Sample records for heavy oil viscosity

  1. Simple concept predicts viscosity of heavy oil and bitumen

    SciTech Connect (OSTI)

    Puttagunta, V.R.; Miadonye, A.; Singh, B. (Lakehead Univ., Thunder Bay, Ontario (Canada))

    1993-03-01T23:59:59.000Z

    For in situ recovery, a correlation has been developed for predicting the viscosity of bitumen and heavy oil. The correlation requires only a single viscosity measurement. The derived viscosities show an overall average absolute deviation of 4.4% from experimental data for 18 sets of Alberta heavy oil and bitumen containing 175 measurements. The paper describes the equations, their accuracy in determining viscosity, and an example from the Alberta deposits.

  2. Effects of petroleum distillate on viscosity, density and surface tension of intermediate and heavy crude oils

    E-Print Network [OSTI]

    Abdullayev, Azer

    2009-06-02T23:59:59.000Z

    Experimental and analytical studies have been carried out to better understand the effects of additives on viscosity, density and surface tension of intermediate and heavy crude oils. The studies have been conducted for the following oil samples...

  3. Analysis of techniques for predicting viscosity of heavy oil and tar sand bitumen

    SciTech Connect (OSTI)

    Khataniar, S.; Patil, S.L.; Kamath, V.A. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-12-31T23:59:59.000Z

    Thermal recovery methods are generally employed for recovering heavy oil and tar sand bitumen. These methods rely on reduction of oil viscosity by application of heat as one of the primary mechanisms of oil recovery. Therefore, design and performance prediction of the thermal recovery methods require adequate prediction of oil viscosity as a function of temperature. In this paper, several commonly used temperature-viscosity correlations are analyzed to evaluate their ability to correctly predict heavy oil and bitumen viscosity as a function of temperature. The analysis showed that Ali and Standing`s correlations gave satisfactory results in most cases when properly applied. Guidelines are provided for their application. None of the correlations, however, performed satisfactorily with very heavy oils at low temperatures.

  4. Relation between viscosity and stability for heavy oil emulsions

    E-Print Network [OSTI]

    Ye, Sherry Qianwen

    1998-01-01T23:59:59.000Z

    The relation between viscosity and stability has been hics. found by investigating the effect of surfactant concentration on emulsion stability. Based on the Bingham plastic model for viscosity as a function of shear rate, two parameters were found...

  5. Adequate description of heavy oil viscosities and a method to assess optimal steam cyclic periods for thermal reservoir simulation

    E-Print Network [OSTI]

    Mago, Alonso Luis

    2006-08-16T23:59:59.000Z

    exceeding 2.5 trillion barrels. Management decisions and production strategies from thermal oil recovery processes are frequently based on reservoir simulation. A proper description of the physical properties, particularly oil viscosity, is essential...

  6. Fe{sub 3}O{sub 4}/Zeolite nanocomposites synthesized by microwave assisted coprecipitation and its performance in reducing viscosity of heavy oil

    SciTech Connect (OSTI)

    Iskandar, Ferry, E-mail: ferry@fi.itb.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung, 40132 (Indonesia); Fitriani, Pipit; Merissa, Shanty; Khairurrijal,; Abdullah, Mikrajuddin [Physics of Electronic Materials Research Division, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia); Mukti, Rino R. [Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)

    2014-02-24T23:59:59.000Z

    Fe{sub 3}O{sub 4}/Zeolite nanocomposites have been synthesized via microwave assisted coprecipitation method and show to be efficient in reducing viscosity of heavy oil compared to other Fe{sub 3}O{sub 4}/Zeolite nanocomposites prepared by conventional method. The following precursors such as FeCl{sub 3}?6H{sub 2}O, FeSO{sub 4}?7H{sub 2}O, NH{sub 4}OH, and natural zeolite of heulandite type were used in the sample preparation. In this study, the effect of Fe{sub 3}O{sub 4} composition in the composite and microwave time heating were investigated. Fe{sub 3}O{sub 4}/Zeolite nanocomposites were then characterized to study the influence on crystal structures, morphology and physicochemical properties. The characterization techniques include X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen physisorption. The results show that by increasing the microwave heating time, the degree of nanocomposite intergrowth can be enhanced. The nanocomposite was tested in catalytic aquathermolysis of heavy oil at 200°C for 6 h and the Fe{sub 3}O{sub 4}/zeolite of 1 to 4 ratios performed the highest viscosity reduction of heavy oil reaching 92%.

  7. Bioconversion of Heavy oil.

    E-Print Network [OSTI]

    Steinbakk, Sandra

    2011-01-01T23:59:59.000Z

    ??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to… (more)

  8. The stimulation of heavy oil reservoirs with electrical resistance heating

    E-Print Network [OSTI]

    Baylor, Blake Allen

    1990-01-01T23:59:59.000Z

    . Equations for r? and P, were written using regression analysis. The calculation procedure is as follows: (1) calculate r?, (2) calculate the skin factor, s??, (3) calculate the heated oil production rate, q, ?, and (4) calculate the downhole power... of various heavy oils at 113 'F Fig. 23 ? Effect of CH, on the viscosity of various heavy oils at 171 'F Fig. 24 - Viscosity/pressure relationship for the recombined field sample Fig. 25 ? Smoothed viscosity/pressure relationship for the recombined...

  9. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28T23:59:59.000Z

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  10. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20T23:59:59.000Z

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  11. Definition of heavy oil and natural bitumen

    SciTech Connect (OSTI)

    Meyer, R.F.

    1988-08-01T23:59:59.000Z

    Definition and categorization of heavy oils and natural bitumens are generally based on physical or chemical attributes or on methods of extraction. Ultimately, the hydrocarbon's chemical composition will govern both its physical state and the extraction technique applicable. These oils and bitumens closely resemble the residuum from wholecrude distillation to about 1,000/degree/F; if the residuum constitutes at least 15% of the crude, it is considered to be heavy. In this material is concentrated most of the trace elements, such as sulfur, oxygen, and nitrogen, and metals, such as nickel and vanadium. A widely used definition separates heavy oil from natural bitumen by viscosity, crude oil being less, and bitumen more viscous than 10,000 cp. Heavy crude then falls in the range 10/degree/-20/degree/ API inclusive and extra-heavy oil less than 10/degree/ API. Most natural bitumen is natural asphalt (tar sands, oil sands) and has been defined as rock containing hydrocarbons more viscous than 10,000 cp or else hydrocarbons that may be extracted from mined or quarried rock. Other natural bitumens are solids, such as gilsonite, grahamite, and ozokerite, which are distinguished by streak, fusibility, and solubility. The upper limit for heavy oil may also be set at 18/degree/ API, the approximate limit for recovery by waterflood.

  12. Exploiting heavy oil reserves

    E-Print Network [OSTI]

    Levi, Ran

    North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen.hamptonassociates.com pRINTED BY nB GroUP Paper sourced from sustainable forests CONTENTS 3/5 does the north Sea still industry partnership drives research into sensor systems 11 Beneath the waves in 3d 12/13 does

  13. Experimental Study of In-Situ Upgrading for Heavy Oil Using Hydrogen Donors and Catalyst under Steam Injection Condition

    E-Print Network [OSTI]

    Zhang, Zhiyong

    2012-07-16T23:59:59.000Z

    ±1% compared with pre-upgrading mixture. It meant that hydrogen donors and catalyst had strong synergetic effects on heavy oil upgrading. We also found that 300 °C was an effective temperature for heavy oil upgrading with obvious viscosity reduction...

  14. Monitoring Seismic Attenuation Changes Using a 4D Relative Spectrum Method in Athabsca Heavy Oil Reservoir, Canada

    E-Print Network [OSTI]

    Shabelansky, Andrey Hanan

    2012-01-01T23:59:59.000Z

    Heating heavy oil reservoirs is a common method for reducing the high viscosity of heavy oil and thus increasing the recovery factor. Monitoring these changes in the reservoir is essential for delineating the heated region ...

  15. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01T23:59:59.000Z

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  16. A generalized viscosity equation for pure heavy hydrocarbons

    SciTech Connect (OSTI)

    Mehrotra, A.K. (Dept. of Chemical and Petroleum Engineering, Univ. of Calgary, Calgary, Alberta T2N 1N4 (CA))

    1991-02-01T23:59:59.000Z

    This paper presents a method for the correlation and prediction of the viscosity of pure heavy hydrocarbons listed in API Research Project 42. The 273 heavy hydrocarbons in the database include branched/unbranched paraffins and olefins together with a variety of complex nonfused/fused aromatic and naphthenic compounds. A generalized one-parameter viscosity-temperature equation, log ({mu} + 0.8) = 100(0.01T){sup b}, is proposed (overall AAD {lt} 7-10%) for all heavy hydrocarbons in the database. For each hydrocarbon, an optimum value of parameter b is provided. It is shown that parameter b varies linearly with the logarithm of molar mass as well as the inverse of boiling temperature (at 10 mmHg). This important observation leads to the development of a predictive method for the liquid-phase viscosity of pure heavy hydrocarbons.

  17. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect (OSTI)

    Munroe, Norman

    2009-01-30T23:59:59.000Z

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

  18. Compositional changes in heavy oil steamflood simulators

    E-Print Network [OSTI]

    Lolley, Christopher Scott

    1995-01-01T23:59:59.000Z

    including distillation, vapor pressure, steam distillation and viscosity measurements, along with a commercial PVT simulator are used to tune equation-of-state (EOS) and viscosity parameters to properly model the PVT properties of the oil. The Peng...

  19. Bitumen and heavy-oil resources of the United States

    SciTech Connect (OSTI)

    Crysdale, B.L.; Schenk, C.J.

    1987-05-01T23:59:59.000Z

    Bitumen and heavy-oil deposits represent a significant hydrocarbon resource in the US. Bitumen deposits (10/sup 0/ API) are located in sandstone reservoirs at or near the surface along the margins of sedimentary basins. Heavy oils (10/sup 0/-20/sup 0/ API) are found predominantly in geologically young (Tertiary age and younger) shallow sandstone reservoirs and along the margins of sedimentary basins. Bitumen and heavy oil have high viscosities (10,000 cp for bitumen, 100-10,000 cp for heavy oil) and cannot be recovered by conventional recovery methods. Bitumen deposits have been evaluated in 17 states. The total bitumen resource for the conterminous US is estimated to be 57 billion bbl. Utah contains the largest resource, estimated to be 29 billion bbl, followed by California with 9 billion bbl, Alabama with 6 billion, Texas with 5 billion, and Kentucky with 3 billion. Heavy-oil deposits have been evaluated in 16 states, but most heavy oil is in California, Texas, and Arkansas. Total heavy oil in place for the conterminous US is estimated to be approximately 45 billion bbl; greater than 80% of this amount is in California. The giant Kuparuk deposit on the North Slope of Alaska contains a heavy oil-bitumen resource estimated as high as 40 billion bbl.

  20. Enhanced Heavy Oil Recovery by Emulsification With Injected Nanoparticles

    E-Print Network [OSTI]

    Martinez Cedillo, Arturo Rey

    2013-11-26T23:59:59.000Z

    emulsifying the immobile heavy oil, and transports it out of the reservoir as a low viscosity fluid. Generating the emulsions in the reservoir was suggested because it offers numerous advantages. The first advantage is low injectivity pressures due to the low...

  1. Process for removing heavy metal compounds from heavy crude oil

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

    1991-01-01T23:59:59.000Z

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  2. From Stopping to Viscosity in Heavy Ion Collisions

    SciTech Connect (OSTI)

    Barker, Brent W.; Danielewicz, Pawel [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-04-26T23:59:59.000Z

    Stopping in heavy ion collisions is investigated with the aim of learning about the shear viscosity of nuclear matter. Boltzmann equation simulations are compared to available data on stopping in the energy range of 20-117 MeV/nucleon. Stopping observables used include momentum anisotropy and linear momentum transfer. The data show that modeling the transport with free nucleon-nucleon cross-sections is inaccurate and reduced cross-sections are required. Reduction of the cross-sections produces an increase in the shear viscosity of nuclear matter, compared to calculations based on free cross-sections.

  3. Rheological behavior of heavy oil and water mixtures at high pressures and high temperatures

    E-Print Network [OSTI]

    Setiadarma, Agustinus

    2002-01-01T23:59:59.000Z

    were compared to the existing correlations. This effort showed that all correlations' constants have to be tuned to match the experimental results. Our further analysis examined how to apply mixing rules in predicting viscosity of heavy oil and its...

  4. Evaluation of electromagnetic stimulation of Texas heavy oil reservoirs

    E-Print Network [OSTI]

    Doublet, Louis Edward

    1988-01-01T23:59:59.000Z

    - Iil Z LLI ) I- O LI III ) D- Z 00 + 0 CI z 0 I- U CI 0 K 0. CI D VERTICAL HEAT LOSS tt44 OVERBURDEN FLUID FLOW CONVECTION CONDUCTION P= Pe T=Te VERTICAL HEAT LOSS ~ ELECTROMAGNETIC WAVE Fig. 2 ? Schematic View of EMH Process 12... The ProPerties that affected the heated oil production rate the most were initial oil viscosity, formation ~ility, drainage radius, p~e drop, and ~ture. The heated oil prcduction rate estimation equation was applied to 80 Texas heavy oil ~irs to de...

  5. An extension of Pedersen's viscosity model for saturated black oil systems

    E-Print Network [OSTI]

    Adejuwon, Adeyemi

    2000-01-01T23:59:59.000Z

    This thesis presents a modification of Pedersen's corresponding states compositional viscosity model for black oil systems when no compositional data are available. This new model provides better estimates for oil viscosity than previously existing...

  6. Heavy oil production from Alaska

    SciTech Connect (OSTI)

    Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31T23:59:59.000Z

    North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

  7. Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation

    E-Print Network [OSTI]

    Yang, Daegil

    2011-02-22T23:59:59.000Z

    -heavy oil, and oil shale. Tremendous amounts of heavy oil resources are available in the world. Fig. 1.1 shows the total world oil reserves, and indicates that heavy oil, extra heavy oil, and bitumen make up about 70% of the world?s total oil resources...

  8. Simulation of heavy oil reservoir performance using a non-Newtonian flow model

    E-Print Network [OSTI]

    Narahara, Gene Masao

    1983-01-01T23:59:59.000Z

    . This reduction of viscosity as a function of shear rate has a significant effect on rates and other parameters when simulating reservoir performance. The objective of this study is to compare the simulation results of Newtonian and non-Newtonian oils under...)ected to increasing shear rate, the viscosity decreases. This behavior implies that the oil viscosity varies as a function of not only pressure, but also shear rate. This behavior is important when simulating heavy-oil reservoir performance. To simulate the flow...

  9. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  10. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  11. Heavy Oil Consumption Reduction Program (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    This program helps heavy oil consumers move toward sustainable development while improving their competitive position by reducing their consumption. Financial assistance is offered to carry out...

  12. Simulation studies of steam-propane injection for the Hamaca heavy oil field

    E-Print Network [OSTI]

    Venturini, Gilberto Jose

    2002-01-01T23:59:59.000Z

    Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and a viscosity of 25,000 cp at 50?C. Two types of simulation studies were performed: a...

  13. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31T23:59:59.000Z

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work should focus on lab and field-scale testing of ex situ MEOR using Bacillus licheniformis as well as the biosurfactant-producing strains we have newly isolated from the Milne Point reservoir and the EVOS environment.

  14. An optimal viscosity profile in enhanced oil recovery by polymer flooding

    E-Print Network [OSTI]

    Daripa, Prabir

    An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa a,*, G in oil reservoir is one of the effective methods of enhanced (tertiary) oil recovery. A classical model reserved. Keywords: Enhanced oil recovery; Polymer flooding; Linear stability 0020-7225/$ - see front

  15. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  16. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  17. Displacement of oil from reservoir rock using graded-viscosity water

    E-Print Network [OSTI]

    Al-Atigi, Yosef A

    1974-01-01T23:59:59.000Z

    of reservoir conditions. The objective of this paper was to investigate, in the dis- placement processes the effect on oil recovery of 1) A graded- viscosity bank as compared to that of a constant-viscosity bank. The two banks used had the same mass...- cosity. He compared his results with a constant-viscosity slug, having the same mass of polymer and found increased oil recov- eries from the graded-viscosity slug, in the displacement process. His concentration of polymer, however, were too high...

  18. Relationship of Viscosity, Surface Tensions, and Coefficient of Friction of Lubricating Oils

    E-Print Network [OSTI]

    Carson, Earl

    1914-01-01T23:59:59.000Z

    oils, is easily accounted for. Ilineral lubricating oils are not affected by high pressure steam or alkalies and these character- istics enable them to be used where other lubricants would be quite unfitted for the work. Animal Oils:-- These oils...RELATI01ISHII OF VISCOSITY, SUHFACE TEUSIOUS, A3D COEFFICIENT O? FlilCTIOB 0? LUBRICATING OILS. A Thesis Submitted to the Faculty of the Graduate School, University of Kansas, Lawrence. For The Degree of Master of Science ilechanioal...

  19. An experimental investigation into the dimension-sensitive viscosity of polymer containing lubricant oils in microchannels

    E-Print Network [OSTI]

    Erickson, David

    lubricant oils in microchannels David Erickson a , Fuzhi Lu a , Dongqing Li a,*, Tony White b , Jason Gao b lubrication processes, lubricating oils containing polymer additives are subject to high shear rate through of channel height on the effective viscosity of oil lubricants with two different polymer additives (a radial

  20. An optimal viscosity profile in enhanced oil recovery by polymer Prabir Daripa1,

    E-Print Network [OSTI]

    Daripa, Prabir

    An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa1, and G. Pa is one of the effective methods of enhanced (tertiary) oil recovery. A classical model of this process channeling of flow through high permeable region in the heterogeneous case. Key words: enhanced oil recovery

  1. Natural Gas Hydrate Particles in Oil-Free Systems with Kinetic Inhibition and Slurry Viscosity Reduction

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Natural Gas Hydrate Particles in Oil-Free Systems with Kinetic Inhibition and Slurry Viscosity, reduction of slurry viscosity, and corrosion inhibition. INTRODUCTION Water often forms gas hydrates antiagglomeration (AA) in the natural gas hydrate literature. The main limitation to application has been the need

  2. The effective approach for predicting viscosity of saturated and undersaturated reservoir oil

    E-Print Network [OSTI]

    Kulchanyavivat, Sawin

    2006-04-12T23:59:59.000Z

    Predicting reservoir oil viscosity with numerical correlation equations using field-measured variables is widely used in the petroleum industry. Most published correlation equations, however, have never profoundly realized the genuine relationship...

  3. Thermal processes for heavy oil recovery

    SciTech Connect (OSTI)

    Sarkar, A.K.; Sarathi, P.S.

    1993-11-01T23:59:59.000Z

    This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

  4. Viscosity of plant oils as a function of temperature, fatty acid chain length, and unsaturation

    E-Print Network [OSTI]

    Neo, Tong Heng

    1988-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE December 1988 Major Subject: Agricultural Engineering VISCOSITY OF PLANT OILS AS A FUNCTION OF TEMPERATURE, FATTY ACID CHAIN LENGTH, AND UNSATURATION A Thesis by TONG HENG NEO Approved as to style and content by...: Vincent E. Sweat (Chairman of Committee) Ron L. Richter (Member) R. Engler (Member) Edward A. Hiler (Head of the Department) December 1988 ABSTRACT Viscosity of Plant Oils as a Function of Temperature, Fatty Acid Chain Length, and Unsaturation...

  5. Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs

    SciTech Connect (OSTI)

    Louis M. Castanier; William E. Brigham

    1998-03-31T23:59:59.000Z

    The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.

  6. Development of neural network models for the prediction of dewpoint pressure of retrograde gases and saturated oil viscosity of black oil systems

    E-Print Network [OSTI]

    Gonzalez Zambrano, Alfredo Antonio

    2002-01-01T23:59:59.000Z

    Accurate prediction of gas condensate and crude oil fluid properties are critical elements in reservoir-engineering calculations. Dewpoint pressure of gas condensate reservoirs and oil viscosity of black oil systems are some of the important...

  7. Research on oil recovery mechanisms in heavy oil reservoirs

    SciTech Connect (OSTI)

    Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

    2000-03-16T23:59:59.000Z

    The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

  8. Experimental investigation of caustic steam injection for heavy oils

    E-Print Network [OSTI]

    Madhavan, Rajiv

    2010-01-16T23:59:59.000Z

    CHAPTER I INTRODUCTION 1.1 Overview Heavy oil is a part of the unconventional petroleum reserve. Heavy oil does not flow very easily and is classified as heavy because of its high specific gravity. With increasing demand for oil and with depleting... and success of the sodium carbonate and sodium silicate floods respectively. (5) Attainment of very low interfacial tension does not ensure improved oil recovery but a minimum value is necessary for a successful steam alkaline flood. Tiab, Okoye...

  9. State of heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B. [BDM-Oklahoma, Inc., Bartlesville, OK (United States)

    1995-12-31T23:59:59.000Z

    California is unique in the United States because it has the largest heavy oil (10{degrees} to 20{degrees}API gravity) resource, estimated to be in excess of 40 billion barrels. Of the current 941,543 barrels/day of oil produced in California (14% of the U.S. total), 70% or 625,312 barrels/day is heavy oil. Heavy oil constituted only 20% of California`s oil production in the early 1940s, but development of thermal oil production technology in the 1960s allowed the heavy industry to grow and prosper to the point where by the mid-1980s, heavy oil constituted 70% of the state`s oil production. Similar to the rest of the United States, light oil production in the Los Angeles Basin, Coastal Region, and San Joaquin Valley peaked and then declined at different times throughout the past 30 years. Unlike other states, California developed a heavy oil industry that replaced declining light oil production and increased the states total oil production, despite low heavy oil prices, stringent environmental regulations and long and costly delays in developing known oil resources. California`s deep conversion refineries process the nation`s highest sulfur, lowest API gravity crude to make the cleanest transportation fuels available. More efficient vehicles burning cleaner reformulated fuels have significantly reduced the level of ozone precursors (the main contributor to California`s air pollution) and have improved air quality over the last 20 years. In a state where major oil companies dominate, the infrastructure is highly dependent on the 60% of ANS production being refined in California, and California`s own oil production. When this oil is combined with the small volume of imported crude, a local surplus of marketed oil exists that inhibits exploitation of California`s heavy oil resources. As ANS production declines, or if the export restrictions on ANS sales are lifted, a window of opportunity develops for increased heavy oil production.

  10. Mathematical and Statistical Investigation of Steamflooding in Naturally Fractured Carbonate Heavy Oil Reservoirs.

    E-Print Network [OSTI]

    Shafiei, Ali

    2013-01-01T23:59:59.000Z

    ??A significant amount of Viscous Oil (e.g., heavy oil, extra heavy oil, and bitumen) is trapped in Naturally Fractured Carbonate Reservoirs also known as NFCRs.… (more)

  11. Preparation and characterization of a viscosity index improver for naphthenic and paraffinic base oils

    SciTech Connect (OSTI)

    Bataille, P. (Ecole Polytechnique de Montreal (Canada)); Sharifi-Sangani, N.; Evin, E. (Univ. of Tehran (Iran, Islamic Republic of))

    1994-02-01T23:59:59.000Z

    Copolymers of [alpha]-methyl styrene and 2-ethylhexyl acrylate were prepared in a benzene solution. The presence of the copolymers were confirmed by solubility, IR and NMR tests. The molecular weight and the polydispersity of the polymers were estimated by GPC. The copolymers obtained were blended with paraffinic and naphthenic base oils. The viscosity, the viscosity index (VI), the Q value as well as the stability to shear and oxidation were obtained for these blends. The results are compared with the results obtained with an oil blend containing a commonly used high temperature additive. Two of the copolymers obtained have shown to be good alternatives for specific applications.

  12. Comprehensive study of a heavy fuel oil spill : modeling and analytical approaches to understanding environmental weathering

    E-Print Network [OSTI]

    Lemkau, Karin Lydia

    2012-01-01T23:59:59.000Z

    Driven by increasingly heavy oil reserves and more efficient refining technologies, use of heavy fuel oils for power generation is rising. Unlike other refined products and crude oils, a large portion of these heavy oils ...

  13. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30T23:59:59.000Z

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  14. Bitumen and heavy oil upgrading in Canada

    SciTech Connect (OSTI)

    Chrones, J.

    1988-06-01T23:59:59.000Z

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulfur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader, now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional products, also based on hydrogenation, will use ebullated bed catalyst systems: the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.

  15. Bitumen and heavy oil upgrading in Canada

    SciTech Connect (OSTI)

    Chrones, J. (Chrones Engineering Consultants Inc., 111 Lord Seaton Road, Willowdale, Ontario (CA)); Germain, R.R. (Alberta Oil Sands Technology and Research Authority, Edmonton, AB (Canada))

    1989-01-01T23:59:59.000Z

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulphur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional projects, also based on hydrogenation, will use ebullated bed catalyst systems; the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.

  16. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  17. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  18. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31T23:59:59.000Z

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

  19. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect (OSTI)

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30T23:59:59.000Z

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

  20. Co-processing of heavy oil

    SciTech Connect (OSTI)

    Khan, M.R. [Texaco Research and Development, Beacon, NY (United States)

    1995-12-31T23:59:59.000Z

    In co-processing of petroleum and coal, the petroleum fraction may serve as the {open_quotes}liquefaction solvent,{close_quotes} or hydrogen donor, and the aromatics present in the coal liquid may serve as hydrogen {open_quotes}shuttlers{close_quotes} by efficiently transferring hydrogen moieties to places where they are most deficient. The important advantages of co-processing include the following: (1) upgrading of heavy petroleum in a reaction with coal and (2) conversion of coal to synthetic crudes which could be further upgraded to a premium liquid fuel. Co-processing of coal with petroleum, heavy crudes, and residues through catalytic hydrogenation or solvent extraction have been extensively investigated. The studies were typically conducted in the temperature range of 450{degrees}-500{degrees}C under pressurized hydrogen; catalysts are generally also added for hydroconversion of the feedstocks. However, relatively little has been reported in the literature regarding co-processing of coal with heavy petroleum by simple pyrolysis. In this study, co-processing of heavy oil and coal at relatively middle conditions was conducted without the complicating influences of pressurized hydrogen or catalysts. The resulted demonstrate that there is a synergism during co-processing of petroleum and coal. This synergism enhances both the yield and quality of the liquid products. In general, liquids from co-processing the mixture contain a higher content of alkane/alkene, neutral aromatics, lower content of monophenols, and other oxygen containing compounds as compared to the liquids from coal alone. The liquid from the mixture also contains a higher content of naphthenic carbon and naphthenic rings/molecules than those from coal liquid. This suggests that the product from the mixture can be easily upgraded to a premium quality fuel.

  1. Canadian oil market review shows growing influence of heavy oil and bitumen

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    Canadian oil demand and consumption, crude oil received at refineries, oil well productivity including shut-in production, and exports and imports are discussed. Both light and heavy oil, natural gas, and bitumen are included in the seasonally-adjusted data presented.

  2. FY 80 heavy oil program. Second quarterly report, April 1980

    SciTech Connect (OSTI)

    Wayland, J.R.; Fox, R.L.

    1980-06-01T23:59:59.000Z

    The research and development efforts in support of the heavy oil program reservoir access and alternate extraction activities that were initiated last quarter have been continued and expanded. The development of a short course on the utilization of specialized drilling technology to heavy oil sands has been investigated. The steam quality sampler is undergoing laboratory testing. A special report on possible application of sand control methods to heavy oil steam injection tests has been prepared. The first stage of the analysis of R.F. and microwave heating has been completed. The results of a series of laboratory experiments on in situ hydrogenation are presented.

  3. Evaluation of solvent-based in situ processes for upgrading and recovery of heavy oil bitumen

    SciTech Connect (OSTI)

    Duerksen, J.H.; Eloyan, A. [Chevron Petroleum Technology Co., La Habra, CA (United States)

    1995-12-31T23:59:59.000Z

    Solvent-based in situ recovery processes have been proposed as lower cost alternatives to thermal processes for recovery of heavy oil and bitumen. Advantages of solvent based processes are: reduced steam requirements, reduced water treating, and in situ upgrading of the produced oil. Lab results and process calculations show that low-pressure, low-energy solvent-based in situ processes have considerable technical and economic potential for upgrading and recovery of bitumen and heavy oil. In a lab flow test using Athabasca tar sand and propane as solvent, 50 percent of the bitumen was recovered as upgraded oil. Relative to the raw bitumen, API gravity increased by about 10{degrees}API, viscosity was reduced 30-fold, sulfur content was reduced about 50 percent, and metals content was also substantially reduced. Process uncertainties that will have a major impact on economics are: (1) oil production rate, (2) oil recovery, (3) extent of in situ upgrading, and (4) solvent losses. Additional lab development and field testing are required to reduce these process uncertainties and to predict commercial-scale economics.

  4. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

    1994-01-01T23:59:59.000Z

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  5. 05663_AlaskaHeavyOil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12202012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North...

  6. Exploration for heavy crude oil and natural bitumen

    SciTech Connect (OSTI)

    Meyer, R.F. (U.S. Geological Survey (US))

    1987-01-01T23:59:59.000Z

    This book discusses heavy oil and tar sand reserves which are enormous. Focus in on regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery.

  7. Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127

    SciTech Connect (OSTI)

    Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.

    2001-09-07T23:59:59.000Z

    The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.

  8. Development Practices for Optimized MEOR in Shallow Heavy Oil Reservoirs

    SciTech Connect (OSTI)

    Shari Dunn-Norman

    2006-09-30T23:59:59.000Z

    The goal of this project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in southwest Missouri and southeast Kansas using a combination of microbial enhanced oil recovery (MEOR) and hydraulic fracturing of vertical wells.

  9. Exploration for heavy crude oil and natural bitumen

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Heavy oil and tar sand reserves are enormous, and this 700-page volume breaks the topic down into six emphasis areas of: regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery. An appendix presents a guidebook to Santa Maria, Cuyama, Taft-McKettrick, and Edna oil districts, Coast Ranges, California.

  10. Post Production Heavy Oil Operations: A Case for Partial Upgrading

    E-Print Network [OSTI]

    Lokhandwala, Taher

    2012-12-05T23:59:59.000Z

    The transportation of heavy oil is a pressing problem. Various methods have been devised to mitigate the reluctance to flow of these highly dense and viscous oils. This study is focused on evaluating a case for post-production partial upgrading...

  11. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01T23:59:59.000Z

    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  12. Canada's heavy oil, bitumen upgrading activity is growing

    SciTech Connect (OSTI)

    Corbett, R.A.

    1989-06-26T23:59:59.000Z

    Heavy oil and bitumen upgrading activity in Canada is surging with the recent start-up of two new upgraders and with plans to build others. These new upgraders make use of modern hydrocracking technology. Articles in this special report on upgrading focus on Canada's oil and bitumen reserves, the promising technologies that upgrade them, and present details of some of the current upgrader projects. This article covers the following areas: Canada's heavy oils; Upgrading expands; Upgrading technologies; Test results; Regional upgraders; High-quality light product.

  13. Evaluation of the economic feasability of heavy oil production processes for West Sak Field.

    E-Print Network [OSTI]

    Wilkey, Jonathan E.

    2012-01-01T23:59:59.000Z

    ??The West Sak heavy oil reservoir on the North Slope of Alaska represents a large potential domestic oil source which has not been fully developed… (more)

  14. Assessing the potential and limitations of heavy oil upgrading by electron beam irradiation

    E-Print Network [OSTI]

    Zhussupov, Daniyar

    2007-04-25T23:59:59.000Z

    Radiation technology can economically overcome principal problems of heavy oil processing arising from heavy oil�s unfavorable physical and chemical properties. This technology promises to increase considerably yields of valuable...

  15. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Broader source: Energy.gov (indexed) [DOE]

    Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference...

  16. Weathering and the Fallout Plume of Heavy Oil from Strong Petroleum

    E-Print Network [OSTI]

    Fabrikant, Sara Irina

    , transportation, and use of heavier oils (1). One concern stemming from increased offshore oil activityWeathering and the Fallout Plume of Heavy Oil from Strong Petroleum Seeps Near Coal Oil Point, CA C://pubs.acs.org/est. The Coal Oil Point (COP) seeps offshore Goleta, CA, are estimated to release 20-25 tons of oil daily

  17. System and method for preparing near-surface heavy oil for extraction using microbial degradation

    DOE Patents [OSTI]

    Busche, Frederick D. (Highland Village, TX); Rollins, John B. (Southlake, TX); Noyes, Harold J. (Golden, CO); Bush, James G. (West Richland, WA)

    2011-04-12T23:59:59.000Z

    A system and method for enhancing the recovery of heavy oil in an oil extraction environment by feeding nutrients to a preferred microbial species (bacteria and/or fungi). A method is described that includes the steps of: sampling and identifying microbial species that reside in the oil extraction environment; collecting fluid property data from the oil extraction environment; collecting nutrient data from the oil extraction environment; identifying a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the oil extraction environment.

