Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report  

SciTech Connect (OSTI)

The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

NONE

1995-11-01T23:59:59.000Z

2

Bioconversion of Heavy oil.  

E-Print Network [OSTI]

??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to… (more)

Steinbakk, Sandra

2011-01-01T23:59:59.000Z

3

Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons  

DOE Patents [OSTI]

A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

Gordon, John Howard

2014-09-09T23:59:59.000Z

4

Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, January 1, 1994--December 31, 1994  

SciTech Connect (OSTI)

Alaska is the second largest oil producing state in the nation and currently contributes nearly 24% of the nations oil production. It is imperative that Alaskan heavy oil fields be brought into production. Schrader Bluff reservoir, located in the Milne Point Unit, which is part of the heavy oil field known as West Sak is estimated to contain 1.5 billion barrels of (14 to 21 degree API) oil-in-place. The field is currently under production by primary depletion. The eventual implementation of enhanced oil recovery (EOR) techniques will be vital for the recovery of additional oil from this reservoir. The availability of hydrocarbon gases (solvents) on the Alaska North Slope make the hydrocarbon miscible solvent injection process an important consideration for the EOR project in Schrader Bluff reservoir. Since Schrader Bluff oil is heavy and viscous, a water-alternating-gas (WAG) type of process for oil recovery is appropriate since such a process tends to derive synergetic benefits from both water injection (which provides mobility control and improvement in sweep efficiency) and miscible gas injection (which provides improved displacement efficiency). A miscible solvent slug injection process rather than continuous solvent injection is considered appropriate. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Coreflood experiments are also needed to determine the effect of solvent slug size, WAG ratio and solvent composition on the recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir.

Sharma, G.D.

1995-07-01T23:59:59.000Z

5

Definition of heavy oil and natural bitumen  

SciTech Connect (OSTI)

Definition and categorization of heavy oils and natural bitumens are generally based on physical or chemical attributes or on methods of extraction. Ultimately, the hydrocarbon's chemical composition will govern both its physical state and the extraction technique applicable. These oils and bitumens closely resemble the residuum from wholecrude distillation to about 1,000/degree/F; if the residuum constitutes at least 15% of the crude, it is considered to be heavy. In this material is concentrated most of the trace elements, such as sulfur, oxygen, and nitrogen, and metals, such as nickel and vanadium. A widely used definition separates heavy oil from natural bitumen by viscosity, crude oil being less, and bitumen more viscous than 10,000 cp. Heavy crude then falls in the range 10/degree/-20/degree/ API inclusive and extra-heavy oil less than 10/degree/ API. Most natural bitumen is natural asphalt (tar sands, oil sands) and has been defined as rock containing hydrocarbons more viscous than 10,000 cp or else hydrocarbons that may be extracted from mined or quarried rock. Other natural bitumens are solids, such as gilsonite, grahamite, and ozokerite, which are distinguished by streak, fusibility, and solubility. The upper limit for heavy oil may also be set at 18/degree/ API, the approximate limit for recovery by waterflood.

Meyer, R.F.

1988-08-01T23:59:59.000Z

6

Utah Heavy Oil Program  

SciTech Connect (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

7

A three-phase K-value study for pure hydrocarbons/water and crude oil/water systems  

E-Print Network [OSTI]

Steam distillation, or vaporization of crude oil in porous media is on of the major mechanisms responsible for high oil recovery by steamflooding from heavy oil as well as light oil reservoir systems. Several authors have reported steam dsitillation...-phase equilibrium data for hydrocarbon/water systems ranging from light to heavy crude oil fractions. ! Experimental data describing the phase behavior and the hydrocarbon/water separation process for multi-component hydrocarbon/water and crude oil...

Lanclos, Ritchie Paul

1990-01-01T23:59:59.000Z

8

Exploiting heavy oil reserves  

E-Print Network [OSTI]

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen.hamptonassociates.com pRINTED BY nB GroUP Paper sourced from sustainable forests CONTENTS 3/5 does the north Sea still industry partnership drives research into sensor systems 11 Beneath the waves in 3d 12/13 does

Levi, Ran

9

Experimental and analytical modeling studies of steam injection with hydrocarbon additives to enhance recovery of San Ardo heavy oil  

E-Print Network [OSTI]

:steam mass ratio. We develop a simplified analytical model that describes steam front advancement and oil production for the 1D displacement experiments. The model incorporates heat and material balance, fillup time and Darcy�s law pertaining...

Simangunsong, Roly

2006-10-30T23:59:59.000Z

10

Process for removing heavy metal compounds from heavy crude oil  

DOE Patents [OSTI]

A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

1991-01-01T23:59:59.000Z

11

Bitumen and heavy-oil resources of the United States  

SciTech Connect (OSTI)

Bitumen and heavy-oil deposits represent a significant hydrocarbon resource in the US. Bitumen deposits (10/sup 0/ API) are located in sandstone reservoirs at or near the surface along the margins of sedimentary basins. Heavy oils (10/sup 0/-20/sup 0/ API) are found predominantly in geologically young (Tertiary age and younger) shallow sandstone reservoirs and along the margins of sedimentary basins. Bitumen and heavy oil have high viscosities (10,000 cp for bitumen, 100-10,000 cp for heavy oil) and cannot be recovered by conventional recovery methods. Bitumen deposits have been evaluated in 17 states. The total bitumen resource for the conterminous US is estimated to be 57 billion bbl. Utah contains the largest resource, estimated to be 29 billion bbl, followed by California with 9 billion bbl, Alabama with 6 billion, Texas with 5 billion, and Kentucky with 3 billion. Heavy-oil deposits have been evaluated in 16 states, but most heavy oil is in California, Texas, and Arkansas. Total heavy oil in place for the conterminous US is estimated to be approximately 45 billion bbl; greater than 80% of this amount is in California. The giant Kuparuk deposit on the North Slope of Alaska contains a heavy oil-bitumen resource estimated as high as 40 billion bbl.

Crysdale, B.L.; Schenk, C.J.

1987-05-01T23:59:59.000Z

12

Heavy oil production from Alaska  

SciTech Connect (OSTI)

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

13

Hydrocarbon composition of crude oils near the Caspian depression  

SciTech Connect (OSTI)

The structural-group composition of hydrocarbons of Mesozoic crude oils near the Caspian depression was investigated by mass-spectrometry, followed by the analysis of the mass-spectra using a computer. The distribution of naphthenic hydrocarbons, according to the number of rings and of aromatic hydrocarbons, according to the degree of hydrogen unsaturation is similar for all the crude oils examined. The hydrocarbon composition of Mesozoic crude oils is characterized by a reduction in the content of aliphatic hydrocarbons and alkyl benzenes.

Botneva, T.A.; Khramova, E.V.; Nekhamkina, L.G.; Polyakova, A.A.

1983-01-01T23:59:59.000Z

14

A generalized viscosity equation for pure heavy hydrocarbons  

SciTech Connect (OSTI)

This paper presents a method for the correlation and prediction of the viscosity of pure heavy hydrocarbons listed in API Research Project 42. The 273 heavy hydrocarbons in the database include branched/unbranched paraffins and olefins together with a variety of complex nonfused/fused aromatic and naphthenic compounds. A generalized one-parameter viscosity-temperature equation, log ({mu} + 0.8) = 100(0.01T){sup b}, is proposed (overall AAD {lt} 7-10%) for all heavy hydrocarbons in the database. For each hydrocarbon, an optimum value of parameter b is provided. It is shown that parameter b varies linearly with the logarithm of molar mass as well as the inverse of boiling temperature (at 10 mmHg). This important observation leads to the development of a predictive method for the liquid-phase viscosity of pure heavy hydrocarbons.

Mehrotra, A.K. (Dept. of Chemical and Petroleum Engineering, Univ. of Calgary, Calgary, Alberta T2N 1N4 (CA))

1991-02-01T23:59:59.000Z

15

Water issues associated with heavy oil production.  

SciTech Connect (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

16

Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation  

E-Print Network [OSTI]

-heavy oil, and oil shale. Tremendous amounts of heavy oil resources are available in the world. Fig. 1.1 shows the total world oil reserves, and indicates that heavy oil, extra heavy oil, and bitumen make up about 70% of the world?s total oil resources...

Yang, Daegil

2011-02-22T23:59:59.000Z

17

Energy loss characteristics of heavy ions in nitrogen, carbon dioxide, argon, hydrocarbon gases and tradescantia tissue  

E-Print Network [OSTI]

Energy loss characteristics of heavy ions in nitrogen, carbon dioxide, argon, hydrocarbon gases and tradescantia tissue

Dennis, J A

1971-01-01T23:59:59.000Z

18

Heavy Oil Consumption Reduction Program (Quebec, Canada)  

Broader source: Energy.gov [DOE]

This program helps heavy oil consumers move toward sustainable development while improving their competitive position by reducing their consumption. Financial assistance is offered to carry out...

19

Cooling and solidification of heavy hydrocarbon liquid streams  

DOE Patents [OSTI]

A process and apparatus for cooling and solidifying a stream of heavy hydrocarbon material normally boiling above about 850.degree. F., such as vacuum bottoms material from a coal liquefaction process. The hydrocarbon stream is dropped into a liquid bath, preferably water, which contains a screw conveyor device and the stream is rapidly cooled, solidified and broken therein to form discrete elongated particles. The solid extrudates or prills are then dried separately to remove substantially all surface moisture, and passed to further usage.

Antieri, Salvatore J. (Trenton, NJ); Comolli, Alfred G. (Yardley, PA)

1983-01-01T23:59:59.000Z

20

Oil & Chemical Pollution 6 (19'X)} 81-Hydrocarbon Pollution of  

E-Print Network [OSTI]

distribution offuel distillates is evident with only a small contribution from lubricating and heavier oilOil & Chemical Pollution 6 (19'X)} 81- pollution as all oils contain aromatic hydrocarbons while few, if any, biogenic aromatic hydrocarbons

Canberra, University of

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

BP Oil Spill and Air Chemistry Crude oil contains various hydrocarbons  

E-Print Network [OSTI]

BP Oil Spill and Air Chemistry Crude oil contains various hydrocarbons NOAA and CIRES here at CU went to the oil spill in an aircraft that was equipped with instruments to measure the air quality. 1/3 of the oil dissolved into the water column (methane completely, benzene and ethane almost completely) Showed

Toohey, Darin W.

22

Hydrocarbon composition of crude oil from Lam Bank  

SciTech Connect (OSTI)

The authors discuss the crude oil from a new offshore field called the Lam Bank in the Caspian Sea. A segregated commercial crude was distilled and the distillation data is shown. In order to determine the content of n-paraffins, the naphthenic-paraffinic part of the narrow cuts was subjected to adsorptive separation on CaA zeolite. Owing to the high contents of naphthenic and isoparaffinic hydrocarbons and the low content of aromatic hydrocarbons in the distillate part, this crude can be used to produce high-quality fuels and oils by the use of the dewaxing processes.

Samedova, F.I.; Agaeva, R.M.; Alieva, F.Z.; Valiev, M.A.

1987-07-01T23:59:59.000Z

23

Hydrocarbon analysis of shrimp from oil polluted waters  

E-Print Network [OSTI]

is unaccounted for (Anon. , 1980b). This oil, plus oil from other sources, could become a potential threat to the Gulf shrimp industry. One problem concerning shrimp is that all Gulf shrimp are harvested using a bottom trawl. Tar, or weathered oil, collects...HYDROCARBON ANALYSIS OF SHRIMP FROM OIL POLLUTED WATERS A Thesis by BERNARD JOHN DEWITT III Submitted to the Graduate College of Texas A&M University in partial fulfilment of the requirement for the degree of MASTER OF SCIENCE May 1982...

DeWitt, Bernard John

1982-01-01T23:59:59.000Z

24

Thermal processes for heavy oil recovery  

SciTech Connect (OSTI)

This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

Sarkar, A.K.; Sarathi, P.S.

1993-11-01T23:59:59.000Z

25

RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

Anthony R. Kovscek; William E. Brigham

1999-06-01T23:59:59.000Z

26

Induced biochemical interactions in immature and biodegraded heavy crude oils  

SciTech Connect (OSTI)

Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Shelenkova, L.; Zhou, W.M.

1998-11-01T23:59:59.000Z

27

INDUCED BIOCHEMICAL INTERACTIONS IN IMMATURE AND BIODEGRADED HEAVY CRUDE OILS  

SciTech Connect (OSTI)

Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; SHELENKOVA,L.; ZHOU,W.M.

1998-10-27T23:59:59.000Z

28

Hydroconversion of heavy oils. [Residue of tar sand bitumen distillation  

SciTech Connect (OSTI)

A method is described for hydroconversion of feedstocks consisting essentially of at least one heavy hydrocarbon oil selected from the group consisting of residue of petroleum oil distillation and the residue of tar sand bitumen distillation to enhance the recovery of 350/sup 0/-650/sup 0/F boiling product fraction. The method comprises treating such feed stock with hydrogen at superatmospheric pressure and in the presence of finely divided active hydrogenation catalyst in consecutive reaction stages. An initial reaction stage is carried out at a temperature in the range of 780/sup 0/-825/sup 0/F, and a subsequent reaction stage is directly carried out after the initial reaction stage at a higher temperature in the range of 800/sup 0/F-860/sup 0/F, the temperature of the subsequent reaction stage being at least 20/sup 0/F higher than that of the initial reaction stage.

Garg, D.

1986-08-19T23:59:59.000Z

29

Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs  

SciTech Connect (OSTI)

The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.

Louis M. Castanier; William E. Brigham

1998-03-31T23:59:59.000Z

30

Research on oil recovery mechanisms in heavy oil reservoirs  

SciTech Connect (OSTI)

The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

2000-03-16T23:59:59.000Z

31

Experimental investigation of caustic steam injection for heavy oils  

E-Print Network [OSTI]

CHAPTER I INTRODUCTION 1.1 Overview Heavy oil is a part of the unconventional petroleum reserve. Heavy oil does not flow very easily and is classified as heavy because of its high specific gravity. With increasing demand for oil and with depleting... and success of the sodium carbonate and sodium silicate floods respectively. (5) Attainment of very low interfacial tension does not ensure improved oil recovery but a minimum value is necessary for a successful steam alkaline flood. Tiab, Okoye...

Madhavan, Rajiv

2010-01-16T23:59:59.000Z

32

State of heavy oil production and refining in California  

SciTech Connect (OSTI)

California is unique in the United States because it has the largest heavy oil (10{degrees} to 20{degrees}API gravity) resource, estimated to be in excess of 40 billion barrels. Of the current 941,543 barrels/day of oil produced in California (14% of the U.S. total), 70% or 625,312 barrels/day is heavy oil. Heavy oil constituted only 20% of California`s oil production in the early 1940s, but development of thermal oil production technology in the 1960s allowed the heavy industry to grow and prosper to the point where by the mid-1980s, heavy oil constituted 70% of the state`s oil production. Similar to the rest of the United States, light oil production in the Los Angeles Basin, Coastal Region, and San Joaquin Valley peaked and then declined at different times throughout the past 30 years. Unlike other states, California developed a heavy oil industry that replaced declining light oil production and increased the states total oil production, despite low heavy oil prices, stringent environmental regulations and long and costly delays in developing known oil resources. California`s deep conversion refineries process the nation`s highest sulfur, lowest API gravity crude to make the cleanest transportation fuels available. More efficient vehicles burning cleaner reformulated fuels have significantly reduced the level of ozone precursors (the main contributor to California`s air pollution) and have improved air quality over the last 20 years. In a state where major oil companies dominate, the infrastructure is highly dependent on the 60% of ANS production being refined in California, and California`s own oil production. When this oil is combined with the small volume of imported crude, a local surplus of marketed oil exists that inhibits exploitation of California`s heavy oil resources. As ANS production declines, or if the export restrictions on ANS sales are lifted, a window of opportunity develops for increased heavy oil production.

Olsen, D.K.; Ramzel, E.B. [BDM-Oklahoma, Inc., Bartlesville, OK (United States)

1995-12-31T23:59:59.000Z

33

Mathematical and Statistical Investigation of Steamflooding in Naturally Fractured Carbonate Heavy Oil Reservoirs.  

E-Print Network [OSTI]

??A significant amount of Viscous Oil (e.g., heavy oil, extra heavy oil, and bitumen) is trapped in Naturally Fractured Carbonate Reservoirs also known as NFCRs.… (more)

Shafiei, Ali

2013-01-01T23:59:59.000Z

34

Production of valuable hydrocarbons by flash pyrolysis of oil shale  

DOE Patents [OSTI]

A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

Steinberg, M.; Fallon, P.T.

1985-04-01T23:59:59.000Z

35

Comprehensive study of a heavy fuel oil spill : modeling and analytical approaches to understanding environmental weathering  

E-Print Network [OSTI]

Driven by increasingly heavy oil reserves and more efficient refining technologies, use of heavy fuel oils for power generation is rising. Unlike other refined products and crude oils, a large portion of these heavy oils ...

Lemkau, Karin Lydia

2012-01-01T23:59:59.000Z

36

Nonthermal plasma systems and methods for natural gas and heavy hydrocarbon co-conversion  

DOE Patents [OSTI]

A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

Kong, Peter C.; Nelson, Lee O.; Detering, Brent A.

2005-05-24T23:59:59.000Z

37

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

Anthony R. Kovscek; Louis M. Castanier

2002-09-30T23:59:59.000Z

38

Bitumen and heavy oil upgrading in Canada  

SciTech Connect (OSTI)

A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulfur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader, now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional products, also based on hydrogenation, will use ebullated bed catalyst systems: the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.

Chrones, J.

1988-06-01T23:59:59.000Z

39

Bitumen and heavy oil upgrading in Canada  

SciTech Connect (OSTI)

A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulphur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional projects, also based on hydrogenation, will use ebullated bed catalyst systems; the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.

Chrones, J. (Chrones Engineering Consultants Inc., 111 Lord Seaton Road, Willowdale, Ontario (CA)); Germain, R.R. (Alberta Oil Sands Technology and Research Authority, Edmonton, AB (Canada))

1989-01-01T23:59:59.000Z

40

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network [OSTI]

geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the worldORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field's largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir

Luyendyk, Bruce

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Trends in heavy oil production and refining in California  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

1992-07-01T23:59:59.000Z

42

Trends in heavy oil production and refining in California  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

1992-07-01T23:59:59.000Z

43

Membrane separation of hydrocarbons using cycloparaffinic solvents  

DOE Patents [OSTI]

Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Westmont, IL); Gatsis, John G. (Des Plaines, IL); Funk, Edward W. (Highland Park, IL)

1988-01-01T23:59:59.000Z

44

Membrane separation of hydrocarbons using cycloparaffinic solvents  

DOE Patents [OSTI]

Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

Kulkarni, S.S.; Chang, Y.A.; Gatsis, J.G.; Funk, E.W.

1988-06-14T23:59:59.000Z

45

The spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil Point, California  

E-Print Network [OSTI]

area) are not well established, either globally or within strong source areas such as near Coal OilThe spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil hydrocarbon seepage from marine environments is an important source of methane and other gases

Washburn, Libe

46

Co-processing of heavy oil  

SciTech Connect (OSTI)

In co-processing of petroleum and coal, the petroleum fraction may serve as the {open_quotes}liquefaction solvent,{close_quotes} or hydrogen donor, and the aromatics present in the coal liquid may serve as hydrogen {open_quotes}shuttlers{close_quotes} by efficiently transferring hydrogen moieties to places where they are most deficient. The important advantages of co-processing include the following: (1) upgrading of heavy petroleum in a reaction with coal and (2) conversion of coal to synthetic crudes which could be further upgraded to a premium liquid fuel. Co-processing of coal with petroleum, heavy crudes, and residues through catalytic hydrogenation or solvent extraction have been extensively investigated. The studies were typically conducted in the temperature range of 450{degrees}-500{degrees}C under pressurized hydrogen; catalysts are generally also added for hydroconversion of the feedstocks. However, relatively little has been reported in the literature regarding co-processing of coal with heavy petroleum by simple pyrolysis. In this study, co-processing of heavy oil and coal at relatively middle conditions was conducted without the complicating influences of pressurized hydrogen or catalysts. The resulted demonstrate that there is a synergism during co-processing of petroleum and coal. This synergism enhances both the yield and quality of the liquid products. In general, liquids from co-processing the mixture contain a higher content of alkane/alkene, neutral aromatics, lower content of monophenols, and other oxygen containing compounds as compared to the liquids from coal alone. The liquid from the mixture also contains a higher content of naphthenic carbon and naphthenic rings/molecules than those from coal liquid. This suggests that the product from the mixture can be easily upgraded to a premium quality fuel.

Khan, M.R. [Texaco Research and Development, Beacon, NY (United States)

1995-12-31T23:59:59.000Z

47

The stimulation of heavy oil reservoirs with electrical resistance heating  

E-Print Network [OSTI]

. Equations for r? and P, were written using regression analysis. The calculation procedure is as follows: (1) calculate r?, (2) calculate the skin factor, s??, (3) calculate the heated oil production rate, q, ?, and (4) calculate the downhole power... of various heavy oils at 113 'F Fig. 23 ? Effect of CH, on the viscosity of various heavy oils at 171 'F Fig. 24 - Viscosity/pressure relationship for the recombined field sample Fig. 25 ? Smoothed viscosity/pressure relationship for the recombined...

Baylor, Blake Allen

1990-01-01T23:59:59.000Z

48

Canadian oil market review shows growing influence of heavy oil and bitumen  

SciTech Connect (OSTI)

Canadian oil demand and consumption, crude oil received at refineries, oil well productivity including shut-in production, and exports and imports are discussed. Both light and heavy oil, natural gas, and bitumen are included in the seasonally-adjusted data presented.

Not Available

1986-09-01T23:59:59.000Z

49

FY 80 heavy oil program. Second quarterly report, April 1980  

SciTech Connect (OSTI)

The research and development efforts in support of the heavy oil program reservoir access and alternate extraction activities that were initiated last quarter have been continued and expanded. The development of a short course on the utilization of specialized drilling technology to heavy oil sands has been investigated. The steam quality sampler is undergoing laboratory testing. A special report on possible application of sand control methods to heavy oil steam injection tests has been prepared. The first stage of the analysis of R.F. and microwave heating has been completed. The results of a series of laboratory experiments on in situ hydrogenation are presented.

Wayland, J.R.; Fox, R.L.

1980-06-01T23:59:59.000Z

50

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents [OSTI]

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

51

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes by groundwater (or oil) degassing. Other natural gas fields may have been produced in-situ or migrated as a free expert academics from across the CDT and also experienced oil and gas industry professionals

Henderson, Gideon

52

SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS  

SciTech Connect (OSTI)

With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

Munroe, Norman

2009-01-30T23:59:59.000Z

53

05663_AlaskaHeavyOil | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12202012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North...

54

Exploration for heavy crude oil and natural bitumen  

SciTech Connect (OSTI)

This book discusses heavy oil and tar sand reserves which are enormous. Focus in on regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery.

Meyer, R.F. (U.S. Geological Survey (US))

1987-01-01T23:59:59.000Z

55

Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127  

SciTech Connect (OSTI)

The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.

Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.

2001-09-07T23:59:59.000Z

56

Simple concept predicts viscosity of heavy oil and bitumen  

SciTech Connect (OSTI)

For in situ recovery, a correlation has been developed for predicting the viscosity of bitumen and heavy oil. The correlation requires only a single viscosity measurement. The derived viscosities show an overall average absolute deviation of 4.4% from experimental data for 18 sets of Alberta heavy oil and bitumen containing 175 measurements. The paper describes the equations, their accuracy in determining viscosity, and an example from the Alberta deposits.

Puttagunta, V.R.; Miadonye, A.; Singh, B. (Lakehead Univ., Thunder Bay, Ontario (Canada))

1993-03-01T23:59:59.000Z

57

Development Practices for Optimized MEOR in Shallow Heavy Oil Reservoirs  

SciTech Connect (OSTI)

The goal of this project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in southwest Missouri and southeast Kansas using a combination of microbial enhanced oil recovery (MEOR) and hydraulic fracturing of vertical wells.

Shari Dunn-Norman

2006-09-30T23:59:59.000Z

58

Exploration for heavy crude oil and natural bitumen  

SciTech Connect (OSTI)

Heavy oil and tar sand reserves are enormous, and this 700-page volume breaks the topic down into six emphasis areas of: regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery. An appendix presents a guidebook to Santa Maria, Cuyama, Taft-McKettrick, and Edna oil districts, Coast Ranges, California.

Not Available

1989-01-01T23:59:59.000Z

59

Post Production Heavy Oil Operations: A Case for Partial Upgrading  

E-Print Network [OSTI]

The transportation of heavy oil is a pressing problem. Various methods have been devised to mitigate the reluctance to flow of these highly dense and viscous oils. This study is focused on evaluating a case for post-production partial upgrading...

Lokhandwala, Taher

2012-12-05T23:59:59.000Z

60

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect (OSTI)

The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

Kujawa, P.

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Canada's heavy oil, bitumen upgrading activity is growing  

SciTech Connect (OSTI)

Heavy oil and bitumen upgrading activity in Canada is surging with the recent start-up of two new upgraders and with plans to build others. These new upgraders make use of modern hydrocracking technology. Articles in this special report on upgrading focus on Canada's oil and bitumen reserves, the promising technologies that upgrade them, and present details of some of the current upgrader projects. This article covers the following areas: Canada's heavy oils; Upgrading expands; Upgrading technologies; Test results; Regional upgraders; High-quality light product.

Corbett, R.A.

1989-06-26T23:59:59.000Z

62

Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline  

DOE Patents [OSTI]

The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

Baker, E.G.; Elliott, D.C.

1993-01-19T23:59:59.000Z

63

Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline  

DOE Patents [OSTI]

The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

1993-01-01T23:59:59.000Z

64

Biochemical upgrading of oils  

DOE Patents [OSTI]

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

65

Evaluation of electromagnetic stimulation of Texas heavy oil reservoirs  

E-Print Network [OSTI]

- Iil Z LLI ) I- O LI III ) D- Z 00 + 0 CI z 0 I- U CI 0 K 0. CI D VERTICAL HEAT LOSS tt44 OVERBURDEN FLUID FLOW CONVECTION CONDUCTION P= Pe T=Te VERTICAL HEAT LOSS ~ ELECTROMAGNETIC WAVE Fig. 2 ? Schematic View of EMH Process 12... The ProPerties that affected the heated oil production rate the most were initial oil viscosity, formation ~ility, drainage radius, p~e drop, and ~ture. The heated oil prcduction rate estimation equation was applied to 80 Texas heavy oil ~irs to de...

Doublet, Louis Edward

1988-01-01T23:59:59.000Z

66

Evaluation of the economic feasability of heavy oil production processes for West Sak Field.  

E-Print Network [OSTI]

??The West Sak heavy oil reservoir on the North Slope of Alaska represents a large potential domestic oil source which has not been fully developed… (more)

Wilkey, Jonathan E.

2012-01-01T23:59:59.000Z

67

Characteristics of naphthenic and paraffinic hydrocarbons of residual oil from West Siberian crudes  

SciTech Connect (OSTI)

This article examines the naphthenic/paraffinic hydrocarbons segregated by liquid chromatography from a residual oil after removal of the resins and solid hydrocarbons. The studied hydrocarbons were fractionated on the basis of molecular weight (by molecular distillation) and on the basis of the content of rings (by thermal diffusion separation in a laboratory column). The results of mass-spectrometric analysis indicate that the first fraction consists mainly of isoparaffins and naphthenes with few rings. The polycyclic condensed naphthenes are concentrated in the last fraction. The content of isoparaffins drops off and the content of condensed polycyclic naphthenic structures increases from the second fraction to the next to the last. It is concluded that the naphthenic/paraffinic hydrocarbons of the residual oil from mixed West Siberian crudes have a relatively narrow composition and therefore have similar physicochemical properties.

Detusheva, E.P.; Khramtsova, L.P.; Muchinskii, T.D.; Shkol'nikov, V.M.

1984-05-01T23:59:59.000Z

68

Assessing the potential and limitations of heavy oil upgrading by electron beam irradiation  

E-Print Network [OSTI]

Radiation technology can economically overcome principal problems of heavy oil processing arising from heavy oil�s unfavorable physical and chemical properties. This technology promises to increase considerably yields of valuable...

Zhussupov, Daniyar

2007-04-25T23:59:59.000Z

69

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Broader source: Energy.gov (indexed) [DOE]

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference...

70

Compositional changes in heavy oil steamflood simulators  

E-Print Network [OSTI]

including distillation, vapor pressure, steam distillation and viscosity measurements, along with a commercial PVT simulator are used to tune equation-of-state (EOS) and viscosity parameters to properly model the PVT properties of the oil. The Peng...

