN LABORATORY CONDITIONS | Department of Energy

    5 Diesel Engine Emissions

  3. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  4. Diesel Engine CO2 and SOx Emission Compliance Strategy for the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2 and SOx Emission Compliance Strategy for the Royal Navy (RN) and Royal Fleet Auxiliary (RFA) Flotillas Diesel Engine CO2 and SOx Emission Compliance Strategy for the Royal Navy ...

  5. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. The effect of fumigation of different ethalnol proofs on a turbocharged diesel engine

    SciTech Connect (OSTI)

    Hayes, T.K.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    Lower proof ethanol is shown to be a viable alternate fuel for diesel engines. This type of ethanol can be manufactured economically in small distillation plants from renewable grain supplies. The effect of fumigation of ethanol proofs with a multipoint injection system on a turbocharged direct injection diesel engine at 2,400 rpm and three loads was studied. The addition of the water in the lower proofs reduced the maximum rate of pressure rise and peak pressure from pure ethanol levels. Both of these values were significantly higher than those for diesel operation. HC and CO emissions increased several times over diesel levels at all loads and also with increased ethanol fumigation. NO emissions were reduced below diesel levels for lower proof ethanol at all loads. The tests at this rpm and load with a a multipoint ethanol injection system indicate that lower (100 or 125) proof provides optimum performance.

  7. Diesel Engine CO2 and SOx Emission Compliance Strategy for the Royal Navy

    Broader source: Energy.gov (indexed) [DOE]

    (RN) and Royal Fleet Auxiliary (RFA) Flotillas | Department of Energy Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_olivier.pdf More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 1 Cleaning Up Diesel Engines Vessel

  8. The use of neural nets for matching compressors with diesel engines

    SciTech Connect (OSTI)

    Nelson, S.A. II; Filipi, Z.S.; Assanis, D.N.

    1996-12-31

    A technique which uses trained neural nets to model the compressor in the context of a turbocharged diesel engine simulation is introduced. This technique replaces the usual interpolation of compressor maps with the evaluation of a smooth mathematical function, thus providing engine simulations with greater robustness and flexibility. Following presentation of the methodology, the proposed neural net technique is validated against data from a truck type, 6-cylinder, 14 liter diesel engine. Furthermore, with the introduction of an additional parameter, the proposed neural net can be trained to simulate an entire family of compressors. As a demonstration, five compressors of different sizes are represented with the neural net model, and used for matching calculations with intercooled and non-intercooled engine configurations at different speeds. This novel approach readily allows for evaluation of various options prior to prototype production, and is thus a powerful design tool for selection of the best compressor for a given diesel engine system.

  9. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    SciTech Connect (OSTI)

    Wahiduzzaman, S.; Morel, T.

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  10. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    SciTech Connect (OSTI)

    Wahiduzzaman, S.; Morel, T. )

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  11. Clean Diesel Engine Component Improvement Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon 2005_deer_may.pdf More Documents & Publications Noxtechs PAC System Development and Demonstration Plasma Assisted Catalysis System for NOx Reduction Unique Catalyst System for NOx Reduction in Diesel Exhaust

  12. Diesel Engine Emission Reduction (DEER) Experiment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_lawson.pdf More Documents & Publications Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) Emissions and Durability of Underground Mining Diesel Particulate Filter Applications

  13. Potentiality of small DI diesel engines under consideration of emissions and noise control

    SciTech Connect (OSTI)

    Sugihara, K.; Matusi, Y.; Saegusa, S.

    1985-01-01

    The potentiality of direct injection (DI) diesel engines for passenger cars has been examined by comparing the characteristics of fuel consumption, exhaust emissions and noise levels between a turbocharged DI diesel engine and a turbocharged IDI diesel engine with the same displacement, 4 cylinders and 2 liters. It was observed that improved fuel consumption was obtained as the engine load increased, namely, 10 - 15% in the higher load range and 5 - 10% in the partial load range. In comparison to the IDI engine, the exhaust emissions of the DI engine tended to contain two or three times higher NOx and HC, and also about 30% higher particulates. Further, the noise levels of the DI engine were approximately 2 - 4 db (a) higher than those of the IDI engine. It was suggested from these results that in those countries which have stringent emission and noise regulations several years would be required to introduce small, high speed DI diesel engines for passenger cars to meet with these regulations.

  14. Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation

    Broader source: Energy.gov [DOE]

    A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine.

  15. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect (OSTI)

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  16. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect (OSTI)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  17. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    SciTech Connect (OSTI)

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  18. Predominant induction of kinetochore-containing micronuclei by extracts of diesel exhaust particulates in cultured human lymphocytes

    SciTech Connect (OSTI)

    Odagiri, Youichi; Uchida, Hiroyuki; Kawamura, Ken; Adachi, Shuichi; Takemoto, Kazuo ); Jian-Xin Zhang )

    1994-01-01

    The aneuploidy-inducing activity of extracts of diesel exhaust particulates from light duty (LD) and heavy duty (HD) engines was investigated in cultured peripheral blood lymphocytes of 8 healthy donors using the cytokinesis-block micronucleus test with the kinetochore labelling modification. A majority of the subjects tested showed a significant kinetochore-positive micronucleus induction after treatment with the highest dose (150 [mu]g/ml) of LD extract, although some subjects also showed induction of kinetochore-negative micronuclei. Only one subject had significantly increased numbers of kinetochore-positive micronuclei at a dose of 400 [mu]g/ml of HD extract. These results suggest that diesel extract, at least LD extract, possesses the ability to induce whole chromosome loss (aneuploidy) preferentially, although there are also chromosome breaks. 21 refs., 2 figs., 3 tabs.

  19. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  20. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.