  18. The effect of various mixers on the viscosity and flow properties of an oil well drilling fluid

    E-Print Network [OSTI]

    Spannagel, Johnny Allen

    1957-01-01T23:59:59.000Z

    of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January, 1957 MaJor SubJect. Petroleum Englneerlng THE EFFECT OF VARIOUS MIXERS ON THE VISCOSITY AND FLOW PROPERTIES QF AN OIL WELL DRILLING FLUID A Thesis... on the 300 rpm Farm V-G Meter Reading 15 The Effect of Various Mixers on the 600 rpm Farm V-G Meter Reading 15 The Effect of Various Mixers on the Plastic Viscosity of a Bentonite Mud 16 Temperature Variation of the Drilling Mud Mixed in Variou...

  19. The measurement of solubility and viscosity of oil/refrigerant mixtures; At high pressures and temperatures test facility and initial results for R-22/naphthenic oil mixtures

    SciTech Connect (OSTI)

    Van Gaalen, N.A.; Zoz, S.C.; Pate, M.B. (Dept. of Mechanical Engineering, Iowa State Univ., Ames, IA (US))

    1990-01-01T23:59:59.000Z

    The design and construction of a test facility for measuring the solubility and viscosity of lubricating oil/refrigerant mixtures at high pressures and temperatures are described. An auxiliary charging system, developed to provide precisely measured quantities of oil and refrigerant to the test facility, is also presented. Initial results for liquid mixtures of 10% to 40% R-22 (by mass) in a 150 SUS naphthenic oil are reported over the temperature range 70 {degrees} F (20{degrees}C) to 300 {degrees} F(150 {degrees}C). Good agreement with existing data from the open literature is obtained over the limited temperature range for which previously published data are available.

  20. Recovery of heavy crude oil or tar sand oil or bitumen from underground formations

    SciTech Connect (OSTI)

    McKay, A.S.

    1989-07-11T23:59:59.000Z

    This patent describes a method of producing heavy crude oil or tar sand oil or bitumen from an underground formation. The method consists of utilizing or establishing an aqueous fluid communication path within and through the formation between an injection well or conduit and a production well or conduit by introducing into the formation from the injection well or conduit hot water and/or low quality steam at a temperature in the range about 60{sup 0}-130{sup 0}C and at a substantially neutral or alkaline pH to establish or enlarge the aqueous fluid communication path within the formation from the injection well or conduit to the production well or conduit by movement of the introduced hot water or low quality steam through the formation, increasing the temperature of the injected hot water of low quality steam to a temperature in the range about 110{sup 0}-180{sup 0}C while increasing the pH of the injected hot water or low quality steam to a pH of about 10-13 so as to bring about the movement or migration or stripping of the heavy crude oil or tar sand oil or bitumen from the formation substantially into the hot aqueous fluid communication path with the formation and recovering the resulting produced heavy crude oil or tar sand oil or bitumen from the formation as an emulsion containing less than about 30% oil or bitumen from the production well or conduit.

  1. Bulk Viscosity driven clusterization of quark-gluon plasma and early freeze-out in relativistic heavy-ion collisions

    E-Print Network [OSTI]

    Giorgio Torrieri; Boris Tomasik; Igor Mishustin

    2008-02-26T23:59:59.000Z

    We introduce a new scenario for heavy ion collisions that could solve the lingering problems associated with the so-called HBT puzzle. We postulate that the system starts expansion as the perfect quark-gluon fluid but close to freeze-out it splits into clusters, due to a sharp rise of bulk viscosity in the vicinity of the hadronization transition. We then argue that the characteristic cluster size is determined by the viscosity coefficient and the expansion rate. Typically it is much smaller and independent of the total system volume. These clusters maintain the pre-existing outward-going flow, as a spray of droplets, but develop no flow of their own, and hadronize by evaporation. We provide an ansatz for converting the hydrodynamic output into clusters.

  2. Bulk Viscosity driven clusterization of quark-gluon plasma and early freeze-out in relativistic heavy-ion collisions

    E-Print Network [OSTI]

    Torrieri, G; Mishustin, I

    2007-01-01T23:59:59.000Z

    We introduce a new scenario for heavy ion collisions that could solve the lingering problems associated with the so-called HBT puzzle. We postulate that the system starts expansion as the perfect quark-gluon fluid but close to freeze-out it splits into clusters, due to a sharp rise of bulk viscosity in the vicinity of the hadronization transition. We then argue that the characteristic cluster size is determined by the viscosity coefficient and the expansion rate. Typically it is much smaller and independent of the total system volume. These clusters maintain the pre-existing outward-going flow, as a spray of droplets, but develop no flow of their own, and hadronize by evaporation. We provide an ansatz for converting the hydrodynamic output into clusters.

  3. Liquid fuels from co-processing coal with bitumen or heavy oil: A review

    SciTech Connect (OSTI)

    Moschopedis, S.E.; Hepler, L.G.

    1987-01-01T23:59:59.000Z

    Coal, bitumen and heavy oil (and various pitches, resids, etc.) are similar in that they require more substantial treatment than does conventional light oil to yield useful liquid fuels. The authors provide a brief and selective review of technologies for liquefying coal, followed by consideration of co-processing coal with bitumen/heavy oil. Such co-processing may be considered as use of bitumen/heavy oil as a solvent and/or hydrogen donor in liquefaction of coal, or as the use of coal to aid upgrading bitumen/heavy oil.

  4. Induced biochemical interactions in immature and biodegraded heavy crude oils

    SciTech Connect (OSTI)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Shelenkova, L.; Zhou, W.M.

    1998-11-01T23:59:59.000Z

    Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

  5. INDUCED BIOCHEMICAL INTERACTIONS IN IMMATURE AND BIODEGRADED HEAVY CRUDE OILS

    SciTech Connect (OSTI)

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; SHELENKOVA,L.; ZHOU,W.M.

    1998-10-27T23:59:59.000Z

    Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

  6. Saber's heavy oil cracking refinery project

    SciTech Connect (OSTI)

    Benefield, C.S.; Glasscock, W.L.

    1983-03-01T23:59:59.000Z

    Perhaps more than any other industry, petroleum refining has been subjected to the radical swings in business and political climates of the past several decades. Because of the huge investments and long lead times to construct refining facilities, stable government policies, predictable petroleum prices, secure feedstock supplies and markets, and reliable cost estimates are necessary ingredients to effectively plan new refinery projects. However, over the past ten years the political and economic climates have provided anything but these conditions. Yet, refiners have demonstrated a willingness to undertake risks by continuing to expand and modernize their refineries. The refining business -- just as most businesses -- responds to economic incentives. These incentives, when present, result in new technology and capacity additions. In the 1940's, significant technology advances were commercialized to refine higher-octane motor gasolines. Such processes as continuous catalytic cracking (Houdry Process Corporation), fluid catalytic cracking (Standard Oil Development Company), HF alkylation (UOP and Phillips Petroleum Company), and catalytic reforming (UOP) began to supply a growing gasoline market, generated from the war effort and the ever increasing numbers of automobiles on the road. The post-war economy of the 1950's and 1960's further escalated demand for refined products, products which had to meet higher performance specifications and be produced from a wider range of raw materials. The refining industry met the challenge by introducing hydro-processing technology, such as hydrocracking developed in 1960. But, the era must be characterized by the large crude processing capacity additions, required to meet demand from the rapidly expanding U.S. economy. In 1950, refining capacity was 6.2 million BPD. By 1970, capacity had grown to 11.9 million BPD, an increase of 91%.

  7. Development of the Write Process for Pipeline-Ready Heavy Oil

    SciTech Connect (OSTI)

    Lee Brecher; Charles Mones; Frank Guffey

    2009-03-07T23:59:59.000Z

    Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establish a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.

  8. Vapour extraction (VAPEX) process for recovery of heavy oil and bitumen

    SciTech Connect (OSTI)

    Jha, K.N. [CANMET, Ottawa, Ontario (Canada); Butler, R.M. [Univ. of Calgary, Alberta (Canada); Lim, G.B. [Imperial Oil Resources Limited, Calgary, Alberta (Canada)] [and others

    1995-12-31T23:59:59.000Z

    For over 90% of the vast resources of bitumen and heavy oil in Canada, in situ recovery processes have to be developed to produce and utilize them efficiently and economically. Thermal recovery processes using steam, although effective for thick reservoirs with good quality sands, are increasingly proving to be uneconomical, particularly for thin, shaley, or bottom water reservoirs. The inefficiency is caused by large heat losses, high water requirement, extensive surface facilities, and adverse environmental impact. To overcome these problems, a new non-thermal vapour extraction (VAPEX) process has been developed. The process is closely related to the Steam-Assisted Gravity Drainage (SAGD) concept. However, in the VAPEX process the steam chamber is replaced with a chamber containing light hydrocarbon vapours close to its dew point at the reservoir pressure. If the pressure used is close to the saturation pressure of hydrocarbons, deasphalting may occur in the reservoir causing a substantial reduction in viscosity and heavy metal contents. Experiments conducted in a Hele-Shaw cell and in a 2D physical scaled model using Lloydminster, Cold Lake, and Peace River heavy oil/bitumen and ethane, propane, and butane as solvents demonstrated that this process is very promising technically as well as economically. An active aquifer underlying the bitumen zone made the reservoir more valuable because of spreading of the solvent vapour directly underneath the formation which increased the vapour-bitumen contact extensively. The investigation was extended from a dual horizontal continuous injection/production well strategy described above to a single horizontal well cyclic process for the Cold Lake reservoir in a 3D physical scaled model. The tests illustrated that ethane was an effective solvent in producing Cold Lake bitumen and that the cyclic VAPEX process has the potential to be a breakthrough recovery technology.

  9. Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-08-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

  10. DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Shari Dunn-Norman

    2005-06-01T23:59:59.000Z

    The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. In the twelve to eighteen-month project period, three wells were equipped with ERT arrays. Electrical resistivity tomography (ERT) background measurements were taken in the three ERT equipped wells. Pumping equipment was installed on the two fracture stimulated wells and pumping tests were conducted following the hydraulic fracture treatments. All wells were treated monthly with microbes, by adding a commercially available microbial mixture to wellbore fluids. ERT surveys were taken on a monthly basis, following microbial treatments. Worked performed to date demonstrates that resistivity changes are occurring in the subsurface, with resistivity increasing slightly. Pumping results for the hydraulically fractured wells were disappointing, with only a show of oil recovered and an increase in well shut-in pressure.

  11. Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs.

    E-Print Network [OSTI]

    Limpasurat, Akkharachai

    2011-01-01T23:59:59.000Z

    ??This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer… (more)

  12. Heavy oil recovery by in-situ combustion

    SciTech Connect (OSTI)

    Gadelle, C.P.; Burger, J.G.; Bardon, C.; Machedon, V.; Carcoana, A.

    1980-01-01T23:59:59.000Z

    Heavy-oil fields contain considerable reserves which have hardly been exploited to date. One of the techniques well suited for the recovery of these resources is in situ combustion. The research done is illustrated by the laboratory and field results obtained for the Romanian fields of Suplacu de Barcau and Balaria. Production by in situ combustion is in the industrial stage at Suplacu de Barcau, and the combustion project at Balaria is being expanded. The performances of these tests are given in the form of the amounts of air injected and oil produced as well as their ratio (AOR), the amount of gas produced and the composition of this gas. These production data coupled with various measurements (temperature in the production wells, thickness burned, etc.) can be used to follow the process and to control it. Their interpretation also is useful for evaluating sweep efficiency and recovery. 14 references.

  13. Hydroconversion of heavy oils. [Residue of tar sand bitumen distillation

    SciTech Connect (OSTI)

    Garg, D.

    1986-08-19T23:59:59.000Z

    A method is described for hydroconversion of feedstocks consisting essentially of at least one heavy hydrocarbon oil selected from the group consisting of residue of petroleum oil distillation and the residue of tar sand bitumen distillation to enhance the recovery of 350/sup 0/-650/sup 0/F boiling product fraction. The method comprises treating such feed stock with hydrogen at superatmospheric pressure and in the presence of finely divided active hydrogenation catalyst in consecutive reaction stages. An initial reaction stage is carried out at a temperature in the range of 780/sup 0/-825/sup 0/F, and a subsequent reaction stage is directly carried out after the initial reaction stage at a higher temperature in the range of 800/sup 0/F-860/sup 0/F, the temperature of the subsequent reaction stage being at least 20/sup 0/F higher than that of the initial reaction stage.

  14. Results of the IEA Round Robin on Viscosity and Aging of Fast Pyrolysis Bio-oils: Long-Term Tests and Repeatability

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Oasmaa, Anja; Meier, Dietrich; Preto, Fernando; Bridgwater, Anthony V.

    2012-11-06T23:59:59.000Z

    An international round robin study of the viscosity and aging of fast pyrolysis bio-oil has been undertaken recently and this work is an outgrowth from that effort. Two bio-oil samples were distributed to the laboratories for aging tests and extended viscosity studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C. The test was repeated 10 times over consecutive days to determine the repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21 °C, 4 °C and -17 °C for a period up to a year to evaluate the change in viscosity. The variation in the results of the aging test was shown to be low within a given laboratory. Storage of bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gives a measure of change similar to that of 6-12 months of storage at room temperature. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace.

  15. Ionizing Electron Incidents as an Efficient Way to Reduce Viscosity of Heavy Petroleum Fluids

    E-Print Network [OSTI]

    Alfi, Masoud

    2012-10-19T23:59:59.000Z

    levels. The effect of electron irradiation on different heavy petroleum fluids is investigated in this study. Radiation-induced physical and chemical changes of the fluids have been evaluated using different analytical instruments. The results show...

  16. DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Shari Dunn-Norman

    2003-09-05T23:59:59.000Z

    The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. Tasks completed in the first six-month period include soil sampling, geochemical analysis, construction of ERT arrays, collection of background ERT surveys, and analysis of core samples to develop a geomechanical model for designing the hydraulic fracturing treatment. Five wells were to be drilled in phase I. However, weather and funding delays resulted in drilling shifting to the second phase of the project. Work performed to date demonstrates that surface geochemical methods can be used to differentiate between productive and non-productive areas of the Warner Sand and that ERT can be used to successfully image through the Warner Sand.

  17. Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion

    E-Print Network [OSTI]

    Huseynzade, Samir

    2008-10-10T23:59:59.000Z

    UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A... UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A Thesis by SAMIR HUSEYNZADE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  18. Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological to Reservoir aux périodes cruciales de production. Oil & Gas Science and Technology ­ Rev. IFP Energies nouvelles Défis et nouvelles approches en EOR D o s s i e r #12;Oil & Gas Science and Technology ­ Rev. IFP

  19. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01T23:59:59.000Z

    This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  20. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01T23:59:59.000Z

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  1. Comprehensive kinetic models for the aquathermolysis of heavy oils

    SciTech Connect (OSTI)

    Belgrave, J.D.M.; Moore, R.G.; Ursenbach, M.G. [Univ. of Calgary, Alberta (Canada)

    1995-02-01T23:59:59.000Z

    Aquathermolysis experiments over the temperature range 360 to 422{degrees}C were performed on core samples taken from three large bitumen and heavy oil deposits found in Alberta: Athabasca, North Bodo, and Frisco Countess. The purpose of this work was to facilitate the development of comprehensive thermal cracking models for predicting gas and liquid phase product distributions under conditions anticipated during thermal recovery. Previous studies have shown by material balance on oxygen that water is implicated in many of the chemical reactions leading to the formation of H{sub 2}S and CO{sub 2}, yet most of the reported thermal cracking studies have not included water. Additionally, experimental investigations in this area have, for the most part, not involved realistic time frames, and as such certain phenomena observed in this work have not been previously reported.

  2. Exploratory Characterization of a Perfluoropolyether Oil as a Possible Viscosity Standard at Deepwater Production Conditions of 533 K and 241 MPa

    SciTech Connect (OSTI)

    Baled, Hseen O.; Tapriyal, Deepak; Morreale, Bryan D.; Soong, Yee; Gamwo, Isaac; Krukonis, Val; Bamgbade, Babatunde A.; Wu, Yue; McHugh, Mark A.; Burgess, Ward A.; M Enick, Robert M.

    2013-10-01T23:59:59.000Z

    DuPont’s perfluoropolyether oil Krytox® GPL 102 is a promising candidate for the high-temperature, high-pressure Deepwater viscosity standard (DVS). The preferred DVS is a thermally stable liquid that exhibits a viscosity of roughly 20 mPa?s at 533 K and 241 MPa; a viscosity value representative of light oils found in ultra-deep formations beneath the deep waters of the Gulf of Mexico. A windowed rolling-ball viscometer designed by our team is used to determine the Krytox® GPL 102 viscosity at pressures to 245 MPa and temperatures of 311 K, 372 K, and 533 K. At 533 K and 243 MPa, the Krytox® GPL 102 viscosity is (27.2±1.3)mPa?s . The rolling-ball viscometer viscosity results for Krytox® GPL 102 are correlated with an empirical 10-parameter surface fitting function that yields an MAPD of 3.9 %. A Couette rheometer is also used to measure the Krytox® GPL 102 viscosity, yielding a value of (26.2±1)mPa?s at 533 K and 241 MPa. The results of this exploratory study suggest that Krytox® GPL 102 is a promising candidate for the DVS, primarily because this fluoroether oil is thermally stable and exhibits a viscosity closer to the targeted value of 20 mPa ? s at 533 K and 241 MPa than any other fluid reported to date. Nonetheless, further studies must be conducted by other researcher groups using various types of viscometers and rheometers on samples of Krytox GPL® 102 from the same lot to further establish the properties of Krytox GPL® 102.

  3. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30T23:59:59.000Z

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  4. Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)

    SciTech Connect (OSTI)

    Penner, S.S.

    1982-03-01T23:59:59.000Z

    The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

  5. Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs

    E-Print Network [OSTI]

    Limpasurat, Akkharachai

    2011-10-21T23:59:59.000Z

    This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer economics. Substantial heat that has accumulated within reservoir rock and its...

  6. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Broader source: Energy.gov (indexed) [DOE]

    Research Council Canada Ottawa, Ontario, Canada Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels W. Stuart Neill 9 th DEER Conference, Newport, Rhode...

  7. Experimental study of Morichal heavy oil recovery using combined steam and propane injection

    E-Print Network [OSTI]

    Goite Marcano, Jose Gregorio

    1999-01-01T23:59:59.000Z

    with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela...

  8. Heavy Oil Program. Quarterly progress report No. 1, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Wayland, J. R.; Bartel, L. C.; Johnson, D. R.; Fox, R. L.

    1980-12-01T23:59:59.000Z

    Research and development efforts in support of the DOE Heavy Oil RD and D Program in reservoir access were initiated. Preliminary activities in the survey of sand control, drilling, and fracturing techniques in heavy oil formations are described. The continued development of a high temperature packer for use in steam injection applications is presented. A new application of controlled source audio magnetotelluric survey to developing thermal fronts from in situ combustion and steam drive is described.

  9. Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water

    E-Print Network [OSTI]

    Loh, Watson

    Elsevier B.V. All rights reserved. Keywords: Heavy oil; Asphaltenes; Naphthenic acids; Wettability; Oil­waterContact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water RonaldoG.dosSantos a , Rahoma S. Mohamed a,F , Antonio C. Bannwart b , Watson Loh c

  10. Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process. Larribau 64018 Pau Cedex, France Oil and Gas Science and Technology 2012, 67 (6), 1029-1039, doi:10 pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated

  11. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30T23:59:59.000Z

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  12. Effectiveness of continuous hot-fluid stimulation of high viscosity oil wells

    E-Print Network [OSTI]

    Oetama, Teddy

    1983-01-01T23:59:59.000Z

    Cl Ct P) 0 5 N Cl C di l tQ E (U O V O O 0 QJ + CL 0 V Ql O lJ QJ 4- 4? Tl O Cl Cfl C lJ Ct C (3 ) aanqewacIIIIa I IIo I~ onpoag 0 37 Higher injection rates result in higher production temperatures at steady-state due... thermal system with heat loss to 38 adjacent shale layers. In the formation having smaller kv/kh ratio, the injected hot oil flows farther in the horizontal direction. Consequently, the contact area between the formation and the shale layer is larger...

  13. DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Shari Dunn-Norman

    2004-03-01T23:59:59.000Z

    The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with little capital investment. The first year period was divided into two phases--Phase I and Phase II. Each phase was 6 months in duration. Tasks completed in first six month period included soil sampling, geochemical analysis, construction of ERT arrays, collection of background ERT surveys, and analysis of core samples to develop a geomechanical model for designing the hydraulic fracturing treatment. Five wells were to be drilled in phase I. However, weather and funding delays resulted in drilling shifting to the second phase of the project. During the second six month period, five vertical wells were drilled through the Bluejacket and Warner Sands. These wells were drilled with air and logged openhole. Drilling locations were selected after reviewing results of background ERT and geochemical surveys. Three ERT wells (2,3,4) were arranged in an equilateral triangle, spaced 70 feet apart and these wells were completed open hole. ERT arrays constructed during Phase I, were installed and background surveys were taken. Two wells (1,5) were drilled, cased, cemented and perforated. These wells were located north and south of the three ERT wells. Each well was stimulated with a linear guar gel and 20/40 mesh Brady sand. Tiltmeters were used with one fracture treatment to verify fracture morphology. Work performed during the first year of this research project demonstrates that surface geochemical methods can be used to differentiate between productive and non-productive areas of the Warner Sand and that ERT can be used to successfully image through the Warner Sand. ERT work also provided a background image for future MEOR treatments. Well logs from the five wells drilled were consistent with previous logs from historical coreholes, and the quality of the formation was found to be as expected. Hydraulic fracturing results demonstrated that fluid leakoff is inadequate for tip screenout (TSO) and that a horizontal fracture was generated. At this point it is not clear if the induced fracture remained in the Warner Sand, or propagated into another formation. MEOR treatments were originally expected to commence during Phase II. Due to weather delays, drilling and stimulation work was not completed until September, 2003. Microbial treatments therefore will commence in October, 2003. Phase III, the first 10 months of the second project year, will focus primarily on repeated cycles of MEOR treatments, ERT measurements and well pumping.

  14. EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6.DavidE-print NetworkUSE ANDEXPERIMENTAL

  15. Hydrotreating Uinta Basin bitumen-derived heavy oils

    SciTech Connect (OSTI)

    Longstaff, D.C.; Balaji, G.V.; Kim, J.W. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

    1995-12-31T23:59:59.000Z

    Heavy oils derived from Uinta Basin bitumens have been hydrotreated under varying conditions. The process variables investigated included total reactor pressure (11.0-16.9 MPa), reactor temperature (616-711 K), feed rate (0.29-1.38 WHSV), and catalyst composition. The extent of heteroatom removal and residuum conversion were determined by the feed molecular weight and catalyst selection. Catalytic activity for heteroatom conversion removal was primarily influenced by metal loading. The heteroatom removal activity of the catalysts studied were ranked HDN catalysts > HDM catalysts > HDN-support. Catalytic activity for residuum conversion was influenced by both metal loading and catalyst surface area. The residuum conversion activity of HDN catalysts were always higher than the activity of HDM catalysts and HDN supports. The residuum conversion activity of HDN-supports surpassed the activity of HDM catalyst at higher temperatures. The conversions achieved with HDN catalysts relative to the HDM catalysts indicated that the low metals contents of the Uinta Basin bitumens obviate the need for hydrodemetallation as an initial upgrading step with these bitumens. The upgrading of Uinta Basin bitumens for integration into refinery feed slates should emphasize molecular weight and boiling range reduction first, followed by hydrotreating of the total liquid product produced in the pyrolysis process. Kinetics of residuum conversion can be modeled by invoking a consecutive-parallel mechanism in which native residuum in the feed is rapidly converted to volatile products and to product residuum. Deep conversion of residuum is only achieved when the more refractory product residuum is converted to volatile products.

  16. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yorstos, Yanis C.

    2002-03-11T23:59:59.000Z

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

  17. Influence of steam-drive production on the properties of high-molecular weight components of heavy Ashal`chinsk crude oil

    SciTech Connect (OSTI)

    Kayukova, G.P.; Kurbskii, G.P.; Lifanova, Ye.V. [and others

    1993-12-31T23:59:59.000Z

    A comparative analysis has been made of the composition and properties of heavy Ashal`chinsk crude oil produced both by natural flow and by the steam-drive method. It has been shown that the use of the steam-drive method in order to improve Elie oil yield leads to certain changes in the composition of the oil produced, which is reflected in a change in quality of the target petroleum products. In particular, because of the additional presence in the crude oil of high-molecular weight n-alkanes, there is an increase in the pour point and viscosity index of paraffinic-naphthenic hydrocarbons, which are the main components of residual base oils. An experimental study of the influence of temperatures characteristic of the steam-drive method (300{degrees}C) on the asphaltene-resinous components of Ashal`chinsk crude oil confirmed that during steam-drive production these substances undergo degradation processes associated with detachment of alkyl substituents at peripheral fragments containing sulphur, oxygen, nitrogen and other heteroatoms and consequently are a potential source of alkane hydrocarbons.

  18. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    SciTech Connect (OSTI)

    Thorsness, C. B., LLNL

    1997-01-21T23:59:59.000Z

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  19. 1980 annual heavy oil/EOR contractor presentations: proceedings

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Twenty-five papers were presented on thermal recovery, chemical flooding, and carbon dioxide methods for enhanced oil recovery. Separate abstracts were prepared for 24 of the papers; the remaining paper was previously abstracted. (DLC)

  20. Oil

    E-Print Network [OSTI]

    unknown authors

    Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

  1. Hot alkaline treatment to stimulate and consolidate the heavy oil Bachaquero-01 sand

    E-Print Network [OSTI]

    Valera Villarroel, Cesar Amabilis

    2005-02-17T23:59:59.000Z

    , PDVSA (Petroleos de Venezuela, S.A.), operates the Lagunillas field. It represents one of the most important heavy oil accumulations in the Bolivar Coast group of fields. Bachaquero-01 reservoir covers 19,540 acres of unconsolidated sand and contains...

  2. Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils

    SciTech Connect (OSTI)

    Matthew Liberatore; Andy Herring; Manika Prasad; John Dorgan; Mike Batzle

    2012-06-30T23:59:59.000Z

    The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formationâ??s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.

  3. Utilizing asphaltene pyrolysis to predict pyrolysis kinetics of heavy crude oil and extractable native bitumen

    SciTech Connect (OSTI)

    Reynolds, J.G.

    1992-01-07T23:59:59.000Z

    Selected heavy crude oils and extracted tar sand bitumens were separated into asphaltene and maltene fractions. The whole feeds and fractions were then examined by micropyrolysis at nominal constant heating rates from 1 to 50{degrees}C/min from temperatures of 250 to 650{degrees}C to establish evolution behavior, pyrolysate yields, and kinetics of evolution.

  4. Heavy Oil Database from the National Institute for Petroleum and Energy Research (NIPER)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Heavy Oil Database resulted from work funded by DOE and performed at the National Institute for Petroleum and Energy Research (NIPER). It contains information on more than 500 resevoirs in a Microsoft Excel spreadsheet. The information was collected in 1992 and updated periodically through 2003. Save the zipped file to your PC, then open to access the data.

  5. The Possible Loss of Venezuelan Heavy Crude Oil Imports Underscores the Strategic Importance of the

    E-Print Network [OSTI]

    Texas at Austin, University of

    of the Keystone XL Pipeline By Jorge R. Piñon Recent press reports indicate the possible sale by state crude, making reliance on Canadian heavy crude oil more significant, and the approval of the Keystone XL pipeline even more crucial to U.S. energy security. The pipeline is currently in limbo, waiting on approval

  6. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  7. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  8. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Yanis C.

    2001-08-07T23:59:59.000Z

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  9. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    2001-05-29T23:59:59.000Z

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  10. Heavy Fuel Oil Prices for Electricity Generation - EIA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000 HighlightsHasSHOPPMapsHeavy

  11. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Yanis C.

    2002-10-08T23:59:59.000Z

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  12. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    SciTech Connect (OSTI)

    David O. Ogbe; Tao Zhu

    2004-01-01T23:59:59.000Z

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  13. Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    1992-01-01T23:59:59.000Z

    Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. Accomplishments for this period are presented.

  14. Two-stage coprocessing of subbituminous coals and bitumen or heavy oil

    SciTech Connect (OSTI)

    Ignasiak, B.; Ohuchi, T.; Clark, P.; Aitchison, D.; Lee, T.

    1986-09-01T23:59:59.000Z

    Pretreatment of subbituminous coal with an appropriately formulated mix of carbon monoxide and water, in presence of bitumen or heavy oil, results in very fast reactions characterized by a high degree of coal solubilization and deoxygenation. The reaction is catalysed by a mixture of alkali metal carbonates and proceeds readily at 380-400/sup 0/C. The first-stage reaction product appears to be susceptible to further catalytic hydrogenation at 420-460/sup 0/C with gaseous hydrogen yielding 65-70% (on daf feed) of hydrogen-rich distillable oil, composed mainly of naphtha and middle oil. The process flowsheet is presented and the comparative economics of two-stage carbon monoxide/steam-hydrogen and hydrogen-hydrogen coprocessing schemes are discussed.

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  16. Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach

    E-Print Network [OSTI]

    Torres-VerdĂ­n, Carlos

    SPE 159172 Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach Hamid Hadibeik, The University of Texas the dynamics of water- and oil- base mud-filtrate invasion that produce wellbore supercharging were developed

  17. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05T23:59:59.000Z

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  18. VEBA-Combi-cracking - A technology for upgrading of heavy oils and bitumen

    SciTech Connect (OSTI)

    Doehler, W.; Kretschmar, D.I.K.; Merz, L.; Niemann, K. (VEBA OEL Entwicklungs-Gesellschaft mbH, Gelsenkirchen (West Germany))

    1987-04-01T23:59:59.000Z

    Based on experiences with liquid phase hydrogenation for coal liquefaction according to the Berguis-Pier-Process as well as crude oil residue hydrogenation in the Fifties and Sixties, VEBA OEL in recent years developed the VEBA-LQ-Cracking (VLC) and the VEBA-Combi-Cracking (VCC) Processes. Since 1978, more than 20 different feedstocks have been converted in small scale plants with a capacity of 3-20 kg/h. Together with LURGI GmbH, Frankfurt, the next steps were taken: the design and construction of a 1 t/h Pilot Plant located at the RUHR OEL refinery in Gelsenkirchen. After 18 months of construction, the heavy oil pilot plant was put on stream in May 1983. Since the beginning of 1983, the plant has been funded and owned by LURGI GmbH, VEBA OEL AG and INTEVEP S.A., the research institute of Petroleos de Venezuela, all of whom have participated in the development of the VLC/VCC process. Reported here are the results of the intensive experimental work for the development of the VLC/VCC-processes in a scale covering all aspects relevant for a scale-up, demonstrate the technical maturity of the processes developed by VEBA OEL to convert refinery residues and natural heavy crude oils.

  19. Combustion Assisted Gravity Drainage (CAGD): An In-Situ Combustion Method to Recover Heavy Oil and Bitumen from Geologic Formations using a Horizontal Injector/Producer Pair

    E-Print Network [OSTI]

    Rahnema, Hamid

    2012-11-21T23:59:59.000Z

    Combustion assisted gravity drainage (CAGD) is an integrated horizontal well air injection process for recovery and upgrading of heavy oil and bitumen from tar sands. Short-distance air injection and direct mobilized oil production are the main...

  20. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  1. SUPRI heavy oil research program. Annual report, October 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Brigham, W.E.; Ramey, H.J. Jr.; Castanier, L.M.

    1993-08-01T23:59:59.000Z

    The goal of the Stanford University Petroleum Research Institute is to conduct research directed toward increasing the recovery of heavy oils. Presently, SUPRI is working in five main directions: (1) flow properties studies to assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; (2) in-situ combustion to evaluate the effect of different reservoir parameters on the in-situ combustion process and to study the kinetics of the reactions; (3) steam with additives to develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; (4) formation evaluation to develop and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and field support services to provide technical support for design and monitoring of DOE sponsored or industry initiated field projects.

  2. SUPRI Heavy Oil Research Program Twenty-First Annual Report, SUPRI TR-111

    SciTech Connect (OSTI)

    Brigham, William E.; Castanier, Louis; Kovscek, Anthony R.