Lolley, Christopher Scott

1995-01-01T23:59:59.000Z

71

Potential of producing various hydrocarbons from canola oil by catalytic treatment over Pt-ZSM-5  

SciTech Connect (OSTI)

Canola oil conversion was studied at atmospheric pressure over Pt-ZSM-5 catalyst (0.5 wt% Pt) in a fixed bed micro-reactor. The operating conditions were: temperature range of 400--500 C, weight hourly space velocity (WHSV) of 1.8 and 3.6 h{sup {minus}1} and steam/oil ratio of 4:1. The products were coke, gas, an organic liquid product (OLP) and residue. The gas and OLP consisted mainly of hydrocarbons. The objective of this study was to maximize the amount of gasoline range hydrocarbons in the OLP and the selectivity to isohydrocarbons in the gas. The gas yields varied between 22--65 wt% and were higher in the presence of steam compared to the operation without steam. Also, the gas fraction decreased with increase in space velocity. The olefin/paraffin ratio of C{sub 2}-C{sub 4} hydrocarbon gases varied between 0.31--0.79. The amount of isohydrocarbons relative to n-hydrocarbons were higher with Pt-ZSM-5 (1.6--4.8) compared to pure HZSM-5 catalyst (0.2--0.3). The OLP yields with Pt-ZSM-5 (20--55wt% of canola oil) were slightly lower compared to HZSM-5 (40--63wt% of canola oil) under similar conditions. The major components of OLP were aliphatic and aromatic hydrocarbons. The main aromatic hydrocarbons were benzene, toluene, xylenes and trimethylbenzenes. Alkylated pentane and hexane were the main aliphatic hydrocarbons. In the presence of steam, Pt-ZSM-5 gave higher yields of liquid hydrocarbons within the gasoline boiling range than HZSM-5.

Katikaneni, S.P.R.; Adjaye, J.D.; Bakhshi, N.N. [Univ. of Saskatchewan, Saskatoon (Canada)

1995-12-31T23:59:59.000Z

72

Simulation study to investigate development options for a super-heavy oil reservoir  

E-Print Network [OSTI]

, the oil was simulated as a hydrocarbon consisting of three pseudo components. These cases were run using a thermal compositional simulator (ECLIPSE 300). Simulation results indicate oil recovery, for the area developed by the existing horizontal well...

Diaz Franco, Jose Manuel

2012-06-07T23:59:59.000Z

73

Enhanced Heavy Oil Recovery by Emulsification With Injected Nanoparticles  

E-Print Network [OSTI]

emulsifying the immobile heavy oil, and transports it out of the reservoir as a low viscosity fluid. Generating the emulsions in the reservoir was suggested because it offers numerous advantages. The first advantage is low injectivity pressures due to the low...

Martinez Cedillo, Arturo Rey

2013-11-26T23:59:59.000Z

74

The effect of chemical dispersants on the solution of volatile liquid hydrocarbons from spilled crude oil  

E-Print Network [OSTI]

THE EFFECT OF CHEMICAL DISPERSANTS ON THE SOLUTION OF VOLATILE LIQUID HYDROCARBONS FROM SPILLED CRUDE OIL A Thesis by THOMAS JOSEPH McDONALD Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1982 Major Subject: Oceanography THE EFFECT OF CHEMICAL DISPERSANTS ON THE SOLUTION OF VOLATILE LIQUID HYDROCARBONS FROM SPILLED CRUDE OIL A Thesis by THOMAS JOSEPH McDONALD Approved as to style and content by...

McDonald, Thomas Joseph

1982-01-01T23:59:59.000Z

75

Weathering and the Fallout Plume of Heavy Oil from Strong Petroleum  

E-Print Network [OSTI]

, transportation, and use of heavier oils (1). One concern stemming from increased offshore oil activityWeathering and the Fallout Plume of Heavy Oil from Strong Petroleum Seeps Near Coal Oil Point, CA C://pubs.acs.org/est. The Coal Oil Point (COP) seeps offshore Goleta, CA, are estimated to release 20-25 tons of oil daily

Fabrikant, Sara Irina

76

System and method for preparing near-surface heavy oil for extraction using microbial degradation  

DOE Patents [OSTI]

A system and method for enhancing the recovery of heavy oil in an oil extraction environment by feeding nutrients to a preferred microbial species (bacteria and/or fungi). A method is described that includes the steps of: sampling and identifying microbial species that reside in the oil extraction environment; collecting fluid property data from the oil extraction environment; collecting nutrient data from the oil extraction environment; identifying a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the oil extraction environment.

Busche, Frederick D. (Highland Village, TX); Rollins, John B. (Southlake, TX); Noyes, Harold J. (Golden, CO); Bush, James G. (West Richland, WA)

2011-04-12T23:59:59.000Z

77

Membrane separation of hydrocarbons  

DOE Patents [OSTI]

Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

Funk, Edward W. (Highland Park, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Des Plaines, IL)

1986-01-01T23:59:59.000Z

78

Vapour extraction (VAPEX) process for recovery of heavy oil and bitumen  

SciTech Connect (OSTI)

For over 90% of the vast resources of bitumen and heavy oil in Canada, in situ recovery processes have to be developed to produce and utilize them efficiently and economically. Thermal recovery processes using steam, although effective for thick reservoirs with good quality sands, are increasingly proving to be uneconomical, particularly for thin, shaley, or bottom water reservoirs. The inefficiency is caused by large heat losses, high water requirement, extensive surface facilities, and adverse environmental impact. To overcome these problems, a new non-thermal vapour extraction (VAPEX) process has been developed. The process is closely related to the Steam-Assisted Gravity Drainage (SAGD) concept. However, in the VAPEX process the steam chamber is replaced with a chamber containing light hydrocarbon vapours close to its dew point at the reservoir pressure. If the pressure used is close to the saturation pressure of hydrocarbons, deasphalting may occur in the reservoir causing a substantial reduction in viscosity and heavy metal contents. Experiments conducted in a Hele-Shaw cell and in a 2D physical scaled model using Lloydminster, Cold Lake, and Peace River heavy oil/bitumen and ethane, propane, and butane as solvents demonstrated that this process is very promising technically as well as economically. An active aquifer underlying the bitumen zone made the reservoir more valuable because of spreading of the solvent vapour directly underneath the formation which increased the vapour-bitumen contact extensively. The investigation was extended from a dual horizontal continuous injection/production well strategy described above to a single horizontal well cyclic process for the Cold Lake reservoir in a 3D physical scaled model. The tests illustrated that ethane was an effective solvent in producing Cold Lake bitumen and that the cyclic VAPEX process has the potential to be a breakthrough recovery technology.

Jha, K.N. [CANMET, Ottawa, Ontario (Canada); Butler, R.M. [Univ. of Calgary, Alberta (Canada); Lim, G.B. [Imperial Oil Resources Limited, Calgary, Alberta (Canada)] [and others

1995-12-31T23:59:59.000Z

79

BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.  

SciTech Connect (OSTI)

BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

2008-05-27T23:59:59.000Z

80

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

82

Recovery of heavy crude oil or tar sand oil or bitumen from underground formations  

SciTech Connect (OSTI)

This patent describes a method of producing heavy crude oil or tar sand oil or bitumen from an underground formation. The method consists of utilizing or establishing an aqueous fluid communication path within and through the formation between an injection well or conduit and a production well or conduit by introducing into the formation from the injection well or conduit hot water and/or low quality steam at a temperature in the range about 60{sup 0}-130{sup 0}C and at a substantially neutral or alkaline pH to establish or enlarge the aqueous fluid communication path within the formation from the injection well or conduit to the production well or conduit by movement of the introduced hot water or low quality steam through the formation, increasing the temperature of the injected hot water of low quality steam to a temperature in the range about 110{sup 0}-180{sup 0}C while increasing the pH of the injected hot water or low quality steam to a pH of about 10-13 so as to bring about the movement or migration or stripping of the heavy crude oil or tar sand oil or bitumen from the formation substantially into the hot aqueous fluid communication path with the formation and recovering the resulting produced heavy crude oil or tar sand oil or bitumen from the formation as an emulsion containing less than about 30% oil or bitumen from the production well or conduit.

McKay, A.S.

1989-07-11T23:59:59.000Z

83

In situ method for recovering hydrocarbon from subterranean oil shale deposits  

SciTech Connect (OSTI)

This patent describes in situ method for recovering hydrocarbons from subterranean oil shale deposits, the deposits comprising mineral rock and kerogen, comprising (a) penetrating the oil shale deposit with at least one well; (b) forming a zone of fractured and/or rubbilized oil shale material adjacent the well by hydraulic or explosive fracturing; (c) introducing a hydrogen donor solvent including tetralin into the portion of the oil shale formation treated in step (b) in a volume sufficient to fill substantially all of the void space created by the fracturing and rubbilizing treatment; (d) applying hydrogen to the tetralin and maintaining a predetermined pressure for a predetermined period of time sufficient to cause disintegration of the oil shale material; (e) thereafter introducing an oxidative environment into the portion of the oil shale deposit (f) producing the solvent in organic fragments to the surface of the earth, and (g) separating the organic fragments from the solvent.

Friedman, R.H.

1987-11-03T23:59:59.000Z

84

Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors  

DOE Patents [OSTI]

The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

1982-06-29T23:59:59.000Z

85

Liquid fuels from co-processing coal with bitumen or heavy oil: A review  

SciTech Connect (OSTI)

Coal, bitumen and heavy oil (and various pitches, resids, etc.) are similar in that they require more substantial treatment than does conventional light oil to yield useful liquid fuels. The authors provide a brief and selective review of technologies for liquefying coal, followed by consideration of co-processing coal with bitumen/heavy oil. Such co-processing may be considered as use of bitumen/heavy oil as a solvent and/or hydrogen donor in liquefaction of coal, or as the use of coal to aid upgrading bitumen/heavy oil.

Moschopedis, S.E.; Hepler, L.G.

1987-01-01T23:59:59.000Z

86

Saber's heavy oil cracking refinery project  

SciTech Connect (OSTI)

Perhaps more than any other industry, petroleum refining has been subjected to the radical swings in business and political climates of the past several decades. Because of the huge investments and long lead times to construct refining facilities, stable government policies, predictable petroleum prices, secure feedstock supplies and markets, and reliable cost estimates are necessary ingredients to effectively plan new refinery projects. However, over the past ten years the political and economic climates have provided anything but these conditions. Yet, refiners have demonstrated a willingness to undertake risks by continuing to expand and modernize their refineries. The refining business -- just as most businesses -- responds to economic incentives. These incentives, when present, result in new technology and capacity additions. In the 1940's, significant technology advances were commercialized to refine higher-octane motor gasolines. Such processes as continuous catalytic cracking (Houdry Process Corporation), fluid catalytic cracking (Standard Oil Development Company), HF alkylation (UOP and Phillips Petroleum Company), and catalytic reforming (UOP) began to supply a growing gasoline market, generated from the war effort and the ever increasing numbers of automobiles on the road. The post-war economy of the 1950's and 1960's further escalated demand for refined products, products which had to meet higher performance specifications and be produced from a wider range of raw materials. The refining industry met the challenge by introducing hydro-processing technology, such as hydrocracking developed in 1960. But, the era must be characterized by the large crude processing capacity additions, required to meet demand from the rapidly expanding U.S. economy. In 1950, refining capacity was 6.2 million BPD. By 1970, capacity had grown to 11.9 million BPD, an increase of 91%.

Benefield, C.S.; Glasscock, W.L.

1983-03-01T23:59:59.000Z

87

Process for recovering hydrocarbons from a hydrocarbon-bearing formation  

SciTech Connect (OSTI)

A method is described for transporting heavy crude oil through a pipeline which involves introducing into a pipeline or well-bore with the viscous hydrocarbons an aqueous solution containing (1) a sulfonate surfactant, (2) a rosin soap or a naphthenic acid soap and, optionally (3) coupling agent whereby there is spontaneously formed a low viscosity, salt tolerant, oil-in-water emulsion. Also disclosed is a method of recovery of hydrocarbons from a hydrocarbon bearing formation employing an aqueous solution containing (1) a sulfonate surfactant, (2) a rosin soap or a naphthenic acid soap and, optionally (3) a coupling agent.

Alston, R.B.; Braden, W.B.; Flournoy, K.H.

1980-03-11T23:59:59.000Z

88

Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

Olsen, D.K.; Johnson, W.I.

1993-08-01T23:59:59.000Z

89

DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. In the twelve to eighteen-month project period, three wells were equipped with ERT arrays. Electrical resistivity tomography (ERT) background measurements were taken in the three ERT equipped wells. Pumping equipment was installed on the two fracture stimulated wells and pumping tests were conducted following the hydraulic fracture treatments. All wells were treated monthly with microbes, by adding a commercially available microbial mixture to wellbore fluids. ERT surveys were taken on a monthly basis, following microbial treatments. Worked performed to date demonstrates that resistivity changes are occurring in the subsurface, with resistivity increasing slightly. Pumping results for the hydraulically fractured wells were disappointing, with only a show of oil recovered and an increase in well shut-in pressure.

Shari Dunn-Norman

2005-06-01T23:59:59.000Z

90

Effects of petroleum distillate on viscosity, density and surface tension of intermediate and heavy crude oils  

E-Print Network [OSTI]

Experimental and analytical studies have been carried out to better understand the effects of additives on viscosity, density and surface tension of intermediate and heavy crude oils. The studies have been conducted for the following oil samples...

Abdullayev, Azer

2009-06-02T23:59:59.000Z

91

Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs.  

E-Print Network [OSTI]

??This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer… (more)

Limpasurat, Akkharachai

2011-01-01T23:59:59.000Z

92

Heavy oil recovery by in-situ combustion  

SciTech Connect (OSTI)

Heavy-oil fields contain considerable reserves which have hardly been exploited to date. One of the techniques well suited for the recovery of these resources is in situ combustion. The research done is illustrated by the laboratory and field results obtained for the Romanian fields of Suplacu de Barcau and Balaria. Production by in situ combustion is in the industrial stage at Suplacu de Barcau, and the combustion project at Balaria is being expanded. The performances of these tests are given in the form of the amounts of air injected and oil produced as well as their ratio (AOR), the amount of gas produced and the composition of this gas. These production data coupled with various measurements (temperature in the production wells, thickness burned, etc.) can be used to follow the process and to control it. Their interpretation also is useful for evaluating sweep efficiency and recovery. 14 references.

Gadelle, C.P.; Burger, J.G.; Bardon, C.; Machedon, V.; Carcoana, A.

1980-01-01T23:59:59.000Z

93

TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING OF HEAVY OILS  

SciTech Connect (OSTI)

Hydrocarbon/water and CO{sub 2} systems are frequently found in petroleum recovery processes, petroleum refining, and gasification of coals, lignites and tar sands. Techniques to estimate the phase volume and phase composition are indispensable to design and improve oil recovery processes such as steam, hot water, or CO{sub 2}/steam combinations of flooding techniques typically used for heavy oils. An interdisciplinary research program to quantify transport, PVT, and equilibrium properties of selected oil/CO{sub 2}/water mixtures at pressures up to 10,000 psia and at temperatures up to 500 F has been put in place. The objectives of this research include experimental determination and rigorous modeling and computation of phase equilibrium diagrams, and volumetric properties of hydrocarbon/CO{sub 2}/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils. Highlighting the importance of phase behavior, researchers ([1], and [2]) insist on obtaining truly representative reservoir fluids samples for experimental analysis. The prevailing sampling techniques used for compositional analysis of the fluids have potential for a large source of error. These techniques bring the sample to atmospheric conditions and collect the liquid and vapor portion of the samples for further analysis. We developed a new experimental technique to determine phase volumes, compositions and equilibrium K-values at reservoir conditions. The new methodology is able to measure phase volume and composition at reservoir like temperatures and pressures. We use a mercury free PVT system in conjunction with a Hewlett Packard gas chromatograph capable of measuring compositions on line at high pressures and temperatures. This is made possible by an essentially negligible disturbance of the temperature and pressure equilibrium during phase volume and composition measurements. In addition, not many samples are withdrawn for compositional analysis because a negligible volume (0.1 {micro}l to 0.5 {micro}l) is sent directly to the gas chromatograph through sampling valves. These amounts are less than 1 x 10{sup -5} % of total volume and do not affect the overall composition or equilibrium of the system. A new method to compute multi-component phase equilibrium diagrams based on an improved version of the Peng-Robinson equation has been developed [3]. This new version of the Peng-Robinson equation uses a new volume translation scheme and new mixing rules to improve the accuracy of the calculations. Calculations involving multicomponent mixtures of CO{sub 2}/water and hydrocarbons have been completed. A scheme to lump multi-component materials such as, oils into a small set of ''pseudo-components'' according to the technique outlined by Whitson [4] has been implemented. This final report presents the results of our experimental and predicted phase behavior diagrams and calculations for mixtures of CO{sub 2}/water and real oils at high pressures and temperatures.

Jorge Gabitto; Maria Barrufet

2002-09-01T23:59:59.000Z

94

DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. Tasks completed in the first six-month period include soil sampling, geochemical analysis, construction of ERT arrays, collection of background ERT surveys, and analysis of core samples to develop a geomechanical model for designing the hydraulic fracturing treatment. Five wells were to be drilled in phase I. However, weather and funding delays resulted in drilling shifting to the second phase of the project. Work performed to date demonstrates that surface geochemical methods can be used to differentiate between productive and non-productive areas of the Warner Sand and that ERT can be used to successfully image through the Warner Sand.

Shari Dunn-Norman

2003-09-05T23:59:59.000Z

95

Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion  

E-Print Network [OSTI]

UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A... UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A Thesis by SAMIR HUSEYNZADE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Huseynzade, Samir

2008-10-10T23:59:59.000Z

96

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

97

Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

Olsen, D.K.; Johnson, W.I.

1993-05-01T23:59:59.000Z

98

Experimental Study of In-Situ Upgrading for Heavy Oil Using Hydrogen Donors and Catalyst under Steam Injection Condition  

E-Print Network [OSTI]

±1% compared with pre-upgrading mixture. It meant that hydrogen donors and catalyst had strong synergetic effects on heavy oil upgrading. We also found that 300 °C was an effective temperature for heavy oil upgrading with obvious viscosity reduction...

Zhang, Zhiyong

2012-07-16T23:59:59.000Z

99

Monitoring Seismic Attenuation Changes Using a 4D Relative Spectrum Method in Athabsca Heavy Oil Reservoir, Canada  

E-Print Network [OSTI]

Heating heavy oil reservoirs is a common method for reducing the high viscosity of heavy oil and thus increasing the recovery factor. Monitoring these changes in the reservoir is essential for delineating the heated region ...

Shabelansky, Andrey Hanan

2012-01-01T23:59:59.000Z

100

Measurement of polynuclear aromatic hydrocarbon concentrations in the plume of Kuwait oil well fires  

SciTech Connect (OSTI)

Following their retreat from Kuwait during February and March of 1991, the Iraqi Army set fire to over 500 oil wells dispersed throughout the Kuwait oil fields. During the period of sampling from July to August 1991, it was estimated that between 3.29 {times} 10{sup 6} barrels per day of crude oil were combusted. The resulting fires produced several plumes of black and white smoke that coalesced to form a composite ``super`` plume. Because these fires were uncontrolled, significant quantities of organic materials were dispersed into the atmosphere and drifted throughout the Middle East. The organic particulants associated with the plume of the oil well fires had a potential to be rich in polynuclear aromatic hydrocarbon (PAH) compounds. Based on the extreme mutagenic and carcinogenic activities of PAHs found in laboratory testing, a serious health threat to the population of that region potentially existed. Furthermore, the Kuwait oil fire plumes represented a unique opportunity to study the atmospheric chemistry associated with PAHs in the plume. If samples were collected near the plume source and from the plume many kilometers downwind from the source, comparisons could be made to better understand atmospheric reactions associated with particle-bound and gas-phase PAHs. To help answer health-related concerns and to better understand the fate and transport of PAHs in an atmospheric environment, a sampling and analysis program was developed.

Olsen, K.B.; Wright, C.W.; Veverka, C. [Pacific Northwest Lab., Richland, WA (United States); Ball, J.C. [Ford Motor Co., Dearborn, MI (United States). Scientific Research Lab.; Stevens, R. [US Environmental Protection Agency (United States). Atmospheric Research and Exposure Assessment Lab.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological  

E-Print Network [OSTI]

Analysis of Heavy Oil Recovery by Thermal EOR in a Meander Belt: From Geological to Reservoir aux périodes cruciales de production. Oil & Gas Science and Technology ­ Rev. IFP Energies nouvelles Défis et nouvelles approches en EOR D o s s i e r #12;Oil & Gas Science and Technology ­ Rev. IFP

Paris-Sud XI, Université de

102

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect (OSTI)

This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

Kujawa, P.

1981-02-01T23:59:59.000Z

103

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect (OSTI)

This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

Kujawa, P.

1981-02-01T23:59:59.000Z

104

Comprehensive kinetic models for the aquathermolysis of heavy oils  

SciTech Connect (OSTI)

Aquathermolysis experiments over the temperature range 360 to 422{degrees}C were performed on core samples taken from three large bitumen and heavy oil deposits found in Alberta: Athabasca, North Bodo, and Frisco Countess. The purpose of this work was to facilitate the development of comprehensive thermal cracking models for predicting gas and liquid phase product distributions under conditions anticipated during thermal recovery. Previous studies have shown by material balance on oxygen that water is implicated in many of the chemical reactions leading to the formation of H{sub 2}S and CO{sub 2}, yet most of the reported thermal cracking studies have not included water. Additionally, experimental investigations in this area have, for the most part, not involved realistic time frames, and as such certain phenomena observed in this work have not been previously reported.

Belgrave, J.D.M.; Moore, R.G.; Ursenbach, M.G. [Univ. of Calgary, Alberta (Canada)

1995-02-01T23:59:59.000Z

105

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect (OSTI)

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

106

Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)  

SciTech Connect (OSTI)

The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

Penner, S.S.

1982-03-01T23:59:59.000Z

107

Analysis of techniques for predicting viscosity of heavy oil and tar sand bitumen  

SciTech Connect (OSTI)

Thermal recovery methods are generally employed for recovering heavy oil and tar sand bitumen. These methods rely on reduction of oil viscosity by application of heat as one of the primary mechanisms of oil recovery. Therefore, design and performance prediction of the thermal recovery methods require adequate prediction of oil viscosity as a function of temperature. In this paper, several commonly used temperature-viscosity correlations are analyzed to evaluate their ability to correctly predict heavy oil and bitumen viscosity as a function of temperature. The analysis showed that Ali and Standing`s correlations gave satisfactory results in most cases when properly applied. Guidelines are provided for their application. None of the correlations, however, performed satisfactorily with very heavy oils at low temperatures.

Khataniar, S.; Patil, S.L.; Kamath, V.A. [Univ. of Alaska, Fairbanks, AK (United States)

1995-12-31T23:59:59.000Z

108

Influence of steam-drive production on the properties of high-molecular weight components of heavy Ashal`chinsk crude oil  

SciTech Connect (OSTI)

A comparative analysis has been made of the composition and properties of heavy Ashal`chinsk crude oil produced both by natural flow and by the steam-drive method. It has been shown that the use of the steam-drive method in order to improve Elie oil yield leads to certain changes in the composition of the oil produced, which is reflected in a change in quality of the target petroleum products. In particular, because of the additional presence in the crude oil of high-molecular weight n-alkanes, there is an increase in the pour point and viscosity index of paraffinic-naphthenic hydrocarbons, which are the main components of residual base oils. An experimental study of the influence of temperatures characteristic of the steam-drive method (300{degrees}C) on the asphaltene-resinous components of Ashal`chinsk crude oil confirmed that during steam-drive production these substances undergo degradation processes associated with detachment of alkyl substituents at peripheral fragments containing sulphur, oxygen, nitrogen and other heteroatoms and consequently are a potential source of alkane hydrocarbons.

Kayukova, G.P.; Kurbskii, G.P.; Lifanova, Ye.V. [and others

1993-12-31T23:59:59.000Z

109

Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs  

E-Print Network [OSTI]

This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer economics. Substantial heat that has accumulated within reservoir rock and its...

Limpasurat, Akkharachai

2011-10-21T23:59:59.000Z

110

Rheological behavior of heavy oil and water mixtures at high pressures and high temperatures  

E-Print Network [OSTI]

were compared to the existing correlations. This effort showed that all correlations' constants have to be tuned to match the experimental results. Our further analysis examined how to apply mixing rules in predicting viscosity of heavy oil and its...

Setiadarma, Agustinus

2002-01-01T23:59:59.000Z

111

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Broader source: Energy.gov (indexed) [DOE]

Research Council Canada Ottawa, Ontario, Canada Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels W. Stuart Neill 9 th DEER Conference, Newport, Rhode...

112

Experimental study of Morichal heavy oil recovery using combined steam and propane injection  

E-Print Network [OSTI]

with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela...

Goite Marcano, Jose Gregorio

1999-01-01T23:59:59.000Z

113

Heavy Oil Program. Quarterly progress report No. 1, April 1-June 30, 1980  

SciTech Connect (OSTI)

Research and development efforts in support of the DOE Heavy Oil RD and D Program in reservoir access were initiated. Preliminary activities in the survey of sand control, drilling, and fracturing techniques in heavy oil formations are described. The continued development of a high temperature packer for use in steam injection applications is presented. A new application of controlled source audio magnetotelluric survey to developing thermal fronts from in situ combustion and steam drive is described.

Wayland, J. R.; Bartel, L. C.; Johnson, D. R.; Fox, R. L.

1980-12-01T23:59:59.000Z

114

Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water  

E-Print Network [OSTI]

Elsevier B.V. All rights reserved. Keywords: Heavy oil; Asphaltenes; Naphthenic acids; Wettability; Oil­waterContact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water RonaldoG.dosSantos a , Rahoma S. Mohamed a,F , Antonio C. Bannwart b , Watson Loh c

Loh, Watson

115

Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process  

E-Print Network [OSTI]

1 Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process. Larribau 64018 Pau Cedex, France Oil and Gas Science and Technology 2012, 67 (6), 1029-1039, doi:10 pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated

Paris-Sud XI, Université de

116

Simulation studies of steam-propane injection for the Hamaca heavy oil field  

E-Print Network [OSTI]

Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and a viscosity of 25,000 cp at 50?C. Two types of simulation studies were performed: a...

Venturini, Gilberto Jose

2002-01-01T23:59:59.000Z

117

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect (OSTI)

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

118

Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques  

SciTech Connect (OSTI)

This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

Stanford University; Department of Energy Resources Engineering Green Earth Sciences

2007-09-30T23:59:59.000Z

119

DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with little capital investment. The first year period was divided into two phases--Phase I and Phase II. Each phase was 6 months in duration. Tasks completed in first six month period included soil sampling, geochemical analysis, construction of ERT arrays, collection of background ERT surveys, and analysis of core samples to develop a geomechanical model for designing the hydraulic fracturing treatment. Five wells were to be drilled in phase I. However, weather and funding delays resulted in drilling shifting to the second phase of the project. During the second six month period, five vertical wells were drilled through the Bluejacket and Warner Sands. These wells were drilled with air and logged openhole. Drilling locations were selected after reviewing results of background ERT and geochemical surveys. Three ERT wells (2,3,4) were arranged in an equilateral triangle, spaced 70 feet apart and these wells were completed open hole. ERT arrays constructed during Phase I, were installed and background surveys were taken. Two wells (1,5) were drilled, cased, cemented and perforated. These wells were located north and south of the three ERT wells. Each well was stimulated with a linear guar gel and 20/40 mesh Brady sand. Tiltmeters were used with one fracture treatment to verify fracture morphology. Work performed during the first year of this research project demonstrates that surface geochemical methods can be used to differentiate between productive and non-productive areas of the Warner Sand and that ERT can be used to successfully image through the Warner Sand. ERT work also provided a background image for future MEOR treatments. Well logs from the five wells drilled were consistent with previous logs from historical coreholes, and the quality of the formation was found to be as expected. Hydraulic fracturing results demonstrated that fluid leakoff is inadequate for tip screenout (TSO) and that a horizontal fracture was generated. At this point it is not clear if the induced fracture remained in the Warner Sand, or propagated into another formation. MEOR treatments were originally expected to commence during Phase II. Due to weather delays, drilling and stimulation work was not completed until September, 2003. Microbial treatments therefore will commence in October, 2003. Phase III, the first 10 months of the second project year, will focus primarily on repeated cycles of MEOR treatments, ERT measurements and well pumping.

Shari Dunn-Norman

2004-03-01T23:59:59.000Z

120

Hydrotreating Uinta Basin bitumen-derived heavy oils  

SciTech Connect (OSTI)

Heavy oils derived from Uinta Basin bitumens have been hydrotreated under varying conditions. The process variables investigated included total reactor pressure (11.0-16.9 MPa), reactor temperature (616-711 K), feed rate (0.29-1.38 WHSV), and catalyst composition. The extent of heteroatom removal and residuum conversion were determined by the feed molecular weight and catalyst selection. Catalytic activity for heteroatom conversion removal was primarily influenced by metal loading. The heteroatom removal activity of the catalysts studied were ranked HDN catalysts > HDM catalysts > HDN-support. Catalytic activity for residuum conversion was influenced by both metal loading and catalyst surface area. The residuum conversion activity of HDN catalysts were always higher than the activity of HDM catalysts and HDN supports. The residuum conversion activity of HDN-supports surpassed the activity of HDM catalyst at higher temperatures. The conversions achieved with HDN catalysts relative to the HDM catalysts indicated that the low metals contents of the Uinta Basin bitumens obviate the need for hydrodemetallation as an initial upgrading step with these bitumens. The upgrading of Uinta Basin bitumens for integration into refinery feed slates should emphasize molecular weight and boiling range reduction first, followed by hydrotreating of the total liquid product produced in the pyrolysis process. Kinetics of residuum conversion can be modeled by invoking a consecutive-parallel mechanism in which native residuum in the feed is rapidly converted to volatile products and to product residuum. Deep conversion of residuum is only achieved when the more refractory product residuum is converted to volatile products.

Longstaff, D.C.; Balaji, G.V.; Kim, J.W. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

Yorstos, Yanis C.