    1999-08-09T23:59:59.000Z

    The goal of the Stanford University Petroleum Research Institute is to conduct research directed toward increasing the recovery of heavy oils. Present, SUPRI is working in five main directions: (1) Flow Properties Studies - To assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; (2) In-Situ Combustion - To evaluate the effect of different reservoir parameters on the in-situ combustion process. This project includes the study of the kinetics of the reactions; (3) Steam with Additives- To develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; (4) Formation Evaluation - To develop and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and (5) Field Support Services - To provide technical support for design and monitoring of DOE sponsored or industry initiated field projects.

  3. SUPRI heavy oil research program. Annual report, February 8, 1995--February 7, 1996

    SciTech Connect (OSTI)

    Brigham, W.E.; Castanier, L.M.

    1996-06-01T23:59:59.000Z

    The goal of the Stanford University Petroleum Research Institute (SUPRI) is to conduct research directed toward increasing the recovery of heavy oils. Presently SUPRI is working in five main directions: (1) flow properties studies to assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; (2) in-situ combustion to evaluate the effect of different reservoir parameters on the in-situ combustion process; (3) steam with additives to develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; (4) formation evaluation to develop and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and (5) field support services to provide technical support for design and monitoring of DOE sponsored or industry initiated field projects. This report consists of abstracts of reports and copies of technical papers presented or published.

  4. Preliminary evaluation of a process using plasma reactions to desulfurize heavy oils. Final report

    SciTech Connect (OSTI)

    Grimes, P.W.; Miknis, F.P.

    1997-09-01T23:59:59.000Z

    Western Research Institute (WRI) has conducted exploratory experiments on the use of microwave-induced plasmas to desulfurize heavy oils. Batch mode experiments were conducted in a quartz reactor system using various reactive and nonreactive plasmas. In these experiments a high-sulfur asphalt was exposed to various plasmas, and the degree of conversion to distillate, gas, and solids was recorded. Products from selected experiments were analyzed to determine if the plasma exposure had resulted in a significant reduction in sulfur content. Exploratory experiments were conducted using reactive plasmas generated from hydrogen and methane and nonreactive plasmas generated from nitrogen. The effects of varying exposure duration, sample temperature, and location of the sample with respect to the plasma discharge were investigated. For comparative purposes two experiments were conducted in which the sample was heated under nitrogen with no plasma exposure. Distillates containing approximately 28% less sulfur than the feedstock represented the maximum desulfurization attained in the plasma experiments. It does not appear that plasma reactions using the simple configurations employed in this study represent a viable method for the desulfurization of heavy oils.

  5. Estimates of future regional heavy oil production at three production rates--background information for assessing effects in the US refining industry

    SciTech Connect (OSTI)

    Olsen, D.K.

    1993-07-01T23:59:59.000Z

    This report is one of a series of publications from a project considering the feasibility of increasing domestic heavy oil (10{degree} to 20{degree} API gravity inclusive) production being conducted for the US Department of Energy. The report includes projections of future heavy oil production at three production levels: 900,000; 500,000; and 300,000 BOPD above the current 1992 heavy oil production level of 750,000 BOPD. These free market scenario projections include time frames and locations. Production projections through a second scenario were developed to examine which heavy oil areas would be developed if significant changes in the US petroleum industry occurred. The production data helps to define the possible constraints (impact) of increased heavy oil production on the US refining industry (the subject of a future report). Constraints include a low oil price and low rate of return. Heavy oil has high production, transportation, and refining cost per barrel as compared to light oil. The resource is known, but the right mix of technology and investment is required to bring about significant expansion of heavy oil production in the US.

  6. Major heavy oil deposits are present in Lower Cretaceous strata of west-central Saskatchewan. The Winter Heavy Oil Pool (approximately 566 044 mmbl) consists of bitumen-rich sands from the AptianAlbian Dina and Cummings members of

    E-Print Network [OSTI]

    -central Saskatchewan. The Winter Heavy Oil Pool (approximately 566 044 mmbl) consists of bitumen-rich sands from dans les strates du Crétacé inférieur du centre-ouest de la Saskatchewan. Le gisement de pétrole lourd of the Winter Pool, west-central Saskatchewan DUSTIN B. BAUER University of Calgary Department of Geoscience

  7. TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING OF HEAVY OILS

    SciTech Connect (OSTI)

    Jorge Gabitto; Maria Barrufet

    2002-09-01T23:59:59.000Z

    Hydrocarbon/water and CO{sub 2} systems are frequently found in petroleum recovery processes, petroleum refining, and gasification of coals, lignites and tar sands. Techniques to estimate the phase volume and phase composition are indispensable to design and improve oil recovery processes such as steam, hot water, or CO{sub 2}/steam combinations of flooding techniques typically used for heavy oils. An interdisciplinary research program to quantify transport, PVT, and equilibrium properties of selected oil/CO{sub 2}/water mixtures at pressures up to 10,000 psia and at temperatures up to 500 F has been put in place. The objectives of this research include experimental determination and rigorous modeling and computation of phase equilibrium diagrams, and volumetric properties of hydrocarbon/CO{sub 2}/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils. Highlighting the importance of phase behavior, researchers ([1], and [2]) insist on obtaining truly representative reservoir fluids samples for experimental analysis. The prevailing sampling techniques used for compositional analysis of the fluids have potential for a large source of error. These techniques bring the sample to atmospheric conditions and collect the liquid and vapor portion of the samples for further analysis. We developed a new experimental technique to determine phase volumes, compositions and equilibrium K-values at reservoir conditions. The new methodology is able to measure phase volume and composition at reservoir like temperatures and pressures. We use a mercury free PVT system in conjunction with a Hewlett Packard gas chromatograph capable of measuring compositions on line at high pressures and temperatures. This is made possible by an essentially negligible disturbance of the temperature and pressure equilibrium during phase volume and composition measurements. In addition, not many samples are withdrawn for compositional analysis because a negligible volume (0.1 {micro}l to 0.5 {micro}l) is sent directly to the gas chromatograph through sampling valves. These amounts are less than 1 x 10{sup -5} % of total volume and do not affect the overall composition or equilibrium of the system. A new method to compute multi-component phase equilibrium diagrams based on an improved version of the Peng-Robinson equation has been developed [3]. This new version of the Peng-Robinson equation uses a new volume translation scheme and new mixing rules to improve the accuracy of the calculations. Calculations involving multicomponent mixtures of CO{sub 2}/water and hydrocarbons have been completed. A scheme to lump multi-component materials such as, oils into a small set of ''pseudo-components'' according to the technique outlined by Whitson [4] has been implemented. This final report presents the results of our experimental and predicted phase behavior diagrams and calculations for mixtures of CO{sub 2}/water and real oils at high pressures and temperatures.

  8. Viscosity of High Energy Nuclear Fluids

    E-Print Network [OSTI]

    V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

    2007-03-15T23:59:59.000Z

    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

  9. Turbine fuels from tar-sands bitumen and heavy oil. Volume 2. Phase 3. Process design specifications for a turbine-fuel refinery charging San Ardo heavy crude oil. Final report, 1 June 1985-31 March 1987

    SciTech Connect (OSTI)

    Talbot, A.F.; Swesey, J.R.; Magill, L.G.

    1987-09-01T23:59:59.000Z

    An engineering design was developed for a 50,000-BPSD grass-roots refinery to produce aviation turbine fuel grades JP-4 and JP-8 from San Ardo heavy crude oil. The design was based on the pilot-plant studies described in Phase III - Volume I of this report. The detailed plant design described in this report was used to determine estimated production costs.

  10. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

  11. Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles

    E-Print Network [OSTI]

    Kader, Michael Kirk

    2013-01-18T23:59:59.000Z

    Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and does not consider other...

  12. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    SciTech Connect (OSTI)

    Yannis C. Yortsos

    2003-02-01T23:59:59.000Z

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  13. Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Strycker, A.R. [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute] [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute; Guariguata, G.; Salmen, F.G. [Bonner and Moore Management Science, Houston, TX (United States)] [Bonner and Moore Management Science, Houston, TX (United States)

    1994-12-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

  14. A Novel 9.4 Tesla FT-ICR Mass Spectrometer with Improved Sensitivity, Mass Resolution, and Mass Range, for Petroleum Heavy Crude Oil Analysis

    E-Print Network [OSTI]

    organic mixtures. However, analysis of petroleum crude oil as well as upcoming biofuels requires continued NHMFL 9.4 T FT- species in petroleum crude oil and its products, extending to "heavy" crudes.4 tesla widebore FT-ICR mass spectrometer. Acknowledgements : Include all grant info; e.g. G.S. Boebinger

  15. Simulation study to investigate development options for a super-heavy oil reservoir

    E-Print Network [OSTI]

    Diaz Franco, Jose Manuel

    2012-06-07T23:59:59.000Z

    , the oil was simulated as a hydrocarbon consisting of three pseudo components. These cases were run using a thermal compositional simulator (ECLIPSE 300). Simulation results indicate oil recovery, for the area developed by the existing horizontal well...

  16. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31T23:59:59.000Z

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  17. World heavy crude and bitumen riches, 1988: half the world's oil future is mortgaged by low prices

    SciTech Connect (OSTI)

    Not Available

    1988-12-30T23:59:59.000Z

    A cover graph shows a glimpse of the future: the world's next offering to civilization. No one knows how much, and just when, great amounts of heavy crude oil resources will be developed. Even less is speculated about bitumen resources. But speculation is not required to reach the conclusion that non-conventional oil must be developed in the Western Hemisphere -- and soon. Considerable data are presented in this issue to reinforce this conclusion. This issues also contains the following: (1) refining netback data series for the US Gulf and West Coasts, Rotterdam, and Singapore, as of Dec. 9 and Dec. 20, 1988; and (2) ED fuel price/tax series for countries of both the Western and Eastern Hemisphere, Dec. 1988 edition. 9 figures, 11 tables.

  18. Acoustic Energy: An Innovative Technology for Stimulating Oil Wells

    SciTech Connect (OSTI)

    Edgar, Dorland E.; Peters, Robert W.; Johnson, Donald O.; Paulsen, P. David; Roberts, Wayne

    2006-04-30T23:59:59.000Z

    The objective of this investigation was to demonstrate the effectiveness of sonication in reducing the viscosity of heavy crude oils. Sonication is the use of acoustic or sound energy to produce physical and/or chemical changes in materials, usually fluids. The goal of the first project phase was to demonstrate a proof of concept for the project objective. Batch tests of three commercially available, single-weight oils (30-, 90-, and 120-wt) were performed in the laboratory. Several observations and conclusions were made from this series of experiments. These include the following: (1) In general, the lower the acoustic frequency, the greater the efficiency in reducing the viscosity of the oils; (2) Sonication treatment of the three oils resulted in reductions in viscosity that ranged from a low of 31% to a high of 75%; and (3) The results of the first phase of the project successfully demonstrated that sonication could reduce the viscosity of oils of differing viscosity. The goal of the second project phase was to demonstrate the ability of sonication to reduce the viscosity of three crude oils ranging from a light crude to a heavy crude. The experiments also were designed to examine the benefits of two proprietary chemical additives used in conjunction with sonication. Acoustic frequencies ranging from 800 Hz to 1.6 kHz were used in these tests, and a reactor chamber was designed for flow-through operation with a capacity of one gallon (3.8 liters). The three crude oils selected for use in the testing program were: (1) a heavy crude from California with a viscosity of approximately 65,000 cP (API gravity about 12{sup o}), (2) a crude from Alabama with a significant water content and a viscosity of approximately 6,000 cP (API gravity about 22 {sup o}), and (3) a light crude from the Middle East with a viscosity of approximately 700 cP (API gravity about 32{sup o}). The principal conclusions derived from the second project phase include the following: (1) The application of acoustic energy (sonication) significantly reduced the viscosity of crude oils, and the amount of viscosity reduction resulting is greater for more viscous, heavy crude oils than it is for less viscous, light crude oils. (2) Test results showed that after being heated, resulting viscosity reductions were not sustained following treatment to the extent that post-sonication reductions were sustained. (3) The maximum viscosity reductions in Oils 1, 2, and 3 due to sonication were 43%, 76%, and 6%, respectively. Samples of Oil 2 associated with larger viscosity reductions often exhibited a definite water separation layer follow the tests, whereas reductions of approximately 23% were measured when this separation was not observed. (4) It was observed that neither horn design nor the reduction of input power by 25% had very little effect on the ability of sonication to alter crude oil viscosity. (5) The chemical additives produced a range of viscosity reduction from 37% to a maximum of 94% with the largest reductions being facilitated by the abundant water present Oil 2. If the Oil 2 results are not considered, the maximum reduction was 73%. The effects of the additives and sonication are enhanced by each other. (6) In only one test did the viscosity return to as much as 50% of the pre-treatment value during a period of 30 days following treatment; recovery was much less in all other cases. Therefore, more than half of the viscosity reduction was maintained for a month without additional treatment. (7) Possible applications, market potential, and economic value of the implementation of a mature sonication technology within the petroleum industry were identified, and it was estimated that the potential exists that more than a billion barrels of oil could be upgraded or produced annually as a result. The project results successfully demonstrated that sonication alone and in combination with chemical additives can effectively reduce the viscosity of crude oils having a broad range of viscosity/API gravity values. Several recommendations are made for follow-on

  19. Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion

    E-Print Network [OSTI]

    Huseynzade, Samir

    2009-05-15T23:59:59.000Z

    In-situ upgrading of oil using hydrogen donors is a new process. In particular, very little research has been conducted with respect to in-situ oil upgrading using hydrogen donor under in-situ combustion. Several papers describe the use of metal...

  20. Experimental Study of Solvent Based Emulsion Injection to Enhance Heavy Oil Recovery

    E-Print Network [OSTI]

    Qiu, Fangda

    2011-08-08T23:59:59.000Z

    ............................................................................................................ 6 2. ENHANCED OIL RECOVERY-AN OVERVIEW ................................................... 8 2.1 EOR Mechanism .............................................................................................. 10 2.2 Micro-emulsion and Macro... .................................................. 37 4.2.2 Emulsion Rheology Study Experiments ..................................................... 42 4.2.3 Emulsion and Crude Oil Interfacial Tension Measurement ........................ 46 4.2.4 Nanoparticle Thickened Micro-emulsion Experiments...

  1. Chemical Methods for Ugnu Viscous Oils

    SciTech Connect (OSTI)

    Kishore Mohanty

    2012-03-31T23:59:59.000Z

    The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

  2. Oil burners: Crude oil, atomization, and combustion efficiency. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The bibliography contains citations concerning fuel properties and boiler operations techniques to make maximum use of heavy crude oil, shale oil, and low grade fuels to reduce energy costs in boiler firing. Fuel properties pertain to chemical constituents, viscosity, desulfurization, and processing methods to upgrade the fuels. Operating techniques include atomization, dual-fuel burners, emission characteristics, and cost factors. Combustion efficiency is examined and some citations report on additives or processing techniques to improve the efficiency. The citations also report on studies of health effects in the use of synfuels, mostly as coal liquids to replace oil. (Contains 250 citations and includes a subject term index and title list.)

  3. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yorstos, Yannis C.

    2003-03-19T23:59:59.000Z

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08T23:59:59.000Z

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

  5. From Stopping to Viscosity in Nuclear Reactions

    SciTech Connect (OSTI)

    Danielewicz, Pawel; Barker, Brent; Shi Lijun [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy Michigan State University, East Lansing, Michigan 48824 (United States)

    2009-05-07T23:59:59.000Z

    Data on stopping in intermediate-energy central heavy-ion collisions are analyzed following transport theory based on the Boltzmann equation. In consequence, values of nuclear shear viscosity are inferred. The inferred values are significantly larger than obtained for free nucleon dispersion relations and free nucleon-nucleon cross sections.

  6. From Stopping to Viscosity in Nuclear Reactions

    E-Print Network [OSTI]

    Danielewicz, P; Shi, L

    2009-01-01T23:59:59.000Z

    Data on stopping in intermediate-energy central heavy-ion collisions are analyzed following transport theory based on the Boltzmann equation. In consequence, values of nuclear shear viscosity are inferred. The inferred values are significantly larger than obtained for free nucleon dispersion relations and free nucleon-nucleon cross sections.

  7. From Stopping to Viscosity in Nuclear Reactions

    E-Print Network [OSTI]

    P. Danielewicz; B. Barker; L. Shi

    2009-03-14T23:59:59.000Z

    Data on stopping in intermediate-energy central heavy-ion collisions are analyzed following transport theory based on the Boltzmann equation. In consequence, values of nuclear shear viscosity are inferred. The inferred values are significantly larger than obtained for free nucleon dispersion relations and free nucleon-nucleon cross sections.

  8. Mild hydrocracking of bitumen-derived coker and hydrocracker heavy gas oils; Kinetics, product yields, and product properties

    SciTech Connect (OSTI)

    Yui, S.M.; Sanford, E.C. (Research Dept., Syncrude Canada Ltd., PO Box 5790, Edmonton, Alberta (CA))

    1989-09-01T23:59:59.000Z

    The authors describe bitumen-derived coker and hydrocracker heavy gas oils hydrotreated at 350-400{sup 0}C, 7-11 MPa, 0.7-1.5h/sup -1/ LHSV, and 600 S m/sup 3/ of H/sub 2//m/sup 3/ of feed in a pilot-scale trickle-bed reactor, over presulfided commercial NiMo/Al/sub 2/O/sub 3/ catalysts. The conversion of HGO materials (343+ {sup 0}C) in feed to naphtha (195- {sup 0}C) and LGO (195/343 {sup 0}C) was determined by gas chromatographic simulated distillation. The degree of conversion was analyzed with modified first-order kinetics, which incorporate power terms for LHSV and hydrogen partial pressure. The equations were based on three cracking schemes; parallel, consecutive, and combined parallel-consecutive conversion.

  9. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    SciTech Connect (OSTI)

    Yortsos, Yanis C.

    2000-01-19T23:59:59.000Z

    This report covers the work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context the following general areas were studied: (1) The understanding of vapor-liquid flows in porous media, including processes in steam injection; (2) The effect of reservoir heterogeneity in a variety of foams, from pore scale to macroscopic scale; (3) The flow properties of additives for improvement of recovery efficiency, particularly foams and other non-Newtonian fluids; and (4) The development of optimization methods to maximize various measures of oil recovery.

  10. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    1992-04-01T23:59:59.000Z

    This report covers work performed in the area related to the physicochemical factors for the improvement of the oil recovery efficiency in steamfloods. In this context, three general areas are studied: (1) The understanding of vapor-liquid flow in porous media, whether the flow is internal (boiling), external (steam injection) or countercurrent (as in vertical heat pipes). (2) The effect of reservoir heterogeneity, particularly as it regards fractured systems and long and narrow reservoirs (which are typical of oil reservoirs). (3) The flow properties of additives for the improvement of recovery efficiency, in particular the properties of foams.

  11. Economic assessment of heavy oil and bitumen projects with VEBA COMBI cracking

    SciTech Connect (OSTI)

    Schleiffer, A. [VEBA OEL Technologie and Automatisierung, Gelsenkirchen (Germany)

    1995-12-31T23:59:59.000Z

    As worldwide industrial production expands, total energy consumption will increase steadily in the near future. Although natural gas, often considered as a clean source for energy production, will profit most from this increase, crude oil remains the most important energy source. This paper describes the economics of petroleum and bitumen refining from an investment point of view.

  12. A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery

    E-Print Network [OSTI]

    Matus, Eric Robert

    2006-10-30T23:59:59.000Z

    A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a single packer): the short...

  13. A LIQUID FILM STRIPPER FOR HIGH INTENSITY HEAVY ION BEAMS

    E-Print Network [OSTI]

    Leemann, B.T.

    2010-01-01T23:59:59.000Z

    Alonso, b. T. Leemann, "Fluorocarbon Stripping of Low Betalower the viscosity of the fluorocarbon diffusion pump oil "

  14. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01T23:59:59.000Z

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we added numerical solution along streamline subroutines to our streamline compositional simulator. The WAG injection algorithms are being developed. We studied the wettability of the reservoir oil and formulated a four-phase relative permeability model based on two-phase relative permeabilities. The effect of new relative permeability formulations on a five-spot pattern WAG recovery was evaluated. Effect of horizontal wells on pattern sweep has been initiated. A model quarter five-spot experiment is being designed. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, evaluation of complex well-architecture and design of model quarter five-spot experiment.

  15. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2007-09-30T23:59:59.000Z

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  16. Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process

    E-Print Network [OSTI]

    Nauroy, Jean-François; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

    2013-01-01T23:59:59.000Z

    In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

  17. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01T23:59:59.000Z

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

  18. Reproducing MEES Is Strictly Prohibited MEES 47:11 15 March 2004 The Value Of Extra-Heavy Crude Oil From The Orinoco Belt

    E-Print Network [OSTI]

    O'Donnell, Tom

    the following regarding its findings: Table 1 Proven Reserves Of Venezuela Year 2001 ° API Billion Barrels-Total 37.024 100.0 Rest of the Country Condensates >=42 1.723 4.2 Light = 30 10.345 25.4 Medium essentially contains extra-heavy crude: crude oil of less than 10º API (in other words crude that is heavier

  19. Modification of chemical and physical factors in steamflood to increase heavy oil recovery. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    1994-10-01T23:59:59.000Z

    Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. Objectives of this work contract are to carry out new studies in the following areas: displacement and flow properties of fluids involving phase change in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. Specific projects address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. In the area of vapor-liquid flow, we present the continuation of work on the pore network modeling of bubble growth in porous media driven by the application of a prescribed heat flux or superheat. The scaling of bubble growth in porous media is also discussed. In another study we study the problem of steam injection in fractured systems using visualization in micromodels. The interplay of drainage, imbibition and bubble growth problems is discussed.

  20. Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. [Quarterly] report, October 1--December 31, 1992

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    1992-12-31T23:59:59.000Z

    Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. Accomplishments for this period are presented.

  1. Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. Quarterly report, October 1--December 31, 1994

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    1994-12-06T23:59:59.000Z

    Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. This quarterly report covers work accomplished for studies in: vapor-liquid flow; recovery processes in heterogeneous reservoirs; and chemical additives.

  2. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2006-09-30T23:59:59.000Z

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

  3. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2006-06-20T23:59:59.000Z

    Al-SBA-15 mesoporous catalysts with strong Broensted acid sites and Al stabilized in a totally tetrahedral coordination was synthesized from the addition of hydrothermally aged zeolite Y precursor to SBA-15 synthesis mixture under mildly acidic condition of pH 5.5. The materials possessed surface areas between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm and pore volumes up 1.03 cm{sup 3}, which were comparable to parent SBA-15 synthesized under similar conditions. Up to 2 wt. % Al was present in the most aluminated sample that was investigated, and the Al remained stable in totally tetrahedral coordination, even after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. The catalyst's activity was not affected by the aging time of the precursor for up to the 24 hr aging time investigated. This method of introducing Al and maintaining it in a total tetrahedral coordination is very effective, in comparison to other direct and post synthesis alumination methods reported. The catalytic performance of the zeolite Y/SBA-15 composite materials will be compared with that of pure SBA-15. The catalysts will then be evaluated for the conversion of heavy petroleum feedstocks.

  4. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2004-06-30T23:59:59.000Z

    The focus of this project is to improve the catalytic performance of zeolite Y for heavy petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-30 nm) inside nanoporous silicate or aluminosilicate hosts of similar pore diameters. The encapsulated zeolite nanoparticles are expected to possess pores of reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction, hence minimizing pore blockage and active sites deactivation. In this phase of the project, research activities were focused on refining procedures to: (a) improve the synthesis of ordered, high surface area nanoporous silica, such as SBA-15, with expanded pore size using trimethylbenzene as additive to the parent SBA-15 synthesis mixture; and (b) reduce the particle size of zeolite Y such that they can be effectively incorporated into the nanoporous silicas. The synthesis of high surface ordered nanoporous silica containing enlarged pores of diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished.

  5. (HC){sub 3} process - An economical technology for upgrading bitumen and heavy oil

    SciTech Connect (OSTI)

    Padamsey, R.; Bailey, R.T.; Cyr, T.J. [Alberta Dept. of Energy, Calgary (Canada)] [and others

    1995-12-31T23:59:59.000Z

    This paper discusses the development of the (HC){sub 3} Process. (HC){sub 3} is a high conversion hydro-cracking process with integrated hydro-treating that has been developed by Alberta Department of Energy, Oil Sands and Research Division. The (HC){sub 3} Process has been developed and demonstrated to achieve conversion in excess of 95% at moderate pressures and relatively high temperature in a very cost effective manner. This has been achieved with the aid of a colloidal catalyst that selectively converts the asphaltenes, and a proprietary recycle methodology that significantly reduces the catalyst consumption. Cost and economic studies indicate that capital and operating costs of the (HC){sub 3} upgrading scheme are lower than those of other high conversion schemes and are comparable to those of low and moderate conversion upgrading schemes. This cost advantage combined with the high yield gives the (HC){sub 3} a significant economic advantage over other upgrading schemes. The (HC){sub 3} process shows great promise at achieving high conversion efficiently and economically. The process is ready for commercial testing. Discussions are underway with regards to testing the process in a commercial facility designed to process nominally 5000 barrels per day (BPD).

  6. Enhanced Oil Recovery of Viscous Oil by Injection of Water-in-Oil Emulsion Made with Used Engine Oil

    E-Print Network [OSTI]

    Fu, Xuebing

    2012-08-20T23:59:59.000Z

    was proposed for emulsion generation because of several key advantages: more favorable viscosity that results in better emulsion injectivity, soot particles within the oil that readily promote stable emulsions, almost no cost of the oil itself and relatively...

  7. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, January 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Sharma, G.D.

    1995-07-01T23:59:59.000Z

    Alaska is the second largest oil producing state in the nation and currently contributes nearly 24% of the nations oil production. It is imperative that Alaskan heavy oil fields be brought into production. Schrader Bluff reservoir, located in the Milne Point Unit, which is part of the heavy oil field known as West Sak is estimated to contain 1.5 billion barrels of (14 to 21 degree API) oil-in-place. The field is currently under production by primary depletion. The eventual implementation of enhanced oil recovery (EOR) techniques will be vital for the recovery of additional oil from this reservoir. The availability of hydrocarbon gases (solvents) on the Alaska North Slope make the hydrocarbon miscible solvent injection process an important consideration for the EOR project in Schrader Bluff reservoir. Since Schrader Bluff oil is heavy and viscous, a water-alternating-gas (WAG) type of process for oil recovery is appropriate since such a process tends to derive synergetic benefits from both water injection (which provides mobility control and improvement in sweep efficiency) and miscible gas injection (which provides improved displacement efficiency). A miscible solvent slug injection process rather than continuous solvent injection is considered appropriate. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Coreflood experiments are also needed to determine the effect of solvent slug size, WAG ratio and solvent composition on the recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir.

  8. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2007-03-31T23:59:59.000Z

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

  9. Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and...

  10. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12T23:59:59.000Z

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  11. Turbine fuels from tar-sands bitumen and heavy oil. Part 2. Phase II. Laboratory sample production. Interim report, 1 October 1983-31 October 1985

    SciTech Connect (OSTI)

    Talbot, A.F.; Elanchenny, V.; Schwedock, J.P.; Swesey, J.R.

    1986-05-01T23:59:59.000Z

    The conversion of domestic tar-sands bitumens or heavy crude oils into aviation turbine fuels was studied in small scale equipment to demonstrate the process scheme consisting of hydrovisbreaking the bitumen or crude residuum follwed by catalytic hydrotreating or hydrocracking of the resultant naphtha or distillate fractions. Four different feedstocks were employed; two were bitumens (from Kentucky or Utah) and two were heavy crudes from California. Significant operating parameters were examined for each process step. Prototype naphtha and kerosene-type fuel samples compared well with JP-4 and JP-8 specifications, although fuels prepared from Utah bitumen (Sunnyside deposit) were deficient in freeze point. Initiation of Phase III, pilot-plant-scale evaluation of the process is recommended.

  12. RMOTC to Test Oil Viscosity Reduction Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA2WrayAsMUDRMOTC

  13. Note: Precision viscosity measurement using suspended microchannel resonators

    SciTech Connect (OSTI)

    Lee, I.; Lee, J. [Department of Mechanical Engineering, Sogang University, Seoul 121-742 (Korea, Republic of); Park, K. [Department of Mechanical, Industrial, and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881 (United States)

    2012-11-15T23:59:59.000Z

    We report the characterization of a suspended microchannel resonator (SMR) for viscosity measurements in a low viscosity regime (<10 mPa s) using two measurement schemes. First, the quality factor (Q-factor) of the SMR was characterized with glycerol-water mixtures. The measured Q-factor at 20 Degree-Sign C exhibits a bilinear behavior with the sensitivity of 1281 (mPa s){sup -1} for a lower (1-4 mPa s) and 355 (mPa s){sup -1} for a higher viscosity range (4-8 mPa s), respectively. The second scheme is the vibration amplitude monitoring of the SMR running in a closed loop feedback. When compared in terms of the measurement time, the amplitude-based measurement takes only 0.1 {approx} 1 ms while the Q-factor-based measurement takes {approx}30 s. However, the viscosity resolution of the Q-factor-based measurement is at least three times better than the amplitude-based measurement. By comparing the Q-factors of heavy water and 9.65 wt.% glycerol-water mixture that have very similar viscosities but different densities, we confirmed that the SMR can measure the dynamic viscosity without the density correction. The obtained results demonstrate that the SMR can measure the fluid viscosity with high precision and even real-time monitoring of the viscosity change is possible with the amplitude-based measurement scheme.

  14. Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field

    E-Print Network [OSTI]

    Rivero Diaz, Jose Antonio

    2002-01-01T23:59:59.000Z

    Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

  15. Development of artificial neural networks for steam assisted gravity drainage (SAGD) recovery method in heavy oil reservoirs.

    E-Print Network [OSTI]

    Sengel, Ayhan

    2013-01-01T23:59:59.000Z

    ??As no alternative energy source has been introduced to efficiently replace fossil fuels yet, the demand for oil and gas is still increasing in the… (more)

  16. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    J. Regular conventional oil production to 2100 and resource10% of total US oil production in 2004, almost entirelysteam-induced heavy oil production in Cali- fornia [30].

  17. Shear viscosity, cavitation and hydrodynamics at LHC

    E-Print Network [OSTI]

    Jitesh R. Bhatt; Hiranmaya Mishra; V. Sreekanth

    2011-09-28T23:59:59.000Z

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid become invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early during the evolution of the hydrodynamics in time $\\lesssim 2 $fm/c. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal term used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  18. Oil Sands Feedstocks

    Broader source: Energy.gov (indexed) [DOE]

    NCUT National Centre for Upgrading Technology 'a Canada-Alberta alliance for bitumen and heavy oil research' Oil Sands Feedstocks C Fairbridge, Z Ring, Y Briker, D Hager National...

  19. Modification of chemical and physical factors in steamflood in increase heavy oil recovery. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect (OSTI)

    Yortsos, Y.C

    1996-10-01T23:59:59.000Z

    The objectives of this contract is to carry our fundamental research in heavy oil recovery in the following areas: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on oil recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs. This report covers the work performed in these three areas in the past year. In the area of vapor-liquid flow we present a theoretical and numerical study of steam injection in a pore network. We characterize the displacement in terms of an effective mobility ratio and heat transfer parameters. Displacement patterns axe identified in the parameter space. In another study we discuss the problem of steam injection in fractured systems using visualization with micromodels. The interplay of drainage, imbibition and bubble growth is visualized. Conclusions are reached regarding the potential for steamflooding fractured systems. A third study focuses on the development of a pore-network model for foam formation and propagation in porous media. This model, for the first time, accounts for the fundamental mechanisms of foam propagation at the microscale and leads to the determination of various parameters that are currently treated empirically. The effect of viscous forces in displacements in heterogeneous media is described in two separate studies, one involving an extension of percolation theory to account for viscous effects, and another discussing the effect of geometry in general displacement processes.

  20. Stress tensor and bulk viscosity in relativistic nuclear collisions

    E-Print Network [OSTI]

    Fries, Rainer J.; Mueller, Berndt; Schaefer, Andreas.

    2008-01-01T23:59:59.000Z

    We discuss the influence of different initial conditions for the stress tensor and the effect of bulk viscosity on the expansion and cooling of the fireball created in relativistic heavy ion collisions. In particular, we explore the evolution...however, it does not significantly increase the entropy produced....

  1. Oil burners: Crude oil, atomization, and combustion efficiency. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The bibliography contains citations concerning fuel properties and boiler operations techniques to make maximum use of heavy crude oil, shale oil, and low grade fuels to reduce energy costs in boiler firing. Fuel properties pertain to chemical constituents, viscosity, desulfurization, and processing methods to upgrade the fuels. Operating techniques include atomization, dual-fuel burners, emission characteristics, and cost factors. Combustion efficiency is examined and some citations report on additives or processing techniques to improve the efficiency. The citations also report on studies of health effects in the use of synfuels, mostly as coal liquids to replace oil. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Oil burners: Crude oil, atomization, and combustion efficiency. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The bibliography contains citations concerning fuel properties and boiler operations techniques to make maximum use of heavy crude oil, shale oil, and low grade fuels to reduce energy costs in boiler firing. Fuel properties pertain to chemical constituents, viscosity, desulfurization, and processing methods to upgrade the fuels. Operating techniques include atomization, dual-fuel burners, emission characteristics, and cost factors. Combustion efficiency is examined and some citations report on additives or processing techniques to improve the efficiency. The citations also report on studies of health effects in the use of synfuels, mostly as coal liquids to replace oil. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Gas Viscosity at High Pressure and High Temperature

    E-Print Network [OSTI]

    Ling, Kegang

    2012-02-14T23:59:59.000Z

    Gas viscosity is one of the gas properties that is vital to petroleum engineering. Its role in the oil and gas production and transportation is indicated by its contribution in the resistance to the flow of a fluid both in porous media and pipes...

  4. Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows Thomas Cubaud*

    E-Print Network [OSTI]

    Cubaud, Thomas

    flows due to the effect of nearby boundaries. In particular, the translation of lubricated drops having are generated at the first focusing section by injecting a sili- cone oil liquid L1 , having a viscosity 1

  5. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Steven Schamel

    1998-02-27T23:59:59.000Z

    A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

  6. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Steven Schamel

    1998-03-20T23:59:59.000Z

    A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

  7. Development of a 16-MW sub th coal-water/heavy oil burner for front-wall firing

    SciTech Connect (OSTI)

    Thambimuthu, K.V.; Whaley, H. (EMR Canada/CANMET, Ottawa (CA)); Bennet, A.; Jonasson, K.A. (NRC Canada, Ottawa (CA))

    1990-06-01T23:59:59.000Z

    The Canadian program of coal-water fuel (CWF) technology development has included the demonstration of commercial burners for CWF in both coal and oil-designed utility boilers. The demonstrations clearly showed that these burners were prototypes, and were, in fact, modified oil burners that were mismatched to the rheological properties of the CWF. As the demonstrations were proceeding, a simultaneous research program was undertaken in which the basic principles governing atomization and combustion of CWF were studied. Results from the fundamental studies which led to the development of a novel prototype dual fuel CWF/oil burner are described. In the various stages of development, the burner was scaled up from 1.5 MW{sub th} to an industrial scale of 16 MS{sub th} for demonstration in a 20-MW{sub (e)} oil-designed industrial utility boiler and for a single-burner commercial operation in an oil designed package steam boiler. A summary of the burner performance in these demonstrations is also given in this paper.

  8. Aviation turbine fuels from tar-sands bitumen and heavy oils. Part 3. Laboratory sample production. Interim technical report, 1 July 1983-30 September 1986

    SciTech Connect (OSTI)

    Moore, H.F.; Johnson, C.A.; Benslay, R.M.; Sutton, W.A.

    1987-12-01T23:59:59.000Z

    The purpose of this research and development project is to provide sample quantities of aviation turbine fuel derived from tar sands and heavy oil feedstocks for testing and evaluation in programs sponsored by the Air Force Wright Aeronautical Laboratories (AFWAL). Samples of specification JP-4 Mil-T-5624L, JP-8 Mil-T-83133A, and variable quality JP-4 samples were produced via pilot plant operations. Data generated from Phases I, II, and III, were used to 1) optimize the processing scheme, 2) generate process material and energy balances for a commercial-sized plant, and 3) provide a detailed final flow diagram of the processing scheme. A final economic analysis was performed based on all contract data available.

  9. Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. [Quarterly report], January 1--March 31, 1996

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    1996-07-01T23:59:59.000Z

    Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. During this quarter, we focused on the development of relative permeabilities during steam displacement. Two particular directions were pursued: One involves the derivation of relative permeabilities based on a recently completed work on the pore-level mechanics of steam displacement. Progress has been made to relate the relative permeabilities to effects such as heat transfer and condensation, which are specific to steam injection problems. The second direction involves the development of three-phase relative permeabilities using invasion percolation concepts. We have developed models that predict the specific dependence of the permeabilities of three immiscible phases (e.g. awe, water and gas) on saturations and the saturation history. Both works are still in progress. In addition, work continues in the analysis of the stability of phase change fronts in porous media using a macroscopic approach.

  10. Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

    1997-05-11T23:59:59.000Z

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  11. Experimental and analytical modeling studies of steam injection with hydrocarbon additives to enhance recovery of San Ardo heavy oil

    E-Print Network [OSTI]

    Simangunsong, Roly

    2006-10-30T23:59:59.000Z

    :steam mass ratio. We develop a simplified analytical model that describes steam front advancement and oil production for the 1D displacement experiments. The model incorporates heat and material balance, fillup time and Darcy�s law pertaining...

  12. An evaluation of the benefits of combined steam and fireflooding as a recovery process for heavy oils

    SciTech Connect (OSTI)

    Moore, R.G.; Laureshen, C.J.; Belgrave, J.D.M.; Ursenbach, M.G. [Univ. of Calgary, Alberta (Canada); Jha, K.N. [Dept. of Natural Resources Canada, Ottawa (Canada)

    1995-02-01T23:59:59.000Z

    Lack of oil mobility is a major problem with in situ combustion field projects, since the combustion front displaces oil into an essentially unheated reservoir. One way of ensuring oil mobility is to utilize steam injection during the early life of the process, and then switch to combustion when heated communication paths have been developed. The in situ combustion characteristics of cores from the Primrose reservoir of Northeastern Alberta were investigated in a comprehensive series of 22 combustion tube tests. The program was carried out in order to evaluate the effectiveness of fireflooding in both cores that had been preheated to the extent that the oil was mobile and in those which were steam-flooded prior to dry combustion. Both normal- and 95% oxygen-enriched air were evaluated. Wet combustion tests were performed utilizing both liquid water and steam injection. The effects of parameters such as pressure, oxygen enrichment and injection flux on the combustion characteristics were examined. This paper will discuss the results of this study, which show that steam co-injection is more effective at lowering the oxygen requirement than was combustion following steam. Additionally, the cores which were preheated exhibited similar oxygen requirements to those which were presteamed to a near-residual saturation.

  13. Experimental investigation of in situ upgrading of heavy oil by using a hydrogen donor and catalyst during steam injection

    E-Print Network [OSTI]

    Mohammad, Ahmad A A

    2008-10-10T23:59:59.000Z

    . Catalysts have been used for decades in refineries to improve and extract the maximum value from each barrel of produced oil, by using upgrading processes such as hydro-treating, and hydro-cracking. Catalysts have also been used for the removal...

  14. Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil

    E-Print Network [OSTI]

    Nesse, Thomas

    2005-02-17T23:59:59.000Z

    , attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

  15. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly technical progress report, March 30, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Clarke, D. [Long Beach City Dept. of Oil Properties, CA (United States); Ershaghi, I. [Southern California, CA (United States); Davies, D. [Davies (David K.) and Associates, Kingwood, TX (United States); Phillips, C.; Mondragon, J. [Tidelands Oil Production Company (United States)

    1995-07-28T23:59:59.000Z

    This is the first quarterly technical progress report for the project. Although the contract was awarded on March 30, 1995 and Pre-Award Approval was given on January 26, 1995, the partners of this project initiated work on October 1, 1994. As such, this progress report summarizes the work performed from project inception. The production and injection data, reservoir engineering data, and digitized and normalized log data were all completed sufficiently by the end of the quarter to start work on the basic reservoir engineering and geologic stochastic models. Basic reservoir engineering analysis began June 1 and will continue to March, 1996. Design work for the 5 observation/core holes, oil finger printing of the cored oil sands, and tracers surveys began in January, 1995. The wells will be drilled from July--August, 1995 and tracer injection work is projected to start in October, 1995. A preliminary deterministic 3-D geologic model was completed in June which is sufficient to start work on the stochastic 3-D geologic model. The four proposed horizontal wells (two injectors and two producers) have been designed, equipment has been ordered, and the wells will be drilled from mid-August through September. Four existing steam injection wells were converted to hot water injection in March, 1995. Initial rates were kept low to minimize operational problems. Injection rates will be increased significantly in July.

  16. Oil production response to in situ electrical resistance heating

    E-Print Network [OSTI]

    McDougal, Fred William

    1987-01-01T23:59:59.000Z

    of the electric power through electrical resistance heating with a very small electromagnetic power absorption component. The oil viscosity decreases as the temperature increases thus stimulating oil production. DEDICATION I would like to dedicate this thesis... PROFILE FOR CASE S-2 INTRODUCTION Oil production can be stimulated by applying electrical power to the formation. The electrical power causes a temperature increase that reduces oil viscosity, resulting in increased oil production rates. Electrical...

  17. Causal dissipative hydrodynamics for heavy ion collisions

    E-Print Network [OSTI]

    Chaudhuri, A K

    2011-01-01T23:59:59.000Z

    We briefly discuss the recent developments in causal dissipative hydrodynamic for relativistic heavy ion collisions. Phenomenological estimate of QGP viscosity over entropy ratio from several experimental data, e.g. STAR's $\\phi$ meson data, centrality dependence of elliptic flow, universal scaling elliptic flow etc. are discussed. QGP viscosity, extracted from hydrodynamical model analysis can have very large systematic uncertainty due to uncertain initial conditions.

  18. Causal dissipative hydrodynamics for heavy ion collisions

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2011-01-23T23:59:59.000Z

    We briefly discuss the recent developments in causal dissipative hydrodynamic for relativistic heavy ion collisions. Phenomenological estimate of QGP viscosity over entropy ratio from several experimental data, e.g. STAR's $\\phi$ meson data, centrality dependence of elliptic flow, universal scaling elliptic flow etc. are discussed. QGP viscosity, extracted from hydrodynamical model analysis can have very large systematic uncertainty due to uncertain initial conditions.

  19. Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion

    E-Print Network [OSTI]

    Krishna Rajagopal; Nilesh Tripuraneni

    2010-02-16T23:59:59.000Z

    We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon plasma. We investigate the dependence of the energy density as a function of proper time on the values of the shear viscosity, the bulk viscosity, and second order coefficients, confirming that large changes in the values of the latter have negligible effects. Varying the shear viscosity between zero and a few times s/(4 pi), with s the entropy density, has significant effects, as expected based on other studies. Introducing a nonzero bulk viscosity also has significant effects. In fact, if the bulk viscosity peaks near the crossover temperature Tc to the degree indicated by recent lattice calculations in QCD without quarks, it can make the fluid cavitate -- falling apart into droplets. It is interesting to see a hydrodynamic calculation predicting its own breakdown, via cavitation, at the temperatures where hadronization is thought to occur in ultrarelativistic heavy ion collisions.

  20. Calculate viscosities for 355 liquids

    SciTech Connect (OSTI)

    Yaws, C.L.; Lin, Xiaoyan; Li Bu (Lamar Univ., TX (United States))

    1994-04-01T23:59:59.000Z

    Liquid viscosities are important factors in process design and operation. The viscosity of a liquid determines its flow properties, such as velocity and pressure drop. In addition, the heat- and mass-transfer characteristics of a liquid are affected by its viscosity. An equation can be used to calculate liquid viscosities as a function of temperature. In the accompanying table, regression coefficients are included for 355 compounds with five, six or seven carbon atoms--generally the most-widely used in the chemical and petroleum industries. To calculate the viscosity of a liquid at any temperature between its melting and critical points (T[sub min] and T[sub max]), use the following equation: log[sub 10] [eta][sub liq] = A + B/T + CT + DT[sup 2] where [eta][sub liq] = viscosity, cP, A,B,C and D = regression coefficients, and T = liquid temperature, K. Insert the temperature into the equation along with the corresponding regression coefficients from the table. The chemical formulae are listed by the number of carbon atoms.

  1. Borate-containing oil-in-water microemulsion fluid

    SciTech Connect (OSTI)

    Stayner, R.A.

    1982-06-29T23:59:59.000Z

    An oil-in-water emulsion is described that contains water, oil, borate and a surfactant to prevent the separation of the components into various phases. Suitable oils include both natural and synthetic oil. Preferred are the lower viscosity mineral oils having viscosities ranging from 10 centistroke at 40 C to 100 centistroke at 40 C. Mineral oil fractions of naphthenic-based stocks also are preferred because of their ease of emulsification as compared to paraffinic-based stocks. Suitable synthetic oils include the diesters, alkyl benzenes, and polyalphaolefins. The hydrated potassium borates are preferred. Suitable surfactants include the anionic, nonionic, cationic and amphoteric surfactants. 5 claims.

  2. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25T23:59:59.000Z

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  3. The measurement of the viscosity of cross-linked fracture fluids using a FANN Model 50C rotational viscometer

    E-Print Network [OSTI]

    Bastian, Peter Andrae

    1983-01-01T23:59:59.000Z

    System 8-1 Bob ZO Viscosity Curves ? Case I Delayed System 8-2 Bob 21 Viscosity Curves - Case II Delayed System 8-2 Bob 37 38 39 40 INTROOUCTION With the h1gher prices for oil and gas received during the past ten years, the petroleum industry has... in greatly increased productivity. The first hydraulic fracture treatments used viscous oil as the base for the fracture fluid. Later, the industry began using low viscosity, water-based fluids pumped at high injection rates. In the late 1960's, the use...

  4. e n e r g y Unconventional Oil Production

    E-Print Network [OSTI]

    Stuck In A Rock; A Hard Place; M. Engemann; Michael T. Owyang

    Highly variable oil prices and increasing world demand for oil have led producers to look for alternative sources of transportation fuel. Two popular alternatives are oil sands (aka tar sands) and oil shale. However, obtaining usable oil from oil sands or oil shale is more capital-intensive and more expensive than obtaining oil from conventional reserves. At what price of oil do these alternatives become cost-effective? Oil Sands Oil sands are a mixture of sand, water, clay and heavy, viscous oil called bitumen. The largest known deposits of oil sands are in Alberta, Canada, and the Orinoco Oil

  5. Viscosity of black liquor project

    SciTech Connect (OSTI)

    Barrall, G.A.

    1998-06-01T23:59:59.000Z

    The discussion of magnetic resonance in this report is confined to nuclides with a spin quantum number of 1/2. Included is a basic discussion of magnetic resonance; magnetic resonance relaxation and viscosity; and rhometers and viscometers. Many other effects are ignored for the sake of clarity.

  6. Anomalous-viscosity current drive

    DOE Patents [OSTI]

    Stix, T.H.; Ono, M.

    1986-04-25T23:59:59.000Z

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  7. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2004-12-01T23:59:59.000Z

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. Coreflood, quarter 5-spot study, compositional simulation, wettability, relative permeability study and streamline-based simulation were conducted in this project. 1D compositional simulation results agree reasonably well with those of the slim tube experiments. Injection of CO{sub 2}-NGL is preferable over that of PBG-NGL. MME is sensitive to pressure (in the range of 1300-1800 psi) for the injection of PBG-NGL, but not for CO{sub 2}-NGL. Three hydrocarbon phases form in this pressure range. As the mean thickness of the adsorbed organic layer on minerals increases, the oil-water contact angle increases. The adsorbed organic films left behind after extraction of oil by common aromatic solvents used in core studies, such as toluene and decalin, are thinner than those left behind by non-aromatic solvents, such as cyclohexane. The force of adhesion for minerals aged with just the asphaltene fraction is similar to that of the whole oil implying that asphaltenes are responsible for the mixed-wettability in this reservoir. A new relative permeability model for a four-phase, mixed-wet system has been proposed. A streamline module is developed which can be incorporated in an existing finite-difference based compositional simulator to model water flood, gas flood and WAG flood. Horizontal wells increase well deliverability over vertical wells, but sweep efficiency can decrease. The well performance depends on the well length, position, heterogeneity, and viscosity ratio. The productivity increase due to electromagnetic heating is a function of power intensity, flow rate, and frequency etc. The productivity of a well can be doubled by electromagnetic heating. A high-pressure quarter 5-spot model has been constructed to evaluate the sweep efficiency of miscible WAG floods. WAG displacement reduces bypassing compared to gas floods and improves oil recovery in cores. As the WAG ratio decreased and slug size increased, oil recovery increased. Oil was recovered faster with increased slug size and decreased WAG ratio in the simulations for field cases studied.

  8. Viscosity Measurement G.E. Leblanc

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    O.1 Shear Viscosity An important mechanical property of fluids is viscosity. Physical systems and Non-Newtonian Fluids l Dimensions and Units of Viscosity l Viscometer Types l Capillary M. Kostic and applications as diverse as fluid flow in pipes, the flow of blood, lubrication of engine parts, the dynamics

  9. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    tar sands/ extra-heavy oil and shale have zero Resource-D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Report

  10. Life Cycle Inventory of CO2 in an Enhanced Oil Recovery System

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Life Cycle Inventory of CO2 in an Enhanced Oil Recovery System P A U L I N A J A R A M I L L O manuscript received August 27, 2009. Accepted September 14, 2009. Enhanced oil recovery (EOR) has been into an oil reservoir to reduce oil viscosity,reduceinterfacialtension,andcauseoilswellingwhich improves oil

  11. SUPRI heavy oil research program

    SciTech Connect (OSTI)

    Brigham, W.E.; Ramey, H.J.; Castanier, L.M.

    1993-01-01T23:59:59.000Z

    This report summarizes the progress of the research performed by the Stanford University Petroleum Research Institute (SUPRI) during the past three years. Some of SUPRI's past results are discussed briefly for the following five projects: flow properties studies;in-situ combustion; additives to improve mobility control; reservoir definition; and support services. Abstracts of technical reports published from 1990--1993 are also included.

  12. Industrial Utilization of Coal-Oil Mixtures

    E-Print Network [OSTI]

    Dunn, J. E.; Hawkins, G. T.

    1982-01-01T23:59:59.000Z

    Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM...

  13. Determining the effective viscosity of a Shear Induced State Structure (SIS) surfactant, C16TMASal, during injection into a porous medium

    E-Print Network [OSTI]

    Platt, Frank Martin

    1994-01-01T23:59:59.000Z

    The purpose of this experimental study was to determine both the effective viscosity and the suitability of C16TASal for use in enhanced oil recovery. The work eventually involved the injection of a single phase fluid with various concentrations...

  14. Viscosity of a nucleonic fluid

    E-Print Network [OSTI]

    Aram Z. Mekjian

    2012-03-21T23:59:59.000Z

    The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.

  15. Making and breaking of water in crude oil emulsions

    E-Print Network [OSTI]

    Mehta, Shweta D.

    2006-04-12T23:59:59.000Z

    . This research aims to simulate an oil spill at sea by developing a new technique to make water in oil emulsions, without disturbing the marine wildlife. Further, this research also attempts to analyze the viscosities of water in oil emulsions and determine...

  16. Hyperon bulk viscosity in strong magnetic fields

    E-Print Network [OSTI]

    Monika Sinha; Debades Bandyopadhyay

    2009-06-06T23:59:59.000Z

    We study the bulk viscosity of neutron star matter including $\\Lambda$ hyperons in the presence of quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak process involving $\\Lambda$ hyperons and direct Urca processes are calculated here. In the presence of a strong magnetic field of $10^{17}$ G, the hyperon bulk viscosity coefficient is reduced whereas bulk viscosity coefficients due to direct Urca processes are enhanced compared with their field free cases when many Landau levels are populated by protons, electrons and muons.

  17. Shale Oil Production Performance from a Stimulated Reservoir Volume

    E-Print Network [OSTI]

    Chaudhary, Anish Singh

    2011-10-21T23:59:59.000Z

    .1 Unconventional resources ................................................................................. 1 1.2 Oil shale and shale oil ....................................................................................... 6 1.3 Production from unconventional..., heavy oil, shale gas and shale oil. On the other hand, conventional reservoirs can be produced at economic flow rates and produce economic volumes of oil and gas without large stimulation treatments or any special recovery process. Conventional...

  18. PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT

    E-Print Network [OSTI]

    Laughlin, Robert B.

    liquid fuels: 1) Improved Oil Recovery (IOR) can marginally increase production from existing reservoirs oil production declines from reservoirs that are past their peak production: 2) Heavy oil / oil sandsPEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT Robert L. Hirsch, SAIC

  19. Miscibility, solubility, viscosity, and density measurements for R-236fa with potential lubricants. Final report

    SciTech Connect (OSTI)

    Kang, H.M.; Pate, M.B.

    1999-02-01T23:59:59.000Z

    The report gives results of miscibility, solubility, viscosity, and density measurements for refrigerant R-236fa and two potential lubricants. (The data are needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The tested oils were pentaerythritol ester mixed-acid (ISO68), hereafter SW-68 manufactured by Castrol, and polyol ester mixed-acid (ISO46), hereafter Arctic-46 manufactured by Mobil. Miscibility was measured in a series of miniature test cells submerged in a constant temperature bath, precisely controlled over a temperature range of -50 to 90 C. Solubility, viscosity, and density data were also obtained for R-236fa mixed with the two oils for a refrigerant concentration of 0 to 40 wt % refrigerant over a temperature range of 30 to 100 C. This research shows that: (1) solubility, viscosity, and density are functions of temperature and concentration, (2) solubility increases with increasing temperature and refrigerant concentration (i.e., mass fraction of refrigerant). (3) viscosity decreases with increasing temperature and refrigerant concentration, and (4) density decreases with increasing temperature but increases with increasing refrigerant concentration. R-114 and naphthenic mineral oil were also tested.

  20. Turbine fuels from tar sands bitumen and heavy oil. Volume 1. Phase 3. Pilot plant testing, final design, and economics. Final report, 1 June 1985-31 March 1987

    SciTech Connect (OSTI)

    Talbot, A.F.; Carson, T.C.; Magill, L.G.; Swesey, J.R.

    1987-08-01T23:59:59.000Z

    Pilot-plant-scale demonstration of an upgrading/refining scheme to convert bitumen or heavy crude oil into high yields of specification-quality aviation turbine fuel was performed. An atmospheric residue from San Ardo (California) crude was converted under hydrovisbreaking conditions to synthetic crude for further refining. Naphtha cuts from the straight run and synthetic crude were combined, catalytically hydrotreated, then hydrocracked. Products from these operations were combined to produce two prototype specification fuels (JP-4 and JP-8) as well as two heavier, variable-quality fuels. An engineering design (Volume II) was developed for a 50,000 BPSD grass-roots refinery, from the pilot-plant operations. Capital investment and operating costs were estimated, and fuel manufacturing costs projected. Conclusions and recommendations for further work are included.

  1. Enhanced Oil Recovery Using the Alkaline-Surfactant-Polymer (ASP)

    E-Print Network [OSTI]

    Musharova, Darya

    2010-07-14T23:59:59.000Z

    and the phenomena occurred are described. The experiments conducted are considered to be unique for a selected oil sample with certain values of API gravity, viscosity, and chemical composition. Lab experiments conducted show the effect of polymer, alkali...

  2. Characteristics of Baku and eastern crudes as raw materials for lube oil production

    SciTech Connect (OSTI)

    Samedova, F.I.; Kasumova, A.M.

    1984-01-01T23:59:59.000Z

    This article presents data to show that the lube cuts from the Baku medium-wax crudes, in contrast to the eastern medium-wax crudes, will not give oils with viscosity indexes above 90 even when severly treated. The medium-wax Baku crudes have higher contents of naphthenic-paraffinic hydrocarbons, and their aromatic hydrocarbons are present in smaller amounts and have poorer viscosity-temperature properties. The Baku refineries have become the principal suppliers of lube oils in the USSR because of their use of low-wax crudes and relatively simple manufacturing processes. In recent years, the resources of low-wax crudes have declined while the medium-wax crudes have increased. The Baku medium-wax crudes are distinguished by higher contents of oils, including residual oils. It is concluded that the Baku medium-wax crudes should be processed to produce oils that are in short supply, such as transformer oils, turbine oils, compressor oils, high-viscosity oils of the P-28 type, and special-purpose oils (e.g., white oils, naphthenic oils) for which a high viscosity index is not a requirement. The medium-wax crudes from the eastern districts should be used to produce oils with viscosity indexes above 90. Includes 5 tables.

  3. The displacement of oil from porous media by in-situ combustion

    E-Print Network [OSTI]

    Corcoran, John Thomas

    1970-01-01T23:59:59.000Z

    combustion. The temperature of the combustion front was also higher in the ex- periments where water and air were injected to displace the high viscosity oil as compared to the experiments where air was injected alone to support combustion... porous media by in-situ combustion and to develop a technique using in-situ combustion which might have wide applica- tion in the oil industry. A three-step procedure for displacing both a low viscosity oil and a high viscosity oil from porous medium...

  4. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    none

    2006-09-15T23:59:59.000Z

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  5. The Bulk Viscosity of a Pion Gas

    E-Print Network [OSTI]

    Egang Lu; Guy D. Moore

    2011-01-31T23:59:59.000Z

    We compute the bulk viscosity of a gas of pions at temperatures below the QCD crossover temperature, for the physical value of pion mass, to lowest order in chiral perturbation theory. Bulk viscosity is controlled by number-changing processes which become exponentially slow at low temperatures when the pions become exponentially dilute, leading to an exponentially large bulk viscosity zeta ~ (F_0^8/m_\\pi^5) exp(2m_\\pi/T), where F_0 = 93 MeV is the pion decay constant.

  6. Bulk viscosity of N=2* plasma

    E-Print Network [OSTI]

    Alex Buchel; Chris Pagnutti

    2009-03-02T23:59:59.000Z

    We use gauge theory/string theory correspondence to study the bulk viscosity of strongly coupled, mass deformed SU(N_c) N=4 supersymmetric Yang-Mills plasma, also known as N=2^* gauge theory. For a wide range of masses we confirm the bulk viscosity bound proposed in arXiv:0708.3459. For a certain choice of masses, the theory undergoes a phase transition with divergent specific heat c_V ~ |1-T_c/T|^(-1/2). We show that, although bulk viscosity rapidly grows as T -> T_c, it remains finite in the vicinity of the critical point.

  7. Use of ammonia to reduce the viscosity of bottoms streams produced in hydroconversion processes

    DOE Patents [OSTI]

    Zaczepinski, Sioma (Houston, TX); Billimoria, Rustom M. (Houston, TX); Tao, Frank (Baytown, TX); Lington, Christopher G. (Houston, TX); Plumlee, Karl W. (Baytown, TX)

    1984-01-01T23:59:59.000Z

    Coal, petroleum residuum and similar carbonaceous feed materials are subjected to hydroconversion in the presence of molecular hydrogen to produce a hydroconversion effluent which is then subjected to one or more separation steps to remove lower molecular weight liquids and produce a heavy bottoms stream containing high molecular weight liquids and unconverted carbonaceous material. The viscosity of the bottoms streams produced in the separation step or steps is prevented from increasing rapidly by treating the feed to the separation step or steps with ammonia gas prior to or during the separation step or steps. The viscosity of the heavy bottoms stream produced in the final separation step is also controlled by treating these bottoms with ammonia gas. In a preferred embodiment of the invention, the effluent from the hydroconversion reactor is subjected to an atmospheric distillation followed by a vacuum distillation and the feeds to these distillations are contacted with ammonia during the distillations.

  8. Displacement of oil from reservoir rock using high molecular weight polymer solutions

    E-Print Network [OSTI]

    Barzi, Houshang

    1972-01-01T23:59:59.000Z

    underground reservoirs by the injection of water containing chemicals to increase its viscosity. Some laboratory research and field trials have been conducted to evaluate the effectiveness of viscous water in dis- placing oil from reservoir rock.... ia. Twenty-eight experiments were conducted. In twenty-two experiments oil was displaced from un- consolidated sand packs using polymers with viscosity that ranged from 160 cp to 3 cp. In five experiments crude oil was displaced. from...

  9. Freeze-out by bulk viscosity driven instabilities

    E-Print Network [OSTI]

    Torrieri, Giorgio; Mishustin, Igor

    2008-01-01T23:59:59.000Z

    We describe a new scenario (first introduced in [G. Torrieri, B. Tom\\'a\\v{s}ik and I. Mishustin, Phys. Rev. C \\textbf{77}, 034903 (2008)]) for freezeout in heavy ion collisions that could solve the lingering problems associated with the so-called HBT puzzle. We argue that bulk viscosity increases as $T$ approaches $T_c$. The fluid {then} becomes unstable against small perturbations, and fragments into clusters of a size much smaller than the total size of the system. These clusters maintain the pre-existing outward-going flow, as a spray of droplets, but develop no flow of their own, and hadronize by evaporation. We show that this scenario can explain HBT data and suggest how it can be experimentally tested.

  10. Cavitation from bulk viscosity in neutron stars and quark stars

    E-Print Network [OSTI]

    Jes Madsen

    2009-09-30T23:59:59.000Z

    The bulk viscosity in quark matter is sufficiently high to reduce the effective pressure below the corresponding vapor pressure during density perturbations in neutron stars and strange stars. This leads to mechanical instability where the quark matter breaks apart into fragments comparable to cavitation scenarios discussed for ultra-relativistic heavy-ion collisions. Similar phenomena may take place in kaon-condensed stellar cores. Possible applications to compact star phenomenology include a new mechanism for damping oscillations and instabilities, triggering of phase transitions, changes in gravitational wave signatures of binary star inspiral, and astrophysical formation of strangelets. At a more fundamental level it points to the possible inadequacy of a hydrodynamical treatment of these processes in compact stars.

  11. Shear viscosity of the quark-gluon plasma in a kinetic theory approach

    SciTech Connect (OSTI)

    Puglisi, A.; Plumari, S.; Scardina, F.; Greco, V. [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95125 Catania, Italy and Laboratorio Nazionale del Sud, INFN-LNS, Via S. Sofia 63, I-95125 Catania (Italy)

    2014-05-09T23:59:59.000Z

    One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound ?/s=1/4? for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particles interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed ?/s and have a comparison with physical observables like elliptic flow.

  12. Measurement of DWPF glass viscosity - Final Report

    SciTech Connect (OSTI)

    Harbour, J.R.

    2000-02-17T23:59:59.000Z

    This report details the results of a scoping study funded by the Defense Waste Processing Facility (DWPF) for the measurement of melt viscosities for simulated glasses representative of Macrobatch 2 (Tank 42/51 feed).

  13. Factors affecting viscosity changes in corn

    E-Print Network [OSTI]

    McGill, Kendra Louise

    1995-01-01T23:59:59.000Z

    of heating rate, holding temperature and CMC. Differences were found to exist between meals from different crop years which were not attributable to particle size. When tested at 13, 15 and 17% solids, new meal consistently developed viscosity earliest...

  14. Quartz resonator fluid density and viscosity monitor

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Wiczer, James J. (Albuquerque, NM); Cernosek, Richard W. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Gebert, Charles T. (Albuquerque, NM); Casaus, Leonard (Bernalillo, NM); Mitchell, Mary A. (Tijeras, NM)

    1998-01-01T23:59:59.000Z

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  15. Miscibility, solubility, and viscosity measurements for R-236EA with potential lubricants. Final report, October 1992-March 1995

    SciTech Connect (OSTI)

    Zoz, S.C.; Pate, M.B.

    1996-05-01T23:59:59.000Z

    The report gives results of miscibility, solubility, and viscosity measurements of refrigerant R-236ea with three potential lubricants. The lubricants were a mineral oil, alkylbenzene, and polyol ester, each with a nominal viscosity of 68 cSt. The miscibility tests were performed in a test facility consisting of a series of miniature test cells in a constant-temperature bath. Critical solution temperatures obtained from the miscibility data are presented for each refrigerant/lubricant combination. In addition to miscibility data, both solubility and viscosity data were obtained for R-236ea and the most promising lubricant. For comparison purposes, data were also taken for the existing U.S. Navy shipboard chiller refrigerant and lubricant concentration, namely 4-114 and a naphthenic oil.

  16. Unconsolidated oil sands: Vertical Single Well SAGD optimization.

    E-Print Network [OSTI]

    Jamali, Ali

    2014-01-01T23:59:59.000Z

    ??Several recovery processes have been proposed for heavy oil and oil sands de-pending on the reservoir and fluid properties, among which steam-assisted gravity drainage (SAGD)… (more)

  17. OIL SHALE

    E-Print Network [OSTI]

    Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

    Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

  18. Manufacture of naphthenic type lubricating oils

    SciTech Connect (OSTI)

    Reynolds, R.W.