2002-03-11T23:59:59.000Z

122

Third-Party Evaluation of Petro Tex Hydrocarbons, LLC, ReGen Lubricating Oil Re-refining Process  

SciTech Connect (OSTI)

This report presents an assessment of market, energy impact, and utility of the PetroTex Hydrocarbons, LLC., ReGen process for re-refining used lubricating oil to produce Group I, II, and III base oils, diesel fuel, and asphalt. PetroTex Hydrocarbons, LLC., has performed extensive pilot scale evaluations, computer simulations, and market studies of this process and is presently evaluating construction of a 23 million gallon per year industrial-scale plant. PetroTex has obtained a 30 acre site in the Texas Industries RailPark in Midlothian Texas. The environmental and civil engineering assessments of the site are completed, and the company has been granted a special use permit from the City of Midlothian and air emissions permits for the Texas Commission on Environmental Quality.

Compere, A L [ORNL; Griffith, William {Bill} L [ORNL

2009-04-01T23:59:59.000Z

123

Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors  

SciTech Connect (OSTI)

A leak detectable refrigeration composition is described comprising: (A) a refrigeration liquid selection from the group consisting of: (1) a polyhalogenated hydrocarbon refrigerant; (2) a refrigeration oil selected from the group consisting of naphthenic oils, paraffinic oils, alkylated benzenes, silicones, polyglycols, diesters or triesters of dicarboxylic or tricarboxylic acids, and polyalkyl silicate oils, and (3) a mixture of A(1) and A(2), and (B) a fluorescent dye compound or composition comprising the dye selected from the group consisting of: (1) a fluorescent dye selected from the group consisting of perylene, naphthoxanthene, monocyclic aromatic compounds having an organometallic compound, (2) a solution of fluorescent dye in a solvent, and (3) a mixture of B(1) and B(2). The fluorescent dye compound or composition is soluble in the refrigeration liquid. The concentration of the dye being at least 0.001 grams per 100 grams of the refrigeration liquid.

Parekh, M.

1988-07-19T23:59:59.000Z

124

Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis  

SciTech Connect (OSTI)

A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

Thorsness, C. B., LLNL

1997-01-21T23:59:59.000Z

125

1980 annual heavy oil/EOR contractor presentations: proceedings  

SciTech Connect (OSTI)

Twenty-five papers were presented on thermal recovery, chemical flooding, and carbon dioxide methods for enhanced oil recovery. Separate abstracts were prepared for 24 of the papers; the remaining paper was previously abstracted. (DLC)

None

1980-09-01T23:59:59.000Z

126

Oil  

E-Print Network [OSTI]

Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

unknown authors

127

Simulation of heavy oil reservoir performance using a non-Newtonian flow model  

E-Print Network [OSTI]

. This reduction of viscosity as a function of shear rate has a significant effect on rates and other parameters when simulating reservoir performance. The objective of this study is to compare the simulation results of Newtonian and non-Newtonian oils under...)ected to increasing shear rate, the viscosity decreases. This behavior implies that the oil viscosity varies as a function of not only pressure, but also shear rate. This behavior is important when simulating heavy-oil reservoir performance. To simulate the flow...

Narahara, Gene Masao

1983-01-01T23:59:59.000Z

128

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes (EARTH-15-CB1) Host institution biodegradation of oil can remove its value ­ but what controls the biodegradation? The deep biosphere plays a key

Henderson, Gideon

129

Hot alkaline treatment to stimulate and consolidate the heavy oil Bachaquero-01 sand  

E-Print Network [OSTI]

, PDVSA (Petroleos de Venezuela, S.A.), operates the Lagunillas field. It represents one of the most important heavy oil accumulations in the Bolivar Coast group of fields. Bachaquero-01 reservoir covers 19,540 acres of unconsolidated sand and contains...

Valera Villarroel, Cesar Amabilis

2005-02-17T23:59:59.000Z

130

Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils  

SciTech Connect (OSTI)

The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formationâ??s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.

Matthew Liberatore; Andy Herring; Manika Prasad; John Dorgan; Mike Batzle

2012-06-30T23:59:59.000Z

131

Utilizing asphaltene pyrolysis to predict pyrolysis kinetics of heavy crude oil and extractable native bitumen  

SciTech Connect (OSTI)

Selected heavy crude oils and extracted tar sand bitumens were separated into asphaltene and maltene fractions. The whole feeds and fractions were then examined by micropyrolysis at nominal constant heating rates from 1 to 50{degrees}C/min from temperatures of 250 to 650{degrees}C to establish evolution behavior, pyrolysate yields, and kinetics of evolution.

Reynolds, J.G.

1992-01-07T23:59:59.000Z

132

Heavy Oil Database from the National Institute for Petroleum and Energy Research (NIPER)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Heavy Oil Database resulted from work funded by DOE and performed at the National Institute for Petroleum and Energy Research (NIPER). It contains information on more than 500 resevoirs in a Microsoft Excel spreadsheet. The information was collected in 1992 and updated periodically through 2003. Save the zipped file to your PC, then open to access the data.

133

The Possible Loss of Venezuelan Heavy Crude Oil Imports Underscores the Strategic Importance of the  

E-Print Network [OSTI]

of the Keystone XL Pipeline By Jorge R. Piñon Recent press reports indicate the possible sale by state crude, making reliance on Canadian heavy crude oil more significant, and the approval of the Keystone XL pipeline even more crucial to U.S. energy security. The pipeline is currently in limbo, waiting on approval

Texas at Austin, University of

134

E-Print Network 3.0 - aggravates hydrocarbon oil-induced Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems. For iron-based superconductors... "Can simple hydrocarbon molecular solids superconduct?" Unlike many well established high temperature... of superconductivity in...

135

Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

1999-06-25T23:59:59.000Z

136

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

Scott Hara

2001-06-27T23:59:59.000Z

137

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Yanis C.

2001-08-07T23:59:59.000Z

138

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Y.C.

2001-05-29T23:59:59.000Z

139

Evaluation of solvent-based in situ processes for upgrading and recovery of heavy oil bitumen  

SciTech Connect (OSTI)

Solvent-based in situ recovery processes have been proposed as lower cost alternatives to thermal processes for recovery of heavy oil and bitumen. Advantages of solvent based processes are: reduced steam requirements, reduced water treating, and in situ upgrading of the produced oil. Lab results and process calculations show that low-pressure, low-energy solvent-based in situ processes have considerable technical and economic potential for upgrading and recovery of bitumen and heavy oil. In a lab flow test using Athabasca tar sand and propane as solvent, 50 percent of the bitumen was recovered as upgraded oil. Relative to the raw bitumen, API gravity increased by about 10{degrees}API, viscosity was reduced 30-fold, sulfur content was reduced about 50 percent, and metals content was also substantially reduced. Process uncertainties that will have a major impact on economics are: (1) oil production rate, (2) oil recovery, (3) extent of in situ upgrading, and (4) solvent losses. Additional lab development and field testing are required to reduce these process uncertainties and to predict commercial-scale economics.

Duerksen, J.H.; Eloyan, A. [Chevron Petroleum Technology Co., La Habra, CA (United States)

1995-12-31T23:59:59.000Z

140

Membrane separation of hydrocarbons  

DOE Patents [OSTI]

Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

Chang, Y. Alice (Des Plaines, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000 HighlightsHasSHOPPMapsHeavy

142

Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil  

SciTech Connect (OSTI)

Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

2014-08-14T23:59:59.000Z

143

A porous covalent porphyrin framework with exceptional uptake capacity of saturated hydrocarbons oil spill cleanup  

SciTech Connect (OSTI)

Yamamoto homo-coupling reaction of tetra(4-bromophenyl)porphyrin afforded a porous covalent porphyrin framework, PCPF-1, which features strong hydrophobicity and oleophilicity and demonstrates exceptional adsorptive capacities for saturated hydrocarbons and gasoline.

Wang, Xi-Sen; Liu, Jian; Bonefont, Jean M.; Yuan, Da-Qiang; Thallapally, Praveen K.; Ma, Shengqian

2013-01-21T23:59:59.000Z

144

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Yanis C.

2002-10-08T23:59:59.000Z

145

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network [OSTI]

the subsurface geology and the gas bubble (with oil) plumesgeology and gas-phase (methane) seepage for the Coal Oilwith offshore oil production. Geology 27:1047–1050 Shindell

Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

2010-01-01T23:59:59.000Z

146

SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES  

SciTech Connect (OSTI)

A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

David O. Ogbe; Tao Zhu

2004-01-01T23:59:59.000Z

147

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. Accomplishments for this period are presented.

Yortsos, Y.C.

1992-01-01T23:59:59.000Z

148

Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host  

SciTech Connect (OSTI)

The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

Conrad Ingram; Mark Mitchell

2007-09-30T23:59:59.000Z

149

Two-stage coprocessing of subbituminous coals and bitumen or heavy oil  

SciTech Connect (OSTI)

Pretreatment of subbituminous coal with an appropriately formulated mix of carbon monoxide and water, in presence of bitumen or heavy oil, results in very fast reactions characterized by a high degree of coal solubilization and deoxygenation. The reaction is catalysed by a mixture of alkali metal carbonates and proceeds readily at 380-400/sup 0/C. The first-stage reaction product appears to be susceptible to further catalytic hydrogenation at 420-460/sup 0/C with gaseous hydrogen yielding 65-70% (on daf feed) of hydrogen-rich distillable oil, composed mainly of naphtha and middle oil. The process flowsheet is presented and the comparative economics of two-stage carbon monoxide/steam-hydrogen and hydrogen-hydrogen coprocessing schemes are discussed.

Ignasiak, B.; Ohuchi, T.; Clark, P.; Aitchison, D.; Lee, T.

1986-09-01T23:59:59.000Z

150

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

151

Using supercritical fluids to refine hydrocarbons  

DOE Patents [OSTI]

This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

Yarbro, Stephen Lee

2014-11-25T23:59:59.000Z

152

Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach  

E-Print Network [OSTI]

SPE 159172 Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach Hamid Hadibeik, The University of Texas the dynamics of water- and oil- base mud-filtrate invasion that produce wellbore supercharging were developed

Torres-Verdín, Carlos

153

Recent hydrocarbon developments in Latin America: Key issues in the downstream oil sector  

SciTech Connect (OSTI)

This report discusses the following: (1) An overview of major issues in the downstream oil sector, including oil demand and product export availability, the changing product consumption pattern, and refineries being due for major investment; (2) Recent upstream developments in the oil and gas sector in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela; (3) Recent downstream developments in the oil and gas sector in Argentina, Chile, Colombia, Ecuador, Mexico, Peru, Cuba, and Venezuela; (4) Pipelines in Argentina, Bolivia, Brazil, Chile, and Mexico; and (5) Regional energy balance. 4 figs., 5 tabs.

Wu, K.; Pezeshki, S.

1995-03-01T23:59:59.000Z

154

Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons  

SciTech Connect (OSTI)

This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

Continental Shelf Associates, Inc.

1999-08-16T23:59:59.000Z

155

Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.  

SciTech Connect (OSTI)

This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

NONE

1997-06-01T23:59:59.000Z

156

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

157

Development of the Write Process for Pipeline-Ready Heavy Oil  

SciTech Connect (OSTI)

Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establish a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.

Lee Brecher; Charles Mones; Frank Guffey

2009-03-07T23:59:59.000Z

158

VEBA-Combi-cracking - A technology for upgrading of heavy oils and bitumen  

SciTech Connect (OSTI)

Based on experiences with liquid phase hydrogenation for coal liquefaction according to the Berguis-Pier-Process as well as crude oil residue hydrogenation in the Fifties and Sixties, VEBA OEL in recent years developed the VEBA-LQ-Cracking (VLC) and the VEBA-Combi-Cracking (VCC) Processes. Since 1978, more than 20 different feedstocks have been converted in small scale plants with a capacity of 3-20 kg/h. Together with LURGI GmbH, Frankfurt, the next steps were taken: the design and construction of a 1 t/h Pilot Plant located at the RUHR OEL refinery in Gelsenkirchen. After 18 months of construction, the heavy oil pilot plant was put on stream in May 1983. Since the beginning of 1983, the plant has been funded and owned by LURGI GmbH, VEBA OEL AG and INTEVEP S.A., the research institute of Petroleos de Venezuela, all of whom have participated in the development of the VLC/VCC process. Reported here are the results of the intensive experimental work for the development of the VLC/VCC-processes in a scale covering all aspects relevant for a scale-up, demonstrate the technical maturity of the processes developed by VEBA OEL to convert refinery residues and natural heavy crude oils.

Doehler, W.; Kretschmar, D.I.K.; Merz, L.; Niemann, K. (VEBA OEL Entwicklungs-Gesellschaft mbH, Gelsenkirchen (West Germany))

1987-04-01T23:59:59.000Z

159

Combustion Assisted Gravity Drainage (CAGD): An In-Situ Combustion Method to Recover Heavy Oil and Bitumen from Geologic Formations using a Horizontal Injector/Producer Pair  

E-Print Network [OSTI]

Combustion assisted gravity drainage (CAGD) is an integrated horizontal well air injection process for recovery and upgrading of heavy oil and bitumen from tar sands. Short-distance air injection and direct mobilized oil production are the main...

Rahnema, Hamid

2012-11-21T23:59:59.000Z

160

Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996  

SciTech Connect (OSTI)

The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

NONE

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SUPRI heavy oil research program. Annual report, October 1, 1991--September 30, 1992  

SciTech Connect (OSTI)

The goal of the Stanford University Petroleum Research Institute is to conduct research directed toward increasing the recovery of heavy oils. Presently, SUPRI is working in five main directions: (1) flow properties studies to assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; (2) in-situ combustion to evaluate the effect of different reservoir parameters on the in-situ combustion process and to study the kinetics of the reactions; (3) steam with additives to develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; (4) formation evaluation to develop and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and field support services to provide technical support for design and monitoring of DOE sponsored or industry initiated field projects.

Brigham, W.E.; Ramey, H.J. Jr.; Castanier, L.M.

1993-08-01T23:59:59.000Z

162

SUPRI Heavy Oil Research Program Twenty-First Annual Report, SUPRI TR-111  

SciTech Connect (OSTI)

The goal of the Stanford University Petroleum Research Institute is to conduct research directed toward increasing the recovery of heavy oils. Present, SUPRI is working in five main directions: (1) Flow Properties Studies - To assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; (2) In-Situ Combustion - To evaluate the effect of different reservoir parameters on the in-situ combustion process. This project includes the study of the kinetics of the reactions; (3) Steam with Additives- To develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; (4) Formation Evaluation - To develop and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and (5) Field Support Services - To provide technical support for design and monitoring of DOE sponsored or industry initiated field projects.

Brigham, William E.; Castanier, Louis; Kovscek, Anthony R.

1999-08-09T23:59:59.000Z

163

SUPRI heavy oil research program. Annual report, February 8, 1995--February 7, 1996  

SciTech Connect (OSTI)

The goal of the Stanford University Petroleum Research Institute (SUPRI) is to conduct research directed toward increasing the recovery of heavy oils. Presently SUPRI is working in five main directions: (1) flow properties studies to assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; (2) in-situ combustion to evaluate the effect of different reservoir parameters on the in-situ combustion process; (3) steam with additives to develop and understand the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; (4) formation evaluation to develop and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and (5) field support services to provide technical support for design and monitoring of DOE sponsored or industry initiated field projects. This report consists of abstracts of reports and copies of technical papers presented or published.

Brigham, W.E.; Castanier, L.M.

1996-06-01T23:59:59.000Z

164

Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere  

DOE Patents [OSTI]

An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

Wamsley, Paula R. (Littleton, CO); Weimer, Carl S. (Littleton, CO); Nelson, Loren D. (Evergreen, CO); O'Brien, Martin J. (Pine, CO)

2003-01-01T23:59:59.000Z

165

Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-oil to Produce Hydrocarbon Products  

SciTech Connect (OSTI)

Catalytic hydroprocessing has been applied to biomass fast pyrolysis liquid product (bio-oil) in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. The project was a cooperative research and development agreement among UOP LLC, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory (PNNL). This paper is focused on the process experimentation and product analysis undertaken at PNNL. The paper describes the experimental methods used and relates the results of the product analyses. A range of catalyst formulations were tested over a range of operating parameters including temperature, pressure, and flow-rate with bio-oil derived from several different biomass feedstocks. Effects of liquid hourly space velocity and catalyst bed temperature were assessed. Details of the process results were presented including mass and elemental balances. Detailed analysis of the products were provided including elemental composition, chemical functional type determined by mass spectrometry, and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an understanding of the efficacy of hydroprocessing as applied to bio-oil.

Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Zacher, Alan H.

2009-10-01T23:59:59.000Z

166

Preliminary evaluation of a process using plasma reactions to desulfurize heavy oils. Final report  

SciTech Connect (OSTI)

Western Research Institute (WRI) has conducted exploratory experiments on the use of microwave-induced plasmas to desulfurize heavy oils. Batch mode experiments were conducted in a quartz reactor system using various reactive and nonreactive plasmas. In these experiments a high-sulfur asphalt was exposed to various plasmas, and the degree of conversion to distillate, gas, and solids was recorded. Products from selected experiments were analyzed to determine if the plasma exposure had resulted in a significant reduction in sulfur content. Exploratory experiments were conducted using reactive plasmas generated from hydrogen and methane and nonreactive plasmas generated from nitrogen. The effects of varying exposure duration, sample temperature, and location of the sample with respect to the plasma discharge were investigated. For comparative purposes two experiments were conducted in which the sample was heated under nitrogen with no plasma exposure. Distillates containing approximately 28% less sulfur than the feedstock represented the maximum desulfurization attained in the plasma experiments. It does not appear that plasma reactions using the simple configurations employed in this study represent a viable method for the desulfurization of heavy oils.

Grimes, P.W.; Miknis, F.P.

1997-09-01T23:59:59.000Z

167

Oil from Tobacco Leaves: FOLIUM - Installation of Hydrocarbon Accumulating Pathways in Tobacco Leaves  

SciTech Connect (OSTI)

PETRO Project: LBNL is modifying tobacco to enable it to directly produce fuel molecules in its leaves for use as a biofuel. Tobacco is a good crop for biofuels production because it is an outstanding biomass crop, has a long history of cultivation, does not compete with the national food supply, and is highly responsive to genetic manipulation. LBNL will incorporate traits for hydrocarbon biosynthesis from cyanobacteria and algae, and enhance light utilization and carbon uptake in tobacco, improving the efficiency of photosynthesis so more fuel can be produced in the leaves. The tobacco-generated biofuels can be processed for gasoline, jet fuel or diesel alternatives. LBNL is also working to optimize methods for planting, cultivating and harvesting tobacco to increase biomass production several-fold over the level of traditional growing techniques.

None

2012-01-01T23:59:59.000Z

168

Estimates of future regional heavy oil production at three production rates--background information for assessing effects in the US refining industry  

SciTech Connect (OSTI)

This report is one of a series of publications from a project considering the feasibility of increasing domestic heavy oil (10{degree} to 20{degree} API gravity inclusive) production being conducted for the US Department of Energy. The report includes projections of future heavy oil production at three production levels: 900,000; 500,000; and 300,000 BOPD above the current 1992 heavy oil production level of 750,000 BOPD. These free market scenario projections include time frames and locations. Production projections through a second scenario were developed to examine which heavy oil areas would be developed if significant changes in the US petroleum industry occurred. The production data helps to define the possible constraints (impact) of increased heavy oil production on the US refining industry (the subject of a future report). Constraints include a low oil price and low rate of return. Heavy oil has high production, transportation, and refining cost per barrel as compared to light oil. The resource is known, but the right mix of technology and investment is required to bring about significant expansion of heavy oil production in the US.

Olsen, D.K.

1993-07-01T23:59:59.000Z

169

Major heavy oil deposits are present in Lower Cretaceous strata of west-central Saskatchewan. The Winter Heavy Oil Pool (approximately 566 044 mmbl) consists of bitumen-rich sands from the AptianAlbian Dina and Cummings members of  

E-Print Network [OSTI]

-central Saskatchewan. The Winter Heavy Oil Pool (approximately 566 044 mmbl) consists of bitumen-rich sands from dans les strates du Crétacé inférieur du centre-ouest de la Saskatchewan. Le gisement de pétrole lourd of the Winter Pool, west-central Saskatchewan DUSTIN B. BAUER University of Calgary Department of Geoscience

170

Fluid catalytic cracking of heavy petroleum fractions  

SciTech Connect (OSTI)

A process is claimed for fluid catalytic cracking of residuum and other heavy oils comprising of gas oil, petroleum residue, reduced and whole crudes and shale oil to produce gasoline and other liquid products which are separated in various streams in a fractionator and associated vapor recovery equipment. The heat from combustion of coke on the coked catalyst is removed by reacting sulfur-containing coke deposits with steam and oxygen in a separate stripper-gasifier to produce a low btu gas stream comprising of sulfur compounds, methane, carbon monoxide, hydrogen, and carbon dioxide at a temperature of from about 1100/sup 0/F. To about 2200/sup 0/F. The partially regenerated catalyst then undergoes complete carbon removal in a regeneration vessel. The regenerated catalyst is recycled for re-use in the cracking of heavy petroleum fractions. The liquid products are gasoline, distillates, heavy fuel oil, and light hydrocarbons.

McHenry, K.W.

1981-06-30T23:59:59.000Z

171

Early detection of oil-induced stress in crops using spectral and thermal  

E-Print Network [OSTI]

such as drought, herbicide application, and volatile hydrocarbon and heavy metal pollution cause changes Zealand, Blenheim, P.O. Box 331, New Zealand Abstract. Oil pollution is a major source of environmental of crops for the early detection of stress caused by oil pollution. In a glasshouse, pot-grown maize

Blackburn, Alan

172

IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS  

SciTech Connect (OSTI)

The focus of this project is to improve the catalytic performance of zeolite Y for heavy petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-30 nm) inside nanoporous silicate or aluminosilicate hosts of similar pore diameters. The encapsulated zeolite nanoparticles are expected to possess pores of reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction, hence minimizing pore blockage and active sites deactivation. In this phase of the project, research activities were focused on refining procedures to: (a) improve the synthesis of ordered, high surface area nanoporous silica, such as SBA-15, with expanded pore size using trimethylbenzene as additive to the parent SBA-15 synthesis mixture; and (b) reduce the particle size of zeolite Y such that they can be effectively incorporated into the nanoporous silicas. The synthesis of high surface ordered nanoporous silica containing enlarged pores of diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished.

Conrad Ingram; Mark Mitchell

2004-06-30T23:59:59.000Z

173

Turbine fuels from tar-sands bitumen and heavy oil. Volume 2. Phase 3. Process design specifications for a turbine-fuel refinery charging San Ardo heavy crude oil. Final report, 1 June 1985-31 March 1987  

SciTech Connect (OSTI)

An engineering design was developed for a 50,000-BPSD grass-roots refinery to produce aviation turbine fuel grades JP-4 and JP-8 from San Ardo heavy crude oil. The design was based on the pilot-plant studies described in Phase III - Volume I of this report. The detailed plant design described in this report was used to determine estimated production costs.

Talbot, A.F.; Swesey, J.R.; Magill, L.G.

1987-09-01T23:59:59.000Z

174

Unconventional Oil and Gas Resources  

SciTech Connect (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

175

Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles  

E-Print Network [OSTI]

Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and does not consider other...

Kader, Michael Kirk

2013-01-18T23:59:59.000Z

176

INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES  

SciTech Connect (OSTI)

This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

Yannis C. Yortsos

2003-02-01T23:59:59.000Z

177

Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

Olsen, D.K.; Ramzel, E.B.; Strycker, A.R. [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute] [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute; Guariguata, G.; Salmen, F.G. [Bonner and Moore Management Science, Houston, TX (United States)] [Bonner and Moore Management Science, Houston, TX (United States)

1994-12-01T23:59:59.000Z

178

A Novel 9.4 Tesla FT-ICR Mass Spectrometer with Improved Sensitivity, Mass Resolution, and Mass Range, for Petroleum Heavy Crude Oil Analysis  

E-Print Network [OSTI]

organic mixtures. However, analysis of petroleum crude oil as well as upcoming biofuels requires continued NHMFL 9.4 T FT- species in petroleum crude oil and its products, extending to "heavy" crudes.4 tesla widebore FT-ICR mass spectrometer. Acknowledgements : Include all grant info; e.g. G.S. Boebinger

179

Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"  

SciTech Connect (OSTI)

The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

Scott Hara

2007-03-31T23:59:59.000Z

180

Vertical composition gradient effects on original hydrocarbon in place volumes and liquid recovery for volatile oil and gas condensate reservoirs.  

E-Print Network [OSTI]

??Around the world, volatile oil and retrograde gas reservoirs are considered as complex thermodynamic systems and even more when they exhibit vertical composition variations. Those… (more)

Jaramillo Arias, Juan Manuel

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope  

SciTech Connect (OSTI)

The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

Shirish Patil; Abhijit Dandekar; Santanu Khataniar

2008-12-31T23:59:59.000Z

182

Biological enhancement of hydrocarbon extraction  

DOE Patents [OSTI]

A method of microbial enhanced oil recovery for recovering oil from an oil-bearing rock formation is provided. The methodology uses a consortium of bacteria including a mixture of surfactant producing bacteria and non-surfactant enzyme producing bacteria which may release hydrocarbons from bitumen containing sands. The described bioprocess can work with existing petroleum recovery protocols. The consortium microorganisms are also useful for treatment of above oil sands, ground waste tailings, subsurface oil recovery, and similar materials to enhance remediation and/or recovery of additional hydrocarbons from the materials.

Brigmon, Robin L. (North Augusta, SC); Berry, Christopher J. (Aiken, SC)

2009-01-06T23:59:59.000Z

183

ORGANIC GEOCHEMISTRY, DEPOSITIONAL ENVIRONMENT AND HYDROCARBON POTENTIAL OF THE TERTIARY OIL SHALE DEPOSITS IN NW ANATOLIA, TURKEY  

E-Print Network [OSTI]

In this study, organic geochemical characteristics and depositional environ-ment of the Tertiary-aged oil shale deposits in Northwest Anatolia have been examined. Oil shales in all the studied areas are typically characterized by high hydrogen index and low oxygen index values. Beypazar?

R. Kara Gülbay; S. Korkmaz

184

World heavy crude and bitumen riches, 1988: half the world's oil future is mortgaged by low prices  

SciTech Connect (OSTI)

A cover graph shows a glimpse of the future: the world's next offering to civilization. No one knows how much, and just when, great amounts of heavy crude oil resources will be developed. Even less is speculated about bitumen resources. But speculation is not required to reach the conclusion that non-conventional oil must be developed in the Western Hemisphere -- and soon. Considerable data are presented in this issue to reinforce this conclusion. This issues also contains the following: (1) refining netback data series for the US Gulf and West Coasts, Rotterdam, and Singapore, as of Dec. 9 and Dec. 20, 1988; and (2) ED fuel price/tax series for countries of both the Western and Eastern Hemisphere, Dec. 1988 edition. 9 figures, 11 tables.

Not Available

1988-12-30T23:59:59.000Z

185

Vertical composition gradient effects on original hydrocarbon in place volumes and liquid recovery for volatile oil and gas condensate reservoirs  

E-Print Network [OSTI]

Around the world, volatile oil and retrograde gas reservoirs are considered as complex thermodynamic systems and even more when they exhibit vertical composition variations. Those systems must be characterized by an equation of state (EOS...

Jaramillo Arias, Juan Manuel

2000-01-01T23:59:59.000Z

186

Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion  

E-Print Network [OSTI]

In-situ upgrading of oil using hydrogen donors is a new process. In particular, very little research has been conducted with respect to in-situ oil upgrading using hydrogen donor under in-situ combustion. Several papers describe the use of metal...

Huseynzade, Samir

2009-05-15T23:59:59.000Z

187

Experimental Study of Solvent Based Emulsion Injection to Enhance Heavy Oil Recovery  

E-Print Network [OSTI]

............................................................................................................ 6 2. ENHANCED OIL RECOVERY-AN OVERVIEW ................................................... 8 2.1 EOR Mechanism .............................................................................................. 10 2.2 Micro-emulsion and Macro... .................................................. 37 4.2.2 Emulsion Rheology Study Experiments ..................................................... 42 4.2.3 Emulsion and Crude Oil Interfacial Tension Measurement ........................ 46 4.2.4 Nanoparticle Thickened Micro-emulsion Experiments...

Qiu, Fangda

2011-08-08T23:59:59.000Z

188

Distribution and elimination routes of a naphthenic hydrocarbon (Dodecylcyclohexane) in rainbow trout (Salmo gairdneri)  

SciTech Connect (OSTI)

Contamination of fish by hydrocarbons, whether it occurred directly via the water or indirectly via the food chain has been the object of many studies during the last decade. The interest of laboratories have been focused on the most toxic components of crude oils, i.e., aromatic hydrocarbons but there is a lack of information on the fate of cyclic alkanes in fish. Naphthenic hydrocarbons are the least biologically active of the more mobile fractions of petroleum; nevertheless the fate of these compounds are worth considering, because they constitute respectively 41% and 19.2% of light and heavy crude oils. This paper reports the results of our experiment in which /sup 3/H-dodecylcyclohexane has been given per os to rainbow trout in order to evaluate the distribution and elimination routes of this cycloparaffin.

Cravedi, J.P.; Tulliez, J.

1981-03-01T23:59:59.000Z

189

E-Print Network 3.0 - aromatic hydrocarbons influence Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Geosciences 93 Hydrocarbons Heterogeneous Pyrolysis: Experiments and Modeling for Scramjet Thermal Management Summary: of the decomposition of the heavy hydrocarbon fuel is the...

190

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

Yorstos, Yannis C.