    1981-02-24T23:59:59.000Z

    A process for making naphthenic type lubricating oils from a low viscosity waxy crude which comprises distilling said low viscosity waxy crude to 500 to 650/sup 0/F. At atmospheric pressure to separate distillable fractions therefrom, subjecting the residue to a vacuum distillation at about 25 to about 125 mm Hg absolute pressure to obtain one or more gas oil fractions, optionally hydrotreating said gas oil fractions in the presence of a Ni/Mo catalyst at 550 to 650/sup 0/F, 0.25 to 1.0 lhsv, and 700-1500 psig, and catalytically dewaxing said distillates in the presence of a H+ form mordenite catalyst containing a group VI or group VIII metal at 550 to 750/sup 0/F, 500 to 1500 psig and 0.25 to 5.0 lhsv, to obtain said naphthenic type oils having pour points of from about -60 to +20/sup 0/F.

  19. Lowering kraft black liquor viscosity of ultrafiltration

    SciTech Connect (OSTI)

    Hill, M.K.; Violette, D.A.; Woerner, D.L.

    1988-10-01T23:59:59.000Z

    High viscosity is a major factor limiting the percentage total dissolved solids (%TDS) to which kraft black liquor (KBL), a spent pulping liquor, can be concentrated before it is burned to recover its fuel value and its inorganic chemicals. The effect on black liquor viscosity of removing high molecular weight lignin by ultrafiltration of 16% and 24% TDS liquors was studied. Viscosities of ultrafiltration permeates were reduced relative to feed black liquors. When a permeate was concentrated to higher %TDS levels, its viscosity decreased yet further relative to feed samples evaporated to similar solids levels. Retentate viscosity was very high relative to both feed and permeate. Ultrafiltration was carried out at 75/degrees/C using polysulfone membranes in a plate-and-frame or hollow fiber system. Flux rates varied greatly depending upon the specific liquor used. Flux was enhanced by increased temperature and increased linear velocity. The membrane molecular weight cutoff (MWCO) typically used was 50,000; increasing 100,000 or 200,000 did not enhance flux.

  20. Predicting viscosities of aqueous salt mixtures

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R.

    1992-01-01T23:59:59.000Z

    Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO[sub 3]/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

  1. Predicting viscosities of aqueous salt mixtures

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R.

    1992-12-01T23:59:59.000Z

    Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO{sub 3}/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

  2. Shear Viscosity of a Hot Pion Gas

    E-Print Network [OSTI]

    Robert Lang; Norbert Kaiser; Wolfram Weise

    2012-09-04T23:59:59.000Z

    The shear viscosity of an interacting pion gas is studied using the Kubo formalism as a microscopic description of thermal systems close to global equilibrium. We implement the skeleton expansion in order to approximate the retarded correlator of the viscous part of the energy-momentum tensor. After exploring this in $g\\phi^4$ theory we show how the skeleton expansion can be consistently applied to pions in chiral perturbation theory. The shear viscosity $\\eta$ is determined by the spectral width, or equivalently, the mean free path of pions in the heat bath. We derive a new analytical result for the mean free path which is well-conditioned for numerical evaluation and discuss the temperature and pion-mass dependence of the mean free path and the shear viscosity. The ratio $\\eta/s$ of the interacting pion gas exceeds the lower bound $1/4\\pi$ from AdS/CFT correspondence.

  3. Fluid catalytic cracking of heavy petroleum fractions

    SciTech Connect (OSTI)

    McHenry, K.W.

    1981-06-30T23:59:59.000Z

    A process is claimed for fluid catalytic cracking of residuum and other heavy oils comprising of gas oil, petroleum residue, reduced and whole crudes and shale oil to produce gasoline and other liquid products which are separated in various streams in a fractionator and associated vapor recovery equipment. The heat from combustion of coke on the coked catalyst is removed by reacting sulfur-containing coke deposits with steam and oxygen in a separate stripper-gasifier to produce a low btu gas stream comprising of sulfur compounds, methane, carbon monoxide, hydrogen, and carbon dioxide at a temperature of from about 1100/sup 0/F. To about 2200/sup 0/F. The partially regenerated catalyst then undergoes complete carbon removal in a regeneration vessel. The regenerated catalyst is recycled for re-use in the cracking of heavy petroleum fractions. The liquid products are gasoline, distillates, heavy fuel oil, and light hydrocarbons.

  4. High Temperature, high pressure equation of state density correlations and viscosity correlations

    SciTech Connect (OSTI)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31T23:59:59.000Z

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  5. Viscosity of a nanoconfined liquid during compression

    SciTech Connect (OSTI)

    Khan, Shah H. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25120 (Pakistan); Kramkowski, Edward L.; Ochs, Peter J.; Wilson, David M.; Hoffmann, Peter M., E-mail: hoffmann@wayne.edu [Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201 (United States)

    2014-01-13T23:59:59.000Z

    The viscous behavior of liquids under nanoconfinement is not well understood. Using a small-amplitude atomic force microscope, we found bulk-like viscosity in a nanoconfined, weakly interacting liquid. A further decrease in viscosity was observed at confinement sizes of a just few molecular layers. Overlaid over the continuum viscous behavior, we measured non-continuum stiffness and damping oscillations. The average stiffness of the confined liquid was found to scale linearly with the size of the confining tip, while the damping scales with the radius of curvature of the tip end.

  6. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOE Patents [OSTI]

    Gordon, John Howard

    2014-09-09T23:59:59.000Z

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  7. jeteas.scholarlinkresearch.org Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 3(1):33-37(ISSN: 2141-7016) A Comparative Study of Soya Bean Oil and Palm Kernel Oil as Alternatives to Transformer Oil

    E-Print Network [OSTI]

    U. T. Henshaw

    This study investigated the use of soya bean oil and palm kernel oil as alternatives to mineral oil in a transformer system. Crude samples of these oils and their blend in varied proportions were tested for dielectric strength, pour point, flash point, kinematic viscosity, density and moisture content. The results showed that soya bean oil and palm kernel oil have good properties to act as insulating and cooling liquid in a transformer. These properties could be further improved when the oils are refined and purified. Soya bean oil and palm kernel oil have dielectric strengths of 39 kV and 25 kV respectively in their crude states compared with transformer (mineral) oil which has a maximum dielectric strength of 50 kV. Blend of soya bean oil and palm kernel oil showed synergy only in pour point and viscosity. The results of the study further showed that soya bean oil and palm kernel oil and their blends have very high flash points of 234°C and 242°C respectively. In terms of economic costs and environmental considerations, soya bean oil and palm kernel oil appear to be viable alternatives to transformer oils

  8. Developing Enzyme and Biomimetic Catalysts for Upgrading Heavy Crudes via Biological Hydrogenation and Hydrodesulfurization

    SciTech Connect (OSTI)

    Borole, A.P.

    2006-08-22T23:59:59.000Z

    The recovery and conversion of heavy oils is limited due to the high viscosity of these crudes and their high heteroatom content. Conventional technology relies on thermochemical hydrogenation and hydrodesulfurization to address these problems and is energy intensive due to the high operating temperature and pressure. This project was initiated to explore biological catalysts for adding hydrogen to the heavy oil molecules. Biological enzymes are efficient at hydrogen splitting at very mild conditions such as room temperature and pressure, however, they are very specific in terms of the substrates they hydrogenate. The goal of the project was to investigate how the specificity of these enzymes can be altered to develop catalysts for oil upgrading. Three approaches were used. First was to perform chemical modification of the enzyme surface to improve binding of other non-natural substrates. Second approach was to expose the deeply buried catalytic active site of the enzyme by removal of protein scaffolding to enable better interaction with other substrates. The third approach was based on molecular biology to develop genetically engineered systems for enabling targeted structural changes in the enzyme. The first approach was found to be limited in success due to the non-specificity of the chemical modification and inability to target the region near the active site or the site of substrate binding. The second approach produced a smaller catalyst capable of catalyzing hydrogen splitting, however, further experimentation is needed to address reproducibility and stability issues. The third approach which targeted cloning of hydrogenase in alternate hosts demonstrated progress, although further work is necessary to complete the cloning process. The complex nature of the hydrogenase enzyme structure-function relationship and role of various ligands in the protein require significant more research to better understand the enzyme and to enable success in strategies in developing catalysts with broader specificity as that required for crude upgrading.

  9. Hydrotreatment of Athabasca bitumen derived gas oil over Ni-Mo, Ni-W, and Co-Mo catalysts

    SciTech Connect (OSTI)

    Diaz-Real, R.A.; Mann, R.S.; Sambi, I.S. (Univ. of Ottawa, Ontario (Canada). Dept. of Chemical Engineering)

    1993-07-01T23:59:59.000Z

    The hydrotreatment of Athabasca bitumen derived heavy gas oil containing 4.08% S and 0.49% N was carried out in a trickle bed reactor over Ni-W, Ni-Mo, and Co-Mo catalysts supported on zeolite-alumina-silica at 623-698 K, LHSV of 1-4, gas flow rate 890 m[sup 3][sub H2]/m[sup 3][sub oil] (5,000 sef/bbl), and pressure of 6.89 MPa. Analyses for viscosity, density, aniline point, ASTM mid boiling point distillation, C/H ratio, and percentage of N and S in the final product were carried out to characterize the product oil. The amounts of N and S removed indicated the hydrodenitrogenation and hydrodesulfurization activity of the catalysts. Results of zeolite-alumina-silica-supported catalysts are compared to those obtained with commercially available Ni-Mo, Ni-W, and Co-Mo on [gamma]-alumina. Ni-Mo supported on zeolite-alumina-silica was most active and could remove as much as 99 % S and 89% N present in the oil at 698 K. The data for HDN and HDS fitted the pseudo first order model. The kinetic model is described in detail.

  10. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Markun, Francis (Joliet, IL); Zawadzki, Mary T. (South Bend, IN)

    1998-01-01T23:59:59.000Z

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  11. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28T23:59:59.000Z

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  12. Visualization of Solution Gas Drive in Viscous Oil, SUPRI TR-126

    SciTech Connect (OSTI)

    George, D.S.; Kovscek, A.R.

    2001-07-23T23:59:59.000Z

    Several experimental studies of solution gas drive are available in this report. Almost all of the studies have used light oil. Solution gas drive behavior, especially in heavy oil reservoirs, is poorly understood. Experiments were performed in which pore-scale solution gas drive phenomena were viewed in water/carbon dioxide and viscous oil/carbon dioxide systems. A new pressure vessel was designed and constructed to house silicon-wafer micromodels that previously operated at low (<3 atm) pressure. The new apparatus is used for the visual studies. Several interesting phenomena were viewed. The repeated nucleation of gas bubbles was observed at a gas-wet site occupied by dirt. Interestingly, the dissolution of a gas bubble into the liquid phase was previously recorded at the same nucleation site. Gas bubbles in both systems grew to span one ore more pore bodies before mobilization. Liquid viscosity affected the ease with which gas bubbles coalesced. More viscous solutions result in slower rates of coalescence. The transport of solid particles on gas-liquid interfaces was also observed.

  13. ALKALI – CATALYSED PRODUCTION OF BIODIESEL FUEL FROM NIGERIAN CITRUS SEEDS OIL

    E-Print Network [OSTI]

    unknown authors

    The potential of oil extracted from the seeds of three different Nigerian citrus fruits for biodiesel production was investigated. Fatty acid alkyl esters were produced from orange seed oil, grape seed oil and tangerine seed oil by transesterification of the oils with ethanol using potassium hydroxide as a catalyst. In the conversion of the citrus seed oils to alkyl esters (biodiesel), the grape seed oil gave the highest yield of 90.6%, while the tangerine seed oil and orange seed oil gave a yield of 83.1 % and 78.5%, respectively. Fuel properties of the seed oil and its biodiesel were determined. The results showed that orange seed oil had a density of 730 Kg/m 3, a viscosity of 36.5 mm 2 /s, and a pour point of- 14 o C; while its biodiesel fuel had a density of 892 Kg/m 3, a viscosity of 5.60 mm 2 /s, and a pour point of- 25 o C. Grape seed oil had a density of 675 Kg/m 3, a viscosity of 39.5 mm 2 /s, and a pour point of- 12 o C, while its biodiesel fuel had a density of 890 Kg/m 3, a viscosity of 4.80 mm 2 /s, and a pour point of- 22 o C. Tangerine seed oil had an acid value of 1.40 mg/g, a density of 568 Kg/m 3, a viscosity of 37.3 mm 2 /s, and a pour point of- 15 o C, while its biodiesel fuel had an acid value of 0.22 mg/g, a density of 895 Kg/m 3, a viscosity of 5.30 mm 2 /s, and a pour point of- 24 o C.

  14. A three-phase K-value study for pure hydrocarbons/water and crude oil/water systems

    E-Print Network [OSTI]

    Lanclos, Ritchie Paul

    1990-01-01T23:59:59.000Z

    Steam distillation, or vaporization of crude oil in porous media is on of the major mechanisms responsible for high oil recovery by steamflooding from heavy oil as well as light oil reservoir systems. Several authors have reported steam dsitillation...-phase equilibrium data for hydrocarbon/water systems ranging from light to heavy crude oil fractions. ! Experimental data describing the phase behavior and the hydrocarbon/water separation process for multi-component hydrocarbon/water and crude oil...

  15. Shear viscosity of hot nuclear matter by the mean free path method

    E-Print Network [OSTI]

    D. Q. Fang; Y. G. Ma; C. L. Zhou

    2014-04-17T23:59:59.000Z

    The shear viscosity of hot nuclear matter is investigated by using the mean free path method within the framework of IQMD model. Finite size nuclear sources at different density and temperature are initialized based on the Fermi-Dirac distribution. The results show that shear viscosity to entropy density ratio decreases with the increase of temperature and tends toward a constant value for $\\rho\\sim\\rho_0$, which is consistent with the previous studies on nuclear matter formed during heavy-ion collisions. At $\\rho\\sim\\frac{1}{2}\\rho_0$, a minimum of $\\eta/s$ is seen at around $T=10$ MeV and a maximum of the multiplicity of intermediate mass fragment ($M_{\\text{IMF}}$) is also observed at the same temperature which is an indication of the liquid-gas phase transition.

  16. The effects of degraded oil and pre-frying treatments on the quality of tortilla chips

    E-Print Network [OSTI]

    Tseng, Yi-Chang

    1995-01-01T23:59:59.000Z

    Refined soybean oils were degraded at 190C for 60 hours. It was observed that degradation time correlated well with free fatty acid contents, total polar materials, convective heat transfer coefficient, color, specific gravity, viscosity...

  17. Viscosities of natural gases at high pressures and high temperatures

    E-Print Network [OSTI]

    Viswanathan, Anup

    2007-09-17T23:59:59.000Z

    Estimation of viscosities of naturally occurring petroleum gases provides the information needed to accurately work out reservoir-engineering problems. Existing models for viscosity prediction are limited by data, especially at high pressures...

  18. EFFECT OF GLASS COMPOSITION ON ACTIVATION ENERGY OF VISCOSITY...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3389-3399 (2008). 3. D. R. NEUVILLE, "Viscosity, structure and mixing in (Ca, Na) silicate melts," Chem. Geol., 229, 28 (2006). 4. P. HRMA, "High-temperature Viscosity of...

  19. Naphthenic lube oils

    SciTech Connect (OSTI)

    Hettinger Jr., W. P.; Beck, H. W.; Rozman, G. J.; Turrill, F. H.

    1985-05-07T23:59:59.000Z

    A process is disclosed for increasing the volume of lubricating oil base stocks recovered from a crude oil. A fraction having an atmospheric boiling range of about 675/sup 0/ to 1100/sup 0/ F. is recovered by vacuum distillation. This fraction is treated with furfural to extract a hydrocarbon mixture containing at least 50 volume % aromatic hydrocarbons. The raffinate is a lubricating oil base stock very high in paraffinic hydrocarbons and low in naphthenic hydrocarbons. The fraction extracted by the furfural contains at least about 50 volume % aromatic hydrocarbons and less than about 10 volume % paraffinic hydrocarbons. The mixture is hydrotreated to hydrogenate a substantial portion of the aromatic hydrocarbons. The hydrotreated product then is catalytically dewaxed. After removal of low boiling components, the finished lubricating oil base stock has a viscosity of at least about 200 SUS at 100/sup 0/ F., a pour point of less than 20/sup 0/ F. and contains at least 50 volume % of naphthenic hydrocarbons, a maximum of about 40 volume % aromatic hydrocarbons, and a maximum of about 10 volume % paraffinic hydrocarbons.

  20. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III

    SciTech Connect (OSTI)

    Schamel, Steven; Deo, Milind; Deets, Mike

    2002-02-21T23:59:59.000Z

    The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

  1. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III

    SciTech Connect (OSTI)

    Schamel, S.

    2001-01-09T23:59:59.000Z

    The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

  2. Ternary liquid mixture viscosities and densities

    SciTech Connect (OSTI)

    Wei, I.C.; Rowley, R.L.

    1984-01-01T23:59:59.000Z

    Liquid mixture viscosities and densities have been measured at 298.15 K and ambient pressure for 20 ternary systems. Twelve ternary compositions, encompassing the entire composition range, have been chosen for each system in an effort to test a newly proposed predictive equation based on local compositions. Viscosities calculated by using the local composition model agreed with the experimental data within an average absolute deviation of 6.4%. No adjustable parameters were used and only binary interactions in the form of NRTL constants were input. The results of these studies indicate that the local composition model predictions are generally as good for multicomponent systems as they are for the corresponding binaries. 24 references, 3 tables.

  3. RELAP-7 Numerical Stabilization: Entropy Viscosity Method

    SciTech Connect (OSTI)

    R. A. Berry; M. O. Delchini; J. Ragusa

    2014-06-01T23:59:59.000Z

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

  4. Use of naphthenic base stocks in engine oil formulations

    SciTech Connect (OSTI)

    Josefina, V.C.M.; Armando, I.R.

    1988-01-01T23:59:59.000Z

    The use of naphthenic base stocks in the formulation of engine oils has always been restricted due to certain physico-chemical properties (i.e. low oxidation stability, high volatility, great variation of the viscosity with the temperature) as well as the limited availability of this type of base oil in many parts of the world. This paper summarizes the experimental results followed in the development of a crankcase engine oil formulation SAE 40, API SF/CC with maximum usage of a naphthenic base stock MVIN-170 combined with HVI stocks and conventional additive technologies. The physico-chemical characterization of the MVIN-170 base stock, a conventional processed napthenic oil that Maraven (affiliate of PDVSA) commercializes from Isla Refinery of Curazao, is presented and compared with other napthenic oils coming from other crude sources of processes and with parafinic base stocks of equivalent viscosity.

  5. The Role of Viscosity in TATB Hot Spot Ignition

    SciTech Connect (OSTI)

    Fried, L E; Zepeda-Ruis, L; Howard, W M; Najjar, F; Reaugh, J E

    2011-08-02T23:59:59.000Z

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  6. 1 Intevep/2002/papers/FoamyOil-Pt2/nucleation_5-03.doc Modeling Foamy Oil Flow in Porous Media II

    E-Print Network [OSTI]

    Joseph, Daniel D.

    in a depletion experiment in which oil is pulled out of a closed sand pack at a constant rate reservoirs of heavy foamy oil under solution gas drive. All of the background motivation, the arguments1 · Intevep/2002/papers/FoamyOil-Pt2/nucleation_5-03.doc Modeling Foamy Oil Flow in Porous Media II

  7. The effect of asphalt deposition on recovery of oil by a pentane slug

    E-Print Network [OSTI]

    Bhagia, Nanik S

    1965-01-01T23:59:59.000Z

    ":ty reduction increases, in general, with the increase in amount of, asphalt contained ir the oil. The increases in recovery at breakthrough due to asphalt deposition were noted for four asphaltic crude oils and were compared to those of asphalt-free refined... substantial range, the gain in recovery at breakthrough of asphaltic oils over refined oils of the same viscosity increases with increase in size of slug used. This is attributed to more favorable mobility ratios resulting from asphalt deposition during...

  8. VISCOSITY IN PLANETARY RINGS WITH SPINNING SELF-GRAVITATING PARTICLES

    SciTech Connect (OSTI)

    Yasui, Yuki; Ohtsuki, Keiji [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Daisaka, Hiroshi [Graduate School of Commerce and Management, Hitotsubashi University, Tokyo 186-8601 (Japan)

    2012-05-15T23:59:59.000Z

    Using local N-body simulation, we examine viscosity in self-gravitating planetary rings. We investigate the dependence of viscosity on various parameters in detail, including the effects of particle surface friction. In the case of self-gravitating rings with low optical depth, viscosity is determined by particle random velocity. Inclusion of surface friction slightly reduces both random velocity and viscosity when particle random velocity is determined by inelastic collisions, while surface friction slightly increases viscosity when gravitational encounters play a major role in particle velocity evolution, so that viscous heating balances with increased energy dissipation at collisions due to surface friction. We find that including surface friction changes viscosity in dilute rings up to a factor of about two. In the case of self-gravitating dense rings, viscosity is significantly increased due to the effects of gravitational wakes, and we find that varying restitution coefficients also change viscosity in such dense rings by a factor of about two. We confirm that our numerical results for viscosity in dense rings with gravitational wakes can be well approximated by a semianalytic expression that is consistent with a previously obtained formula. However, we find that this formula seems to overestimate viscosity in dense rings far from the central planet, where temporary gravitational aggregates form. We derive semianalytic expressions that reproduce our numerical results well for the entire range of examined parameters.

  9. Vapour extraction of heavy oil and bitumen

    SciTech Connect (OSTI)

    Das, K.A.; Butler, R.M. [Univ. of Calgary (Canada)

    1994-12-31T23:59:59.000Z

    This paper describes the process of vapor extraction for the recovery of petroleum and bitumen. The selection of solvent is critical, and it is shown that butane may be a good solvent for shallow reservoirs. Experiments are described in a Hele-Shaw cell and Packed Visual Model.

  10. heavy_oil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors |hcelliott Ames Laboratory Profilehe 2

  11. Ashland Oil Inc. has new heavy oil cracking technology

    SciTech Connect (OSTI)

    Not Available

    1980-04-21T23:59:59.000Z

    Ashland's new ''Reduced Crude Conversion'' is a fluid catalytic cracking process that permits more efficient use of the bottoms of the crude barrel, including the production of a given amount of gasoline from 20% less crude. Gasoline yields go from 49.8% for Arabian light crudes to 56.9% for Murban crudes. The new process, details of which have not been revealed, operates at ''high'' temperatures and about 1 atm; requires no feed hydrogen (and therefore, according to Ashland, compares favorably with hydrocracking); is not inhibited by catalyst poisons such as nickel and vanadium, even though these metals might adhere to the proprietary catalyst; and probably uses a zeolite catalyst. Ashland is planning a $70 million, 40,000 bbl/day unit which is scheduled to go on stream in 1982 at its Catlettsburg, Ky., refinery.

  12. The extent of chronic marine oil pollution in southeastern Newfoundland waters assessed through beached

    E-Print Network [OSTI]

    Jones, Ian L.

    on their feathers is heavy fuel oil mixed with lubricants, the mixture found in bilges of large vessels. BeachedThe extent of chronic marine oil pollution in southeastern Newfoundland waters assessed through America. Oiled seabirds have washed up on beaches in Newfoundland for many decades. Most oil

  13. Two-dimensional nanostructured Y{sub 2}O{sub 3} particles for viscosity modification

    SciTech Connect (OSTI)

    He, Xingliang; Xiao, Huaping; Liang, Hong, E-mail: hliang@tamu.edu [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843-3123 (United States); Kyle, Jonathan P.; Terrell, Elon J. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States)

    2014-04-21T23:59:59.000Z

    Nanoparticle additives have been shown to improve the mechanical and transport phenomena of various liquids; however, little has been done to try and explain the rheological modifications provided from such modifications from a theoretical standpoint. Here, we report a non-Einstein-like reduction of viscosity of mineral oil with the utilization of yttrium oxide nanosheet additives. Experimental results, coupled with generalized smoothed-particle hydrodynamics simulations, provide insight into the mechanism behind this reduction of fluid shear stress. The ordered inclination of these two-dimensional nanoparticle additives markedly improves the lubricating properties of the mineral oil, ultimately reducing the friction, and providing a way in designing and understanding next generation of lubricants.

  14. Deep Placement Gel Bank as an Improved Oil Recovery Process: Modeling, Economic Analysis and Comparison to Polymer Flooding

    E-Print Network [OSTI]

    Seyidov, Murad

    2011-08-08T23:59:59.000Z

    , the combination of delayed production response and large polymer amounts cause such projects to be less economically favorable than deep gel placement treatments. From results of several sensitivity runs, it can be concluded that plug size and oil viscosity...

  15. Non-invasive fluid density and viscosity measurement

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    2012-05-01T23:59:59.000Z

    The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

  16. Torsional Response and Dissipationless Viscosity in Topological Insulators

    E-Print Network [OSTI]

    Taylor L. Hughes; Robert G. Leigh; Eduardo Fradkin

    2011-01-18T23:59:59.000Z

    We consider the visco-elastic response of the electronic degrees of freedom in 2D and 3D topological insulators (TI). Our primary focus is on the 2D Chern insulator which exhibits a bulk dissipationless viscosity analogous to the quantum Hall viscosity predicted in integer and fractional quantum Hall states. We show that the dissipationless viscosity is the response of a TI to torsional deformations of the underlying lattice geometry. The visco-elastic response also indicates that crystal dislocations in Chern insulators will carry momentum density. We briefly discuss generalizations to 3D which imply that time-reversal invariant TI's will exhibit a quantum Hall viscosity on their surfaces.

  17. Saturation of elliptic flow and shear viscosity

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2007-10-08T23:59:59.000Z

    Effect of shear viscosity on elliptic flow is studied in causal dissipative hydrodynamics in 2+1 dimensions. Elliptic flow is reduced in viscous dynamics. Causal evolution of minimally viscous fluid ($\\eta/s$=0.08), can explain the PHENIX data on elliptic flow in 16-23% Au+Au collisions up to $p_T\\approx$3.6 GeV. In contrast, ideal hydrodynamics, can explain the same data only up to $p_T\\approx$1.5 GeV. $p_T$ spectra of identified particles are also better explained in minimally viscous fluid than in ideal dynamics. However, saturation of elliptic flow at large $p_T$ is not reproduced.

  18. Entropy & viscosity bound of strange stars

    E-Print Network [OSTI]

    Sibasish Laha; Taparati Gangopadhyay; Manjari Bagchi; Mira Dey; Jishnu Dey; Monika Sinha; Subharthi Ray

    2007-02-08T23:59:59.000Z

    At finite temperature (T) there is a link with general relativity and hydrodynamics that leads to a lower bound for the ratio of shear viscosity and entropy density (\\eta/s). We find that the bound is saturated in the simple model for quark matter that we use for strange stars at T = 80 MeV, at the surface of a strange star. At this T we have the possibility of cosmic separation of phases. We find that, although strongly correlated, the quark matter at the surface of strange stars constitute the most perfect interacting fluid permitted by nature. At the centre of the star, however, the density is higher and conditions are more like the results found for perturbative QCD.

  19. Sensor for viscosity and shear strength measurement

    SciTech Connect (OSTI)

    Ebadian, M.A.; Dillion, J.; Moore, J.; Jones, K.

    1998-01-01T23:59:59.000Z

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. Two different viscometer techniques are being investigated in this study, based on: magnetostrictive pulse generated acoustic waves; and an oscillating cylinder. Prototype sensors have been built and tested which are based on both techniques. A base capability instrumentation system has been designed, constructed, and tested which incorporates both of these sensors. It requires manual data acquisition and off-line calculation. A broad range of viscous media has been tested using this system. Extensive test results appear in this report. The concept for each technique has been validated by these test results. This base capability system will need to be refined further before it is appropriate for field tests. The mass of the oscillating system structure will need to be reduced. A robust acoustic probe assembly will need to be developed. In addition, in March 1997 it was made known for the first time that the requirement was for a deliverable automated viscosity instrumentation system. Since then such a system has been designed, and the hardware has been constructed so that the automated concept can be proved. The rest of the hardware, which interfaced to a computer, has also been constructed and tested as far as possible. However, for both techniques the computer software for automated data acquisition, calculation, and logging had not been completed before funding and time ran out.

  20. Preparation of stable crude oil transport emulsions

    SciTech Connect (OSTI)

    Gregoli, A.A.; Hamshar, J.A.; Olah, A.M.; Riley, C.J.; Rimmer, D.P.

    1988-02-16T23:59:59.000Z

    A process for preparing an oil-in-water emulsion for pipeline transmission is described comprising: (a) shearing and mixing statically, without any dynamic shearing and mixing preceding or following the shearing and mixing statically, a hydrocarbon with an emulsifying composition comprising water and a minor amount of an emulsifying agent at a temperature of from about 100/sup 0/F. to about 200/sup 0/F. to form an oil-in-water emulsion having a viscosity sufficiently low for pipeline transmission, wherein the amount of water in the oil-in-water emulsion is from about 15% to about 60% by weight, and wherein the emulsifying agent is used in an amount sufficient to assist in the formation of the oil-in-water emulsion that is sufficiently stable for pipeline transmission; and wherein the emulsifying agent comprises about 50 percent by weight of an ethoxylated nonyl phenol compound.

  1. Global existence for the primitive equations with small anisotropic viscosity

    E-Print Network [OSTI]

    Charve, Frédéric

    diffusivity, and the horizontal viscosity and horizontal thermal diffusivity of size where 0 and no vertical thermal diffusivity and we also suppose that the horizontal viscosity and thermal diffusivity go , Van-Sang Ngo R´esum´e: Dans cet article, nous consid´erons le syst`eme des ´equations prim- itives

  2. EddyViscosity Time Reversing Waves a Dissipative Environment

    E-Print Network [OSTI]

    Garnier, Josselin

    where linear shallow water speed is given o o . The kinematic viscosity denoted parameter ratio been shown [6] nonlinear (inviscid) shallow water waves pres­ ence a random topography and alsoEddyViscosity Time Reversing Waves a Dissipative Environment Josselin Garnier Laboratoire

  3. 1 Visco-plastic rheology 1.1 Effective viscosity

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    1 Visco-plastic rheology 1.1 Effective viscosity Rheology specifies the relationship between viscosity eff, = 2eff , (2) which includes viscous and plastic components, 1 eff = 1 visc + 1 plast . (3) Also the strain rate tensor can be split into viscous and plastic part, = visc + plast , (4) where

  4. Evaluation of western and eastern shale oil residua as asphalt pavement recycling agents

    SciTech Connect (OSTI)

    Harnsberger, P.M.; Robertson, R.E.

    1990-03-01T23:59:59.000Z

    The objective of this investigation was to perform a preliminary evaluation of the utility of residual materials prepared from Green River Formation (western) and New Albany Shale (eastern) shale oils as recycling agents for aged asphalt pavement. Four petroleum asphalts were first aged by a thin-film accelerated-aging test, which simulates long service life of asphalt in pavement. The aged asphalts were mixed (recycled) with Green River Formation shale oil distillation residua to restore the original viscosities. Separately, for comparison, a commercial recycling agent was used to recycle the aged asphalts under the same circumstances. The recycled asphalts were reaged and the properties of both binder and asphalt-aggregate mixtures studied. Originally, the same study was intended for an eastern shale residua. However, the eastern shale oil distillation residua with the required flash point specification also had the properties of a viscosity builder; therefore, it was studied as such with asphalts that do not achieve sufficient viscosity during processing to serve as usable binders. Results show that Green River Formation shale oil residuum can be used to restore the original asphalt properties with favorable rheological properties, the shale oil residuum has a beneficial effect on resistance to moisture damage, the low-temperature properties of the shale oil residuum recycled asphalts are not adversely affected, and the low-temperature properties of the shale oil residuum recycled asphalts are dependent upon the chemistry of the mixture. The eastern shale oil residua was blended with soft petroleum asphalts. Results show the products have higher viscosities than the starting materials, the rheological properties of the soft asphalt-eastern shale oil residue blends are acceptable, and the eastern shale oil residue has dispersant properties despite its high viscosity. 11 refs., 3 figs., 9 tabs.

  5. Analysis of synthetic motor oils for additive elements by ICP-AES

    SciTech Connect (OSTI)

    Williams, M.C.; Salmon, S.G. [Texaco Inc., Beacon, NY (United States)

    1995-12-31T23:59:59.000Z

    Standard motor oils are made by blending paraffinic or naphthenic mineral oil base stocks with additive packages containing anti-wear agents, dispersants, corrosion inhibitors, and viscosity index improvers. The blender can monitor the correct addition of the additives by determining the additive elements in samples dissolved in a solvent by ICP-AES. Internal standardization is required to control sample transport interferences due to differences in viscosity between samples and standards. Synthetic motor oils, made with poly-alpha-olefins and trimethylol propane esters, instead of mineral oils, pose an additional challenge since these compounds affect the plasma as well as having sample transport interference considerations. The synthetic lubricant base stocks add significant oxygen to the sample matrix, which makes the samples behave differently than standards prepared in mineral oil. Determination of additive elements in synthetic motor oils will be discussed.

  6. 46.1 Shear Viscosity An important mechanical property of fluids is viscosity. Physical systems and applications as diverse as

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    46-1 46.1 Shear Viscosity An important mechanical property of fluids is viscosity. Physical systems, the internal friction of a fluid is analogous to the macroscopic mechanical friction, which causes an object. Kostic Northern Illinois University #12;46-2 Mechanical Variables top plate causes the fluid adjacent

  7. Modelling the costs of non-conventional oil: A case study of Canadian bitumen

    E-Print Network [OSTI]

    Méjean, A; Hope, Chris

    in conventional deposits. The longer- term problem of climate change arises from the fuller and longer-term use of coal, and of unconventional deposits such as heavy oils, tar sands and oil shales.” (Grubb, 2001) As conventional oil becomes scarcer, the transport... , it is not mobile at reservoir conditions, (Cupcic, 2003): density Oil shale is a fine-grained sedimentary rock rich in organic matter, (USGS, 2005): oil shales contain kerogen, which is a solid, insoluble organic material...

  8. Controlled black liquor viscosity reduction through salting-in

    SciTech Connect (OSTI)

    Roberts, J.E.; Khan, S.A.; Spontak, R.J. [North Carolina State Univ., Raleigh, NC (United States)] [North Carolina State Univ., Raleigh, NC (United States)

    1996-08-01T23:59:59.000Z

    Black liquor viscosity increases exponentially with solids content and therefore causes processing problems for the paper industry by being a limiting factor in the Kraft pulp process. This study investigates a new approach for achieving viscosity reduction by salting-in black liquor through the addition of thiocyanate salts. These salts generally increase the solubility of the polymer constituents in black liquor, leading to a decrease in its viscosity. Several thiocyanate salts capable of reducing liquor viscosity by more than two orders of magnitude have been identified, with viscosity reduction greatest at high solids content. Salting-in of black liquor depends on the cation paired with the thiocyanate anion, as well as on solution pH and temperature. Comparative studies reveal the most effective viscosity-reducing agent of the series examined and that lignin plays an important role in the viscosity behavior of both unmodified and salted-in black liquor at high solids concentrations. These experimental findings are interpreted in terms of the underlying principles that describe salting-in and how it affects aqueous solution structure.

  9. H e a v y o i l 1108 The Leading Edge September 2008

    E-Print Network [OSTI]

    components may be similar. Typically, heavy crude oils are classified into four types-- saturates, aromatics. Viscosity is the key controlling heavy-oil production and, as we shall see, it also has a strong influence. Viscosity of oil has been carefully studied because it con- trols the economics of oil production

  10. Gundrilling Oil Evaluation to Find a Replacement for 50-50

    SciTech Connect (OSTI)

    Karl Arnold

    2008-04-30T23:59:59.000Z

    In 2006 the gundrilling oil used at Honeywell FM&T (Federal Manufacturing and Technology) was known as 50-50. This name was selected because the oil is a mixture of two machining oils, Milpro 634 and Pennex N47. Unfortunately, Honeywell FM&T was notified that one component, Pennex N47, would be discontinued by the manufacturer. At this point the Honeywell FM&T team decided to select a single oil to eliminate mixing and procurement of two products. In addition, the team also wanted to select new oil with lower viscosity than the 50-50 mixture. Lower (than 50-50) viscosity oil was recommended by Nagel the manufacturer of the new TBT gundrilling machines. To this end Honeywell FM&T evaluated seven cutting oils in order to select a substitute that would achieve acceptable gundrilling results. This work resulted in the selection of Castrol Ilocut 334 based on cutting performance and human factors. The Castrol oil can easily achieve up to 8 holes per drill at a feed rate 30% greater than that achieved by the 50-50 oil. Once design agency approval is received, this oil will be installed as the drilling oil for all FM&T stems. This oil will also be used for other reservoir machining operations where appropriate.

  11. Mathematical models of interconnections between composition and properties of oils in the Apsheron oil-and gas-bearing region of Azerbaijan

    SciTech Connect (OSTI)

    Buryakovsky, L.A.; Dzhevanshir, R.D. (Inst. of Deep Oil and Gas Deposits, Azerbaijan Academy of Sciences, 33 Narimanov Prospect, Baku 370143, Azerbaijan (SU))

    1992-01-01T23:59:59.000Z

    This paper reports on the example of oils in the Apsheron oil- and gas-bearing region and Apsheron archipelago located in the western part of the Southern Caspian depression, of which the authors have developed mathematical models of a group hydrocarbon composition; interconnection between oil density and content of asphalt-resin materials, benzine, and ligroin; interconnections between oil density and viscosity and temperature; and interconnections between content of asphalt-resin properties and low-temperature fractions. The models obtained enable us to extrapolate factual data on composition and properties of oils beyond the limits of fixed depths of burial of oil-saturated reservoirs both to a zone of great depths and increased temperatures where hydrocarbons were in a gaseous or oil and gaseous state, and to a zone of near-surface conditions where oils acquire the consistency of asphalts.

  12. Hydrocal II process for superior naphthenic lube oils

    SciTech Connect (OSTI)

    Rausch, M.K.; Love, G.A.; Tollefsen, G.E.

    1987-01-01T23:59:59.000Z

    The HydroCall II Process is an advanced technology process to produce superior napthenic base lube oil stocks and specialty products. All products will be unlabeled and cover the full viscosity range of 30 to 4000 SUS at 100/sup 0/F. The process features high pressure, multiple stages, a multiple catalyst system and plurality of reactors and catalyst beds to achieve selective conversion of specific aromatic types contained in typical naphthenic lube oil feedstocks. Calumet's new HydroCall II oils will be available to the industry the latter part of 1987.

  13. Some physiochemical tests of sunflower oil and no. 2 diesel oil as fuels

    SciTech Connect (OSTI)

    Ramdeen, P.; Backer, L.F.; Kaufman, K.R.; Kucera, H.L.; Moilanen, C.W.

    1982-05-01T23:59:59.000Z

    The suitability of sunflower oil as a fuel for diesel engines was evaluated by determining the physiochemical properties of sunflower oil, No. 2 diesel and blends of both. This evaluation was accomplished by determining the American Petroleum Institute (API) gravity, cetane rating, heat of combustion, kinematic viscosity, pour point, cloud point, and water content of these fuels using methods specified by the American Society of Testing Materials (ASTM) for diesel fuels. These tests for petroleum products are designed to standardize results so comparisons can be made from one laboratory to another.

  14. Impacts of the Venezuelan Crude Oil Production Loss

    Reports and Publications (EIA)

    2003-01-01T23:59:59.000Z

    This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.

  15. Oil droplet behavior at a pore entrance in the presence of crossflow: Implications for microfiltration of oil-water dispersions

    E-Print Network [OSTI]

    Darvishzadeh, Tohid; Priezjev, Nikolai V

    2013-01-01T23:59:59.000Z

    The behavior of an oil droplet pinned at the entrance of a micropore and subject to clossflow-induced shear is investigated numerically by solving the Navier-Stokes equation. We found that in the absence of crossflow, the critical transmembrane pressure required to force the droplet into the pore is in excellent agreement with a theoretical prediction based on the Young-Laplace equation. With increasing shear rate, the critical pressure of permeation increases, and at sufficiently high shear rates the oil droplet breaks up into two segments. The results of numerical simulations indicate that droplet breakup at the pore entrance is facilitated at lower surface tension, higher oil-to-water viscosity ratio and larger droplet size but is insensitive to the value of the contact angle. Using simple force and torque balance arguments, an estimate for the increase in critical pressure due to crossflow and the breakup capillary number is obtained and validated for different viscosity ratios, surface tension coefficien...

  16. Shear viscosity $?$ to electric conductivity $?_{el}$ ratio for the Quark-Gluon Plasma

    E-Print Network [OSTI]

    A. Puglisi; S. Plumari; V. Greco

    2014-07-09T23:59:59.000Z

    The transport coefficients of strongly interacting matter are currently subject of intense theoretical and phenomenological studies due to their relevance for the characterization of the quark-gluon plasma produced in ultra-relativistic heavy-ion collisions (uRHIC). We discuss the connection between the shear viscosity to entropy density ratio, $\\eta/s$, and the electric conductivity, $\\sigma_{el}$. We note that once the relaxation time is tuned to determine the shear viscosity $\\eta$ to have a minimum value $\\eta/s=1/4\\pi$ near the critical temperature $T_c$, one simultaneously predicts an electric conductivity $\\sigma_{el}/T$ very close to recent lQCD data. More generally, we discuss why the ratio of $\\eta/s$ over $\\sigma_{el}/T$ supplies a measure of the quark to gluon scattering rates whose knowledge would allow to significantly advance in the understanding of the QGP phase. We also predict that $(\\eta/s)/(\\sigma_{el}/T)$, independently on the running coupling $\\alpha_s(T)$, should increase up to about $\\sim 50$ for $T \\rightarrow T_c$, while it goes down to a nearly flat behavior around $\\simeq 3$ for $T \\geq 4\\, T_c$.

  17. Variational bounds for the shear viscosity of gelling melts

    E-Print Network [OSTI]

    Claas H. Köhler; Henning Löwe; Peter Müller; Annette Zippelius

    2007-05-03T23:59:59.000Z

    We study shear stress relaxation for a gelling melt of randomly crosslinked, interacting monomers. We derive a lower bound for the static shear viscosity $\\eta$, which implies that it diverges algebraically with a critical exponent $k\\ge 2\

  18. Extensional viscosity measurements of polyethylene using a melt flow indexer

    E-Print Network [OSTI]

    Moffatt, Scott Gordon

    1999-01-01T23:59:59.000Z

    . The Cogswell and Darby methods of defining extension rate and extensional viscosity are examined and compared. Six polyethylene resins (A through F) have been selected for this study. They have different densities, molecular weights (MN and molecular weight...

  19. BURGERS' EQUATION WITH VANISHING HYPER-VISCOSITY EITAN TADMOR

    E-Print Network [OSTI]

    hyper-viscosity method introduced in [Tad93], consult (2.1) below, which directly governs the approximate N-projection uN PN u. As in [Tad93], we restrict attention to the periodic case. We begin

  20. Textured-surface quartz resonator fluid density and viscosity monitor

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Wiczer, James J. (Albuquerque, NM); Cernosek, Richard W. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Gebert, Charles T. (Albuquerque, NM); Casaus, Leonard (Bernalillo, NM); Mitchell, Mary A. (Tijeras, NM)

    1998-08-25T23:59:59.000Z

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  1. Quasiparticle theory of shear and bulk viscosities of hadronic matter

    SciTech Connect (OSTI)

    Chakraborty, P.; Kapusta, J. I. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2011-01-15T23:59:59.000Z

    A theoretical framework for the calculation of shear and bulk viscosities of hadronic matter at finite temperature is presented. The framework is based on the quasiparticle picture. It allows for an arbitrary number of hadron species with pointlike interactions, and allows for both elastic and inelastic collisions. Detailed balance is ensured. The particles have temperature-dependent masses arising from mean-field or potential effects, which maintains self-consistency between the equation of state and the transport coefficients. As an example, we calculate the shear and bulk viscosity in the linear {sigma} model. The ratio of shear viscosity to entropy density shows a minimum in the vicinity of a rapid crossover transition, whereas the ratio of bulk viscosity to entropy density shows a maximum.

  2. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

  3. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

  4. Oxygen consumption by asphalt films and resulting viscosity changes

    E-Print Network [OSTI]

    Carter, Frank Lee

    2012-06-07T23:59:59.000Z

    OXYGEN CONSUMPTION BY ASPHALT FILNS AND RESULTING VISCOSITY CHANGES A Thesis by FRANK LEE CARTER, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... Nay 1965 Major Subject: Chemistry OXYGEN CONSUMPTION BY ASPHALT FILMS AND RESULTING VISCOSITY CHANGES A Thesis by FRANK LEE CARTER, JR. Approved as to style and content by: (Chairm of Committee) (H o Depa ( mb ) (Membe May 1965...

  5. Crossover from capillary fingering to compact invasion for two-phase drainage with stable viscosity ratios

    SciTech Connect (OSTI)

    Ferer, M.V.; Bromhal, G.S.; Smith, D.H

    2007-02-01T23:59:59.000Z

    Motivated by a wide range of applications from enhanced oil recovery to carbon dioxide sequestration, we have developed a two-dimensional, pore-level model of immiscible drainage, incorporating viscous, capillary, and gravitational effects. This model has been validated quantitatively, in the very different limits of zero viscosity ratio and zero capillary number; flow patterns from modeling agree well with experiment. For a range of stable viscosity ratios (?injected/?displaced 1), we have increased the capillary number, Nc, and studied the way in which the flows deviate from capillary fingering (the fractal flow of invasion percolation) and become compact for realistic capillary numbers. Results exhibiting this crossover from capillary fingering to compact invasion are presented for the average position of the injected fluid, the fluid–fluid interface, the saturation and fractional flow profiles, and the relative permeabilities. The agreement between our results and earlier theoretical predictions [Blunt M, King MJ, Scher H. Simulation and theory of two-phase flow in porous media. Phys Rev A 1992;46:7680–99; Lenormand R. Flow through porous media: limits of fractal patterns. Proc Roy Soc A 1989;423:159–68; Wilkinson D. Percolation effects in immiscible displacement. Phys Rev A 1986;34:1380–90; Xu B, Yortsos YC, Salin D. Invasion Percolation with viscous forces. Phys Rev E 1998;57:739–51] supports the validity of these general theoretical arguments, which were independent of the details of the porous media in both two and three dimensions.

  6. Viscosity of alumina nanoparticles dispersed in car engine coolant

    SciTech Connect (OSTI)

    Kole, Madhusree; Dey, T.K. [Thermophysical Measurements Laboratory, Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur 721 302 (India)

    2010-09-15T23:59:59.000Z

    The present paper, describes our experimental results on the viscosity of the nanofluid prepared by dispersing alumina nanoparticles (<50 nm) in commercial car coolant. The nanofluid prepared with calculated amount of oleic acid (surfactant) was tested to be stable for more than 80 days. The viscosity of the nanofluids is measured both as a function of alumina volume fraction and temperature between 10 and 50 C. While the pure base fluid display Newtonian behavior over the measured temperature, it transforms to a non-Newtonian fluid with addition of a small amount of alumina nanoparticles. Our results show that viscosity of the nanofluid increases with increasing nanoparticle concentration and decreases with increase in temperature. Most of the frequently used classical models severely under predict the measured viscosity. Volume fraction dependence of the nanofluid viscosity, however, is predicted fairly well on the basis of a recently reported theoretical model for nanofluids that takes into account the effect of Brownian motion of nanoparticles in the nanofluid. The temperature dependence of the viscosity of engine coolant based alumina nanofluids obeys the empirical correlation of the type: log ({mu}{sub nf}) = A exp(BT), proposed earlier by Namburu et al. (author)

  7. A numerical study of fluids with pressure dependent viscosity flowing through a rigid porous media

    E-Print Network [OSTI]

    Nakshatrala, K B

    2009-01-01T23:59:59.000Z

    In this paper we consider modifications to Darcy's equation wherein the drag coefficient is a function of pressure, which is a realistic model for technological applications like enhanced oil recovery and geological carbon sequestration. We first outline the approximations behind Darcy's equation and the modifications that we propose to Darcy's equation, and derive the governing equations through a systematic approach using mixture theory. We then propose a stabilized mixed finite element formulation for the modified Darcy's equation. To solve the resulting nonlinear equations we present a solution procedure based on the consistent Newton-Raphson method. We solve representative test problems to illustrate the performance of the proposed stabilized formulation. One of the objectives of this paper is also to show that the dependence of viscosity on the pressure can have a significant effect both on the qualitative and quantitative nature of the solution.

  8. Sixty-sixth annual report of the state oil and gas supervisor

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This report contains tabulated oil and gas statistics compiled during 1980 in California. On-shore and off-shore oil production, gas production, reserves, drilling activity, enhanced recovery activity, unconventional heavy oil recovery, geothermal operations and financial data are reported. (DMC)

  9. Western oil shale conversion using the ROPE copyright process

    SciTech Connect (OSTI)

    Cha, C.Y.; Fahy, L.J.; Grimes, R.W.

    1989-12-01T23:59:59.000Z

    Western Research Institute (WRI) is continuing to develop the Recycle Oil Pyrolysis and Extraction (ROPE) process to recover liquid hydrocarbon products from oil shale, tar sand, and other solid hydrocarbonaceous materials. The process consists of three major steps: (1) pyrolyzing the hydrocarbonaceous material at a low temperature (T {le} 400{degrees}C) with recycled product oil, (2) completing the pyrolysis of the residue at a higher temperature (T > 400{degrees}C) in the absence of product oil, and (3) combusting the solid residue and pyrolysis gas in an inclined fluidized-bed reactor to produce process heat. Many conventional processes, such as the Paraho and Union processes, do not use oil shale fines (particles smaller than 1.27 cm in diameter). The amount of shale discarded as fines from these processes can be as high as 20% of the total oil shale mined. Research conducted to date suggests that the ROPE process can significantly improve the overall oil recovery from western oil shale by processing the oil shale fines typically discarded by conventional processes. Also, if the oil shale fines are co-processed with shale oil used as the heavy recycle oil, a better quality oil will be produced that can be blended with the original shale oil to make an overall produce that is more acceptable to the refineries and easier to pipeline. Results from tests conducted in a 2-inch process development unit (PDU) and a 6-inch bench-scale unit (BSU) with western oil shale demonstrated a maximum oil yield at temperatures between 700 and 750{degrees}F (371 and 399{degrees}C). Test results also suggest that the ROPE process has a strong potential for recovering oil from oil shale fines, upgrading shale oil, and separating high-nitrogen-content oil for use as an asphalt additive. 6 refs., 10 figs., 11 tabs.

  10. Environmental Pollution (Series B) 9 (1985) 239-254 Heavy Metals in Isopods from the Supra-littoral Zone

    E-Print Network [OSTI]

    Hopkin, Steve

    Environmental Pollution (Series B) 9 (1985) 239-254 Heavy Metals in Isopods from the Supra were very small. The hepatopancreas was the most important storage organ oj'heavy metals and, at all of heavy metals were compared in the tissues oiL. oceanica and in two 'more terrestrial' isopods, Oniscus

  11. Shallow oil production using horizontal wells with enhanced oil recovery techniques

    SciTech Connect (OSTI)

    Satchwell, R.M.; Johnson, L.A. Jr. [Western Research Institute, Laramie, WY (United States); Trent, R. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-02-01T23:59:59.000Z

    Millions of barrels of oil exist in the Bartlesville formation throughout Oklahoma, Kansas, and Missouri. In an attempt to demonstrate that these shallow heavy oil deposits can be recovered, a field project was undertaken to determine the effectiveness of enhanced oil recovery techniques (EOR) employing horizontal wells. Process screening results suggested that thermal EOR processes were best suited for the recovery of this heavy oil. Screening criteria suggested that in situ combustion was a viable technique for the production of these reserves. Laboratory combustion tube tests confirmed that sufficient amounts of fuel could be deposited. The results of the in situ combustion field pilot were disappointing. A total overall recovery efficiency of only 16.0 percent was achieved. Results suggest that the combustion front might have moved past the horizontal well, however elevated temperatures or crude upgrading were not observed. Factors contributing to the lack of production are also discussed.

  12. Heavy metal biosensor

    SciTech Connect (OSTI)

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15T23:59:59.000Z

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  13. Thermal recovery of oil and bitumen

    SciTech Connect (OSTI)

    Butler, R.M. (Dept. of Chemical and Petroleum Engineering, Univ. of Calgary, Calgary, Alberta (CA))

    1991-01-01T23:59:59.000Z

    This book is organized into the following chapters: Introduction to Thermal Recovery; Conduction of Heat Within Solids; Convective Heating within Reservoirs; Steamfloodings; The Displacement of Heavy Oil; Cyclic Steam Simulation; Steam-Assisted Gravity Drainage; Steam Recovery Equipment and Facilities; and In Situ Combustion.

  14. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

    1999-02-01T23:59:59.000Z

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

  15. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

    1997-10-21T23:59:59.000Z

    This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  16. Thickening power of hydrogenated polybutadiene-styrene in mineral oils

    SciTech Connect (OSTI)

    Natov, M.; Pavlov, D.

    1984-09-01T23:59:59.000Z

    This article investigates the thickening power of a hydrogenated polybutadiene-styrene with a molecular weight of 90,000 in three types of oil base stocks: KhF-12, SK-3, and a blend of 66% SK-3 with 34% NK-1. The results indicate that as the temperature is lowered, the relative viscosity of the compounded oils with a naphthenic-aromatic base stock (KhF-12) increases more rapidly than that of the oils formulated from a naphthenic-paraffinic base stock (blend of 66% SK-3 with 34% NK-1). The copolymer has a weaker thickening effect on naphthenic-paraffinic oil at temperatures from -10/sup 0/ to 80/sup 0/C. It is determined that with further increases in temperature, the differences in the thickening effect in oils of different compositions decrease continuously, and at 150/sup 0/C, these differences disappear.

  17. Investigation of the scaling factor LVuw in the recovery of oil by water flooding

    E-Print Network [OSTI]

    McWilliams, Morris Hampton

    1962-01-01T23:59:59.000Z

    rnediuxn and. the Buid system, but also by the length of the flooded system and the x'ate of irjection. They further cor eluded that for floods performed in identical porous media and with the same oil-water viscosity ratio, the total length... water) as a scaling w coefficient. In other words, all floods conducted in a given porous rnediuxn, with a given oil-watex viscosity ratio and haVing the same value of this scalixxg coefficient must behave similarly and yield equal recoveries fax...

  18. Quality Characteristics of Luffa aegyptiaca seed oil. * 2 1 1 1

    E-Print Network [OSTI]

    O. M Abayeh; I. H Garba; H. M Adamu; O. J Abayeh

    The oil content and quality characteristics of Luffa aegyptiaca seed oil are described. The straight vegetable oil (SVO) was extracted from the seed using hexane. On a dry matter basis, the oil content was 19-25 % of ground seeds. The quality characteristics of the seed oil were: saponification value (SV), 168mg KOH/g of oil, iodine value (IV), 130g iodine/100g of oil, peroxide value (PV), 280 meq peroxide/kg of oil, free fatty acid (FFA) 10.36 % of oil and acid value (AV) 20.62%. The density of the oil was 0.91g/cm 3 and the specific gravity was 0.92g/ml oil and kinematic viscosity 13.98mm 2 /s at 30 0 C. The saponin content and the unsaponifiable matter of the oil were also determined. The oil quality parameters suggest that the oil may find use as feedstock for biodiesel production. Owing to its iodine value, the oil may also be used in surface coating applications.

  19. Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation

    DOE Patents [OSTI]

    Heller, John P. (Socorro, NM); Dandge, Dileep K. (Socorro, NM)

    1986-01-01T23:59:59.000Z

    Solvent-type flooding fluids comprising light hydrocarbons in the range of ethane to hexane (and mixtures thereof) are used to displace crude oil in formations having temperatures of about 20 degrees to about 150 degrees Centigrade and pressures above about 650 psi, the light hydrocarbons having dissolved therein from about 0.05% to about 3% of an organotin compound of the formula R.sub.3 SnF where each R is independently an alkyl, aryl or alkyaryl group from 3 to 12 carbon atoms. Under the pressures and temperatures described, the organotin compounds become pentacoordinated and linked through the electronegative bridges, forming polymers within the light hydrocarbon flooding media to render them highly viscous. Under ambient conditions, the viscosity control agents will not readily be produced from the formation with either crude oil or water, since they are insoluble in the former and only sparingly soluble in the latter.

  20. Effect of hydrous ethanol on crankcase oil dilution

    SciTech Connect (OSTI)

    Khalifa, G.A.

    1985-01-01T23:59:59.000Z

    Adequate lubrication is of the utmost importance in internal combustion engines. Low temperature operation with low-proof alcohol may create some operational problems if alcohol and/or water accumulates in the crankcase oil. Condensates of unburned alcohol and water maybe blown into the crankcase oil with blowby gases. These condensates may form an emulsion with the crankcase oil that may restrict the supply of oil for adequate lubrication. Three engine tests were performed to identify the effect of low-proof ethanol fueling on crankcase oil dilution and degradation. The first test was hydrous ethanol carburetion in a 2.3 liter, 4 cylinder, 1974 Ford gasoline engine. The second test was a mixture of low-proof ethanol fumigation and normal diesel fuel injection (at reduced rate) in an Allis-Chalmers Model 2900 turbocharged diesel engine. The third test was also a mixture of ethanol fumigation and diesel injection in an Allis-Chalmers Mod2800 naturally aspirated diesel engine. Independent parameters of crankcase oil temperature, engine load and speed, percent of total energy in the form of ethyl alcohol and proof of the ethyl alcohol were considered and varied. After each test the oil was sampled for determination of flash point, fire points, water by centrifuge, water by distillation, and viscosity at room temperature. Results for the first test indicate that the use of ethanol of 130 proof or less may result in accumulation of water in the crankcase oil that may be harmful to the engine. In the second and third tests although there was a decrease in fire and flash points as well as in the viscosity of the oil, no appreciable amount of water or alcohol was detected in the crankcase oil. It is important to mention that there was a maximum alcohol fuel flow rate beyond which the diesel engine starts to knock or misfire.

  1. 5 World Oil Trends WORLD OIL TRENDS

    E-Print Network [OSTI]

    5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

  2. Dissipative kinetic Alfvén solitary waves resulting from viscosity

    SciTech Connect (OSTI)

    Choi, C.-R.; Kang, S.-B.; Min, K.-W. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)] [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Woo, M.-H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)] [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Hwang, J.; Park, Y.-D. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)] [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2013-11-15T23:59:59.000Z

    Nonlinear small-amplitude kinetic Alfvén solitary waves (KASWs) are investigated with their “anomalous” kinetic viscosity effect on electrons. It is found that the structure of a hump-type KASW solution develops into a shock-type (or double layer) KASW solution for large amplitude KASWs when viscosity exists. For small amplitude KASWs, the Korteweg-de Vries (KdV) equation with an approximate pseudopotential was solved, and it is found that the hump-type KASWs develop into oscillating shock-type (kink-type) KASWs. It is also found that the oscillating scale of this structure is related to the propagation velocity and plasma beta, while the damping scale is inversely proportional to the viscosity.

  3. Implications of a viscosity bound on black hole accretion

    E-Print Network [OSTI]

    Aninda Sinha; Banibrata Mukhopadhyay

    2012-02-13T23:59:59.000Z

    Motivated by the viscosity bound in gauge/gravity duality, we consider the ratio of shear viscosity (eta) to entropy density (s) in black hole accretion flows. We use both an ideal gas equation of state and the QCD equation of state obtained from lattice for the fluid accreting onto a Kerr black hole. The QCD equation of state is considered since the temperature of accreting matter is expected to approach 10^{12}K in certain hot flows. We find that in both the cases eta/s is small only for primordial black holes and several orders of magnitude larger than any known fluid for stellar and supermassive black holes. We show that a lower bound on the mass of primordial black holes leads to a lower bound on eta/s and vice versa. Finally we speculate that the Shakura-Sunyaev viscosity parameter should decrease with increasing density and/or temperatures.

  4. Method for measuring liquid viscosity and ultrasonic viscometer

    DOE Patents [OSTI]

    Sheen, Shuh-Haw (Naperville, IL); Lawrence, William P. (Downers Grove, IL); Chien, Hual-Te (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1994-01-01T23:59:59.000Z

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  5. Hydrotreating of oil from eastern oil shale

    SciTech Connect (OSTI)

    Scinta, J.; Garner, J.W.

    1984-01-01T23:59:59.000Z

    Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

  6. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14T23:59:59.000Z

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

  7. Oil removal from water via adsorption

    E-Print Network [OSTI]

    Jacobs, William Edward

    1973-01-01T23:59:59.000Z

    will decrease in the future as shipping steadily increases. In recent years arctic and subarctic shipping operations have greatly expanded in North America and the USSR. The USS MANHATTAN passed through the Northwest Passage in 1969 and 1970 and the Russians... fiber Polystyrene powder Polyester shavings Polytetrafluorethylene Average Test Carrier** 7. 8 3. 3 7. 2 4. 7 2. 2 6. 6 3. 6 2. 4 11. 4 60. 0 50. 3 6. 9 20. 4 6. 6 1. 4 12. 7 1. 82 * Test oil viscosity at 77'F, cs = 7. 8...

  8. Experience in producing dewaxed cut for VMGZ oil base stock

    SciTech Connect (OSTI)

    Drozdova, M.A.; Edigarova, V.S.; Gul'din, G.L.

    1983-05-01T23:59:59.000Z

    In the production of base stock VMGZ oil, a given viscosity, solid point, and initial boiling point, are required. The Moscow Petroleum Company mixed West Siberian and Ramaschinko crudes in this process to obtain proper specifications. But when they used paraffinic Usa crude off-specification batches were obtained. It became necessary to investigate the nature of the crude oil on the quality of the base stock. Usa crude, the study found, has a higher solid point, lower viscosity. Heavier cuts (with boiling points in the 280-5 C range) must be used. A mixture of 50% West Siberian and Romanian and 50% USA crude was also tested. This mixture meets requirements if the boiling point is no lower than 280 C. The results indicate that the distillation range of the deepstock is selected according to the nature of the crude, a finding which makes it possible to avoid off-specification.

  9. Crude oil from the Zaburun'e field

    SciTech Connect (OSTI)

    Dorogochinskaya, V.A.; Shul'zhenko, E.D.; Varshaver, V.P.; Khabibulina, R.K.

    1988-03-01T23:59:59.000Z

    In order to work up recommendations for the directions to be taken in processing oil from the new Zaburun'e field in the Ural-Volga interfluvial district, a complete, unified program was used to investigate oil samples taken from depths of 905-913 and 895-903 meters from the Lower Cretaceous deposits. Density, viscosity, medium-resin content, flash point, and other processing-relevant properties were derived. The hydrocarbon group composition was assessed. Fractions distilling below 350/sup 0/C consisted mainly of high-energy isoparaffinic and naphthenic hydrocarbons. Characteristics of the diesel fuel cuts were derived. All cuts had low-temperature properties and cloud points below minus 60/sup 0/C. Lube stocks were analyzed and showed high viscosity indices, low solid points, and low sulfur contents. Straight-run resids were also evaluated.

  10. Fluid substitution in rocks saturated with viscoelastic fluids Dina Makarynska1

    E-Print Network [OSTI]

    - terest in production from bituminous and heavy-oil reservoirs. Heavy-oil reserves account for more than 6 trillion barrels-in-place worldwide -- triple the world's reserves of conventional oil and gas Batzle et al , Jyoti Behura3 , and Mike Batzle4 ABSTRACT Heavy oils have high densities and extremely high viscosities

  11. Lubrication Oil Condition Monitoring and Remaining Useful Life Prediction with Particle Filtering

    E-Print Network [OSTI]

    Junda Zhu; Jae M. Yoon; David He; Yongzhi Qu; Eric Bechhoefer

    In order to reduce the costs of wind energy, it is necessary to improve the wind turbine availability and reduce the operational and maintenance costs. The reliability and availability of a functioning wind turbine depend largely on the protective properties of the lubrication oil for its drive train subassemblies such as the gearbox and means for lubrication oil condition monitoring and degradation detection. The wind industry currently uses lubrication oil analysis for detecting gearbox and bearing wear but cannot detect the functional failures of the lubrication oils. The main purpose of lubrication oil condition monitoring and degradation detection is to determine whether the oils have deteriorated to such a degree that they no longer fulfill their functions. This paper describes a research on developing online lubrication oil condition monitoring and remaining useful life prediction using particle filtering technique and commercially available online sensors. It first introduces the lubrication oil condition monitoring and degradation detection for wind turbines. Viscosity and dielectric constant are selected as the performance parameters to model the degradation of lubricants. In particular, the lubricant performance evaluation and remaining useful life prediction of degraded lubrication oil with viscosity and dielectric constant data using particle filtering are presented. A simulation study based on lab verified models is provided to demonstrate the effectiveness of the developed technique. 1.