2003-03-19T23:59:59.000Z

191

E-Print Network 3.0 - aromatic hydrocarbon metabolism Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrocarbon is introduced into the ocean via oil spillage, offshore drilling leaks, industrial... hydrocarbons have been attributed to inhibition of ... Source: National...

192

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

Scott Hara

2002-11-08T23:59:59.000Z

193

Mild hydrocracking of bitumen-derived coker and hydrocracker heavy gas oils; Kinetics, product yields, and product properties  

SciTech Connect (OSTI)

The authors describe bitumen-derived coker and hydrocracker heavy gas oils hydrotreated at 350-400{sup 0}C, 7-11 MPa, 0.7-1.5h/sup -1/ LHSV, and 600 S m/sup 3/ of H/sub 2//m/sup 3/ of feed in a pilot-scale trickle-bed reactor, over presulfided commercial NiMo/Al/sub 2/O/sub 3/ catalysts. The conversion of HGO materials (343+ {sup 0}C) in feed to naphtha (195- {sup 0}C) and LGO (195/343 {sup 0}C) was determined by gas chromatographic simulated distillation. The degree of conversion was analyzed with modified first-order kinetics, which incorporate power terms for LHSV and hydrogen partial pressure. The equations were based on three cracking schemes; parallel, consecutive, and combined parallel-consecutive conversion.

Yui, S.M.; Sanford, E.C. (Research Dept., Syncrude Canada Ltd., PO Box 5790, Edmonton, Alberta (CA))

1989-09-01T23:59:59.000Z

194

Modification of chemical and physical factors in steamflood to increase heavy oil recovery  

SciTech Connect (OSTI)

This report covers the work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context the following general areas were studied: (1) The understanding of vapor-liquid flows in porous media, including processes in steam injection; (2) The effect of reservoir heterogeneity in a variety of foams, from pore scale to macroscopic scale; (3) The flow properties of additives for improvement of recovery efficiency, particularly foams and other non-Newtonian fluids; and (4) The development of optimization methods to maximize various measures of oil recovery.

Yortsos, Yanis C.

2000-01-19T23:59:59.000Z

195

Modification of chemical and physical factors in steamflood to increase heavy oil recovery  

SciTech Connect (OSTI)

This report covers work performed in the area related to the physicochemical factors for the improvement of the oil recovery efficiency in steamfloods. In this context, three general areas are studied: (1) The understanding of vapor-liquid flow in porous media, whether the flow is internal (boiling), external (steam injection) or countercurrent (as in vertical heat pipes). (2) The effect of reservoir heterogeneity, particularly as it regards fractured systems and long and narrow reservoirs (which are typical of oil reservoirs). (3) The flow properties of additives for the improvement of recovery efficiency, in particular the properties of foams.

Yortsos, Y.C.

1992-04-01T23:59:59.000Z

196

Economic assessment of heavy oil and bitumen projects with VEBA COMBI cracking  

SciTech Connect (OSTI)

As worldwide industrial production expands, total energy consumption will increase steadily in the near future. Although natural gas, often considered as a clean source for energy production, will profit most from this increase, crude oil remains the most important energy source. This paper describes the economics of petroleum and bitumen refining from an investment point of view.

Schleiffer, A. [VEBA OEL Technologie and Automatisierung, Gelsenkirchen (Germany)

1995-12-31T23:59:59.000Z

197

A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery  

E-Print Network [OSTI]

A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a single packer): the short...

Matus, Eric Robert

2006-10-30T23:59:59.000Z

198

Hydrocarbon-oil encapsulated bubble flotation of fine coal using 3-in. ID flotation column. Technical progress report for the eleventh quarter, April 1--June 30, 1993  

SciTech Connect (OSTI)

There are four modes of the collector dispersion techniques. They are (1) direct liquid additions and stirring, (2) ultrasonic energy collector dispersion, (3) atomized collector dispersion, and (4) gasified collector transported in air stream. Among those collector dispersion techniques, the technique using the gasified collector transported in air phase can be used to enhance the flotation performance with substantial reduction in collector usage and selectivity, compared to the flotation using direct liquid addition (and mechanical agitation) technique. In this phase of study, two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. The 1-in. ID flotation column was used to scale-up to 3-in. ID flotation column. The initial starting point to operate the 3-in ID flotation column were determined using both 1-in. and 3-in. flotation columns based on the three phases of work plans and experiment design. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal.

Peng, F.F.

1996-05-01T23:59:59.000Z

199

Interactions between nitrifying bacteria and hydrocarbon-degrading bacteria during detoxification of oil sands process affected water  

SciTech Connect (OSTI)

Large quantities of process water are produced during the extraction of bitumen from oil sands by the Syncrude and Suncor operations in northern Alberta. Freshly produced tailings water is acutely toxic, but it has been shown to slowly detoxify over time. As detoxification proceeds, there is also a precipitous decrease in ammonia concentrations. The present study examines these two microbially-mediated processes in relation to levels of bacteria and toxicants in mixtures of fresh and aged (detoxified) tailings water. Detoxification of tailings water was greatly accelerated when equal volumes of fresh and detoxified (natural aging for one year) tailings water were mixed. Addition of phosphorus further stimulated detoxification, causing levels of ammonia and naphthenic acids (toxic organic acids leached during bitumen extraction) to decrease to those of detoxified water within two months. Such changes were not observed when phosphorus was not added, or when it was added to less diluted (10-.1 or 3-.1) fresh tailings water. Populations of nitrifying bacteria and naphthenic acid degraders increased markedly in the phosphorus-amended mixtures, but not in its absence. Addition of CS{sub 2} (a specific inhibitor of nitrification) to these mixtures prevented ammonia oxidation. Surprisingly, it also prevented the increase in naphthenic acid-degraders and retarded the loss of naphthenic acids. These results suggest the existence of interactions in fresh tailings water between nitrifying bacteria, naphthenic acid degraders and toxicants. The activity of naphthenic acid-degraders apparently remains low until ammonia is oxidized, whereas that of nitrifying bacteria remains low until concentrations of naphthenic acids or other toxicants decrease below some threshold level. Understanding these interactions may lead to more efficient and effective processes to detoxify oil sands process water.

Sobolewski, A. [Microbial Technologies, Vancouver, British Columbia (Canada); MacKinnon, M. [Syncrude Research, Edmonton, Alberta (Canada)

1995-12-31T23:59:59.000Z

200

Sustainable treatment of hydrocarbon-contaminated industrial land   

E-Print Network [OSTI]

Land contamination by petroleum hydrocarbons is a widespread and global environmental pollution issue from recovery and refining of crude oil and the ubiquitous use of hydrocarbons in industrial processes and applications. ...

Cunningham, Colin John

2012-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Western oil shale conversion using the ROPE copyright process  

SciTech Connect (OSTI)

Western Research Institute (WRI) is continuing to develop the Recycle Oil Pyrolysis and Extraction (ROPE) process to recover liquid hydrocarbon products from oil shale, tar sand, and other solid hydrocarbonaceous materials. The process consists of three major steps: (1) pyrolyzing the hydrocarbonaceous material at a low temperature (T {le} 400{degrees}C) with recycled product oil, (2) completing the pyrolysis of the residue at a higher temperature (T > 400{degrees}C) in the absence of product oil, and (3) combusting the solid residue and pyrolysis gas in an inclined fluidized-bed reactor to produce process heat. Many conventional processes, such as the Paraho and Union processes, do not use oil shale fines (particles smaller than 1.27 cm in diameter). The amount of shale discarded as fines from these processes can be as high as 20% of the total oil shale mined. Research conducted to date suggests that the ROPE process can significantly improve the overall oil recovery from western oil shale by processing the oil shale fines typically discarded by conventional processes. Also, if the oil shale fines are co-processed with shale oil used as the heavy recycle oil, a better quality oil will be produced that can be blended with the original shale oil to make an overall produce that is more acceptable to the refineries and easier to pipeline. Results from tests conducted in a 2-inch process development unit (PDU) and a 6-inch bench-scale unit (BSU) with western oil shale demonstrated a maximum oil yield at temperatures between 700 and 750{degrees}F (371 and 399{degrees}C). Test results also suggest that the ROPE process has a strong potential for recovering oil from oil shale fines, upgrading shale oil, and separating high-nitrogen-content oil for use as an asphalt additive. 6 refs., 10 figs., 11 tabs.

Cha, C.Y.; Fahy, L.J.; Grimes, R.W.

1989-12-01T23:59:59.000Z

202

IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS  

SciTech Connect (OSTI)

The focus of this project is to improve the catalytic performance of zeolite Y for petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-25 nm) inside nanoporous silicate or aluminosilicate hosts. The encapsulated zeolite nanoparticles are expected to possess reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction and the blocking of the zeolite pores and active sites will be minimized. In this phase of the project, procedures for the synthesis of ordered nanoporous silica, such as SBA-15, using block copolymers and nonionic surfactant were successful reproduced. Expansion of the pores sizes of the nanoporous silica using trimethylbenzene is suggested based on shift in the major X-Ray Diffraction peak in the products to lower 2 angles compared with the parent SBA-15 material. The synthesis of ordered nanoporous materials with aluminum incorporated in the predominantly silicate framework was attempted but is not yet successful, and the procedures needs will be repeated and modified as necessary. Nanoparticles of zeolite Y of particle sizes in the range 40 nm to 120 nm were synthesized in the presence of TMAOH as the particle size controlling additive.

Conrad Ingram

2003-09-03T23:59:59.000Z

203

Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process  

E-Print Network [OSTI]

In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

Nauroy, Jean-François; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

2013-01-01T23:59:59.000Z

204

BIODEGRADATION OF MACONDO OIL BY AEROBIC HYDROCARBON?DEGRADING BACTERIA IN THE WATER COLUMN AND DEEPSEA SEDIMENTS OF THE NORTHERN GULF OF MEXICO.  

E-Print Network [OSTI]

??Previous studies have come to contrasting conclusions regarding nutrient limitation of hydrocarbon biodegradation in the Gulf of Mexico, and rate measurements are needed to support… (more)

Sun, Xiaoxu

2014-01-01T23:59:59.000Z

205

Reproducing MEES Is Strictly Prohibited MEES 47:11 15 March 2004 The Value Of Extra-Heavy Crude Oil From The Orinoco Belt  

E-Print Network [OSTI]

the following regarding its findings: Table 1 Proven Reserves Of Venezuela Year 2001 ° API Billion Barrels-Total 37.024 100.0 Rest of the Country Condensates >=42 1.723 4.2 Light = 30 10.345 25.4 Medium essentially contains extra-heavy crude: crude oil of less than 10º API (in other words crude that is heavier

O'Donnell, Tom

206

Fe{sub 3}O{sub 4}/Zeolite nanocomposites synthesized by microwave assisted coprecipitation and its performance in reducing viscosity of heavy oil  

SciTech Connect (OSTI)

Fe{sub 3}O{sub 4}/Zeolite nanocomposites have been synthesized via microwave assisted coprecipitation method and show to be efficient in reducing viscosity of heavy oil compared to other Fe{sub 3}O{sub 4}/Zeolite nanocomposites prepared by conventional method. The following precursors such as FeCl{sub 3}?6H{sub 2}O, FeSO{sub 4}?7H{sub 2}O, NH{sub 4}OH, and natural zeolite of heulandite type were used in the sample preparation. In this study, the effect of Fe{sub 3}O{sub 4} composition in the composite and microwave time heating were investigated. Fe{sub 3}O{sub 4}/Zeolite nanocomposites were then characterized to study the influence on crystal structures, morphology and physicochemical properties. The characterization techniques include X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen physisorption. The results show that by increasing the microwave heating time, the degree of nanocomposite intergrowth can be enhanced. The nanocomposite was tested in catalytic aquathermolysis of heavy oil at 200°C for 6 h and the Fe{sub 3}O{sub 4}/zeolite of 1 to 4 ratios performed the highest viscosity reduction of heavy oil reaching 92%.

Iskandar, Ferry, E-mail: ferry@fi.itb.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung, 40132 (Indonesia); Fitriani, Pipit; Merissa, Shanty; Khairurrijal,; Abdullah, Mikrajuddin [Physics of Electronic Materials Research Division, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia); Mukti, Rino R. [Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)

2014-02-24T23:59:59.000Z

207

Modification of chemical and physical factors in steamflood to increase heavy oil recovery. Annual report, October 1, 1992--September 30, 1993  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. Objectives of this work contract are to carry out new studies in the following areas: displacement and flow properties of fluids involving phase change in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. Specific projects address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. In the area of vapor-liquid flow, we present the continuation of work on the pore network modeling of bubble growth in porous media driven by the application of a prescribed heat flux or superheat. The scaling of bubble growth in porous media is also discussed. In another study we study the problem of steam injection in fractured systems using visualization in micromodels. The interplay of drainage, imbibition and bubble growth problems is discussed.

Yortsos, Y.C.

1994-10-01T23:59:59.000Z

208

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. [Quarterly] report, October 1--December 31, 1992  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. Accomplishments for this period are presented.

Yortsos, Y.C.

1992-12-31T23:59:59.000Z

209

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. Quarterly report, October 1--December 31, 1994  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. This quarterly report covers work accomplished for studies in: vapor-liquid flow; recovery processes in heterogeneous reservoirs; and chemical additives.

Yortsos, Y.C.

1994-12-06T23:59:59.000Z

210

Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host  

SciTech Connect (OSTI)

The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

Conrad Ingram; Mark Mitchell

2006-09-30T23:59:59.000Z

211

IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST  

SciTech Connect (OSTI)

Al-SBA-15 mesoporous catalysts with strong Broensted acid sites and Al stabilized in a totally tetrahedral coordination was synthesized from the addition of hydrothermally aged zeolite Y precursor to SBA-15 synthesis mixture under mildly acidic condition of pH 5.5. The materials possessed surface areas between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm and pore volumes up 1.03 cm{sup 3}, which were comparable to parent SBA-15 synthesized under similar conditions. Up to 2 wt. % Al was present in the most aluminated sample that was investigated, and the Al remained stable in totally tetrahedral coordination, even after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. The catalyst's activity was not affected by the aging time of the precursor for up to the 24 hr aging time investigated. This method of introducing Al and maintaining it in a total tetrahedral coordination is very effective, in comparison to other direct and post synthesis alumination methods reported. The catalytic performance of the zeolite Y/SBA-15 composite materials will be compared with that of pure SBA-15. The catalysts will then be evaluated for the conversion of heavy petroleum feedstocks.

Conrad Ingram; Mark Mitchell

2006-06-20T23:59:59.000Z

212

Exposure to particle-bound polyaromatic hydrocarbons in the Al-Mansoria residential area during the Kuwait oil fires. A qualitative appraisal of the adsorption role  

SciTech Connect (OSTI)

High ambient levels of inhalable particulate matter (PM[sub 10]) were detected in residential areas during the oil well burning in Kuwait (February-November 1991). Because inhalation exposures to PM[sub 10] were significant (data on PAH quantification are scarce), it became possible to describe the exposure to PM[sub 10]-associated PAHs of alternative courses of events, such as PAH-particle interaction mechanisms. Depending on particle adsorption characteristics (affinity and site availability), it is concluded that, contrary to what is currently believed, low levels of ambient PM[sub 10] levels did not indicate low PAH exposures in Al-Mansoria residential area during May 10-31, 1991. Due to the frequent presence of dust particles in the ambient air caused by the heavy dust fallout in Al-Mansoria (average > 65 tons/km[sup 2]) during May, 1991, the predicted patterns can be explained by two hypothesized mechanisms. The first is a two-step process: loss of PAHs from low affinity sites and reabsorption onto stronger affinity ones leading to low surface coverage at high PM[sub 10] concentrations. The second involves dilution of PAH-containing soot with aeolian particles. Both events can lead to low ambient PAHs at high PM[sub 10] levels or high ambient PAHs at low PM[sub 10] levels. 27 refs., 12 refs., 2 tabs.

Al-Yakoob, S.N.; Abdal, Y. (Kuwait Inst. for Scientific Research (Kuwait)); Nasrallah, H. (College of Health Sciences, Kuwait (Kuwait)); Al-Majed, N. (Ministry of Public Health, Kuwait (Kuwait))

1993-01-01T23:59:59.000Z

213

(HC){sub 3} process - An economical technology for upgrading bitumen and heavy oil  

SciTech Connect (OSTI)

This paper discusses the development of the (HC){sub 3} Process. (HC){sub 3} is a high conversion hydro-cracking process with integrated hydro-treating that has been developed by Alberta Department of Energy, Oil Sands and Research Division. The (HC){sub 3} Process has been developed and demonstrated to achieve conversion in excess of 95% at moderate pressures and relatively high temperature in a very cost effective manner. This has been achieved with the aid of a colloidal catalyst that selectively converts the asphaltenes, and a proprietary recycle methodology that significantly reduces the catalyst consumption. Cost and economic studies indicate that capital and operating costs of the (HC){sub 3} upgrading scheme are lower than those of other high conversion schemes and are comparable to those of low and moderate conversion upgrading schemes. This cost advantage combined with the high yield gives the (HC){sub 3} a significant economic advantage over other upgrading schemes. The (HC){sub 3} process shows great promise at achieving high conversion efficiently and economically. The process is ready for commercial testing. Discussions are underway with regards to testing the process in a commercial facility designed to process nominally 5000 barrels per day (BPD).

Padamsey, R.; Bailey, R.T.; Cyr, T.J. [Alberta Dept. of Energy, Calgary (Canada)] [and others

1995-12-31T23:59:59.000Z

214

Selective aerobic oxidation of hydrocarbons over supported gold catalysts.  

E-Print Network [OSTI]

??The selective oxidation of hydrocarbons is of vital importance for the production of valuable chemicals from crude oil and natural gas resources. Unfortunately, when using… (more)

Hereijgers, B.P.C.

2011-01-01T23:59:59.000Z

215

aromatic hydrocarbon carcinogenesis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Ecology Websites Summary: ), and there are oil refineries on the shore. In this environment, input of aromatic hydrocarbons from petroleum and the Yarra River Estuary J. David...

216

Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host  

SciTech Connect (OSTI)

The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

Conrad Ingram; Mark Mitchell

2007-03-31T23:59:59.000Z

217

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and...

218

Adequate description of heavy oil viscosities and a method to assess optimal steam cyclic periods for thermal reservoir simulation  

E-Print Network [OSTI]

exceeding 2.5 trillion barrels. Management decisions and production strategies from thermal oil recovery processes are frequently based on reservoir simulation. A proper description of the physical properties, particularly oil viscosity, is essential...

Mago, Alonso Luis

2006-08-16T23:59:59.000Z

219

Solubilization of petroleum hydrocarbons using biosurfactants  

E-Print Network [OSTI]

that bioavailability of the crude oil to the microorganisms limited the degradation rates (Mills, 1994). Preliminary experiments at our laboratories have also indicated enhanced solubilities of petroleum hydrocarbons due to the effects of biosurfactants (Kanga et al...

Kanga, Shahrukh

1995-01-01T23:59:59.000Z

220

Naphthenic lube oils  

SciTech Connect (OSTI)

A process is disclosed for increasing the volume of lubricating oil base stocks recovered from a crude oil. A fraction having an atmospheric boiling range of about 675/sup 0/ to 1100/sup 0/ F. is recovered by vacuum distillation. This fraction is treated with furfural to extract a hydrocarbon mixture containing at least 50 volume % aromatic hydrocarbons. The raffinate is a lubricating oil base stock very high in paraffinic hydrocarbons and low in naphthenic hydrocarbons. The fraction extracted by the furfural contains at least about 50 volume % aromatic hydrocarbons and less than about 10 volume % paraffinic hydrocarbons. The mixture is hydrotreated to hydrogenate a substantial portion of the aromatic hydrocarbons. The hydrotreated product then is catalytically dewaxed. After removal of low boiling components, the finished lubricating oil base stock has a viscosity of at least about 200 SUS at 100/sup 0/ F., a pour point of less than 20/sup 0/ F. and contains at least 50 volume % of naphthenic hydrocarbons, a maximum of about 40 volume % aromatic hydrocarbons, and a maximum of about 10 volume % paraffinic hydrocarbons.

Hettinger Jr., W. P.; Beck, H. W.; Rozman, G. J.; Turrill, F. H.

1985-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production  

SciTech Connect (OSTI)

Particulate matter emissions and some components of the particles were measured in the exhaust from combustion equipment used in oil and gas production operations near Bakersfield, California. The combustion sources included a 22.5 MW (electric) turbine generator, a 342-Bhp rich-burn spark ignition engine, and a 50 million Btu/h steam generator, all fired using natural gas. The particle components and measurement techniques were as follows: (1) Calcium, magnesium, sodium, silicon, and iron were measured using laser-induced breakdown spectroscopy (LIBS), (2) particle-bound polycyclic aromatic hydrocarbons (PAH) were detected using the charge produced by photoionization, (3) particles having sizes between 0.1 and 7.5 {micro}m were counted using an instrument based on light scattering, and (4) total particulate matter was measured according to US EPA Method 5. Not all of the methods were applied to all of the sources. Measurements were also made in the ambient air near the combustion air inlets to the units, for comparison with the concentrations in the exhaust, but the inlet and outlet measurements were not done simultaneously. Calcium, sodium, and silicon were found in the exhaust from the steam generator at concentrations similar to those in the ambient air near the inlet to the burner. Sodium and silicon were observed in the engine exhaust at levels a factor of four higher than their concentrations in the air. The principal metal observed in the engine exhaust was calcium, a component of the lubricating oil, at a concentration of 11.6 {micro}g/m{sup 3}. The air entering the gas turbine is filtered, so the average concentrations of metals in the turbine exhaust under steady operating conditions were even lower than in the air. During start-up following a shut-down to wash the turbine, silicon and iron were the major species in the stack, at concentrations of 6.4 and 16.2 {micro}g/m{sup 3}, respectively. A possible source of silicon is the water injected into the turbine for NO{sub x} control. Iron-containing particles are expected to be scale from ferrous metals. A commercial photoelectric aerosol sensor was used to measure PAH adsorbed on particles in the exhaust from the steam generator and the rich-burn engine. The conversion of the instrument readings to PAH concentrations is dependent upon the specific distribution of PAH species present. Using the typical calibration factor recommended by the instrument manufacturer, the estimated average concentration of particle-bound PAH was below the instrument detection limit (3--10 ng/m{sup 3}) in the stack gas from the steam generator, and was estimated to be 0.045--0.15 {micro}g/m{sup 3} in the exhaust from the rich-burn engine. Particle mass concentrations estimated from number concentrations determined using the particle counting and sizing instrument were only small fractions of the concentrations measured using Method 5. This is thought to be due primarily to the limited range over which size was quantified (0.1 to 7.5 {micro}m) and the poor efficiency with which the sampling system transferred large particles.

D. w. Hahn; K. r. Hencken; H. A. Johnsen; J. R. Ross; P. M. Walsh

1998-12-10T23:59:59.000Z

222

Turbine fuels from tar-sands bitumen and heavy oil. Part 2. Phase II. Laboratory sample production. Interim report, 1 October 1983-31 October 1985  

SciTech Connect (OSTI)

The conversion of domestic tar-sands bitumens or heavy crude oils into aviation turbine fuels was studied in small scale equipment to demonstrate the process scheme consisting of hydrovisbreaking the bitumen or crude residuum follwed by catalytic hydrotreating or hydrocracking of the resultant naphtha or distillate fractions. Four different feedstocks were employed; two were bitumens (from Kentucky or Utah) and two were heavy crudes from California. Significant operating parameters were examined for each process step. Prototype naphtha and kerosene-type fuel samples compared well with JP-4 and JP-8 specifications, although fuels prepared from Utah bitumen (Sunnyside deposit) were deficient in freeze point. Initiation of Phase III, pilot-plant-scale evaluation of the process is recommended.

Talbot, A.F.; Elanchenny, V.; Schwedock, J.P.; Swesey, J.R.

1986-05-01T23:59:59.000Z

223

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network [OSTI]

leaching of the more-volatile water-soluble hydrocarbons from the crude oil and particularly from the condensate.

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

224

Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field  

E-Print Network [OSTI]

Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

Rivero Diaz, Jose Antonio

2002-01-01T23:59:59.000Z

225

Development of artificial neural networks for steam assisted gravity drainage (SAGD) recovery method in heavy oil reservoirs.  

E-Print Network [OSTI]

??As no alternative energy source has been introduced to efficiently replace fossil fuels yet, the demand for oil and gas is still increasing in the… (more)

Sengel, Ayhan

2013-01-01T23:59:59.000Z

226

An experimental and mathematical investigation of hydrocarbon steam distillation  

E-Print Network [OSTI]

of Committee) Dr. Pau B. Crawford (Member) r. William D. McCain Jr. r. A ber t T. Watson (Member) Dr. i l. iam D. on Gonten ead of Department) December 1984 ABSTRACT An Experimental and Mathematical Investigation of Hydrocarbon Steam Distillation... mechanism associated with steam flooding and in-situ combustion enhanced oil recovery projects. It also takes place in hydrocarbon recovery from deep volatile oil reservoirs. Nethods for predicting the recovery of hydrocarbons by steam distillation have...

Langhoff, John Allan

1984-01-01T23:59:59.000Z

227

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

J. Regular conventional oil production to 2100 and resource10% of total US oil production in 2004, almost entirelysteam-induced heavy oil production in Cali- fornia [30].

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

228

A 4D Synchrotron X-Ray-Tomography Study of the Formation of Hydrocarbon-  

E-Print Network [OSTI]

hydrocarbons and the growing production of hydrocarbons from low-permeability tight rocks. Quantitative models, University of Oslo, Idaho National Laboratory, and Institute for Energy Technology Summary Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes

Mazzini, Adriano

229

Oil Sands Feedstocks  

Broader source: Energy.gov (indexed) [DOE]

NCUT National Centre for Upgrading Technology 'a Canada-Alberta alliance for bitumen and heavy oil research' Oil Sands Feedstocks C Fairbridge, Z Ring, Y Briker, D Hager National...

230

Modification of chemical and physical factors in steamflood in increase heavy oil recovery. Annual report, October 1, 1994--September 30, 1995  

SciTech Connect (OSTI)

The objectives of this contract is to carry our fundamental research in heavy oil recovery in the following areas: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on oil recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs. This report covers the work performed in these three areas in the past year. In the area of vapor-liquid flow we present a theoretical and numerical study of steam injection in a pore network. We characterize the displacement in terms of an effective mobility ratio and heat transfer parameters. Displacement patterns axe identified in the parameter space. In another study we discuss the problem of steam injection in fractured systems using visualization with micromodels. The interplay of drainage, imbibition and bubble growth is visualized. Conclusions are reached regarding the potential for steamflooding fractured systems. A third study focuses on the development of a pore-network model for foam formation and propagation in porous media. This model, for the first time, accounts for the fundamental mechanisms of foam propagation at the microscale and leads to the determination of various parameters that are currently treated empirically. The effect of viscous forces in displacements in heterogeneous media is described in two separate studies, one involving an extension of percolation theory to account for viscous effects, and another discussing the effect of geometry in general displacement processes.

Yortsos, Y.C

1996-10-01T23:59:59.000Z

231

Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction  

DOE Patents [OSTI]

A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

MacArthur, James B. (Denville, NJ); Comolli, Alfred G. (Yardley, PA); McLean, Joseph B. (Somerville, NJ)

1989-01-01T23:59:59.000Z

232

Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction  

DOE Patents [OSTI]

A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

1989-10-17T23:59:59.000Z

233

Apparatus for hydrocarbon extraction  

DOE Patents [OSTI]

Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

Bohnert, George W.; Verhulst, Galen G.

2013-03-19T23:59:59.000Z

234

Hydrocarbon conversion catalysts  

SciTech Connect (OSTI)

This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting a hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.35A, a water absorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of at least 8% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; an alumina binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

Hoek, A.; Huizinga, T.; Maxwell, I.E.

1989-08-15T23:59:59.000Z

235

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Steven Schamel

1998-02-27T23:59:59.000Z

236

No Oil: The coming Utopia/Dystopia and Communal Possibilities  

E-Print Network [OSTI]

supplies of conventional oil, and exploitable supplies of alternative forms of oil and related hydrocarbons, including tar sands and oil shale. Because new supplies of conventional oil are declining steadily, there is quite a lot of activity in the oil... to exploit the huge deposits of oil sands in Canada. Oil sands and oil shale look good because they contain vast amounts of oil. The problem is that of turning the reserves, locked into other geological formations, into useful oil. According to current...

Miller, Timothy

2006-03-01T23:59:59.000Z

237

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

Steven Schamel

1998-03-20T23:59:59.000Z

238

Development of a 16-MW sub th coal-water/heavy oil burner for front-wall firing  

SciTech Connect (OSTI)

The Canadian program of coal-water fuel (CWF) technology development has included the demonstration of commercial burners for CWF in both coal and oil-designed utility boilers. The demonstrations clearly showed that these burners were prototypes, and were, in fact, modified oil burners that were mismatched to the rheological properties of the CWF. As the demonstrations were proceeding, a simultaneous research program was undertaken in which the basic principles governing atomization and combustion of CWF were studied. Results from the fundamental studies which led to the development of a novel prototype dual fuel CWF/oil burner are described. In the various stages of development, the burner was scaled up from 1.5 MW{sub th} to an industrial scale of 16 MS{sub th} for demonstration in a 20-MW{sub (e)} oil-designed industrial utility boiler and for a single-burner commercial operation in an oil designed package steam boiler. A summary of the burner performance in these demonstrations is also given in this paper.