  12. Densities and viscosities of ternary ammonia/water fluids

    SciTech Connect (OSTI)

    Reiner, R.H.; Zaltash, A.

    1993-03-01T23:59:59.000Z

    The densities, viscosities, and boiling points (at barometric pressure) of solutions formed by inorganic salts dissolved in an ammonia/water (NH{sub 3}/H{sub 2}O) solvent have been measured. These ternary solutions of ammonia/water/dissolved salt are being investigated to reduce rectification requirements and to expand the temperature range of ammonia/water in advanced absorption cycles. Densities and viscosities of these fluids were measured over the temperature range of 283.15 to 343.15 K (10.0 to 70.0{degrees}C). Observed densities and viscosities were expressed as empirical functions of temperature by means of the least-squares method. The dynamic viscosities of ternary fluids were found to be three to seven times greater than those of the binary system of NH{sub 3}/H{sub 2}O, which implies that a substantial decrease in the film heat and mass transfer coefficient is possible. However, because this quantitative linkage is not well understood, direct measurements of heat and mass transfer rates in a minisorber are recommended and planned.

  13. An improved viscosity equation to characterize shear-thinning fluids

    SciTech Connect (OSTI)

    Allen, E.

    1995-11-01T23:59:59.000Z

    An improved viscosity equation is proposed for shear-thinning polymer solutions, using a kinetic approach to model the rate of formation and loss of interactive bonding during shear flow. The bonds are caused by temporary polymer entanglements in polymer solutions, and by coordination bonding in metal ion cross-linked gels. The equation characterizes the viscosity of shear-thinning fluids over a wide range of shear rates, from the zero shear region through to infinite shear viscosity. The equation has been used to characterize fluid data from a wide range of fluids. Recent work indicates that a range of polymer solutions, polymer-based drilling fluids and frac-gels do not have a measurable yield stress, and that the equations which use extrapolated values of yield stress can be significantly in error. The new equation is compared with the Carreau and Cross equations, using the correlation procedure of Churchill and Usagi. It gives a significantly better fit to the data (by up to 50%) over a wide range of shear rates. The improved equation can be used for evaluating the fluid viscosity during the flow of polymeric fluids, in a range of oilfield applications including drilling, completion, stimulation and improved recovery (IOR) processes.

  14. AN EMPIRICAL APPROACH FOR PREDICTING VISCOSITIES OF HYDROCARBON SYSTEMS: DEFINED COMPOUNDS, DIRECT COAL LIQUID OILS AND LIGHT CRUDE OILS.

    E-Print Network [OSTI]

    Krishnamoorthy, Vijayaragavan

    2010-01-01T23:59:59.000Z

    ??A single parameter empirical method, based on the Effective Carbon Number (ECN) concept proposed by Allan and Teja (1991), was modified and extended to predict… (more)

  15. Near Shore Submerged Oil Assessment

    E-Print Network [OSTI]

    ) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments You Should Know About Submerged Oil 1. Submerged oil is relatively uncommon: DWH oil is a light crude

  16. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    SciTech Connect (OSTI)

    Lawler, Katherine

    2009-08-05T23:59:59.000Z

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanos

  17. USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS

    SciTech Connect (OSTI)

    Randall Seright

    2011-09-30T23:59:59.000Z

    This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be found in our first and second annual reports. Our latest research results, along with detailed documentation of our past work, can be found on our web site at http://baervan.nmt.edu/randy/. As an overall summary of important findings for the project, polymer flooding has tremendous potential for enhanced recovery of viscous oil. Fear of substantial injectivity reduction was a primary hurdle that limited application of polymer flooding. However, that concern is largely mitigated by (1) use of horizontal wells and (2) judicious injection above the formation parting pressure. Field cases now exist where 200-300-cp polymer solutions are injected without significant reductions in injectivity. Concern about costs associated with injection of viscous polymer solutions was a second major hurdle. However, that concern is reduced substantially by realization that polymer viscosity increases approximately with the square of polymer concentration. Viscosity can be doubled with only a 40% increase in polymer concentration. Up to a readily definable point, increases in viscosity of the injected polymer solution are directly related to increases in sweep efficiency and oil recovery. Previously published simulation results - suggesting that shear-thinning polymer solutions were detrimental to sweep efficiency - were shown to be unfounded (both theoretically and experimentally).

  18. Oil spill response resources

    E-Print Network [OSTI]

    Muthukrishnan, Shankar

    1996-01-01T23:59:59.000Z

    . ACKNOWLEDGMENTS. TABLE OF CONTENTS . . Vn INTRODUCTION. . Oil Pollution Act. Oil Spill Response Equipment . . OB JECTIVES . 12 LITERATURE REVIEW. United States Contingency Plan. . Response Resources Definition of Clean in Context to an Oil Spill. Oil... this fitle. Title IV expands federal authority in managing oil spill clean up operations and amends the provisions for oil spill clean up under the Federal Water Pollution Control Act. It also called for Oil spill plans for vessels and facilities starting...

  19. Effect of Acid, Alkali, and Steam Explosion Pretreatments on Characteristics of Bio-Oil Produced from Pinewood

    SciTech Connect (OSTI)

    Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian

    2011-06-21T23:59:59.000Z

    Bio-oil produced from pinewood by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. Pretreatment prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we tested three pretreatment methods: dilute acid, dilute alkali, and steam explosion. Bio-oils were produced from untreated and pretreated pinewood feedstocks in an auger reactor at 450 C. The bio-oils�¢���� physical properties including pH, water content, acid value, density, viscosity, and heating value were measured. Chemical characteristics of the bio-oils were determined by gas chromatographymass spectrometry. Results showed that bio-oil yield and composition were influenced by biomass pretreatment. Of the three pretreatment methods, 1%H2SO4 pretreatment resulted in the highest bio-oil yield and best bio-oil quality.

  20. Determination of fluid viscosities from biconical annular geometries: Experimental and modeling studies

    E-Print Network [OSTI]

    Rondon, Nolys Javier

    2009-05-15T23:59:59.000Z

    Knowledge of viscosity of flow streams is essential for the design and operation of production facilities, drilling operations and reservoir engineering calculations. The determination of the viscosity of a reservoir fluid at downhole conditions...

  1. Drop Formation and Breakup of Low Viscosity Elastic Fluids: Effects of Molecular Weight and Concentration

    E-Print Network [OSTI]

    Tirtaatmadja, Viyada

    2007-01-23T23:59:59.000Z

    The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach ...

  2. The combustion and handling properties of several heavy bitumen emulsions

    SciTech Connect (OSTI)

    Whaley, H.; Wong, J.K.L.; Banks, G.N.; Lee, S.W.

    1995-12-31T23:59:59.000Z

    A research program was undertaken by ACT/CANMET to compare the combustion and heat transfer characteristics of a number of bitumen-based water emulsions with those of heavy fuel oil. The addition of water gives some advantage in the areas of fuel handling, atomization and emissions. These studies showed that the emulsions burn and transfer heat in a manner similar to commercial heavy fuel oils and make excellent fuels for boiler and process combustors. However, if the heavy bitumen is partially upgraded, the emulsion made from these residues can sometimes give rise to combustion and emissions related concerns. Particular attention must be paid to the burner/atomization system in order to avoid combustion problems resulting in unacceptably high levels of soot deposition and emissions.

  3. Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby

    DOE Patents [OSTI]

    Bronfenbrenner, James C. (Allentown, PA); Foster, Edward P. (Allentown, PA); Tewari, Krishna (Allentown, PA)

    1985-01-01T23:59:59.000Z

    A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

  4. THE CALCULATION OF QUALITY FACTOR OF FILM BULK ACOUSTIC RESONATORS WITH THE CONSIDERATION OF VISCOSITY

    E-Print Network [OSTI]

    Wang, Ji

    elastic constants which are proportional to vibration frequency. The actual value of the viscosity factor is given as an equivalent parameter. Such a procedure is useful in understanding the effect of viscosity factor, viscosity, electrical circuit parameters, layered structures, piezoelectric, film, FBAR 1

  5. Removal of Heavy Metals from Industrial Effluent Using Bacteria

    E-Print Network [OSTI]

    Manisha N; Dinesh Sharma; Arun Kumar

    Industrial development results in the generation of industrial effluents, and if untreated results in water, sediment and soil pollution. (Fakayode and Onianwa, 2002 ? Fakayode, 2005). Industrial wastes and emission contain toxic and hazardous substances, most of which are detrimental to human health (Jimena et al.,2008 ? Ogunfowokan et al.,2005 ? Rajaram et al.,2008). The key pollutants include heavy metals, chemical wastes and oil spills etc. Heavy metal resistant bacteria have significant role in bioremediation of heavy metals in wastewater. The objective of this work is to study the role of bacteria in removing the heavy metals present in the industrial effluent.Five effluent samples out of nine were selected for this study due to high content of heavy metals. The heavy metals Hg and Cu were removed by Bacillus sp. The average Hg reduction was 45 % and Cu reduction was recorded as 62%. The heavy metals Cd, As and Co were removed by Pseudomonas sp. The average Cd reduction was 56%, average As reduction was 34 % and average Co reduction was recorded as 53%. The heavy metals Cd and Cu were removed by Staphylococcus sp. The average Cd reduction was 44 % and average Cu reduction was recorded as 34 %.

  6. Solubility, viscosity and density of refrigerant/lubricant mixtures

    SciTech Connect (OSTI)

    Henderson, D.R.

    1993-04-01T23:59:59.000Z

    This report presents results for low refrigerant concentration (70, 80, 90 and 100 weight percent lubricant) mixtures of the following fluids: CFC-12/ISO 32 naphthenic mineral oil, HCFC-22/ISO 32 naphthenic mineral oil, CFC-12/ISO 100 naphthenic mineral oil, HFC-134a/ISO 22 pentaerythritol ester mixed acid, HFC-134a/ISO 32 pentaerythritol ester mixed acid [number sign]1, HFC-134a/ISO 68 pentaerythritol ester mixed acid, HFC-134a/ISO 100 pentaerythritol ester mixed acid, HFC-134a/ISO 32 pentaerythritol ester mixed acid [number sign]2, HCFC-123/ISO 32 naphthenic mineral oil, HCFC-123/ISO 100 naphthenic mineral oil, HCFC-123/150 SUS alkylbenzene, HCFC-123/300 SUS alkylbenzene. These data have been reduced to engineering form and are presented in the form of a Daniel Chart. Equations are given along with statistical measures of goodness of fit.

  7. An estimate of QGP viscosity from STAR data on $?$ mesons

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2009-03-20T23:59:59.000Z

    In the Israel-Stewart's theory of dissipative hydrodynamics, with a lattice based equation of state, where the confinement-deconfinement transition is a cross-over at $T_{co}$=196 MeV, we have analysed the STAR data on $\\phi$ meson production in Au+Au collisions at $\\sqrt{s}$=200 GeV. From a simultaneous fit to $\\phi$ mesons multiplicity, mean $p_T$ and integrated $v_2$, we obtain a phenomenological estimate of QGP viscosity, $\\eta/s =0.15 \\pm 0.05 \\pm 0.03$, the first error is due to the experimental uncertainty in STAR measurements, the second reflects the uncertainties in initial and final conditions of the fluid. A host of STAR data, e.g. $\\phi$ multiplicity, integrated $v_2$, mean $p_T$, $p_T$ spectra ($p_T <$3 GeV), in central Au+Au collisions, are consistent with the estimate of viscosity.

  8. Centrality dependence of elliptic flow and QGP viscosity

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2010-03-30T23:59:59.000Z

    In the Israel-Stewart's theory of second order hydrodynamics, we have analysed the recent PHENIX data on charged particles elliptic flow in Au+Au collisions. PHENIX data demand more viscous fluid in peripheral collisions than in central collisions. Over a broad range of collision centrality (0-10%- 50-60%), viscosity to entropy ratio ($\\eta/s$) varies between 0-0.17.

  9. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect (OSTI)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

    2014-04-11T23:59:59.000Z

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  10. Thermal Diffusivity and Viscosity of Suspensions of Disc Shaped Nanoparticles

    E-Print Network [OSTI]

    Susheel S. Bhandari; K. Muralidhar; Yogesh M Joshi

    2014-03-05T23:59:59.000Z

    In this work we conduct a transient heat conduction experiment with an aqueous suspension of nanoparticle disks of Laponite JS, a sol forming grade, using laser light interferometry. The image sequence in time is used to measure thermal diffusivity and thermal conductivity of the suspension. Imaging of the temperature distribution is facilitated by the dependence of refractive index of the suspension on temperature itself. We observe that with the addition of 4 volume % of nano-disks in water, thermal conductivity of the suspension increases by around 30%. A theoretical model for thermal conductivity of the suspension of anisotropic particles by Fricke as well as by Hamilton and Crosser explains the trend of data well. In turn, it estimates thermal conductivity of the Laponite nanoparticle itself, which is otherwise difficult to measure in a direct manner. We also measure viscosity of the nanoparticle suspension using a concentric cylinder rheometer. Measurements are seen to follow quite well, the theoretical relation for viscosity of suspensions of oblate particles that includes up to two particle interaction. This result rules out the presence of clusters of particles in the suspension. The effective viscosity and thermal diffusivity data show that the shape of the particle has a role in determining enhancement of thermophysical properties of the suspension.

  11. Crude Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries0 0 0 0 0

  12. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    business of having some oil in inventory, which is referredKnowledge of all the oil going into inventory today for salebe empty, because inventories of oil are essential for the

  13. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

  14. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

  15. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

  16. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

  17. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

  18. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

  19. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

  20. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

  1. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    capability to secure oil transport security. Additionally,international oil agreements: 1) ensuring energy security;security, and many argue that as the second-largest consumer of oil

  2. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    China made an Iranian oil investment valued at $70 billion.across Iran, China’s oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

  3. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,Mexico, Italy, France, Canada, US, and UK. Figure 10. Historical Chinese oil

  4. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    by this point, China’s demand Oil Demand vs. Domestic Supplycurrent pace of growth in oil demand as staying consistentand predictions of oil supply and demand affected foreign

  5. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    and Income on Energy and Oil Demand,” Energy Journal 23(1),2006. “China’s Growing Demand for Oil and Its Impact on U.S.in the supply or demand for oil itself could be regarded as

  6. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    Charles McCormick; Andrew Lowe

    2007-03-20T23:59:59.000Z

    Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

  7. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

  8. Biochemically enhanced oil recovery and oil treatment

    SciTech Connect (OSTI)

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  9. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  10. World Oil Prices and Production Trends in AEO2009 (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    The oil prices reported in Annual Energy Outlook 2009 (AEO) represent the price of light, low-sulfur crude oil in 2007 dollars. Projections of future supply and demand are made for "liquids," a term used to refer to those liquids that after processing and refining can be used interchangeably with petroleum products. In AEO2009, liquids include conventional petroleum liquids -- such as conventional crude oil and natural gas plant liquids -- in addition to unconventional liquids, such as biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  11. World Oil Prices and Production Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  12. Finite-element discretization of a linearized 2 -D model for lubricated oil transportation

    E-Print Network [OSTI]

    Frey, Pascal

    Finite-element discretization of a linearized 2 - D model for lubricated oil transportation V acts as a lubricant by coating the wall of the pipeline, thus preventing the oil from adhering is devoted to the numerical simulation of a linearized model for the lubricated trans- portation of heavy

  13. Early detection of oil-induced stress in crops using spectral and thermal

    E-Print Network [OSTI]

    Blackburn, Alan

    such as drought, herbicide application, and volatile hydrocarbon and heavy metal pollution cause changes Zealand, Blenheim, P.O. Box 331, New Zealand Abstract. Oil pollution is a major source of environmental of crops for the early detection of stress caused by oil pollution. In a glasshouse, pot-grown maize

  14. Shale oil from the LLNL pilot retort: Metal ions as markers for water and dust

    SciTech Connect (OSTI)

    Coburn, T.T.; Duewer, T.I.; King, K.J.; Baldwin, D.E.; Cena, R.J.

    1993-12-31T23:59:59.000Z

    A metal ion found primarily in one of the three phases (oil, water, or dust) can serve as a marker for that phase. Emulsified water contains most of the magnesium detected in a shale oil. Extraction with saturated salt solution removes most of that Mg. The Mg content of retort water and the percentage of water in the oil (by ASTM D-4006) provides a good estimate of an oil`s Mg content. Mineral matter elements with poorly water soluble carbonates (or oxides) at pH 8 (calcium, for example) serve as markers for dust. When the water is separated from the main and light oil fractions before adding the heavy fraction containing dust, a much drier oil can be obtained. However, when done in this way, a powder containing Ca and Si remains in the oil; it cannot be completely removed even by filtering through a 0.24-{mu} frit. Iron, and certain other transition metal ions, is quite oil soluble. Extraction with dilute nitric acid to remove basic amines reduces the Fe content of shale oil. Unlike carboxylate- complexed metal ions in crude oils, the iron in shale oil does not extract efficiently into an aqueous EDTA solution (pH 5.9). Distillation of shale oil leaves most of the iron and other metals behind in the vacuum residum. Shale oil corrodes the hottest condenser`s steel interior; this is the chief source of iron in the oil.

  15. Lattice QCD and Hydro/Cascade Model of Heavy Ion Collisions

    E-Print Network [OSTI]

    Michael Cheng

    2010-05-11T23:59:59.000Z

    We report here on a recent lattice study of the QCD transition region at finite temperature and zero chemical potential using domain wall fermions (DWF). We also present a parameterization of the QCD equation of state obtained from lattice QCD that is suitable for use in hydrodynamics studies of heavy ion collisions. Finally, we show preliminary results from a multi-stage hydrodynamics/hadron cascade model of a heavy ion collision, in an attempt to understand how well the experimental data (e.g. particle spectra, elliptic flow, and HBT radii) can constrain the inputs (e.g. initial temperature, freezeout temperature, shear viscosity, equation of state) of the theoretical model.

  16. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    SciTech Connect (OSTI)

    Linville, B. (ed.) [ed.

    1983-07-01T23:59:59.000Z

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  17. A Ratiometric Fluorescent Viscosity Sensor Mark A. Haidekker,*, Thomas P. Brady, Darcy Lichlyter, and Emmanuel A. Theodorakis*,

    E-Print Network [OSTI]

    Theodorakis, Emmanuel

    .g., blood, plasma, or lymphatic fluid viscosity changes in diabetes, hypertension, infarction, and aging).2

  18. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  19. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26T23:59:59.000Z

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  20. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    consumption would be reduced and incentives for production increased whenever the price of crude oil

  1. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    DOE Patents [OSTI]

    Robertson, Eric P

    2011-05-24T23:59:59.000Z

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  2. Measurement of surface tension and viscosity by open capillary techniques

    DOE Patents [OSTI]

    Rye,Robert R. (Albuquerque, NM), Yost,Frederick G. (Cedar Crest, NM)

    1998-01-01T23:59:59.000Z

    An open-channel capillary is provided, having preferably a v-shaped groove in a flat wettable surface. The groove has timing marks and a source marker in which the specimen to be tested is deposited. The time of passage between the timing marks is recorded, and the ratio of surface tension .gamma. to viscosity .mu. is determined from the equation given below: ##EQU1## where h.sub.0 is the groove depth, .alpha. is the groove angle, .theta. is the liquid/solid contact angle, and t is the flow time. It has been shown by the

  3. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30T23:59:59.000Z

    This project involves the use of an innovative new invention ? Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term ?globule? refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 ?m range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 ?m or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 ?m (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety

  4. A new scheme of causal viscous hydrodynamics for relativistic heavy-ion collisions: A Riemann solver for quark–gluon plasma

    SciTech Connect (OSTI)

    Akamatsu, Yukinao, E-mail: akamatsu@kmi.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602 (Japan)] [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602 (Japan); Inutsuka, Shu-ichiro [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)] [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Nonaka, Chiho [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602 (Japan) [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Takamoto, Makoto [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan) [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg (Germany)

    2014-01-01T23:59:59.000Z

    In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamics equation with the QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which is crucial in describing of quark–gluon plasma in high-energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In sound wave propagation, the intrinsic numerical viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of physical viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.

  5. Heavy Hybrid mesons Masses

    E-Print Network [OSTI]

    F. Iddir; L. Semlala

    2006-11-13T23:59:59.000Z

    We estimate the ground state masses of the heavy hybrid mesons using a phenomenological QCD-type potential. 0^{- -},1^{- -},0^{- +},1^{- +} and 0^{+ -} J^{PC} states are considered.

  6. Slip ratio in dispersed viscous oil-water pipe flow

    SciTech Connect (OSTI)

    Rodriguez, Iara H.; Yamaguti, Henrique K.B.; de Castro, Marcelo S.; Rodriguez, Oscar M.H. [Department of Mechanical Engineering, Engineering School of Sao Carlos, University of Sao Paulo (USP), Av. Trabalhador Sao Carlense, 400, 13566-970 Sao Carlos, SP (Brazil); Da Silva, Marco J. [Forschungszentrum Dresden-Rossendorf e. V., Institute of Safety Research, PO Box 510119, 01314 Dresden (Germany)

    2011-01-15T23:59:59.000Z

    In this article, dispersed flow of viscous oil and water is investigated. The experimental work was performed in a 26.2-mm-i.d. 12-m-long horizontal glass pipe using water and oil (viscosity of 100 mPa s and density of 860 kg/m{sup 3}) as test fluids. High-speed video recording and a new wire-mesh sensor based on capacitance (permittivity) measurements were used to characterize the flow. Furthermore, holdup data were obtained using quick-closing-valves technique (QCV). An interesting finding was the oil-water slip ratio greater than one for dispersed flow at high Reynolds number. Chordal phase fraction distribution diagrams and images of the holdup distribution over the pipe cross-section obtained via wire-mesh sensor indicated a significant amount of water near to the pipe wall for the three different dispersed flow patterns identified in this study: oil-in-water homogeneous dispersion (o/w H), oil-in-water non-homogeneous dispersion (o/w NH) and Dual continuous (Do/w and Dw/o). The phase slip might be explained by the existence of a water film surrounding the homogeneous mixture of oil-in-water in a hidrofilic-oilfobic pipe. (author)

  7. Experimental Investigation of Biodiesel Production from Waste Mustard Oil

    E-Print Network [OSTI]

    Rajat Subhra Samanta; Mukunda Kumar Das

    The demand for petroleum is increasing with each passing day. This may be attributed to the limited resources of petroleum crude. Hence there is an urgent need of developing alternative energy sources to meet the ever increasing energy demand. Biofuels are currently being considered from multidimensional perspectives, i.e. depleting fossil fuels, resources, environmental health, energy security and agricultural economy. The two most common types of biofuels are ethanol and biodiesel [1]. Biodiesel is a promising alternative fuel to replace petroleum-based diesel that is produced primarily from vegetable oil, animal fat and waste mustard oil. The vegetable oils which are rich in oxygen can be used as future alternate fuels for the operation of diesel engine [2]. Biodiesel is produced from wasted mustard oil through alkali catalyzed transesterification process. Biodiesel is simple to use, biodegradable, non-toxic and essentially free of sulfur and aromatics. Physical properties like density, flash point, kinematic viscosity, cloud point and pour point were found out for biodiesel produced from waste mustard oil. The same characteristic study was also carried out for conventional diesel fuel and used as a baseline for comparison. The values obtained from waste mustard oil ethyl ester (biodiesel) is closely matched with the conventional diesel fuel and it can be used in diesel engine without any modification. Biodiesel can be used in pure form (B100) or may be blended with petroleum diesel at any concentration in most injection pump diesel engines.

  8. Absolute measurement of the viscosity of classical and quantum fluids by rotating-cylinder viscometers

    SciTech Connect (OSTI)

    Donnelly, R.J.; LaMar, M.M.

    1987-11-01T23:59:59.000Z

    We discuss the use of rotating-cylinder viscometers to determine absolute shear viscosities of classical fluids and of helium II in the context of past and current knowledge of the stability and flow of these fluids between concentric cylinders. We identify a problem in measuring the absolute viscosity when the inner cylinder is rotating and the outer cylinder is at rest. We conclude by discussing the design of viscometers for absolute viscosity measurements in helium I and helium II.

  9. AN ENGINE OIL LIFE ALGORITHM.

    E-Print Network [OSTI]

    Bommareddi, Anveshan

    2009-01-01T23:59:59.000Z

    ??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil… (more)

  10. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    is described below. Data Crude oil production data is fromproductivity measure is crude oil production per worker, andwhich is measured as crude oil production per worker, is

  11. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Venezuelan Oil Industry Total Wells Drilled and InvestmentWells Drilled and Investment in the Venezuelan Oil Industryopenness of the oil sector to foreign investment contributes

  12. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .Venezuela with Mexico, another major oil pro- ducing countryOil Production and Productivity in Venezuela and Mexico . . . . . . . .

  13. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

  14. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03T23:59:59.000Z

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  15. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

    1984-01-03T23:59:59.000Z

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  16. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils

    SciTech Connect (OSTI)

    George W. Huber, Aniruddha A Upadhye, David M. Ford, Surita R. Bhatia, Phillip C. Badger

    2012-10-19T23:59:59.000Z

    This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8 ���µm were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments with model AFBO excluding guaiacol were also conducted. NF membranes showed retention factors of glucose greater than 80% and of acetic acid less than 15% when operated at transmembrane pressures near 60 bar. Task 3.0 Acid Removal by Catalytic Processing It was found that the TAN reduction in bio-oil was very difficult using low temperature hydrogenation in flow and batch reactors. Acetic acid is very resilient to hydrogenation and we could only achieve about 16% conversion for acetic acid. Although it was observed that acetic acid was not responsible for instability of aqueous fraction of bio-oil during ageing studies (described in task 5). The bimetallic catalyst PtRe/ceria-zirconia was found to be best catalyst because its ability to convert the acid functionality with low conversion to gas phase carbon. Hydrogenation of the whole bio-oil was carried out at 125���°C, 1450 psi over Ru/C catalyst in a flow reactor. Again, negligible acetic acid conversion was obtained in low temperature hydrogenation. Hydrogenation experiments with whole bio-oil were difficult to perform because of difficulty to pumping the high viscosity oil and reactor clogging. Task 4.0 Acid Removal using Ion Exchange Resins DOWEX M43 resin was used to carry out the neutralization of bio-oil using a packed bed column. The pH of the bio-oil increased from 2.43 to 3.7. The GC analysis of the samples showed that acetic acid was removed from the bio-oil during the neutralization and recovered in the methanol washing. But it was concluded that process would not be economical at large scale as it is extremely difficult to regenerate the resin once the bio-oil is passed over it. Task 5.0 Characterization of Upgraded Bio-oils We investigated the viscosity, microstructure, and chemical composition of bio-oils prepared by a fast pyrolysis approach, upon aging these fuels at 90���ºC for periods of several days. Our results suggest that the viscosity increase is not correlated with the acids or char present in the bio-oils. The

  17. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction

    SciTech Connect (OSTI)

    Feng Yan; Goree, J.; Liu Bin [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2011-05-15T23:59:59.000Z

    A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity {eta} and the wave-number-dependent viscosity {eta}(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity {eta}(k) is validated by comparing the results of {eta}(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity {eta} in the presence of a modest level of friction as in dusty plasma experiments.

  18. E-Print Network 3.0 - assess viscosity reduction Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    final spread as well as the stopping time... time with viscosity. Key words: self compacting concrete, rheology, slump flow, yield stress Source: Georgiou, Georgios - Department...

  19. Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale

    SciTech Connect (OSTI)

    Miknis, F. P.; Robertson, R. E.

    1987-09-01T23:59:59.000Z

    Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24 tabs.

  20. Solubility, viscosity and density of refrigerant/lubricant mixtures

    SciTech Connect (OSTI)

    Henderson, D.R.

    1993-01-01T23:59:59.000Z

    This report presents results on low refrigerant concentration (70, 80, 90, and 100 weight percent lubricant) mixtures of the following fluids: CFC-12/ISO 32 naphthenic mineral oil; HCFC-22/ISO 32 naphthenic mineral oil; and HFC-134a/ISO 32 pentaerythritol ester mixed acid. These data have been reduced to engineering form and are presented in the form of a Daniel Chart. Scatter diagrams are given for the first fluid listed above, with the intent of illustrating the quality of data as well as providing the rationale for selecting the particular functional forms chosen to represent the experimental data. Equations are given along with statistical measures of goodness of fit.

  1. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14T23:59:59.000Z

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  2. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  3. Cracking blends of gas oil and residual oil

    SciTech Connect (OSTI)

    Myers, G.D.

    1988-03-01T23:59:59.000Z

    In a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking zone at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regeneration zone by burning coke of the catalyst, and catalyst is circulated between the cracking zone and the regeneration zone. The improvement is described for obtaining a naphtha product of improved octane number comprising introducing sufficient of a nickel and vanadium metals-containing heavy feedstock with the gas oil feed introduced into the cracking zone to deposit nickel and vanadium metals on the catalyst and raise the nickel and metals-content of the catalyst to a level ranging from about 1500 to about 6000 parts per million of the metals expressed as equivalent nickel, based on the weight of the catalyst, and maintaining the nickel and vanadium metals level on the catalyst by withdrawing high nickel and vanadium metals containing catalyst and adding low nickel and vanadium metals-containing catalyst to the regeneration zone.

  4. 5/14/10 6:44 AMHow to Clean Up the Oil |Triple Pundit Page 1 of 3http://www.triplepundit.com/2010/05/how-to-clean-up-the-oil/

    E-Print Network [OSTI]

    Hazen, Terry

    , dumping 220,000 tons of heavy crude oil into the Atlantic. The spill was so large that the entire Brittany in 11 million gallons of heavy crude entering Prince William Sound and despoiling 1300 miles of pristine for numerous dead zones already existing in the Gulf of Mexico, the result of fertilizer-laden water coming

  5. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

  6. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

  7. REVIEW PAPER Biodeterioration of crude oil and oil derived

    E-Print Network [OSTI]

    Appanna, Vasu

    , the majority of applied microbiologi- cal methods of enhanced oil recovery also dete- riorates oil and appearsREVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil

  8. SUPRI (Stanford University Petroleum Research Institute) heavy oil research program

    SciTech Connect (OSTI)

    Brigham, W.E.; Ramey, H.J. Jr.; Aziz, K.; Castanier, L.

    1990-01-01T23:59:59.000Z

    This report is a summary of the work performed under Department of Energy contract FG19-87BC14126 during the period February 22, 1987 to February 21, 1990. During that period the Stanford University Petroleum Research Institute has published twenty-two technical reports and professional papers. This report presents in general terms the scope of work of SUPRI which is divided in five main projects: reservoir properties, in-situ combustion, improvement of steam injection by additives, well-to-well formation evaluation, and field support services. The results obtained during the period of performance of the contract are then presented in the form of abstracts from the technical reports and papers written during the period of performance.

  9. The Role of the Flexicoking Process in Heavy Oil Processing

    E-Print Network [OSTI]

    Taylor, R. I.

    1980-01-01T23:59:59.000Z

    is transferred by crr FLUID COKING process, which in turn built on the culating coke from the exothermic reaction t~king fluid solids experience accumulated in cat crack- i place in the gasifier to the endothermic reaftion ing since the second world war... liquid volume basis. Virtually all of the energy input to the process comes from the exothermic reaction taking place in the gasification of the coke. Thus, oxidation of coke supplies the energy for con version to 1ight products, and no premium fuel...

  10. Development of High Performance Heavy Duty Engine Oils | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic RelationsDepartment ofEfficiency

  11. 05663_AlaskaHeavyOil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars and Sense(ANL-IN-03-032)431st quarter43) Fluid

  12. Coalescence of Low-Viscosity Fluids in Air

    E-Print Network [OSTI]

    Sarah C. Case

    2008-09-09T23:59:59.000Z

    An electrical method is used to study the early stages of coalescence of two low-viscosity drops. A drop of aqueous NaCl solution is suspended in air above a second drop of the same solution which is grown until the drops touch. At that point a rapidly widening bridge forms between them. By measuring the resistance and capacitance of the system during this coalescence event, one can obtain information about the time dependence of the characteristic bridge radius and its characteristic height. At early times, a new asymptotic regime is observed that is inconsistent with previous theoretical predictions. The measurements at several drop radii and approach velocities are consistent with a model in which the two liquids coalesce with a slightly deformed interface.

  13. Oil and gas basins in the former Soviet Union

    SciTech Connect (OSTI)

    Clayton, J. (Geological Survey, Denver, CO (United States))

    1993-09-01T23:59:59.000Z

    The Pripyat basin is a Late Devonian rift characterized by a typical fault-block structure. Two synrift salt formations separate the Devonian stratigraphic succession into the subsalt, intersalt, and postsalt sections. Oil is produced from carbonate reservoirs of the subsalt and intersalt sections. Traps are controlled by crests of tilted fault blocks. We analyzed 276 shale and carbonate-rock samples and 21 oils to determine oil-source bed relationships in the basin. Maturities of the oils are from very immature, heavy (9[degrees] API), to very mature, light (42[degrees] API). All fields are in a narrow band on the north side of the basin, and only shows of immature, heavy oil have been obtained from the rest of the basin. Three genetic oil types are identified. Oil type A has high pristane/phytane ratios (>1.0), high amounts of C[sub 29] 18[alpha] (H) trisnorneohopane, and [delta]13C of hydrocarbons in the range of -31 to -27%. Oil types B and C contain very high amounts of gammacerane, which suggests that the oils were derived from carbonate-evaporite source facies. Type B oils are isotopically similar to type A, whereas type C oils are isotopically light (about -33%). Organic carbon content is as much as 5%, and kerogen types range from I to IV. Our data indicate that rocks within the intersalt carbonate formation are the source of the type B oils of low maturity. Thermally mature rocks that might be the source for the mature oils have not been found. Such rocks may occur in depressions adjacent to tilted fault blocks. Higher levels of thermal maturity on the north part of the basin in the vicinity of the most mature oils may be related to higher heat flow during and soon after rifting or to a suspected recently formed magmatic body in the crust below the northern zone. Present-day high temperatures in parts of the northern zone may support the latter alternative.

  14. First joint SPE/DOE symposium on enhanced oil recovery, proceedings supplement

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    The First Joint Symposium on Enhanced Oil Recovery sponsored by the Society of Petroleum Engineers and the US Department of Energy was held in Tulsa, Oklahoma. Besides the thirty-three technical papers which covered all phases of enhanced oil recovery and were published in the Proceedings, the Symposium included a session on Enhanced Oil Recovery Incentives where ten papers were presented which discussed the status of enhanced oil recovery technology, and included papers on incentive programs of the United States, Canada and Venezuela. These papers are published in this Proceedings Supplement under the following titles: Federal Government Role in enhanced Oil Recovery; Financial Realities of an Adequate Petroleum Supply; Major Technology Constraints in Enhanced Oil Recovery; Decontrol-Opportunities and Dangers; Status of EOR Technology; Impact of Federal Incentives on US Production; Canadian Incentives Program; and Heavy Oil Incentives in Venezuela.

  15. Using Oils As Pesticides

    E-Print Network [OSTI]

    Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

    2006-10-30T23:59:59.000Z

    Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing...

  16. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

  17. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    an alternative investment strategy to buying oil today andinvestments necessary to catch up. This was the view o?ered by oilinvestment strategy. date t) in order to purchase a quantity Q barrels of oil

  18. Gas and Oil (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

  19. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    21, 2008. Ying, Wang. “ China, Venezuela firms to co-developApril 21, “China and Venezuela sign oil agreements. ” Chinaaccessed April 21, “Venezuela and China sign oil deal. ” BBC

  20. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01T23:59:59.000Z

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  1. Department of Mechanical Engineering Fall 2010 Viscosity Measurement of Troublesome Fluids

    E-Print Network [OSTI]

    Demirel, Melik C.

    Fluids Overview Air Products completes many batches of a variety of different fluids every year takes Air Products 2-3 hours to obtain a viscosity measurement. The goal of this project is to design a process that will shorten the time it takes Air Products to obtain a viscosity measurement, without

  2. Effective field theory for fluids: Hall viscosity from a Wess-Zumino-Witten term

    E-Print Network [OSTI]

    Michael Geracie; Dam Thanh Son

    2014-11-11T23:59:59.000Z

    We propose an effective action that describe a relativistic fluid with Hall viscosity. The construction involves a Wess-Zumino-Witten term that exists only in (2+1) spacetime dimensions. We note that this formalism can accommodate only a Hall viscosity which is a homogeneous function of the entropy and particle number densities of degree one.

  3. Synthesis and use of an in-solution ratiometric fluorescent viscosity sensor

    E-Print Network [OSTI]

    Theodorakis, Emmanuel

    response times8­10. Scope and limitations of existing mechanical methods for measuring fluid viscosity Viscosity is usually measured on a bulk scale by exposing the fluid under test to shear forces. The resistance against the shear force, caused by the internal friction of the fluid, can be measured

  4. Method of preparing a high solids content, low viscosity ceramic slurry

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Wittmer, Dale E. (Carbondale, IL)

    1995-01-01T23:59:59.000Z

    A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.

  5. Effects of Thermal Exposure and Test Temperature on Structure Evolution and Hardness/Viscosity

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Effects of Thermal Exposure and Test Temperature on Structure Evolution and Hardness/Viscosity the physical and mechanical properties (i.e., viscosity, flow, and fracture). In some cases, the thermal coating techniques (e.g., high velocity oxygen fuel (HVOF), plasma spray, cold spray, etc.) have been used

  6. Method of preparing a high solids content, low viscosity ceramic slurry

    DOE Patents [OSTI]

    Tiegs, T.N.; Wittmer, D.E.

    1995-10-10T23:59:59.000Z

    A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.

  7. Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers

    E-Print Network [OSTI]

    Theodorakis, Emmanuel

    Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers Department bound to a fiber-optic tip without loss of viscosity sensi- tivity. The optical fiber itself may be used to molecular rotors in solution. An optical fiber-based fluorescent vis- cosity sensor may be used in real

  8. Lifecycle-analysis for heavy vehicles.

    SciTech Connect (OSTI)

    Gaines, L.

    1998-04-16T23:59:59.000Z

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

  9. The effect of sand grain size distribution on the minimum oil saturation necessary to support in-situ combustion

    E-Print Network [OSTI]

    Daniel, William Marvin

    1973-01-01T23:59:59.000Z

    . Daniel, B. S. , Texas A8cM University; Directed by: Dr, Joseph S. Osoba The use of in-situ combustion as a means of producing heavy, viscous crude oils is not new. However, the success of this method of producing crude oil has been limited.... : "In-Situ Combustion--- Newest Method of Increasing Oil Recovery, " The Oil and Gas Journal (August 10 ~ 1953) 52. Grant, B. F. , and Szasz, S. E. : "Development of an Underground Heat Wave for Oil Recovery, " Trans. AIME (1954) 201, 108. Nelson...

  10. DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY

    SciTech Connect (OSTI)

    M.J. McInerney; S.K. Maudgalya; R. Knapp; M. Folmsbee

    2004-05-31T23:59:59.000Z

    Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1 if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at biosurfactant concentrations below the critical micelle concentration (about 10 mg/l). Below this concentration, the IFT values were high. At biosurfactant concentrations from 10 to 40 mg/l, the IFT was 1 mN/m. As the biosurfactant concentration increased beyond 40 mg/l, IFT decreased to about 0.1 mN/m. At biosurfactant concentrations in excess of 10 mg/l, residual oil recovery was linearly related to biosurfactant concentration. A modified mathematical model that relates oil recovery to biosurfactant concentration adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration.

  11. A correlation of United States tar sand bitumen viscosities with NMR spectroscopic parameters

    SciTech Connect (OSTI)

    Netzel, D.A.; Turner, T.F.

    1989-06-01T23:59:59.000Z

    A method has been developed whereby the viscosity of a tar sand bitumen at any temperature can be calculated from nuclear magnetic resonance parameters. The method is semiempirical but is based upon some fundamental theoretical concepts for molecular mobility and intermolecular interactions. Using this method, the viscosities of three United States tar sand bitumens have been correlated to the weighted average spin-spin relaxation rates for the semiliquid, solidlike mobile, and solidlike rigid phases of the bitumens. The results indicate that bitumens with a high viscosity have a greater amount of solidlike rigid phase and lesser amounts of solidlike mobile and semiliquid phases than do the bitumens with low viscosity. It is also shown that the viscosity of a tar sand bitumen over a 100 degree temperature range can be determined from a single NMR experiment conducted near room temperature. 18 refs., 3 figs., 4 tabs.

  12. A correlation of United States tar sand bitumen viscosities with NMR spectroscopic parameters

    SciTech Connect (OSTI)

    Netzel, D.A.; Turner, T.F. (Western Research Institute, Box 3395, Laramie, WY (US))

    1990-01-01T23:59:59.000Z

    A method has been developed whereby the viscosity of a tar sand bitumen at any temperature can be calculated from nuclear magnetic resonance parameters. The method is semi empirical but is based upon some fundamental theoretical concepts for molecular mobility and intermolecular interactions. Using this method, the viscosities of three United States tar sand bitumens have been correlated to the weighted average spin-spin, relaxation rates for the semiliquid, solidlike mobile, and solidlike rigid phases of the bitumens. The results indicate that bitumens with a high viscosity have a greater amount of solidlike rigid phase and lesser amounts of solidlike mobile and semiliquid phases than do the bitumens with low viscosity. It is also shown that the viscosity of a tar sand bitumen over a 100 degree temperature range can be determined from a single NMR experiment conducted near room temperature.

  13. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01T23:59:59.000Z

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  14. Manufacture of refrigeration oils

    SciTech Connect (OSTI)

    Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

    1981-12-08T23:59:59.000Z

    Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

  15. Politics -Campaign 2006: Oil tax bid hatched by unlikely advocate -... http://www.sacbee.com/content/politics/story/14308686p-15198983c... 1 of 4 8/26/06 7:14 PM

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Politics - Campaign 2006: Oil tax bid hatched by unlikely advocate -... http up with a big idea -- forcing oil companies pumping crude from California fields to pay an extraction and well-heeled backers, Proposition 87 is facing heavy opposition from the oil industry that has donated

  16. PHYTOEXTRACTION OF HEAVY METALS

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    ) Type of phytoremediation Cost effective form of environmental remediation (Glass 1999) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al -using hyperaccumulator plant biomass to produce a bio-ore for commercial use -Li et al. look at using Ni

  17. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-12-21T23:59:59.000Z

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

  18. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

    1982-12-21T23:59:59.000Z

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  19. Carcinogenicity Studies of Estonian Oil Shale Soots

    E-Print Network [OSTI]

    A. Vosamae

    determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All

  20. Bound for entropy and viscosity ratio for strange quark matter

    E-Print Network [OSTI]

    Manjari Bagchi; Jishnu Dey; Mira Dey; Taparati Gangopadhyay; Sibasish Laha; Subharthi Ray; Monika Sinha

    2008-07-03T23:59:59.000Z

    High energy density ($\\eps$) and temperature (T) links general relativity and hydrodynamics leading to a lower bound for the ratio of shear viscosity ($\\eta$) and entropy density ($s$). We get the interesting result that the bound is saturated in the simple model for quark matter that we use for strange stars at the surface for $T \\sim 80 MeV$. At this $T$ we have the possibility of cosmic separation of phases. At the surface of the star where the pressure is zero - the density $\\eps$ has a fixed value for all stars of various masses with correspondingly varying central energy density $\\eps_c$. Inside the star where this density is higher, the ratio of $\\eta/s$ is larger and are like the known results found for perturbative QCD. This serves as a check of our calculation. The deconfined quarks at the surface of the strange star at $T = 80 MeV$ seem to constitute the most perfect interacting fluid permitted by nature.

  1. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  2. Ultrasonic attenuation and volume viscosity in liquid argon, nitrogen and helium

    E-Print Network [OSTI]

    Singer, James Robert

    1967-01-01T23:59:59.000Z

    /cm . Measurements taken at densities from 2 1. 06 to 1. 42 g/cm result in values of 2. 3 to 0. 8 for the ratio of volume to shear viscosity. These values are compared with theoretical predictions of other investigators. It appears that the volume viscosity...ULTRASOM IC A'ITEN UAT IOM AMD VOLUME VISCOSITY IM LIQUID ARGON, "IITROGEV AMD MET IUM A Thesis by JAMES ROBFRT SI'%GER Submitted to the Graduate College of the Texas AgM University in partial fulfillment of the requirements for the degree...

  3. The measurement of cross-linked fracture fluid viscosity using a pipe viscometer

    E-Print Network [OSTI]

    Vermaelen, John Douglas

    1985-01-01T23:59:59.000Z

    was designed to reproduce the shear rate vs. viscosity pr ofile for a linear (uncross-linked) fracture fluid. The fluid tested was a 40 lb/1000 gal hydroxypropyl guar polymer solution, which is a 0. 48$ HPG aqueous solution, The compar ison of the published.... Fig. 27 compar es cases 31, 32, and 33. -1 The gel cross-linked at 30 sec has the lowest appar ent viscosity. Case 31 does not follow the same trend as the other -1 cases. The gel cross-linked at 100 sec has a higher appar ent ? 1 viscosity than...

  4. LADE-based Inference for ARMA Models with Unspecified and Heavy-tailed Heteroscedastic Noises

    E-Print Network [OSTI]

    Ling, Shiqing

    and Van Dijk (1996) studied several stock market indexes by AR(1)-GJR(1, 1) models, Zhu and Ling (2011) fitted a MA(3)-GARCH(1, 1) model to the world oil prices, see also Tsay (2005) for more empiricalLADE-based Inference for ARMA Models with Unspecified and Heavy-tailed Heteroscedastic Noises

  5. PHENIX recent heavy flavor results

    E-Print Network [OSTI]

    Sanghoon Lim for the PHENIX collaboration

    2014-02-28T23:59:59.000Z

    Cold nuclear matter (CNM) effects provide an important baseline for the interpretation of data in heavy ion collisions. Such effects include nuclear shadowing, Cronin effect, and initial patron energy loss, and it is interesting to study the dependence on impact parameter and kinematic region. Heavy quark production is a good measurement to probe the CNM effects particularly on gluons, since heavy quarks are mainly produced via gluon fusions at RHIC energy. The PHENIX experiment has experiment has ability to study the CNM effects by measuring heavy quark production in $d$$+$Au collisions at variety of kinematic ranges. Comparisons of heavy quark production at different rapidities allow us to study modification of gluon density function in the Au nucleus depending on momentum fraction. Furthermore, comparisons to the results from heavy ion collisions (Au$+$Au and Cu$+$Cu) measured by PHENIX provide insight into the role of CNM effects in such collisions. Recent PHENIX results on heavy quark production are discussed.

  6. World Oil: Market or Mayhem?

    E-Print Network [OSTI]

    Smith, James L.

    2008-01-01T23:59:59.000Z

    The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

  7. A Study of the Use of Jatropha Oil Blends in Boilers

    SciTech Connect (OSTI)

    Krishna, C.R.

    2010-10-01T23:59:59.000Z

    Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic reductions in sulfur dioxide emissions are measured with the blends. Again, consistent with our past experience with biodiesel blends, significant reductions in nitrogen oxide emissions nearing 50% with 100% Jatropha oil, were also measured. This is in contrast with the use of biodiesel in diesel engines, where the NOx has a tendency to increase. In addition to the gaseous emission measurements, particulate emissions were measured using an EPA CTM-39 system to obtain both particulates, of sizes below 2.5 microns, so-called PM2.5, and of sizes larger than 2.5 microns. The results show that the particulate emissions are lower with the blending of Jatropha oil. Overall, one can conclude that the blending of Jatropha oil with residual oil is a feasible approach to using non-edible plant oil to provide a renewable content to residual oil, with significant benefits in the reduction of pollutant emissions such as sulfur dioxide, nitrogen oxides and particulates.

  8. Focus on Venezuelan heavy crude: refining margins

    SciTech Connect (OSTI)

    Not Available

    1984-01-25T23:59:59.000Z

    Of six crudes refined in the US Gulf Coast, heavy Venezuelan crude Lagunillas (15/sup 0/ API) provides the best margin per barrel. Data for end of December 1983 and the first three weeks of January show that margins on all crudes are on the rise in this market, due to a turnaround in product prices. The lighter crudes are showing the greatest increase in Gross Product Worth. This is having a modest shrinking effect on the margin differential between light and heavy crudes in this market. The domestic crude West Texas Intermediate, at 40/sup 0/ API, provides the highest GPW in this crude slate sample, over US $31 per barrel, compared to GPW of under US $28 per barrel for Lagunillas. Still, as Lagunillas cost about US $8 less than does WTI, refiners with sufficient residue conversion capacity can be earning about US $3.50 more in margin per barrel than they can with WTI. Although few refiners would be using a 15/sup 0/ API crude exclusively for any length of time, heavier oil's inclusion in modern refiners' diets is enhancing their competitive position more than any other single factor. This issue of Energy Detente presents the fuel price/tax series and industrial fuel prices for January 1984 for countries of the Western Hemisphere.

  9. Oil and Gas (Indiana)

    Broader source: Energy.gov [DOE]

    This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

  10. Thermodynamic properties and shear viscosity over entropy density ratio of nuclear fireball in a quantum-molecular dynamics model

    E-Print Network [OSTI]

    C. L. Zhou; Y. G. Ma; D. Q. Fang; G. Q. Zhang

    2012-12-20T23:59:59.000Z

    Thermodynamic and transport properties of nuclear fireball created in the central region of heavy-ion collisions below 400 MeV/nucleon are investigated within the isospin-dependent quantum molecular dynamic (IQMD) model. These properties including the density, temperature, chemical potential, entropy density ($s$) and shear viscosity ($\\eta$), are calculated by a generalized hot Thomas Fermi formulism and a parameterized function, which was developed by Danielewicz. As the collision goes on, a transient minimal $\\eta/s=5/4\\pi-10/4\\pi$ occurs in the largest compression stage. Besides, the relationship of $\\eta/s$ to temperature ($T$) in the freeze-out stage displays a local minimum which is about 9-20 times $1/4\\pi$ around $T$ = 8-12 MeV, which can be argued as indicative of a liquid gas phase transition. In addition, the influences of nucleon-nucleon (NN) cross section ($\\sigma_{NN}$) and symmetry energy coefficient ($C_{s}$) are also discussed, and it is found that the results are sensitive to $\\sigma_{NN}$ but not to $C_{s}$.

  11. Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines

    E-Print Network [OSTI]

    Takata, Rosalind (Rosalind Kazuko), 1978-

    2006-01-01T23:59:59.000Z

    The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

  12. The nucleon thermal width due to pion-baryon loops and its contribution in Shear viscosity

    E-Print Network [OSTI]

    Ghosh, Sabyasachi

    2015-01-01T23:59:59.000Z

    In the real-time thermal field theory, the standard expression of shear viscosity for the nucleonic constituents is derived from the two point function of nucleonic viscous stress tensors at finite temperature and density. The finite thermal width or Landau damping is traditionally included in the nucleon propagators. This thermal width is calculated from the in-medium self-energy of nucleon for different possible pion-baryon loops. The dynamical part of nucleon-pion-baryon interactions are taken care by the effective Lagrangian densities of standard hadronic model. The shear viscosity to entropy density ratio of nucleonic component decreases with the temperature and increases with the nucleon chemical potential. However, adding the contribution of pionic component, total viscosity to entropy density ratio also reduces with the nucleon chemical potential when the mixing effect between pion and nucleon components in the mixed gas is considered. Within the hadronic domain, viscosity to entropy density ratio of ...

  13. Experimental Investigation of the Effective Foam Viscosity in Unsaturated Porous Media

    SciTech Connect (OSTI)

    Zhang, Z. F.; Zhong, Lirong; White, Mark D.; Szecsody, James E.

    2012-11-01T23:59:59.000Z

    Foam has the potential to effectively carry and distribute either aqueous or gaseous amendments to the deep vadose zone for contaminant remediation. However, the transport of foam in porous media is complicated because flow characteristics such as the effective viscosity are affected not only by foam properties but also by the sediment properties and flow conditions. We determined the average effective foam viscosity via a series of laboratory experiments and found that the effective foam viscosity increased with the liquid fraction in foam, the injection rate, and sediment permeability. These impacts are quantified with an empirical expression, which is further demonstrated with data from literature. The results show that the liquid fraction in foam and sediment permeability are two primary factors affecting effective foam viscosity. These results suggest that, when foam is used in deep vadose zone remediation, foam flow will not suffer from gravitational drainage and can distribute amendments uniformly in heterogeneous sediments.

  14. Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities

    DOE Patents [OSTI]

    Karanikas, John Michael; Vinegar, Harold J

    2014-03-04T23:59:59.000Z

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. A viscosity of one or more zones of the hydrocarbon layer is assessed. The heating rates in the zones are varied based on the assessed viscosities. The heating rate in a first zone of the formation is greater than the heating rate in a second zone of the formation if the viscosity in the first zone is greater than the viscosity in the second zone. Fluids are produced from the formation through the production wells.

  15. Experimental Investigation on High-pressure, High-temperature Viscosity of Gas Mixtures

    E-Print Network [OSTI]

    Davani, Ehsan

    2012-02-14T23:59:59.000Z

    Modeling the performance of high-pressure, high-temperature (HPHT) natural gas reservoirs requires the understanding of gas behavior at such conditions. In particular, gas viscosity is an important fluid property that directly affects fluid flow...

  16. Improvement of nutritive value of guar meal through reduction of viscosity by enzyme supplementation

    E-Print Network [OSTI]

    Lee, Jason Thomas

    2002-01-01T23:59:59.000Z

    Guar meal is a high protein by-product of guar gum production that contains a residual gum, galactomannan polysaccharide. The gum increases intestinal viscosity while decreasing nutrient absorption. Four experiments examined effects of two guar...

  17. Role of viscosity in the accurate prediction of source-terms for high molecular weight substances

    E-Print Network [OSTI]

    Shaikh, Irfan Yusuf

    1999-01-01T23:59:59.000Z

    This study shows that using better material property predictions results in better source-term modeling for high molecular weight substances. Viscosity, density, and enthalpy are used as a function of process variables, namely, temperature...

  18. Medium effects and the shear viscosity of the dilute Fermi gas away from the conformal limit

    E-Print Network [OSTI]

    Marcus Bluhm; Thomas Schaefer

    2014-10-10T23:59:59.000Z

    We study the shear viscosity of a dilute Fermi gas as a function of the scattering length in the vicinity of the unitarity limit. The calculation is based on kinetic theory, which provides a systematic approach to transport properties in the limit in which the fugacity $z=n\\lambda^3/2$ is small. Here, $n$ is the density of the gas and $\\lambda$ is the thermal wave length of the fermions. At leading order in the fugacity expansion the shear viscosity is independent of density, and the minimum shear viscosity is achieved at unitarity. At the next order medium effects modify the scattering amplitude as well as the quasi-particle energy and velocity. We show that these effects shift the minimum of the shear viscosity to the Bose-Einstein condensation (BEC) side of the resonance, in agreement with the result of recent experiments.

  19. Enhanced oil recovery of heavy oils by non-thermal chemical methods.

    E-Print Network [OSTI]

    Kumar, Rahul, active 2013

    2013-01-01T23:59:59.000Z

    ??It is estimated that the shallow reservoirs of Ugnu, West Sak and Shraeder Bluff in the North Slope of Alaska hold about 20 billion barrels… (more)

  20. Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity

    E-Print Network [OSTI]

    McCollum, David L; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    aquifers and in gas and oil reservoirs. The properties shownRepresentative Range of Oil Reservoir Properties [8] Tablenatural reservoirs, for example, saline aquifers and oil and

  1. Computer simulation of effective viscosity of fluid-proppant mixture used in hydraulic fracturing

    E-Print Network [OSTI]

    Kuzkin, Vitaly A; Linkov, Aleksandr M

    2013-01-01T23:59:59.000Z

    The paper presents results of numerical experiments performed to evaluate the effective viscosity of a fluid-proppant mixture, used in hydraulic fracturing. The results, obtained by two complimenting methods (the particle dynamics and the smoothed particle hydrodynamics), coincide to the accuracy of standard deviation. They provide an analytical equation for the dependence of effective viscosity on the proppant concentration, needed for numerical simulation of the hydraulic fracture propagation.

  2. On the "viscosity maximum" during the uniaxial extension of a low density polyethylene

    E-Print Network [OSTI]

    Teodor I. Burghelea; Zdenek Stary; Helmut Muenstedt

    2010-01-13T23:59:59.000Z

    An experimental investigation of the viscosity overshoot phenomenon observed during uniaxial extension of a low density polyethylene is pre- sented. For this purpose, traditional integral viscosity measurements on a Muenstedt type extensional rheometer are combined with local mea- surements based on the in-situ visualization of the sample under exten- sion. For elongational experiments at constant strain rates within a wide range of Weissenberg numbers (Wi), three distinct deformation regimes are identified. Corresponding to low values of Wi (regime I), the tensile stress displays a broad maximum. This maximum can be explained by simple mathematical arguments as a result of low deformation rates and it should not be confused with the viscosity overshoot phenomenon. Corre- sponding to intermediate values of Wi (regime II), a local maximum of the integral extensional viscosity is systematically observed. However, within this regime, the local viscosity measurements reveal no maximum, but a plateau. Careful inspection of the images of samples within this regime shows that, corresponding to the maximum of the integral viscosity, sec- ondary necks develop along the sample. The emergence of a maximum of the integral elongational viscosity is thus related to the distinct in- homogeneity of deformation states and is not related to the rheological properties of the material. In the fast stretching limit (high Wi, regime III), the overall geometric uniformity of the sample is well preserved, no secondary necks are observed and both the integral and the local transient elongational viscosity show no maximum. A detailed comparison of the experimental findings with results from literature is presented.

  3. Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling

    SciTech Connect (OSTI)

    Cai Ronggen [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China); Nie Zhangyu; Sun Yawen [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, YuQuan Road 19A, Beijing 100049 (China); Ohta, Nobuyoshi [Department of Physics, Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan)

    2009-03-15T23:59:59.000Z

    We calculate the shear viscosity of field theories with gravity duals of Gauss-Bonnet gravity with a nontrivial dilaton using anti-de Sitter/conformal field theory. We find that the dilaton field has a nontrivial contribution to the ratio of shear viscosity over entropy density, and, after imposing a causal constraint for the boundary field theory, the new lower bound 4/25{pi}, obtained from pure Gauss-Bonnet gravity, may have a small violation.

  4. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    reserves. In the data, crude oil reserve addi- tions consistForce and Proven Reserves in the Venezuelan Oil Industry .such as crude oil production, proved reserves, new reserves,

  5. Oil and Gas Production (Missouri)

    Broader source: Energy.gov [DOE]

    A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

  6. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01T23:59:59.000Z

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  7. Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report

    SciTech Connect (OSTI)

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01T23:59:59.000Z

    Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  8. Marathon Oil Company

    E-Print Network [OSTI]

    unknown authors

    Marine oil shale from the Shenglihe oil shale section in the Qiangtang basin, northern Tibet, China, was dated by the Re-Os technique using Carius Tube digestion, Os distillation, Re extraction by acetone and ICP-MS measure-ment. An isochron was obtained giving an age of 101±24 Ma with an initial

  9. Synthetic aircraft turbine oil

    SciTech Connect (OSTI)

    Yaffe, R.

    1982-03-16T23:59:59.000Z

    Synthetic lubricating oil composition having improved oxidation stability comprising a major portion of an aliphatic ester base oil having lubricating properties, formed by the reaction of pentaerythritol and an organic monocarboxylic acid and containing a phenylnaphthylamine, a dialkyldiphenylamine, a polyhydroxy anthraquinone, a hydrocarbyl phosphate ester and a dialkyldisulfide.

  10. Potential small-scale development of western oil shale

    SciTech Connect (OSTI)

    Smith, V.; Renk, R.; Nordin, J.; Chatwin, T.; Harnsberger, M.; Fahy, L.J.; Cha, C.Y.; Smith, E.; Robertson, R.

    1989-10-01T23:59:59.000Z

    Several studies have been undertaken in an effort to determine ways to enhance development of western oil shale under current market conditions for energy resources. This study includes a review of the commercial potential of western oil shale products and byproducts, a review of retorting processes, an economic evaluation of a small-scale commercial operation, and a description of the environmental requirements of such an operation. Shale oil used as a blend in conventional asphalt appears to have the most potential for entering today's market. Based on present prices for conventional petroleum, other products from oil shale do not appear competitive at this time or will require considerable marketing to establish a position in the marketplace. Other uses for oil shale and spent shale, such as for sulfur sorbtion, power generation, cement, aggregate, and soil stabilization, are limited economically by transportation costs. The three-state area area consisting of Colorado, Utah, and Wyoming seems reasonable for the entry of shale oil-blended asphalt into the commercial market. From a review of retorting technologies and the product characteristics from various retorting processes it was determined that the direct heating Paraho and inclined fluidized-bed processes produce a high proportion of heavy material with a high nitrogen content. The two processes are complementary in that they are each best suited to processing different size ranges of materials. An economic evaluation of a 2000-b/d shale oil facility shows that the operation is potentially viable, if the price obtained for the shale oil residue is in the top range of prices projected for this product. Environmental requirements for building and operating an oil shale processing facility are concerned with permitting, control of emissions and discharges, and monitoring. 62 refs., 6 figs., 10 tabs.

  11. Chinaâs Oil Diplomacy with Russia.

    E-Print Network [OSTI]

    Chao, Jiun-chuan

    2011-01-01T23:59:59.000Z

    ??In Chinaâs view, it is necessary to get crude oil and oil pipeline. Under Russia and China strategic partnership, China tries to obtain âlong term… (more)

  12. OIL SHALE DEVELOPMENT IN CHINA

    E-Print Network [OSTI]

    J. Qian; J. Wang; S. Li

    In this paper history, current status and forecast of Chinese oil shale indus-try, as well as the characteristics of some typical Chinese oil shales are given.

  13. Peak oil: diverging discursive pipelines.

    E-Print Network [OSTI]

    Doctor, Jeff

    2012-01-01T23:59:59.000Z

    ??Peak oil is the claimed moment in time when global oil production reaches its maximum rate and henceforth forever declines. It is highly controversial as… (more)

  14. Petroleum Oil | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum Oil Petroleum Oil The production of energy feedstock and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass and agricultural...

  15. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .and Productivity in Venezuela and Mexico . . . . . . . . OilEllner, ”Organized Labor in Venezuela 1958-1991: Behavior

  16. Has the QCD Critical Point Been Signaled by Observations at the BNL Relativistic Heavy Ion Collider?

    SciTech Connect (OSTI)

    Lacey, Roy A.; Ajitanand, N. N.; Alexander, J. M.; Chung, P.; Holzmann, W. G.; Issah, M.; Taranenko, A. [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400 (United States); Danielewicz, P. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1321 (United States); Stoecker, Horst [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet D60438 Frankfurt (Germany)

    2007-03-02T23:59:59.000Z

    The shear viscosity to entropy ratio ({eta}/s) is estimated for the hot and dense QCD matter created in Au+Au collisions at BNL Relativistic Heavy Ion Collider ({radical}(s{sub NN})=200 GeV). A very low value is found; {eta}/s{approx}0.1, which is close to the conjectured lower bound (1/4{pi}). It is argued that such a low value is indicative of thermodynamic trajectories for the decaying matter which lie close to the QCD critical end point.

  17. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08T23:59:59.000Z

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

  18. Oil-Miscible and Non-Corrosive Phosphonium Ionic Liquids as Candidate Lubricant Additives

    SciTech Connect (OSTI)

    Yu, Bo [ORNL; Bansal, Dinesh G [ORNL; Qu, Jun [ORNL; Sun, Xiaoqi [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL; Blau, Peter Julian [ORNL; Bunting, Bruce G [ORNL; Mordukhovich, Gregory [GM R& D and Planning, Warren, Michigan; Smolenski, Donald [GM R& D and Planning, Warren, Michigan

    2012-01-01T23:59:59.000Z

    Ionic liquids (ILs) have been receiving considerable attention from the lubricants industry as potential friction and wear-reducing additives, but their solubility in oils is an issue. Unlike most ionic liquids that are insoluble in non-polar hydrocarbon oils, this study reports phosphonium-based ILs (PP-ILs) that are fully miscible with both mineral oil-based and synthetic lubricants. Both the cation and anion in quaternary structures, long alkyl chains, and capability of pairing the cation and the anion via a H-O bond are hypothesized to improve the compatibility between ions and neutral oil molecules. The measured viscosities of the oil-IL blends agree well with the Refutas equation that is for solutions containing multiple components. High thermal stability and non-corrosiveness were observed for the PP-ILs. Effective friction reduction and anti-wear functionality have been demonstrated in tribological tests when adding 5 wt% of a PP-IL into a base oil, suggesting potential applications for using the oil-miscible PP-ILs as lubricant additives.

  19. Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas

    SciTech Connect (OSTI)

    James Spillane

    2005-10-01T23:59:59.000Z

    The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

  20. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28T23:59:59.000Z

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.