Thambimuthu, K.V.; Whaley, H. (EMR Canada/CANMET, Ottawa (CA)); Bennet, A.; Jonasson, K.A. (NRC Canada, Ottawa (CA))

1990-06-01T23:59:59.000Z

239

Preliminary investigation of the nature of hydrocarbon migration and entrapment  

E-Print Network [OSTI]

structures. The charge time for commercial hydrocarbon accumulation is much longer in oil-water systems than in oil-gas-water systems. Faults are classified into charging faults and ?back doors? ? faults other than charging faults in stacked fault...-bounded reservoirs. The lower the displacement pressure of a fault, the higher its updip oil transportation ability. The downdip oil transportation ability of a fault is usually low and cannot cause commercial downdip oil accumulation. Back doors affect both...

Bai, Jianyong

2004-09-30T23:59:59.000Z

240

Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050  

SciTech Connect (OSTI)

This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

Greene, D.L.

2003-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Aviation turbine fuels from tar-sands bitumen and heavy oils. Part 3. Laboratory sample production. Interim technical report, 1 July 1983-30 September 1986  

SciTech Connect (OSTI)

The purpose of this research and development project is to provide sample quantities of aviation turbine fuel derived from tar sands and heavy oil feedstocks for testing and evaluation in programs sponsored by the Air Force Wright Aeronautical Laboratories (AFWAL). Samples of specification JP-4 Mil-T-5624L, JP-8 Mil-T-83133A, and variable quality JP-4 samples were produced via pilot plant operations. Data generated from Phases I, II, and III, were used to 1) optimize the processing scheme, 2) generate process material and energy balances for a commercial-sized plant, and 3) provide a detailed final flow diagram of the processing scheme. A final economic analysis was performed based on all contract data available.

Moore, H.F.; Johnson, C.A.; Benslay, R.M.; Sutton, W.A.

1987-12-01T23:59:59.000Z

242

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. [Quarterly report], January 1--March 31, 1996  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. During this quarter, we focused on the development of relative permeabilities during steam displacement. Two particular directions were pursued: One involves the derivation of relative permeabilities based on a recently completed work on the pore-level mechanics of steam displacement. Progress has been made to relate the relative permeabilities to effects such as heat transfer and condensation, which are specific to steam injection problems. The second direction involves the development of three-phase relative permeabilities using invasion percolation concepts. We have developed models that predict the specific dependence of the permeabilities of three immiscible phases (e.g. awe, water and gas) on saturations and the saturation history. Both works are still in progress. In addition, work continues in the analysis of the stability of phase change fronts in porous media using a macroscopic approach.

Yortsos, Y.C.

1996-07-01T23:59:59.000Z

243

Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

1997-05-11T23:59:59.000Z

244

An evaluation of the benefits of combined steam and fireflooding as a recovery process for heavy oils  

SciTech Connect (OSTI)

Lack of oil mobility is a major problem with in situ combustion field projects, since the combustion front displaces oil into an essentially unheated reservoir. One way of ensuring oil mobility is to utilize steam injection during the early life of the process, and then switch to combustion when heated communication paths have been developed. The in situ combustion characteristics of cores from the Primrose reservoir of Northeastern Alberta were investigated in a comprehensive series of 22 combustion tube tests. The program was carried out in order to evaluate the effectiveness of fireflooding in both cores that had been preheated to the extent that the oil was mobile and in those which were steam-flooded prior to dry combustion. Both normal- and 95% oxygen-enriched air were evaluated. Wet combustion tests were performed utilizing both liquid water and steam injection. The effects of parameters such as pressure, oxygen enrichment and injection flux on the combustion characteristics were examined. This paper will discuss the results of this study, which show that steam co-injection is more effective at lowering the oxygen requirement than was combustion following steam. Additionally, the cores which were preheated exhibited similar oxygen requirements to those which were presteamed to a near-residual saturation.

Moore, R.G.; Laureshen, C.J.; Belgrave, J.D.M.; Ursenbach, M.G. [Univ. of Calgary, Alberta (Canada); Jha, K.N. [Dept. of Natural Resources Canada, Ottawa (Canada)

1995-02-01T23:59:59.000Z

245

Experimental investigation of in situ upgrading of heavy oil by using a hydrogen donor and catalyst during steam injection  

E-Print Network [OSTI]

. Catalysts have been used for decades in refineries to improve and extract the maximum value from each barrel of produced oil, by using upgrading processes such as hydro-treating, and hydro-cracking. Catalysts have also been used for the removal...

Mohammad, Ahmad A A

2008-10-10T23:59:59.000Z

246

Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil  

E-Print Network [OSTI]

, attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

Nesse, Thomas

2005-02-17T23:59:59.000Z

247

Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly technical progress report, March 30, 1995--June 30, 1995  

SciTech Connect (OSTI)

This is the first quarterly technical progress report for the project. Although the contract was awarded on March 30, 1995 and Pre-Award Approval was given on January 26, 1995, the partners of this project initiated work on October 1, 1994. As such, this progress report summarizes the work performed from project inception. The production and injection data, reservoir engineering data, and digitized and normalized log data were all completed sufficiently by the end of the quarter to start work on the basic reservoir engineering and geologic stochastic models. Basic reservoir engineering analysis began June 1 and will continue to March, 1996. Design work for the 5 observation/core holes, oil finger printing of the cored oil sands, and tracers surveys began in January, 1995. The wells will be drilled from July--August, 1995 and tracer injection work is projected to start in October, 1995. A preliminary deterministic 3-D geologic model was completed in June which is sufficient to start work on the stochastic 3-D geologic model. The four proposed horizontal wells (two injectors and two producers) have been designed, equipment has been ordered, and the wells will be drilled from mid-August through September. Four existing steam injection wells were converted to hot water injection in March, 1995. Initial rates were kept low to minimize operational problems. Injection rates will be increased significantly in July.

Clarke, D. [Long Beach City Dept. of Oil Properties, CA (United States); Ershaghi, I. [Southern California, CA (United States); Davies, D. [Davies (David K.) and Associates, Kingwood, TX (United States); Phillips, C.; Mondragon, J. [Tidelands Oil Production Company (United States)

1995-07-28T23:59:59.000Z

248

E-Print Network 3.0 - aromatic polycyclic hydrocarbons Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coal, oil, gas... called aromatic hydrocarbons. These include harmful pollutants like dioxins, PCBs and a group called Source: Rock, Chris - Department of Biological Sciences,...

249

Asphaltenes as indicators of the geochemical history of oil  

SciTech Connect (OSTI)

A method of decomposition of native asphaltenes from naphthenic oils is proposed as a source of information on the geochemical history of the oils. It is demonstrated that formation of naphthenic oils occurs in nature through biodegradation of primary paraffinic oils. The relative abundances of structural groups and individual saturated hydrocarbons obtained from the asphaltenes in naphthenic oils is similar to the relative abundance of hydrocarbons in paraffinic oils, which are their genetic precursors. (JMT)

Aref'yev, O.A.; Makushina, V.M.; Petrov, A.A.

1982-06-01T23:59:59.000Z

250

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway  

SciTech Connect (OSTI)

This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

2013-11-01T23:59:59.000Z

251

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway  

SciTech Connect (OSTI)

This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

Jones, S.; Meyer, P.; Snowden-Swan, L.; Padmaperuma, A.; Tan, E.; Dutta, A.; Jacobson, J.; Cafferty, K.

2013-11-01T23:59:59.000Z

252

Method for producing hydrocarbon and alcohol mixtures. [Patent application  

DOE Patents [OSTI]

It is an object of this invention to provide an efficient process for extracting alcohols and ketones from an aqueous solution containing the same into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. Another object of the invention is to provide a mixture consisting of hydrocarbon, alcohols or ketones, polyoxyalkylene polymer and water which can be directly added to fuels or further purified. The above stated objects are achieved in accordance with a preferred embodiment of the invention by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5 to 18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is mixed in the presence or one or more of a group of polyoxyalkylene polymers described in detail hereinafter; the fermentation alcohol being extracted into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

Compere, A.L.; Googin, J.M.; Griffith, W.L.

1980-12-01T23:59:59.000Z

253

Complex conductivity tensor of anisotropic hydrocarbon-1 bearing shales and mudrocks2  

E-Print Network [OSTI]

to describe seismic and electromagnetic (EM) measurements in these anisotropic54 materials.55 Oil-shale to release their hydrocarbons. Hence, oil shales and58 mudrocks are typically water-wet, single- or dual

Torres-Verdín, Carlos

254

Manufacture of refrigeration oils  

SciTech Connect (OSTI)

Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

1981-12-08T23:59:59.000Z

255

Naphthenic hydrocarbons  

SciTech Connect (OSTI)

An important type of naphthenic hydrocarbons is the monocyclic type, (k/sub 2/, 0, 0). In this instance the number of carbon atoms, n = k/sub 2/, and a formula, C/sub n/H/sub 2n/, can be written where H/C = 2. The value n can vary from 2 to infinity. In the case of n = 2, it is ethylene (I) (2-membered cyclic ring); n = 3, cyclopropane (II) (3-membered cyclic ring); n = 4, cyclobutane (III) (4-membered cyclic ring); etc. If the monocyclic naphthenic is planar, then the bond angle theta can be expressed as theta = (1 - 2/n)..pi.. where n is the number of carbon atoms. However, the tetrahedron angle of the carbon atom being phi = cos/sup -1/ (- 1/3).

Yen, T.F.; Kuo, J.F.; Chilingarian, G.V.

1987-01-01T23:59:59.000Z

256

Experimental study of lube oil characteristics in the PCV system and effects on engine oil consumption  

E-Print Network [OSTI]

Engine oil consumption is an important source of hydrocarbon and particulate emissions in modem automobile engines. Great efforts have been made by automotive manufacturers to minimize the impact of oil consumption on ...

Lopez, Oscar, 1980-

2004-01-01T23:59:59.000Z

257

1 What is Oil ? General information  

E-Print Network [OSTI]

such as shale oil or synthetic crude oil from tar sands (see Table 4.1). A whole range of petroleum products69 1 What is Oil ? General information Petroleum is a complex mixture of liquid hydrocarbons in sedimentary rock. Coming from the Latin petra, meaning rock, and oleum, meaning oil, the word "petroleum

Kammen, Daniel M.

258

The extraction of bitumen from western oil sands: Volume 2. Final report  

SciTech Connect (OSTI)

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

259

The extraction of bitumen from western oil sands: Volume 1. Final report  

SciTech Connect (OSTI)

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

260

Oil and gas basins in the former Soviet Union  

SciTech Connect (OSTI)

The Pripyat basin is a Late Devonian rift characterized by a typical fault-block structure. Two synrift salt formations separate the Devonian stratigraphic succession into the subsalt, intersalt, and postsalt sections. Oil is produced from carbonate reservoirs of the subsalt and intersalt sections. Traps are controlled by crests of tilted fault blocks. We analyzed 276 shale and carbonate-rock samples and 21 oils to determine oil-source bed relationships in the basin. Maturities of the oils are from very immature, heavy (9[degrees] API), to very mature, light (42[degrees] API). All fields are in a narrow band on the north side of the basin, and only shows of immature, heavy oil have been obtained from the rest of the basin. Three genetic oil types are identified. Oil type A has high pristane/phytane ratios (>1.0), high amounts of C[sub 29] 18[alpha] (H) trisnorneohopane, and [delta]13C of hydrocarbons in the range of -31 to -27%. Oil types B and C contain very high amounts of gammacerane, which suggests that the oils were derived from carbonate-evaporite source facies. Type B oils are isotopically similar to type A, whereas type C oils are isotopically light (about -33%). Organic carbon content is as much as 5%, and kerogen types range from I to IV. Our data indicate that rocks within the intersalt carbonate formation are the source of the type B oils of low maturity. Thermally mature rocks that might be the source for the mature oils have not been found. Such rocks may occur in depressions adjacent to tilted fault blocks. Higher levels of thermal maturity on the north part of the basin in the vicinity of the most mature oils may be related to higher heat flow during and soon after rifting or to a suspected recently formed magmatic body in the crust below the northern zone. Present-day high temperatures in parts of the northern zone may support the latter alternative.

Clayton, J. (Geological Survey, Denver, CO (United States))

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Conversion of hydrocarbons for fuel-cell applications. Part I. Autothermal reforming of sulfur-free and sulfur-containing hydrocarbon liquids. Part II. Steam reforming of n-hexane on pellet and monolithic catalyst beds. Final report  

SciTech Connect (OSTI)

Experimental autothermal reforming (ATR) results obtained in the previous phase of this work with sulfur-free pure hydrocarbon liquids are summarized. Catalyst types and configuration used were the same as in earlier tests with No. 2 fuel oil to facilitate comparisons. Fuel oil has been found to form carbon in ATR at conditions much milder than those predicted by equilibrium. Reactive differences between paraffins and aromatics in ATR, and thus the formation of different carbon precursors, have been shown to be responsible for the observed carbon formation characteristics (fuel-specific). From tests with both light and heavy paraffins and aromatics, it is concluded that high boiling point hydrocarbons and polynuclear aromatics enhance the propensity for carbon formation in ATR. Effects of olefin (propylene) addition on the ATR performance of benzene are described. In ATR tests with mixtures of paraffins and aromatics (n-tetradecane and benzene) synergistic effects on conversion characteristics were identified. Comparisons of the No. 2 fuel oil data with the experimental results from this work with pure (and mixed) sulfur-free hydrocarbons indicate that the sulfur content of the fuel may be the limiting factor for efficient ATR operation. Steam reforming of hydrocarbons in conventional reformers is heat transfer limited. Steam reforming tasks performed have included performance comparisons between conventional pellet beds and honeycomb monolith catalysts. Metal-supported monoliths offer higher structural stability than ceramic supports, and have a higher thermal conductivity. Data from two metal monoliths of different catalyst (nickel) loading were compared to pellets under the same operating conditions.

Flytzani-Stephanopoulos, M.; Voecks, G.E.

1981-10-01T23:59:59.000Z

262

Method of dispersing a hydrocarbon using bacteria  

DOE Patents [OSTI]

New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

Tyndall, Richard L. (Clinton, TN)

1996-01-01T23:59:59.000Z

263

Geology and hydrocarbon prospects of Latvia  

SciTech Connect (OSTI)

Oil prospects in Latvia are associated with the Baltic syneclise. Latvia occupies about one fourth of that large tectonic depression; zones of oil accumulation continue there from adjacent areas: the Telshai rampart (Lithuania) and the Leba nose (Polish offshore). The oil prospects in separate areas are determined by their position regarding the sources of oil generation--the Gdansk-Kura and Liepaya depressions. The most prospective areas are the Liepaya-Saldus zone of highs and the Pape-Barta trough. The Liepaya-Saldus zone was situated so that the hydrocarbon migration path crossed it. It probably is an important oil accumulation zone. The paper describes the geology of Latvia and the one oil field in Latvia.

Freimanis, A. (Latvian Dept. of Geology, Riga (Latvia)); Margulis, L.; Brangulis, A.; Kanev, S.; Pomerantseva, R. (Inst. of Marine Geology and Geophysics, Riga (Latvia))

1993-12-06T23:59:59.000Z

264

Nineteenth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

Gary, J.H.

1986-01-01T23:59:59.000Z

265

Carbon and oxygen stable isotopes in the Toa Baja Well, Puerto Rico: implications for burial diagenesis and hydrocarbon generation  

E-Print Network [OSTI]

that the bulk of the sediment pile has not been exposed to temperatures above the oil window and possibly hydrocarbons have been generated deeper in the basin....

Gonzalez, Luis A.

1991-03-01T23:59:59.000Z

266

Balancing oil and environment... responsibly.  

SciTech Connect (OSTI)

Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

Weimer, Walter C.; Teske, Lisa

2007-01-25T23:59:59.000Z

267

e n e r g y Unconventional Oil Production  

E-Print Network [OSTI]

Highly variable oil prices and increasing world demand for oil have led producers to look for alternative sources of transportation fuel. Two popular alternatives are oil sands (aka tar sands) and oil shale. However, obtaining usable oil from oil sands or oil shale is more capital-intensive and more expensive than obtaining oil from conventional reserves. At what price of oil do these alternatives become cost-effective? Oil Sands Oil sands are a mixture of sand, water, clay and heavy, viscous oil called bitumen. The largest known deposits of oil sands are in Alberta, Canada, and the Orinoco Oil

Stuck In A Rock; A Hard Place; M. Engemann; Michael T. Owyang

268

Hydrocarbon conversion process and catalysts  

SciTech Connect (OSTI)

This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.40 A, a water adsorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of between 10% and 15% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; am amorphous cracking component, a binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

Hoek, A.; Huizinga, T.; Maxwell, I.E.

1989-08-15T23:59:59.000Z

269

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

tar sands/ extra-heavy oil and shale have zero Resource-D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Report

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

270

SUPRI heavy oil research program  

SciTech Connect (OSTI)

This report summarizes the progress of the research performed by the Stanford University Petroleum Research Institute (SUPRI) during the past three years. Some of SUPRI's past results are discussed briefly for the following five projects: flow properties studies;in-situ combustion; additives to improve mobility control; reservoir definition; and support services. Abstracts of technical reports published from 1990--1993 are also included.

Brigham, W.E.; Ramey, H.J.; Castanier, L.M.

1993-01-01T23:59:59.000Z

271

USED MINERAL-BASED CRANKCASE OIL  

E-Print Network [OSTI]

based crankcase oil vary depending on the brand and type of oil, whether gasoline or diesel fuel was used, the mechanical condition of the engine that the oil came from, and the amount of use between oil changes. Used oil is not naturally found in the environment. What happens to used mineral-based crankcase oil when it enters the environment? q Used mineral-based crankcase oil enters the air through the exhaust system during engine use. q It may enter water or soil when disposed of improperly. q The hydrocarbon components of the oil generally stick to the soil surface. q Some hydrocarbons evaporate into the air very quickly, and others evaporate more slowly. q Hydrocarbon components of the oil that enter surface water bind to small particles in the water and eventually settle to the bottom. q Hydrocarbons from used mineral-based crankcase oil may build up in shellfish or other organisms. q Some metals in used mineral-based crankcase oil dissolve in water and move through the s

Used Mineral-Based Crankcase

272

Industrial Utilization of Coal-Oil Mixtures  

E-Print Network [OSTI]

Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM...

Dunn, J. E.; Hawkins, G. T.

1982-01-01T23:59:59.000Z

273

Comparison of Heating Methods for In-Situ Oil Shale Extraction  

E-Print Network [OSTI]

Oil shales are lamellar, non-porous, impermeable hydrocarbon bearing rocks that contain organic matter called kerogen which, when heated at pyrolysis temperature of approximately 600-800 ?, thermo-chemically decomposes to liberate hydrocarbons...

Hazra, Kaushik Gaurav

2014-04-29T23:59:59.000Z

274

Direct conversion of light hydrocarbon gases to liquid fuel  

SciTech Connect (OSTI)

Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

Kaplan, R.D.; Foral, M.J.

1992-05-16T23:59:59.000Z

275

Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources  

SciTech Connect (OSTI)

Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi Sea, in spite of the fact that these areas do not have highest potential for future hydrocarbon reserves. Opportunities for improving the mapping and assessment of Arctic hydrocarbon resources include: 1) Refining hydrocarbon potential on a basin-by-basin basis, 2) Developing more realistic and detailed distribution of gas hydrate, and 3) Assessing the likely future scenarios for development of infrastructure and their interaction with hydrocarbon potential. It would also be useful to develop a more sophisticated approach to merging conventional and gas hydrate resource potential that considers the technical uncertainty associated with exploitation of gas hydrate resources. Taken together, additional work in these areas could significantly improve our understanding of the exploitation of Arctic hydrocarbons as ice-free areas increase in the future.

Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

2008-10-01T23:59:59.000Z

276

Preliminary assessment of hydrocarbon potential in southern Illinois  

SciTech Connect (OSTI)

Hydrocarbon exploration has been sparse south of the Cottage Grove fault system in southern Illinois. Over 240,000 ac in this area are within the Shawnee National Forest (SNF). Upcoming review of mineral exploration policy on SNF land and a recent amendment to the Mineral Leasing Act (1987) will result in release of portions of the SNF for competitive and potentially noncompetitive bidding for mineral exploration tracts in the near future. Preliminary assessment of hydrocarbon potential has been carried out in southern Illinois. Numerous oil shows occur in Paleozoic strata south of the Cottage Grove fault system, which, at present, describes the southern boundary of most oil production in Illinois. Only Mitchellsville oil field in southern Saline County lies south of the Cottage Grove fault system. The Upper Devonian New Albany Shale, though to be the primary source rock for Illinois basin hydrocarbons, underlies most of the area. Older potential source rocks may be present. Depositional trends of prolific oil-productive Mississippian strata in Illinois continue southward through the area. Few drill holes have tested strata older than Mississippian in the area. Complex faulting in the Rough Creek-Shawneetown fault system may have improved the potential for hydrocarbon emplacement and entrapment in this region. Preliminary assessment of hydrocarbon potential indicates that this wildcat region deserves further tests.

Crockett, J.E.; Oltz, D.F. (Illinois State Geological Survey, Champaign (USA))

1989-08-01T23:59:59.000Z

277

Crude Oil Analysis Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

Shay, Johanna Y.

278

Isothermal pyrolysis and char combustion of oil shales  

SciTech Connect (OSTI)

Yields and rates of hydrocarbons evolved during pyrolysis of oil shales have been measured with improved accuracy. Green River and New Albany oil shales were heated in a fluidized sand bed, and volatile pyrolysis products were transferred to a combustion tube and burned. Resulting H/sub 2/O and CO/sub 2 were detected in real time by mass spectrometry. Residual char was subsequently burned to allow complete C and H balances. Good closure was obtained. Proportions of organic C and H released as pyrolysis products and retained as char were determined. Shale oil loss due to the presence of oxidized shale in the fluidized bed was measured accurately. We find that all of the experimental apparatus that the pyrolysis gas contacts must be near pyrolysis temperature to avoid condensation of heavy oil which subsequently forms coke and secondary products. We observe a faster release of products with all transfer lines 450/degree/C than when they are at 300/degree/C. The current uncertainty in pyrolysis rates is due in part to such difficulties with experimental techniques. 12 refs., 7 figs., 1 tab.

Coburn, T.T.; Taylor, R.W.; Morris, C.J.; Duval, V.

1988-02-03T23:59:59.000Z

279

Interactive coastal oil spill transport model  

E-Print Network [OSTI]

. 6 fuel oils, diesel or No. 2 fuel oils, and light petroleum products such as kerosenes or gasolines. Crude oils of different ge- ologic and geographic sources vary widely in composition. Thousands of individual compounds, mostly hydrocarbons... Composition (by Weight) of Various Petroleum Substances, (adapted from Moore, Dwyer, and Katz 1972) 16 IV Comparison of Solubilities for Various Petroleum Substances, (adapted from Moore, Dwyer, and Katz 1972) 17 V Biodegradation Rates of Crude Oils...

Thalasila, Nanda K.

1992-01-01T23:59:59.000Z

280

Presented by High-Fidelity Simulations for Clean and  

E-Print Network [OSTI]

are rapidly evolving ­ Heavy hydrocarbons · Oil sands · Oil shale · Coal ­ New renewable fuel sources

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assessment of natural and anthropogenic hydrocarbon inputs using PAHs as tracers.  

E-Print Network [OSTI]

to produce liquid hydrocarbons and water. -- Coal-to-liquids (CTLs) are derived either by pyrolysis of coal authors accept that conventional oil resources are at an advanced stage of depletion and that liquid fuels is a heterogeneous mix of hydrocarbons that remain in liquid phase when extracted to the surface. -- Condensate

282

Reservoir Characterization and Enhanced Oil Recovery Potential in Middle Devonian Dundee Limestone Reservoirs, Michigan Basin, USA.  

E-Print Network [OSTI]

?? Middle Devonian Rogers City and subjacent Dundee Limestone formations have combined oil production in excess of 375 MMBO. In general, hydrocarbon production occurs in… (more)

Abduslam, Abrahim

2012-01-01T23:59:59.000Z

283

Shale Oil Production Performance from a Stimulated Reservoir Volume  

E-Print Network [OSTI]

.1 Unconventional resources ................................................................................. 1 1.2 Oil shale and shale oil ....................................................................................... 6 1.3 Production from unconventional..., heavy oil, shale gas and shale oil. On the other hand, conventional reservoirs can be produced at economic flow rates and produce economic volumes of oil and gas without large stimulation treatments or any special recovery process. Conventional...

Chaudhary, Anish Singh

2011-10-21T23:59:59.000Z

284

PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT  

E-Print Network [OSTI]

liquid fuels: 1) Improved Oil Recovery (IOR) can marginally increase production from existing reservoirs oil production declines from reservoirs that are past their peak production: 2) Heavy oil / oil sandsPEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT Robert L. Hirsch, SAIC

Laughlin, Robert B.

285

Carbo-metallic oil conversion  

SciTech Connect (OSTI)

This patent describes a method for catalytically cracking reduced crude oil feeds comprising Conradson carbon in the presence of a premised catalyst temperature of about 760/sup 0/C (1400/sup 0/F). The cracking is carried out to form hydrocarbon products comprising gasoline, which method comprises maintaining the functions of oil feed, Conradson carbon, hydrogen in deposited carbonaceous material, and water addition to the oil feed to be converted in accordance with the relationship of operating parameters for a catalyst to oil ratio in the range of about 4.5 to 7.5.

Myers, G.D.

1987-11-24T23:59:59.000Z

286

Turbine fuels from tar sands bitumen and heavy oil. Volume 1. Phase 3. Pilot plant testing, final design, and economics. Final report, 1 June 1985-31 March 1987  

SciTech Connect (OSTI)

Pilot-plant-scale demonstration of an upgrading/refining scheme to convert bitumen or heavy crude oil into high yields of specification-quality aviation turbine fuel was performed. An atmospheric residue from San Ardo (California) crude was converted under hydrovisbreaking conditions to synthetic crude for further refining. Naphtha cuts from the straight run and synthetic crude were combined, catalytically hydrotreated, then hydrocracked. Products from these operations were combined to produce two prototype specification fuels (JP-4 and JP-8) as well as two heavier, variable-quality fuels. An engineering design (Volume II) was developed for a 50,000 BPSD grass-roots refinery, from the pilot-plant operations. Capital investment and operating costs were estimated, and fuel manufacturing costs projected. Conclusions and recommendations for further work are included.

Talbot, A.F.; Carson, T.C.; Magill, L.G.; Swesey, J.R.

1987-08-01T23:59:59.000Z

287

Chlorinated Hydrocarbon Levels in Fishes and Shellfishes of the  

E-Print Network [OSTI]

the utilization by humans of the vast protein resources in the sea. Chlorinated hydrocarbons from both agricultural and industrial chemicals have been found repeatedly in marine organisms throughout the world also analyzed a few samples of fish eggs, liver. oil. and meal. Finfishes from the northeastern Pacific

288

NATURAL MARINE HYDROCARBON SEEPAGE  

E-Print Network [OSTI]

affects ocean chemistry (Dando and Hovland, 1992) and provides a natural source of petroleum pollution the water column above submarine vents, plumes of hydrocarbon gas bubbles act as acoustic scattering targets

Luyendyk, Bruce

289

Hydrocarbon desulfurization process  

SciTech Connect (OSTI)

A process is described for converting a sour hydrocarbon feedstock having a relatively high sulfur content to a hydrocarbon product having a relatively low sulfur content comprising the steps of: (a) hydrodesulfurizing the feedstock having a relatively high sulfur contact with hydrogen to produce the hydrocarbon product having a relatively low sulfur content and hydrogen sulfide gas; (b) contacting the hydrogen sulfide gas with an anthraquinone dissolved in a polar organic solvent having a polarity greater than about 3 Debye units to produce sulfur and an anthrahydroquinone in the solvent; (c) regenerating the anthraquinone from the anthrahydroquinone upon contact with air to produce the anthraquinone and hydrogen peroxide; (d) recycling the anthraquinone to step (b); (e) reducing the hydrogen peroxide to oxygen and water; (f) partially oxidizing a hydrocarbon fuel with the oxygen to produce carbon dioxide and hydrogen; and (g) recycling the hydrogen to step (a).

Plummer, M.A.; Zimmerman, C.C. Jr.

1986-04-08T23:59:59.000Z

290

A new thermodynamic model to predict wax deposition from crude oils  

E-Print Network [OSTI]

Hydrocarbons 5 Comparison of Experimental and Predicted Onset Temperatures using this Model at 1 Atm. 30 31 37 6 Component Data for Oil Mixture l. 7 Characterization for Oil Mixture l. 8 Characterization for Oil Mixture 2. 9 Characterization for Oil... for Flash Calculations . . 34 4 Variation of Onset Temperature with Pressure for Oil Mixture l. . . 5 Variation of Onset Temperature with Pressure for Oil Mixture 2 . . 51 52 6 Wax Precipitation Curves for Oil Mixture 1 at 1 Atm. . . 7 Wax...

Loganathan, Narayanan

1993-01-01T23:59:59.000Z

291

A 4D synchrotron X-ray tomography study of the formation of hydrocarbon migration pathways in heated organic-rich shale  

E-Print Network [OSTI]

Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interests in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms for the transport of hydrocarbons from the source rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures have been proposed, and a better understanding of this complex process (primary migration) is needed. To characterize these processes it is imperative to use the ...

Panahi, Hamed; Renard, Francois; Mazzini, Adriano; Scheibert, Julien; Dysthe, Dag Kristian; Jamtveit, Bjorn; Malthe-Sørenssen, Anders; Meakin, Paul

2014-01-01T23:59:59.000Z

292

Aggregation and transport kinetics of crude oil and sediment in estuarine waters  

E-Print Network [OSTI]

Modeling the transport and fate of spilled crude oil is important for estimating short and long-term toxicity effects in coastal ecosystems. This research project investigates the partitioning of hydrocarbons from a surface crude oil slick...

Sterling, Michael Conroy, Jr.

2004-09-30T23:59:59.000Z

293

Hydrocarbon provinces and productive trends in Libya and adjacent areas  

SciTech Connect (OSTI)

According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural relief and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.

Missallati, A.A. (Agip (N.A.M.E.)Ltd., Tripoli (Libya))

1988-08-01T23:59:59.000Z

294

Process analysis and optimization of biodiesel production from vegetable oils  

E-Print Network [OSTI]

in Table (2.2) (OTM, 1999). Crude oils are composed of 80 to 90% hydrogen saturated aliphatic alkanes (paraffins) and cycloalkanes (naphthenes). Aromatic hydrocarbons and alkenes (olefins) comprise 10- 20% and 1%, respectively, of crude oil composition....2 Hydrocarbon Contents in Crude Oil (ATSDR, 1995; OTM, 1999) HYDROCARBONS GENERAL FORMULA CHAIN TYPE STATE (Room temp) EXAMPLES Paraffins (Aliphatic) CnH2n+2 (n:1 to20) Linear or Branched Gas or Liquid Methane, Propane Hexane Aromatic C6H5-Y...

Myint, Lay L.

2009-05-15T23:59:59.000Z

295

Minimizing casing corrosion in Kuwait oil fields  

SciTech Connect (OSTI)

Corrosion in production strings is a well known problem in Kuwait oil fields. Failure to remedy the affected wells results mainly in undesirable dump flooding of the oil reservoirs, or in oil seepage and hydrocarbon contamination in shallow water bearing strata. Any of these situations (unless properly handled) leads to a disastrous waste of oil resources. This study discusses casing leaks in Kuwait oil fields, the nature of the formations opposite the leaks and their contained fluids, and the field measures that can be adopted in order to avoid casing leak problems.

Agiza, M.N.; Awar, S.A.

1983-03-01T23:59:59.000Z

296

Unconsolidated oil sands: Vertical Single Well SAGD optimization.  

E-Print Network [OSTI]

??Several recovery processes have been proposed for heavy oil and oil sands de-pending on the reservoir and fluid properties, among which steam-assisted gravity drainage (SAGD)… (more)

Jamali, Ali

2014-01-01T23:59:59.000Z

297

Dispersant solutions for dispersing hydrocarbons  

DOE Patents [OSTI]

A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

Tyndall, Richard L. (Clinton, TN)

1997-01-01T23:59:59.000Z

298

Dispersant solutions for dispersing hydrocarbons  

DOE Patents [OSTI]

A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

Tyndall, R.L.

1997-03-11T23:59:59.000Z

299

Method and apparatus for production of subsea hydrocarbon formations  

DOE Patents [OSTI]

A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.

Blandford, J.W.

1995-01-17T23:59:59.000Z

300

Method and apparatus for production of subsea hydrocarbon formations  

DOE Patents [OSTI]

A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.

Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrocarbon cracking catalyst  

SciTech Connect (OSTI)

This patent describes a catalyst composition for cracking hydrocarbons to maximize gasoline comprising: rare earth exchanged ''Y'' crystalline faujasite dispersed in a clay containing matrix material; and which has been subsequently further ion exchanged to contain 0.20 to 3.0 wt% yttrium, calculated as the oxide, whereby the yttrium is chemically combined in the catalyst composition.

Lochow, C.F.; Kovacs, D.B.

1988-12-27T23:59:59.000Z

302

Application of Multivariable Control to Oil and Coal Fired Boilers  

E-Print Network [OSTI]

Increased visibility provided by advanced measurement and control techniques has shown that control of oil and coal fired boilers is a complex problem involving simultaneous determination of flue gas carbon monoxide, hydrocarbon, opacity...

Swanson, K.

1981-01-01T23:59:59.000Z

303

Outsourcing Logistics in the Oil and Gas Industry  

E-Print Network [OSTI]

The supply chain challenges that the Oil and Gas industry faces in material logistics have enlarged in the last few decades owing to an increased hydro-carbon demand. Many reasons justify the challenges, such as exploration activities which have...

Herrera, Cristina 1988-

2012-04-30T23:59:59.000Z

304

Fluorescent growth bands in irradiated-bitumen nodules: Evidence of episodic hydrocarbon migration  

SciTech Connect (OSTI)

Minute rims of solid bitumen ({approximately}40-50 {mu}m thick) surround detrital radioactive grains in the Permian-Triassic sandstones and Arranoo Member of the Kockatea Shale from the northern Perth basin, Australia. The bitumen formed as Th- and U-bearing minerals (monazite, xenotime, zircon, thorite) irradiated and immobilized fluid hydrocarbons coming within range of alpha-particle emissions. using transmitted light and scanning electron microscopy and rims appear compositionally homogeneous, but under blue/violet epifluorescent illumination the bitumen displays complex concentric and contorted banding. These fluorescent textures indicate that multiple influxes of hydrocarbons passed through the reservoir sandstones. Following radiation-induced immobilization of hydrocarbons from the first oil influx, the bitumen nodules grew through a process of swelling and expansion outward form the mineral core during subsequent oil influxes, producing graded fluorescent growth bands. Oil droplets and lamellae also were adsorbed onto the outer portion of the nodules. Such bitumen nodules are a new and potentially important source of data for understanding the movement of hydrocarbons in sedimentary basins, specifically for identifying hydrocarbon pathways, the number of discrete hydrocarbon pulses, and the relative timing of oil migration.

Rasmussen, B. [Univ. of Western Australia, Nedlands (Australia)

1997-01-01T23:59:59.000Z

305

OIL SHALE  

E-Print Network [OSTI]

Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

306

Process for oil shale retorting  

DOE Patents [OSTI]

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

307

Direct hydrocarbon fuel cells  

DOE Patents [OSTI]

The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

Barnett, Scott A.; Lai, Tammy; Liu, Jiang

2010-05-04T23:59:59.000Z

308

From upstream to downstream: Megatrends and latest developments in Latin America`s hydrocarbons sector  

SciTech Connect (OSTI)

In recent years, Latin America`s hydrocarbons sector has been characterized by reorganization, revitalization, regional cooperation, environmental awakening, and steady expansion. The pattern of these changes, which appear to be the megatrends of the region`s hydrocarbons sector development, will continue during the rest of the 1990s. To further study the current situation and future prospects of Latin America`s hydrocarbons sector, we critically summarize in this short article the key issues in the region`s oil and gas development. These megatrends in Latin America`s hydrocarbons sector development will impact not only the future energy demand and supply in the region, but also global oil flows in the North American market and across the Pacific Ocean. Each country is individually discussed; pipelines to be constructed are discussed also.

Wu, Kang; Pezeshki, S.; McMahon, J.

1995-08-01T23:59:59.000Z

309

Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases  

DOE Patents [OSTI]

An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

Gross, Kenneth C. (Bolingbrook, IL); Markun, Francis (Joliet, IL); Zawadzki, Mary T. (South Bend, IN)

1998-01-01T23:59:59.000Z

310

Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases  

DOE Patents [OSTI]

An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

Gross, K.C.; Markun, F.; Zawadzki, M.T.

1998-04-28T23:59:59.000Z

311

Method for cracking hydrocarbon compositions using a submerged reactive plasma system  

DOE Patents [OSTI]

A method is described for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap there between. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition. 6 figs.

Kong, P.C.

1997-05-06T23:59:59.000Z

312

Method for cracking hydrocarbon compositions using a submerged reactive plasma system  

DOE Patents [OSTI]

A method for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap therebetween. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition.

Kong, Peter C. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

313

Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a  

E-Print Network [OSTI]

Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a fraction washed ashore onto sandy beaches from Louisiana to the Florida panhandle. Researchers at the MagLab compare the detailed molecular analysis of hydrocarbons in oiled sands from

Weston, Ken

314

Direct conversion of light hydrocarbon gases to liquid fuel. Final report No. 33  

SciTech Connect (OSTI)

Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

Kaplan, R.D.; Foral, M.J.

1992-05-16T23:59:59.000Z

315

Process for separating an ethylenically unsaturated hydrocarbon from a hydrocarbon mixture  

SciTech Connect (OSTI)

A process is described for separating an ethylenically unsaturated hydrocarbon from a hydrocarbon mixture characterized by: (a) distilling a hydrocarbon mixture containing the unsaturated hydrocarbon with an N-(aminoalkyl) piperazine; and (b) separating the amine/hydrocarbon mixture into at least two factions, one of which contains the amine and the unsaturated hydrocarbon.

vanEijl, A.T.

1986-06-24T23:59:59.000Z

316

THE IN VITRO INFLUENCE OF THE BURROWING POLYCHAETE NEREIS DIVERSICOLOR ON THE FATE OF PETROLEUM HYDROCARBONS IN MARINE SEDIMENTS.  

E-Print Network [OSTI]

HYDROCARBONS IN MARINE SEDIMENTS. F. GILBERT a, L. RIVET b and J-C. BERTRAND a a Centre d'Océanologie de (SF) of Arabian Light crude oil has been studied in PVC cores filled with a coastal marine sediment. The luminophore tracer technique was used to quantify the mixing of sediment by worms. Presence of crude oil

Paris-Sud XI, Université de

317

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect (OSTI)

The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

Schamel, Steven; Deo, Milind; Deets, Mike

2002-02-21T23:59:59.000Z

318

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect (OSTI)

The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, S.

2001-01-09T23:59:59.000Z

319

Microbial hydrocarbons: back to the future  

SciTech Connect (OSTI)

The defining challenge of energy research in the 21st century is the development and deployment of technologies for large-scale reconfiguration of global energy infrastructure. Modern society is built upon a concentrated yet finite reservoir of diverse hydrocarbons formed through the photosynthetic transformation of several hundred million years of solar energy. In human history, the fossil energy era will be short lived and never repeated. Although the timing of peak oil is extensively debated, it is an eventuality. It is, therefore, imperative that projections for both when it will occur and the degree to which supply will fall short of demand be taken into serious consideration, especially in the sectors of energy technology development, political and economic decision making, and societal energy usage. The requirement for renewable energy systems is no longer a point for discussion, and swift advances on many fronts are vital to counteract current and impending crises in both energy and the environment.

Work, Victoria H.; Beliaev, Alex S.; Konopka, Allan; Posewitz, Matthew C.

2012-03-01T23:59:59.000Z

320

Hydrocarbon sensors and materials therefor  

DOE Patents [OSTI]

An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Seismic interpretation and regional geologic correlation established for offshore Togo, West Africa: a preliminary evaluation of hydrocarbon potential in deep water  

E-Print Network [OSTI]

of the major fault systems and unconformities. Proven source and reservoir formations from existing oil and gas fields in neighboring countries are analogous to formations identified on seismic for offshore Togo. Structures suitable for hydrocarbon...

Gray, Max Daniel

2001-01-01T23:59:59.000Z

322

Investigations on potential bacteria for the bioremediation treatment of environments contaminated with hydrocarbons  

SciTech Connect (OSTI)

In Romania after more than 135 years of oil production and processing, some severe environmental pollution problems have accumulated. In this context a joint research group from Institute of Biology Bucharest and S.C. Petrostar S.A. Ploiesti became involved in a research project on bioremediation of an environment contaminated with hydrocarbon waste. In the first stage of this project, investigations on microbial communities occurring in environments contaminated with oil were carried out. In the second stage, the hundreds of bacterial strains and populations isolated from soils, slops, and water sites contaminated with waste oil and water waste oil mix were submitted to a screening program, to select a naturally occurring mixed culture with a high ability to degrade hydrocarbons.

Lazar, I.; Voicu, A.; Dobrota, S.; Stefanescu, M. [Institute of Biology of Romanian Academy, Bucharest (Romania)] [and others

1995-12-31T23:59:59.000Z

323

1 Intevep/2002/papers/FoamyOil-Pt2/nucleation_5-03.doc Modeling Foamy Oil Flow in Porous Media II  

E-Print Network [OSTI]

in a depletion experiment in which oil is pulled out of a closed sand pack at a constant rate reservoirs of heavy foamy oil under solution gas drive. All of the background motivation, the arguments1 · Intevep/2002/papers/FoamyOil-Pt2/nucleation_5-03.doc Modeling Foamy Oil Flow in Porous Media II

Joseph, Daniel D.

324

Mathematical models of interconnections between composition and properties of oils in the Apsheron oil-and gas-bearing region of Azerbaijan  

SciTech Connect (OSTI)

This paper reports on the example of oils in the Apsheron oil- and gas-bearing region and Apsheron archipelago located in the western part of the Southern Caspian depression, of which the authors have developed mathematical models of a group hydrocarbon composition; interconnection between oil density and content of asphalt-resin materials, benzine, and ligroin; interconnections between oil density and viscosity and temperature; and interconnections between content of asphalt-resin properties and low-temperature fractions. The models obtained enable us to extrapolate factual data on composition and properties of oils beyond the limits of fixed depths of burial of oil-saturated reservoirs both to a zone of great depths and increased temperatures where hydrocarbons were in a gaseous or oil and gaseous state, and to a zone of near-surface conditions where oils acquire the consistency of asphalts.

Buryakovsky, L.A.; Dzhevanshir, R.D. (Inst. of Deep Oil and Gas Deposits, Azerbaijan Academy of Sciences, 33 Narimanov Prospect, Baku 370143, Azerbaijan (SU))

1992-01-01T23:59:59.000Z

325

Hydrocarbon filling history from diagenetic evidence: Brent Group, UK North Sea  

E-Print Network [OSTI]

North Sea Mark Wilkinsona,*, R. Stuart Haszeldinea , Robert M. Ellamb , Tony E. Fallickb a Department, slow, filling phase (45­70 8C; 80­50 Ma) that formed an oil column with the oil­water contact of the present-day hydrocarbon charge was the last event in the history of the reservoir (90­100 8C; 10­0 Ma). q

Haszeldine, Stuart

326

Quantification of in situ polycyclic aromatic hydrocarbon biodegradation at a petroleum contaminated site  

E-Print Network [OSTI]

contaminated area located in the Port Arthur Refinery of Fina Oil and Chemical Company (FINA). The soil within these area had been chronically contaminated with Bunker C fuel oil spills. As this contamination was considered a potential threat... formed as products of combustion (Gibson, 1977). Their hydrophobic properties and low water solubility make them adsorb to sediments and migrate with them through rivers, lakes and oceans (Cerniglia and Heitkamp, 1989). Polycyclic aromatic hydrocarbons...

Conti, Enzo Mario

1994-01-01T23:59:59.000Z

327

Gas-assisted gravity drainage (GAGD) process for improved oil recovery  

DOE Patents [OSTI]

A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

Rao, Dandina N. (Baton Rouge, LA)

2012-07-10T23:59:59.000Z

328

DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE  

SciTech Connect (OSTI)

North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. Coreflood, quarter 5-spot study, compositional simulation, wettability, relative permeability study and streamline-based simulation were conducted in this project. 1D compositional simulation results agree reasonably well with those of the slim tube experiments. Injection of CO{sub 2}-NGL is preferable over that of PBG-NGL. MME is sensitive to pressure (in the range of 1300-1800 psi) for the injection of PBG-NGL, but not for CO{sub 2}-NGL. Three hydrocarbon phases form in this pressure range. As the mean thickness of the adsorbed organic layer on minerals increases, the oil-water contact angle increases. The adsorbed organic films left behind after extraction of oil by common aromatic solvents used in core studies, such as toluene and decalin, are thinner than those left behind by non-aromatic solvents, such as cyclohexane. The force of adhesion for minerals aged with just the asphaltene fraction is similar to that of the whole oil implying that asphaltenes are responsible for the mixed-wettability in this reservoir. A new relative permeability model for a four-phase, mixed-wet system has been proposed. A streamline module is developed which can be incorporated in an existing finite-difference based compositional simulator to model water flood, gas flood and WAG flood. Horizontal wells increase well deliverability over vertical wells, but sweep efficiency can decrease. The well performance depends on the well length, position, heterogeneity, and viscosity ratio. The productivity increase due to electromagnetic heating is a function of power intensity, flow rate, and frequency etc. The productivity of a well can be doubled by electromagnetic heating. A high-pressure quarter 5-spot model has been constructed to evaluate the sweep efficiency of miscible WAG floods. WAG displacement reduces bypassing compared to gas floods and improves oil recovery in cores. As the WAG ratio decreased and slug size increased, oil recovery increased. Oil was recovered faster with increased slug size and decreased WAG ratio in the simulations for field cases studied.

Kishore K. Mohanty

2004-12-01T23:59:59.000Z

329

Effect of paraffinic, naphthenic and aromatic distribution in the hydrocarbon mixture and water on the phase equilibria of carbon dioxide-hydrocarbon systems over the temperature range from 333 K to 366 K  

SciTech Connect (OSTI)

Carbon dioxide flooding has been suggested as an efficient and effective means of achieving additional oil recoveries from depleted and/or water flooded reservoirs. The numerical simulation of a carbon dioxide flood requires a phase equilibria predictor that will provide the compositional distribution of the reservoir fluids as the displacement propagates through the reservoir. The objective of this work was to provide a phase equilibria predictor that utilizes the Soave-Redlich-Kwong (SRK) equation of state. A new PUT apparatus was constructed. This apparatus was used to measure the isothermal P-x data of the systems: CO/sub 2/-toluene, CO/sub 2/-ethylbenzene, CO/sub 2/-propylbenzene, CO/sub 2/-cyclopentane, CO/sub 2/-cyclohexane and CO/sub 2/-methylcyclohexane at 333.15 K, 349.82 K and 366.48 K. Interaction parameters were regressed from literature data for CO/sub 2/-paraffin systems and from the experimental data of this work for CO/sub 2/-aromatic and CO/sub 2/-naphthenic systems. Recommended interaction parameters for these systems are provided. Experimental results indicated that the dominant effect of water on CO/sub 2/-hydrocarbon systems was the solubilization of carbon dioxide by water into the aqueous phase. This concept was simulated with the SRK equation of state and a correlation of literature data on the solubility of carbon dioxide in water. The predicted results agreed well with the experimental results. The presence of dissolved salts in water mitigates the effect of water on CO/sub 2/-hydrocarbon systems. The presence on n-butylbenzene or n-butylcylcohexane in the heavy ends with n-decane improved the maximum miscibility composition of the system. Pressure has a substantial effect on maximum miscibility compositions.

Ezekwe, J.N.

1982-01-01T23:59:59.000Z

330

Vapour extraction of heavy oil and bitumen  

SciTech Connect (OSTI)

This paper describes the process of vapor extraction for the recovery of petroleum and bitumen. The selection of solvent is critical, and it is shown that butane may be a good solvent for shallow reservoirs. Experiments are described in a Hele-Shaw cell and Packed Visual Model.

Das, K.A.; Butler, R.M. [Univ. of Calgary (Canada)

1994-12-31T23:59:59.000Z

331

heavy_oil | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors |hcelliott Ames Laboratory Profilehe 2

332

Effect of Temperature on Carbon-Black Agglomeration in Hydrocarbon Liquid with Adsorbed Dispersant  

E-Print Network [OSTI]

can agglomerate, increasing the viscosity of the oil and significantly diminishing its lubrication performance. The soot can also form a high-viscosity sludge which can also degrade lubricant effectivenessEffect of Temperature on Carbon-Black Agglomeration in Hydrocarbon Liquid with Adsorbed Dispersant

333

Ashland Oil Inc. has new heavy oil cracking technology  

SciTech Connect (OSTI)

Ashland's new ''Reduced Crude Conversion'' is a fluid catalytic cracking process that permits more efficient use of the bottoms of the crude barrel, including the production of a given amount of gasoline from 20% less crude. Gasoline yields go from 49.8% for Arabian light crudes to 56.9% for Murban crudes. The new process, details of which have not been revealed, operates at ''high'' temperatures and about 1 atm; requires no feed hydrogen (and therefore, according to Ashland, compares favorably with hydrocracking); is not inhibited by catalyst poisons such as nickel and vanadium, even though these metals might adhere to the proprietary catalyst; and probably uses a zeolite catalyst. Ashland is planning a $70 million, 40,000 bbl/day unit which is scheduled to go on stream in 1982 at its Catlettsburg, Ky., refinery.

Not Available

1980-04-21T23:59:59.000Z

334

The extent of chronic marine oil pollution in southeastern Newfoundland waters assessed through beached  

E-Print Network [OSTI]

on their feathers is heavy fuel oil mixed with lubricants, the mixture found in bilges of large vessels. BeachedThe extent of chronic marine oil pollution in southeastern Newfoundland waters assessed through America. Oiled seabirds have washed up on beaches in Newfoundland for many decades. Most oil

Jones, Ian L.

335

Combination process for upgrading residual oils  

SciTech Connect (OSTI)

This patent describes a method for upgrading high boiling residual portions of crude oils comprising metal contaminants, porphyrins, asphaltenes and high molecular weight multi-ring hydrocarbon material. It comprises: charging a high boiling residual portion of crude oil admixed with diluent in contact with suspended upflowing substantially inert fluidizable solids particulate material at an elevated thermal visbreaking temperature in a riser contact zone for a time sufficient to recover therefrom a vaporous hydrocarbon product higher boiling than gasoline partially decarbonized and demetallized to a lower contaminating metals level, quenching the vaporous product of thermal visbreaking below its dew point after separation from solids, charging quenched thermally modified high boiling hydrocarbon product with a crystalline zeolite cracking catalyst under cracking conditions for a hydrocarbon residence time in a riser cracking zone; recovering a hydrocarbon conversion product; separating a combined C{sub 4} minus wet gas product stream of the visbreaking and zeolite catalyst cracking operating to recover a C{sub 3}-C{sub 4} rich fraction separately from a C{sub 2} minus dry gas product fraction, and regenerating the crystalline zeolite contcontaining catalyst.

Busch, L.E.; Walters, P.W.; Zandona, O.

1990-01-16T23:59:59.000Z

336

Enhanced oil recovery in Rumania  

SciTech Connect (OSTI)

The wide oil field experience of the Romanian oil men in producing hydrocarbon reservoirs is based on an old tradition, but only after 1945 reservoir engineering studies were started in Romania. Beginning with 1950 conventional recovery methods expanded continually. During the last 10 years, however, the crude oil, as energy resource, has become of tremendous importance. The need for increasing the ultimate oil recovery has been felt in Romania as everywhere else. To attain this goal EOR methods were and are tested and expanded on a commercial scale. The paper describes the application of the fire-floods to a broad range of Romanian oil reservoirs and crude properties and reviews the field tests of polymer flooding, surfactant flooding and alkaline flooding. A commercial scale project with cyclic steam injection is presented and also the use of the domestic CO/sub 2/ sources to enhance oil recovery. The results and the diffuculties encountered are briefly discussed and also the potential of EOR methods in Romania are presented.

Carcoana, A.N.

1982-01-01T23:59:59.000Z

337

A comparison of the rates of hydrocarbon generation from Lodgepole, False Bakken, and Bakken formation petroleum source rocks, Williston Basin, USA  

SciTech Connect (OSTI)

Recent successes in the Lodgepole Waulsortian Mound play have resulted in the reevaluation of the Williston Basin petroleum systems. It has been postulated that hydrocarbons were generated from organic-rich Bakken Formation source rocks in the Williston Basin. However, Canadian geoscientists have indicated that the Lodgepole Formation is responsible for oil entrapped in Lodgepole Formation and other Madison traps in portions of the Canadian Williston Basin. Furthermore, geoscientists in the U.S. have recently shown oils from mid-Madison conventional reservoirs in the U.S. Williston Basin were not derived from Bakken Formation source rocks. Kinetic data showing the rate of hydrocarbon formation from petroleum source rocks were measured on source rocks from the Lodgepole, False Bakken, and Bakken Formations. These results show a wide range of values in the rate of hydrocarbon generation. Oil prone facies within the Lodgepole Formation tend to generate hydrocarbons earlier than the oil prone facies in the Bakken Formation and mixed oil/gas prone and gas prone facies in the Lodgepole Formation. A comparison of these source rocks using a geological model of hydrocarbon generation reveals differences in the timing of generation and the required level of maturity to generate significant amounts of hydrocarbons.

Jarvie, D.M.; Elsinger, R.J. [Humble Geochemical Services Division, TX (United States); Inden, R.F. [Lithologic & Stratigraphic Solutions, Denver, CO (United States); Palacas, J.G. [Lakewood, CO (United States)

1996-06-01T23:59:59.000Z

338

Anomalous pH Dependent Stability Behavior of Surfactant-Free Nonpolar Oil Drops in Aqueous Electrolyte Solutions  

E-Print Network [OSTI]

. In this study, we investigated the interaction across an aqueous thin film between fluorocarbon with a higher refractive index than water, and a fluorocarbon oil (perfluoropentane, C5F12), a liquid will be attractive for the hydrocarbon oil and repulsive for the fluorocarbon oil. Traditional methods

Chan, Derek Y C

339

Int. J. Oil, Gas and Coal Technology, Vol. 5, No. 1, 2012 1 Copyright 2012 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Enterprises Ltd. Top-Down, Intelligent Reservoir Modeling of Oil and Gas Producing Shale Reservoirs; Case.Bromhal@netl.doe.gov Abstract: Producing hydrocarbon (both oil and gas) from Shale plays has attracted much attention in recent modeling approach to history matching, forecasting and analyzing oil and gas production from shale

Mohaghegh, Shahab

340

Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting  

SciTech Connect (OSTI)

The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana-Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospective for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r{sup 2} < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.

Mani, Devleena, E-mail: devleenatiwari@ngri.res.in [National Geophysical Research Institute (Council of Scientific and Industrial Research) (India); Kumar, T. Satish [Oil India Limited (India); Rasheed, M. A.; Patil, D. J.; Dayal, A. M.; Rao, T. Gnaneshwar; Balaram, V. [National Geophysical Research Institute (Council of Scientific and Industrial Research) (India)

2011-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Enrichment of light hydrocarbon mixture  

SciTech Connect (OSTI)

Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

Yang; Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

2010-08-10T23:59:59.000Z

342

Enrichment of light hydrocarbon mixture  

DOE Patents [OSTI]

Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

Yang, Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

2011-11-29T23:59:59.000Z

343

Enhanced oil recovery system  

DOE Patents [OSTI]

All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

Goldsberry, Fred L. (Spring, TX)

1989-01-01T23:59:59.000Z

344

Enhanced naphthenic refrigeration oils for household refrigerator systems  

SciTech Connect (OSTI)

Due to industry concerns about the successful employment of hydrofluorocarbon-immiscible hydrocarbon oils in refrigeration systems, enhanced naphthenic refrigeration oils have been developed. These products have been designed to be more dispersible with hydrofluorocarbon (HFC) refrigerants, such as R-134a, in order to facilitate lubricant return to the compressor and to ensure proper energy efficiency of the system. Bench tests and system performance evaluations indicate the feasibility of these oils for use in household refrigeration applications. Results of these evaluations are compared with those obtained with polyol esters and typical naphthenic mineral oils employed in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigeration applications.

Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R. [Witco Corp., Oakland, NJ (United States); Barbour, C.B. [Americold, Cullman, AL (United States)

1997-12-31T23:59:59.000Z

345

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect (OSTI)

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

Ray, R.M. [DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

346

Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Abstract: Many...

347

aromatic hydrocarbon components: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AROMATIC HYDROCARBONS 2005 April 19 ABSTRACT Interstellar polycyclic aromatic hydrocarbon (PAH) infrared emission features 26 Dehydrogenation of polycyclic aromatic...

348

Energy Management by Recycling of Vehicle Waste Oil in Pakistan  

E-Print Network [OSTI]

Abstract: Pakistan has been suffering from an energy crisis for about half a decade now. The power crisis is proving to be unbearable, so importing huge amount of hydrocarbons from abroad to meet its energy needs. This study therefore focuses on the analysis of energy and environmental benefits for vehicle waste lubricant oil pertaining to its reuse by means of: (i) regain the heating value of used oils in a combustion process and (ii) recycling of waste oil to make fresh oil products. The waste oil samples were tested by ICP method and the test results were compared with standard requirements. It was found that the matter could effectively be solved by means of waste oil management practices together with collection centers, transports and processors by encouraging and financial help for the recycling industry. The importance and worth of this work concludes minor levels of hazardous elements when regained the heating value from the waste lubricating oil.

Hassan Ali Durrani

349

HYDROCARBONS FROM PLANTS: ANALYTICAL METHODS AND OBSERVATIONS  

E-Print Network [OSTI]

or natural gas or even oil shale (which represents anotherto transform the coal or oil shale or gaseous, fuel. There

Calvin, Melvin

2013-01-01T23:59:59.000Z

350

DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY  

SciTech Connect (OSTI)

Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1 if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at biosurfactant concentrations below the critical micelle concentration (about 10 mg/l). Below this concentration, the IFT values were high. At biosurfactant concentrations from 10 to 40 mg/l, the IFT was 1 mN/m. As the biosurfactant concentration increased beyond 40 mg/l, IFT decreased to about 0.1 mN/m. At biosurfactant concentrations in excess of 10 mg/l, residual oil recovery was linearly related to biosurfactant concentration. A modified mathematical model that relates oil recovery to biosurfactant concentration adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration.

M.J. McInerney; S.K. Maudgalya; R. Knapp; M. Folmsbee

2004-05-31T23:59:59.000Z

351

Federal Environmental Regulations Impacting Hydrocarbon Exploration, Drilling, and Production Operations  

SciTech Connect (OSTI)

Waste handling and disposal from hydrocarbon exploration, drilling, and production are regulated by the US Environmental Protection Agency (EPA) through federal and state regulations and/or through implementation of federal regulations. Some wastes generated in these operations are exempt under the Resource Conservation and Recovery Act (RCRA) but are not exempt under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Superfund Amendments and Reauthorization Act (SARA), and other federal environmental laws. Exempt wastes remain exempt only if they are not mixed with hazardous wastes or hazardous substances. Once mixture occurs, the waste must be disposed as a hazardous material in an approved hazardous waste disposal facility. Before the Clean Air Act as amended in 1990, air emissions from production, storage, steam generation, and compression facilities associated with hydrocarbon exploration, drilling, and production industry were not regulated. A critical proposed regulatory change which will significantly effect Class II injection wells for disposal of produced brine and injection for enhanced oil recovery is imminent. Federal regulations affecting hydrocarbon exploration, drilling and production, proposed EPA regulatory changes, and a recent significant US Court of Appeals decision are covered in this report. It appears that this industry will, in the future, fall under more stringent environmental regulations leading to increased costs for operators.

Carroll, Herbert B.; Johnson, William I.

1999-04-27T23:59:59.000Z

352

Paleotopography and hydrocarbon accumulation: Williston, Powder River, and Denver basins  

SciTech Connect (OSTI)

Recent geomorphic analyses of 1:24,000 scale topographic maps in the three major basins of the northern Great Plains have disclosed a persistent system of basement paleotopographic features that trend north-northeast throughout the region. Superimposed across this system and subtly influenced by it, are the northwesterly trending Laramide structural features. Paleozoic depositional patterns have been strongly influenced by the paleoridge and trough system formed by the north-northeast features. Mesozoic deposition has also been affected by the ancient subsurface system but in a more subtle manner. Many of the Paleozoic and Mezoxoic hydrocarbon locations in the three basins appear to be the results of paleotopographic control on hydrocarbon accumulation sites. This affect ranges from Paleozoic reef sites in the Williston basin through paleotrough localization of Pennsylvanian Minnelusa production in the Powder River basin to fractured Cretaceous Niobrara production at the Silo field in the Denver basin. Basement paleotopography is the underlying factor in all deposition and subsequent hydrocarbon migration in any basin. As such, it should be considered a major factor in the exploration for oil and gas.

Thomas, G.E. (Thomas and Associates, Denver, CO (United States))

1991-06-01T23:59:59.000Z

353

Modelling the costs of non-conventional oil: A case study of Canadian bitumen  

E-Print Network [OSTI]

in conventional deposits. The longer- term problem of climate change arises from the fuller and longer-term use of coal, and of unconventional deposits such as heavy oils, tar sands and oil shales.” (Grubb, 2001) As conventional oil becomes scarcer, the transport... , it is not mobile at reservoir conditions, (Cupcic, 2003): density Oil shale is a fine-grained sedimentary rock rich in organic matter, (USGS, 2005): oil shales contain kerogen, which is a solid, insoluble organic material...

Méjean, A; Hope, Chris

354

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect (OSTI)

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

355

Rock types, pore types, and hydrocarbon exploration  

SciTech Connect (OSTI)

A proposed exploration-oriented method of classifying porosity in sedimentary rocks is based on microscopic examination cores or cuttings. Factors include geometry, size, abundance, and connectivity of the pores. The porosity classification is predictive of key petrophysical characteristics: porosity-permeability relationships, capillary pressures, and (less certainly) relative permeabilities. For instance, intercrystalline macroporosity typically is associated with high permeability for a given porosity, low capillarity, and favorable relative permeabilities. This is found to be true whether this porosity type occurs in a sucrosic dolomite or in a sandstone with pervasive quartz overgrowths. This predictive method was applied in three Rocky Mountain oil plays. Subtle pore throat traps could be recognized in the J sandstone (Cretaceous) in the Denver basin of Colorado by means of porosity permeability plotting. Variations in hydrocarbon productivity from a Teapot Formation (Cretaceous) field in the Powder River basin of Wyoming were related to porosity types and microfacies; the relationships were applied to exploration. Rock and porosity typing in the Red River Formation (Ordovician) reconciled apparent inconsistencies between drill-stem test, log, and mud-log data from a Williston basin wildcat. The well was reevaluated and completed successfully, resulting in a new field discovery. In each of these three examples, petrophysics was fundamental for proper evaluation of wildcat wells and exploration plays.

Coalson, E.B.; Hartmann, D.J.; Thomas, J.B.

1985-05-01T23:59:59.000Z

356

Tailoring hydrocarbon streams for asphaltene removal  

SciTech Connect (OSTI)

Oilfield production is often hindered by asphaltene precipitation which tends to fill the pores of the reservoir rocks and plug the wellbore tubing as well as the other auxiliary equipment used during crude oil recovery. Several remedies to remove these deposits have been proposed and patented but the injection of aromatic solvents such as toluene and light petroleum distillates is normally preferred. Previous studies with a number of pure aromatic hydrocarbons have shown that the solvent capacity of these molecules may be very different and that the degree of condensation plays an important role. In this regard, tetralins and naphthalenes are superior to alkylbenzenes. However, because the use of pure compounds is not economically feasible, the authors examined various industrial streams and the authors correlated their chemical composition to the solvent capacity. This work allowed the identification of the pseudo-components whose relative concentration is crucial for evaluating the solvent performances. Based on these data, the authors were able to find new products with ideal characteristics. The efficiency of one of these products was confirmed by the analysis of the data obtained when using this new solvent to remove asphaltene in damaged wells of an Italian field.

Del Bianco, A.; Stroppa, F.; Bertero, L.

1995-11-01T23:59:59.000Z

357

Chronology of trap formation and migration of hydrocarbons in Zagros sector of southwest Iran  

SciTech Connect (OSTI)

Sixty-three orogenically controlled oil and gas fields have been discovered in the Zagros sector of southwest Iran since teh turn of the present century. Most of the fields are giant, multi-reservoir accumulations producing from fractured carbonate pay zones ranging in age from permo-Triassic to Oligo-Miocene. The most prolific oil-producing zones are the Asmari formation (Oligo-Miocene( and the Bangestan Group (Upper Cretaceous). The available geochemical evidence indicates taht the major source of the oil is the underlying Lower Cretaceous (Albian) Kazhdumi Formation. It is argued that, in the main oil-producing area, the Kazhdumi source rock was not buried to the depth required for hydrocarbon generation until the Eocene, and that not significant oil explusion took place until the Miocene. entry of oil into the reservoirs is geologically a recent event; it postdates the late Miocene-Holocene Zagros orogeny that resulted in the formation of the present structural traps. It is suggested that the development of growth structures during the Late Cretaceous and Palogene could have contributed to some hydrocarbon localization prior to the formation of the late Tertiary traps.

Ala, M.A.

1982-10-01T23:59:59.000Z

358

Ancestral Nesson anticline and associated geothermal anomalies: Enhanced hydrocarbon generation controlled by crustal structure  

SciTech Connect (OSTI)

Hydrocarbon generation in the Williston basin is influenced by crustal motions and geothermal gradient anomalies associated with the ancestral Nesson anticline, a long-lived crustal structure located along 103{degree} longitude. This structure and its effects are particularly important in Canada where most petroleum source rocks were not sufficiently buried to have generated hydrocarbons in a normal geothermal gradient environment. High geothermal gradients associated with this structure raise the oil window and expand the region of source rock thermal maturity. Ancestral Nesson structure subsided differentially throughout the Phanerozoic, controlling paleobathymetry and facies over its crest. During the Upper Ordovician the structure was positive; rich potential petroleum source rocks were deposited on the western flank of the structure, generally excluding them from the zone of elevated heat flows. The total petroleum potential of this oil-source system exceeds 5.5 billion bbl of oil equivalent in Canada alone. Unfortunately, its exclusion from the maturation anomaly results in no more than 200 million bbl of oil being expelled from these sources. During the Middle Devonian, the structure was a negative feature that formed a starved subbasin separating the Winnipegosis and Elm Point carbonate shelves. Rich potential petroleum source rocks that accumulated on the crest of the structure at that time now overlie the region of elevated heat that flows and enhanced hydrocarbon maturation. Two billion barrels of oil are estimated to have been expelled from this source rock. Understanding the history and tectonics of the ancestral Nesson anticline is fundamental to a correct appraisal of hydrocarbon resources in the Williston basin.

Osadetz, K.G.; Snowdon, L.R. (Geological Survey of Canada, Calgary, Alberta (Canada))

1989-09-01T23:59:59.000Z

359

Preparation of stable crude oil transport emulsions  

SciTech Connect (OSTI)

A process for preparing an oil-in-water emulsion for pipeline transmission is described comprising: (a) shearing and mixing statically, without any dynamic shearing and mixing preceding or following the shearing and mixing statically, a hydrocarbon with an emulsifying composition comprising water and a minor amount of an emulsifying agent at a temperature of from about 100/sup 0/F. to about 200/sup 0/F. to form an oil-in-water emulsion having a viscosity sufficiently low for pipeline transmission, wherein the amount of water in the oil-in-water emulsion is from about 15% to about 60% by weight, and wherein the emulsifying agent is used in an amount sufficient to assist in the formation of the oil-in-water emulsion that is sufficiently stable for pipeline transmission; and wherein the emulsifying agent comprises about 50 percent by weight of an ethoxylated nonyl phenol compound.

Gregoli, A.A.; Hamshar, J.A.; Olah, A.M.; Riley, C.J.; Rimmer, D.P.

1988-02-16T23:59:59.000Z

360

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

SciTech Connect (OSTI)

This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Diagenesis  

E-Print Network [OSTI]

Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Rights Reserved #12;ABSTRACT Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates-A to Opal-CT, the formation of gas hydrates, fluid substitution in hydrocarbon reservoirs, and fluid

Guerin, Gilles

362

Impacts of the Venezuelan Crude Oil Production Loss  

Reports and Publications (EIA)

This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.

2003-01-01T23:59:59.000Z

363

Autothermal reforming of sulfur-free and sulfur-containing hydrocarbon liquids  

SciTech Connect (OSTI)

The mechanisms by which various fuel component hydrocarbons related to both heavy petroleum and coal-derived liquids are converted to hydrogen without forming carbon were investigated. Reactive differences between paraffins and aromatics in autothermal reforming (ATR) were shown to be responsible for the observed fuel-specific carbon formation characteristics. The types of carbon formed in the reformer were identified by SEM and XRD analyses of catalyst samples and carbon deposits. From tests with both light and heavy paraffins and aromatics, it is concluded that high boiling point hydrocarbons and polynuclear aromatics enhance the propensity for carbon formation. The effects of propylene addition on the ATR performance of benzene are described. In ATR tests with mixtures of paraffins and aromatics, synergistic effects on conversion characteristics were identified. Indications that the sulfur content of the fuel may be the limiting factor for efficient ATR operation were found. The conversion and degradation effects of the sulfur additive (thiophene) were examined.

Not Available

1981-10-01T23:59:59.000Z

364

Characteristics of Baku and eastern crudes as raw materials for lube oil production  

SciTech Connect (OSTI)

This article presents data to show that the lube cuts from the Baku medium-wax crudes, in contrast to the eastern medium-wax crudes, will not give oils with viscosity indexes above 90 even when severly treated. The medium-wax Baku crudes have higher contents of naphthenic-paraffinic hydrocarbons, and their aromatic hydrocarbons are present in smaller amounts and have poorer viscosity-temperature properties. The Baku refineries have become the principal suppliers of lube oils in the USSR because of their use of low-wax crudes and relatively simple manufacturing processes. In recent years, the resources of low-wax crudes have declined while the medium-wax crudes have increased. The Baku medium-wax crudes are distinguished by higher contents of oils, including residual oils. It is concluded that the Baku medium-wax crudes should be processed to produce oils that are in short supply, such as transformer oils, turbine oils, compressor oils, high-viscosity oils of the P-28 type, and special-purpose oils (e.g., white oils, naphthenic oils) for which a high viscosity index is not a requirement. The medium-wax crudes from the eastern districts should be used to produce oils with viscosity indexes above 90. Includes 5 tables.

Samedova, F.I.; Kasumova, A.M.

1984-01-01T23:59:59.000Z

365

Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation  

DOE Patents [OSTI]

Solvent-type flooding fluids comprising light hydrocarbons in the range of ethane to hexane (and mixtures thereof) are used to displace crude oil in formations having temperatures of about 20 degrees to about 150 degrees Centigrade and pressures above about 650 psi, the light hydrocarbons having dissolved therein from about 0.05% to about 3% of an organotin compound of the formula R.sub.3 SnF where each R is independently an alkyl, aryl or alkyaryl group from 3 to 12 carbon atoms. Under the pressures and temperatures described, the organotin compounds become pentacoordinated and linked through the electronegative bridges, forming polymers within the light hydrocarbon flooding media to render them highly viscous. Under ambient conditions, the viscosity control agents will not readily be produced from the formation with either crude oil or water, since they are insoluble in the former and only sparingly soluble in the latter.

Heller, John P. (Socorro, NM); Dandge, Dileep K. (Socorro, NM)

1986-01-01T23:59:59.000Z

366

Study of net soot formation in hydrocarbon reforming for hydrogen fuel cells. Final report  

SciTech Connect (OSTI)

The hydrogen fuel cell is expected to be a valuable addition to the electric utility industry; however, the current fuel supply availability requires that conventional heavier hydrocarbon fuels also be considered as primary fuels. Typical heavier fuels would be No. 2 fuel oil with its accompanying sulfur impurities, compared with the currently used light hydrocarbon gases. The potential future use of alternate fuels which are rich in aromatics would exacerbate the problems associated with hydrogen production. Among the more severe of these problems, is the greater tendency of heavier hydrocarbons to form soot. The development of a quasi-global kinetics model to represent the homogeneous and heterogeneous reactions which control the autothermal hydrogen reforming process and the accompanying soot formation and gasification was the objective of this study.

Edelman, R. B.; Farmer, R. C.; Wang, T. S.

1982-08-01T23:59:59.000Z

367

Play analysis and stratigraphic position of Uinta Basin tertiary - age oil and gas fields  

SciTech Connect (OSTI)

Tertiary-age sediments in the Uinta basin produce hydrocarbons from five types of plays. These play types were determined by hydrocarbon type, formation, depositional environment, rock type, porosity, permeability, source, and per-well recovery. Each well was reviewed to determine the stratigraphic position and producing characteristics of each producing interval. The five types of plays are as follows: (1) naturally fractured oil reservoirs, (2) low-permeability oil reservoirs, (3) high-permeability of oil reservoirs, (4) low-permeability gas reservoirs, and (5) tight gas sands. Several fields produce from multiple plays, which made it necessary to segregate the hydrocarbon production into several plays. The stratigraphic position of the main producing intervals is shown on a basin-wide cross section, which is color-coded by play type. This 61-well cross section has several wells from each significant Tertiary oil and gas field in the Uinta basin.

Williams, R.A. (Pennzoil Exploration and Production Co., Houston, TX (United States))

1993-08-01T23:59:59.000Z

368

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

369

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

CAKIR, NIDA

2013-01-01T23:59:59.000Z

370

Dry reforming of hydrocarbon feedstocks  

SciTech Connect (OSTI)

Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

Shah, Yatish T. [Norfolk State University; Gardner, Todd H. [U.S. DOE

2014-01-01T23:59:59.000Z

371

Underground caverns for hydrocarbon storage  

SciTech Connect (OSTI)

Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

1998-12-31T23:59:59.000Z

372

Deep desulfurization of hydrocarbon fuels  

DOE Patents [OSTI]

The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

Song, Chunshan (State College, PA); Ma, Xiaoliang (State College, PA); Sprague, Michael J. (Calgary, CA); Subramani, Velu (State College, PA)

2012-04-17T23:59:59.000Z

373

Sixty-sixth annual report of the state oil and gas supervisor  

SciTech Connect (OSTI)

This report contains tabulated oil and gas statistics compiled during 1980 in California. On-shore and off-shore oil production, gas production, reserves, drilling activity, enhanced recovery activity, unconventional heavy oil recovery, geothermal operations and financial data are reported. (DMC)

Not Available

1981-01-01T23:59:59.000Z

374

Environmental Pollution (Series B) 9 (1985) 239-254 Heavy Metals in Isopods from the Supra-littoral Zone  

E-Print Network [OSTI]

Environmental Pollution (Series B) 9 (1985) 239-254 Heavy Metals in Isopods from the Supra were very small. The hepatopancreas was the most important storage organ oj'heavy metals and, at all of heavy metals were compared in the tissues oiL. oceanica and in two 'more terrestrial' isopods, Oniscus

Hopkin, Steve

375

Shallow oil production using horizontal wells with enhanced oil recovery techniques  

SciTech Connect (OSTI)

Millions of barrels of oil exist in the Bartlesville formation throughout Oklahoma, Kansas, and Missouri. In an attempt to demonstrate that these shallow heavy oil deposits can be recovered, a field project was undertaken to determine the effectiveness of enhanced oil recovery techniques (EOR) employing horizontal wells. Process screening results suggested that thermal EOR processes were best suited for the recovery of this heavy oil. Screening criteria suggested that in situ combustion was a viable technique for the production of these reserves. Laboratory combustion tube tests confirmed that sufficient amounts of fuel could be deposited. The results of the in situ combustion field pilot were disappointing. A total overall recovery efficiency of only 16.0 percent was achieved. Results suggest that the combustion front might have moved past the horizontal well, however elevated temperatures or crude upgrading were not observed. Factors contributing to the lack of production are also discussed.

Satchwell, R.M.; Johnson, L.A. Jr. [Western Research Institute, Laramie, WY (United States); Trent, R. [Univ. of Alaska, Fairbanks, AK (United States)

1995-02-01T23:59:59.000Z

376

Heavy metal biosensor  

SciTech Connect (OSTI)

Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

2014-04-15T23:59:59.000Z

377

Investigation and development of alternative methods for shale oil processing and analysis. Final technical report, October 1979--April 1983  

SciTech Connect (OSTI)

Oil shale, a carbonaceous rock which occurs abundantly in the earth`s crust, has been investigated for many years as an alternate source of fuel oil. The insoluble organic matter contained in such shales is termed {open_quotes}Kerogen{close_quotes} from the Greek meaning oil or oil forming. The kerogen in oil shale breaks down into oil-like products when subjected to conditions simulating destructive distillation. These products have been the subject of extensive investigations by several researchers and many of the constituents of shale oil have been identified. (1) Forsman (2) estimates that the kerogen content of the earth is roughly 3 {times} 10{sup 15} tons as compared to total coal reserves of about 5 {times} 10{sup 12}. Although the current cost per barrel estimate for commercial production of shale oil is higher than that of fossil oil, as our oil reserves continue to dwindle, shale oil technology will become more and more important. When oil shale is heated, kerogen is said to undergo chemical transformation to usable oil in two steps (3): Kerogen (in oil shale) 300-500{degrees}C bitumen. Crude shale oil and other products. The crude shale oil so obtained differs from fossil oil in that: (1) kerogen is thought to have been produced from the aging of plant matter over many years; (2) shale oil has a higher nitrogen content than fossil oil; (3) non-hydrocarbons are present to a much greater extent in shale oil; and (4) the hydrocarbons in shale oil are much more unsaturated than those in fossil oil (petroleum).

Evans, R.A.

1998-06-01T23:59:59.000Z

378

Thermal recovery of oil and bitumen  

SciTech Connect (OSTI)

This book is organized into the following chapters: Introduction to Thermal Recovery; Conduction of Heat Within Solids; Convective Heating within Reservoirs; Steamfloodings; The Displacement of Heavy Oil; Cyclic Steam Simulation; Steam-Assisted Gravity Drainage; Steam Recovery Equipment and Facilities; and In Situ Combustion.

Butler, R.M. (Dept. of Chemical and Petroleum Engineering, Univ. of Calgary, Calgary, Alberta (CA))

1991-01-01T23:59:59.000Z

379

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

1999-02-01T23:59:59.000Z

380

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

1997-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hydrocarbon-bearing fluid inclusions in fluorite associated with the Windy Knoll bitumen deposit, UK  

SciTech Connect (OSTI)

Hydrocarbon-bearing fluid inclusions in fluorite, associated with an outcropping bitumen deposit at Windy Knoll, Derbyshire, have been analyzed in situ using a combination of microthermometry, Fourier transform infrared (FTIR) microspectrometry, and ultraviolet (UV) microscopy. The inclusions in these samples can be considered as a series with two end members: aqueous inclusions containing a low-density vapor phase and inclusions containing liquid oil' with no detectable aqueous phase. The majority of the inclusions are mixed types containing both aqueous and liquid hydrocarbon phases. Although microthermometry distinguishes at least two different aqueous fluids with varying homogenization temperatures and salinities, the oil fraction is cogenetic and trapped together with just one fluid, a low-salinity, low-calcium brine with an average homogenization temperature of 134C. The majority of the liquid hydrocarbon-bearing inclusions fluoresce bright blue under UV illumination with peaks around 475 nm, characteristic of paraffinic oils. The FTIR spectra of these inclusions are dominated by peaks assigned to aliphatic C-H bonding. However, inclusions have also been found which display a fluorescence typical of the red-shift associated with less mature oils. The FTIR spectra display peaks assigned to C{double bond}O, C-O, and O-CH{sub 2} bonding. This study presents new data on the in-situ analysis of hydrocarbon-bearing fluid inclusion from this important area of natural petroleum seepage and ore mineralization. The results suggest a direct link between the fluid inclusion populations, the outcropping bitumens, and fluorite deposition.

Moser, M.R. (Imperial College, London (United Kingdom) University College, London (United Kingdom)); Rankin, A.H. (Imperial College, London (United Kingdom)); Milledge, H.J. (University College, London (United Kingdom))

1992-01-01T23:59:59.000Z

382

Solution mining dawsonite from hydrocarbon containing formations with a chelating agent  

DOE Patents [OSTI]

A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.

Vinegar, Harold J. (Bellaire, TX)

2009-07-07T23:59:59.000Z

383

Mercury and tritium removal from DOE waste oils  

SciTech Connect (OSTI)

This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers` condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H{sub 2}, N{sub 2}, O{sub 2}, CO, CO{sub 2}, etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60{degrees}C to 70{degrees}C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors.

Klasson, E.T. [Oak Ridge National Lab., TN (United States)

1997-10-01T23:59:59.000Z

384

An investigation of oil recovery by injection of CO? and LPG mixtures  

E-Print Network [OSTI]

in light hydrocarbons, due to a selective extraction by the CO2 was believed to be responsible for the attractively high oil recoveries. Holm ' further re- ported additional oil recoveries of 6 to 15 per cent of the original oil in place by blowing down... the pressure in the reservoir. The blow down recovery was found to be a function of the oil left after flooding. Further work on CO2 flooding revealed that carbon 16 dioxide is not completely miscible with most reservoir oils at reservoir pressures...

Kumar, Naresh

1972-01-01T23:59:59.000Z

385

Application of advanced hydrocarbon characterization and its...  

Broader source: Energy.gov (indexed) [DOE]

advanced hydrocarbon characterization and its consequences on future fuel properties and advanced combustion research Rafal Gieleciak, Craig Fairbridge and Darcy Hager Poster...

386

Nox reduction system utilizing pulsed hydrocarbon injection  

DOE Patents [OSTI]

Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

2001-01-01T23:59:59.000Z

387

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network [OSTI]

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

388

Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals  

DOE Patents [OSTI]

Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

Brigmon, Robin L. (North Augusta, SC); Story, Sandra (Greenville, SC); Altman; Denis J. (Evans, GA); Berry, Christopher J. (Aiken, SC)

2011-03-29T23:59:59.000Z

389

Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals  

DOE Patents [OSTI]

Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

Brigmon, Robin L. (North Augusta, SC); Story, Sandra (Greenville, SC); Altman, Denis J. (Evans, GA); Berry, Christopher J. (Aiken, SC)

2011-03-15T23:59:59.000Z

390

Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals  

DOE Patents [OSTI]

Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

Brigmon, Robin L. (North Augusta, SC); Story, Sandra (Greenville, SC); Altman, Denis (Evans, GA); Berry, Christopher J. (Aiken, SC)

2009-01-06T23:59:59.000Z

391

Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals  

DOE Patents [OSTI]

Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

Brigmon, Robin L. (North Augusta, SC); Story, Sandra (Greenville, SC); Altman, Denis J. (Evans, GA); Berry, Christopher J. (Aiken, SC)

2011-05-03T23:59:59.000Z

392

Corrosion inhibitors in hydrocarbon systems  

SciTech Connect (OSTI)

An attempt has been made to provide directions to select the various corrosion inhibitors for different areas of petroleum industry based on their available structure-activity relationship. The present review highlights the utility of most of the inhibitors (used in production, handling, and distillation of crude oils) which are either N-containing compounds or their derivatives. The action of specific corrosion inhibitors used in oil well acidizing, refining units handling naphthenic acid crudes, and amine gas absorbers has been explained. Emphasis has been laid on the dependence of the inhibitor performance on the type of the test method used for its evaluation. 54 refs., 6 figs., 5 tabs.

Jayaraman, A.; Saxena, R.C. [Indian Inst. of Petroleum, Dehra Dun (India)

1996-08-01T23:59:59.000Z

393

Enhanced Oil Recovery: Aqueous Flow Tracer Measurement  

SciTech Connect (OSTI)

A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

Joseph Rovani; John Schabron

2009-02-01T23:59:59.000Z

394

Hydrocarbon autothermal performing program annual report  

SciTech Connect (OSTI)

A goal of the national molten carbonate fuel cells program is to develop the capability to use heavy fuel oil or coal liquids as feed stock for fuel cell power plants. These liquid fuels must be reformed to gaseous fuels which are composed mainly of CO, H/sub 2/, CO/sub 2/, and H/sub 2/O (and N/sub 2/) for use by the fuel cell. The goal of this program is to understand the mechanism for the formation of soot under conditions relevant to autothermal reformers and to translate this understanding to recommendations for modification of autothermal design. This goal is to be accomplished by a combination of experimental and theoretical tasks. The experimental tasks are to study the mechanisms of soot formation under controlled conditions with gaseous fuels, O/sub 2/ and H/sub 2/O, both premixed, and with well-described mixing, with and without catalysts. The theoretical tasks will develop models to describe the experimental data first by detailed chemical and fluid mechanical processes, second by quasiequilibrium models, and finally by scaling laws. These scaling laws will then be utilized in recommending reformer design modifications. The first year's work of the two year program is described. (WHK)

Lewis, P.F.; Kothandaraman, G.; Pugh, E.; Lord, G.; Yarrington, R.; Hwang, H.S.

1980-10-01T23:59:59.000Z

395

Polynuclear aromatic hydrocarbons for fullerene synthesis in flames  

DOE Patents [OSTI]

This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

Alford, J. Michael; Diener, Michael D.

2006-12-19T23:59:59.000Z

396

What are Tar Balls and How Do They Form? Tar balls, the little, dark-colored pieces of oil that  

E-Print Network [OSTI]

a heavier refined product) floats on the ocean surface, its physical characteristics change. During crude oils mix with water to form an emulsion that often looks like chocolate pudding. This emulsion to chemicals, including the hydrocarbons found in crude oil and petroleum products. They may have an allergic

397

Tensile Effective Stresses in Hydrocarbon Storage Caverns  

E-Print Network [OSTI]

Tensile Effective Stresses in Hydrocarbon Storage Caverns Hippolyte Djizanne and Pierre Bérest LMS, Germany,1-2 October 2012 TENSILE EFFECTIVE STRESSES IN HYDROCARBON STORAGE CAVERNS Hippolyte Djizanne1 that effective tensile stresses can be generated at a cavern wall after a rapid increase or decrease in pressure

Paris-Sud XI, Université de

398

Conversion of organic solids to hydrocarbons  

DOE Patents [OSTI]

A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

Greenbaum, Elias (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

399

Conversion of organic solids to hydrocarbons  

DOE Patents [OSTI]

A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

Greenbaum, E.

1995-05-23T23:59:59.000Z

400

Method and apparatus for hydrocarbon recovery from tar sands  

DOE Patents [OSTI]

A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.

Westhoff, J.D.; Harak, A.E.

1988-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrocarbon cracking with yttrium exchanged zeolite y catalyst  

SciTech Connect (OSTI)

A process is described for cracking a gas oil boiling range hydrocarbon feedstock comprising the step of contacting the feedstock in a catalytic cracking zone under catalytic cracking conditions to produce convulsion products comprising gasoline with a catalyst composition. The process comprises: a Y crystalline aluminosilicate zeolite, having the structure of faujasite and having uniform pore diameters and a silica to alumina mole ratio of at least about 5; an inorganic oxide matrix; and the zeolite having been ion exchanged with a mixture of rare earths prior to compositing with the matrix; and the zeolite having been subsequently further ion exchanged with yttrium following compositing with the matrix, whereby the catalyst composition contains 0.30 to 3.0 wt% yttrium.

Lochow, C.F.; Kovacs, D.B.

1987-05-12T23:59:59.000Z

402

Solution mining systems and methods for treating hydrocarbon containing formations  

DOE Patents [OSTI]

A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

Vinegar, Harold J. (Bellaire, TX); de Rouffignac, Eric Pierre (Rijswijk, NL); Schoeling, Lanny Gene (Katy, TX)

2009-07-14T23:59:59.000Z

403

Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI...

404

Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Breakout Session 2: Frontiers and...

405

Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Poster presented at the 16th Directions...

406

Hydrotreating of oil from eastern oil shale  

SciTech Connect (OSTI)

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

407

Libyan Paleozoic: A review of the factors limiting hydrocarbon potential  

SciTech Connect (OSTI)

Of the three main Paleozoic basins - Ghadames, Murquz, and Kufra - only the Ghadames and its continuation into Algeria, the Illizi (or Fort Polignac) basin, has yielded hydrocarbons in significant quantity. The Paleozoic on the Cyrenaica platform and basement of the Sirte basin has a potential not fully considered. The paleogeography of the Paleozoic system is reviewed to illustrate the extent to which inherited and reactivated basement-controlled structures have influenced later Paleozoic sedimentation and hence the distribution of source rocks, reservoirs, and seals. In all instances, the source rocks are restricted to shales of the Tanezufft Formation or occur in the Upper Devonian Aouinet Oeunine Formation. Multiple fine-grained sequences serve as seals in all the fields. The reservoirs range from the well-cemented but highly fractured Cambrian-Ordovician Gargaf sandstones to the Acacus-Tadrart clastics to the fine-grained Lower Carboniferous Tahara Sandstone. The principal plays are associated with minor structures, and stratigraphic trapping mechanisms play a minor role. The average field size (excluding the Sirte basin) is approximately 80 million bbl of recoverable oil. Paleozoic structural plays in the Sirte basin and the Cyrenaica platform include reactivated infra-Cambrian faults. The lower Paleozoic accumulations of the Murzuq basin are tied to large structures. With the exception of local areas in the Ghadames basin, the Paleozoic succession remains a stratigraphic frontier province - still incompletely explored but with several interesting possibilities for large amounts of stratigraphically trapped hydrocarbons.

Kanes, W.H.; Mairn, A.E.M.; Aburawi, R.M.

1988-08-01T23:59:59.000Z

408

Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars  

SciTech Connect (OSTI)

Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

2014-05-18T23:59:59.000Z

409

Tectonics and hydrocarbon potential of the Barents Megatrough  

SciTech Connect (OSTI)

Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostly terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.

Baturin, D.; Vinogradov, A.; Yunov, A. (LARGE International, Moscow (USSR))

1991-08-01T23:59:59.000Z

410

Geochemical Prospecting of Hydrocarbons in Frontier Basins of India* By  

E-Print Network [OSTI]

India has 26 sedimentary basins with a basinal area of approximately 1.8x 10 6 km 2 (excluding deep waters), out of which seven are producing basins and two have proven potential. Exploration efforts in other basins, called “frontier basins ” are in progress. These basins are characterized by varied geology, age, tectonics, and depositional environments. Hydrocarbon shows in many of these basins are known, and in few basins oil and gas have flowed in commercial /non-commercial quantities. Within the framework of India Hydrocarbon Vision – 2025 and New Exploration Licensing Policy, there is a continuous increase in area under active exploration. The asset management concept with multi-disciplinary teams has created a demand for synergic application of risk-reduction technologies, including surface geochemical surveys. National Geophysical Research Institute (NGRI), Hyderabad, India has initiated/planned surface geochemical surveys composed of gas chromatographic and carbon isotopic analyses in few of the frontier basins of India. The adsorbed soil gas data in one of the basins (Saurashtra basin, Gujarat) has shown varied concentrations of CH4 to C4H10. The C1 concentration varies between 3 to 766 ppb and ??C2+, 1 to 543 ppb. This basin has thin soil cover and the Mesozoic sediments (probable source rocks) are overlain by thick cover of Deccan Traps. The scope and perspective of geochemical surveys in frontier basins of India are presented here.

B. Kumar; D. J. Patil; G. Kalpana; C. Vishnu Vardhan

411

In situ retorting or oil shale  

SciTech Connect (OSTI)

An improved method of in situ retorting of oil shale wherein a cavern of crushed shale is created within an oil shale deposit, preferably by igniting a powerful explosion within the oil shale deposit, thereby creating a localized area or cavern of rubblized oil shale. Combustion gases are injected into the bottom of this cavern and particulate material, preferably a cracking catalyst, is deposited into a void at the top of the cavern and allowed to trickle down and fill the voids in the rubblized cavern. The oil shale is ignited at the bottom of the cavern and a combustion zone proceeds upwardly while the particulate material is caused by gas flow to percolate downwardly. A fluidized bed of particulate material is thereby formed at the combustion zone providing a controlled, evelny advancing combustion zone. This, in turn, efficiently retorts oil shale, provides increased recovery of hydrocarbon while ismultaneously producing a catalytically cracked volatile, high octane gasoline exiting from the top of the retort.

Hettinger, W.P. Jr.

1984-09-11T23:59:59.000Z

412

Expectations for Oil Shale Production (released in AEO2009)  

Reports and Publications (EIA)

Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

2009-01-01T23:59:59.000Z

413

Oil shale and coal in intermontane basins of Thailand  

SciTech Connect (OSTI)

The Mae Tip intermontane basin contains Cenozoic oil shales in beds up to 1 m (3.3 ft) thick interbedded with coal and mudstone. The oil shales contain lamosite-type alginite, and give a maximum oil yield of 122 L/MT (29.3 gal/ton). The beds are laterally continuous for at least 1.5 km (1.0 mi), but pass into mudstones toward the basin margin. The oil shales originated when peat swamps close to a steep basin margin were flooded by shallow lakes, allowing algae to replace rooted vegetation. This distinctive oil shale-coal assemblage is known from many small intermontane basins in Thailand, where locally high geothermal gradients suggest potential for hydrocarbons.

Gibling, M.R.; Srisuk, S.; Ukakimaphan, Y.

1985-05-01T23:59:59.000Z

414

Thermodynamic properties of hydrocarbon liquids at high pressures and temperatures  

SciTech Connect (OSTI)

Understanding the organic/inorganic interface in the Earth's crust requires values of the thermodynamic properties of hydrocarbon species in crude oil, coal, and natural gas at elevated temperatures and pressures. Values of the apparent standard partial molal Gibbs free energies and enthalpies of formation and the standard partial molal entropies and heat capacities of these organic species can be computed as a function of temperature at 1 bar using the equations of state adopted by Helgeson et al (1991). The pressure dependence of the thermodynamic properties can be calculated from a modified version of the Parameters From Group Contributions (PFGC) equation of state. To improve the accuracy of these predictions, critical evaluation of high-pressure density experiments reported in the literature was used in the present study to characterize b[sub j] as a function of pressure and temperature. The revised PFGC equation of state permits accurate calculation of the standard partial molal volumes of the major hydrocarbon species in the aliphatic, aromatic, and naphthenic fractions of crude oil, as well as fatty acids, phenols, and naphthenic acids at temperatures and pressures to 500 C and 5 kbar. Combining the revised PFGC equation of state and parameters with the standard partial molal properties of these species at one bar and those of aqueous species and minerals permits calculation of the apparent standard partial molal Gibbs Free energies of reaction, and thus equilibrium constants for a wide variety of chemical equilibria among organic liquids, solids, and gases, aqueous species, and minerals at temperatures and pressures characteristic of both diagenetic and low-grade metamorphic processes in the Earth's crust.

Aagaard, P. (Univ. of Oslo (Norway). Dept. of Geology); Oelkers, E.H. (Univ. Paul Sabatier, Toulouse (France). Lab. de Geochimie); Helgeson, H.C. (Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics)

1992-01-01T23:59:59.000Z

415

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility  

E-Print Network [OSTI]

, hydrocarbons and carbon dioxide from transit buses and heavy-duty vehicles when they are tested on simulated · CO2, CO, HC, NOx, and particulates · Fuels: Diesel, gasoline, CNG, propane, LNG, LPG, ethanol · 30-ton axle capacity · 80 mph speed · Simulated road load curve · Test cycle simulation with driver

Lee, Dongwon

416

Reconnaissance survey for lightweight and carbon tetrachloride extractable hydrocarbons in the central and eastern basins of Lake Erie: September 1978  

SciTech Connect (OSTI)

A reconnaissance survey of the central and eastern basins of Lake Erie (22,240 km/sup 2/) was conducted from September 17 to 27, 1978. The survey provided baseline information on natural gas and oil losses from geologic formations, prior to any potential development of natural gas resources beneath the United States portion of the Lake. Lightweight hydrocarbons indicative of natural gas (methane, ethane, propane, isobutane, and n-butane) are introduced into the waters of Lake Erie by escape from geologic formations and by biological/photochemical processes. The geochemical exploration technique of hydrocarbon sniffing provided enough data to reveal significant distribution patterns, approximate concentrations, and potential sources. Twelve sites with elevated lightweight hydrocarbon concentrations had a composition similar to natural gas. In one area of natural gas input, data analysis suggested a potential negative effect of natural gas on phytoplanktonic metabolism (i.e., ethylene concentration). Samples taken for liquid hydrocarbon analysis (carbon tetrachloride extractable hydrocarbons) correlated best with biologically derived lightweight hydrocarbons.

Zapotosky, J.E.; White, W.S.

1980-10-01T23:59:59.000Z

417

Chemical Methods for Ugnu Viscous Oils  

SciTech Connect (OSTI)

The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

Kishore Mohanty

2012-03-31T23:59:59.000Z

418

Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds  

DOE Patents [OSTI]

A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

Comolli, Alfred G. (Yardley, PA); Lee, Lap-Keung (Cranbury, NJ)

2001-01-01T23:59:59.000Z

419

Simple rules help select best hydrocarbon distillation scheme  

SciTech Connect (OSTI)

Separation economics depend mainly on investment for major equipment and energy consumption. This relationship, together with the fact that, in most cases, many alternative schemes will be proposed, make it essential to find an optimum scheme that minimizes overall costs. Practical solutions are found by applying heuristics -- exploratory problem-solving techniques that eliminate alternatives without applying rigorous mathematical procedures. These techniques have been applied to a case study. In the case study, a hydrocarbon mixture will be transported through a pipeline to a fractionation plant, where it will be separated into commercial products for distribution. The fractionation will consist of a simple train of distillation columns, the sequence of which will be defined by applying heuristic rules and determining the required thermal duties for each column. The facility must separate ethane, propane and mixed butanes, natural gasoline (light straight-run, or LSR, gasoline), and condensate (heavy naphtha). The ethane will be delivered to an ethylene plant as a gaseous stream, the propane and butanes will be stored in cryogenic tanks, and the gasoline and heavy naphtha also will be stored.

Sanchezllanes, M.T.; Perez, A.L.; Martinez, M.P.; Aguilar-Rodriguez, E.; Rosal, R. del (Inst. Mexicano del Petroleo, Mexico City (Mexico))

1993-12-06T23:59:59.000Z

420

Near Shore Submerged Oil Assessment  

E-Print Network [OSTI]

) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments You Should Know About Submerged Oil 1. Submerged oil is relatively uncommon: DWH oil is a light crude

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Exploring for hydrocarbons in geothermally and hydrothermally complex areas -- a southern Nevada example  

SciTech Connect (OSTI)

Time-based isograd maps using conodont color alteration indices (CAI) have been compiled and interpreted for a large area in southern Nevada that includes Yucca Mountain, the Nevada Test Site, and the Nellis Air Force Bombing and Gunnery Range. These maps were produced to evaluate the controversy about possible important mineral and (or) energy resources near Yucca Mountain, the potential burial site for high-level nuclear waste. The hydrocarbon potential of the Yucca Mountain area has been likened to that of the Railroad and Pine Valley areas, 200 km to the northeast where 35 million barrels of oil have been produced from Paleozoic and lower Tertiary strata. In 1991, two companies with no previous drilling experience in Nevada drilled three oil exploration wells within 20 km of Yucca Mountain and within or close to the Timber Mountain caldera system. No shows of oil or gas were found in these wells. The deepest well was drilled to 5,000 feet and penetrated 2,200 feet of upper Tertiary valley-fill deposits and volcanic rocks overlying an overturned sequence of Upper Cambrian and Lower Ordovician rocks having conodonts with CAI values of 5. Our new conodont sampling, however, has targeted some thermally favorable areas for hydrocarbons east of Yucca mountain, but their maturation history suggests that the potential for oil is substantially lower than in the Railroad and Pine Valley areas. Cambrian through Triassic rocks in the vicinity of Yucca Mountain have experienced temperatures too high for oil to be preserved, except for a narrow zone (20 x 100 km) northeast of Yucca Mountain, where Mississippian through Triassic rocks are just within the upper limit of the oil generating window. Most of this zone, however, lies on Federal lands that are, for now, inaccessible for a variety of security and environmental reasons.

Harris, A.G.; Repetski, J.E. [Geological Survey, Reston, VA (United States); Grow, J.A. [Geological Survey, Denver, CO (United States)

1995-06-01T23:59:59.000Z

422

Coal-oil slurry preparation  

DOE Patents [OSTI]

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

423

Oil spill response resources  

E-Print Network [OSTI]

. ACKNOWLEDGMENTS. TABLE OF CONTENTS . . Vn INTRODUCTION. . Oil Pollution Act. Oil Spill Response Equipment . . OB JECTIVES . 12 LITERATURE REVIEW. United States Contingency Plan. . Response Resources Definition of Clean in Context to an Oil Spill. Oil... this fitle. Title IV expands federal authority in managing oil spill clean up operations and amends the provisions for oil spill clean up under the Federal Water Pollution Control Act. It also called for Oil spill plans for vessels and facilities starting...

Muthukrishnan, Shankar

1996-01-01T23:59:59.000Z

424

Low oxygen biomass-derived pyrolysis oils and methods for producing the same  

SciTech Connect (OSTI)

Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

2013-08-27T23:59:59.000Z

425

Comparisons of hydrocarbon and nitrogen distributions in geologically diverse tar sand bitumen  

SciTech Connect (OSTI)

The characteristics of bitumens from different tar sand deposits are generally significantly different and affect the utilization of the resource. The chemical and physical properties of bitumen are a result of maturation reactions on the varied organic sediments. For example, saturated hydrocarbon distributions have been related to the geochemical history of organic matter. Very paraffinic or sometimes paraffinic-naphthenic distributions in organic matter are derived from a nonmarine depositional environment. More aromatic and paraffinic-naphthenic hydrocarbon distributions are derived from organic matter deposited in a marine environment. The characteristics of the bitumen also influence the potential for recovery and subsequent processing of the material. For example, saturated hydrocarbons contribute to the high pour points of recovered oils. The origin and composition of an oil influence its viscosity, API gravity, and coke formation during processing, particularly under low-temperature oxidation conditions. The objective of this work is to determine the chemical and physical properties of several samples of bitumen from geologically diverse tar sand deposits. The compound-type distributions and LTD properties of these bitumens are discussed relative to the depositional environment and processing potential of the organic matter.

Holmes, S.A.

1988-06-01T23:59:59.000Z

426

Development of Extraction Techniques for the Detection of Signature Lipids from Oil  

SciTech Connect (OSTI)

Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.

Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry; Mason, Olivia

2010-05-17T23:59:59.000Z

427

Selective photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents [OSTI]

A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Berkeley, CA); Sun, Hai (Berkeley, CA)

1998-01-01T23:59:59.000Z

428

Effect of oil pollution on fresh groundwater in Kuwait  

SciTech Connect (OSTI)

Massive oil fires in Kuwait were the aftermath of the Gulf War. This resulted in the pollution of air, water, and soil, the magnitude of which is unparalleled in the history of mankind. Oil fires damaged several oil well heads, resulting in the flow of oil, forming large oil lakes. Products of combustion from oil well fires deposited over large areas. Infiltrating rainwater, leaching out contaminants from oil lakes and products of combustion at ground surface, can reach the water table and contaminate the groundwater. Field investigations, supported by laboratory studies and mathematical models, show that infiltration of oil from oil lakes will be limited to a depth of about 2 m from ground surface. Preliminary mathematical models showed that contaminated rainwater can infiltrate and reach the water table within a period of three to four days, particularly at the Raudhatain and Umm Al-Aish regions. These are the only regions in Kuwait where fresh groundwater exists. After reaching the water table, the lateral movement of contaminants is expected to be very slow under prevailing hydraulic gradients. Groundwater monitoring at the above regions during 1992 showed minor levels of vanadium, nickel, and total hydrocarbons at certain wells. Since average annual rainfall in the region is only 120 mm/yr, groundwater contamination due to the infiltration of contaminated rainwater is expected to be a long-term one. 13 refs., 15 figs., 2 tabs.

Al-Sulaimi, J.; Viswanathan, M.N.; Szekely, F. [Kuwait Institute for Scientific Research, Safat (Kuwait)

1993-11-01T23:59:59.000Z

429

The combustion and handling properties of several heavy bitumen emulsions  

SciTech Connect (OSTI)

A research program was undertaken by ACT/CANMET to compare the combustion and heat transfer characteristics of a number of bitumen-based water emulsions with those of heavy fuel oil. The addition of water gives some advantage in the areas of fuel handling, atomization and emissions. These studies showed that the emulsions burn and transfer heat in a manner similar to commercial heavy fuel oils and make excellent fuels for boiler and process combustors. However, if the heavy bitumen is partially upgraded, the emulsion made from these residues can sometimes give rise to combustion and emissions related concerns. Particular attention must be paid to the burner/atomization system in order to avoid combustion problems resulting in unacceptably high levels of soot deposition and emissions.

Whaley, H.; Wong, J.K.L.; Banks, G.N.; Lee, S.W.

1995-12-31T23:59:59.000Z

430

Kuwaiti oil fires: Composition of source smoke  

SciTech Connect (OSTI)

While the Kuwaiti oil-fire smoke plumes manifested a pronounced impact on solar radiation in the Gulf region (visibility, surface temperatures, etc.), smoke plume concentrations of combustion-generated pollutants suggest that the overall chemical impact on the atmosphere of the smoke from these fires was probably much less than anticipated. Combustion in the Kuwaiti oil fires was surprisingly efficient, releasing on average more than 93% of the combusted hydrocarbon fuels as carbon dioxide (CO{sub 2}). Correspondingly, combustion-produced quantities of carbon monoxide (CO) and carbonaceous particles were low, each {approximately} 2% by weight. The fraction of methane (CH{sub 4}) produced by the fires was also relatively low ({approximately} 0.2%), but source emissions of nonmethane hydrocarbons were high ({approximately} 2%). Processes other than combustion (e.g., volatilization) probably contributed significantly to the measured in-plume hydrocarbon concentrations. Substantially, different elemental to organic carbon ratios were obtained for aerosol particles from several different types of fires/smokes. Sulfur emissions (particulate and gaseous) measured at the source fires were lower ({approximately} 0.5%) than predicted based on average sulfur contents in the crude. Sulfur dioxide measurements (SO{sub 2}) reported herein, however, were both limited in actual number and in the number of well fires sampled. Nitrous oxide (N{sub 2}O) emissions from the Kuwaiti oil fires were very low and often could not be distinguished from background concentrations. About 25-30% of the fires produced white smoke plumes that were found to be highly enriched in sodium and calcium chlorides. 18 refs., 1 fig., 4 tabs.

Cofer, W.R. III; Cahoon, D.R. [Langley Research Center, Hampton, VA (United States); Stevens, R.K.; Pinto, J.P. [Environmental Protection Agency, Research Triangle Park, NC (United States); Winstead, E.L.; Sebacher, D.I. [Hughes STX Corp., Hampton, VA (United States); Abdulraheem, M.Y. [Kuwait Environmental Protection Dept., Kuwait City (Kuwait); Al-Sahafi, M. [Ministry of Defense and Aviation, Eastern Province (Saudi Arabia); Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Rasmussen, R.A. [Oregon Graduate Institute of Science and Technology, Beaverton, OR (United States)] [and others

1992-09-20T23:59:59.000Z

431

Water solubility data for 151 hydrocarbons  

SciTech Connect (OSTI)

The solubility of a hydrocarbon in water is important from both an environmental and a safety perspective. This information is required by engineers who design or operate stripping processes that remove hydrocarbons from air or water, or who must determine the amount of a hydrocarbon that has dissolved in water following a chemical spill. In particular, the water solubilities of paraffins are increasingly important because of more-stringent government regulations. Paraffins, along with naphthenes and aromatics, are the three major components of unrefined fuels. The water solubilities of 151 paraffins are listed in tables. The data are valid between 25 and 121 C, typical temperature in air- and steam-stripping operations. Also included is a correlation equation that allows users to estimate hydrocarbon solubilities above the given temperature range.

Yaws, C.L.; Pan, Xiang; Lin, Xiaoyin (Lamar Univ., Beaumont, TX (United States))

1993-02-01T23:59:59.000Z

432

Removal of trace olefins from aromatic hydrocarbons  

SciTech Connect (OSTI)

A process is described for treating a hydrocarbon process stream by converting trace quantities of olefinic impurities to nonolefinic hydrocarbons. The process comprises contacting the process stream, which contains trace olefins in an amount of from about 50 to about 2000 as measured by Bromine Index and at least 80% by weight of aromatic and naphthenic hydrocarbons having from 6 to 20 carbon atoms per molecule, at reaction conditions which ensure liquid phase operation with a solid catalyst composite comprising a crystalline aluminosilicate zeolite and a refractory inorganic oxide. A catalytic olefin-consuming alkylation reaction then produces an essentially olefinfree product stream with approximately the same quantity and distribution of aromatic and naphthenic hydrocarbons as contained in the process stream.

Sachtler, J.W.A.; Barger, P.T.

1989-01-03T23:59:59.000Z

433

Oil migration pattern in the Sirte Basin  

SciTech Connect (OSTI)

Sirte Basin is an asymmetrical cratonic basin, situated in the north-central part of Libya. It covers an area of over 350,000km{sup 2} and is one of the most prolific oil-producing basins in the world. Sirte Basin is divided into large NW-SE trending sub-parallel platforms and troughs bounded by deep seated syndepositional normal faults. A very unique combination of thick sediments with rich source rocks in the troughs vs. thinner sediments with prolific reservoir rocks on the platforms accounts for the productivity of the basin. Analysis of oil migration pattern in the Sirte Basin will certainly help to discover the remaining reserves, and this can only be achieved if the important parameter of structural configuration of the basin at the time of oil migration is known. The present paper is an attempt to analyse the time of oil migration, to define the structural picture of the 4 Basin during the time of migration and to delineate the most probable connecting routes between the hydrocarbon kitchens and the oil fields.

Roohi, M.; Aburawi, R.M. [Waha Oil Co., Tripoli (Libyan Arab Jamahiriya)

1995-08-01T23:59:59.000Z

434

Relationships among oil density, gross composition, and thermal maturity indicators in northeastern Williston basin oils and their significance for expulsion thresholds and migration pathways  

SciTech Connect (OSTI)

Oil density ({degree}API), gross composition, and biological market thermal maturity variations in northeastern Williston basin have stratigraphic and geographic significance controlled by migration pathways and source rock composition as it affects hydrocarbon generation and expulsion characteristics. When the depth and density of oil pools is compared to relationships predicted using the correlation between source rock thermal maturity and oil density, several different migration pathways can be inferred. Winnipegosis source oils indicate four paths. Most small pinnacle reef pools are sourced locally, but larger coalesced reefs contain oils migrated long distances through the Lower Member Winnipegosis Formation. Among oils that have migrated past Prairie salts, both locally sourced oils, like those on the flank of the Hummingbird Trough, and more mature, longer migrated oils in Saskatchewan Group reservoirs can be identified. Bakken oils have the longest migration pathways, controlled primarily by a lowstand shoreline sandstone on the eastern side of the basin. Lodgepole-sourced oils dominate Madison Group plays. Northwest of Steelman field, oil density increases primarily due to thermal maturity differences but also because of increasing biodegradation and water-washing that affect the western edge of the play trend. Along the margin of the Hummingbird Trough are a number of deep, medium-gravity pools whose oil compositions are entirely attributable to low thermal maturity and local migration pathways.

Osadetz, K.G.; Snowdon, L.R.; Brooks, P.W. (Geological Survey of Canada, Calgary, Alberta (Canada))

1991-06-01T23:59:59.000Z

435

Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field  

SciTech Connect (OSTI)

Gas chromatographic oil {open_quotes}fingerprinting{close_quotes} was successfully applied in a multidisciplinary production geology project by Maraven, S.A. to define the extent of vertical and lateral continuity of Eocene and Miocene sandstone reservoirs in the highly faulted Bloque I field, Maracaibo Basin, Venezuela. Seventy-five non-biodegraded oils (20{degrees}-37.4{degrees} API) were analyzed with gas chromatography. Fifty were produced from the Eocene Misoa C-4, C-5, C-6 or C-7 horizons, fifteen from the Miocene basal La Rosa and ten from multizone completions. Gas chromatographic and terpane and sterane biomarker data show that all of the oils are genetically related. They were expelled from a type II, Upper Cretaceous marine La Luna source rock at about 0.80-0.90% R{sub o} maturity. Alteration in the reservoir by gas stripping with or without subsequent light hydrocarbons mixing was observed in some oils. Detailed chromatographic comparisons among the oils shown by star plots and cluster analysis utilizing several naphthenic and aromatic peak height ratios, resulted in oil pool groupings. This led to finding previously unknown lateral and vertical reservoir communication and also helped in checking and updating the scaling character of faults. In the commingled oils, percentages of each contributing zone in the mixture were also determined giving Maraven engineers a proven, rapid and inexpensive tool for production allocation and reservoir management The oil pool compartmentalization defined by the geochemical fingerprinting is in very good agreement with the sequence stratigraphic interpretation of the reservoirs and helped evaluate the influence of structure in oil migration and trapping.

Munoz, N.G.; Mompart, L. [Maraven, Caracas (Venezuela); Talukdar, S.C.

1996-08-01T23:59:59.000Z

436

Removal of Heavy Metals from Industrial Effluent Using Bacteria  

E-Print Network [OSTI]

Industrial development results in the generation of industrial effluents, and if untreated results in water, sediment and soil pollution. (Fakayode and Onianwa, 2002 ? Fakayode, 2005). Industrial wastes and emission contain toxic and hazardous substances, most of which are detrimental to human health (Jimena et al.,2008 ? Ogunfowokan et al.,2005 ? Rajaram et al.,2008). The key pollutants include heavy metals, chemical wastes and oil spills etc. Heavy metal resistant bacteria have significant role in bioremediation of heavy metals in wastewater. The objective of this work is to study the role of bacteria in removing the heavy metals present in the industrial effluent.Five effluent samples out of nine were selected for this study due to high content of heavy metals. The heavy metals Hg and Cu were removed by Bacillus sp. The average Hg reduction was 45 % and Cu reduction was recorded as 62%. The heavy metals Cd, As and Co were removed by Pseudomonas sp. The average Cd reduction was 56%, average As reduction was 34 % and average Co reduction was recorded as 53%. The heavy metals Cd and Cu were removed by Staphylococcus sp. The average Cd reduction was 44 % and average Cu reduction was recorded as 34 %.

Manisha N; Dinesh Sharma; Arun Kumar

437

Crude Oil  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries0 0 0 0 0

438

Understanding Crude Oil Prices  

E-Print Network [OSTI]

business of having some oil in inventory, which is referredKnowledge of all the oil going into inventory today for salebe empty, because inventories of oil are essential for the

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

439

China's Global Oil Strategy  

E-Print Network [OSTI]

nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

Thomas, Bryan G

2009-01-01T23:59:59.000Z

440

China's Global Oil Strategy  

E-Print Network [OSTI]

Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

Thomas, Bryan G

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heavy oil hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Understanding Crude Oil Prices  

E-Print Network [OSTI]

Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

442

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

443

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

444

Understanding Crude Oil Prices  

E-Print Network [OSTI]

per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

445

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

446

Understanding Crude Oil Prices  

E-Print Network [OSTI]

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

447

China's Global Oil Strategy  

E-Print Network [OSTI]

capability to secure oil transport security. Additionally,international oil agreements: 1) ensuring energy security;security, and many argue that as the second-largest consumer of oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

448

China's Global Oil Strategy  

E-Print Network [OSTI]

China made an Iranian oil investment valued at $70 billion.across Iran, China’s oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

Thomas, Bryan G

2009-01-01T23:59:59.000Z

449

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,Mexico, Italy, France, Canada, US, and UK. Figure 10. Historical Chinese oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

450

China's Global Oil Strategy  

E-Print Network [OSTI]

by this point, China’s demand Oil Demand vs. Domestic Supplycurrent pace of growth in oil demand as staying consistentand predictions of oil supply and demand affected foreign

Thomas, Bryan G

2009-01-01T23:59:59.000Z

451

Understanding Crude Oil Prices  

E-Print Network [OSTI]

and Income on Energy and Oil Demand,” Energy Journal 23(1),2006. “China’s Growing Demand for Oil and Its Impact on U.S.in the supply or demand for oil itself could be regarded as

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

452

Crude oil from the Zaburun'e field  

SciTech Connect (OSTI)

In order to work up recommendations for the directions to be taken in processing oil from the new Zaburun'e field in the Ural-Volga interfluvial district, a complete, unified program was used to investigate oil samples taken from depths of 905-913 and 895-903 meters from the Lower Cretaceous deposits. Density, viscosity, medium-resin content, flash point, and other processing-relevant properties were derived. The hydrocarbon group composition was assessed. Fractions distilling below 350/sup 0/C consisted mainly of high-energy isoparaffinic and naphthenic hydrocarbons. Characteristics of the diesel fuel cuts were derived. All cuts had low-temperature properties and cloud points below minus 60/sup 0/C. Lube stocks were analyzed and showed high viscosity indices, low solid points, and low sulfur contents. Straight-run resids were also evaluated.

Dorogochinskaya, V.A.; Shul'zhenko, E.D.; Varshaver, V.P.; Khabibulina, R.K.

1988-03-01T23:59:59.000Z

453

Hydroprocessing Bio-oil and Products Separation for Coke Production  

SciTech Connect (OSTI)

Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

2013-04-01T23:59:59.000Z